STM32G051x6/x8
Arm® Cortex®-M0+ 32-bit MCU, up to 64 KB Flash, 18 KB RAM,
2x USART, timers, ADC, DAC, comm. I/Fs, 1.7-3.6V
Datasheet - production data
Features
• Core: Arm® 32-bit Cortex®-M0+ CPU,
frequency up to 64 MHz
• -40°C to 85°C/105°C/125°C operating
temperature
• Memories
– Up to 64 Kbytes of Flash memory with
protection and securable area
– 18 Kbytes of SRAM (16 Kbytes with HW
parity check)
• CRC calculation unit
• Reset and power management
– Voltage range: 1.7 V to 3.6 V
– Power-on/Power-down reset (POR/PDR)
– Programmable Brownout reset (BOR)
– Programmable voltage detector (PVD)
– Low-power modes:
Sleep, Stop, Standby, Shutdown
– VBAT supply for RTC and backup registers
• Clock management
– 4 to 48 MHz crystal oscillator
– 32 kHz crystal oscillator with calibration
– Internal 16 MHz RC with PLL option
– Internal 32 kHz RC oscillator (±5 %)
• Up to 44 fast I/Os
– All mappable on external interrupt vectors
– Multiple 5 V-tolerant I/Os
• 7-channel DMA controller with flexible mapping
• 12-bit, 0.4 µs ADC (up to 16 ext. channels)
– Up to 16-bit with hardware oversampling
– Conversion range: 0 to 3.6V
• Two 12-bit DACs, low-power sample-and-hold
• Two fast low-power analog comparators, with
programmable input and output, rail-to-rail
• 14 timers(two 128 MHz capable): 16-bit for
advanced motor control, one 32-bit and five 16bit general-purpose, two basic 16-bit, two lowpower 16-bit, two watchdogs, SysTick timer
• Calendar RTC with alarm and periodic wakeup
from Stop/Standby/Shutdown
November 2021
This is information on a product in full production.
TSSOP20
6.4 × 4.4 mm
LQFP32
7 × 7 mm
LQFP48
7 × 7 mm
UFQFPN28
4 × 4 mm
UFQFPN32
5 × 5 mm
UFQFPN48
7 × 7 mm
WLCSP20
1.94 × 2.40 mm
• Communication interfaces
– Two I2C-bus interfaces supporting Fastmode Plus (1 Mbit/s) with extra current
sink, one supporting SMBus/PMBus and
wakeup from Stop mode
– Two USARTs with master/slave
synchronous SPI; one supporting ISO7816
interface, LIN, IrDA capability, auto baud
rate detection and wakeup feature
– One low-power UART
– Two SPIs (32 Mbit/s) with 4- to 16-bit
programmable bitframe, one multiplexed
with I2S interface
• Development support: serial wire debug (SWD)
• 96-bit unique ID
• All packages ECOPACK 2 compliant
Table 1. Device summary
Reference
Part number
STM32G051x6
STM32G051C6, STM32G051F6,
STM32G051G6, STM32G051K6
STM32G051x8
STM32G051C8, STM32G051F8,
STM32G051G8, STM32G051K8
DS13303 Rev 3
1/126
www.st.com
Contents
STM32G051x6/x8
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1
Arm® Cortex®-M0+ core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1
3.4
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 15
3.7
Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7.1
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7.4
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7.5
Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7.6
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8
Interconnect of peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.10
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.11
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.12
DMA request multiplexer (DMAMUX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.13
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14
2/126
Securable area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.13.1
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 23
3.13.2
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 23
Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.14.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.14.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.14.3
VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.15
Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.16
Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
DS13303 Rev 3
STM32G051x6/x8
Contents
3.17
Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.18
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.18.1
Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.18.2
General-purpose timers (TIM2, 3, 14, 15, 16, 17) . . . . . . . . . . . . . . . . . 28
3.18.3
Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.18.4
Low-power timers (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . 28
3.18.5
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.18.6
System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.18.7
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.19
Real-time clock (RTC), tamper (TAMP) and backup registers . . . . . . . . . 29
3.20
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.21
Universal synchronous/asynchronous receiver transmitter (USART) . . . 31
3.22
Low-power universal asynchronous receiver transmitter (LPUART) . . . . 32
3.23
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.24
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.24.1
Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4
Pinouts, pin description and alternate functions . . . . . . . . . . . . . . . . . 34
5
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.2
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 49
5.3.3
Embedded reset and power control block characteristics . . . . . . . . . . . 49
5.3.4
Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.5
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
DS13303 Rev 3
3/126
4
Contents
6
STM32G051x6/x8
5.3.6
Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.7
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.8
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.9
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.10
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.11
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.12
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.13
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.14
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.15
NRST input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.16
Analog switch booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.17
Analog-to-digital converter characteristics . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.18
Digital-to-analog converter characteristics . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.19
Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.20
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.21
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.22
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.23
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.24
Characteristics of communication interfaces . . . . . . . . . . . . . . . . . . . . . 94
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.1
WLCSP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2
TSSOP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3
UFQFPN28 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4
UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.5
LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
6.6
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
6.7
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
6.8
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.8.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.8.2
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 122
7
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4/126
DS13303 Rev 3
STM32G051x6/x8
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
STM32G051x6/x8 family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . 10
Access status versus readout protection level and execution modes. . . . . . . . . . . . . . . . . 14
Interconnect of peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Terms and symbols used in Table 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Pin assignment and description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Port A alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Port B alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Port C alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Port D alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Port F alternate function mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 49
Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Current consumption in Run and Low-power run modes
at different die temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Typical current consumption in Run and Low-power run modes,
depending on code executed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Current consumption in Sleep and Low-power sleep modes . . . . . . . . . . . . . . . . . . . . . . . 55
Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Current consumption of peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Low-power mode wakeup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Regulator mode transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Wakeup time using LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
DS13303 Rev 3
5/126
6
List of tables
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
6/126
STM32G051x6/x8
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Electrical sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Input characteristics of FT_e I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Analog switch booster characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
IWDG min/max timeout period at 32 kHz LSI clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Minimum I2CCLK frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
WLCSP20 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
WLCSP20 - recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
TSSOP20 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
UFQFPN28 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
UFQFPN32 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
LQFP32 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
UFQFPN48 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
LQFP48 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
DS13303 Rev 3
STM32G051x6/x8
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
STM32G051CxT LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
STM32G051CxU UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
STM32G051KxT LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
STM32G051KxU UFQFPN32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
STM32G051GxU UFQFPN28 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
STM32G051Fx TSSOP20 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
STM32G051FxY WLCSP20L pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
VREFINT vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
HSI16 frequency vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Current injection into FT_e input with diode active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
I/O AC characteristics definition(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
I2S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
I2S master timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
WLCSP20 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
WLCSP20 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
WLCSP20 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
TSSOP20 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
TSSOP20 package footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
TSSOP20 package marking example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
UFQFPN28 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Recommended footprint for UFQFPN28 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
UFQFPN28 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
UFQFPN32 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Recommended footprint for UFQFPN32 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
UFQFPN32 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
LQFP32 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Recommended footprint for LQFP32 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
LQFP32 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
UFQFPN48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Recommended footprint for UFQFPN48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
DS13303 Rev 3
7/126
8
List of figures
Figure 49.
Figure 50.
Figure 51.
Figure 52.
8/126
STM32G051x6/x8
UFQFPN48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
LQFP48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Recommended footprint for LQFP48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
LQFP48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
DS13303 Rev 3
STM32G051x6/x8
1
Introduction
Introduction
This document provides information on STM32G051x6/x8 microcontrollers, such as
description, functional overview, pin assignment and definition, electrical characteristics,
packaging, and ordering codes.
Information on memory mapping and control registers is object of reference manual.
Information on Arm®(a) Cortex®-M0+ core is available from the www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS13303 Rev 3
9/126
33
Description
2
STM32G051x6/x8
Description
The STM32G051x6/x8 mainstream microcontrollers are based on high-performance
Arm® Cortex®-M0+ 32-bit RISC core operating at up to 64 MHz frequency. Offering a high
level of integration, they are suitable for a wide range of applications in consumer, industrial
and appliance domains and ready for the Internet of Things (IoT) solutions.
The devices incorporate a memory protection unit (MPU), high-speed embedded memories
(18 Kbytes of SRAM and up to 64 Kbytes of Flash program memory with read protection,
write protection, proprietary code protection, and securable area), DMA, an extensive range
of system functions, enhanced I/Os, and peripherals. The devices offer standard
communication interfaces (two I2Cs, two SPIs / one I2S, and two USARTs), one 12-bit ADC
(2.5 MSps) with up to 19 channels, one 12-bit DAC with two channels, two fast comparators,
an internal voltage reference buffer, a low-power RTC, an advanced control PWM timer
running at up to double the CPU frequency, five general-purpose 16-bit timers with one
running at up to double the CPU frequency, a 32-bit general-purpose timer, two basic timers,
two low-power 16-bit timers, two watchdog timers, and a SysTick timer.
The devices operate within ambient temperatures from -40 to 125°C and with supply
voltages from 1.7 V to 3.6 V. Optimized dynamic consumption combined with a
comprehensive set of power-saving modes, low-power timers and low-power UART, allows
the design of low-power applications.
VBAT direct battery input allows keeping RTC and backup registers powered.
The devices come in packages with 20 to 48 pins.
Table 2. STM32G051x6/x8 family device features and peripheral counts
STM32G051_
Peripheral
Flash memory (Kbyte)
Comm. interfaces
Timers
SRAM (Kbyte)
10/126
_F6
_F8
_G6
_G8
_K6
_K8
_C6
_C8
32
64
32
64
32
64
32
64
16 (parity-protected) or 18 (not parity-protected)
Advanced control
1 (16-bit) high frequency
General-purpose
4 (16-bit) + 1 (16-bit) high frequency + 1 (32-bit)
Basic
2 (16-bit)
Low-power
2 (16-bit)
SysTick
1
Watchdog
2
SPI [I2S](1)
2 [1]
I2C
2
USART
2
LPUART
1
RTC
Yes
Tamper pins
2
DS13303 Rev 3
STM32G051x6/x8
Description
Table 2. STM32G051x6/x8 family device features and peripheral counts (continued)
STM32G051_
Peripheral
_F6
_F8
_G6
_G8
_K6
Random number generator
No
AES
No
GPIOs
18
26
Wakeup pins
12-bit ADC channels
(external + internal)
_K8
_C6
_C8
30
44
16 + 2
16+3
4
14 + 2
15 + 2
12-bit DAC channels
2
Internal voltage reference buffer
No
Yes
Analog comparators
2
Max. CPU frequency
64 MHz
Operating voltage
1.7 to 3.6 V
Operating temperature(2)
Ambient: -40 to 85 °C / -40 to 105 °C / -40 to 125 °C
Junction: -40 to 105 °C / -40 to 125 °C / -40 to 130 °C
Number of pins
20
28
32
48
1. The numbers in brackets denote the count of SPI interfaces configurable as I2S interface.
2. Depends on order code. Refer to Section 7: Ordering information for details.
DS13303 Rev 3
11/126
33
Description
STM32G051x6/x8
Figure 1. Block diagram
SWCLK
SWDIO
NVIC
IOPORT
Bus matrix
CPU
Flash memory
32/64 KB
I/F
SRAM
18 KB
PBx
Port B
PCx
Port C
PDx
Port D
SUPPLY
SUPERVISION
POR
Reset
Int
POR/BOR
NRST
T sensor
RC 16 MHz
PVD
PLL
XTAL OSC
4-48 MHz
RC 32 kHz
RCC
AHB
Port F
from peripherals
LSE
VDD
LSE
System and
peripheral
clocks
XTAL32 kHz
RTC, TAMP
Backup regs
I/F
AHB-to-APB
COMP1
RTC_OUT
RTC_REFIN
RTC_TS
TAMP_IN
4 channels
ETR
TIM3
4 channels
ETR
TIM6
TIM14
1 channel
TIM7
TIM15
2 channels
BKIN
TIM16 &
17
TIMER
16/17
1 channel
BKIN
LPTIM1 &1/2
2
LPTIMER
ETR, IN, OUT
I/F
ADC
MOSI/SD
MISO/MCK
SCK/CK
NSS/WS
SPI1/I2S
MOSI, MISO
SCK, NSS
SPI2
I/F
APB
DAC_OUT2
PWRCTRL
APB
DAC
6 channels
BKIN, BKIN2, ETR
TIM2 (32-bit)
COMP2
SYSCFG
WWDG
DBGMCU
IRTIM
USART1
&2
USART1/2
LPUART
Power domain of analog blocks :
12/126
OSC32_IN
OSC32_OUT
VREFBUF
DAC_OUT1
16x IN
VBAT
Low-voltage
detector
TIM1
IN+, IN-,
OUT
OSC_IN
OSC_OUT
IWDG
I/F
Reset & clock control
CRC
EXTI
VREF+
VDD/VDDA
VSS/VSSA
HSE
decoder
Port A
VDDIO1
VDDA
VDD
Parity
HSI16
PLLPCLK
PLLQCLK
PLLRCLK
LSI
GPIOs
PAx
Voltage
regulator
VCORE
DMA
CORTEX-M0+
fmax = 64 MHz
PFx
POWER
DMAMUX
SWD
VBAT
VDD
DS13303 Rev 3
VDDA
VDDIO1
IR_OUT
RX, TX
CTS, RTS, CK
RX, TX,
CTS, RTS
I2C1
SCL, SDA
SMBA, SMBUS
I2C2
SCL, SDA
STM32G051x6/x8
Functional overview
3
Functional overview
3.1
Arm® Cortex®-M0+ core with MPU
The Cortex-M0+ is an entry-level 32-bit Arm Cortex processor designed for a broad range of
embedded applications. It offers significant benefits to developers, including:
•
a simple architecture, easy to learn and program
•
ultra-low power, energy-efficient operation
•
excellent code density
•
deterministic, high-performance interrupt handling
•
upward compatibility with Cortex-M processor family
•
platform security robustness, with integrated Memory Protection Unit (MPU).
The Cortex-M0+ processor is built on a highly area- and power-optimized 32-bit core, with a
2-stage pipeline Von Neumann architecture. The processor delivers exceptional energy
efficiency through a small but powerful instruction set and extensively optimized design,
providing high-end processing hardware including a single-cycle multiplier.
The Cortex-M0+ processor provides the exceptional performance expected of a modern
32-bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers.
Owing to embedded Arm core, the STM32G051x6/x8 devices are compatible with Arm tools
and software.
The Cortex-M0+ is tightly coupled with a nested vectored interrupt controller (NVIC)
described in Section 3.13.1.
3.2
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
3.3
Embedded Flash memory
STM32G051x6/x8 devices feature up to 64 Kbytes of embedded Flash memory available
for storing code and data.
DS13303 Rev 3
13/126
33
Functional overview
STM32G051x6/x8
Flexible protections can be configured thanks to option bytes:
•
Readout protection (RDP) to protect the whole memory. Three levels are available:
–
Level 0: no readout protection
–
Level 1: memory readout protection: the Flash memory cannot be read from or
written to if either debug features are connected, boot in RAM or bootloader is
selected
–
Level 2: chip readout protection: debug features (Cortex-M0+ serial wire), boot in
RAM and bootloader selection are disabled. This selection is irreversible.
Table 3. Access status versus readout protection level and execution modes
Area
Protection
level
Debug, boot from RAM or boot
from system memory (loader)
User execution
Read
Write
Erase
Read
Write
Erase
User
memory
1
Yes
Yes
Yes
No
No
No
2
Yes
Yes
Yes
N/A
N/A
N/A
System
memory
1
Yes
No
No
Yes
No
No
2
Yes
No
No
N/A
N/A
N/A
Option
bytes
1
Yes
Yes
Yes
Yes
Yes
Yes
2
Yes
No
No
N/A
N/A
N/A
No
No
N/A(1)
N/A
N/A
N/A
Backup
registers
1
Yes
Yes
2
Yes
Yes
(1)
N/A
N/A
1. Erased upon RDP change from Level 1 to Level 0.
•
Write protection (WRP): the protected area is protected against erasing and
programming. Two areas per bank can be selected, with 2-Kbyte granularity.
•
Proprietary code readout protection (PCROP): a part of the Flash memory can be
protected against read and write from third parties. The protected area is execute-only:
it can only be reached by the STM32 CPU as instruction code, while all other accesses
(DMA, debug and CPU data read, write and erase) are strictly prohibited. An additional
option bit (PCROP_RDP) determines whether the PCROP area is erased or not when
the RDP protection is changed from Level 1 to Level 0.
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
3.3.1
•
single error detection and correction
•
double error detection
•
readout of the ECC fail address from the ECC register
Securable area
A part of the Flash memory can be hidden from the application once the code it contains is
executed. As soon as the write-once SEC_PROT bit is set, the securable memory cannot be
accessed until the system resets. The securable area generally contains the secure boot
code to execute only once at boot. This helps to isolate secret code from untrusted
application code.
14/126
DS13303 Rev 3
STM32G051x6/x8
3.4
Functional overview
Embedded SRAM
STM32G051x6/x8 devices have 16 Kbytes of embedded SRAM with parity. Hardware parity
check allows memory data errors to be detected, which contributes to increasing functional
safety of applications.
When the parity protection is not required because the application is not safety-critical, the
parity memory bits can be used as additional SRAM, to increase its total size to 18 Kbytes.
The memory can be read/write-accessed at CPU clock speed, with 0 wait states.
3.5
Boot modes
At startup, the boot pin and boot selector option bit are used to select one of the three boot
options:
•
boot from User Flash memory
•
boot from System memory
•
boot from embedded SRAM
The boot pin is shared with a standard GPIO and can be enabled through the boot selector
option bit. The boot loader is located in System memory. It manages the Flash memory
reprogramming through one of the following interfaces:
3.6
•
USART on pins PA9/PA10 or PA2/PA3
•
I2C-bus on pins PB6/PB7 or PB10/PB11
Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link
time and stored at a given memory location.
3.7
Power supply management
3.7.1
Power supply schemes
The STM32G051x6/x8 devices require a 1.7 V to 3.6 V operating supply voltage (VDD).
Several different power supplies are provided to specific peripherals:
•
VDD = 1.7 (1.6) to 3.6 V
VDD is the external power supply for the internal regulator and the system analog such
as reset, power management and internal clocks. It is provided externally through
VDD/VDDA pin.
The minimum voltage of 1.7 V corresponds to power-on reset release threshold
VPOR(max). Once this threshold is crossed and power-on reset is released, the
functionality is guaranteed down to power-down reset threshold VPDR(min).
DS13303 Rev 3
15/126
33
Functional overview
•
STM32G051x6/x8
VDDA = 1.62 V (ADC and COMP) / 1.8 V (DAC) / 2.4 V (VREFBUF) to 3.6 V
VDDA is the analog power supply for the A/D converter, D/A converter, voltage
reference buffer and comparators. VDDA voltage level is identical to VDD voltage as it is
provided externally through VDD/VDDA pin.
•
VDDIO1 = VDD
VDDIO1 is the power supply for the I/Os. VDDIO1 voltage level is identical to VDD voltage
as it is provided externally through VDD/VDDA pin.
•
VBAT = 1.55 V to 3.6 V. VBAT is the power supply (through a power switch) for RTC,
TAMP, low-speed external 32.768 kHz oscillator and backup registers when VDD is not
present. VBAT is provided externally through VBAT pin. When this pin is not available
on the package, VBAT bonding pad is internally bonded to the VDD/VDDA pin.
•
VREF+ is the analog peripheral input reference voltage, or the output of the internal
voltage reference buffer (when enabled). When VDDA < 2 V, VREF+ must be equal to
VDDA. When VDDA ≥ 2 V, VREF+ must be between 2 V and VDDA. It can be grounded
when the analog peripherals using VREF+ are not active.
The internal voltage reference buffer supports two output voltages, which is configured
with VRS bit of the VREFBUF_CSR register:
–
VREF+ around 2.048 V (requiring VDDA equal to or higher than 2.4 V)
–
VREF+ around 2.5 V (requiring VDDA equal to or higher than 2.8 V)
VREF+ is delivered through VREF+ pin. On packages without VREF+ pin, VREF+ is
internally connected with VDD, and the internal voltage reference buffer must be kept
disabled (refer to datasheets for package pinout description).
•
VCORE
An embedded linear voltage regulator is used to supply the VCORE internal digital
power. VCORE is the power supply for digital peripherals, SRAM and Flash memory.
The Flash memory is also supplied with VDD.
16/126
DS13303 Rev 3
STM32G051x6/x8
Functional overview
Figure 2. Power supply overview
VREF+
VREF+
VDDA
VSSA
VDDA domain
A/D converter
Comparators
D/A converter
Voltage reference buffer
VDDIO1 domain
VDDIO1
I/O ring
VDD domain
VSS/VSSA
VDD/VDDA
VSS
Reset block
Temp. sensor
PLL, HSI
Standby circuitry
(Wakeup, IWDG)
VDD
Voltage
regulator
Low-voltage
detector
VCORE domain
Core
SRAM
VCORE
Digital
peripherals
Flash memory
RTC domain
BKP registers
LSE crystal 32.768 kHz osc
RCC BDCR register
RTC and TAMP
VBAT
MSv39736V3
3.7.2
Power supply supervisor
The device has an integrated power-on/power-down (POR/PDR) reset active in all power
modes except Shutdown and ensuring proper operation upon power-on and power-down. It
maintains the device in reset when the supply voltage is below VPOR/PDR threshold, without
the need for an external reset circuit. Brownout reset (BOR) function allows extra flexibility. It
can be enabled and configured through option bytes, by selecting one of four thresholds for
rising VDD and other four for falling VDD.
The device also features an embedded programmable voltage detector (PVD) that monitors
the VDD power supply and compares it to VPVD threshold. It allows generating an interrupt
when VDD level crosses the VPVD threshold, selectively while falling, while rising, or while
falling and rising. The interrupt service routine can then generate a warning message and/or
put the MCU into a safe state. The PVD is enabled by software.
