0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32G030J6M6

STM32G030J6M6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SOP-8

  • 描述:

    STM32G030J6M6

  • 数据手册
  • 价格&库存
STM32G030J6M6 数据手册
STM32G030x6/x8 Arm® Cortex®-M0+ 32-bit MCU, up to 64 KB Flash, 8 KB RAM, 2x USART, timers, ADC, comm. I/Fs, 2.0-3.6V Datasheet - production data Features • Core: Arm® 32-bit Cortex®-M0+ CPU, frequency up to 64 MHz • -40°C to 85°C operating temperature • Memories – Up to 64 Kbytes of Flash memory with protection – 8 Kbytes of SRAM with HW parity check • CRC calculation unit • Reset and power management – Voltage range: 2.0 V to 3.6 V – Power-on/Power-down reset (POR/PDR) – Low-power modes: Sleep, Stop, Standby – VBAT supply for RTC and backup registers • Clock management – 4 to 48 MHz crystal oscillator – 32 kHz crystal oscillator with calibration – Internal 16 MHz RC with PLL option – Internal 32 kHz RC oscillator (±5 %) • Up to 44 fast I/Os – All mappable on external interrupt vectors – Multiple 5 V-tolerant I/Os • 5-channel DMA controller with flexible mapping • 12-bit, 0.4 µs ADC (up to 16 ext. channels) – Up to 16-bit with hardware oversampling – Conversion range: 0 to 3.6V SO8N 4.9 × 6 mm TSSOP20 6.4 × 4.4 mm LQFP32 7 × 7 mm LQFP48 7 × 7 mm • Communication interfaces – Two I2C-bus interfaces supporting Fastmode Plus (1 Mbit/s) with extra current sink, one supporting SMBus/PMBus and wakeup from Stop mode – Two USARTs with master/slave synchronous SPI; one supporting ISO7816 interface, LIN, IrDA capability, auto baud rate detection and wakeup feature – Two SPIs (32 Mbit/s) with 4- to 16-bit programmable bitframe, one multiplexed with I2S interface • Development support: serial wire debug (SWD) • All packages ECOPACK 2 compliant Table 1. Device summary Reference Part number STM32G030x6 STM32G030C6, STM32G030F6, STM32G030J6, STM32G030K6 STM32G030x8 STM32G030C8, STM32G030K8 • 8 timers: 16-bit for advanced motor control, four 16-bit general-purpose, two watchdogs, SysTick timer • Calendar RTC with alarm and periodic wakeup from Stop/Standby January 2022 This is information on a product in full production. DS12991 Rev 4 1/94 www.st.com Contents STM32G030x6/x8 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 Arm® Cortex®-M0+ core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 14 3.7 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.7.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.7.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.7.5 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.7.6 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.8 Interconnect of peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.9 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.10 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.12 DMA request multiplexer (DMAMUX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.13 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.14 3.15 2/94 3.7.1 3.13.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 20 3.13.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 21 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.14.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.14.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.14.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.15.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.15.2 General-purpose timers (TIM3, 14, 16, 17) . . . . . . . . . . . . . . . . . . . . . . 23 DS12991 Rev 4 STM32G030x6/x8 Contents 3.15.3 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.15.4 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.15.5 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.16 Real-time clock (RTC), tamper (TAMP) and backup registers . . . . . . . . . 24 3.17 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.18 Universal synchronous/asynchronous receiver transmitter (USART) . . . 26 3.19 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.20 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.20.1 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4 Pinouts, pin description and alternate functions . . . . . . . . . . . . . . . . . 29 5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 41 5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 41 5.3.4 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3.6 Wakeup time from low-power modes and voltage scaling transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3.10 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 DS12991 Rev 4 3/94 4 Contents 6 STM32G030x6/x8 5.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.15 NRST input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.3.16 Analog switch booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.3.17 Analog-to-digital converter characteristics . . . . . . . . . . . . . . . . . . . . . . . 66 5.3.18 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.3.19 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.3.20 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.3.21 Characteristics of communication interfaces . . . . . . . . . . . . . . . . . . . . . 72 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.1 SO8N package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.2 TSSOP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.4 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.5.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4/94 DS12991 Rev 4 STM32G030x6/x8 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM32G030x6/x8 family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . 10 Access status versus readout protection level and execution modes. . . . . . . . . . . . . . . . . 13 Interconnect of peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Terms and symbols used in Table 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Pin assignment and description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Port A alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Port B alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Port C alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Port D alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Port F alternate function mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 41 Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Current consumption in Run and Low-power run modes at different die temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Current consumption in Sleep and Low-power sleep modes . . . . . . . . . . . . . . . . . . . . . . . 45 Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Current consumption of peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Low-power mode wakeup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Regulator mode transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Electrical sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 DS12991 Rev 4 5/94 6 List of tables Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. 6/94 STM32G030x6/x8 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Input characteristics of FT_e I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Analog switch booster characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 IWDG min/max timeout period at 32 kHz LSI clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Minimum I2CCLK frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 SO8N package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 TSSOP20 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 LQFP32 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 LQFP48 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 DS12991 Rev 4 STM32G030x6/x8 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 STM32G030CxT LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 STM32G030KxT LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 STM32G030Fx TSSOP20 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 STM32G030Jx SO8N pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 VREFINT vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Current injection into FT_e input with diode active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 I/O AC characteristics definition(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 I2S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 I2S master timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 SO8N package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 SO8N package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 SO8N package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 TSSOP20 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 TSSOP20 package footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 TSSOP20 package marking example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 LQFP32 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Recommended footprint for LQFP32 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 LQFP32 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 LQFP48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Recommended footprint for LQFP48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 LQFP48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 DS12991 Rev 4 7/94 7 Introduction 1 STM32G030x6/x8 Introduction This document provides information on STM32G030x6/x8 microcontrollers, such as description, functional overview, pin assignment and definition, electrical characteristics, packaging, and ordering codes. Information on memory mapping and control registers is object of reference manual. Information on Arm®(a) Cortex®-M0+ core is available from the www.arm.com website. a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. 8/94 DS12991 Rev 4 STM32G030x6/x8 2 Description Description The STM32G030x6/x8 mainstream microcontrollers are based on high-performance Arm® Cortex®-M0+ 32-bit RISC core operating at up to 64 MHz frequency. Offering a high level of integration, they are suitable for a wide range of applications in consumer, industrial and appliance domains and ready for the Internet of Things (IoT) solutions. The devices incorporate a memory protection unit (MPU), high-speed embedded memories (8 Kbytes of SRAM and up to 64 Kbytes of Flash program memory with read protection, write protection), DMA, an extensive range of system functions, enhanced I/Os, and peripherals. The devices offer standard communication interfaces (two I2Cs, two SPIs / one I2S, and two USARTs), one 12-bit ADC (2.5 MSps) with up to 19 channels, a low-power RTC, an advanced control PWM timer, four general-purpose 16-bit timers, two watchdog timers, and a SysTick timer. The devices operate within ambient temperatures from -40 to 85°C and with supply voltages from 2.0 V to 3.6 V. Optimized dynamic consumption combined with a comprehensive set of power-saving modes allows the design of low-power applications. VBAT direct battery input allows keeping RTC and backup registers powered. The devices come in packages with 8 to 48 pins. DS12991 Rev 4 9/94 28 Description STM32G030x6/x8 Table 2. STM32G030x6/x8 family device features and peripheral counts STM32G030_ Peripheral Flash memory (Kbyte) _J6 _F6 _K6 _K8 _C6 _C8 32 32 32 64 32 64 Comm. interfaces Timers SRAM (Kbyte) 8 with parity Advanced control 1 (16-bit) General-purpose 4 (16-bit) SysTick 1 Watchdog 2 SPI [I2S](1) 2 [1] I2C 2 USART 2 RTC Yes Tamper pins 2 Random number generator No AES No GPIOs 5 Wakeup pins 3 12-bit ADC channels (external + internal) 5+2 17 29 4 14 + 2 16 + 2 Internal voltage reference buffer No Max. CPU frequency 64 MHz Operating voltage 2.0 to 3.6 V Operating temperature(2) Ambient: -40 to 85 °C Junction: -40 to 105 °C Number of pins 8 20 32 1. The numbers in brackets denote the count of SPI interfaces configurable as I2S interface. 2. Depends on order code. Refer to Section 7: Ordering information for details. 10/94 43 DS12991 Rev 4 16 + 3 48 STM32G030x6/x8 Description Figure 1. Block diagram SWCLK SWDIO POWER DMAMUX SWD DMA VDDIO1 VDDA Flash memory VDD up to 64 KB NVIC IOPORT Bus matrix CPU CORTEX-M0+ fmax = 56 MHz Voltage regulator VCORE I/F SRAM 8 KB VDD/VDDA VSS/VSSA Parity HSI16 SUPPLY SUPERVISION POR Reset Int POR NRST T sensor RC 16 MHz PLLPCLK PLLRCLK Port A LSI PBx Port B PCx Port C PDx Port D PFx Port F decoder GPIOs PAx PLL XTAL OSC 4-48 MHz RC 32 kHz HSE IWDG CRC RCC I/F LSE AHB Reset & clock control EXTI from peripherals LSE System and peripheral clocks XTAL32 kHz RTC, TAMP Backup regs I/F AHB-to-APB MOSI/SD MISO/MCK SCK/CK NSS/WS SPI1/I2S MOSI, MISO SCK, NSS SPI2 Power domain of analog blocks : OSC32_IN OSC32_OUT RTC_OUT RTC_REFIN RTC_TS TAMP_IN 4 channels BK, BK2, ETR TIM3 4 channels ETR TIM14 1 channel TIM16 & 17 TIMER 16/17 1 channel BK PWRCTRL USART1 RX, TX CTS, RTS, CK WWDG USART2 RX, TX CTS, RTS, CK DBGMCU VBAT VBAT TIM1 APB SYSCFG I/F APB ADC VDD Low-voltage detector VREF+ 16x IN OSC_IN OSC_OUT VDD DS12991 Rev 4 VDDA VDDIO1 I2C1 SCL, SDA, SMBA I2C2 SCL, SDA MSv47958V1 11/94 28 Functional overview STM32G030x6/x8 3 Functional overview 3.1 Arm® Cortex®-M0+ core with MPU The Cortex-M0+ is an entry-level 32-bit Arm Cortex processor designed for a broad range of embedded applications. It offers significant benefits to developers, including: • a simple architecture, easy to learn and program • ultra-low power, energy-efficient operation • excellent code density • deterministic, high-performance interrupt handling • upward compatibility with Cortex-M processor family • platform security robustness, with integrated Memory Protection Unit (MPU). The Cortex-M0+ processor is built on a highly area- and power-optimized 32-bit core, with a 2-stage pipeline Von Neumann architecture. The processor delivers exceptional energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier. The Cortex-M0+ processor provides the exceptional performance expected of a modern 32-bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers. Owing to embedded Arm core, the STM32G030x6/x8 devices are compatible with Arm tools and software. The Cortex-M0+ is tightly coupled with a nested vectored interrupt controller (NVIC) described in Section 3.13.1. 3.2 Memory protection unit The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. 