3.7.3
Voltage regulator
Two embedded linear voltage regulators, main regulator (MR) and low-power regulator
(LPR), supply most of digital circuitry in the device.
The MR is used in Run and Sleep modes. The LPR is used in Low-power run, Low-power
sleep and Stop modes.
In Standby and Shutdown modes, both regulators are powered down and their outputs set in
high-impedance state, such as to bring their current consumption close to zero. However,
SRAM data retention is possible in Standby mode, in which case the LPR remains active
and it only supplies the SRAM.
DS13303 Rev 3
17/126
33
Functional overview
3.7.4
STM32G051x6/x8
Low-power modes
By default, the microcontroller is in Run mode after system or power reset. It is up to the
user to select one of the low-power modes described below:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
•
Low-power run mode
This mode is achieved with VCORE supplied by the low-power regulator to minimize the
regulator's operating current. The code can be executed from SRAM or from Flash,
and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can
be clocked by HSI16.
•
Low-power sleep mode
This mode is entered from the low-power run mode. Only the CPU clock is stopped.
When wakeup is triggered by an event or an interrupt, the system reverts to the Lowpower run mode.
•
Stop 0 and Stop 1 modes
In Stop 0 and Stop 1 modes, the device achieves the lowest power consumption while
retaining the SRAM and register contents. All clocks in the VCORE domain are stopped.
The PLL, as well as the HSI16 RC oscillator and the HSE crystal oscillator are
disabled. The LSE or LSI keep running. The RTC can remain active (Stop mode with
RTC, Stop mode without RTC).
Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode,
so as to get clock for processing the wakeup event. The main regulator remains active
in Stop 0 mode while it is turned off in Stop 1 mode.
•
Standby mode
The Standby mode is used to achieve the lowest power consumption, with POR/PDR
always active in this mode. The main regulator is switched off to power down VCORE
domain. The low-power regulator is either switched off or kept active. In the latter case,
it only supplies SRAM to ensure data retention. The PLL, as well as the HSI16 RC
oscillator and the HSE crystal oscillator are also powered down. The RTC can remain
active (Standby mode with RTC, Standby mode without RTC).
For each I/O, the software can determine whether a pull-up, a pull-down or no resistor
shall be applied to that I/O during Standby mode.
Upon entering Standby mode, register contents are lost except for registers in the RTC
domain and standby circuitry. The SRAM contents can be retained through register
setting.
The device exits Standby mode upon external reset event (NRST pin), IWDG reset
event, wakeup event (WKUP pin, configurable rising or falling edge) or RTC event
(alarm, periodic wakeup, timestamp, tamper), or when a failure is detected on LSE
(CSS on LSE).
•
Shutdown mode
The Shutdown mode allows to achieve the lowest power consumption. The internal
regulator is switched off to power down the VCORE domain. The PLL, as well as the
18/126
DS13303 Rev 3
STM32G051x6/x8
Functional overview
HSI16 and LSI RC-oscillators and HSE crystal oscillator are also powered down. The
RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).
The BOR is not available in Shutdown mode. No power voltage monitoring is possible
in this mode. Therefore, switching to RTC domain is not supported.
SRAM and register contents are lost except for registers in the RTC domain.
The device exits Shutdown mode upon external reset event (NRST pin), IWDG reset
event, wakeup event (WKUP pin, configurable rising or falling edge) or RTC event
(alarm, periodic wakeup, timestamp, tamper).
3.7.5
Reset mode
During and upon exiting reset, the schmitt triggers of I/Os are disabled so as to reduce
power consumption. In addition, when the reset source is internal, the built-in pull-up
resistor on NRST pin is deactivated.
3.7.6
VBAT operation
The VBAT power domain, consuming very little energy, includes RTC, and LSE oscillator and
backup registers.
In VBAT mode, the RTC domain is supplied from VBAT pin. The power source can be, for
example, an external battery or an external supercapacitor. Two anti-tamper detection pins
are available.
The RTC domain can also be supplied from VDD/VDDA pin.
By means of a built-in switch, an internal voltage supervisor allows automatic switching of
RTC domain powering between VDD and voltage from VBAT pin to ensure that the supply
voltage of the RTC domain (VBAT) remains within valid operating conditions. If both voltages
are valid, the RTC domain is supplied from VDD/VDDA pin.
An internal circuit for charging the battery on VBAT pin can be activated if the VDD voltage is
within a valid range.
Note:
External interrupts and RTC alarm/events cannot cause the microcontroller to exit the VBAT
mode, as in that mode the VDD is not within a valid range.
3.8
Interconnect of peripherals
Several peripherals have direct connections between them. This allows autonomous
communication between peripherals, saving CPU resources thus power supply
consumption. In addition, these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep and Stop
modes.
DS13303 Rev 3
19/126
33
Functional overview
STM32G051x6/x8
Stop
TIMx
Sleep
Low-power sleep
Interconnect source
Run
Low-power run
Table 4. Interconnect of peripherals
TIMx
Timer synchronization or chaining
Y
Y
-
ADCx
DACx
Conversion triggers
Y
Y
-
DMA
Memory-to-memory transfer trigger
Y
Y
-
COMPx
Comparator output blanking
Y
Y
-
TIM1,2,3
Timer input channel, trigger, break
from analog signals comparison
Y
Y
-
LPTIMERx
Low-power timer triggered by analog
signals comparison
Y
Y
Y
TIM1
Timer triggered by analog watchdog
Y
Y
-
TIM16
Timer input channel from RTC events
Y
Y
-
Low-power timer triggered by RTC
alarms or tampers
Y
Y
Y
Clock source used as input channel for
RC measurement and trimming
Y
Y
-
Interconnect
destination
COMPx
ADCx
RTC
LPTIMERx
Interconnect action
All clock sources (internal and
external)
TIM14,16,17
CSS
RAM (parity error)
Flash memory (ECC error)
COMPx
PVD
TIM1,15,16,17
Timer break
Y
Y
-
CPU (hard fault)
TIM1,15,16,17
Timer break
Y
-
-
TIMx
External trigger
Y
Y
-
LPTIMERx
External trigger
Y
Y
Y
Conversion external trigger
Y
Y
-
GPIO
ADC
DACx
20/126
DS13303 Rev 3
STM32G051x6/x8
3.9
Functional overview
Clocks and startup
The clock controller distributes the clocks coming from different oscillators to the core and
the peripherals. It also manages clock gating for low-power modes and ensures clock
robustness. It features:
•
Clock prescaler: to get the best trade-off between speed and current consumption,
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler
•
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
•
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
•
System clock source: three different sources can deliver SYSCLK system clock:
•
–
4-48 MHz high-speed oscillator with external crystal or ceramic resonator (HSE). It
can supply clock to system PLL. The HSE can also be configured in bypass mode
for an external clock.
–
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software. It can
supply clock to system PLL.
–
System PLL with maximum output frequency of 64 MHz. It can be fed with HSE or
HSI16 clocks.
Auxiliary clock source: two ultra-low-power clock sources for the real-time clock
(RTC):
–
32.768 kHz low-speed oscillator with external crystal (LSE), supporting four drive
capability modes. The LSE can also be configured in bypass mode for using an
external clock.
–
32 kHz low-speed internal RC oscillator (LSI) with ±5% accuracy, also used to
clock an independent watchdog.
•
Peripheral clock sources: several peripherals ( I2S, USARTs, I2Cs, LPTIMs, ADC)
have their own clock independent of the system clock.
•
Clock security system (CSS): in the event of HSE clock failure, the system clock is
automatically switched to HSI16 and, if enabled, a software interrupt is generated. LSE
clock failure can also be detected and generate an interrupt. The CCS feature can be
enabled by software.
•
Clock output:
–
MCO (microcontroller clock output) provides one of the internal clocks for
external use by the application
–
LSCO (low speed clock output) provides LSI or LSE in all low-power modes
(except in VBAT operation).
Several prescalers allow the application to configure AHB and APB domain clock
frequencies, 64 MHz at maximum.
3.10
General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function (AF). Most of
the GPIO pins are shared with special digital or analog functions.
DS13303 Rev 3
21/126
33
Functional overview
STM32G051x6/x8
Through a specific sequence, this special function configuration of I/Os can be locked, such
as to avoid spurious writing to I/O control registers.
3.11
Direct memory access controller (DMA)
The direct memory access (DMA) controller is a bus master and system peripheral with
single-AHB architecture.
With 7 channels, it performs data transfers between memory-mapped peripherals and/or
memories, to offload the CPU.
Each channel is dedicated to managing memory access requests from one or more
peripherals. The unit includes an arbiter for handling the priority between DMA requests.
Main features of the DMA controller:
•
Single-AHB master
•
Peripheral-to-memory, memory-to-peripheral, memory-to-memory and peripheral-toperipheral data transfers
•
Access, as source and destination, to on-chip memory-mapped devices such as Flash
memory, SRAM, and AHB and APB peripherals
•
All DMA channels independently configurable:
•
3.12
–
Each channel is associated either with a DMA request signal coming from a
peripheral, or with a software trigger in memory-to-memory transfers. This
configuration is done by software.
–
Priority between the requests is programmable by software (four levels per
channel: very high, high, medium, low) and by hardware in case of equality (such
as request to channel 1 has priority over request to channel 2).
–
Transfer size of source and destination are independent (byte, half-word, word),
emulating packing and unpacking. Source and destination addresses must be
aligned on the data size.
–
Support of transfers from/to peripherals to/from memory with circular buffer
management
–
Programmable number of data to be transferred: 0 to 216 - 1
Generation of an interrupt request per channel. Each interrupt request originates from
any of the three DMA events: transfer complete, half transfer, or transfer error.
DMA request multiplexer (DMAMUX)
The DMAMUX request multiplexer enables routing a DMA request line between the
peripherals and the DMA controller. Each channel selects a unique DMA request line,
unconditionally or synchronously with events from its DMAMUX synchronization inputs.
DMAMUX may also be used as a DMA request generator from programmable events on its
input trigger signals.
3.13
Interrupts and events
The device flexibly manages events causing interrupts of linear program execution, called
exceptions. The Cortex-M0+ processor core, a nested vectored interrupt controller (NVIC)
22/126
DS13303 Rev 3
STM32G051x6/x8
Functional overview
and an extended interrupt/event controller (EXTI) are the assets contributing to handling the
exceptions. Exceptions include core-internal events such as, for example, a division by zero
and, core-external events such as logical level changes on physical lines. Exceptions result
in interrupting the program flow, executing an interrupt service routine (ISR) then resuming
the original program flow.
The processor context (contents of program pointer and status registers) is stacked upon
program interrupt and unstacked upon program resume, by hardware. This avoids context
stacking and unstacking in the interrupt service routines (ISRs) by software, thus saving
time, code and power. The ability to abandon and restart load-multiple and store-multiple
operations significantly increases the device’s responsiveness in processing exceptions.
3.13.1
Nested vectored interrupt controller (NVIC)
The configurable nested vectored interrupt controller is tightly coupled with the core. It
handles physical line events associated with a non-maskable interrupt (NMI) and maskable
interrupts, and Cortex-M0+ exceptions. It provides flexible priority management.
The tight coupling of the processor core with NVIC significantly reduces the latency between
interrupt events and start of corresponding interrupt service routines (ISRs). The ISR
vectors are listed in a vector table, stored in the NVIC at a base address. The vector
address of an ISR to execute is hardware-built from the vector table base address and the
ISR order number used as offset.
If a higher-priority interrupt event happens while a lower-priority interrupt event occurring
just before is waiting for being served, the later-arriving higher-priority interrupt event is
served first. Another optimization is called tail-chaining. Upon a return from a higher-priority
ISR then start of a pending lower-priority ISR, the unnecessary processor context
unstacking and stacking is skipped. This reduces latency and contributes to power
efficiency.
Features of the NVIC:
3.13.2
•
Low-latency interrupt processing
•
4 priority levels
•
Handling of a non-maskable interrupt (NMI)
•
Handling of 32 maskable interrupt lines
•
Handling of 10 Cortex-M0+ exceptions
•
Later-arriving higher-priority interrupt processed first
•
Tail-chaining
•
Interrupt vector retrieval by hardware
Extended interrupt/event controller (EXTI)
The extended interrupt/event controller adds flexibility in handling physical line events and
allows identifying wake-up events at processor wakeup from Stop mode.
The EXTI controller has a number of channels, of which some with rising, falling or rising,
and falling edge detector capability. Any GPIO and a few peripheral signals can be
connected to these channels.
The channels can be independently masked.
The EXTI controller can capture pulses shorter than the internal clock period.
DS13303 Rev 3
23/126
33
Functional overview
STM32G051x6/x8
A register in the EXTI controller latches every event even in Stop mode, which allows the
software to identify the origin of the processor's wake-up from Stop mode or, to identify the
GPIO and the edge event having caused an interrupt.
3.14
Analog-to-digital converter (ADC)
A native 12-bit analog-to-digital converter is embedded into STM32G051x6/x8 devices. It
can be extended to 16-bit resolution through hardware oversampling. The ADC has up to 16
external channels and 3 internal channels (temperature sensor, voltage reference, VBAT
monitoring). It performs conversions in single-shot or scan mode. In scan mode, automatic
conversion is performed on a selected group of analog inputs.
The ADC frequency is independent from the CPU frequency, allowing maximum sampling
rate of ~2 MSps even with a low CPU speed. An auto-shutdown function guarantees that
the ADC is powered off except during the active conversion phase.
The ADC can be served by the DMA controller. It can operate in the whole VDD supply
range.
The ADC features a hardware oversampler up to 256 samples, improving the resolution to
16 bits (refer to AN2668).
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all scanned channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the general-purpose timers (TIMx) can be internally connected to
the ADC start triggers, to allow the application to synchronize A/D conversions with timers.
3.14.1
Temperature sensor
The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature.
The temperature sensor is internally connected to an ADC input to convert the sensor
output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor may
vary from part to part due to process variation, the uncalibrated internal temperature sensor
is suitable only for relative temperature measurements.
To improve the accuracy of the temperature sensor, each part is individually factorycalibrated by ST. The resulting calibration data are stored in the part’s engineering bytes,
accessible in read-only mode.
Table 5. Temperature sensor calibration values
24/126
Calibration value name
Description
Memory address
TS_CAL1
TS ADC raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75A8 - 0x1FFF 75A9
TS_CAL2
TS ADC raw data acquired at a
temperature of 130 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75CA - 0x1FFF 75CB
DS13303 Rev 3
STM32G051x6/x8
3.14.2
Functional overview
Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and comparators. VREFINT is internally connected to an ADC input. The VREFINT
voltage is individually precisely measured for each part by ST during production test and
stored in the part’s engineering bytes. It is accessible in read-only mode.
Table 6. Internal voltage reference calibration values
3.14.3
Calibration value name
Description
Memory address
VREFINT
Raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75AA - 0x1FFF 75AB
VBAT battery voltage monitoring
This embedded hardware feature allows the application to measure the VBAT battery voltage
using an internal ADC input. As the VBAT voltage may be higher than VDDA and thus outside
the ADC input range, the VBAT pin is internally connected to a bridge divider by three. As a
consequence, the converted digital value is one third the VBAT voltage.
3.15
Digital-to-analog converter (DAC)
The 2-channel 12-bit buffered DAC converts a digital value into an analog voltage available
on the channel output. The architecture of either channel is based on integrated resistor
string and an inverting amplifier. The digital circuitry is common for both channels.
Features of the DAC:
•
Two DAC output channels
•
8-bit or 12-bit output mode
•
Buffer offset calibration (factory and user trimming)
•
Left or right data alignment in 12-bit mode
•
Synchronized update capability
•
Noise-wave generation
•
Triangular-wave generation
•
Independent or simultaneous conversion for DAC channels
•
DMA capability for either DAC channel
•
Triggering with timer events, synchronized with DMA
•
Triggering with external events
•
Sample-and-hold low-power mode, with internal or external capacitor
DS13303 Rev 3
25/126
33
Functional overview
3.16
STM32G051x6/x8
Voltage reference buffer (VREFBUF)
When enabled, an embedded buffer provides the internal reference voltage to analog
blocks (for example ADC) and to VREF+ pin for external components.
The internal voltage reference buffer supports two voltages:
•
2.048 V
•
2.5 V
An external voltage reference can be provided through the VREF+ pin when the internal
voltage reference buffer is disabled.
On some packages, the VREF+ pad of the silicon die is double-bonded with supply pad to
common VDD/VDDA pin and so the internal voltage reference buffer cannot be used.
3.17
Comparators (COMP)
Two embedded rail-to-rail analog comparators have programmable reference voltage
(internal or external), hysteresis, speed (low for low-power) and output polarity.
The reference voltage can be one of the following:
•
external, from an I/O
•
internal, from DAC
•
internal reference voltage (VREFINT) or its submultiple (1/4, 1/2, 3/4)
The comparators can wake up the device from Stop mode, generate interrupts, breaks or
triggers for the timers and can be also combined into a window comparator.
3.18
Timers and watchdogs
The device includes an advanced-control timer, six general-purpose timers, two basic
timers, two low-power timers, two watchdog timers and a SysTick timer. Table 7 compares
features of the advanced-control, general-purpose and basic timers.
Table 7. Timer feature comparison
Timer type
Timer
Counter
resolution
Counter
type
Maximum
operating
frequency
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
outputs
Advancedcontrol
TIM1
16-bit
Up, down,
up/down
128 MHz
Integer from
1 to 216
Yes
4
3
26/126
DS13303 Rev 3
STM32G051x6/x8
Functional overview
Table 7. Timer feature comparison (continued)
Timer
Counter
resolution
Counter
type
Maximum
operating
frequency
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
outputs
TIM2
32-bit
Up, down,
up/down
64 MHz
Integer from
1 to 216
Yes
4
-
TIM3
16-bit
Up, down,
up/down
64 MHz
Integer from
1 to 216
Yes
4
-
TIM14
16-bit
Up
64 MHz
Integer from
1 to 216
No
1
-
TIM15
16-bit
Up
128 MHz
Integer from
1 to 216
Yes
2
1
TIM16
TIM17
16-bit
Up
64 MHz
Integer from
1 to 216
Yes
1
1
Basic
TIM6
TIM7
16-bit
Up
64 MHz
Integer from
1 to 216
Yes
-
-
Low-power
LPTIM1
LPTIM2
16-bit
Up
64 MHz
2n where
n=0 to 7
No
N/A
-
Timer type
Generalpurpose
3.18.1
Advanced-control timer (TIM1)
The advanced-control timer can be seen as a three-phase PWM unit multiplexed on 6
channels. It has complementary PWM outputs with programmable inserted dead-times. It
can also be seen as a complete general-purpose timer. The four independent channels can
be used for:
•
input capture
•
output compare
•
PWM output (edge or center-aligned modes) with full modulation capability (0-100%)
•
one-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs
disabled, so as to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIMx timers (described in
Section 3.18.2) using the same architecture, so the advanced-control timers can work
together with the TIMx timers via the Timer Link feature for synchronization or event
chaining.
DS13303 Rev 3
27/126
33
Functional overview
3.18.2
STM32G051x6/x8
General-purpose timers (TIM2, 3, 14, 15, 16, 17)
There are six synchronizable general-purpose timers embedded in the device (refer to
Table 7 for comparison). Each general-purpose timer can be used to generate PWM outputs
or act as a simple timebase.
•
TIM2, TIM3
These are full-featured general-purpose timers:
–
TIM2 with 32-bit auto-reload up/downcounter and 16-bit prescaler
–
TIM3 with 16-bit auto-reload up/downcounter and 16-bit prescaler
They have four independent channels for input capture/output compare, PWM or onepulse mode output. They can operate together or in combination with other generalpurpose timers via the Timer Link feature for synchronization or event chaining. They
can generate independent DMA request and support quadrature encoders. Their
counter can be frozen in debug mode.
•
TIM14
This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. It has one
channel for input capture/output compare, PWM output or one-pulse mode output. Its
counter can be frozen in debug mode.
•
TIM15, TIM16, TIM17
These are general-purpose timers featuring:
–
16-bit auto-reload upcounter and 16-bit prescaler
–
2 channels and 1 complementary channel for TIM15
–
1 channel and 1 complementary channel for TIM16 and TIM17
All channels can be used for input capture/output compare, PWM or one-pulse mode
output. The timers can operate together via the Timer Link feature for synchronization
or event chaining. They can generate independent DMA request. Their counters can
be frozen in debug mode.
3.18.3
Basic timers (TIM6 and TIM7)
These timers are mainly used for triggering DAC conversions. They can also be used as
generic 16-bit timebases.
3.18.4
Low-power timers (LPTIM1 and LPTIM2)
These timers have an independent clock. When fed with LSE, LSI or external clock, they
keep running in Stop mode and they can wake up the system from it.
28/126
DS13303 Rev 3
STM32G051x6/x8
Functional overview
Features of LPTIM1 and LPTIM2:
3.18.5
•
16-bit up counter with 16-bit autoreload register
•
16-bit compare register
•
Configurable output (pulse, PWM)
•
Continuous/one-shot mode
•
Selectable software/hardware input trigger
•
Selectable clock source:
–
Internal: LSE, LSI, HSI16 or APB clocks
–
External: over LPTIM input (working even with no internal clock source running,
used by pulse counter application)
•
Programmable digital glitch filter
•
Encoder mode
Independent watchdog (IWDG)
The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with
user-defined refresh window. It is clocked from an independent 32 kHz internal RC (LSI).
Independent of the main clock, it can operate in Stop and Standby modes. It can be used
either as a watchdog to reset the device when a problem occurs, or as a free-running timer
for application timeout management. It is hardware- or software-configurable through the
option bytes. Its counter can be frozen in debug mode.
3.18.6
System window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked by the
system clock. It has an early-warning interrupt capability. Its counter can be frozen in debug
mode.
3.18.7
SysTick timer
This timer is dedicated to real-time operating systems, but it can also be used as a standard
down counter.
Features of SysTick timer:
3.19
•
24-bit down counter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0
•
Programmable clock source
Real-time clock (RTC), tamper (TAMP) and backup registers
The device embeds an RTC and five 32-bit backup registers, located in the RTC domain of
the silicon die.
The ways of powering the RTC domain are described in Section 3.7.6.
The RTC is an independent BCD timer/counter.
DS13303 Rev 3
29/126
33
Functional overview
STM32G051x6/x8
Features of the RTC:
•
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format
•
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month
•
Programmable alarm
•
On-the-fly correction from 1 to 32767 RTC clock pulses, usable for synchronization with
a master clock
•
Reference clock detection - a more precise second-source clock (50 or 60 Hz) can be
used to improve the calendar precision
•
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy
•
Two anti-tamper detection pins with programmable filter
•
Timestamp feature to save a calendar snapshot, triggered by an event on the
timestamp pin or a tamper event, or by switching to VBAT mode
•
17-bit auto-reload wakeup timer (WUT) for periodic events, with programmable
resolution and period
•
Multiple clock sources and references:
–
A 32.768 kHz external crystal (LSE)
–
An external resonator or oscillator (LSE)
–
The internal low-power RC oscillator (LSI, with typical frequency of 32 kHz)
–
The high-speed external clock (HSE) divided by 32
When clocked by LSE, the RTC operates in VBAT mode and in all low-power modes. When
clocked by LSI, the RTC does not operate in VBAT mode, but it does in low-power modes
except for the Shutdown mode.
All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt
and wake the device up from the low-power modes.
The backup registers allow keeping 20 bytes of user application data in the event of VDD
failure, if a valid backup supply voltage is provided on VBAT pin. They are not affected by
the system reset, power reset, and upon the device’s wakeup from Standby or Shutdown
modes.
3.20
Inter-integrated circuit interface (I2C)
The device embeds two I2C peripherals. Refer to Table 8 for the features.
The I2C-bus interface handles communication between the microcontroller and the serial
I2C-bus. It controls all I2C-bus-specific sequencing, protocol, arbitration and timing.
30/126
DS13303 Rev 3
STM32G051x6/x8
Functional overview
Features of the I2C peripheral:
•
•
I2C-bus specification and user manual rev. 5 compatibility:
–
Slave and master modes, multimaster capability
–
Standard-mode (Sm), with a bitrate up to 100 kbit/s
–
Fast-mode (Fm), with a bitrate up to 400 kbit/s
–
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and extra output drive I/Os
–
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
–
Programmable setup and hold times
–
Clock stretching
SMBus specification rev 3.0 compatibility:
–
Hardware PEC (packet error checking) generation and verification with ACK
control
–
Command and data acknowledge control
–
Address resolution protocol (ARP) support
–
Host and Device support
–
SMBus alert
–
Timeouts and idle condition detection
•
PMBus rev 1.3 standard compatibility
•
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent of the PCLK reprogramming
•
Wakeup from Stop mode on address match
•
Programmable analog and digital noise filters
•
1-byte buffer with DMA capability
Table 8. I2C implementation
I2C features(1)
I2C1
I2C2
Standard mode (up to 100 kbit/s)
X
X
Fast mode (up to 400 kbit/s)
X
X
Fast Mode Plus (up to 1 Mbit/s) with extra output drive I/Os
X
X
Programmable analog and digital noise filters
X
X
SMBus/PMBus hardware support
X
-
Independent clock
X
-
Wakeup from Stop mode on address match
X
-
1. X: supported
3.21
Universal synchronous/asynchronous receiver transmitter
(USART)
The device embeds universal synchronous/asynchronous receivers/transmitters that
communicate at speeds of up to 8 Mbit/s.
They provide hardware management of the CTS, RTS and RS485 DE signals,
multiprocessor communication mode, master synchronous communication and single-wire
DS13303 Rev 3
31/126
33
Functional overview
STM32G051x6/x8
half-duplex communication mode. Some can also support SmartCard communication (ISO
7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and have
a clock domain independent of the CPU clock, which allows them to wake up the MCU from
Stop mode. The wakeup events from Stop mode are programmable and can be:
•
start bit detection
•
any received data frame
•
a specific programmed data frame
All USART interfaces can be served by the DMA controller.
Table 9. USART implementation
USART modes/features(1)
USART1
USART2
Hardware flow control for modem
X
X
Continuous communication using DMA
X
X
Multiprocessor communication
X
X
Synchronous mode
X
X
Smartcard mode
X
-
Single-wire half-duplex communication
X
X
IrDA SIR ENDEC block
X
-
LIN mode
X
-
Dual clock domain and wakeup from Stop mode
X
-
Receiver timeout interrupt
X
-
Modbus communication
X
-
Auto baud rate detection
X
-
Driver Enable
X
X
1. X: supported
3.22
Low-power universal asynchronous receiver transmitter
(LPUART)
The device embeds one LPUART. The peripheral supports asynchronous serial
communication with minimum power consumption. It supports half duplex single wire
communication and modem operations (CTS/RTS). It allows multiprocessor
communication.
The LPUART has a clock domain independent of the CPU clock, and can wakeup the
system from Stop mode. The Stop mode wakeup events are programmable and can be:
•
start bit detection
•
any received data frame
•
a specific programmed data frame
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600
baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while
having an extremely low energy consumption. Higher speed clock can be used to reach
higher baudrates.
32/126
DS13303 Rev 3
STM32G051x6/x8
Functional overview
The LPUART interface can be served by the DMA controller.
3.23
Serial peripheral interface (SPI)
The device contains two SPIs running at up to 32 Mbits/s in master and slave modes. It
supports half-duplex, full-duplex and simplex communications. A 3-bit prescaler gives eight
master mode frequencies. The frame size is configurable from 4 bits to 16 bits. The SPI
peripherals support NSS pulse mode, TI mode and hardware CRC calculation.
The SPI peripherals can be served by the DMA controller.
The I2S interface mode of the SPI peripheral (if supported, see the following table) supports
four different audio standards can operate as master or slave, in half-duplex communication
mode. It can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data
resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to
192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master
mode, it can output a clock for an external audio component at 256 times the sampling
frequency.
Table 10. SPI/I2S implementation
SPI features(1)
SPI1
SPI2
Hardware CRC calculation
X
X
Rx/Tx FIFO
X
X
NSS pulse mode
X
X
I2S
X
-
X
X
mode
TI mode
1. X = supported.
3.24
Development support
3.24.1
Serial wire debug port (SW-DP)
An Arm SW-DP interface is provided to allow a serial wire debugging tool to be connected to
the MCU.
DS13303 Rev 3
33/126
33
Pinouts, pin description and alternate functions
4
STM32G051x6/x8
Pinouts, pin description and alternate functions
Figure 3. STM32G051CxT LQFP48 pinout
37
38
39
40
41
42
43
44
45
46
1
36
2
35
3
34
4
33
5
32
6
31
LQFP48
7
30
24
23
22
21
20
PA14-BOOT0
PA13
PA12 [PA10]
PA11 [PA9]
PA10
PC7
PC6
PA9
PA8
PB15
PB14
PB13
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
PB12
19
25
18
26
12
17
27
11
16
28
10
15
29
9
14
8
13
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
VBAT
VREF+
VDD/VDDA
VSS/VSSA
PF0-OSC_IN
PF1-OSC_OUT
PF2-NRST
PA0
PA1
47
48
PB9
PB8
PB7
PB6
PB5
PB4
PB3
PD3
PD2
PD1
PD0
PA15
Top view
MSv39711V3
Figure 4. STM32G051CxU UFQFPN48 pinout
37
38
39
40
41
42
43
44
45
46
1
36
2
35
3
34
4
33
5
32
6
31
UFQFPN48
7
30
24
23
22
21
20
19
25
18
26
12
17
27
11
16
28
10
15
29
9
14
8
13
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
VBAT
VREF+
VDD/VDDA
VSS/VSSA
PF0-OSC_IN
PF1-OSC_OUT
PF2-NRST
PA0
PA1
47
48
PB9
PB8
PB7
PB6
PB5
PB4
PB3
PD3
PD2
PD1
PD0
PA15
Top view
PA14-BOOT0
PA13
PA12 [PA10]
PA11 [PA9]
PA10
PC7
PC6
PA9
PA8
PB15
PB14
PB13
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
PB12
VSS
MSv39714V3
34/126
DS13303 Rev 3
STM32G051x6/x8
Pinouts, pin description and alternate functions
PB5
PB4
PB3
PA15
PA14-BOOT0
27
26
25
PB6
28
PB7
30
29
PB8
31
Top view
32
Figure 5. STM32G051KxT LQFP32 pinout
PB9
1
24
PA13
PC14-OSC32_IN
2
23
PA12 [PA10]
PC15-OSC32_OUT
3
22
PA11 [PA9]
VDD/VDDA
4
21
PA10
VSS/VSSA
5
20
PC6
PF2-NRST
6
19
PA9
PA0
7
18
PA8
PA1
8
17
PB2
9
10
11
12
13
14
15
16
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PB1
LQFP32
MSv39712V3
25
26
27
28
29
1
24
2
23
3
22
4
5
UFQFPN32
21
20
PA13
PA12 [PA10]
PA11 [PA9]
PA10
PC6
PA9
PA8
PB2
16
15
14
13
17
12
18
8
11
19
7
9
6
10
PB9
PC14-OSC32_IN
PC15-OSC32_OUT
VDD/VDDA
VSS/VSSA
PF2-NRST
PA0
PA1
30
32
Top view
31
PB8
PB7
PB6
PB5
PB4
PB3
PA15
PA14-BOOT0
Figure 6. STM32G051KxU UFQFPN32 pinout
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PB1
VSS
MSv39715V3
DS13303 Rev 3
35/126
41
Pinouts, pin description and alternate functions
STM32G051x6/x8
Figure 7. STM32G051GxU UFQFPN28 pinout
22
23
24
25
26
1
21
2
20
15
PA14-BOOT0
PA13
PA12 [PA10]
PA11 [PA9]
PC6
PA8
PB1
PA2
PA3
PA4
PA5
PA6
PA7
PB0
14
16
7
13
17
6
12
5
11
UFQFPN28 18
10
19
4
9
3
8
PC14-OSC32_IN
PC15-OSC32_OUT
VDD/VDDA
VSS/VSSA
PF2-NRST
PA0
PA1
27
28
PB8
PB7
PB6
PB5
PB4
PB3
PA15
Top view
MSv39713V4
Figure 8. STM32G051Fx TSSOP20 pinout
Top view
PB7/PB8
PB9/PC14-OSC32_IN
PC15-OSC32_OUT
1
20
2
19
3
18
VDD/VDDA
VSS/VSSA
4
17
5
16
PF2-NRST
PA0
PA1
PA2
6
15
7
14
8
13
9
12
10
11
PA3
PB3/PB4/PB5/PB6
PA15/PA14-BOOT0
PA13
PA12[PA10]
PA11[PA9]
PB0/PB1/PB2/PA8
PA7
PA6
PA5
PA4
MSv47953V2
36/126
DS13303 Rev 3
STM32G051x6/x8
Pinouts, pin description and alternate functions
Figure 9. STM32G051FxY WLCSP20L pinout
1
2
3
PA12
[PA10]
PB5 /
PB6 /
PB3 /
PB4
PB7 /
PB8
B
PA11
[PA9]
PA13
PA14BOOT0 /
PA15
PC15OSC32_
OUT
C
PA6
PA3
PA0
VDD
D
PA7
PA5
PA1
VSS
E
PA8 /
PB0 /
PB1 /
(PB2)
PA4
PA2
PF2 NRST
Top view
A
4
PC14OSC32_IN /
(PB9)
Table 11. Terms and symbols used in Table 12
Column
Pin name
Pin type
Symbol
Definition
Terminal name corresponds to its by-default function at reset, unless otherwise specified in
parenthesis under the pin name.
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
RST
Bidirectional reset pin with embedded weak pull-up resistor
Options for FT I/Os
I/O structure
Note
_f
I/O, Fm+ capable
_a
I/O, with analog switch function
_e
I/O, with switchable diode to VDD
Upon reset, all I/Os are set as analog inputs, unless otherwise specified.
Alternate
Functions selected through GPIOx_AFR registers
functions
Pin
functions Additional
Functions directly selected/enabled through peripheral registers
functions
DS13303 Rev 3
37/126
41
Pinouts, pin description and alternate functions
STM32G051x6/x8
Table 12. Pin assignment and description
TSSOP20
WLCSP20L
UFQFPN28
LQFP32 / UFQFPN32
LQFP48 / UFQFPN48
(function
upon reset)
Pin type
I/O structure
Note
Pin
Alternate
functions
-
-
-
-
1
PC13
I/O
FT
(1)(2)
TIM1_BKIN
TAMP_IN1, RTC_TS,
RTC_OUT1, WKUP2
-
-
-
-
2
PC14OSC32_IN
I/O
FT
(1)(2)
TIM1_BKIN2
OSC32_IN
2
A4
1
2
-
PC14OSC32_IN
I/O
FT
(1)(2)
TIM1_BKIN2
OSC32_IN, OSC_IN
3
B4
2
3
3
PC15OSC32_OUT
I/O
FT
(1)(2)
OSC32_EN, OSC_EN,
TIM15_BKIN
OSC32_OUT
-
-
-
-
4
VBAT
S
-
-
-
-
-
-
-
-
5
VREF+
S
-
-
-
VREFBUF_OUT
4
C4
3
4
6
VDD/VDDA
S
-
-
-
-
5
D4
4
5
7
VSS/VSSA
S
-
-
-
-
-
-
-
-
8
PF0-OSC_IN
I/O
FT
-
TIM14_CH1
OSC_IN
-
-
-
-
9
PF1OSC_OUT
I/O
FT
-
OSC_EN, TIM15_CH1N
OSC_OUT
6
E4
5
6
10
PF2-NRST
I/O
-
(3)
MCO
NRST
7
C3
6
7
11
PA0
I/O
FT_a
(3)
SPI2_SCK, USART2_CTS,
TIM2_CH1_ETR, LPTIM1_OUT,
COMP1_OUT
COMP1_INM8,
ADC_IN0, TAMP_IN2,
WKUP1
FT_ea
(3)
SPI1_SCK/I2S1_CK,
USART2_RTS_DE_CK,
TIM2_CH2, TIM15_CH1N,
I2C1_SMBA, EVENTOUT
COMP1_INP2,
ADC_IN1
SPI1_MOSI/I2S1_SD,
USART2_TX, TIM2_CH3,
TIM15_CH1, LPUART1_TX,
COMP2_OUT
COMP2_INM8,
ADC_IN2, WKUP4,
LSCO
8
D3
7
8
12
Pin name
PA1
I/O
Additional
functions
E3
8
9
13
PA2
I/O
FT_a
(3)
10 C2
9
10
14
PA3
I/O
FT_ea
-
SPI2_MISO, USART2_RX,
TIM2_CH4, TIM15_CH2,
LPUART1_RX, EVENTOUT
COMP2_INP2,
ADC_IN3
-
-
15
PA4
I/O
FT_a
-
SPI1_NSS/I2S1_WS,
SPI2_MOSI, TIM14_CH1,
LPTIM2_OUT, EVENTOUT
ADC_IN4, DAC1_OUT1,
RTC_OUT2
9
-
-
38/126
DS13303 Rev 3
STM32G051x6/x8
Pinouts, pin description and alternate functions
Table 12. Pin assignment and description (continued)
LQFP32 / UFQFPN32
LQFP48 / UFQFPN48
Pin type
I/O structure
Note
Alternate
functions
11 E2 10
11
-
PA4
I/O
FT_a
-
SPI1_NSS/I2S1_WS,
SPI2_MOSI, TIM14_CH1,
LPTIM2_OUT, EVENTOUT
12 D2 11
12
16
PA5
I/O
FT_ea
-
WLCSP20L
(function
upon reset)
TSSOP20
UFQFPN28
Pin
13 C1 12
13
17
Pin name
PA6
I/O
FT_ea
Additional
functions
ADC_IN4, DAC1_OUT1,
TAMP_IN1, RTC_TS,
RTC_OUT1, WKUP2
SPI1_SCK/I2S1_CK,
TIM2_CH1_ETR, LPTIM2_ETR, ADC_IN5, DAC1_OUT2
EVENTOUT
-
SPI1_MISO/I2S1_MCK,
TIM3_CH1, TIM1_BKIN,
TIM16_CH1, LPUART1_CTS,
COMP1_OUT
ADC_IN6
ADC_IN7
14 D1 13
14
18
PA7
I/O
FT_a
-
SPI1_MOSI/I2S1_SD,
TIM3_CH2, TIM1_CH1N,
TIM14_CH1, TIM17_CH1,
COMP2_OUT
15 E1 14
15
19
PB0
I/O
FT_ea
-
SPI1_NSS/I2S1_WS,
TIM3_CH3, TIM1_CH2N,
LPTIM1_OUT, COMP1_OUT
ADC_IN8
COMP1_INM6,
ADC_IN9
15 E1 15
16
20
PB1
I/O
FT_ea
-
TIM14_CH1, TIM3_CH4,
TIM1_CH3N, LPTIM2_IN1,
LPUART1_RTS_DE,
EVENTOUT
15 E1
-
17
21
PB2
I/O
FT_ea
-
SPI2_MISO, LPTIM1_OUT,
EVENTOUT
COMP1_INP1,
ADC_IN10
-
-
-
-
22
PB10
I/O
FT_fa
-
LPUART1_RX, TIM2_CH3,
SPI2_SCK, I2C2_SCL,
COMP1_OUT
ADC_IN11
-
-
-
-
23
PB11
I/O
FT_fa
-
SPI2_MOSI, LPUART1_TX,
TIM2_CH4, I2C2_SDA,
COMP2_OUT
ADC_IN15
-
-
-
-
24
PB12
I/O
FT_a
-
SPI2_NSS, LPUART1_RTS_DE,
TIM1_BKIN, TIM15_BKIN,
EVENTOUT
ADC_IN16
-
-
-
-
25
PB13
I/O
FT_f
-
SPI2_SCK, LPUART1_CTS,
TIM1_CH1N, TIM15_CH1N,
I2C2_SCL, EVENTOUT
-
-
-
-
-
26
PB14
I/O
FT_f
-
SPI2_MISO, TIM1_CH2N,
TIM15_CH1, I2C2_SDA,
EVENTOUT
-
DS13303 Rev 3
39/126
41
Pinouts, pin description and alternate functions
STM32G051x6/x8
Table 12. Pin assignment and description (continued)
LQFP32 / UFQFPN32
LQFP48 / UFQFPN48
-
-
-
27
PB15
15 E1 16
Note
UFQFPN28
-
I/O structure
WLCSP20L
(function
upon reset)
Pin type
TSSOP20
Pin
Alternate
functions
I/O
FT
-
SPI2_MOSI, TIM1_CH3N,
TIM15_CH1N, TIM15_CH2,
EVENTOUT
RTC_REFIN
18
28
PA8
I/O
FT
-
MCO, SPI2_NSS, TIM1_CH1,
LPTIM2_OUT, EVENTOUT
-
Pin name
Additional
functions
-
-
-
19
29
PA9
I/O
FT_f
(4)
MCO, USART1_TX, TIM1_CH2,
SPI2_MISO, TIM15_BKIN,
I2C1_SCL, EVENTOUT
-
-
-
17
20
30
PC6
I/O
FT
-
TIM3_CH1, TIM2_CH3
-
-
-
-
-
31
PC7
I/O
FT
-
TIM3_CH2, TIM2_CH4
-
-
-
-
21
32
PA10
I/O
FT_f
(4)
SPI2_MOSI, USART1_RX,
TIM1_CH3, TIM17_BKIN,
I2C1_SDA, EVENTOUT
-
-
SPI1_MISO/I2S1_MCK,
USART1_CTS, TIM1_CH4,
TIM1_BKIN2, I2C2_SCL,
COMP1_OUT
ADC_IN15
ADC_IN16
16 B1 18
22
33
PA11 [PA9]
I/O
FT_fa
17 A1 19
23
34
PA12 [PA10]
I/O
FT_fa
-
SPI1_MOSI/I2S1_SD,
USART1_RTS_DE_CK,
TIM1_ETR, I2S_CKIN,
I2C2_SDA, COMP2_OUT
18 B2 20
24
35
PA13
I/O
FT_ea
(5)
SWDIO, IR_OUT, EVENTOUT
ADC_IN17
19 B3 21
25
36
PA14-BOOT0
I/O
FT_a
(5)
SWCLK, USART2_TX,
EVENTOUT
ADC_IN18, BOOT0
19 B3 22
26
37
PA15
I/O
FT
-
SPI1_NSS/I2S1_WS,
USART2_RX, TIM2_CH1_ETR,
EVENTOUT
-
-
-
-
-
38
PD0
I/O
FT
-
EVENTOUT, SPI2_NSS,
TIM16_CH1
-
-
-
-
-
39
PD1
I/O
FT
-
EVENTOUT, SPI2_SCK,
TIM17_CH1
-
-
-
-
-
40
PD2
I/O
FT
-
TIM3_ETR, TIM1_CH1N
-
-
-
-
-
41
PD3
I/O
FT
-
USART2_CTS, SPI2_MISO,
TIM1_CH2N
-
40/126
DS13303 Rev 3
STM32G051x6/x8
Pinouts, pin description and alternate functions
Table 12. Pin assignment and description (continued)
27
42
PB3
I/O
FT_a
-
20 A2 24
28
43
PB4
I/O
FT_a
-
SPI1_MISO/I2S1_MCK,
TIM3_CH1, USART1_CTS,
TIM17_BKIN, EVENTOUT
COMP2_INP0
-
SPI1_MOSI/I2S1_SD,
TIM3_CH2, TIM16_BKIN,
LPTIM1_IN1, I2C1_SMBA,
COMP2_OUT
WKUP6
COMP2_INP1
UFQFPN28
20 A2 23
SPI1_SCK/I2S1_CK,
TIM1_CH2, TIM2_CH2,
USART1_RTS_DE_CK,
EVENTOUT
WLCSP20L
Alternate
functions
TSSOP20
Note
I/O structure
Pin name
Pin type
LQFP48 / UFQFPN48
LQFP32 / UFQFPN32
Pin
20 A2 25
29
44
(function
upon reset)
PB5
I/O
FT
Additional
functions
COMP2_INM6
20 A2 26
30
45
PB6
I/O
FT_fa
-
USART1_TX, TIM1_CH3,
TIM16_CH1N, SPI2_MISO,
LPTIM1_ETR, I2C1_SCL,
EVENTOUT
1
A3 27
31
46
PB7
I/O
FT_fa
-
USART1_RX, SPI2_MOSI,
TIM17_CH1N, LPTIM1_IN2,
I2C1_SDA, EVENTOUT
COMP2_INM7,
ADC_IN11, PVD_IN
1
A3 28
32
47
PB8
I/O
FT_f
-
SPI2_SCK, TIM16_CH1,
TIM15_BKIN, I2C1_SCL,
EVENTOUT
-
2
A4
1
48
PB9
I/O
FT_f
-
IR_OUT, TIM17_CH1,
SPI2_NSS, I2C1_SDA,
EVENTOUT
-
-
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3
mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (for example to drive a LED).