3.3 Embedded Flash memory STM32G030x6/x8 devices feature up to 64 Kbytes of embedded Flash memory available for storing code and data. 12/94 DS12991 Rev 4 STM32G030x6/x8 Functional overview Flexible protections can be configured thanks to option bytes: • Readout protection (RDP) to protect the whole memory. Three levels are available: – Level 0: no readout protection – Level 1: memory readout protection: the Flash memory cannot be read from or written to if either debug features are connected, boot in RAM or bootloader is selected – Level 2: chip readout protection: debug features (Cortex-M0+ serial wire), boot in RAM and bootloader selection are disabled. This selection is irreversible. Table 3. Access status versus readout protection level and execution modes Area Protection level Debug, boot from RAM or boot from system memory (loader) User execution Read Write Erase Read Write Erase User memory 1 Yes Yes Yes No No No 2 Yes Yes Yes N/A N/A N/A System memory 1 Yes No No Yes No No 2 Yes No No N/A N/A N/A Option bytes 1 Yes Yes Yes Yes Yes Yes 2 Yes No No N/A N/A N/A No No N/A(1) N/A N/A N/A Backup registers 1 Yes Yes 2 Yes Yes (1) N/A N/A 1. Erased upon RDP change from Level 1 to Level 0. • Write protection (WRP): the protected area is protected against erasing and programming. Two areas per bank can be selected, with 2-Kbyte granularity. The whole non-volatile memory embeds the error correction code (ECC) feature supporting: 3.4 • single error detection and correction • double error detection • readout of the ECC fail address from the ECC register Embedded SRAM STM32G030x6/x8 devices have 8 Kbytes of embedded SRAM with parity. Hardware parity check allows memory data errors to be detected, which contributes to increasing functional safety of applications. The memory can be read/write-accessed at CPU clock speed, with 0 wait states. DS12991 Rev 4 13/94 28 Functional overview 3.5 STM32G030x6/x8 Boot modes At startup, the boot pin and boot selector option bit are used to select one of the three boot options: • boot from User Flash memory • boot from System memory • boot from embedded SRAM The boot pin is shared with a standard GPIO and can be enabled through the boot selector option bit. The boot loader is located in System memory. It manages the Flash memory reprogramming through one of the following interfaces: 3.6 • USART on pins PA9/PA10 or PA2/PA3 • I2C-bus on pins PB6/PB7 or PB10/PB11 Cyclic redundancy check calculation unit (CRC) The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link time and stored at a given memory location. 3.7 Power supply management 3.7.1 Power supply schemes The STM32G030x6/x8 devices require a 2.0 V to 3.6 V operating supply voltage (VDD). Several different power supplies are provided to specific peripherals: • VDD = 2.0 to 3.6 V VDD is the external power supply for the internal regulator and the system analog such as reset, power management and internal clocks. It is provided externally through VDD/VDDA pin. • VDDA = 2.0 V to 3.6 V VDDA is the analog power supply for the A/D converter. VDDA voltage level is identical to VDD voltage as it is provided externally through VDD/VDDA pin. • VDDIO1 = VDD VDDIO1 is the power supply for the I/Os. VDDIO1 voltage level is identical to VDD voltage as it is provided externally through VDD/VDDA pin. 14/94 • VBAT = 1.55 V to 3.6 V. VBAT is the power supply (through a power switch) for RTC, TAMP, low-speed external 32.768 kHz oscillator and backup registers when VDD is not present. VBAT is provided externally through VBAT pin. When this pin is not available on the package, VBAT bonding pad is internally bonded to the VDD/VDDA pin. • VREF+ is the analog peripheral input reference voltage. When VDDA < 2 V, VREF+ must be equal to VDDA. When VDDA ≥ 2 V, VREF+ must be between 2 V and VDDA. It can be grounded when the analog peripherals using VREF+ are not active. DS12991 Rev 4 STM32G030x6/x8 Functional overview VREF+ is delivered through VREF+ pin. On packages without VREF+ pin, VREF+ is internally connected with VDD. • VCORE An embedded linear voltage regulator is used to supply the VCORE internal digital power. VCORE is the power supply for digital peripherals, SRAM and Flash memory. The Flash memory is also supplied with VDD. Figure 2. Power supply overview VREF+ VREF+ VDDA VDDA domain A/D converter VSSA VDDIO1 domain VDDIO1 I/O ring VDD domain VSS/VSSA VDD/VDDA VSS Reset block Temp. sensor PLL, HSI Standby circuitry (Wakeup, IWDG) VDD Voltage regulator Low-voltage detector VCORE domain Core SRAM VCORE Digital peripherals Flash memory RTC domain BKP registers LSE crystal 32.768 kHz osc RCC BDCR register RTC and TAMP VBAT MSv47920V1 3.7.2 Power supply supervisor The device has an integrated power-on/power-down (POR/PDR) reset active in all power modes and ensuring proper operation upon power-on and power-down. It maintains the device in reset when the supply voltage is below VPOR/PDR threshold, without the need for an external reset circuit. 3.7.3 Voltage regulator Two embedded linear voltage regulators, main regulator (MR) and low-power regulator (LPR), supply most of digital circuitry in the device. The MR is used in Run and Sleep modes. The LPR is used in Low-power run, Low-power sleep and Stop modes. In Standby mode, both regulators are powered down and their outputs set in highimpedance state, such as to bring their current consumption close to zero. DS12991 Rev 4 15/94 28 Functional overview 3.7.4 STM32G030x6/x8 Low-power modes By default, the microcontroller is in Run mode after system or power reset. It is up to the user to select one of the low-power modes described below: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. • Low-power run mode This mode is achieved with VCORE supplied by the low-power regulator to minimize the regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16. • Low-power sleep mode This mode is entered from the low-power run mode. Only the CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the Lowpower run mode. • Stop 0 and Stop 1 modes In Stop 0 and Stop 1 modes, the device achieves the lowest power consumption while retaining the SRAM and register contents. All clocks in the VCORE domain are stopped. The PLL, as well as the HSI16 RC oscillator and the HSE crystal oscillator are disabled. The LSE or LSI keep running. The RTC can remain active (Stop mode with RTC, Stop mode without RTC). Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode, so as to get clock for processing the wakeup event. The main regulator remains active in Stop 0 mode while it is turned off in Stop 1 mode. • Standby mode The Standby mode is used to achieve the lowest power consumption, with POR/PDR always active in this mode. The main regulator is switched off to power down VCORE domain. The low-power regulator is switched off. The PLL, as well as the HSI16 RC oscillator and the HSE crystal oscillator are also powered down. The RTC can remain active (Standby mode with RTC, Standby mode without RTC). For each I/O, the software can determine whether a pull-up, a pull-down or no resistor shall be applied to that I/O during Standby mode. Upon entering Standby mode, register contents are lost except for registers in the RTC domain and standby circuitry. The device exits Standby mode upon external reset event (NRST pin), IWDG reset event, wakeup event (WKUP pin, configurable rising or falling edge) or RTC event (alarm, periodic wakeup, timestamp, tamper), or when a failure is detected on LSE (CSS on LSE). 3.7.5 Reset mode During and upon exiting reset, the schmitt triggers of I/Os are disabled so as to reduce power consumption. In addition, when the reset source is internal, the built-in pull-up resistor on NRST pin is deactivated. 16/94 DS12991 Rev 4 STM32G030x6/x8 3.7.6 Functional overview VBAT operation The VBAT power domain, consuming very little energy, includes RTC, and LSE oscillator and backup registers. In VBAT mode, the RTC domain is supplied from VBAT pin. The power source can be, for example, an external battery or an external supercapacitor. Two anti-tamper detection pins are available. The RTC domain can also be supplied from VDD/VDDA pin. By means of a built-in switch, an internal voltage supervisor allows automatic switching of RTC domain powering between VDD and voltage from VBAT pin to ensure that the supply voltage of the RTC domain (VBAT) remains within valid operating conditions. If both voltages are valid, the RTC domain is supplied from VDD/VDDA pin. An internal circuit for charging the battery on VBAT pin can be activated if the VDD voltage is within a valid range. Note: External interrupts and RTC alarm/events cannot cause the microcontroller to exit the VBAT mode, as in that mode the VDD is not within a valid range. 3.8 Interconnect of peripherals Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency. Depending on peripherals, these interconnections can operate in Run, Sleep and Stop modes. Run Low-power run Sleep Low-power sleep Stop Table 4. Interconnect of peripherals TIMx Timer synchronization or chaining Y Y - ADCx Conversion triggers Y Y - DMA Memory-to-memory transfer trigger Y Y - ADCx TIM1 Timer triggered by analog watchdog Y Y - RTC TIM16 Timer input channel from RTC events Y Y - All clock sources (internal and external) TIM14,16,17 Clock source used as input channel for RC measurement and trimming Y Y - CSS RAM (parity error) Flash memory (ECC error) TIM1,16,17 Timer break Y Y - Interconnect source TIMx Interconnect destination Interconnect action DS12991 Rev 4 17/94 28 Functional overview STM32G030x6/x8 Run Low-power run Sleep Low-power sleep Stop Table 4. Interconnect of peripherals (continued) Timer break Y - - TIMx External trigger Y Y - ADC Conversion external trigger Y Y - Interconnect source Interconnect destination CPU (hard fault) TIM1,16,17 GPIO 3.9 Interconnect action Clocks and startup The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features: • Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler • Safe clock switching: clock sources can be changed safely on the fly in run mode through a configuration register. • Clock management: to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. • System clock source: three different sources can deliver SYSCLK system clock: • 18/94 – 4-48 MHz high-speed oscillator with external crystal or ceramic resonator (HSE). It can supply clock to system PLL. The HSE can also be configured in bypass mode for an external clock. – 16 MHz high-speed internal RC oscillator (HSI16), trimmable by software. It can supply clock to system PLL. – System PLL with maximum output frequency of 64 MHz. It can be fed with HSE or HSI16 clocks. Auxiliary clock source: two ultra-low-power clock sources for the real-time clock (RTC): – 32.768 kHz low-speed oscillator with external crystal (LSE), supporting four drive capability modes. The LSE can also be configured in bypass mode for using an external clock. – 32 kHz low-speed internal RC oscillator (LSI) with ±5% accuracy, also used to clock an independent watchdog. • Peripheral clock sources: several peripherals ( I2S, USARTs, I2Cs, ADC) have their own clock independent of the system clock. • Clock security system (CSS): in the event of HSE clock failure, the system clock is automatically switched to HSI16 and, if enabled, a software interrupt is generated. LSE DS12991 Rev 4 STM32G030x6/x8 Functional overview clock failure can also be detected and generate an interrupt. The CCS feature can be enabled by software. • Clock output: – MCO (microcontroller clock output) provides one of the internal clocks for external use by the application – LSCO (low speed clock output) provides LSI or LSE in all low-power modes (except in VBAT operation). Several prescalers allow the application to configure AHB and APB domain clock frequencies, 64 MHz at maximum. 3.10 General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function (AF). Most of the GPIO pins are shared with special digital or analog functions. Through a specific sequence, this special function configuration of I/Os can be locked, such as to avoid spurious writing to I/O control registers. 3.11 Direct memory access controller (DMA) The direct memory access (DMA) controller is a bus master and system peripheral with single-AHB architecture. With 5 channels, it performs data transfers between memory-mapped peripherals and/or memories, to offload the CPU. Each channel is dedicated to managing memory access requests from one or more peripherals. The unit includes an arbiter for handling the priority between DMA requests. Main features of the DMA controller: • Single-AHB master • Peripheral-to-memory, memory-to-peripheral, memory-to-memory and peripheral-toperipheral data transfers • Access, as source and destination, to on-chip memory-mapped devices such as Flash memory, SRAM, and AHB and APB peripherals • All DMA channels independently configurable: – Each channel is associated either with a DMA request signal coming from a peripheral, or with a software trigger in memory-to-memory transfers. This configuration is done by software. – Priority between the requests is programmable by software (four levels per channel: very high, high, medium, low) and by hardware in case of equality (such as request to channel 1 has priority over request to channel 2). – Transfer size of source and destination are independent (byte, half-word, word), emulating packing and unpacking. Source and destination addresses must be aligned on the data size. – Support of transfers from/to peripherals to/from memory with circular buffer management DS12991 Rev 4 19/94 28 Functional overview – • 3.12 STM32G030x6/x8 Programmable number of data to be transferred: 0 to 216 - 1 Generation of an interrupt request per channel. Each interrupt request originates from any of the three DMA events: transfer complete, half transfer, or transfer error. DMA request multiplexer (DMAMUX) The DMAMUX request multiplexer enables routing a DMA request line between the peripherals and the DMA controller. Each channel selects a unique DMA request line, unconditionally or synchronously with events from its DMAMUX synchronization inputs. DMAMUX may also be used as a DMA request generator from programmable events on its input trigger signals. 3.13 Interrupts and events The device flexibly manages events causing interrupts of linear program execution, called exceptions. The Cortex-M0+ processor core, a nested vectored interrupt controller (NVIC) and an extended interrupt/event controller (EXTI) are the assets contributing to handling the exceptions. Exceptions include core-internal events such as, for example, a division by zero and, core-external events such as logical level changes on physical lines. Exceptions result in interrupting the program flow, executing an interrupt service routine (ISR) then resuming the original program flow. The processor context (contents of program pointer and status registers) is stacked upon program interrupt and unstacked upon program resume, by hardware. This avoids context stacking and unstacking in the interrupt service routines (ISRs) by software, thus saving time, code and power. The ability to abandon and restart load-multiple and store-multiple operations significantly increases the device’s responsiveness in processing exceptions. 