2. After an RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of
the RTC registers. The RTC registers are not reset upon system reset. For details on how to manage these GPIOs, refer to
the RTC domain and RTC register descriptions in the RM0444 reference manual.
3. PF2-NRST default functionnality is NRST, if used in this mode on SO8 and WLCSP, take particular care to configuration of
other IOs connected to this pin.
4. Pins PA9 and PA10 can be remapped in place of pins PA11 and PA12 (default mapping), using SYSCFG_CFGR1 register.
5. Upon reset, these pins are configured as SWD alternate functions, and the internal pull-up on PA13 pin and the internal
pull-down on PA14 pin are activated.
DS13303 Rev 3
41/126
41
42/126
Table 13. Port A alternate function mapping
DS13303 Rev 3
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
PA0
SPI2_SCK
USART2_CTS
TIM2_CH1_ETR
-
-
LPTIM1_OUT
-
COMP1_OUT
PA1
SPI1_SCK/
I2S1_CK
USART2_RTS
_DE_CK
TIM2_CH2
-
-
TIM15_CH1N
I2C1_SMBA
EVENTOUT
PA2
SPI1_MOSI/
I2S1_SD
USART2_TX
TIM2_CH3
-
-
TIM15_CH1
LPUART1_TX
COMP2_OUT
PA3
SPI2_MISO
USART2_RX
TIM2_CH4
-
-
TIM15_CH2
LPUART1_RX
EVENTOUT
PA4
SPI1_NSS/
I2S1_WS
SPI2_MOSI
-
-
TIM14_CH1
LPTIM2_OUT
-
EVENTOUT
PA5
SPI1_SCK/
I2S1_CK
-
TIM2_CH1_ETR
-
-
LPTIM2_ETR
-
EVENTOUT
PA6
SPI1_MISO/
I2S1_MCK
TIM3_CH1
TIM1_BKIN
-
-
TIM16_CH1
LPUART1_CTS
COMP1_OUT
PA7
SPI1_MOSI/
I2S1_SD
TIM3_CH2
TIM1_CH1N
TIM14_CH1
TIM17_CH1
-
COMP2_OUT
PA8
MCO
SPI2_NSS
TIM1_CH1
-
-
LPTIM2_OUT
-
EVENTOUT
PA9
MCO
USART1_TX
TIM1_CH2
-
SPI2_MISO
TIM15_BKIN
I2C1_SCL
EVENTOUT
PA10
SPI2_MOSI
USART1_RX
TIM1_CH3
-
-
TIM17_BKIN
I2C1_SDA
EVENTOUT
PA11
SPI1_MISO/
I2S1_MCK
USART1_CTS
TIM1_CH4
-
-
TIM1_BKIN2
I2C2_SCL
COMP1_OUT
PA12
SPI1_MOSI/
I2S1_SD
USART1_RTS
_DE_CK
TIM1_ETR
-
-
I2S_CKIN
I2C2_SDA
COMP2_OUT
PA13
SWDIO
IR_OUT
-
-
-
-
-
EVENTOUT
PA14
SWCLK
USART2_TX
-
-
-
-
-
EVENTOUT
PA15
SPI1_NSS/
I2S1_WS
USART2_RX
TIM2_CH1_ETR
-
-
-
-
EVENTOUT
-
STM32G051x6/x8
Port
DS13303 Rev 3
Port
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
PB0
SPI1_NSS/
I2S1_WS
TIM3_CH3
TIM1_CH2N
-
-
LPTIM1_OUT
-
COMP1_OUT
PB1
TIM14_CH1
TIM3_CH4
TIM1_CH3N
-
-
LPTIM2_IN1
LPUART1_RTS
_DE
EVENTOUT
PB2
-
SPI2_MISO
-
-
-
LPTIM1_OUT
-
EVENTOUT
PB3
SPI1_SCK/
I2S1_CK
TIM1_CH2
TIM2_CH2
-
USART1_RTS
_DE_CK
-
-
EVENTOUT
PB4
SPI1_MISO/
I2S1_MCK
TIM3_CH1
-
-
USART1_CTS
TIM17_BKIN
-
EVENTOUT
PB5
SPI1_MOSI/
I2S1_SD
TIM3_CH2
TIM16_BKIN
-
-
LPTIM1_IN1
I2C1_SMBA
COMP2_OUT
PB6
USART1_TX
TIM1_CH3
TIM16_CH1N
-
SPI2_MISO
LPTIM1_ETR
I2C1_SCL
EVENTOUT
PB7
USART1_RX
SPI2_MOSI
TIM17_CH1N
-
-
LPTIM1_IN2
I2C1_SDA
EVENTOUT
PB8
-
SPI2_SCK
TIM16_CH1
-
-
TIM15_BKIN
I2C1_SCL
EVENTOUT
PB9
IR_OUT
-
TIM17_CH1
-
-
SPI2_NSS
I2C1_SDA
EVENTOUT
PB10
-
LPUART1_RX
TIM2_CH3
-
-
SPI2_SCK
I2C2_SCL
COMP1_OUT
PB11
SPI2_MOSI
LPUART1_TX
TIM2_CH4
-
-
-
I2C2_SDA
COMP2_OUT
PB12
SPI2_NSS
LPUART1_RTS
_DE
TIM1_BKIN
-
-
TIM15_BKIN
-
EVENTOUT
PB13
SPI2_SCK
LPUART1_CTS
TIM1_CH1N
-
-
TIM15_CH1N
I2C2_SCL
EVENTOUT
PB14
SPI2_MISO
-
TIM1_CH2N
-
-
TIM15_CH1
I2C2_SDA
EVENTOUT
PB15
SPI2_MOSI
-
TIM1_CH3N
-
TIM15_CH1N
TIM15_CH2
-
EVENTOUT
STM32G051x6/x8
Table 14. Port B alternate function mapping
43/126
44/126
Table 15. Port C alternate function mapping
Port
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
PC6
-
TIM3_CH1
TIM2_CH3
-
-
-
-
-
PC7
-
TIM3_CH2
TIM2_CH4
-
-
-
-
-
PC13
-
-
TIM1_BKIN
-
-
-
-
-
PC14
-
-
TIM1_BKIN2
-
-
-
-
-
PC15
OSC32_EN
OSC_EN
TIM15_BKIN
-
-
-
-
-
*
Table 16. Port D alternate function mapping
DS13303 Rev 3
Port
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
PD0
EVENTOUT
SPI2_NSS
TIM16_CH1
-
-
-
-
-
PD1
EVENTOUT
SPI2_SCK
TIM17_CH1
-
-
-
-
-
PD2
-
TIM3_ETR
TIM1_CH1N
-
-
-
-
-
PD3
USART2_CTS
SPI2_MISO
TIM1_CH2N
-
-
-
-
-
Table 17. Port F alternate function mapping
Port
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
PF0
-
-
TIM14_CH1
-
-
-
-
-
PF1
OSC_EN
-
TIM15_CH1N
-
-
-
-
-
PF2
MCO
-
-
-
-
-
-
-
STM32G051x6/x8
STM32G051x6/x8
Electrical characteristics
5
Electrical characteristics
5.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
Parameter values defined at temperatures or in temperature ranges out of the ordering
information scope are to be ignored.
Packages used for characterizing certain electrical parameters may differ from the
commercial packages as per the ordering information.
5.1.1
Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TA(max) (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3σ).
5.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2σ).
5.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
5.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 10.
5.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 11.
Figure 10. Pin loading conditions
Figure 11. Pin input voltage
MCU pin
MCU pin
C = 50 pF
VIN
DS13303 Rev 3
45/126
101
Electrical characteristics
5.1.6
STM32G051x6/x8
Power supply scheme
Figure 12. Power supply scheme
VBAT
Backup circuitry
(LSE, RTC and
backup registers)
1.55 V to 3.6 V
Power
switch
VDD
VCORE
VDD/VDDA
VDD
Regulator
OUT
1 x 100 nF
+ 1 x 4.7 μF
GPIOs
IN
Level shifter
VDDIO1
IO
logic
Kernel logic
(CPU, digital and
memories)
VSS
VDDA
VREF
VREF+
VREF+
100 nF
1 μF
VREF-
ADC
DAC
COMPs
VREFBUF
VSSA
VSS/VSSA
MSv47900V1
Caution:
46/126
Power supply pin pair (VDD/VDDA and VSS/VSSA) must be decoupled with filtering
ceramic capacitors as shown above. These capacitors must be placed as close as possible
to, or below, the appropriate pins on the underside of the PCB to ensure the good
functionality of the device.
DS13303 Rev 3
STM32G051x6/x8
5.1.7
Electrical characteristics
Current consumption measurement
Figure 13. Current consumption measurement scheme
IDDVBAT
VBAT
VDD
(VDDA)
IDD
VBAT
VDD/VDDA
MSv47901V1
5.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 18, Table 19 and Table 20
may cause permanent damage to the device. These are stress ratings only and functional
operation of the device at these conditions is not implied. Exposure to maximum rating
conditions for extended periods may affect device reliability.
All voltages are defined with respect to VSS.
Table 18. Voltage characteristics
Symbol
Ratings
Min
Max
VDD
External supply voltage
- 0.3
4.0
VBAT
External supply voltage on VBAT pin
- 0.3
4.0
VREF+
External voltage on VREF+ pin
- 0.3
Min(VDD + 0.4, 4.0)
Input voltage on FT_xx
- 0.3
VDD + 4.0(2)
Input voltage on any other pin
- 0.3
4.0
VIN(1)
Unit
V
1. Refer to Table 19 for the maximum allowed injected current values.
2. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
DS13303 Rev 3
47/126
101
Electrical characteristics
STM32G051x6/x8
Table 19. Current characteristics
Symbol
Ratings
Max
IVDD/VDDA
Current into VDD/VDDA power pin (source)(1)
100
IVSS/VSSA
(1)
100
Current out of VSS/VSSA ground pin (sink)
IIO(PIN)
∑IIO(PIN)
Output current sunk by any I/O and control pin except FT_f
15
Output current sunk by any FT_f pin
20
Output current sourced by any I/O and control pin
15
Total output current sunk by sum of all I/Os and control pins
80
Total output current sourced by sum of all I/Os and control pins
80
mA
-5 / NA(3)
Injected current on a FT_xx pin
IINJ(PIN)(2)
∑|IINJ(PIN)|
Unit
Total injected current (sum of all I/Os and control pins)(4)
25
1. All main power (VDD/VDDA, VBAT) and ground (VSS/VSSA) pins must always be connected to the external power
supplies, in the permitted range.
2. A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be
exceeded. Refer also to Table 18: Voltage characteristics for the maximum allowed input voltage values.
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
4. When several inputs are submitted to a current injection, the maximum ∑|IINJ(PIN)| is the absolute sum of the negative
injected currents (instantaneous values).
Table 20. Thermal characteristics
Symbol
TSTG
TJ
Ratings
Storage temperature range
Maximum junction temperature
5.3
Operating conditions
5.3.1
General operating conditions
Value
Unit
–65 to +150
°C
150
°C
Table 21. General operating conditions
Symbol
Parameter
Conditions
Min
Max
fHCLK
Internal AHB clock frequency
-
0
64
fPCLK
Internal APB clock frequency
-
0
64
VDD
Standard operating voltage
-
1.7(1)
3.6
For ADC and COMP
operation
1.62
3.6
For DAC operation
1.8
3.6
For VREFBUF operation
2.4
3.6
-
1.55
3.6
VDDA
VBAT
48/126
Analog supply voltage
Backup operating voltage
DS13303 Rev 3
Unit
MHz
V
V
V
STM32G051x6/x8
Electrical characteristics
Table 21. General operating conditions (continued)
Symbol
VIN
Parameter
Conditions
Min
All except TT_xx and FT_c
-0.3
TT_xx
-0.3
I/O input voltage
FT_c
TA
Ambient temperature
-0.3
TJ
85
-40
105
Suffix 3(4)
-40
125
(4)
-40
105
7(4)
-40
125
(4)
-40
130
Suffix
Junction temperature
5.0
Suffix 3
V
(2)
-40
Suffix 6
(2)
VDD + 0.3
7(4)
Suffix
Unit
Min(VDD + 3.6, 5.5)
(4)
Suffix 6
(3)
Max
°C
°C
1. When RESET is released functionality is guaranteed down to VPDR min.
2. For operation with voltage higher than VDD +0.3 V, the internal pull-up and pull-down resistors must be disabled.
3. The TA(max) applies to PD(max). At PD < PD(max) the ambient temperature is allowed to go higher than TA(max) provided
that the junction temperature TJ does not exceed TJ(max). Refer to Section 6.8: Thermal characteristics.
4. Temperature range digit in the order code. See Section 7: Ordering information.
5.3.2
Operating conditions at power-up / power-down
The parameters given in Table 22 are derived from tests performed under the ambient
temperature condition summarized in Table 21.
Table 22. Operating conditions at power-up / power-down
Symbol
Parameter
tVDD
VDD slew rate
5.3.3
Conditions
Min
Max
VDD rising
-
∞
VDD falling; ULPEN = 0
10
∞
VDD falling; ULPEN = 1
100
∞
Unit
µs/V
ms/V
Embedded reset and power control block characteristics
The parameters given in Table 23 are derived from tests performed under the ambient
temperature conditions summarized in Table 21: General operating conditions.
Table 23. Embedded reset and power control block characteristics
Symbol
Parameter
Conditions(1)
Min
Typ
Max
Unit
tRSTTEMPO(2)
POR temporization when VDD crosses VPOR
VDD rising
-
250
400
μs
(2)
Power-on reset threshold
-
1.62
1.66
1.70
V
VPDR(2)
Power-down reset threshold
-
1.60
1.64
1.69
V
VBOR1
Brownout reset threshold 1
VDD rising
2.05
2.10
2.18
VDD falling
1.95
2.00
2.08
VPOR
DS13303 Rev 3
V
49/126
101
Electrical characteristics
STM32G051x6/x8
Table 23. Embedded reset and power control block characteristics (continued)
Symbol
Parameter
VBOR2
Brownout reset threshold 2
VBOR3
Brownout reset threshold 3
VBOR4
Brownout reset threshold 4
VPVD0
Programmable voltage detector threshold 0
VPVD1
PVD threshold 1
VPVD2
PVD threshold 2
VPVD3
PVD threshold 3
VPVD4
PVD threshold 4
VPVD5
PVD threshold 5
VPVD6
PVD threshold 6
Vhyst_POR_PDR
Hysteresis of VPOR and VPDR
Conditions(1)
Min
Typ
Max
VDD rising
2.20
2.31
2.38
VDD falling
2.10
2.21
2.28
VDD rising
2.50
2.62
2.68
VDD falling
2.40
2.52
2.58
VDD rising
2.80
2.91
3.00
VDD falling
2.70
2.81
2.90
VDD rising
2.05
2.15
2.22
VDD falling
1.95
2.05
2.12
VDD rising
2.20
2.30
2.37
VDD falling
2.10
2.20
2.27
VDD rising
2.35
2.46
2.54
VDD falling
2.25
2.36
2.44
VDD rising
2.50
2.62
2.70
VDD falling
2.40
2.52
2.60
VDD rising
2.65
2.74
2.87
VDD falling
2.55
2.64
2.77
VDD rising
2.80
2.91
3.03
VDD falling
2.70
2.81
2.93
VDD rising
2.90
3.01
3.14
VDD falling
2.80
2.91
3.04
Hysteresis in
continuous
mode
-
20
-
Hysteresis in
other mode
-
30
-
Unit
V
V
V
V
V
V
V
V
V
V
mV
Vhyst_BOR_PVD
Hysteresis of VBORx and VPVDx
-
-
100
-
mV
IDD(BOR_PVD)(2)
BOR and PVD consumption
-
-
1.1
1.6
µA
1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.
2. Guaranteed by design.
50/126
DS13303 Rev 3
STM32G051x6/x8
5.3.4
Electrical characteristics
Embedded voltage reference
The parameters given in Table 24 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions.
Table 24. Embedded internal voltage reference
Symbol
VREFINT
Parameter
Internal reference voltage
Conditions
Min
Typ
Max
Unit
-40°C < TJ < 130°C
1.182
1.212
1.232
V
tS_vrefint (1)
ADC sampling time when reading
the internal reference voltage
-
4(2)
-
-
µs
tstart_vrefint
Start time of reference voltage
buffer when ADC is enable
-
-
8
12(2)
µs
IDD(VREFINTBUF)
VREFINT buffer consumption from
VDD when converted by ADC
-
-
12.5
20(2)
µA
∆VREFINT
Internal reference voltage spread
over the temperature range
VDD = 3 V
-
5
7.5(2)
mV
-
-
30
50(2)
ppm/°C
300
1000(2)
ppm
-
250
1200(2)
ppm/V
24
25
26
49
50
51
74
75
76
TCoeff_vrefint
ACoeff
VDDCoeff
Temperature coefficient
Long term stability
1000 hours, T = 25 °C
Voltage coefficient
VREFINT_DIV1
1/4 reference voltage
VREFINT_DIV2
1/2 reference voltage
VREFINT_DIV3
3/4 reference voltage
3.0 V < VDD < 3.6 V
-
-
%
VREFINT
1. The shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
Figure 14. VREFINT vs. temperature
V
1.235
1.23
1.225
1.22
1.215
1.21
1.205
1.2
1.195
1.19
1.185
-40
-20
0
20
40
Mean
60
Min
80
100
120
°C
Max
MSv40169V1
DS13303 Rev 3
51/126
101
Electrical characteristics
5.3.5
STM32G051x6/x8
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 13: Current consumption
measurement scheme.
Typical and maximum current consumption
The MCU is placed under the following conditions:
•
All I/O pins are in analog input mode
•
All peripherals are disabled except when explicitly mentioned
•
The Flash memory access time is adjusted with the minimum wait states number,
depending on the fHCLK frequency (refer to the table “Number of wait states according
to CPU clock (HCLK) frequency” available in the RM0444 reference manual).
•
When the peripherals are enabled fPCLK = fHCLK
•
For Flash memory and shared peripherals fPCLK = fHCLK = fHCLKS
Unless otherwise stated, values given in Table 25 through Table 33 are derived from tests
performed under ambient temperature and supply voltage conditions summarized in
Table 21: General operating conditions.