3.13.1 Nested vectored interrupt controller (NVIC) The configurable nested vectored interrupt controller is tightly coupled with the core. It handles physical line events associated with a non-maskable interrupt (NMI) and maskable interrupts, and Cortex-M0+ exceptions. It provides flexible priority management. The tight coupling of the processor core with NVIC significantly reduces the latency between interrupt events and start of corresponding interrupt service routines (ISRs). The ISR vectors are listed in a vector table, stored in the NVIC at a base address. The vector address of an ISR to execute is hardware-built from the vector table base address and the ISR order number used as offset. If a higher-priority interrupt event happens while a lower-priority interrupt event occurring just before is waiting for being served, the later-arriving higher-priority interrupt event is served first. Another optimization is called tail-chaining. Upon a return from a higher-priority ISR then start of a pending lower-priority ISR, the unnecessary processor context unstacking and stacking is skipped. This reduces latency and contributes to power efficiency. 20/94 DS12991 Rev 4 STM32G030x6/x8 Functional overview Features of the NVIC: 3.13.2 • Low-latency interrupt processing • 4 priority levels • Handling of a non-maskable interrupt (NMI) • Handling of 32 maskable interrupt lines • Handling of 10 Cortex-M0+ exceptions • Later-arriving higher-priority interrupt processed first • Tail-chaining • Interrupt vector retrieval by hardware Extended interrupt/event controller (EXTI) The extended interrupt/event controller adds flexibility in handling physical line events and allows identifying wake-up events at processor wakeup from Stop mode. The EXTI controller has a number of channels, of which some with rising, falling or rising, and falling edge detector capability. Any GPIO and a few peripheral signals can be connected to these channels. The channels can be independently masked. The EXTI controller can capture pulses shorter than the internal clock period. A register in the EXTI controller latches every event even in Stop mode, which allows the software to identify the origin of the processor's wake-up from Stop mode or, to identify the GPIO and the edge event having caused an interrupt. 3.14 Analog-to-digital converter (ADC) A native 12-bit analog-to-digital converter is embedded into STM32G030x6/x8 devices. It can be extended to 16-bit resolution through hardware oversampling. The ADC has up to 16 external channels and 3 internal channels (temperature sensor, voltage reference, VBAT monitoring). It performs conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC frequency is independent from the CPU frequency, allowing maximum sampling rate of ~2 MSps even with a low CPU speed. An auto-shutdown function guarantees that the ADC is powered off except during the active conversion phase. The ADC can be served by the DMA controller. It can operate in the whole VDD supply range. The ADC features a hardware oversampler up to 256 samples, improving the resolution to 16 bits (refer to AN2668). An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all scanned channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start triggers, to allow the application to synchronize A/D conversions with timers. DS12991 Rev 4 21/94 28 Functional overview 3.14.1 STM32G030x6/x8 Temperature sensor The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature. The temperature sensor is internally connected to an ADC input to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor may vary from part to part due to process variation, the uncalibrated internal temperature sensor is suitable only for relative temperature measurements. To improve the accuracy of the temperature sensor, each part is individually factorycalibrated by ST. The resulting calibration data are stored in the part’s engineering bytes, accessible in read-only mode. Table 5. Temperature sensor calibration values 3.14.2 Calibration value name Description Memory address TS_CAL1 TS ADC raw data acquired at a temperature of 30 °C (± 5 °C), VDDA = VREF+ = 3.0 V (± 10 mV) 0x1FFF 75A8 - 0x1FFF 75A9 Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC. VREFINT is internally connected to an ADC input. The VREFINT voltage is individually precisely measured for each part by ST during production test and stored in the part’s engineering bytes. It is accessible in read-only mode. Table 6. Internal voltage reference calibration values 3.14.3 Calibration value name Description Memory address VREFINT Raw data acquired at a temperature of 30 °C (± 5 °C), VDDA = VREF+ = 3.0 V (± 10 mV) 0x1FFF 75AA - 0x1FFF 75AB VBAT battery voltage monitoring This embedded hardware feature allows the application to measure the VBAT battery voltage using an internal ADC input. As the VBAT voltage may be higher than VDDA and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by three. As a consequence, the converted digital value is one third the VBAT voltage. 3.15 Timers and watchdogs The device includes an advanced-control timer, four general-purpose timers, two watchdog timers and a SysTick timer. Table 7 compares features of the advanced-control, generalpurpose and basic timers. 22/94 DS12991 Rev 4 STM32G030x6/x8 Functional overview Table 7. Timer feature comparison Timer type Timer Counter resolution Counter type Maximum operating frequency Prescaler factor DMA request generation Capture/ compare channels Complementary outputs Advancedcontrol TIM1 16-bit Up, down, up/down 64 MHz Integer from 1 to 216 Yes 4 3 TIM3 16-bit Up, down, up/down 64 MHz Integer from 1 to 216 Yes 4 - TIM14 16-bit Up 64 MHz Integer from 1 to 216 No 1 - TIM16 TIM17 16-bit Up 64 MHz Integer from 1 to 216 Yes 1 1 Generalpurpose 3.15.1 Advanced-control timer (TIM1) The advanced-control timer can be seen as a three-phase PWM unit multiplexed on 6 channels. It has complementary PWM outputs with programmable inserted dead-times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for: • input capture • output compare • PWM output (edge or center-aligned modes) with full modulation capability (0-100%) • one-pulse mode output In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled, so as to turn off any power switches driven by these outputs. Many features are shared with those of the general-purpose TIMx timers (described in Section 3.15.2) using the same architecture, so the advanced-control timers can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining. 3.15.2 General-purpose timers (TIM3, 14, 16, 17) There are four synchronizable general-purpose timers embedded in the device (refer to Table 7 for comparison). Each general-purpose timer can be used to generate PWM outputs or act as a simple timebase. • TIM3 This is a full-featured general-purpose timer with 16-bit auto-reload up/downcounter and 16-bit prescaler. It has four independent channels for input capture/output compare, PWM or one-pulse mode output. It can operate in combination with other general-purpose timers via the Timer Link feature for synchronization or event chaining. It can generate independent DS12991 Rev 4 23/94 28 Functional overview STM32G030x6/x8 DMA request and support quadrature encoders. Its counter can be frozen in debug mode. • TIM14 This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. It has one channel for input capture/output compare, PWM output or one-pulse mode output. Its counter can be frozen in debug mode. • TIM16, TIM17 These are general-purpose timers featuring: – 16-bit auto-reload upcounter and 16-bit prescaler – 1 channel and 1 complementary channel All channels can be used for input capture/output compare, PWM or one-pulse mode output. The timers can operate together via the Timer Link feature for synchronization or event chaining. They can generate independent DMA request. Their counters can be frozen in debug mode. 3.15.3 Independent watchdog (IWDG) The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 32 kHz internal RC (LSI). Independent of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. Its counter can be frozen in debug mode. 3.15.4 System window watchdog (WWDG) The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked by the system clock. It has an early-warning interrupt capability. Its counter can be frozen in debug mode. 3.15.5 SysTick timer This timer is dedicated to real-time operating systems, but it can also be used as a standard down counter. Features of SysTick timer: 3.16 • 24-bit down counter • Autoreload capability • Maskable system interrupt generation when the counter reaches 0 • Programmable clock source Real-time clock (RTC), tamper (TAMP) and backup registers The device embeds an RTC and five 32-bit backup registers, located in the RTC domain of the silicon die. The ways of powering the RTC domain are described in Section 3.7.6. The RTC is an independent BCD timer/counter. 24/94 DS12991 Rev 4 STM32G030x6/x8 Functional overview Features of the RTC: • Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format • Automatic correction for 28, 29 (leap year), 30, and 31 days of the month • Programmable alarm • On-the-fly correction from 1 to 32767 RTC clock pulses, usable for synchronization with a master clock • Reference clock detection - a more precise second-source clock (50 or 60 Hz) can be used to improve the calendar precision • Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy • Two anti-tamper detection pins with programmable filter • Timestamp feature to save a calendar snapshot, triggered by an event on the timestamp pin or a tamper event, or by switching to VBAT mode • 17-bit auto-reload wakeup timer (WUT) for periodic events, with programmable resolution and period • Multiple clock sources and references: – A 32.768 kHz external crystal (LSE) – An external resonator or oscillator (LSE) – The internal low-power RC oscillator (LSI, with typical frequency of 32 kHz) – The high-speed external clock (HSE) divided by 32 When clocked by LSE, the RTC operates in VBAT mode and in all low-power modes. When clocked by LSI, the RTC does not operate in VBAT mode, but it does in low-power modes. All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt and wake the device up from the low-power modes. The backup registers allow keeping 20 bytes of user application data in the event of VDD failure, if a valid backup supply voltage is provided on VBAT pin. They are not affected by the system reset, power reset, and upon the device’s wakeup from Standby mode. 3.17 Inter-integrated circuit interface (I2C) The device embeds two I2C peripherals. Refer to Table 8 for the features. The I2C-bus interface handles communication between the microcontroller and the serial I2C-bus. It controls all I2C-bus-specific sequencing, protocol, arbitration and timing. DS12991 Rev 4 25/94 28 Functional overview STM32G030x6/x8 Features of the I2C peripheral: • I2C-bus specification and user manual rev. 5 compatibility: – • Slave and master modes, multimaster capability – Standard-mode (Sm), with a bitrate up to 100 kbit/s – Fast-mode (Fm), with a bitrate up to 400 kbit/s – Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and extra output drive I/Os – 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses – Programmable setup and hold times – Clock stretching SMBus specification rev 3.0 compatibility: – Hardware PEC (packet error checking) generation and verification with ACK control – Command and data acknowledge control – Address resolution protocol (ARP) support – Host and Device support – SMBus alert – Timeouts and idle condition detection • PMBus rev 1.3 standard compatibility • Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent of the PCLK reprogramming • Wakeup from Stop mode on address match • Programmable analog and digital noise filters • 1-byte buffer with DMA capability Table 8. I2C implementation I2C features(1) I2C1 I2C2 Standard mode (up to 100 kbit/s) X X Fast mode (up to 400 kbit/s) X X Fast Mode Plus (up to 1 Mbit/s) with extra output drive I/Os X X Programmable analog and digital noise filters X X SMBus/PMBus hardware support X - Independent clock X - Wakeup from Stop mode on address match X - 1. X: supported 3.18 Universal synchronous/asynchronous receiver transmitter (USART) The device embeds universal synchronous/asynchronous receivers/transmitters that communicate at speeds of up to 8 Mbit/s. They provide hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire 26/94 DS12991 Rev 4 STM32G030x6/x8 Functional overview half-duplex communication mode. Some can also support SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and have a clock domain independent of the CPU clock, which allows them to wake up the MCU from Stop mode. The wakeup events from Stop mode are programmable and can be: • start bit detection • any received data frame • a specific programmed data frame All USART interfaces can be served by the DMA controller. Table 9. USART implementation USART modes/features(1) USART1 USART2 Hardware flow control for modem X X Continuous communication using DMA X X Multiprocessor communication X X Synchronous mode X X Smartcard mode X - Single-wire half-duplex communication X X IrDA SIR ENDEC block X - LIN mode X - Dual clock domain and wakeup from Stop mode X - Receiver timeout interrupt X - Modbus communication X - Auto baud rate detection X - Driver Enable X X 1. X: supported 3.19 Serial peripheral interface (SPI) The device contains two SPIs running at up to 32 Mbits/s in master and slave modes. It supports half-duplex, full-duplex and simplex communications. A 3-bit prescaler gives eight master mode frequencies. The frame size is configurable from 4 bits to 16 bits. The SPI peripherals support NSS pulse mode, TI mode and hardware CRC calculation. The SPI peripherals can be served by the DMA controller. The I2S interface mode of the SPI peripheral (if supported, see the following table) supports four different audio standards can operate as master or slave, in half-duplex communication mode. It can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master mode, it can output a clock for an external audio component at 256 times the sampling frequency. DS12991 Rev 4 27/94 28 Functional overview STM32G030x6/x8 Table 10. SPI/I2S implementation SPI features(1) SPI1 SPI2 Hardware CRC calculation X X Rx/Tx FIFO X X NSS pulse mode X X I2S mode X - TI mode X X 1. X = supported. 3.20 Development support 3.20.1 Serial wire debug port (SW-DP) An Arm SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU. 28/94 DS12991 Rev 4 STM32G030x6/x8 Pinouts, pin description and alternate functions Figure 3. STM32G030CxT LQFP48 pinout 37 38 39 40 41 42 43 44 45 46 1 36 2 35 3 34 4 33 5 32 6 31 LQFP48 7 30 PA14-BOOT0 PA13 PA12 [PA10] PA11 [PA9] PA10 PC7 PC6 PA9 PA8 PB15 PB14 PB13 24 23 22 21 20 19 25 18 26 12 16 27 11 15 28 10 14 29 9 13 8 17 PC13 PC14-OSC32_IN PC15-OSC32_OUT VBAT VREF+ VDD/VDDA VSS/VSSA PF0-OSC_IN PF1-OSC_OUT NRST PA0 PA1 47 48 PB9 PB8 PB7 PB6 PB5 PB4 PB3 PD3 PD2 PD1 PD0 PA15 Top view PA2 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 PB11 PB12 PB8 PB7 PB6 PB5 PB4 PB3 PA15 PA14-BOOT0 31 30 29 28 27 26 25 Top view 32 Figure 4. STM32G030KxT LQFP32 pinout PB9 1 24 PA13 PC14-OSC32_IN 2 23 PA12 [PA10] PC15-OSC32_OUT 3 22 PA11 [PA9] VDD/VDDA 4 21 PA10 VSS/VSSA 5 20 PC6 NRST 6 19 PA9 PA0 7 18 PA8 PA1 8 17 PB2 9 10 11 12 13 14 15 16 PA3 PA4 PA5 PA6 PA7 PB0 PB1 LQFP32 PA2 4 Pinouts, pin description and alternate functions DS12991 Rev 4 29/94 34 Pinouts, pin description and alternate functions STM32G030x6/x8 Figure 5. STM32G030Fx TSSOP20 pinout Top view PB7/PB8 PB9/PC14-OSC32_IN PC15-OSC32_OUT 1 20 2 19 3 18 VDD/VDDA VSS/VSSA 4 17 5 16 NRST PA0 PA1 PA2 6 15 7 14 8 13 9 12 10 11 PA3 PB3/PB4/PB5/PB6 PA15/PA14-BOOT0 PA13 PA12[PA10] PA11[PA9] PB0/PB1/PB2/PA8 PA7 PA6 PA5 PA4 MSv47963V1 Figure 6. STM32G030Jx SO8N pinout Top view PB7/PB8/PB9/PC14-OSC32_IN 1 8 PB5/PB6/PA14-BOOT0/PA15 VDD/VDDA 2 7 PA13 VSS/VSSA 3 6 PA12[PA10] PA0/PA1/PA2/NRST 4 5 PA8/PA11[PA9]/PB0/PB1 MSv47964V1 Table 11. Terms and symbols used in Table 12 Column Pin name Pin type Symbol Definition Terminal name corresponds to its by-default function at reset, unless otherwise specified in parenthesis under the pin name. S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O RST Bidirectional reset pin with embedded weak pull-up resistor Options for FT I/Os I/O structure Note 30/94 _f I/O, Fm+ capable _a I/O, with analog switch function _e I/O, with switchable diode to VDDIOx Upon reset, all I/Os are set as analog inputs, unless otherwise specified. DS12991 Rev 4 STM32G030x6/x8 Pinouts, pin description and alternate functions Table 11. Terms and symbols used in Table 12 (continued) Column Symbol Definition Alternate Functions selected through GPIOx_AFR registers functions Pin functions Additional Functions directly selected/enabled through peripheral registers functions Table 12. Pin assignment and description SO8N TSSOP20 LQFP32 LQFP48 (function upon reset) Pin type I/O structure Note Pin Alternate functions - - - 1 PC13 I/O FT (1)(2) TIM1_BK TAMP_IN1, RTC_TS, RTC_OUT1, WKUP2 - - - 2 PC14OSC32_IN (PC14) I/O FT (1)(2) TIM1_BK2 OSC32_IN 1 2 2 - PC14OSC32_IN (PC14) I/O FT (1)(2) TIM1_BK2 OSC32_IN, OSC_IN - 3 3 3 PC15OSC32_OUT I/O (PC15) FT (1)(2) OSC32_EN, OSC_EN OSC32_OUT - - - 4 VBAT S - - - VBAT - - - 5 VREF+ S - - - - 2 4 4 6 VDD/VDDA S - - - - 3 5 5 7 VSS/VSSA S - - - - - - - 8 PF0-OSC_IN (PF0) I/O FT - TIM14_CH1 OSC_IN - - - 9 PF1OSC_OUT (PF1) I/O FT - OSC_EN OSC_OUT 4 6 6 10 NRST I/O FT - - NRST 4 7 7 11 PA0 I/O FT_a (3) SPI2_SCK, USART2_CTS, ADC_IN0, TAMP_IN2,WKUP1 4 8 8 12 PA1 I/O FT_ea (3) SPI1_SCK/I2S1_CK, USART2_RTS_DE_CK, I2C1_SMBA, EVENTOUT ADC_IN1 Pin name DS12991 Rev 4 Additional functions 31/94 34 Pinouts, pin description and alternate functions STM32G030x6/x8 Table 12. Pin assignment and description (continued) SO8N TSSOP20 LQFP32 LQFP48 (function upon reset) Pin type I/O structure Note Pin Alternate functions 4 9 9 13 PA2 I/O FT_a (3) SPI1_MOSI/I2S1_SD, USART2_TX, ADC_IN2, WKUP4,LSCO - 10 10 14 PA3 I/O FT_ea - SPI2_MISO, USART2_RX, EVENTOUT ADC_IN3 15 PA4 I/O FT_a - SPI1_NSS/I2S1_WS, SPI2_MOSI, TIM14_CH1, EVENTOUT ADC_IN4, RTC_OUT2 - PA4 I/O FT_a - SPI1_NSS/I2S1_WS, SPI2_MOSI, TIM14_CH1, EVENTOUT ADC_IN4, TAMP_IN1, RTC_TS, RTC_OUT1, WKUP2 Pin name - - - Additional functions - 11 11 - 12 12 16 PA5 I/O FT_ea - SPI1_SCK/I2S1_CK, EVENTOUT ADC_IN5 - 13 13 17 PA6 I/O FT_ea - SPI1_MISO/I2S1_MCK, TIM3_CH1, TIM1_BK, TIM16_CH1 ADC_IN6 - 14 14 18 PA7 I/O FT_a - SPI1_MOSI/I2S1_SD, TIM3_CH2, TIM1_CH1N, TIM14_CH1, TIM17_CH1 ADC_IN7 5 15 15 19 PB0 I/O FT_ea - SPI1_NSS/I2S1_WS, TIM3_CH3, TIM1_CH2N ADC_IN8 5 15 16 20 PB1 I/O FT_ea - TIM14_CH1, TIM3_CH4, TIM1_CH3N, EVENTOUT ADC_IN9 - 15 17 21 PB2 I/O FT_ea - SPI2_MISO, EVENTOUT ADC_IN10 - - - 22 PB10 I/O FT_fa - SPI2_SCK, I2C2_SCL ADC_IN11 - - - 23 PB11 I/O FT_fa - SPI2_MOSI, I2C2_SDA ADC_IN15 - - - 24 PB12 I/O FT_a - SPI2_NSS, TIM1_BK, EVENTOUT ADC_IN16 - - - 25 PB13 I/O FT_f - SPI2_SCK, TIM1_CH1N, I2C2_SCL, EVENTOUT - - - - 26 PB14 I/O FT_f - SPI2_MISO, TIM1_CH2N, I2C2_SDA, EVENTOUT - - - - 27 PB15 I/O FT - SPI2_MOSI, TIM1_CH3N, EVENTOUT RTC_REFIN PA8 I/O FT - MCO, SPI2_NSS, TIM1_CH1, EVENTOUT - 5 32/94 15 18 28 DS12991 Rev 4 STM32G030x6/x8 Pinouts, pin description and alternate functions Table 12. Pin assignment and description (continued) SO8N TSSOP20 LQFP32 Pin type I/O structure Note Pin Alternate functions - - 19 29 PA9 I/O FT_f - MCO, USART1_TX, TIM1_CH2, SPI2_MISO, I2C1_SCL, EVENTOUT - - - 20 30 PC6 I/O FT - TIM3_CH1 - - - 31 PC7 I/O FT - TIM3_CH2 - - - 21 32 PA10 I/O FT_f - SPI2_MOSI, USART1_RX, TIM1_CH3, TIM17_BK, I2C1_SDA, EVENTOUT - - - 33 PA11 [PA9] I/O FT_f (4) SPI1_MISO/I2S1_MCK, USART1_CTS, TIM1_CH4, TIM1_BK2, I2C2_SCL - - PA11 [PA9] I/O FT_fa (4) SPI1_MISO/I2S1_MCK, USART1_CTS, TIM1_CH4, TIM1_BK2, I2C2_SCL ADC_IN15 FT_f (4) SPI1_MOSI/I2S1_SD, USART1_RTS_DE_CK, TIM1_ETR, I2S_CKIN, I2C2_SDA - SPI1_MOSI/I2S1_SD, USART1_RTS_DE_CK, TIM1_ETR, I2S_CKIN, I2C2_SDA ADC_IN16 5 - - - 16 22 - - LQFP48 Pin name 34 (function upon reset) PA12 [PA10] I/O Additional functions PA12 [PA10] I/O FT_fa (4) PA13 I/O FT_ea (5) SWDIO, IR_OUT, EVENTOUT ADC_IN17 8 19 25 36 PA14-BOOT0 I/O FT_a (5) SWCLK, USART2_TX, EVENTOUT ADC_IN18, BOOT0 8 19 26 37 6 17 23 - 7 18 24 35 PA15 I/O FT - SPI1_NSS/I2S1_WS, USART2_RX, EVENTOUT - - - - 38 PD0 I/O FT - EVENTOUT, SPI2_NSS, TIM16_CH1 - - - - 39 PD1 I/O FT - EVENTOUT, SPI2_SCK, TIM17_CH1 - - - - 40 PD2 I/O FT - TIM3_ETR, TIM1_CH1N - - - - 41 PD3 I/O FT - USART2_CTS, SPI2_MISO, TIM1_CH2N - DS12991 Rev 4 33/94 34 Pinouts, pin description and alternate functions STM32G030x6/x8 Table 12. Pin assignment and description (continued) PB3 I/O FT - - 20 28 43 PB4 I/O FT - SPI1_MISO/I2S1_MCK, TIM3_CH1, USART1_CTS, TIM17_BK, EVENTOUT - 8 20 29 44 PB5 I/O FT - SPI1_MOSI/I2S1_SD, TIM3_CH2, TIM16_BK, I2C1_SMBA WKUP6 8 20 30 45 PB6 I/O FT_f - USART1_TX, TIM1_CH3, TIM16_CH1N, SPI2_MISO, I2C1_SCL, EVENTOUT - LQFP48 20 27 42 LQFP32 - SPI1_SCK/I2S1_CK, TIM1_CH2, USART1_RTS_DE_CK, EVENTOUT TSSOP20 Alternate functions SO8N Note I/O structure Pin name Pin type Pin (function upon reset) Additional functions - - - - 46 PB7 I/O FT_f - USART1_RX, SPI2_MOSI, TIM17_CH1N, I2C1_SDA, EVENTOUT - 1 1 31 - PB7 I/O FT_fa - USART1_RX, SPI2_MOSI, TIM17_CH1N, I2C1_SDA, EVENTOUT ADC_IN11 1 1 32 47 PB8 I/O FT_f - SPI2_SCK, TIM16_CH1, I2C1_SCL, EVENTOUT - 1 2 1 PB9 I/O FT_f - IR_OUT, TIM17_CH1, SPI2_NSS, I2C1_SDA, EVENTOUT - 48 1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF - These GPIOs must not be used as current sources (for example to drive a LED). 2. After an RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers. The RTC registers are not reset upon system reset. For details on how to manage these GPIOs, refer to the RTC domain and RTC register descriptions in the RM0444 reference manual. 3. As in SO8N device, the PA0, PA1, and PA2 GPIOs are bonded with NRST on the pin 4, low level applied to any of these GPIOs provokes the device reset. To prevent the risk of spurious resets, keep these GPIOs configured at all times as analog or digital inputs (as opposed to output or alternate function). 4. Pins PA9 and PA10 can be remapped in place of pins PA11 and PA12 (default mapping), using SYSCFG_CFGR1 register. 5. Upon reset, these pins are configured as SW debug alternate functions, and the internal pull-up on PA13 pin and the internal pull-down on PA14 pin are activated. 34/94 DS12991 Rev 4 DS12991 Rev 4 Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 PA0 SPI2_SCK USART2_CTS - - - - - - PA1 SPI1_SCK/ I2S1_CK USART2_RTS _DE_CK - - - - I2C1_SMBA EVENTOUT PA2 SPI1_MOSI/ I2S1_SD USART2_TX - - - - - - PA3 SPI2_MISO USART2_RX - - - - - EVENTOUT PA4 SPI1_NSS/ I2S1_WS SPI2_MOSI - - TIM14_CH1 - - EVENTOUT PA5 SPI1_SCK/ I2S1_CK - - - - - - EVENTOUT PA6 SPI1_MISO/ I2S1_MCK TIM3_CH1 TIM1_BKIN - - TIM16_CH1 - - PA7 SPI1_MOSI/ I2S1_SD TIM3_CH2 TIM1_CH1N TIM14_CH1 TIM17_CH1 - - PA8 MCO SPI2_NSS TIM1_CH1 - - - - EVENTOUT PA9 MCO USART1_TX TIM1_CH2 - SPI2_MISO - I2C1_SCL EVENTOUT PA10 SPI2_MOSI USART1_RX TIM1_CH3 - - TIM17_BKIN I2C1_SDA EVENTOUT PA11 SPI1_MISO/ I2S1_MCK USART1_CTS TIM1_CH4 - - TIM1_BKIN2 I2C2_SCL - PA12 SPI1_MOSI/ I2S1_SD USART1_RTS _DE_CK TIM1_ETR - - I2S_CKIN I2C2_SDA - PA13 SWDIO IR_OUT - - - - - EVENTOUT PA14 SWCLK USART2_TX - - - - - EVENTOUT PA15 SPI1_NSS/ I2S1_WS USART2_RX - - - - - EVENTOUT - STM32G030x6/x8 Table 13. Port A alternate function mapping 35/94 36/94 Table 14. Port B alternate function mapping DS12991 Rev 4 Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 PB0 SPI1_NSS/ I2S1_WS TIM3_CH3 TIM1_CH2N - - - - - PB1 TIM14_CH1 TIM3_CH4 TIM1_CH3N - - - - EVENTOUT PB2 - SPI2_MISO - - - - - EVENTOUT PB3 SPI1_SCK/ I2S1_CK TIM1_CH2 - - USART1_RTS _DE_CK - - EVENTOUT PB4 SPI1_MISO/ I2S1_MCK TIM3_CH1 - - USART1_CTS TIM17_BKIN - EVENTOUT PB5 SPI1_MOSI/ I2S1_SD TIM3_CH2 TIM16_BKIN - - - I2C1_SMBA - PB6 USART1_TX TIM1_CH3 TIM16_CH1N - SPI2_MISO - I2C1_SCL EVENTOUT PB7 USART1_RX SPI2_MOSI TIM17_CH1N - - - I2C1_SDA EVENTOUT PB8 - SPI2_SCK TIM16_CH1 - - - I2C1_SCL EVENTOUT PB9 IR_OUT - TIM17_CH1 - - SPI2_NSS I2C1_SDA EVENTOUT PB10 - - - - - SPI2_SCK I2C2_SCL - PB11 SPI2_MOSI - - - - - I2C2_SDA - PB12 SPI2_NSS - TIM1_BKIN - - - - EVENTOUT PB13 SPI2_SCK - TIM1_CH1N - - - I2C2_SCL EVENTOUT PB14 SPI2_MISO - TIM1_CH2N - - - I2C2_SDA EVENTOUT PB15 SPI2_MOSI - TIM1_CH3N - - - - EVENTOUT STM32G030x6/x8 Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 PC6 - TIM3_CH1 - - - - - - PC7 - TIM3_CH2 - - - - - - PC13 - - TIM1_BKIN - - - - - PC14 - - TIM1_BKIN2 - - - - - PC15 OSC32_EN OSC_EN - - - - - - * Table 16. Port D alternate function mapping DS12991 Rev 4 Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 PD0 EVENTOUT SPI2_NSS TIM16_CH1 - - - - - PD1 EVENTOUT SPI2_SCK TIM17_CH1 - - - - - PD2 - TIM3_ETR TIM1_CH1N - - - - - PD3 USART2_CTS SPI2_MISO TIM1_CH2N - - - - - Table 17. Port F alternate function mapping Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 PF0 - - TIM14_CH1 - - - - - PF1 OSC_EN - - - - - - - STM32G030x6/x8 Table 15. Port C alternate function mapping 37/94 Electrical characteristics STM32G030x6/x8 5 Electrical characteristics 5.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. Parameter values defined at temperatures or in temperature ranges out of the ordering information scope are to be ignored. Packages used for characterizing certain electrical parameters may differ from the commercial packages as per the ordering information. 5.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TA(max) (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3σ). 5.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean ±2σ). 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 5.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 7. 5.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 8. Figure 7. Pin loading conditions Figure 8. Pin input voltage MCU pin MCU pin C = 50 pF 38/94 VIN DS12991 Rev 4 STM32G030x6/x8 5.1.6 Electrical characteristics Power supply scheme Figure 9. Power supply scheme VBAT Backup circuitry (LSE, RTC and backup registers) 1.55 V to 3.6 V Power switch VDD VCORE VDD/VDDA VDD Regulator OUT 1 x 100 nF + 1 x 4.7 μF GPIOs IN Level shifter VDDIO1 IO logic Kernel logic (CPU, digital and memories) VSS VDDA VREF VREF+ VREF+ VREF- 100 nF ADC VSSA VSS/VSSA MSv47984V1 Caution: Power supply pin pair (VDD/VDDA and VSS/VSSA) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. 5.1.7 Current consumption measurement Figure 10. Current consumption measurement scheme IDDVBAT VBAT VDD (VDDA) IDD VBAT VDD/VDDA MSv47901V1 DS12991 Rev 4 39/94 79 Electrical characteristics 5.2 STM32G030x6/x8 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 18, Table 19 and Table 20 may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. All voltages are defined with respect to VSS. Table 18. Voltage characteristics Symbol Ratings Min Max VDD External supply voltage - 0.3 4.0 VBAT External supply voltage on VBAT pin - 0.3 4.0 VREF+ External voltage on VREF+ pin - 0.3 Min(VDD + 0.4, 4.0) Input voltage on FT_xx - 0.3 VDD + 4.0(2) Input voltage on any other pin - 0.3 4.0 VIN(1) Unit V 1. Refer to Table 19 for the maximum allowed injected current values. 2. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled. Table 19. Current characteristics Symbol Ratings Max IVDD/VDDA Current into VDD/VDDA power pin (source)(1) 100 IVSS/VSSA Current out of VSS/VSSA ground pin (sink)(1) 100 Output current sunk by any I/O and control pin except FT_f 15 Output current sunk by any FT_f pin 20 Output current sourced by any I/O and control pin 15 Total output current sunk by sum of all I/Os and control pins 80 Total output current sourced by sum of all I/Os and control pins 80 IIO(PIN) ∑IIO(PIN) IINJ(PIN)(2) ∑|IINJ(PIN)| Unit mA -5 / NA(3) Injected current on a FT_xx pin Total injected current (sum of all I/Os and control pins)(4) 25 1. All main power (VDD/VDDA, VBAT) and ground (VSS/VSSA) pins must always be connected to the external power supplies, in the permitted range. 2. A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 18: Voltage characteristics for the maximum allowed input voltage values. 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 4. When several inputs are submitted to a current injection, the maximum ∑|IINJ(PIN)| is the absolute sum of the negative injected currents (instantaneous values). Table 20. Thermal characteristics Symbol TSTG TJ 40/94 Ratings Storage temperature range Maximum junction temperature DS12991 Rev 4 Value Unit –65 to +150 °C 150 °C STM32G030x6/x8 Electrical characteristics 5.3 Operating conditions 5.3.1 General operating conditions Table 21. General operating conditions Symbol Parameter Conditions Min Max fHCLK Internal AHB clock frequency - 0 64 fPCLK Internal APB clock frequency - 0 64 - 2.0(1) 3.6 - 1.55 3.6 VDD/DDA Supply voltage VBAT Backup operating voltage Min(VDD + 3.6, Unit MHz V V 5.5)(2) VIN I/O input voltage - -0.3 V TA Ambient temperature(3) - -40 85 °C TJ Junction temperature - -40 105 °C 1. When RESET is released functionality is guaranteed down to VPDR min. 2. For operation with voltage higher than VDD +0.3 V, the internal pull-up and pull-down resistors must be disabled. 