52/126
DS13303 Rev 3
STM32G051x6/x8
Electrical characteristics
Table 25. Current consumption in Run and Low-power run modes
at different die temperatures
Conditions
Symbol
Parameter
General
25
°C
85
°C
125
°C
25
°C
85
°C
130
°C
64 MHz
5.3
5.4
5.7
6.7
7.0
7.3
56 MHz
4.6
4.8
5.1
5.9
6.1
6.4
4.1
4.3
4.6
5.3
5.5
5.8
2.9
3.0
3.3
3.7
3.8
4.2
24 MHz
2.3
2.4
2.7
3.0
3.1
3.5
16 MHz
1.5
1.6
1.8
1.9
2.0
2.4
64 MHz
4.8
4.9
5.2
6.0
6.1
6.5
56 MHz
4.2
4.3
4.6
5.3
5.4
5.8
3.8
3.9
4.1
4.8
4.9
5.2
2.6
2.7
3.0
3.4
3.5
3.7
24 MHz
2.0
2.1
2.3
2.6
2.8
2.9
16 MHz
1.3
1.4
1.6
1.7
1.8
2.0
1.15 1.20
1.45
1.6
1.7
1.9
0.64 0.72
0.94
1.0
1.0
1.3
2 MHz
0.24 0.31
0.53
0.4
0.7
1.1
16 MHz
1.05 1.10
1.35
1.4
1.4
1.8
0.57 0.64
0.86
0.8
0.8
1.2
2 MHz
0.22 0.29
0.51
0.4
0.7
1.0
2 MHz
170
385
560
500
660
1310
92
285
485
445
600
1120
54
140
325
390
535
980
125 kHz
24
82
265
310
470
890
32 kHz
16
64
245
280
450
870
2 MHz
151
345
510
460
600
1190
1 MHz
81
260
445
400
550
1020
48
125
300
350
490
890
125 kHz
21
73
245
280
430
810
32 kHz
14
57
225
250
410
790
fHCLK
48 MHz
Range 1;
PLL enabled;
fHCLK = fHSE_bypass
(≤16 MHz),
fHCLK = fPLLRCLK
(>16 MHz);
(3)
IDD(Run)
Supply
current in
Run mode
32 MHz
48 MHz
32 MHz
Range 2;
PLL enabled;
fHCLK = fHSE_bypass
(≤16 MHz),
fHCLK = fPLLRCLK
(>16 MHz);
(3)
Fetch
from(2)
Flash
memory
SRAM
16 MHz
8 MHz
8 MHz
Flash
memory
SRAM
1 MHz
500 kHz
IDD(LPRun)
Supply
current in
Low-power
run mode
PLL disabled;
fHCLK = fHSE
bypass (> 32 kHz),
fHCLK = fLSE
bypass (= 32 kHz);
(3)
Max(1)
Typ
500 kHz
Flash
memory
SRAM
Unit
mA
µA
1. Based on characterization results, not tested in production.
2. Prefetch and cache enabled when fetching from Flash memory. Code compiled with high optimization for space in SRAM.
3. VDD = 3.0 V for values in Typ columns and 3.6 V for values in Max columns, all peripherals disabled.
DS13303 Rev 3
53/126
101
Electrical characteristics
STM32G051x6/x8
Table 26. Typical current consumption in Run and Low-power run modes,
depending on code executed
Conditions
Symbol
Typ
Parameter
General
Fetch
from(1)
5.35
84
4.85
76
4.85
76
Fibonacci
3.65
57
While(1) loop
3.25
51
4.85
76
4.60
72
4.65
73
Fibonacci
4.50
70
While(1) loop
4.40
Dhrystone 2.1
Reduced
Flash
memory
code(3)
Coremark
Dhrystone 2.1
IDD(Run)
Supply
current in
Run mode
Reduced
SRAM
code(3)
1.55
Coremark
(2)
75
Fibonacci
0.890
56
While(1) loop
0.805
50
Reduced code(3)
1.15
72
Coremark
1.10
69
1.10
69
Fibonacci
1.05
66
While(1) loop
1.05
66
340
170
350
175
345
173
345
173
Flash
memory
SRAM
code(3)
Coremark
Dhrystone 2.1
IDD(LPRun)
(2)
97
1.20
Reduced
fHCLK = fHSI16/8 =
2 MHz;
PLL disabled,
69
72
Dhrystone 2.1
Supply
current in
Low-power
run mode
mA
1.15
Dhrystone 2.1
Range 2;
fHCLK = fHSI16 =
16 MHz,
PLL disabled,
Unit
25 °C
Coremark
(2)
Unit
25 °C
Code
Reduced code(3)
Range 1;
fHCLK = fPLLRCLK =
64 MHz;
Typ
Flash
memory
Fibonacci
While(1) loop
Reduced code
265
(3)
315
Coremark
μA
133
158
310
155
315
158
Fibonacci
305
153
While(1) loop
305
153
Dhrystone 2.1
SRAM
1. Prefetch and cache enabled when fetching from Flash. Code compiled with high optimization for space in SRAM.
2. VDD = 3.3 V, all peripherals disabled, cache enabled, prefetch disabled for execution in Flash and enabled in SRAM
54/126
DS13303 Rev 3
μA/MHz
μA/MHz
STM32G051x6/x8
Electrical characteristics
3. Reduced code used for characterization results provided in Table 25.
Table 27. Current consumption in Sleep and Low-power sleep modes
Conditions
Symbol
Parameter
Voltage
scaling
General
IDD(Sleep)
Supply
current in
Sleep
mode
Max(1)
Typ
fHCLK
25
°C
85
°C
125
°C
25
°C
85
°C
130
°C
64 MHz
1.4
1.5
1.8
1.6
2.1
2.7
56 MHz
1.3
1.4
1.6
1.5
2.0
2.4
48 MHz
1.1
1.2
1.5
1.3
1.7
2.3
32 MHz
0.8
0.9
1.2
1.0
1.3
2.1
24 MHz
0.7
0.8
1.0
0.8
1.2
1.8
16 MHz
0.4
0.5
0.7
0.5
0.8
1.4
16 MHz
0.3
0.4
0.6
0.4
0.7
1.2
8 MHz
0.2
0.3
0.5
0.3
0.6
1.1
2 MHz
0.1
0.2
0.4
0.2
0.4
0.9
2 MHz
48
115
310
84
180
710
1 MHz
31
91
280
96
140
670
500 kHz
22
78
260
77
130
660
125 kHz
16
66
250
54
120
630
32 kHz
14
61
245
30
120
640
Flash memory enabled;
fHCLK = fHSE bypass
Range 1
(≤16 MHz; PLL
disabled),
fHCLK = fPLLRCLK
(>16 MHz; PLL
enabled);
All peripherals disabled
Range 2
Flash memory disabled;
Supply
PLL disabled;
current in
=f
bypass (> 32 kHz),
f
IDD(LPSleep)
Low-power HCLK HSE
fHCLK = fLSE bypass (= 32 kHz);
sleep mode
All peripherals disabled
Unit
mA
µA
1. Based on characterization results, not tested in production.
Table 28. Current consumption in Stop 0 mode
Conditions
Symbol
Parameter
Unit
HSI kernel
Enabled
IDD(Stop 0)
Max(1)
Typ
Supply
current in
Stop 0
mode
Disabled
VDD
25°C
85°C
125°C
25°C
85°C
130°C
1.8 V
265
310
485
290
400
760
2.4 V
265
315
490
295
400
770
3V
270
315
495
300
410
770
3.6 V
270
320
500
305
410
790
1.8 V
93.5
155
340
120
210
550
2.4 V
96.0
155
345
125
210
560
3V
98.5
160
350
125
210
560
3.6 V
100
165
355
130
220
580
µA
1. Based on characterization results, not tested in production.
DS13303 Rev 3
55/126
101
Electrical characteristics
STM32G051x6/x8
Table 29. Current consumption in Stop 1 mode
Conditions
Symbol
Parameter
Flash
memory
Unit
RTC(2)
Disabled
Not
powered
IDD(Stop 1)
Supply
current in
Stop 1
mode
Enabled
Powered
Max(1)
Typ
Disabled
VDD
25°C
85°C
125°C
25°C
85°C
130°C
1.8 V
4.4
50
220
9
100
600
2.4 V
4.6
50
225
11
120
655
3V
4.8
51
225
16
130
680
3.6 V
5.1
52
230
20
140
710
1.8 V
4.7
50
220
10
100
620
2.4 V
5.0
51
225
13
120
680
3V
5.3
51
225
18
130
695
3.6 V
5.6
52
230
23
140
730
1.8 V
8.2
54
225
11
115
680
2.4 V
8.5
55
230
13
140
753
3V
8.7
55
230
19
150
770
3.6 V
9.1
56
235
24
160
750
µA
1. Based on characterization results, not tested in production.
2. Clocked by LSI
Table 30. Current consumption in Standby mode
Symbol
Parameter
Conditions
General
RTC disabled
RTC enabled,
clocked by LSI;
IDD(Standby)
Supply current
in Standby
mode(2)
IWDG enabled,
clocked by LSI
ULPEN = 0
56/126
Max(1)
Typ
VDD
25°C
85°C
1.8 V
0.1
2.4 V
0.2
3.0 V
125°C
25°C
85°C
130°C
2.1
9
2.6
11
0.4
8
26
0.5
10
34
0.3
3.1
13
0.5
10
39
3.6 V
0.4
3.6
16
0.9
13
44
1.8 V
0.3
2.4 V
0.5
2.3
9
0.3
10
26
2.8
11
0.7
10
34
3.0 V
0.7
3.4
14
1.1
10
42
3.6 V
0.9
4.0
16
1.7
13
44
1.8 V
0.3
2.2
9
0.5
10
26
2.4 V
0.4
2.7
11
0.8
10
34
3.0 V
0.5
3.3
14
1.3
13
42
3.6 V
0.8
3.9
16
1.9
13
44
1.8 V
0.7
2.0
9
-
-
-
2.4 V
0.9
2.4
11
-
-
-
3.0 V
1.1
2.9
13
-
-
-
3.6 V
1.3
3.4
16
-
-
-
DS13303 Rev 3
Unit
µA
STM32G051x6/x8
Electrical characteristics
Table 30. Current consumption in Standby mode (continued)
Symbol
∆IDD(SRAM)
Conditions
Parameter
General
Extra supply
current to
retain SRAM
content(3)
SRAM retention
enabled
Max(1)
Typ
VDD
25°C
85°C
125°C
25°C
85°C
130°C
1.8 V
0.4
2.6
12
0.7
14
47
2.4 V
0.5
2.7
13
0.9
15
53
3.0 V
0.6
2.8
13
1.5
15
56
3.6 V
0.7
2.9
13
1.6
16
59
Unit
µA
1. Based on characterization results, not tested in production.
2. Without SRAM retention and with ULPEN bit set
3. To be added to IDD(Standby) as appropriate
Table 31. Current consumption in Shutdown mode
Symbol
Conditions
Parameter
RTC
Disabled
IDD(Shutdown)
Supply current
in Shutdown
mode
Enabled, clocked
by LSE bypass at
32.768 kHz
Max(1)
Typ
VDD
25 °C 85 °C 125 °C 25 °C 85 °C 130 °C
1.8 V
26.0
745
6,450
330
3,900 42,300
2.4 V
32.0
880
7,500
590
4,600 43,600
3.0 V
36.0
1,050
8,750
3.6 V
58.0
1,250 10,000 1630
1.8 V
205
945
6,700
1,170 5,900 35,400
2.4 V
290
1,150
7,750
2,010 7,200 45,200
3.0 V
385
1,400
9,150
3,210 7,800 53,100
3.6 V
500
1,700 10,500 4,220 9,100 62,900
Unit
1,400 5,600 48,500
6,900 56,600
nA
1. Based on characterization results, not tested in production.
Table 32. Current consumption in VBAT mode
Symbol
Parameter
Conditions
RTC
Enabled, clocked by
LSE bypass at
32.768 kHz
IDD(VBAT)
Supply current in
VBAT mode
Enabled, clocked by
LSE crystal at
32.768 kHz
Disabled
DS13303 Rev 3
Typ
VDD
25°C
85°C
125°C
1.8 V
180
390
1,950
2.4 V
260
490
2,300
3.0 V
340
610
2,700
3.6 V
440
765
3,200
1.8 V
300
500
2,050
2.4 V
390
610
2,430
3.0 V
460
700
2,790
3.6 V
580
855
3,320
1.8 V
2.00
200
1,750
2.4 V
4.00
235
2,000
3.0 V
5.00
275
2,350
3.6 V
10.0
335
2,700
Unit
nA
57/126
101
Electrical characteristics
STM32G051x6/x8
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 51: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 33: Current consumption of peripherals), the I/Os used by an application also
contribute to the current consumption. When an I/O pin switches, it uses the current from
the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive
load (internal or external) connected to the pin:
I SW = V DDIO1 × f SW × C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDIO1 is the I/O supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
58/126
DS13303 Rev 3
STM32G051x6/x8
Electrical characteristics
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in the following table. The MCU
is placed under the following conditions:
•
All I/O pins are in Analog mode
•
The given value is calculated by measuring the difference of the current consumptions:
–
when the peripheral is clocked on
–
when the peripheral is clocked off
•
Ambient operating temperature and supply voltage conditions summarized in Table 18:
Voltage characteristics
•
The power consumption of the digital part of the on-chip peripherals is given in the
following table. The power consumption of the analog part of the peripherals (where
applicable) is indicated in each related section of the datasheet.
Table 33. Current consumption of peripherals
Consumption in µA/MHz
Peripheral
Bus
Range 1
Range 2
Low-power run
and sleep
IOPORT Bus
IOPORT
0.5
0.4
0.3
GPIOA
IOPORT
2.5
2.1
2.4
GPIOB
IOPORT
2.5
2.1
2.4
GPIOC
IOPORT
0.8
0.7
0.9
GPIOD
IOPORT
0.7
0.6
0.8
GPIOF
IOPORT
0.5
0.4
0.6
Bus matrix
AHB
0.01
0.01
0.03
All AHB Peripherals
AHB
11.0
9.0
10.0
DMA1/DMAMUX
AHB
3.9
3.2
3.5
CRC
AHB
0.4
0.3
0.4
FLASH
AHB
4.9
4.1
4.6
All APB peripherals
APB
59.0
49.0
55.5
APB
0.2
0.2
0.1
PWR
APB
0.5
0.4
0.4
SYSCFG/VREFBUF/COMP
APB
0.4
0.3
0.3
AHB to APB
bridge(1)
WWDG
APB
0.4
0.3
0.4
TIM1
APB
6.6
5.5
6.0
TIM2
APB
4.9
4.1
4.8
TIM3
APB
4.1
3.4
3.8
TIM6
APB
1.1
0.9
1.0
TIM7
APB
0.8
0.7
0.6
TIM14
APB
1.4
1.1
1.1
TIM15
APB
3.6
3.0
3.3
TIM16
APB
2.2
1.8
2.0
DS13303 Rev 3
59/126
101
Electrical characteristics
STM32G051x6/x8
Table 33. Current consumption of peripherals (continued)
Consumption in µA/MHz
Peripheral
Bus
Range 1
Range 2
Low-power run
and sleep
TIM17
APB
0.8
0.7
0.6
LPTIM1
APB
3.5
2.9
3.3
LPTIM2
APB
3.2
2.6
2.9
I2C1
APB
3.5
2.9
3.2
I2C2
APB
0.8
0.6
0.6
SPI1
APB
3.2
2.7
2.9
SPI2
APB
2.0
1.6
1.8
USART1
APB
6.9
5.7
6.5
USART2
APB
1.8
1.5
1.6
LPUART1
APB
4.3
3.6
4.0
ADC
APB
2.7
2.2
2.3
DAC
APB
1.7
1.4
1.5
1. The AHB to APB Bridge is automatically active when at least one peripheral is ON on the APB.
5.3.6
Wakeup time from low-power modes and voltage scaling
transition times
The wakeup times given in Table 34 are the latency between the event and the execution of
the first user instruction.
Table 34. Low-power mode wakeup times(1)
Symbol
Parameter
Conditions
Typ
Max
tWUSLEEP
Wakeup time from
Sleep to Run
mode
-
11
11
Wakeup time from Transiting to Low-power-run-mode execution in Flash
tWULPSLEEP Low-power sleep memory not powered in Low-power sleep mode;
mode
HCLK = HSI16 / 8 = 2 MHz
tWUSTOP0
Transiting to Run-mode execution in Flash memory not
powered in Stop 0 mode;
HCLK = HSI16 = 16 MHz;
Wakeup time from Regulator in Range 1 or Range 2
Stop 0
Transiting to Run-mode execution in SRAM or in Flash
memory powered in Stop 0 mode;
HCLK = HSI16 = 16 MHz;
Regulator in Range 1 or Range 2
60/126
DS13303 Rev 3
Unit
CPU
cycles
11
14
5.6
6
µs
2
2.4
STM32G051x6/x8
Electrical characteristics
Table 34. Low-power mode wakeup times(1) (continued)
Symbol
Parameter
Conditions
Typ
Max
9.0
11.2
5
7.5
Transiting to Run-mode execution in Flash memory not
powered in Stop 1 mode;
HCLK = HSI16 = 16 MHz;
Regulator in Range 1 or Range 2
tWUSTOP1
Transiting to Run-mode execution in SRAM or in Flash
memory powered in Stop 1 mode;
HCLK = HSI16 = 16 MHz;
Wakeup time from Regulator in Range 1 or Range 2
Stop 1
Transiting to Low-power-run-mode execution in Flash
Unit
µs
memory not powered in Stop 1 mode;
HCLK = HSI16/8 = 2 MHz;
Regulator in low-power mode (LPR = 1 in PWR_CR1)
22
25.3
18
23.5
tWUSTBY
Transiting to Run mode;
Wakeup time from
HCLK = HSI16 = 16 MHz;
Standby mode
Regulator in Range 1
14.5
30
µs
tWUSHDN
Transiting to Run mode;
Wakeup time from
HCLK = HSI16 = 16 MHz;
Shutdown mode
Regulator in Range 1
258
340
µs
tWULPRUN
Wakeup time from Transiting to Run mode;
Low-power run
HSISYS = HSI16/8 = 2 MHz
mode(2)
5
7
µs
Transiting to Low-power-run-mode execution in SRAM or
in Flash memory powered in Stop 1 mode;
HCLK = HSI16 / 8 = 2 MHz;
Regulator in low-power mode (LPR = 1 in PWR_CR1)
1. Based on characterization results, not tested in production.
2. Time until REGLPF flag is cleared in PWR_SR2.
Table 35. Regulator mode transition times(1)
Symbol
tVOST
Parameter
Conditions
Transition times between regulator
Range 1 and Range 2(2)
HSISYS = HSI16
Typ
Max
Unit
20
40
µs
1. Based on characterization results, not tested in production.
2. Time until VOSF flag is cleared in PWR_SR2.
Table 36. Wakeup time using LPUART(1)
Symbol
tWULPUART
Parameter
Conditions
Stop mode 0
Wakeup time needed to calculate the maximum
LPUART baud rate allowing to wakeup up from Stop
mode when LPUART clock source is HSI16
Stop mode 1
Typ
Max
-
1.7
-
8.5
Unit
µs
1. Guaranteed by design.
DS13303 Rev 3
61/126
101
Electrical characteristics
5.3.7
STM32G051x6/x8
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 5.3.14. See
Figure 15 for recommended clock input waveform.
Table 37. High-speed external user clock characteristics(1)
Symbol
fHSE_ext
Parameter
User external clock source frequency
Conditions
Min
Typ
Max
Voltage scaling
Range 1
-
8
48
Voltage scaling
Range 2
-
8
26
Unit
MHz
VHSEH
OSC_IN input pin high level voltage
-
0.7 VDDIO1
-
VDDIO1
VHSEL
OSC_IN input pin low level voltage
-
VSS
-
0.3 VDDIO1
Voltage scaling
Range 1
7
-
-
Voltage scaling
Range 2
18
tw(HSEH)
OSC_IN high or low time
tw(HSEL)
V
ns
-
-
1. Guaranteed by design.
Figure 15. High-speed external clock source AC timing diagram
tw(HSEH)
VHSEH
90%
VHSEL
10%
tr(HSE)
tf(HSE)
t
tw(HSEL)
THSE
MS19214V2
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 5.3.14. See
Figure 16 for recommended clock input waveform.
Table 38. Low-speed external user clock characteristics(1)
Symbol
fLSE_ext
62/126
Parameter
User external clock source frequency
Conditions
Min
Typ
Max
Unit
-
-
32.768
1000
kHz
DS13303 Rev 3
STM32G051x6/x8
Electrical characteristics
Table 38. Low-speed external user clock characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VLSEH
OSC32_IN input pin high level voltage
-
0.7 VDDIO1
-
VDDIO1
VLSEL
OSC32_IN input pin low level voltage
-
VSS
-
0.3 VDDIO1
-
250
-
-
tw(LSEH)
OSC32_IN high or low time
tw(LSEL)
V
ns
1. Guaranteed by design.
Figure 16. Low-speed external clock source AC timing diagram
tw(LSEH)
VLSEH
90%
VLSEL
10%
tr(LSE)
t
tf(LSE)
tw(LSEL)
TLSE
MS19215V2
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 39. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Table 39. HSE oscillator characteristics(1)
Symbol
fOSC_IN
RF
Conditions(2)
Min
Typ
Max
Unit
Oscillator frequency
-
4
8
48
MHz
Feedback resistor
-
-
200
-
kΩ
Parameter
DS13303 Rev 3
63/126
101
Electrical characteristics
STM32G051x6/x8
Table 39. HSE oscillator characteristics(1) (continued)
Symbol
Parameter
Conditions(2)
Min
Typ
Max
-
-
5.5
VDD = 3 V,
Rm = 30 Ω,
CL = 10 pF@8 MHz
-
0.44
-
VDD = 3 V,
Rm = 45 Ω,
CL = 10 pF@8 MHz
-
0.45
-
VDD = 3 V,
Rm = 30 Ω,
CL = 5 pF@48 MHz
-
0.68
-
VDD = 3 V,
Rm = 30 Ω,
CL = 10 pF@48 MHz
-
0.94
-
VDD = 3 V,
Rm = 30 Ω,
CL = 20 pF@48 MHz
-
1.77
-
Maximum critical crystal
transconductance
Startup
-
-
1.5
mA/V
Startup time
VDD is stabilized
-
2
-
ms
During startup
IDD(HSE)
Gm
tSU(HSE)(4)
HSE current consumption
(3)
Unit
mA
1. Guaranteed by design.
2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 17). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note:
64/126
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
DS13303 Rev 3
STM32G051x6/x8
Electrical characteristics
Figure 17. Typical application with an 8 MHz crystal
Resonator with integrated
capacitors
CL1
OSC_IN
8 MHz
resonator
CL2
REXT (1)
fHSE
RF
Bias
controlled
gain
OSC_OUT
MS19876V1
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. All the information given in this paragraph are based on design simulation results
obtained with typical external components specified in Table 40. In the application, the
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Table 40. LSE oscillator characteristics (fLSE = 32.768 kHz)(1)
Symbol
IDD(LSE)
Parameter
LSE current consumption
Maximum critical crystal
Gmcritmax
gm
tSU(LSE)(3) Startup time
Conditions(2)
Min
Typ
Max
LSEDRV[1:0] = 00
Low drive capability
-
250
-
LSEDRV[1:0] = 01
Medium low drive capability
-
315
-
LSEDRV[1:0] = 10
Medium high drive capability
-
500
-
LSEDRV[1:0] = 11
High drive capability
-
630
-
LSEDRV[1:0] = 00
Low drive capability
-
-
0.5
LSEDRV[1:0] = 01
Medium low drive capability
-
-
0.75
LSEDRV[1:0] = 10
Medium high drive capability
-
-
1.7
LSEDRV[1:0] = 11
High drive capability
-
-
2.7
VDD is stabilized
-
2
-
Unit
nA
µA/V
s
1. Guaranteed by design.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
DS13303 Rev 3
65/126
101
Electrical characteristics
3.
STM32G051x6/x8
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 18. Typical application with a 32.768 kHz crystal
Resonator with integrated
capacitors
CL1
OSC32_IN
fLSE
Drive
programmable
amplifier
32.768 kHz
resonator
OSC32_OUT
CL2
MS30253V2
Note:
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
5.3.8
Internal clock source characteristics
The parameters given in Table 41 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions. The provided curves are characterization results, not tested in production.
High-speed internal (HSI16) RC oscillator
Table 41. HSI16 oscillator characteristics(1)
Symbol
fHSI16
Parameter
Conditions
Min
Typ
Max
Unit
15.88
-
16.08
MHz
HSI16 Frequency
VDD=3.0 V, TA=30 °C
∆Temp(HSI16)
HSI16 oscillator frequency drift over
temperature
TA= 0 to 85 °C
-1
-
1
%
TA= -40 to 125 °C
-2
-
1.5
%
∆VDD(HSI16)
HSI16 oscillator frequency drift over
VDD
-0.1
-
0.05
%
-8
-6
-4
-5.8
-3.8
-1.8
0.2
0.3
0.4
VDD=1.62 V to 3.6 V
From code 127 to 128
TRIM
From code 63 to 64
HSI16 frequency user trimming step From code 191 to 192
For all other code
increments
DHSI16(2)
tsu(HSI16)(2)
66/126
%
Duty Cycle
-
45
-
55
%
HSI16 oscillator start-up time
-
-
0.8
1.2
μs
DS13303 Rev 3
STM32G051x6/x8
Electrical characteristics
Table 41. HSI16 oscillator characteristics(1) (continued)
Symbol
tstab(HSI16)
Parameter
(2)
IDD(HSI16)(2)
Conditions
Min
Typ
Max
Unit
HSI16 oscillator stabilization time
-
-
3
5
μs
HSI16 oscillator power consumption
-
-
155
190
μA
1. Based on characterization results, not tested in production.
2. Guaranteed by design.
Figure 19. HSI16 frequency vs. temperature
MHz
16.4
+2%
16.3
+1.5%
16.2
+1%
16.1
16
15.9
-1%
15.8
-1.5%
15.7
-2%
15.6
-40
-20
0
20
40
min
60
mean
80
100
120 °C
max
MSv39299V1
Low-speed internal (LSI) RC oscillator
Table 42. LSI oscillator characteristics(1)
Symbol
Parameter
LSI frequency
fLSI
tSU(LSI)(2)
(2)
tSTAB(LSI)
IDD(LSI)(2)
Conditions
Min
Typ
Max
VDD = 3.0 V, TA = 30 °C
31.04
-
32.96
VDD = 1.62 V to 3.6 V, TA = -40 to
125 °C
29.5
-
34
-
80
130
μs
-
125
180
μs
-
110
180
nA
LSI oscillator start-up time
LSI oscillator stabilization time
5% of final frequency
LSI oscillator power
consumption
-
Unit
kHz
1. Based on characterization results, not tested in production.
2. Guaranteed by design.
DS13303 Rev 3
67/126
101
Electrical characteristics
5.3.9
STM32G051x6/x8
PLL characteristics
The parameters given in Table 43 are derived from tests performed under temperature and
VDD supply voltage conditions summarized in Table 21: General operating conditions.
Table 43. PLL characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
fPLL_IN
PLL input clock frequency(2)
-
2.66
-
16
MHz
DPLL_IN
PLL input clock duty cycle
-
45
-
55
%
Voltage scaling Range 1
3.09
-
122
Voltage scaling Range 2
3.09
-
40
Voltage scaling Range 1
12
-
128
Voltage scaling Range 2
12
-
33
Voltage scaling Range 1
12
-
64
Voltage scaling Range 2
12
-
16
Voltage scaling Range 1
96
-
344
Voltage scaling Range 2
96
-
128
-
15
40
-
50
-
-
40
-
VCO freq = 96 MHz
-
200
260
VCO freq = 192 MHz
-
300
380
VCO freq = 344 MHz
-
520
650
fPLL_P_OUT PLL multiplier output clock P
fPLL_Q_OUT PLL multiplier output clock Q
fPLL_R_OUT PLL multiplier output clock R
fVCO_OUT
tLOCK
Jitter
IDD(PLL)
PLL VCO output
PLL lock time
-
RMS cycle-to-cycle jitter
RMS period jitter
PLL power consumption
on VDD(1)
System clock 56 MHz
MHz
MHz
MHz
MHz
μs
±ps
μA
1. Guaranteed by design.
2. Make sure to use the appropriate division factor M to obtain the specified PLL input clock values.
5.3.10
Flash memory characteristics
Table 44. Flash memory characteristics(1)
Symbol
tprog
Parameter
Row (32 double word) programming time
tprog_page
Page (2 Kbyte) programming time
tprog_bank
tME
68/126
Typ
Max
Unit
-
85
125
µs
Normal programming
2.7
4.6
Fast programming
1.7
2.8
Normal programming
21.8
36.6
Fast programming
13.7
22.4
22.0
40.0
Normal programming
0.7
1.2
Fast programming
0.4
0.7
22.1
40.1
64-bit programming time
tprog_row
tERASE
Conditions
Page (2 Kbyte) erase time
-
Bank (64 Kbyte(2)) programming time
Mass erase time
-
DS13303 Rev 3
ms
s
ms
STM32G051x6/x8
Electrical characteristics
Table 44. Flash memory characteristics(1) (continued)
Symbol
IDD(FlashA)
IDD(FlashP)
Parameter
Conditions
Average consumption from VDD
Maximum current (peak)
Typ
Max
Programming
3
-
Page erase
3
-
Mass erase
5
-
Programming, 2 µs peak
duration
7
-
Erase, 41 µs peak duration
7
-
Unit
mA
mA
1. Guaranteed by design.
2. Values provided also apply to devices with less Flash memory than one 64 Kbyte bank
Table 45. Flash memory endurance and data retention
Symbol
NEND
Parameter
Endurance
Conditions
TA = -40 to +105 °C
1
kcycle(2)
10
kcycles
30
at TA = 105 °C
15
1 kcycle(2) at TA = 125 °C
7
10 kcycles(2) at TA = 55 °C
30
10 kcycles(2) at TA = 85 °C
15
1 kcycle
Data retention
Unit
at TA = 85 °C
(2)
tRET
Min(1)
(2)
10 kcycles
at TA = 105 °C
Years
10
1. Guaranteed by characterization results.
2. Cycling performed over the whole temperature range.
5.3.11
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 46. They are based on the EMS levels and classes
defined in application note AN1709.
DS13303 Rev 3
69/126
101
Electrical characteristics
STM32G051x6/x8
Table 46. EMS characteristics
Symbol
Parameter
Conditions
Level/
Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 64 MHz, LQFP48,
conforming to IEC 61000-4-2
2B
VEFTB
VDD = 3.3 V, TA = +25 °C,
Fast transient voltage burst limits to be applied
through 100 pF on VDD and VSS pins to induce a fHCLK = 64 MHz, LQFP48,
functional disturbance
conforming to IEC 61000-4-4
5A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
•
corrupted program counter
•
unexpected reset
•
critical data corruption (for example control registers)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
70/126
DS13303 Rev 3
STM32G051x6/x8
Electrical characteristics
Table 47. EMI characteristics
Symbol
Parameter
Conditions
Max vs.
[fHSE/fHCLK]
Monitored
frequency band
Unit
8 MHz / 64 MHz
SEMI
5.3.12
Peak level
VDD = 3.6 V, TA = 25 °C,
LQFP48 package
compliant with IEC 61967-2
0.1 MHz to 30 MHz
3
30 MHz to 130 MHz
3
130 MHz to 1 GHz
1
1 GHz to 2 GHz
8
EMI level
2
dBµV
-
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the ANSI/JEDEC standard.
Table 48. ESD absolute maximum ratings
Symbol
Ratings
Conditions
Class
Maximum
value(1)
VESD(HBM)
Electrostatic discharge voltage
(human body model)
TA = +25 °C, conforming to
ANSI/ESDA/JEDEC JS-001
2
2000
VESD(CDM)
Electrostatic discharge voltage
(charge device model)
TA = +25 °C, conforming to
ANSI/ESDA/JEDEC JS-002
C2a
500
Unit
V
1. Based on characterization results, not tested in production.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
•
A supply overvoltage is applied to each power supply pin.
•
A current is injected to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 49. Electrical sensitivity
Symbol
LU
Parameter
Static latch-up class
Conditions
TA = +125 °C conforming to JESD78
DS13303 Rev 3
Class
II Level A
71/126
101
Electrical characteristics
5.3.13
STM32G051x6/x8
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDDIO1 (for standard, 3.3 V-capable I/O pins) should be avoided during normal
product operation. However, in order to give an indication of the robustness of the
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests
are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out-of-range parameter: ADC error above a certain limit
(higher than 5 LSB TUE), induced leakage current on adjacent pins out of conventional
limits (-5 µA/+0 µA range) or other functional failure (for example reset occurrence or
oscillator frequency deviation).
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
Table 50. I/O current injection susceptibility(1)
Functional susceptibility
Symbol
IINJ
Description
Injected current on
pin
Negative
injection
Positive
injection
All except PA1, PA3, PA5, PA6,
PA13, PB0, PB1, PB2, and PB8
-5
N/A
PA1, PA5, PA13, PB1, PB2
0
+5 / N/A(2)
PA3, PA6, PB0
-5
+5 / N/A(2)
PB8
0
N/A
1. Based on characterization results, not tested in production.
2. The injection current value is applicable when the switchable diode is activated, N/A when not activated.
72/126
DS13303 Rev 3
Unit
mA
STM32G051x6/x8
5.3.14
Electrical characteristics
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 51 are derived from tests
performed under the conditions summarized in Table 21: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant.
Table 51. I/O static characteristics
Symbol
VIL(1)
VIH(1)
Vhys(3)
Ilkg
Parameter
I/O input low level
voltage
Conditions
1.62 V < VDDIO1 < 3.6 V
-
-
0.7 x VDDIO1(
-
2)
All
I/O input hysteresis
FT_xx,
1.62 V < VDDIO1 < 3.6 V
NRST
1.62 V < VDDIO1 < 3.6 V
0 < VIN ≤ VDDIO1
All
VDDIO1 ≤ VIN ≤ VDDIO1+1 V
except
FT_e
VDDIO1 +1 V < VIN ≤
5.5 V(3)
FT_e
(5)
0 < VIN < VDDIO1
RPU
Weak pull-up
equivalent resistor
RPD
Weak pull-down
V = VDDIO1
equivalent resistor(6) IN
CIO
I/O pin capacitance
(6)
Typ
Max
Unit
0.3 x VDDIO1
V
(2)
All
I/O input high level
voltage
Input leakage
current(3)
Min
VIN = VSS
-
0.39 x VDDIO1
- 0.06 (3)
V
0.49 x VDDIO1
+ 0.26(3)
-
-
-
200
-
-
-
±70
-
-
600(4)
-
-
150(4)
-
-
5
µA
25
40
55
kΩ
25
40
55
kΩ
-
5
-
pF
mV
nA
1. Refer to Figure 20: I/O input characteristics.
2. Tested in production.
3. Guaranteed by design.
4. This value represents the pad leakage of the I/O itself. The total product pad leakage is provided by this formula:
ITotal_Ileak_max = 10 µA + [number of I/Os where VIN is applied on the pad] ₓ Ilkg(Max).
5. FT_e with diode enabled. Input leakage current of FT_e I/Os with the diode disabled is the same as standard I/Os.
6. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimal (~10% order).
DS13303 Rev 3
73/126
101
Electrical characteristics
STM32G051x6/x8
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters, as shown
in Figure 20.
Figure 20. I/O input characteristics
3
2.5
Minimum required
logic level 1 zone
2
TTL standard requirement
nt)
ireme
nd
S sta
(CMO
VIN (V)
1.5
V IHmin
= 0.7
VIHmin =
equ
ard r
V DDIO
0.49 VDDIO
Undefined input range
+ 0.26
1
VILmax = 0.39
0.5
VILmax = 0.3
VDDIO - 0.06
VDDIO
TTL standard requirement
ment)
dard require
(CMOS stan
Minimum required
logic level 0 zone
0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VDDIO (V)
Device characteristics
Test thresholds
MSv47925V1
Characteristics of FT_e I/Os
The following table and figure specify input characteristics of FT_e I/Os.
Table 52. Input characteristics of FT_e I/Os
Symbol
IINJ
VDDIO1-VIN
Rd
74/126
Parameter
Conditions
Min
Typ
Max
Unit
-
-
-
5
mA
Voltage over VDDIO1
IINJ = 5 mA
-
-
2
V
Diode dynamic serial resistor
IINJ = 5 mA
-
-
300
Ω
Injected current on pin
DS13303 Rev 3
STM32G051x6/x8
Electrical characteristics
Figure 21. Current injection into FT_e input with diode active
5
-40°C
25°C
125°C
4
3
IINJ (mA)
2
1
0
0
0.2
0.4
0.6
0.8
1.0
1.2
VIN – VDDIO1 (V)
1.4
1.6
1.8
2
MSv63112V1
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±6 mA, and up to
±15 mA with relaxed VOL/VOH.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 5.2:
•
The sum of the currents sourced by all the I/Os on VDDIO1, plus the maximum
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 18: Voltage characteristics).
•
The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of
the MCU sunk on VSS, cannot exceed the absolute maximum rating IVSS (see Table 18:
Voltage characteristics).
Output voltage levels
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 21: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT OR TT
unless otherwise specified).
DS13303 Rev 3
75/126
101
Electrical characteristics
STM32G051x6/x8
Table 53. Output voltage characteristics(1)
Symbol
Parameter
Conditions
VOL
Output low level voltage for an I/O pin
VOH
Output high level voltage for an I/O pin
VOL(3)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
VOL(3)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
VOL(3)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
CMOS port(2)
|IIO| 6 mA
VDDIO1 ≥ 2.7 V
TTL port(2)
|IIO| = 6 mA
VDDIO1 ≥ 2.7 V
All I/Os
|IIO| = 15 mA
VDDIO1 ≥ 2.7 V
|IIO| = 3 mA
VDDIO1 ≥ 1.62 V
Min
Max
-
0.4
VDDIO1 - 0.4
-
-
0.4
2.4
-
-
1.3
VDDIO1 - 1.3
-
-
0.4
VDDIO1 - 0.45
-
-
0.4
-
0.4
|IIO| = 20 mA
VDDIO1 ≥ 2.7 V
VOLFM+ Output low level voltage for an FT I/O
(3)
pin in FM+ mode (FT I/O with _f option) |I | = 9 mA
IO
VDDIO1 ≥ 1.62 V
Unit
V
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 18:
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always
respect the absolute maximum ratings ΣIIO.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. Guaranteed by design.
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 22 and
Table 54, respectively.
Unless otherwise specified, the parameters given are derived from tests performed under
the ambient temperature and supply voltage conditions summarized in Table 21: General
operating conditions.
Table 54. I/O AC characteristics(1)(2)
Speed Symbol
Fmax
Parameter
Maximum frequency
00
Tr/Tf
76/126
Output rise and fall time
Min
Max
C=50 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V
Conditions
-
2
C=50 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V
-
0.35
C=10 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V
-
3
C=10 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V
-
0.45
C=50 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V
-
100
C=50 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V
-
225
C=10 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V
-
75
C=10 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V
-
150
DS13303 Rev 3
Unit
MHz
ns
STM32G051x6/x8
Electrical characteristics
Table 54. I/O AC characteristics(1)(2) (continued)
Speed Symbol
Fmax
Parameter
Maximum frequency
01
Tr/Tf
Fmax
Output rise and fall time
Maximum frequency
10
Tr/Tf
Fmax
Output rise and fall time
Maximum frequency
11
Tr/Tf
Fm+
Fmax
Tf
Output rise and fall time
Maximum frequency
Output fall time(4)
Min
Max
C=50 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V
Conditions
-
10
C=50 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V
-
2
C=10 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V
-
15
C=10 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V
-
2.5
C=50 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V
-
30
C=50 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V
-
60
C=10 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V
-
15
C=10 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V
-
30
C=50 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V
-
30
C=50 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V
-
15
C=10 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V
-
60
C=10 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V
-
30
C=50 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V
-
11
C=50 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V
-
22
C=10 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V
-
4
C=10 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V
-
8
C=30 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V
-
60
C=30 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V
-
30
C=10 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V
-
80(3)
C=10 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V
-
40
C=30 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V
-
5.5
C=30 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V
-
11
C=10 pF, 2.7 V ≤ VDDIO1 ≤ 3.6 V
-
2.5
C=10 pF, 1.6 V ≤ VDDIO1 ≤ 2.7 V
-
5
-
1
MHz
-
5
ns
C=50 pF, 1.6 V ≤ VDDIO1 ≤ 3.6 V
Unit
MHz
ns
MHz
ns
MHz
ns
1. The I/O speed is configured using the OSPEEDRy[1:0] bits. The Fm+ mode is configured in the SYSCFG_CFGR1 register.
Refer to the RM0444 reference manual for a description of GPIO Port configuration register.
2. Guaranteed by design.
3. This value represents the I/O capability but the maximum system frequency is limited to 64 MHz.
4. The fall time is defined between 70% and 30% of the output waveform, according to I2C specification.
DS13303 Rev 3
77/126
101
Electrical characteristics
STM32G051x6/x8
Figure 22. I/O AC characteristics definition(1)
90%
10%
50%
50%
10%
90%
t f(IO)out
t r(IO)out
T
Maximum frequency is achieved if (t r + t f (≤ 2/3)T and if the duty cycle is (45-55%)
when loaded by the specified capacitance.
MS32132V2
1. Refer to Table 54: I/O AC characteristics.
5.3.15
NRST input characteristics
The NRST input driver uses CMOS technology. It is connected to a permanent
pull-up resistor, RPU.
Unless otherwise specified, the parameters given in the following table are derived from
tests performed under the ambient temperature and supply voltage conditions summarized
in Table 21: General operating conditions.
Table 55. NRST pin characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
-
-
0.3 x VDDIO1
Unit
VIL(NRST)
NRST input low level
voltage
-
VIH(NRST)
NRST input high level
voltage
-
0.7 x VDDIO1
-
-
Vhys(NRST)
NRST Schmitt trigger
voltage hysteresis
-
-
200
-
mV
RPU
Weak pull-up
equivalent resistor(2)
VIN = VSS
25
40
55
kΩ
-
-
-
70
ns
1.7 V ≤ VDD ≤ 3.6 V
350
-
-
ns
VF(NRST)
NRST input filtered
pulse
VNF(NRST)
NRST input not filtered
pulse
1.
V
Guaranteed by design.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is minimal (~10% order).
78/126
DS13303 Rev 3
STM32G051x6/x8
Electrical characteristics
Figure 23. Recommended NRST pin protection
External
reset circuit(1)
VDD
RPU
NRST(2)
Internal reset
Filter
0.1 μF
MS19878V3
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 55: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.
3. The external capacitor on NRST must be placed as close as possible to the device.
5.3.16
Analog switch booster
Table 56. Analog switch booster characteristics(1)
Symbol
VDD
Parameter
Min
Typ
Max
Unit
1.62 V
-
3.6
V
Booster startup time
-
-
240
µs
Booster consumption for
1.62 V ≤ VDD ≤ 2.0 V
-
-
250
Booster consumption for
2.0 V ≤ VDD ≤ 2.7 V
-
-
500
Booster consumption for
2.7 V ≤ VDD ≤ 3.6 V
-
-
900
Supply voltage
tSU(BOOST)
IDD(BOOST)
µA
1. Guaranteed by design.
5.3.17
Analog-to-digital converter characteristics
Unless otherwise specified, the parameters given in Table 57 are preliminary values derived
from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage
conditions summarized in Table 21: General operating conditions.
Note:
It is recommended to perform a calibration after each power-up.
Table 57. ADC characteristics(1)
Symbol
Parameter
Conditions(2)
Min
Typ
Max
Unit
VDDA
Analog supply voltage
-
1.62
-
3.6
V
VREF+
Positive reference
voltage
VDDA ≥ 2 V
2
-
VDDA
VDDA < 2 V
DS13303 Rev 3
VDDA
V
79/126
101
Electrical characteristics
STM32G051x6/x8
Table 57. ADC characteristics(1) (continued)
Conditions(2)
Min
Typ
Max
Range 1
0.14
-
35
Range 2
0.14
-
16
12 bits
-
-
2.50
10 bits
-
-
2.92
8 bits
-
-
3.50
6 bits
-
-
4.38
fADC = 35 MHz; 12 bits
-
-
2.33
12 bits
-
-
fADC/15
Conversion voltage
range
-
VSSA
-
VREF+
V
RAIN
External input
impedance
-
-
-
50
kΩ
CADC
Internal sample and
hold capacitor
-
-
5
-
pF
tSTAB
ADC power-up time
-
2
Conversion
cycle
tCAL
Calibration time
fADC = 35 MHz
2.35
µs
-
82
1/fADC
Symbol
fADC
fs
fTRIG
VAIN (3)
Parameter
ADC clock frequency
Sampling rate
External trigger
frequency
CKMODE = 00
tLATR
ts
Trigger conversion
latency
Sampling time
tADCVREG_STUP
ADC voltage regulator
start-up time
tCONV
Total conversion time
(including sampling
time)
tIDLE
80/126
Laps of time allowed
between two
conversions without
rearm
2
-
CKMODE = 01
6.5
CKMODE = 10
12.5
CKMODE = 11
3.5
3
Unit
MHz
MSps
MHz
1/fADC
1/fPCLK
fADC = 35 MHz;
VDDA > 2V
0.043
-
4.59
µs
1.5
-
160.5
1/fADC
fADC = 35 MHz;
VDDA < 2V
0.1
-
4.59
µs
160.5
1/fADC
-
-
-
20
µs
fADC = 35 MHz
Resolution = 12 bits
0.40
-
4.95
µs
Resolution = 12 bits
-
DS13303 Rev 3
3.5
ts + 12.5 cycles for successive
approximation
= 14 to 173
-
-
100
1/fADC
µs
STM32G051x6/x8
Electrical characteristics
Table 57. ADC characteristics(1) (continued)
Symbol
IDDA(ADC)
IDDV(ADC)
Parameter
ADC consumption
from VDDA
ADC consumption
from VREF+
Conditions(2)
Min
Typ
Max
fs = 2.5 MSps
-
410
-
fs = 1 MSps
-
164
-
fs = 10 kSps
-
17
-
fs = 2.5 MSps
-
65
-
fs = 1 MSps
-
26
-
fs = 10 kSps
-
0.26
-
Unit
µA
µA
1. Guaranteed by design
2. I/O analog switch voltage booster must be enabled (BOOSTEN = 1 in the SYSCFG_CFGR1) when VDDA < 2.4 V and
disabled when VDDA ≥ 2.4 V.