3. The TA(max) applies to PD(max). At PD < PD(max) the ambient temperature is allowed to go higher than TA(max) provided that the junction temperature TJ does not exceed TJ(max). Refer to Section 6.5: Thermal characteristics. 5.3.2 Operating conditions at power-up / power-down The parameters given in Table 22 are derived from tests performed under the ambient temperature condition summarized in Table 21. Table 22. Operating conditions at power-up / power-down Symbol Parameter tVDD 5.3.3 VDD slew rate Conditions Min Max VDD rising - ∞ VDD falling 10 ∞ Unit µs/V Embedded reset and power control block characteristics The parameters given in Table 23 are derived from tests performed under the ambient temperature conditions summarized in Table 21. Table 23. Embedded reset and power control block characteristics Symbol tRSTTEMPO (2) Parameter Conditions(1) Min Typ Max Unit POR temporization when VDD crosses VPOR VDD rising - 250 400 μs VPOR(2) Power-on reset threshold - 2.06 2.10 2.14 V VPDR(2) Power-down reset threshold - 1.960 2.00 2.04 V Hysteresis in continuous mode - 20 - Hysteresis in other mode - Vhyst_POR_PDR Hysteresis of VPOR and VPDR DS12991 Rev 4 mV 30 - 41/94 79 Electrical characteristics STM32G030x6/x8 1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes. 2. Guaranteed by design. 5.3.4 Embedded voltage reference The parameters given in Table 24 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. Table 24. Embedded internal voltage reference Symbol VREFINT Parameter Internal reference voltage Conditions Min Typ Max Unit -40°C < TJ < 105°C 1.182 1.212 1.232 V tS_vrefint (1) ADC sampling time when reading the internal reference voltage - 4(2) - - µs tstart_vrefint Start time of reference voltage buffer when ADC is enable - - 8 12(2) µs IDD(VREFINTBUF) VREFINT buffer consumption from VDD when converted by ADC - - 12.5 20(2) µA ∆VREFINT Internal reference voltage spread over the temperature range VDD = 3 V - 5 7.5(2) mV - - 30 50(2) ppm/°C 300 1000(2) ppm - 250 1200(2) ppm/V 24 25 26 49 50 51 74 75 76 TCoeff_vrefint ACoeff VDDCoeff Temperature coefficient Long term stability Voltage coefficient VREFINT_DIV1 1/4 reference voltage VREFINT_DIV2 1/2 reference voltage VREFINT_DIV3 3/4 reference voltage 1000 hours, T = 25 °C 3.0 V < VDD < 3.6 V - 1. The shortest sampling time can be determined in the application by multiple iterations. 2. Guaranteed by design. 42/94 DS12991 Rev 4 - % VREFINT STM32G030x6/x8 Electrical characteristics Figure 11. VREFINT vs. temperature V 1.235 1.23 1.225 1.22 1.215 1.21 1.205 1.2 1.195 1.19 1.185 -40 -20 0 20 40 Mean 60 Min 80 100 120 °C Max MSv40169V1 5.3.5 Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 10: Current consumption measurement scheme. Typical and maximum current consumption The MCU is placed under the following conditions: • All I/O pins are in analog input mode • All peripherals are disabled except when explicitly mentioned • The Flash memory access time is adjusted with the minimum wait states number, depending on the fHCLK frequency (refer to the table “Number of wait states according to CPU clock (HCLK) frequency” available in the RM0454 reference manual). • When the peripherals are enabled fPCLK = fHCLK • For Flash memory and shared peripherals fPCLK = fHCLK = fHCLKS Unless otherwise stated, values given in Table 25 through Table 31 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. DS12991 Rev 4 43/94 79 Electrical characteristics STM32G030x6/x8 Table 25. Current consumption in Run and Low-power run modes at different die temperatures Conditions Symbol Parameter General (3) IDD(Run) 25°C 85°C 64 MHz 5.7 5.9 8.0 8.3 56 MHz 5.1 5.2 7.1 7.1 4.6 4.7 5.7 6.0 3.2 3.3 4.6 4.9 24 MHz 2.5 2.6 3.5 3.8 16 MHz 1.6 1.7 2.5 2.9 64 MHz 4.7 4.8 7.2 7.5 56 MHz 4.2 4.3 6.5 6.7 3.7 3.9 5.7 6.0 2.6 2.7 4.1 4.3 24 MHz 2.0 2.1 3.2 3.5 16 MHz 1.3 1.3 2.3 2.4 1.3 1.3 2.0 2.3 0.7 0.8 1.4 1.5 2 MHz 0.3 0.3 0.6 0.9 16 MHz 1.1 1.1 1.9 2.1 0.6 0.6 1.2 1.4 2 MHz 0.2 0.3 0.6 0.9 2 MHz 182 226 570 790 99 132 480 700 58 89 430 630 125 kHz 25 56 370 600 32 kHz 17 47 330 480 2 MHz 161 191 550 800 1 MHz 91 114 470 750 48 81 410 710 125 kHz 21 51 360 500 32 kHz 15 37 310 400 32 MHz 48 MHz 32 MHz Range 2; PLL enabled; fHCLK = fHSI bypass (≤16 MHz), fHCLK = fPLLRCLK (>16 MHz); (3) Flash memory SRAM 16 MHz 8 MHz 8 MHz Flash memory SRAM 1 MHz 500 kHz IDD(LPRun) Supply current in Low-power run mode PLL disabled; fHCLK = fHSE bypass (> 32 kHz), fHCLK = fLSE bypass (= 32 kHz); (3) Unit 85°C 48 MHz Supply current in Run mode Fetch from(2) 25°C fHCLK Range 1; PLL enabled; fHCLK = fHSI bypass (≤16 MHz), fHCLK = fPLLRCLK (>16 MHz); Max(1) Typ 500 kHz Flash memory SRAM 1. Based on characterization results, not tested in production. 2. Prefetch and cache enabled when fetching from Flash. Code compiled with high optimization for space in SRAM. 3. VDD = 3.0 V for values in Typ columns and 3.6 V for values in Max columns, all peripherals disabled, cache enabled, prefetch disabled for code and data fetch from Flash and enabled from SRAM 44/94 DS12991 Rev 4 mA µA STM32G030x6/x8 Electrical characteristics Table 26. Current consumption in Sleep and Low-power sleep modes Conditions Symbol Parameter Voltage scaling General IDD(Sleep) Flash memory enabled; fHCLK = fHSE bypass Supply (≤16 MHz; PLL disabled), current in f =f Sleep mode HCLK PLLRCLK (>16 MHz; PLL enabled); All peripherals disabled Range 1 Range 2 IDD(LPSleep) Supply current in Low-power sleep mode Max(1) Typ Flash memory disabled; PLL disabled; fHCLK = fHSE bypass (> 32 kHz), fHCLK = fLSE bypass (= 32 kHz); All peripherals disabled Unit fHCLK 25°C 85°C 25°C 85°C 64 MHz 1.4 1.5 2.2 2.4 56 MHz 1.3 1.4 1.9 2.1 48 MHz 1.2 1.2 1.9 1.9 32 MHz 0.9 0.9 1.4 1.5 24 MHz 0.7 0.8 1.1 1.3 16 MHz 0.4 0.4 0.7 0.8 16 MHz 0.3 0.4 0.6 0.7 8 MHz 0.2 0.3 0.3 0.6 2 MHz 0.1 0.2 0.2 0.5 2 MHz 43 77 175 410 1 MHz 29 60 150 375 500 kHz 23 52 145 285 125 kHz 16 46 130 270 32 kHz 13 44 125 260 mA µA 1. Based on characterization results, not tested in production. Table 27. Current consumption in Stop 0 mode Conditions Symbol Parameter Unit 25°C 85°C 25°C 85°C 2.4 V 290 320 395 540 3V 295 325 415 580 3.6 V 295 325 445 595 2.4 V 105 145 145 265 3V 105 150 150 285 3.6 V 110 150 150 295 VDD HSI kernel ON IDD(Stop 0) Max(1) Typ Supply current in Stop 0 mode HSI kernel OFF µA 1. Based on characterization results, not tested in production. DS12991 Rev 4 45/94 79 Electrical characteristics STM32G030x6/x8 Table 28. Current consumption in Stop 1 mode Conditions Symbol Max(1) Typ Parameter Unit VDD 25°C 85°C 25°C 85°C 2.4 V 3.4 28 17 130 3V 3.6 28 22 140 3.6 V 3.9 29 28 155 2.4 V 3.9 28 22 140 3V 4.1 29 23 155 3.6 V 4.6 29 28 160 RTC Disabled Supply current in Stop 1 mode IDD(Stop 1) Flash memory not powered Enabled (clocked by LSE bypass) µA 1. Based on characterization results, not tested in production. Table 29. Current consumption in Standby mode Symbol Conditions Parameter General RTC disabled IDD(Standby) Supply current in Standby mode RTC enabled, clocked by LSI Max(1) Typ VDD 25°C 85°C 25°C 85°C 2.4 V 1.0 1.8 2.1 14 3.0 V 1.2 2.1 2.7 16 3.6 V 1.4 2.5 3.0 19 2.4 V 1.3 2.1 2.2 17 3.0 V 1.7 2.5 2.9 19 3.6 V 2.1 3.0 3.8 19 Unit µA 1. Based on characterization results, not tested in production. Table 30. Current consumption in VBAT mode Symbol IDD_VBAT Conditions Parameter Supply current in VBAT mode Typ RTC VBAT 25°C 85°C Enabled, clocked by LSE bypass at 32.768 kHz 2.4 V 270 360 3.0 V 360 460 3.6 V 470 600 Enabled, clocked by LSE crystal at 32.768 kHz 2.4 V 410 440 3.0 V 510 530 3.6 V 630 770 Unit nA I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 48: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. 46/94 DS12991 Rev 4 STM32G030x6/x8 Electrical characteristics Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the internal peripheral current consumption measured previously (see Table 31: Current consumption of peripherals), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: I SW = V DDIO1 × f SW × C where ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDDIO1 is the I/O supply voltage fSW is the I/O switching frequency C is the total capacitance seen by the I/O pin: C = CINT+ CEXT + CS CS is the PCB board capacitance including the pad pin. The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in the following table. The MCU is placed under the following conditions: • All I/O pins are in Analog mode • The given value is calculated by measuring the difference of the current consumptions: – when the peripheral is clocked on – when the peripheral is clocked off • Ambient operating temperature and supply voltage conditions summarized in Table 18: Voltage characteristics • The power consumption of the digital part of the on-chip peripherals is given in the following table. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet. DS12991 Rev 4 47/94 79 Electrical characteristics STM32G030x6/x8 Table 31. Current consumption of peripherals Consumption in µA/MHz Peripheral Bus Range 1 Range 2 Low-power run and sleep IOPORT Bus IOPORT 0.5 0.4 0.3 GPIOA IOPORT 3.1 2.4 3.0 GPIOB IOPORT 2.9 2.3 3.0 GPIOC IOPORT 0.9 0.8 1.0 GPIOD IOPORT 0.7 0.6 1.0 GPIOF IOPORT 0.5 0.5 1.0 Bus matrix AHB 3.2 2.2 2.8 All AHB Peripherals AHB 9.8 8.2 8.5 DMA1/DMAMUX AHB 3.4 2.9 3.0 CRC AHB 0.5 0.4 0.5 FLASH AHB 4.3 3.6 3.5 All APB peripherals APB 23.5 20.0 20.5 APB 0.2 0.2 0.1 PWR APB 0.4 0.3 0.5 SYSCFG APB 0.4 0.4 0.5 AHB to APB bridge(1) WWDG APB 0.2 0.3 0.5 TIM1 APB 7.0 5.9 6.5 TIM3 APB 3.6 3.1 3.5 TIM14 APB 1.5 1.3 1.5 TIM16 APB 2.3 2.0 2.5 TIM17 APB 1.0 0.8 0.3 I2C1 APB 3.2 2.7 3.0 I2C2 APB 0.7 0.6 1.0 SPI1 APB 2.2 1.8 2.0 SPI2 APB 1.3 1.1 1.5 USART1 APB 6.6 5.6 6.0 USART2 APB 1.8 1.5 2.0 ADC APB 1.6 1.5 1.5 1. The AHB to APB Bridge is automatically active when at least one peripheral is ON on the APB. 48/94 DS12991 Rev 4 STM32G030x6/x8 5.3.6 Electrical characteristics Wakeup time from low-power modes and voltage scaling transition times The wakeup times given in Table 32 are the latency between the event and the execution of the first user instruction. Table 32. Low-power mode wakeup times(1) Symbol Parameter Conditions Typ Max tWUSLEEP Wakeup time from Sleep to Run mode - 11 11 Wakeup time from Transiting to Low-power-run-mode execution in Flash tWULPSLEEP Low-power sleep memory not powered in Low-power sleep mode; mode HCLK = HSI16 / 8 = 2 MHz tWUSTOP0 Transiting to Run-mode execution in Flash memory not powered in Stop 0 mode; HCLK = HSI16 = 16 MHz; Wakeup time from Regulator in Range 1 or Range 2 Stop 0 Transiting to Run-mode execution in SRAM or in Flash memory powered in Stop 0 mode; HCLK = HSI16 = 16 MHz; Regulator in Range 1 or Range 2 Transiting to Run-mode execution in Flash memory not powered in Stop 1 mode; HCLK = HSI16 = 16 MHz; Regulator in Range 1 or Range 2 tWUSTOP1 Transiting to Run-mode execution in SRAM or in Flash memory powered in Stop 1 mode; HCLK = HSI16 = 16 MHz; Wakeup time from Regulator in Range 1 or Range 2 Stop 1 Transiting to Low-power-run-mode execution in Flash memory not powered in Stop 1 mode; HCLK = HSI16/8 = 2 MHz; Regulator in low-power mode (LPR = 1 in PWR_CR1) Transiting to Low-power-run-mode execution in SRAM or in Flash memory powered in Stop 1 mode; HCLK = HSI16 / 8 = 2 MHz; Regulator in low-power mode (LPR = 1 in PWR_CR1) tWUSTBY tWULPRUN Transiting to Run mode; Wakeup time from HCLK = HSI16 = 16 MHz; Standby mode Regulator in Range 1 Wakeup time from Transiting to Run mode; Low-power run HSISYS = HSI16/8 = 2 MHz mode(2) Unit CPU cycles 11 14 5.6 6 µs 2 2.4 9.0 11.2 5 7.5 µs 22 25.3 18 23.5 14.5 30 µs 5 7 µs 1. Based on characterization results, not tested in production. 2. Time until REGLPF flag is cleared in PWR_SR2. DS12991 Rev 4 49/94 79 Electrical characteristics STM32G030x6/x8 Table 33. Regulator mode transition times(1) Symbol tVOST Parameter Conditions Transition times between regulator Range 1 and Range 2(2) HSISYS = HSI16 Typ Max Unit 20 40 µs 1. Based on characterization results, not tested in production. 2. Time until VOSF flag is cleared in PWR_SR2. 5.3.7 External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 5.3.14. See Figure 12 for recommended clock input waveform. Table 34. High-speed external user clock characteristics(1) Symbol fHSE_ext Parameter User external clock source frequency Conditions Min Typ Max Voltage scaling Range 1 - 8 48 Voltage scaling Range 2 - 8 26 Unit MHz VHSEH OSC_IN input pin high level voltage - 0.7 VDDIO1 - VDDIO1 VHSEL OSC_IN input pin low level voltage - VSS - 0.3 VDDIO1 Voltage scaling Range 1 7 - - Voltage scaling Range 2 18 - - tw(HSEH) OSC_IN high or low time tw(HSEL) V ns 1. Guaranteed by design. Figure 12. High-speed external clock source AC timing diagram tw(HSEH) VHSEH 90% VHSEL 10% tr(HSE) tf(HSE) tw(HSEL) t THSE MS19214V2 50/94 DS12991 Rev 4 STM32G030x6/x8 Electrical characteristics Low-speed external user clock generated from an external source In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 5.3.14. See Figure 13 for recommended clock input waveform. Table 35. Low-speed external user clock characteristics(1) Symbol Parameter Conditions Min Typ Max Unit kHz fLSE_ext User external clock source frequency - - 32.768 1000 VLSEH OSC32_IN input pin high level voltage - 0.7 VDDIO1 - VDDIO1 VLSEL OSC32_IN input pin low level voltage - VSS - 0.3 VDDIO1 - 250 - - tw(LSEH) OSC32_IN high or low time tw(LSEL) V ns 1. Guaranteed by design. Figure 13. Low-speed external clock source AC timing diagram tw(LSEH) VLSEH 90% VLSEL 10% tr(LSE) t tf(LSE) tw(LSEL) TLSE MS19215V2 High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 36. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 36. HSE oscillator characteristics(1) Symbol fOSC_IN RF Conditions(2) Min Typ Max Unit Oscillator frequency - 4 8 48 MHz Feedback resistor - - 200 - kΩ Parameter DS12991 Rev 4 51/94 79 Electrical characteristics STM32G030x6/x8 Table 36. HSE oscillator characteristics(1) (continued) Symbol Parameter Conditions(2) Min Typ Max - - 5.5 VDD = 3 V, Rm = 30 Ω, CL = 10 pF@8 MHz - 0.58 - VDD = 3 V, Rm = 45 Ω, CL = 10 pF@8 MHz - 0.59 - VDD = 3 V, Rm = 30 Ω, CL = 5 pF@48 MHz - 0.89 - VDD = 3 V, Rm = 30 Ω, CL = 10 pF@48 MHz - 1.14 - VDD = 3 V, Rm = 30 Ω, CL = 20 pF@48 MHz - 1.94 - Maximum critical crystal transconductance Startup - - 1.5 mA/V Startup time VDD is stabilized - 2 - ms During startup IDD(HSE) Gm tSU(HSE)(4) HSE current consumption (3) Unit mA 1. Guaranteed by design. 2. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 14). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Note: 52/94 For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. DS12991 Rev 4 STM32G030x6/x8 Electrical characteristics Figure 14. Typical application with an 8 MHz crystal Resonator with integrated capacitors CL1 OSC_IN 8 MHz resonator CL2 REXT (1) fHSE RF Bias controlled gain OSC_OUT MS19876V1 1. REXT value depends on the crystal characteristics. Low-speed external clock generated from a crystal resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 37. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 37. LSE oscillator characteristics (fLSE = 32.768 kHz)(1) Symbol IDD(LSE) Parameter LSE current consumption Maximum critical crystal Gmcritmax gm tSU(LSE)(3) Startup time Conditions(2) Min Typ Max LSEDRV[1:0] = 00 Low drive capability - 250 - LSEDRV[1:0] = 01 Medium low drive capability - 315 - LSEDRV[1:0] = 10 Medium high drive capability - 500 - LSEDRV[1:0] = 11 High drive capability - 630 - LSEDRV[1:0] = 00 Low drive capability - - 0.5 LSEDRV[1:0] = 01 Medium low drive capability - - 0.75 LSEDRV[1:0] = 10 Medium high drive capability - - 1.7 LSEDRV[1:0] = 11 High drive capability - - 2.7 VDD is stabilized - 2 - Unit nA µA/V s 1. Guaranteed by design. 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. DS12991 Rev 4 53/94 79 Electrical characteristics 3. STM32G030x6/x8 tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 15. Typical application with a 32.768 kHz crystal Resonator with integrated capacitors CL1 OSC32_IN fLSE Drive programmable amplifier 32.768 kHz resonator OSC32_OUT CL2 MS30253V2 Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. 5.3.8 Internal clock source characteristics The parameters given in Table 38 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. The provided curves are characterization results, not tested in production. High-speed internal (HSI16) RC oscillator Table 38. HSI16 oscillator characteristics(1) Symbol fHSI16 Parameter Conditions Min Typ Max Unit 15.88 - 16.08 MHz HSI16 Frequency VDD=3.0 V, TA=30 °C ∆Temp(HSI16) HSI16 oscillator frequency drift over temperature TA= 0 to 85 °C -1 - 1 % TA= -40 to 85 °C -2 - 1.5 % ∆VDD(HSI16) HSI16 oscillator frequency drift over VDD VDD=VDD(min) to 3.6 V -0.1 - 0.05 % From code 127 to 128 -8 -6 -4 -5.8 -3.8 -1.8 0.2 0.3 0.4 TRIM From code 63 to 64 HSI16 frequency user trimming step From code 191 to 192 For all other code increments DHSI16(2) tsu(HSI16)(2) 54/94 % Duty Cycle - 45 - 55 % HSI16 oscillator start-up time - - 0.8 1.2 μs DS12991 Rev 4 STM32G030x6/x8 Electrical characteristics Table 38. HSI16 oscillator characteristics(1) (continued) Symbol tstab(HSI16) Parameter (2) IDD(HSI16)(2) Conditions Min Typ Max Unit HSI16 oscillator stabilization time - - 3 5 μs HSI16 oscillator power consumption - - 155 190 μA 1. Based on characterization results, not tested in production. 2. Guaranteed by design. Low-speed internal (LSI) RC oscillator Table 39. LSI oscillator characteristics(1) Symbol Parameter Conditions LSI frequency fLSI tSU(LSI)(2) (2) tSTAB(LSI) IDD(LSI)(2) Min Typ Max VDD = 3.0 V, TA = 30 °C 31.04 - 32.96 VDD = VDD(min) to 3.6 V, TA = -40 to 85 °C 29.5 - 34 - 80 130 μs - 125 180 μs - 110 180 nA LSI oscillator start-up time LSI oscillator stabilization time 5% of final frequency LSI oscillator power consumption - Unit kHz 1. Based on characterization results, not tested in production. 2. Guaranteed by design. 5.3.9 PLL characteristics The parameters given in Table 40 are derived from tests performed under temperature and VDD supply voltage conditions summarized in Table 21: General operating conditions. Table 40. PLL characteristics(1) Symbol Parameter fPLL_IN PLL input clock DPLL_IN PLL input clock duty cycle fPLL_P_OUT PLL multiplier output clock P fPLL_R_OUT PLL multiplier output clock R fVCO_OUT tLOCK Jitter Conditions Min Typ Max Unit - 2.66 - 16 MHz - 45 - 55 % Voltage scaling Range 1 3.09 - 122 Voltage scaling Range 2 3.09 - 40 Voltage scaling Range 1 12 - 64 Voltage scaling Range 2 12 - 16 Voltage scaling Range 1 96 - 344 Voltage scaling Range 2 96 - 128 - 15 40 - 50 - - 40 - frequency(2) PLL VCO output PLL lock time RMS cycle-to-cycle jitter RMS period jitter System clock 56 MHz DS12991 Rev 4 MHz MHz MHz μs ±ps 55/94 79 Electrical characteristics STM32G030x6/x8 Table 40. PLL characteristics(1) (continued) Symbol IDD(PLL) Parameter Conditions PLL power consumption on VDD(1) Min Typ Max VCO freq = 96 MHz - 200 260 VCO freq = 192 MHz - 300 380 VCO freq = 344 MHz - 520 650 Unit μA 1. Guaranteed by design. 2. Make sure to use the appropriate division factor M to obtain the specified PLL input clock values. 5.3.10 Flash memory characteristics Table 41. Flash memory characteristics(1) Symbol tprog Parameter Row (32 double word) programming time tprog_page Page (2 Kbyte) programming time tprog_bank tME IDD(FlashA) IDD(FlashP) Typ Max Unit - 85 125 µs Normal programming 2.7 4.6 Fast programming 1.7 2.8 Normal programming 21.8 36.6 Fast programming 13.7 22.4 22.0 40.0 Normal programming 0.7 1.2 Fast programming 0.4 0.7 22.1 40.1 Programming 3 - Page erase 3 - Mass erase 5 - Programming, 2 µs peak duration 7 - Erase, 41 µs peak duration 7 - 64-bit programming time tprog_row tERASE Conditions Page (2 Kbyte) erase time - Bank (64 Kbyte(2)) programming time Mass erase time - Average consumption from VDD Maximum current (peak) ms s ms mA mA 1. Guaranteed by design. 2. Values provided also apply to devices with less Flash memory than one 64 Kbyte bank Table 42. Flash memory endurance and data retention Symbol NEND tRET Parameter Endurance Data retention Conditions TA = -40 to +85 °C 1 kcycle(2) at TA = 85 °C 1. Guaranteed by characterization results. 2. Cycling performed over the whole temperature range. 56/94 DS12991 Rev 4 Min(1) Unit 1 kcycles 15 Years STM32G030x6/x8 5.3.11 Electrical characteristics EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 43. They are based on the EMS levels and classes defined in application note AN1709. Table 43. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VDD = 3.3 V, TA = +25 °C, fHCLK = 64 MHz, LQFP48, conforming to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied VDD = 3.3 V, TA = +25 °C, through 100 pF on VDD and VSS pins to induce a fHCLK = 64 MHz, LQFP48, functional disturbance conforming to IEC 61000-4-4 5A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: • corrupted program counter • unexpected reset • critical data corruption (for example control registers) DS12991 Rev 4 57/94 79 Electrical characteristics STM32G030x6/x8 Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 44. EMI characteristics Symbol Parameter Conditions Max vs. [fHSE/fHCLK] Monitored frequency band Unit 8 MHz / 64 MHz SEMI Peak level VDD = 3.6 V, TA = 25 °C, LQFP64 package compliant with IEC 61967-2 0.1 MHz to 30 MHz -4 30 MHz to 130 MHz 1 130 MHz to 1 GHz 3 1 GHz to 2 GHz 8 EMI level 5.3.12 dBµV 2.5 - Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/JEDEC standard. Table 45. ESD absolute maximum ratings Symbol Ratings Conditions Class Maximum value(1) VESD(HBM) Electrostatic discharge voltage (human body model) TA = +25 °C, conforming to ANSI/ESDA/JEDEC JS-001 2 2000 VESD(CDM) Electrostatic discharge voltage (charge device model) TA = +25 °C, conforming to ANSI/ESDA/JEDEC JS-002 C2a 500 1. Based on characterization results, not tested in production. 58/94 DS12991 Rev 4 Unit V STM32G030x6/x8 Electrical characteristics Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin. • A current is injected to each input, output and configurable I/O pin. These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 46. Electrical sensitivity Symbol LU 5.3.13 Parameter Conditions Static latch-up class Class TA = +85 °C conforming to JESD78 II Level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDDIO1 (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out-of-range parameter: ADC error above a certain limit (higher than 5 LSB TUE), induced leakage current on adjacent pins out of conventional limits (-5 µA/+0 µA range) or other functional failure (for example reset occurrence or oscillator frequency deviation). Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection. Table 47. I/O current injection susceptibility(1) Functional susceptibility Symbol IINJ Description Injected current on pin Negative injection Positive injection All except PA1, PA3, PA5, PA6, PA13, PB0, PB1, PB2, and PB8 -5 N/A PA1, PA5, PA13, PB1, PB2 0 +5 / N/A(2) PA3, PA6, PB0 -5 N/A(2) PB8 0 +5 / Unit mA N/A 1. Based on characterization results, not tested in production. 2. The injection current value is applicable when the switchable diode is activated, N/A when not activated. DS12991 Rev 4 59/94 79 Electrical characteristics 5.3.14 STM32G030x6/x8 I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 48 are derived from tests performed under the conditions summarized in Table 21: General operating conditions. All I/Os are designed as CMOS- and TTL-compliant. Table 48. I/O static characteristics Symbol VIL(1) VIH(1) Vhys(3) Ilkg Parameter I/O input low level voltage Conditions VDD(min) < VDDIO1 < 3.6 V - - 0.7 x VDDIO1( - 2) All I/O input hysteresis FT_xx, VDD(min) < VDDIO1 < 3.6 V NRST VDD(min) < VDDIO1 < 3.6 V 0 < VIN ≤ VDDIO1 All VDDIO1 ≤ VIN ≤ VDDIO1+1 V except FT_e VDDIO1 +1 V < VIN ≤ 5.5 V(3) FT_e (5) 0 < VIN < VDDIO1 RPU Weak pull-up equivalent resistor RPD Weak pull-down V = VDDIO1 equivalent resistor(6) IN CIO I/O pin capacitance (6) Typ Max Unit 0.3 x VDDIO1 V (2) All I/O input high level voltage Input leakage current(3) Min VIN = VSS - 0.39 x VDDIO1 - 0.06 (3) V 0.49 x VDDIO1 + 0.26(3) - - - 200 - - - ±70 - - 600(4) - - 150(4) - - 5 µA 25 40 55 kΩ 25 40 55 kΩ - 5 - pF 1. Refer to Figure 16: I/O input characteristics. 2. Tested in production. 3. Guaranteed by design. 4. This value represents the pad leakage of the I/O itself. The total product pad leakage is provided by this formula: ITotal_Ileak_max = 10 µA + [number of I/Os where VIN is applied on the pad] ₓ Ilkg(Max). 5. FT_e with diode enabled. Input leakage current of FT_e I/Os with the diode disabled is the same as standard I/Os. 6. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order). 60/94 DS12991 Rev 4 mV nA STM32G030x6/x8 Electrical characteristics All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters, as shown in Figure 16. Figure 16. I/O input characteristics 3 Minimum required logic level 1 zone 2.5 nt) ireme nd S sta 2 (CMO VIN (V) V IHmin = 0.7 0.49 VDDIO 1 VILmax = 0.39 0.5 TTL standard requirement V DDIO 1.5 VIHmin = equ ard r VILmax = 0.3 + 0.26 Undefined input range VDDIO - 0.06 VDDIO ment) dard require (CMOS stan TTL standard requirement Minimum required logic level 0 zone 0 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 VDDIO (V) Device characteristics Test thresholds MSv47926V1 Characteristics of FT_e I/Os The following table and figure specify input characteristics of FT_e I/Os. Table 49. Input characteristics of FT_e I/Os Symbol IINJ VDDIO1-VIN Rd Parameter Conditions Min Typ Max Unit - - - 5 mA Voltage over VDDIO1 IINJ = 5 mA - - 2 V Diode dynamic serial resistor IINJ = 5 mA - - 300 Ω Injected current on pin DS12991 Rev 4 61/94 79 Electrical characteristics STM32G030x6/x8 Figure 17. Current injection into FT_e input with diode active 5 -40°C 25°C 125°C 4 3 IINJ (mA) 2 1 0 0 0.2 0.4 0.6 0.8 1.0 1.2 VIN – VDDIO1 (V) 1.4 1.6 1.8 2 MSv63112V1 Output driving current The GPIOs (general purpose input/outputs) can sink or source up to ±6 mA, and up to ±15 mA with relaxed VOL/VOH. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2: • The sum of the currents sourced by all the I/Os on VDDIO1, plus the maximum consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 18: Voltage characteristics). • The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of the MCU sunk on VSS, cannot exceed the absolute maximum rating IVSS (see Table 18: Voltage characteristics). Output voltage levels Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT OR TT unless otherwise specified). 62/94 DS12991 Rev 4 STM32G030x6/x8 Electrical characteristics Table 50. Output voltage characteristics(1) Symbol Parameter Conditions VOL Output low level voltage for an I/O pin VOH Output high level voltage for an I/O pin VOL(3) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL(3) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL(3) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin CMOS port(2) |IIO| 6 mA VDDIO1 ≥ 2.7 V TTL port(2) |IIO| = 6 mA VDDIO1 ≥ 2.7 V All I/Os |IIO| = 15 mA VDDIO1 ≥ 2.7 V |IIO| = 3 mAVDDIO1 Min Max - 0.4 VDDIO1 - 0.4 - - 0.4 2.4 - - 1.3 VDDIO1 - 1.3 - - 0.4 VDDIO1 - 0.45 - - 0.4 - 0.4 |IIO| = 20 mA VOLFM+ Output low level voltage for an FT I/O VDDIO1 ≥ 2.7 V (3) pin in FM+ mode (FT I/O with _f option) |IIO| = 9 mAVDDIO1 Unit V 1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 18: Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣIIO. 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 3. Guaranteed by design. Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 18 and Table 51, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. Table 51. I/O AC characteristics(1)(2) Speed Symbol Fmax Parameter Maximum frequency 00 Tr/Tf Output rise and fall time Min Max C=50 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V Conditions - 2 C=50 pF, 2.0 V ≤ VDDIO1 ≤ 2.7 V - 0.35 C=10 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V - 3 C=10 pF, 2.0 V ≤ VDDIO1 ≤ 2.7 V - 0.45 C=50 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V - 100 C=50 pF, 2.0 V ≤ VDDIO1 ≤ 2.7 V - 225 C=10 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V - 75 C=10 pF, 2.0 V ≤ VDDIO1 ≤ 2.7 V - 150 DS12991 Rev 4 Unit MHz ns 63/94 79 Electrical characteristics STM32G030x6/x8 Table 51. I/O AC characteristics(1)(2) (continued) Speed Symbol Fmax Parameter Maximum frequency 01 Tr/Tf Fmax Output rise and fall time Maximum frequency 10 Tr/Tf Fmax Output rise and fall time Maximum frequency 11 Tr/Tf Fm+ Fmax Tf Output rise and fall time Maximum frequency Output fall time(4) Min Max C=50 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V Conditions - 10 C=50 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V - 2 C=10 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V - 15 C=10 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V - 2.5 C=50 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V - 30 C=50 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V - 60 C=10 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V - 15 C=10 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V - 30 C=50 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V - 30 C=50 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V - 15 C=10 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V - 60 C=10 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V - 30 C=50 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V - 11 C=50 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V - 22 C=10 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V - 4 C=10 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V - 8 C=30 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V - 60 C=30 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V - 30 C=10 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V - 80(3) C=10 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V - 40 C=30 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V - 5.5 C=30 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V - 11 C=10 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V - 2.5 C=10 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V - 5 - 1 MHz - 5 ns C=50 pF, 1.6 V ≤ VDDIO1 ≤ 3.6 V Unit MHz ns MHz ns MHz ns 1. The I/O speed is configured using the OSPEEDRy[1:0] bits. The Fm+ mode is configured in the SYSCFG_CFGR1 register. Refer to the RM0454 reference manual for a description of GPIO Port configuration register. 2. Guaranteed by design. 3. This value represents the I/O capability but the maximum system frequency is limited to 64 MHz. 4. The fall time is defined between 70% and 30% of the output waveform, according to I2C specification. 64/94 DS12991 Rev 4 STM32G030x6/x8 Electrical characteristics Figure 18. I/O AC characteristics definition(1) 90% 10% 50% 50% 10% 90% t f(IO)out t r(IO)out T Maximum frequency is achieved if (t r + t f (≤ 2/3)T and if the duty cycle is (45-55%) when loaded by the specified capacitance. MS32132V2 1. Refer to Table 51: I/O AC characteristics. 5.3.15 NRST input characteristics The NRST input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU. Unless otherwise specified, the parameters given in the following table are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. Table 52. NRST pin characteristics(1) Symbol Parameter Conditions Min Typ Max - - 0.3 x VDDIO1 Unit VIL(NRST) NRST input low level voltage - VIH(NRST) NRST input high level voltage - 0.7 x VDDIO1 - - Vhys(NRST) NRST Schmitt trigger voltage hysteresis - - 200 - mV RPU Weak pull-up equivalent resistor(2) VIN = VSS 25 40 55 kΩ - - - 70 ns 2.0 V ≤ VDD ≤ 3.6 V 350 - - ns VF(NRST) NRST input filtered pulse VNF(NRST) NRST input not filtered pulse 1. V Guaranteed by design. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order). DS12991 Rev 4 65/94 79 Electrical characteristics STM32G030x6/x8 Figure 19. Recommended NRST pin protection External reset circuit(1) VDD RPU NRST(2) Internal reset Filter 0.1 μF MS19878V3 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 52: NRST pin characteristics. Otherwise the reset will not be taken into account by the device. 3. The external capacitor on NRST must be placed as close as possible to the device. 5.3.16 Analog switch booster Table 53. Analog switch booster characteristics(1) Symbol VDD Parameter Min Typ Max Unit VDD(min) - 3.6 V Booster startup time - - 240 µs Booster consumption for VDD ≤ 2.7 V - - 500 Booster consumption for 2.7 V ≤ VDD ≤ 3.6 V - - 900 Supply voltage tSU(BOOST) 1. Guaranteed by design. 5.3.17 Analog-to-digital converter characteristics Unless otherwise specified, the parameters given in Table 54 are preliminary values derived from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage conditions summarized in Table 21: General operating conditions. Note: It is recommended to perform a calibration after each power-up. Table 54. ADC characteristics(1) Symbol Parameter Conditions(2) Min Typ Max Unit VDDA Analog supply voltage - 2.0 - 3.6 V VREF+ Positive reference voltage - 2 - VDDA V Range 1 0.14 - 35 Range 2 0.14 - 16 fADC 66/94 ADC clock frequency DS12991 Rev 4 MHz STM32G030x6/x8 Electrical characteristics Table 54. ADC characteristics(1) (continued) Conditions(2) Min Typ Max 12 bits - - 2.50 10 bits - - 2.92 8 bits - - 3.50 6 bits - - 4.38 fADC = 35 MHz; 12 bits - - 2.33 12 bits - - fADC/15 Conversion voltage range - VSSA - VREF+ V RAIN External input impedance - - - 50 kΩ CADC Internal sample and hold capacitor - - 5 - pF tSTAB ADC power-up time - 2 Conversion cycle tCAL Calibration time fADC = 35 MHz 2.35 µs - 82 1/fADC Symbol fs fTRIG VAIN (3) Parameter Sampling rate External trigger frequency CKMODE = 00 tLATR Trigger conversion latency tADCVREG_STUP tCONV tIDLE IDDA(ADC) IDDV(ADC) Sampling time ADC voltage regulator start-up time Total conversion time (including sampling time) Laps of time allowed between two conversions without rearm ADC consumption from VDDA ADC consumption from VREF+ - CKMODE = 01 6.5 CKMODE = 10 12.5 CKMODE = 11 3.5 3 MSps MHz 1/fADC 1/fPCLK 0.043 - 4.59 µs 1.5 - 160.5 1/fADC - - - 20 µs fADC = 35 MHz Resolution = 12 bits 0.40 - 4.95 µs fADC = 35 MHz ts 2 Unit Resolution = 12 bits ts + 12.5 cycles for successive approximation = 14 to 173 - - - 100 fs = 2.5 MSps - 410 - fs = 1 MSps - 164 - fs = 10 kSps - 17 - fs = 2.5 MSps - 65 - fs = 1 MSps - 26 - fs = 10 kSps - 0.26 - DS12991 Rev 4 1/fADC µs µA µA 67/94 79 Electrical characteristics STM32G030x6/x8 1. Guaranteed by design 2. I/O analog switch voltage booster must be enabled (BOOSTEN = 1 in the SYSCFG_CFGR1) when VDDA < 2.4 V and disabled when VDDA ≥ 2.4 V. 3. VREF+ is internally connected to VDDA on some packages.Refer to Section 4: Pinouts, pin description and alternate functions for further details. Table 55. Maximum ADC RAIN . Resolution 12 bits 10 bits 8 bits 68/94 Sampling cycle at 35 MHz Sampling time at 35 MHz [ns] Max. RAIN(1)(2) (Ω) 1.5 43 50 3.5 100 680 7.5 214 2200 12.5 357 4700 19.5 557 8200 39.5 1129 15000 79.5 2271 33000 160.5 4586 50000 1.5 43 68 3.5 100 820 7.5 214 3300 12.5 357 5600 19.5 557 10000 39.5 1129 22000 79.5 2271 39000 160.5 4586 50000 1.5 43 82 3.5 100 1500 7.5 214 3900 12.5 357 6800 19.5 557 12000 39.5 1129 27000 79.5 2271 50000 160.5 4586 50000 DS12991 Rev 4 STM32G030x6/x8 Electrical characteristics Table 55. Maximum ADC RAIN . (continued) Resolution Sampling cycle at 35 MHz Sampling time at 35 MHz [ns] Max. RAIN(1)(2) (Ω) 1.5 43 390 3.5 100 2200 7.5 214 5600 12.5 357 10000 19.5 557 15000 39.5 1129 33000 79.5 2271 50000 160.5 4586 50000 6 bits 1. Guaranteed by design. 2. I/O analog switch voltage booster must be enabled (BOOSTEN = 1 in the SYSCFG_CFGR1) when VDDA < 2.4 V and disabled when VDDA ≥ 2.4 V. Table 56. ADC accuracy(1)(2)(3) Symbol Parameter ET Total unadjusted error EO Conditions(4) Min Typ Max Unit VDDA=VREF+ < 3.6 V; fADC = 35 MHz; fs ≤ 2.5 MSps; TA = entire range - 3 6.5 LSB Offset error VDDA=VREF+ < 3.6 V; fADC = 35 MHz; fs ≤ 2.5 MSps; TA = entire range - 1.5 4.5 LSB EG Gain error VDDA=VREF+ < 3.6 V; fADC = 35 MHz; fs ≤ 2.5 MSps; TA = entire range - 3 5 LSB ED Differential linearity error VDDA=VREF+ < 3.6 V; fADC = 35 MHz; fs ≤ 2.5 MSps; TA = entire range - 1.2 1.5 LSB VDDA=VREF+ < 3.6 V; Integral linearity fADC = 35 MHz; fs ≤ 2.5 MSps; error TA = entire range - 2.5 3 LSB EL ENOB Effective number of bits VDDA=VREF+ < 3.6 V; fADC = 35 MHz; fs ≤ 2.5 MSps; TA = entire range 9.6 10.2 - bit SINAD Signal-to-noise VDDA=VREF+ < 3.6 V; and distortion fADC = 35 MHz; fs ≤ 2.5 MSps; ratio TA = entire range 59.5 63 - dB SNR VDDA=VREF+ < 3.6 V; Signal-to-noise fADC = 35 MHz; fs ≤ 2.5 MSps; ratio TA = entire range 60 64 - dB THD Total harmonic distortion - -74 -70 dB VDDA=VREF+ < 3.6 V; fADC = 35 MHz; fs ≤ 2.5 MSps; TA = entire range DS12991 Rev 4 69/94 79 Electrical characteristics STM32G030x6/x8 1. Based on characterization results, not tested in production. 2. ADC DC accuracy values are measured after internal calibration. 3. Injecting negative current on any analog input pin significantly reduces the accuracy of A-to-D conversion of signal on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins susceptible to receive negative current. 4. I/O analog switch voltage booster enabled (BOOSTEN = 1 in the SYSCFG_CFGR1) when VDDA < 2.4 V and disabled when VDDA ≥ 2.4 V. Figure 20. ADC accuracy characteristics EG Code (1) Example of an actual transfer curve 4095 (2) Ideal transfer curve 4094 (3) End point correlation line 4093 ET total unadjusted error: maximum deviation between the actual and ideal transfer curves. (2) ET EO offset error: maximum deviation between the first actual transition and the first ideal one. (3) 7 (1) 6 EG gain error: deviation between the last ideal transition and the last actual one. 5 EL EO ED differential linearity error: maximum deviation between actual steps and the ideal ones. 4 3 ED EL integral linearity error: maximum deviation between any actual transition and the end point correlation line. 2 1 LSB ideal 1 0 1 2 3 4 5 6 7 4093 4094 4095 (VAIN / VREF+)*4095 MSv19880V3 Figure 21. Typical connection diagram using the ADC VDDA VT RAIN(1) VAIN Sample and hold ADC converter RADC AINx Cparasitic(2) VT Ilkg (3) 12-bit converter CADC MS33900V5 1. Refer to Table 54: ADC characteristics for the values of RAIN and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (refer to Table 48: I/O static characteristics for the value of the pad capacitance). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. 3. Refer to Table 48: I/O static characteristics for the values of Ilkg. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 9: Power supply scheme. The 100 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip. 70/94 DS12991 Rev 4 STM32G030x6/x8 5.3.18 Electrical characteristics Temperature sensor characteristics Table 57. TS characteristics Symbol Parameter Min Typ Max Unit - ±1 ±2 °C 2.3 2.5 2.7 mV/°C 0.742 0.76 0.785 V tSTART(TS_BUF)(1) Sensor Buffer Start-up time in continuous mode(4) - 8 15 µs tSTART(1) Start-up time when entering in continuous mode(4) - 70 120 µs tS_temp(1) ADC sampling time when reading the temperature 5 - - µs IDD(TS)(1) Temperature sensor consumption from VDD, when selected by ADC - 4.7 7 µA TL(1) VTS linearity with temperature (2) Avg_Slope Average slope Voltage at 30°C (±5 °C)(3) V30 1. Guaranteed by design. 2. Based on characterization results, not tested in production. 3. Measured at VDDA = 3.0 V ±10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. 4. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes. 5.3.19 VBAT monitoring characteristics Table 58. VBAT monitoring characteristics Symbol Parameter Min Typ Max Unit R Resistor bridge for VBAT - 39 - kΩ Q Ratio on VBAT measurement - 3 - - Error on Q -10 - 10 % ADC sampling time when reading the VBAT 12 - - µs Er (1) tS_vbat(1) 1. Guaranteed by design. Table 59. VBAT charging characteristics Symbol RBC 5.3.20 Parameter Battery charging resistor Conditions Min Typ Max VBRS = 0 - 5 - VBRS = 1 - 1.5 - Unit kΩ Timer characteristics The parameters given in the following tables are guaranteed by design. Refer to Section 5.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). DS12991 Rev 4 71/94 79 Electrical characteristics STM32G030x6/x8 Table 60. TIMx(1) characteristics Symbol Parameter tres(TIM) Timer resolution time Conditions Min Max Unit - 1 - tTIMxCLK 15.625 - ns 0 fTIMxCLK/2 0 40 - 16 bit 1 65536 tTIMxCLK 0.015625 1024 µs - 65536 × 65536 tTIMxCLK - 67.10 s fTIMxCLK = 64 MHz Timer external clock frequency on CH1 to CH4 fTIMxCLK = 64 MHz fEXT ResTIM TIMx Timer resolution tCOUNTER 16-bit counter clock period Maximum possible count with 32-bit counter tMAX_COUNT fTIMxCLK = 64 MHz fTIMxCLK = 64 MHz MHz 1. TIMx, is used as a general term in which x stands for 1,, 3, 4, 5, 6, 7, 8, 15, 16 or 17. Table 61. IWDG min/max timeout period at 32 kHz LSI clock(1) Prescaler divider PR[2:0] bits Min timeout RL[11:0]= 0x000 Max timeout RL[11:0]= 0xFFF /4 0 0.125 512 /8 1 0.250 1024 /16 2 0.500 2048 /32 3 1.0 4096 /64 4 2.0 8192 /128 5 4.0 16384 /256 6 or 7 8.0 32768 Unit ms 1. The exact timings further depend on the phase of the APB interface clock versus the LSI clock, which causes an uncertainty of one RC period. 5.3.21 Characteristics of communication interfaces I2C-bus interface characteristics The I2C-bus interface meets timing requirements of the I2C-bus specification and user manual rev. 03 for: • Standard-mode (Sm): with a bit rate up to 100 kbit/s • Fast-mode (Fm): with a bit rate up to 400 kbit/s • Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s. The timings are guaranteed by design as long as the I2C peripheral is properly configured (refer to the reference manual RM0454) and when the I2CCLK frequency is greater than the minimum shown in the following table. 72/94 DS12991 Rev 4 STM32G030x6/x8 Electrical characteristics Table 62. Minimum I2CCLK frequency Symbol Parameter Condition Typ Standard-mode 2 Analog filter enabled fI2CCLK(min) Fast-mode Minimum I2CCLK frequency for correct operation of I2C peripheral DNF = 0 Analog filter disabled DNF = 1 Analog filter enabled Fast-mode Plus DNF = 0 Analog filter disabled DNF = 1 Unit 9 9 MHz 18 16 The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIO1 is disabled, but is still present. Only FT_f I/O pins support Fm+ low-level output current maximum requirement. Refer to Section 5.3.14: I/O port characteristics for the I2C I/Os characteristics. All I2C SDA and SCL I/Os embed an analog filter. Refer to the following table for its characteristics: Table 63. I2C analog filter characteristics(1) Symbol Parameter Limiting duration of spikes suppressed by the filter(2) tAF Min Max Unit 50 260 ns 1. Based on characterization results, not tested in production. 