3. VREF+ is internally connected to VDDA on some packages.Refer to Section 4: Pinouts, pin description and alternate
functions for further details.
Table 58. Maximum ADC RAIN .
Resolution
12 bits
Sampling cycle at 35 MHz
Sampling time at 35 MHz
[ns]
Max. RAIN(1)(2)
(Ω)
1.5(3)
43
50
3.5
100
680
7.5
214
2200
12.5
357
4700
19.5
557
8200
39.5
1129
15000
79.5
2271
33000
160.5
4586
50000
43
68
3.5
100
820
7.5
214
3300
12.5
357
5600
19.5
557
10000
39.5
1129
22000
79.5
2271
39000
160.5
4586
50000
(3)
1.5
10 bits
DS13303 Rev 3
81/126
101
Electrical characteristics
STM32G051x6/x8
Table 58. Maximum ADC RAIN . (continued)
Resolution
Sampling cycle at 35 MHz
Sampling time at 35 MHz
[ns]
Max. RAIN(1)(2)
(Ω)
1.5(3)
43
82
3.5
100
1500
7.5
214
3900
12.5
357
6800
19.5
557
12000
39.5
1129
27000
79.5
2271
50000
160.5
4586
50000
43
390
3.5
100
2200
7.5
214
5600
12.5
357
10000
19.5
557
15000
39.5
1129
33000
79.5
2271
50000
160.5
4586
50000
8 bits
(3)
1.5
6 bits
1. Guaranteed by design.
2. I/O analog switch voltage booster must be enabled (BOOSTEN = 1 in the SYSCFG_CFGR1) when VDDA < 2.4 V and
disabled when VDDA ≥ 2.4 V.
3. Only allowed with VDDA > 2 V
Table 59. ADC accuracy(1)(2)(3)
Symbol
ET
82/126
Parameter
Total
unadjusted
error
Conditions(4)
Min
Typ
Max
VDDA = VREF+ = 3 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = 25 °C
-
3
4
2 V < VDDA=VREF+ < 3.6 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = entire range
-
3
6.5
1.65 V < VDDA=VREF+ < 3.6 V;
TA = entire range
Range 1: fADC = 35 MHz; fs ≤ 2.2 MSps;
Range 2: fADC = 16 MHz; fs ≤ 1.1 MSps;
-
3
7.5
DS13303 Rev 3
Unit
LSB
STM32G051x6/x8
Electrical characteristics
Table 59. ADC accuracy(1)(2)(3) (continued)
Symbol
EO
EG
ED
EL
Parameter
Offset error
Gain error
Differential
linearity error
Integral
linearity error
Conditions(4)
Min
Typ
Max
VDDA = VREF+ = 3 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = 25 °C
-
1.5
2
2 V < VDDA = VREF+ < 3.6 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = entire range
-
1.5
4.5
1.65 V < VDDA=VREF+ < 3.6 V;
TA = entire range
Range 1: fADC = 35 MHz; fs ≤ 2.2 MSps;
Range 2: fADC = 16 MHz; fs ≤ 1.1 MSps;
-
1.5
5.5
VDDA = VREF+ = 3 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = 25 °C
-
3
3.5
2 V < VDDA = VREF+ < 3.6 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = entire range
-
3
5
1.65 V < VDDA = VREF+ < 3.6 V;
TA = entire range
Range 1: fADC = 35 MHz; fs ≤ 2.2 MSps;
Range 2: fADC = 16 MHz; fs ≤ 1.1 MSps;
-
3
6.5
VDDA = VREF+ = 3 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = 25 °C
-
1.2
1.5
2 V < VDDA = VREF+ < 3.6 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = entire range
-
1.2
1.5
1.65 V < VDDA = VREF+ < 3.6 V;
TA = entire range
Range 1: fADC = 35 MHz; fs ≤ 2.2 MSps;
Range 2: fADC = 16 MHz; fs ≤ 1.1 MSps;
-
1.2
1.5
VDDA = VREF+ = 3 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = 25 °C
-
2.5
3
2 V < VDDA = VREF+ < 3.6 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = entire range
-
2.5
3
1.65 V < VDDA = VREF+ < 3.6 V;
TA = entire range
Range 1: fADC = 35 MHz; fs ≤ 2.2 MSps;
Range 2: fADC = 16 MHz; fs ≤ 1.1 MSps;
-
2.5
3.5
DS13303 Rev 3
Unit
LSB
LSB
LSB
LSB
83/126
101
Electrical characteristics
STM32G051x6/x8
Table 59. ADC accuracy(1)(2)(3) (continued)
Symbol
ENOB
SINAD
SNR
Parameter
Conditions(4)
Min
Typ
Max
VDDA = VREF+ = 3 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = 25 °C
10.1
10.2
-
2 V < VDDA = VREF+ < 3.6 V;
Effective
fADC = 35 MHz; fs ≤ 2.5 MSps;
number of bits TA = entire range
9.6
10.2
-
1.65 V < VDDA = VREF+ < 3.6 V;
TA = entire range
Range 1: fADC = 35 MHz; fs ≤ 2.2 MSps;
Range 2: fADC = 16 MHz; fs ≤ 1.1 MSps;
9.5
10.2
-
VDDA = VREF+ = 3 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = 25 °C
62.5
63
-
59.5
63
-
59
63
-
VDDA = VREF+ = 3 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = 25 °C
63
64
-
2 V < VDDA = VREF+ < 3.6 V;
Signal-to-noise fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = entire range
ratio
60
64
-
60
64
-
VDDA = VREF+ = 3 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = 25 °C
-
-74
-73
2 V < VDDA = VREF+ < 3.6 V;
Total harmonic fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = entire range
distortion
-
-74
-70
-
-74
-70
2 V < VDDA = VREF+ < 3.6 V;
Signal-to-noise
fADC = 35 MHz; fs ≤ 2.5 MSps;
and distortion
TA = entire range
ratio
1.65 V < VDDA = VREF+ < 3.6 V;
TA = entire range
Range 1: fADC = 35 MHz; fs ≤ 2.2 MSps;
Range 2: fADC = 16 MHz; fs ≤ 1.1 MSps;
1.65 V < VDDA = VREF+ < 3.6 V;
TA = entire range
Range 1: fADC = 35 MHz; fs ≤ 2.2 MSps;
Range 2: fADC = 16 MHz; fs ≤ 1.1 MSps;
THD
1.65 V < VDDA = VREF+ < 3.6 V;
TA = entire range
Range 1: fADC = 35 MHz; fs ≤ 2.2 MSps;
Range 2: fADC = 16 MHz; fs ≤ 1.1 MSps;
1. Based on characterization results, not tested in production.
2. ADC DC accuracy values are measured after internal calibration.
3. Injecting negative current on any analog input pin significantly reduces the accuracy of A-to-D conversion of signal on
another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins susceptible to receive
negative current.
4. I/O analog switch voltage booster enabled (BOOSTEN = 1 in the SYSCFG_CFGR1) when VDDA < 2.4 V and disabled
when VDDA ≥ 2.4 V.
84/126
DS13303 Rev 3
Unit
bit
dB
dB
dB
STM32G051x6/x8
Electrical characteristics
Figure 24. ADC accuracy characteristics
EG
Code
(1) Example of an actual transfer curve
4095
(2) Ideal transfer curve
4094
(3) End point correlation line
4093
ET total unadjusted error: maximum deviation
between the actual and ideal transfer curves.
(2)
ET
EO offset error: maximum deviation between the
first actual transition and the first ideal one.
(3)
7
(1)
6
EG gain error: deviation between the last ideal
transition and the last actual one.
5
EL
EO
ED differential linearity error: maximum deviation
between actual steps and the ideal ones.
4
3
ED
EL integral linearity error: maximum deviation between
any actual transition and the end point correlation line.
2
1 LSB ideal
1
0
1
2
3
4
5
6
7
4093 4094 4095
(VAIN / VREF+)*4095
MSv19880V3
Figure 25. Typical connection diagram using the ADC
VDDA
VT
RAIN(1)
VAIN
Sample and hold ADC converter
RADC
AINx
Cparasitic(2)
VT
Ilkg (3)
12-bit
converter
CADC
MS33900V5
1. Refer to Table 57: ADC characteristics for the values of RAIN and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (refer to Table 51: I/O static characteristics for the value of the pad capacitance). A high
Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced.
3. Refer to Table 51: I/O static characteristics for the values of Ilkg.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 12: Power supply
scheme. The 100 nF capacitor should be ceramic (good quality) and it should be placed as
close as possible to the chip.
DS13303 Rev 3
85/126
101
Electrical characteristics
5.3.18
STM32G051x6/x8
Digital-to-analog converter characteristics
Table 60. DAC characteristics(1)
Symbol
VDDA
VREF+
Parameter
Analog supply voltage for
DAC ON
Positive reference voltage
Conditions
Min
Typ
Max
Unit
DAC output buffer OFF, DAC_OUT
pin not connected (internal
connection only)
1.71
3.6
V
Other modes
1.80
-
DAC output buffer OFF, DAC_OUT
pin not connected (internal
connection only)
1.71
VDDA
V
Other modes
1.80
-
connected to VSSA
5
-
-
connected to VDDA
25
-
-
9.6
11.7
13.8
RL
Resistive load
DAC output
buffer ON
RO
Output Impedance
DAC output buffer OFF
Output impedance sample
and hold mode, output
buffer ON
VDD = 2.7 V
-
-
2
RBON
VDD = 2.0 V
-
-
3.5
Output impedance sample
and hold mode, output
buffer OFF
VDD = 2.7 V
-
-
16.5
RBOFF
VDD = 2.0 V
-
-
18.0
DAC output buffer ON
-
-
50
pF
Sample and hold mode
-
0.1
1
µF
DAC output buffer ON
0.2
-
VREF+
– 0.2
V
DAC output buffer OFF
0
-
VREF+
±0.5 LSB
-
1.7
3
±1 LSB
-
1.6
2.9
±2 LSB
-
1.55
2.85
±4 LSB
-
1.48
2.8
±8 LSB
-
1.4
2.75
CL
CSH
VDAC_OUT
tSETTLING
tWAKEUP(2)
PSRR
86/126
Capacitive load
Voltage on DAC_OUT
output
Settling time (full scale: for
a 12-bit code transition
between the lowest and the
highest input codes when
DAC_OUT reaches final
value ±0.5LSB, ±1 LSB,
±2 LSB, ±4 LSB, ±8 LSB)
Normal mode
DAC output
buffer ON
CL ≤ 50 pF,
RL ≥ 5 kΩ
Normal mode DAC output buffer
OFF, ±1LSB, CL = 10 pF
-
2
2.5
Wakeup time from off state
(setting the ENx bit in the
DAC Control register) until
final value ±1 LSB
Normal mode DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
-
4.2
7.5
Normal mode DAC output buffer
OFF, CL ≤ 10 pF
-
2
5
Normal mode DAC output buffer ON
CL ≤ 50 pF, RL = 5 kΩ, DC
-
-80
-28
VDDA supply rejection ratio
DS13303 Rev 3
kΩ
kΩ
kΩ
kΩ
µs
µs
dB
STM32G051x6/x8
Electrical characteristics
Table 60. DAC characteristics(1) (continued)
Symbol
Parameter
TW_to_W
Minimum time between two
consecutive writes into the
DAC_DORx register to
guarantee a correct
DAC_OUT for a small
variation of the input code
(1 LSB)
tSAMP
Sampling time in sample
and hold mode (code
transition between the
lowest input code and the
highest input code when
DACOUT reaches final
value ±1LSB)
Conditions
DAC_MCR:MODEx[2:0] = 000 or
001
CL ≤ 50 pF; RL ≥ 5 kΩ
DAC_MCR:MODEx[2:0] = 010 or
011
CL ≤ 10 pF
µs
0.7
3.5
-
10.5
18
-
2
3.5
µs
-
-
-(3)
nA
5.2
7
8.8
pF
50
-
-
µs
-
1500
-
-
750
-
No load, middle
code (0x800)
-
315
500
No load, worst code
(0xF1C)
-
450
670
No load, middle
code (0x800)
-
-
0.2
DAC output buffer
OFF
Sample and hold mode,
DAC_OUT pin connected
CIint
Internal sample and hold
capacitor
tTRIM
Middle code offset trim time DAC output buffer ON
Voffset
Middle code offset for 1 trim VREF+ = 3.6 V
code step
VREF+ = 1.8 V
-
DAC output
buffer OFF
-
-
Output leakage current
DAC consumption from
VDDA
1
Unit
-
Ileak
IDDA(DAC)
Max
-
DAC_OUT
pin connected DAC output buffer
OFF, CSH = 100 nF
DAC output
buffer ON
Typ
1.4
DAC output buffer
ON, CSH = 100 nF
DAC_OUT
pin not
connected
(internal
connection
only)
Min
Sample and hold mode, CSH =
100 nF
DS13303 Rev 3
ms
-
µV
µA
315 ₓ
670 ₓ
Ton/(Ton+ Ton/(Ton+
Toff)(4)
Toff)(4)
87/126
101
Electrical characteristics
STM32G051x6/x8
Table 60. DAC characteristics(1) (continued)
Symbol
Parameter
Conditions
DAC output
buffer ON
IDDV(DAC)
DAC consumption from
VREF+
DAC output
buffer OFF
Min
Typ
Max
No load, middle
code (0x800)
-
185
240
No load, worst code
(0xF1C)
-
340
400
No load, middle
code (0x800)
-
155
205
Unit
µA
Sample and hold mode, buffer ON,
CSH = 100 nF, worst case
-
185 ₓ
400 ₓ
Ton/(Ton+ Ton/(Ton+
Toff)(4)
Toff)(4)
Sample and hold mode, buffer OFF,
CSH = 100 nF, worst case
-
155 ₓ
205 ₓ
Ton/(Ton+ Ton/(Ton+
Toff)(4)
Toff)(4)
1. Guaranteed by design.
2. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).
3. Refer to Table 51: I/O static characteristics.
4. Ton is the Refresh phase duration. Toff is the Hold phase duration. Refer to RM0444 reference manual for more details.
Figure 26. 12-bit buffered / non-buffered DAC
Buffered / non-buffered DAC
Buffer(1)
RLOAD
12-bit
digital-to-analog
converter
DAC_OUTx
CLOAD
MSv47959V1
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
88/126
DS13303 Rev 3
STM32G051x6/x8
Electrical characteristics
Table 61. DAC accuracy(1)
.
Symbol
Parameter
DNL
Differential non
linearity (2)
-
monotonicity
10 bits
INL
Integral non
linearity(3)
Offset
Offset1
OffsetCal
Gain
TUE
TUECal
SNR
THD
Offset error at
code 0x800(3)
Offset error at
code 0x001(4)
Conditions
Min
Typ
Max
DAC output buffer ON
-
-
±2
DAC output buffer OFF
-
-
±2
guaranteed
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
-
-
±4
DAC output buffer OFF
CL ≤ 50 pF, no RL
-
-
±4
VREF+ = 3.6 V
-
-
±12
VREF+ = 1.8 V
-
-
±25
DAC output buffer OFF
CL ≤ 50 pF, no RL
-
-
±8
DAC output buffer OFF
CL ≤ 50 pF, no RL
-
-
±5
VREF+ = 3.6 V
-
-
±5
VREF+ = 1.8 V
-
-
±7
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
-
-
±0.5
DAC output buffer OFF
CL ≤ 50 pF, no RL
-
-
±0.5
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
-
-
±30
DAC output buffer OFF
CL ≤ 50 pF, no RL
-
-
±12
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
-
-
±23
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
1 kHz, BW 500 kHz
-
71.2
-
DAC output buffer OFF
CL ≤ 50 pF, no RL, 1 kHz
BW 500 kHz
-
71.6
-
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz
-
-78
-
DAC output buffer OFF
CL ≤ 50 pF, no RL, 1 kHz
-
-79
-
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
Offset Error at
DAC output buffer ON
code 0x800
CL ≤ 50 pF, RL ≥ 5 kΩ
after calibration
(5)
Gain error
Total
unadjusted
error
Total
unadjusted
error after
calibration
Signal-to-noise
ratio
Total harmonic
distortion
Unit
LSB
DS13303 Rev 3
%
LSB
LSB
dB
dB
89/126
101
Electrical characteristics
STM32G051x6/x8
Table 61. DAC accuracy(1) (continued)
Symbol
Parameter
SINAD
Signal-to-noise
and distortion
ratio
ENOB
Effective
number of bits
Conditions
Min
Typ
Max
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz
-
70.4
-
DAC output buffer OFF
CL ≤ 50 pF, no RL, 1 kHz
-
71
-
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz
-
11.4
-
DAC output buffer OFF
CL ≤ 50 pF, no RL, 1 kHz
-
Unit
dB
bits
11.5
-
1. Guaranteed by design.
2. Difference between two consecutive codes - 1 LSB.
3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.
4. Difference between the value measured at Code (0x001) and the ideal value.
5. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when
buffer is OFF, and from code giving 0.2 V and (VREF+ – 0.2) V when buffer is ON.
5.3.19
Voltage reference buffer characteristics
Table 62. VREFBUF characteristics(1)
Symbol
Parameter
Conditions
Normal mode
VDDA
VREFBUF_
OUT
Analog supply
voltage
Degraded mode(2)
Iload = 100 µA
Voltage
reference output T = 30 °C
Min
Typ
Max
VRS = 0
2.4
-
3.6
VRS = 1
2.8
-
3.6
VRS = 0
1.65
-
2.4
VRS = 1
1.65
-
2.8
VRS = 0
2.038
2.042
2.046
VRS = 1
2.497
2.5
2.503
VRS = 0
VDDA-150 mV
-
VDDA
VRS = 1
VDDA-150 mV
-
VDDA
Unit
V
Trim step
resolution
-
-
-
±0.05
±0.1
%
CL
Load capacitor
-
-
0.5
1
1.5
µF
esr
Equivalent
Serial Resistor
of Cload
-
-
-
-
2
Ω
Iload
Static load
current
-
-
-
-
4
mA
Iload = 500 µA
-
200
1000
Iload = 4 mA
-
100
500
-
50
500
TRIM
Iline_reg
Line regulation
2.8 V ≤ VDDA ≤ 3.6 V
Iload_reg
Load regulation
500 μA ≤ Iload ≤4 mA Normal mode
90/126
DS13303 Rev 3
ppm/V
ppm/mA
STM32G051x6/x8
Electrical characteristics
Table 62. VREFBUF characteristics(1) (continued)
Symbol
Parameter
Temperature
TCoeff_vrefbuf coefficient of
VREFBUF(3)
PSRR
tSTART
Power supply
rejection
Start-up time
Conditions
Min
Typ
Max
Unit
-
-
50
ppm/ °C
DC
40
60
-
100 kHz
25
40
-
CL = 0.5 µF(4)
-
300
350
(4)
-
500
650
µF(4)
-
650
800
-
8
-
Iload = 0 µA
-
16
25
Iload = 500 µA
-
18
30
Iload = 4 mA
-
35
50
-40 °C < TJ < +125 °C
CL = 1.1 µF
CL = 1.5
IINRUSH
IDDA(VREFB
UF)
Control of
maximum DC
current drive on
VREFBUF_OUT
during start-up
phase (5)
VREFBUF
consumption
from VDDA
-
dB
µs
mA
µA
1. Guaranteed by design.
2. In degraded mode, the voltage reference buffer can not maintain accurately the output voltage which will follow (VDDA drop voltage).
3. The temperature coefficient at VREF+ output is the sum of TCoeff_vrefint and TCoeff_vrefbuf.
4. The capacitive load must include a 100 nF capacitor in order to cut-off the high frequency noise.
5. To correctly control the VREFBUF inrush current during start-up phase and scaling change, the VDDA voltage should be in
the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for VRS = 0 and VRS = 1.