2. Spikes shorter than the limiting duration are suppressed. SPI/I2S characteristics Unless otherwise specified, the parameters given in Table 64 for SPI are derived from tests performed under the ambient temperature, fPCLKx frequency and supply voltage conditions summarized in Table 21: General operating conditions. The additional general conditions are: • OSPEEDRy[1:0] set to 11 (output speed) • capacitive load C = 30 pF • measurement points at CMOS levels: 0.5 x VDD Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI). DS12991 Rev 4 73/94 79 Electrical characteristics STM32G030x6/x8 Table 64. SPI characteristics(1) Symbol fSCK 1/tc(SCK) Parameter SPI clock frequency tsu(NSS) NSS setup time th(NSS) NSS hold time Conditions Min Typ Max Master mode VDD(min) < VDD < 3.6 V Range 1 32 Master transmitter VDD(min) < VDD < 3.6 V Range 1 32 Slave receiver VDD(min) < VDD < 3.6 V Range 1 32 - - Unit MHz Slave transmitter/full duplex 2.7 < VDD < 3.6 V Range 1 32 Slave transmitter/full duplex VDD(min) < VDD < 3.6 V Range 1 25 VDD(min) < VDD < 3.6 V Range 2 8 Slave mode, SPI prescaler = 2 4 ₓ TPCLK - - ns Slave mode, SPI prescaler = 2 2 ₓ TPCLK - - ns tw(SCKH) SCK high time Master mode TPCLK - 1.5 TPCLK TPCLK +1 ns tw(SCKL) SCK low time Master mode TPCLK - 1.5 TPCLK TPCLK +1 ns tsu(MI) Master data input setup time - 1 - - ns tsu(SI) Slave data input setup time - 3 - - ns th(MI) Master data input hold time - 5 - - ns th(SI) Slave data input hold time - 2 - - ns ta(SO) Data output access time Slave mode 9 - 34 ns tdis(SO) Data output disable time Slave mode 9 - 16 ns 2.7 < VDD < 3.6 V Range 1 - 9 12 VDD(min) < VDD < 3.6 V Range 1 - 9 19.5 VDD(min) < VDD < 3.6 V Voltage Range 2 - 11 24 - 3 5 tv(SO) tv(MO) 74/94 Slave data output valid time Master data output valid time - DS12991 Rev 4 ns ns STM32G030x6/x8 Electrical characteristics Table 64. SPI characteristics(1) (continued) Symbol Parameter Conditions Min Typ Max Unit th(SO) Slave data output hold time - 5 - - ns th(MO) Master data output hold time - 1 - - ns 1. Based on characterization results, not tested in production. Figure 22. SPI timing diagram - slave mode and CPHA = 0 NSS input tc(SCK) SCK input tsu(NSS) th(NSS) tw(SCKH) tr(SCK) CPHA=0 CPOL=0 CPHA=0 CPOL=1 ta(SO) tw(SCKL) MISO output tv(SO) th(SO) First bit OUT tf(SCK) Next bits OUT tdis(SO) Last bit OUT th(SI) tsu(SI) MOSI input First bit IN Next bits IN Last bit IN MSv41658V1 Figure 23. SPI timing diagram - slave mode and CPHA = 1 NSS input SCK input tc(SCK) tsu(NSS) tw(SCKH) ta(SO) tw(SCKL) tf(SCK) th(NSS) CPHA=1 CPOL=0 CPHA=1 CPOL=1 MISO output tv(SO) First bit OUT tsu(SI) MOSI input th(SO) Next bits OUT tr(SCK) tdis(SO) Last bit OUT th(SI) First bit IN Next bits IN Last bit IN MSv41659V1 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. DS12991 Rev 4 75/94 79 Electrical characteristics STM32G030x6/x8 Figure 24. SPI timing diagram - master mode High NSS input SCK Output CPHA= 0 CPOL=0 SCK Output tc(SCK) CPHA=1 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=1 tw(SCKH) tw(SCKL) tsu(MI) MISO INP UT tr(SCK) tf(SCK) BIT6 IN MSB IN LSB IN th(MI) MOSI OUTPUT B I T1 OUT MSB OUT tv(MO) LSB OUT th(MO) ai14136c 1. Measurement points are set at CMOS levels: 0.3 VDD and 0.7 VDD. Table 65. I2S characteristics(1) Symbol Parameter Conditions Min Max Unit fMCK I2S main clock output fMCK= 256 x Fs; (Fs = audio sampling frequency) Fsmin = 8 kHz; Fsmax = 192 kHz; 2.048 49.152 MHz fCK I2S clock frequency Master data - 64xFs Slave data - 64xFs DCK I2S clock frequency duty cycle 30 70 76/94 Slave receiver DS12991 Rev 4 MHz % STM32G030x6/x8 Electrical characteristics Table 65. I2S characteristics(1) (continued) Symbol Parameter tv(WS) WS valid time th(WS) Min Max Master mode - 6 WS hold time Master mode 3 - tsu(WS) WS setup time Slave mode 3 - th(WS) WS hold time Slave mode 2 - Master receiver 4 - Slave receiver 5 - Master receiver 4.5 - Slave receiver 2 - tsu(SD_MR) Conditions Data input setup time tsu(SD_SR) th(SD_MR) Data input hold time th(SD_SR) after enable edge; 2.7 < VDD < 3.6V Unit ns 10 tv(SD_ST) Data output valid time slave transmitter tv(SD_MT) Data output valid time master transmitter after enable edge - 5.5 th(SD_ST) Data output hold time slave transmitter after enable edge 7 - th(SD_MT) Data output hold time master transmitter after enable edge 1 - - after enable edge; VDD(min) < VDD < 3.6V 15 1. Based on characterization results, not tested in production. Figure 25. I2S slave timing diagram (Philips protocol) CK Input tc(CK) CPOL = 0 CPOL = 1 tw(CKH) th(WS) tw(CKL) WS input tv(SD_ST) tsu(WS) SDtransmit LSB transmit(2) MSB transmit tsu(SD_SR) SDreceive LSB receive(2) th(SD_ST) Bitn transmit th(SD_SR) MSB receive Bitn receive LSB receive MSv39721V1 1. Measurement points are done at CMOS levels: 0.3 VDDIO1 and 0.7 VDDIO1. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. DS12991 Rev 4 77/94 79 Electrical characteristics STM32G030x6/x8 Figure 26. I2S master timing diagram (Philips protocol) 90% 10% tr(CK) tf(CK) CK output tc(CK) CPOL = 0 tw(CKH) CPOL = 1 tv(WS) th(WS) tw(CKL) WS output tv(SD_MT) SDtransmit LSB transmit(2) MSB transmit LSB receive(2) Bitn transmit LSB transmit th(SD_MR) tsu(SD_MR) SDreceive th(SD_MT) MSB receive Bitn receive LSB receive MSv39720V1 1. Based on characterization results, not tested in production. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. USART characteristics Unless otherwise specified, the parameters given in Table 66 for USART are derived from tests performed under the ambient temperature, fPCLKx frequency and supply voltage conditions summarized in Table 21: General operating conditions. The additional general conditions are: • OSPEEDRy[1:0] set to 10 (output speed) • capacitive load C = 30 pF • measurement points at CMOS levels: 0.5 x VDD Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, CK, TX, and RX for USART). Table 66. USART characteristics Symbol fCK 78/94 Parameter USART clock frequency Conditions Min Typ Max Master mode - - 8 Slave mode - - 21 DS12991 Rev 4 Unit MHz STM32G030x6/x8 Electrical characteristics Table 66. USART characteristics Symbol Parameter Conditions Min Typ Max tsu(NSS) NSS setup time Slave mode tker + 2 - - th(NSS) NSS hold time Slave mode 2 - - tw(CKH) CK high time tw(CKL) CK low time Master mode 1 / fCK / 2 -1 1 / fCK / 2 1 / fCK / 2 +1 tsu(RX) Data input setup time Master mode tker + 2 - - Slave mode 3 - - Master mode 2 - - Slave mode 1 - - Master mode - 1 2 Slave mode - 10 19 Master mode 0 - - Slave mode 7 - - th(RX) Data input hold time tv(TX) Data output valid time th(TX) Data output hold time DS12991 Rev 4 Unit ns 79/94 79 Package information 6 STM32G030x6/x8 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 6.1 SO8N package information SO8N is an 8-lead 4.9 x 6 mm plastic small-outline package with 150 mils body width. Figure 27. SO8N package outline h x 45˚ A A2 c ccc b e 0.25 mm GAUGE PLANE D k 8 E1 E 1 A1 L L1 SO-A_V2 1. Drawing is not to scale. Table 67. SO8N package mechanical data inches(1) millimeters Symbol 80/94 Min. Typ. Max. Min. Typ. Max. A - - 1.750 - - 0.0689 A1 0.100 - 0.250 0.0039 - 0.0098 A2 1.250 - - 0.0492 - - b 0.280 - 0.480 0.0110 - 0.0189 c 0.170 - 0.230 0.0067 - 0.0091 D 4.800 4.900 5.000 0.1890 0.1929 0.1969 E 5.800 6.000 6.200 0.2283 0.2362 0.2441 E1 3.800 3.900 4.000 0.1496 0.1535 0.1575 e - 1.270 - - 0.0500 - h 0.250 - 0.500 0.0098 - 0.0197 k 0° - 8° 0° - 8° L 0.400 - 1.270 0.0157 - 0.0500 DS12991 Rev 4 STM32G030x6/x8 Package information Table 67. SO8N package mechanical data (continued) inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. L1 - 1.040 - - 0.0409 - ccc - - 0.100 - - 0.0039 1. Values in inches are converted from mm and rounded to four decimal digits. Figure 28. SO8N package recommended footprint 3.9 6.7 0.6 (x8) 1.27 O7_FP_V1 1. Dimensions are expressed in millimeters. DS12991 Rev 4 81/94 90 Package information STM32G030x6/x8 Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks that identify the parts throughout supply chain operations, are not indicated below. Figure 29. SO8N package marking example Product identification(1) Pin 1 indentifier 32G030J6 R Y WW Date code Revision code MSv63117V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 82/94 DS12991 Rev 4 STM32G030x6/x8 6.2 Package information TSSOP20 package information TSSOP20 is a 20-lead, 6.5 x 4.4 mm thin small-outline package with 0.65 mm pitch. Figure 30. TSSOP20 package outline D 20 11 c E1 E 1 SEATING PLANE C 0.25 mm GAUGE PLANE 10 PIN 1 IDENTIFICATION k aaa C A1 A L A2 b L1 e YA_ME_V3 1. Drawing is not to scale. Table 68. TSSOP20 package mechanical data inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. A - - 1.200 - - 0.0472 A1 0.050 - 0.150 0.0020 - 0.0059 A2 0.800 1.000 1.050 0.0315 0.0394 0.0413 b 0.190 - 0.300 0.0075 - 0.0118 c 0.090 - 0.200 0.0035 - 0.0079 D(2) 6.400 6.500 6.600 0.2520 0.2559 0.2598 E 6.200 6.400 6.600 0.2441 0.2520 0.2598 E1(3) 4.300 4.400 4.500 0.1693 0.1732 0.1772 e - 0.650 - - 0.0256 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° - 8° 0° - 8° aaa - - 0.100 - - 0.0039 1. Values in inches are converted from mm and rounded to four decimal digits. 2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15mm per side. 3. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per side. DS12991 Rev 4 83/94 90 Package information STM32G030x6/x8 Figure 31. TSSOP20 package footprint 0.25 6.25 20 11 1.35 0.25 7.10 4.40 1.35 1 10 0.40 0.65 YA_FP_V1 1. Dimensions are expressed in millimeters. Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks that identify the parts throughout supply chain operations, are not indicated below. Figure 32. TSSOP20 package marking example Product identification(1) 32G030F6P6 Pin 1 indentifier Revision code Date code Y WW R MSv47962V2 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering 84/94 DS12991 Rev 4 STM32G030x6/x8 Package information samples to run a qualification activity. LQFP32 package information LQFP32 is a 32-pin, 7 x 7 mm low-profile quad flat package. Figure 33. LQFP32 package outline c A2 A1 A SEATING PLANE C 0.25 mm ccc GAUGE PLANE C K D L A1 D1 L1 D3 24 17 25 16 32 9 PIN 1 IDENTIFICATION 1 E E1 E3 b 6.3 8 e 5V_ME_V2 1. Drawing is not to scale. DS12991 Rev 4 85/94 90 Package information STM32G030x6/x8 Table 69. LQFP32 mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.300 0.370 0.450 0.0118 0.0146 0.0177 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.600 - - 0.2205 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.600 - - 0.2205 - e - 0.800 - - 0.0315 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.100 - - 0.0039 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 34. Recommended footprint for LQFP32 package 0.80 1.20 24 17 25 16 0.50 0.30 7.30 6.10 9.70 7.30 32 9 8 1 1.20 6.10 9.70 1. Dimensions are expressed in millimeters. 86/94 DS12991 Rev 4 5V_FP_V2 STM32G030x6/x8 Package information Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 35. LQFP32 package marking example Product identification (1) STM32G 030K6T6 Date code Pin 1 identifier Y WW R Revision code MSv47961V2 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DS12991 Rev 4 87/94 90 Package information 6.4 STM32G030x6/x8 LQFP48 package information LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package. Figure 36. LQFP48 package outline c A1 A A2 SEATING PLANE C 0.25 mm GAUGE PLANE ccc C K A1 D L D1 L1 D3 36 25 37 24 48 E E3 E1 b 13 PIN 1 IDENTIFICATION 1 12 e 5B_ME_V2 1. Drawing is not to scale. Table 70. LQFP48 mechanical data inches(1) millimeters Symbol 88/94 Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - DS12991 Rev 4 STM32G030x6/x8 Package information Table 70. LQFP48 mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 37. Recommended footprint for LQFP48 package 0.50 1.20 9.70 0.30 25 36 37 24 0.20 7.30 5.80 7.30 48 13 12 1 1.20 5.80 9.70 ai14911d 1. Dimensions are expressed in millimeters. DS12991 Rev 4 89/94 90 Package information STM32G030x6/x8 Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 38. LQFP48 package marking example Product identification (1) STM32G030 C6T6 Date code Y WW Pin 1 identifier R Revision code MSv47960V2 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 90/94 DS12991 Rev 4 STM32G030x6/x8 6.5 Thermal characteristics The operating junction temperature TJ must never exceed the maximum given in Table 21: General operating conditions The maximum junction temperature in °C that the device can reach if respecting the operating conditions, is: TJ(max) = TA(max) + PD(max) x ΘJA where: • TA(max) is the maximum operating ambient temperature in °C, • ΘJA is the package junction-to-ambient thermal resistance, in °C/W, • PD = PINT + PI/O, – PINT is power dissipation contribution from product of IDD and VDD – PI/O is power dissipation contribution from output ports where: PI/O = Σ (VOL × IOL) + Σ ((VDDIO1 – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 71. Package thermal characteristics Value Symbol Θ 6.5.1 Parameter Thermal resistance Package Junctionto-ambient Junctionto-board Junctionto-case LQFP48 7 × 7 mm 84 76 42 LQFP32 7 × 7 mm 84 76 42 TSSOP20 6.4 × 4.4 mm 88 57 19 SO8N 4.9 × 6 mm 134 86 30 Unit °C/W Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (still air). Available from www.jedec.org. DS12991 Rev 4 91/94 91 Ordering information 7 STM32G030x6/x8 Ordering information Example STM32 G 030 K 8 T 6 xyy Device family STM32 = Arm® based 32-bit microcontroller Product type G = general-purpose Device subfamily 030 = STM32G030 Pin count J=8 F = 20 K = 32 C = 48 Flash memory size 6 = 32 Kbytes 8 = 64 Kbytes Package type T = LQFP P = TSSOP M = SO˽N Temperature range 6 = -40 to 85°C (105°C junction) Options ˽TR = tape and reel packing ˽˽˽ = tray packing other = 3-character ID incl. custom Flash code and packing information For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office. 92/94 DS12991 Rev 4 STM32G030x6/x8 8 Revision history Revision history Table 72. Document revision history Date Revision 26-Jun-2019 1 Initial release 2 Added Section 3.12: DMA request multiplexer (DMAMUX). Corrected figures with package marking examples. Corrected I/O numbers in Table 2: STM32G030x6/x8 family device features and peripheral counts. Added I/O types in Table 12: Pin assignment and description. 3 Cover page updated; Section 2: Description updated; Table 18: Voltage characteristics updated; Table 19: Current characteristics: Note 2 removed; Table 54: ADC characteristics: major update; 4 Footnote 3. of Table 12: Pin assignment and description updated; VESD(HBM) updated in Table 45: ESD absolute maximum ratings. Packages in Section 6: Package information re-ordered from lowest to highest pin count. 09-Dec-2019 22-Apr-2020 20-Jan-2022 Changes DS12991 Rev 4 93/94 93 STM32G030x6/x8 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2022 STMicroelectronics – All rights reserved 94/94 DS12991 Rev 4
STM32G030J6M6 价格&库存

很抱歉,暂时无法提供与“STM32G030J6M6”相匹配的价格&库存,您可以联系我们找货

免费人工找货
STM32G030J6M6
    •  国内价格
    • 1+6.50000
    • 10+6.00000
    • 30+5.90000

    库存:27

    STM32G030J6M6
      •  国内价格
      • 1+39.60893
      • 10+21.72931
      • 13+18.73511
      • 29+17.79408
      • 100+11.72014

      库存:1204

      STM32G030J6M6
        •  国内价格 香港价格
        • 20+5.3129020+0.65907
        • 50+5.2880750+0.65599
        • 125+5.28796125+0.65597
        • 300+5.28784300+0.65596
        • 750+5.28773750+0.65594

        库存:1950