5.3.20
Comparator characteristics
Table 63. COMP characteristics(1)
Symbol
Conditions
Min
Typ
Max
Unit
Analog supply
voltage
-
1.62
-
3.6
V
VIN
Comparator
input voltage range
-
0
-
VDDA
V
VBG(2)
Scaler input voltage
-
VSC
Scaler offset voltage
-
VDDA
IDDA(SCALER)
Parameter
Scaler static
consumption from
VDDA
tSTART_SCALER Scaler startup time
VREFINT
V
-
±5
±10
mV
BRG_EN=0 (bridge disable)
-
200
300
nA
BRG_EN=1 (bridge enable)
-
0.8
1
µA
-
100
200
µs
-
DS13303 Rev 3
91/126
101
Electrical characteristics
STM32G051x6/x8
Table 63. COMP characteristics(1) (continued)
Symbol
Parameter
Comparator startup
time to reach
propagation delay
specification
tSTART
tD
Propagation delay
Comparator offset
error
Voffset
Comparator
hysteresis
Vhys
IDDA(COMP)
Comparator
consumption from
VDDA
Conditions
Min
Typ
Max
-
-
5
High-speed mode
Unit
µs
Medium-speed mode
-
-
15
200 mV step;
100 mV
overdrive
High-speed mode
-
30
50
ns
Medium-speed mode
-
0.3
0.6
µs
>200 mV step;
100 mV
overdrive
High-speed mode
-
-
70
ns
Medium-speed mode
-
-
1.2
µs
Full common mode range
-
±5
±20
mV
No hysteresis
-
0
-
Low hysteresis
-
10
-
Medium hysteresis
-
20
-
High hysteresis
-
30
-
Medium-speed
mode;
No deglitcher
Static
-
5
7.5
With 50 kHz and ±100 mV
overdrive square signal
-
6
-
Medium-speed
mode;
With deglitcher
Static
-
7
10
With 50 kHz and ±100 mV
overdrive square signal
-
8
-
Static
-
250
400
With 50 kHz and ±100 mV
overdrive square signal
-
250
-
High-speed
mode
mV
µA
1. Guaranteed by design.
2. Refer to Table 24: Embedded internal voltage reference.
5.3.21
Temperature sensor characteristics
Table 64. TS characteristics
Symbol
Min
Typ
Max
Unit
-
±1
±2
°C
2.3
2.5
2.7
mV/°C
0.742
0.76
0.785
V
tSTART(TS_BUF)(1) Sensor Buffer Start-up time in continuous mode(4)
-
8
15
µs
Start-up time when entering in continuous mode(4)
-
70
120
µs
TL(1)
Avg_Slope(2)
V30
tSTART(1)
92/126
Parameter
VTS linearity with temperature
Average slope
Voltage at 30°C (±5 °C)(3)
DS13303 Rev 3
STM32G051x6/x8
Electrical characteristics
Table 64. TS characteristics (continued)
Symbol
Parameter
Min
Typ
Max
Unit
tS_temp(1)
ADC sampling time when reading the temperature
5
-
-
µs
IDD(TS)(1)
Temperature sensor consumption from VDD, when
selected by ADC
-
4.7
7
µA
1. Guaranteed by design.
2. Based on characterization results, not tested in production.
3. Measured at VDDA = 3.0 V ±10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte.
4.
Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.
5.3.22
VBAT monitoring characteristics
Table 65. VBAT monitoring characteristics
Symbol
Parameter
Min
Typ
Max
Unit
R
Resistor bridge for VBAT
-
39
-
kΩ
Q
Ratio on VBAT measurement
-
3
-
-
Error on Q
-10
-
10
%
ADC sampling time when reading the VBAT
12
-
-
µs
Er(1)
(1)
tS_vbat
1. Guaranteed by design.
Table 66. VBAT charging characteristics
Symbol
RBC
5.3.23
Parameter
Battery
charging
resistor
Conditions
Min
Typ
Max
VBRS = 0
-
5
-
VBRS = 1
-
1.5
-
Unit
kΩ
Timer characteristics
The parameters given in the following tables are guaranteed by design. Refer to
Section 5.3.14: I/O port characteristics for details on the input/output alternate function
characteristics (output compare, input capture, external clock, PWM output).
Table 67. TIMx(1) characteristics
Symbol
Parameter
tres(TIM)
Timer resolution time
fEXT
ResTIM
Conditions
Min
Max
Unit
-
1
-
tTIMxCLK
15.625
-
ns
0
fTIMxCLK/2
0
40
TIMx (except TIM2)
-
16
TIM2
-
32
fTIMxCLK = 64 MHz
Timer external clock frequency
on CH1 to CH4
fTIMxCLK = 64 MHz
Timer resolution
DS13303 Rev 3
MHz
bit
93/126
101
Electrical characteristics
STM32G051x6/x8
Table 67. TIMx(1) characteristics (continued)
Symbol
Parameter
tCOUNTER
16-bit counter clock period
Maximum possible count with
32-bit counter
tMAX_COUNT
Conditions
Min
Max
Unit
-
1
65536
tTIMxCLK
0.015625
1024
µs
-
65536 × 65536
tTIMxCLK
-
67.10
s
fTIMxCLK = 64 MHz
fTIMxCLK = 64 MHz
1. TIMx, is used as a general term in which x stands for 1, 2, 3, 4, 5, 6, 7, 8, 15, 16 or 17.
Table 68. IWDG min/max timeout period at 32 kHz LSI clock(1)
Prescaler divider
PR[2:0] bits
Min timeout RL[11:0]= 0x000
Max timeout RL[11:0]= 0xFFF
/4
0
0.125
512
/8
1
0.250
1024
/16
2
0.500
2048
/32
3
1.0
4096
/64
4
2.0
8192
/128
5
4.0
16384
/256
6 or 7
8.0
32768
Unit
ms
1. The exact timings further depend on the phase of the APB interface clock versus the LSI clock, which causes an
uncertainty of one RC period.
5.3.24
Characteristics of communication interfaces
I2C-bus interface characteristics
The I2C-bus interface meets timing requirements of the I2C-bus specification and user
manual rev. 03 for:
•
Standard-mode (Sm): with a bit rate up to 100 kbit/s
•
Fast-mode (Fm): with a bit rate up to 400 kbit/s
•
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.
The timings are guaranteed by design as long as the I2C peripheral is properly configured
(refer to the reference manual RM0444) and when the I2CCLK frequency is greater than the
minimum shown in the following table.
94/126
DS13303 Rev 3
STM32G051x6/x8
Electrical characteristics
Table 69. Minimum I2CCLK frequency
Symbol
Parameter
Condition
Typ
Standard-mode
2
Analog filter enabled
fI2CCLK(min)
Minimum I2CCLK
frequency for correct
operation of I2C
peripheral
Fast-mode
DNF = 0
Analog filter disabled
DNF = 1
Analog filter enabled
Fast-mode Plus
DNF = 0
Analog filter disabled
DNF = 1
Unit
9
9
MHz
18
16
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDDIO1 is disabled, but is still present. Only FT_f I/O pins
support Fm+ low-level output current maximum requirement. Refer to Section 5.3.14: I/O
port characteristics for the I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the following table for its
characteristics:
Table 70. I2C analog filter characteristics(1)
Symbol
Parameter
Limiting duration of spikes suppressed
by the filter(2)
tAF
Min
Max
Unit
50
260
ns
1. Based on characterization results, not tested in production.
2. Spikes shorter than the limiting duration are suppressed.
SPI/I2S characteristics
Unless otherwise specified, the parameters given in Table 71 for SPI are derived from tests
performed under the ambient temperature, fPCLKx frequency and supply voltage conditions
summarized in Table 21: General operating conditions. The additional general conditions
are:
•
OSPEEDRy[1:0] set to 11 (output speed)
•
capacitive load C = 30 pF
•
measurement points at CMOS levels: 0.5 x VDD
Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
DS13303 Rev 3
95/126
101
Electrical characteristics
STM32G051x6/x8
Table 71. SPI characteristics(1)
Symbol
fSCK
1/tc(SCK)
Parameter
SPI clock frequency
tsu(NSS) NSS setup time
th(NSS)
NSS hold time
Conditions
Min
Typ
Max
Master mode
1.65 < VDD < 3.6 V
Range 1
32
Master transmitter
1.65 < VDD < 3.6 V
Range 1
32
Slave receiver
1.65 < VDD < 3.6 V
Range 1
32
-
-
Unit
MHz
Slave transmitter/full duplex
2.7 < VDD < 3.6 V
Range 1
32
Slave transmitter/full duplex
1.65 < VDD < 3.6 V
Range 1
23
1.65 < VDD < 3.6 V
Range 2
8
Slave mode, SPI prescaler = 2
4 ₓ TPCLK
-
-
ns
Slave mode, SPI prescaler = 2
2 ₓ TPCLK
-
-
ns
tw(SCKH) SCK high time
Master mode
TPCLK
- 1.5
TPCLK
TPCLK
+ 1.5
ns
tw(SCKL) SCK low time
Master mode
TPCLK
- 1.5
TPCLK
TPCLK
+ 1.5
ns
tsu(MI)
Master data input setup
time
-
1
-
-
ns
tsu(SI)
Slave data input setup
time
-
1
-
-
ns
th(MI)
Master data input hold
time
-
5
-
-
ns
th(SI)
Slave data input hold
time
-
1
-
-
ns
ta(SO)
Data output access time Slave mode
9
-
34
ns
tdis(SO)
Data output disable time Slave mode
9
-
16
ns
2.7 < VDD < 3.6 V
Range 1
-
9
14
1.65 < VDD < 3.6 V
Range 1
-
9
21
1.65 < VDD < 3.6 V
Voltage Range 2
-
11
24
-
3
5
tv(SO)
tv(MO)
96/126
Slave data output valid
time
Master data output valid
time
-
DS13303 Rev 3
ns
ns
STM32G051x6/x8
Electrical characteristics
Table 71. SPI characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
th(SO)
Slave data output hold
time
-
5
-
-
ns
th(MO)
Master data output hold
time
-
1
-
-
ns
1. Based on characterization results, not tested in production.
Figure 27. SPI timing diagram - slave mode and CPHA = 0
NSS input
tc(SCK)
SCK input
tsu(NSS)
th(NSS)
tw(SCKH)
tr(SCK)
CPHA=0
CPOL=0
CPHA=0
CPOL=1
ta(SO)
tw(SCKL)
MISO output
tv(SO)
th(SO)
First bit OUT
tf(SCK)
Next bits OUT
tdis(SO)
Last bit OUT
th(SI)
tsu(SI)
MOSI input
First bit IN
Next bits IN
Last bit IN
MSv41658V1
Figure 28. SPI timing diagram - slave mode and CPHA = 1
NSS input
SCK input
tc(SCK)
tsu(NSS)
tw(SCKH)
ta(SO)
tw(SCKL)
tf(SCK)
th(NSS)
CPHA=1
CPOL=0
CPHA=1
CPOL=1
MISO output
tv(SO)
First bit OUT
tsu(SI)
MOSI input
th(SO)
Next bits OUT
tr(SCK)
tdis(SO)
Last bit OUT
th(SI)
First bit IN
Next bits IN
Last bit IN
MSv41659V1
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
DS13303 Rev 3
97/126
101
Electrical characteristics
STM32G051x6/x8
Figure 29. SPI timing diagram - master mode
High
NSS input
SCK Output
CPHA= 0
CPOL=0
SCK Output
tc(SCK)
CPHA=1
CPOL=0
CPHA= 0
CPOL=1
CPHA=1
CPOL=1
tw(SCKH)
tw(SCKL)
tsu(MI)
MISO
INP UT
tr(SCK)
tf(SCK)
BIT6 IN
MSB IN
LSB IN
th(MI)
MOSI
OUTPUT
B I T1 OUT
MSB OUT
tv(MO)
LSB OUT
th(MO)
ai14136c
1. Measurement points are set at CMOS levels: 0.3 VDD and 0.7 VDD.
Table 72. I2S characteristics(1)
Symbol
Parameter
Conditions
Min
Max
Unit
fMCK
I2S main clock output
fMCK= 256 x Fs; (Fs = audio sampling
frequency)
Fsmin = 8 kHz; Fsmax = 192 kHz;
2.048
49.152
MHz
fCK
I2S clock frequency
Master data
-
64xFs
Slave data
-
64xFs
DCK
I2S clock frequency duty
cycle
30
70
98/126
Slave receiver
DS13303 Rev 3
MHz
%
STM32G051x6/x8
Electrical characteristics
Table 72. I2S characteristics(1) (continued)
Symbol
Parameter
tv(WS)
WS valid time
th(WS)
Min
Max
Master mode
-
8
WS hold time
Master mode
2
-
tsu(WS)
WS setup time
Slave mode
4
-
th(WS)
WS hold time
Slave mode
2
-
Master receiver
4
-
Slave receiver
5
-
Master receiver
4.5
-
Slave receiver
2
-
tsu(SD_MR)
Conditions
Data input setup time
tsu(SD_SR)
th(SD_MR)
Data input hold time
th(SD_SR)
after enable edge; 2.7 < VDD < 3.6V
Unit
ns
16
tv(SD_ST)
Data output valid time slave transmitter
tv(SD_MT)
Data output valid time master transmitter
after enable edge
-
5.5
th(SD_ST)
Data output hold time slave transmitter
after enable edge
8
-
th(SD_MT)
Data output hold time master transmitter
after enable edge
1
-
-
after enable edge; 1.65 < VDD < 3.6V
23
1. Based on characterization results, not tested in production.
Figure 30. I2S slave timing diagram (Philips protocol)
CK Input
tc(CK)
CPOL = 0
CPOL = 1
tw(CKH)
th(WS)
tw(CKL)
WS input
tv(SD_ST)
tsu(WS)
SDtransmit
LSB transmit(2)
MSB transmit
tsu(SD_SR)
SDreceive
LSB receive(2)
th(SD_ST)
Bitn transmit
th(SD_SR)
MSB receive
Bitn receive
LSB receive
MSv39721V1
1. Measurement points are done at CMOS levels: 0.3 VDDIO1 and 0.7 VDDIO1.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
DS13303 Rev 3
99/126
101
Electrical characteristics
STM32G051x6/x8
Figure 31. I2S master timing diagram (Philips protocol)
90%
10%
tr(CK)
tf(CK)
CK output
tc(CK)
CPOL = 0
tw(CKH)
CPOL = 1
tv(WS)
th(WS)
tw(CKL)
WS output
tv(SD_MT)
SDtransmit
LSB transmit(2)
MSB transmit
LSB receive(2)
Bitn transmit
LSB transmit
th(SD_MR)
tsu(SD_MR)
SDreceive
th(SD_MT)
MSB receive
Bitn receive
LSB receive
MSv39720V1
1. Based on characterization results, not tested in production.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
USART characteristics
Unless otherwise specified, the parameters given in Table 73 for USART are derived from
tests performed under the ambient temperature, fPCLKx frequency and supply voltage
conditions summarized in Table 21: General operating conditions. The additional general
conditions are:
•
OSPEEDRy[1:0] set to 10 (output speed)
•
capacitive load C = 30 pF
•
measurement points at CMOS levels: 0.5 x VDD
Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, CK, TX, and RX for USART).
Table 73. USART characteristics
Symbol
fCK
100/126
Parameter
USART clock frequency
Conditions
Min
Typ
Max
Master mode
-
-
8
Slave mode
-
-
21
DS13303 Rev 3
Unit
MHz
STM32G051x6/x8
Electrical characteristics
Table 73. USART characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
tsu(NSS)
NSS setup time
Slave mode
tker + 2
-
-
th(NSS)
NSS hold time
Slave mode
2
-
-
tw(CKH)
CK high time
tw(CKL)
CK low time
Master mode
1 / fCK / 2
-1
1 / fCK / 2
1 / fCK / 2
+1
tsu(RX)
Data input setup time
Master mode
tker + 2
-
-
Slave mode
4
-
-
Master mode
1
-
-
Slave mode
0.5
-
-
Master mode
-
0.5
1
Slave mode
-
10
19
Master mode
0
-
-
Slave mode
7
-
-
th(RX)
Data input hold time
tv(TX)
Data output valid time
th(TX)
Data output hold time
DS13303 Rev 3
Unit
ns
101/126
101
Package information
6
STM32G051x6/x8
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
6.1
WLCSP20 package information
WLCSP20 is a 20-ball, 1.94 x 2.40 mm, 0.4 mm pitch, wafer-level chip-scale package.
Figure 32. WLCSP20 - Outline
A1 BALL LOCATION
bbb Z
Y
e1
F
G
A1
D
aaa
(4X)
DETAIL A
E
e2 E
e
e
A
X
D
TOP VIEW
BOTTOM VIEW
A3
A2
SIDE VIEW
A2
BUMP
b
A1
eee Z
FRONT VIEW
Z
b(20x)
ccc Z X Y
ddd Z
SEATING PLANE
DETAIL A
ROTATED 90
B0E1_WLCSP42_ME_V1
1. Drawing is not to scale.
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
3. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
4. Bump position designation per JESD 95-1, SPP-010.
102/126
DS13303 Rev 3
STM32G051x6/x8
Package information
Table 74. WLCSP20 - Mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A(2)
-
-
0.59
-
-
0.023
A1
-
0.18
-
-
0.007
-
A2
-
0.38
-
-
0.015
-
-
0.025
-
-
0.001
-
b
023
0.25
0.28
0.0089
0.0098
0.0108
D
1.92
1.94
1.96
0.075
0.076
0.077
E
2.38
2.40
2.42
0.093
0.094
0.095
e
-
0.40
-
-
0.016
-
e1
-
1.20
-
-
0.047
-
e2
-
1.60
-
-
0.063
-
F(4)
-
0.370
-
-
0.015
-
G(5)
-
0.400
-
-
0.016
-
aaa
-
-
0.10
-
-
0.004
bbb
-
-
0.10
-
-
0.004
ccc(5)
-
-
0.10
-
-
0.004
(6)
-
-
0.05
-
-
0.002
-
-
0.05
-
-
0.002
(3)
A3
ddd
eee
1. Values in inches are converted from mm and rounded to 3 decimal digits.
2. The maximum total package height is calculated by the RSS method (Root Sum Square) using nominal
values and tolerances of A1 and A2.
3. Back side coating. Nominal dimension is rounded to the 3rd decimal place resulting from process
capability.
4. Calculated dimensions are rounded to the 3rd decimal place
5. Bump position designation per JESD 95-1, SPP-010. The tolerance of position that controls the location of
the pattern of balls with respect to datums X and Y. For each ball there is a cylindrical tolerance zone ccc
perpendicular to datum Z and located on true position with respect to datums X and Y as defined by e. The
axis perpendicular to datum Z of each ball must lie within this tolerance zone.
6. The tolerance of position that controls the location of the balls within the matrix with respect to each other.
For each ball there is a cylindrical tolerance zone ddd perpendicular to datum Z and located on true
position as defined by e. The axis perpendicular to datum Z of each ball must lie within this tolerance zone.
Each tolerance zone ddd in the array is contained entirely in the respective zone ccc above. The axis of
each ball must lie simultaneously in both tolerance zones.
DS13303 Rev 3
103/126
121
Package information
STM32G051x6/x8
Figure 33. WLCSP20 - Recommended footprint
Dpad
Dsm
BGA_WLCSP_FT_V1
Table 75. WLCSP20 - recommended PCB design rules
Dimension
104/126
Recommended value
Pitch
0.4 mm
Dpad
0,225 mm
Dsm
0.290 mm typ. (depends on soldermask registration
tolerance)
Stencil opening
0.250 mm
Stencil thickness
0.100 mm
DS13303 Rev 3
STM32G051x6/x8
Package information
Device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks that identify the parts throughout supply chain
operations, are not indicated below.
Figure 34. WLCSP20 package marking example
Pin 1 identifier
Product identification (1)
32G05
TBD
Revision code
Date code
Y
WW
R
MSv66869V1
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
DS13303 Rev 3
105/126
121
Package information
6.2
STM32G051x6/x8
TSSOP20 package information
TSSOP20 is a 20-lead, 6.5 x 4.4 mm thin small-outline package with 0.65 mm pitch.
Figure 35. TSSOP20 package outline
D
20
11
c
E1 E
1
SEATING
PLANE
C
0.25 mm
GAUGE PLANE
10
PIN 1
IDENTIFICATION
k
aaa C
A1
A
L
A2
b
L1
e
YA_ME_V3
1. Drawing is not to scale.
Table 76. TSSOP20 package mechanical data
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
1.200
-
-
0.0472
A1
0.050
-
0.150
0.0020
-
0.0059
A2
0.800
1.000
1.050
0.0315
0.0394
0.0413
b
0.190
-
0.300
0.0075
-
0.0118
c
0.090
-
0.200
0.0035
-
0.0079
D(2)
6.400
6.500
6.600
0.2520
0.2559
0.2598
E
6.200
6.400
6.600
0.2441
0.2520
0.2598
E1(3)
4.300
4.400
4.500
0.1693
0.1732
0.1772
e
-
0.650
-
-
0.0256
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
-
8°
0°
-
8°
aaa
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to four decimal digits.
2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs
shall not exceed 0.15mm per side.
3. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not
exceed 0.25mm per side.
106/126
DS13303 Rev 3
STM32G051x6/x8
Package information
Figure 36. TSSOP20 package footprint
0.25
6.25
20
11
1.35
0.25
7.10 4.40
1.35
1
10
0.40
0.65
YA_FP_V1
1. Dimensions are expressed in millimeters.
DS13303 Rev 3
107/126
121
Package information
STM32G051x6/x8
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks that identify the parts throughout supply chain
operations, are not indicated below.
Figure 37. TSSOP20 package marking example
Product
identification(1)
Pin 1
indentifier
32G051F8P6
Revision code
Date code
Y WW
R
MSv66867V1
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
108/126
DS13303 Rev 3
STM32G051x6/x8
6.3
Package information
UFQFPN28 package information
UFQFPN is a 28-lead, 4x4 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package.
Figure 38. UFQFPN28 package outline
Detail Y
D
E
D
D1
E1
Detail Z
A0B0_ME_V5
1. Drawing is not to scale.
Table 77. UFQFPN28 package mechanical data(1)
millimeters
inches
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
-
0.000
0.050
-
0.0000
0.0020
D
3.900
4.000
4.100
0.1535
0.1575
0.1614
D1
2.900
3.000
3.100
0.1142
0.1181
0.1220
E
3.900
4.000
4.100
0.1535
0.1575
0.1614
E1
2.900
3.000
3.100
0.1142
0.1181
0.1220
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
L1
0.250
0.350
0.450
0.0098
0.0138
0.0177
T
-
0.152
-
-
0.0060
-
b
0.200
0.250
0.300
0.0079
0.0098
0.0118
e
-
0.500
-
-
0.0197
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DS13303 Rev 3
109/126
121
Package information
STM32G051x6/x8
Figure 39. Recommended footprint for UFQFPN28 package
!"?&0?6
1. Dimensions are expressed in millimeters.
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 40. UFQFPN28 package marking example
Product identification (1)
32G0518
Revision code
R
Date code
Y WW
Pin 1 identifier
MSv66865V1
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
110/126
DS13303 Rev 3
STM32G051x6/x8
6.4
Package information
UFQFPN32 package information
UFQFPN32 is a 32-pin, 5x5 mm, 0.5 mm pitch ultra-thin fine-pitch quad flat package.
Figure 41. UFQFPN32 package outline
D
A
A1
A3
e
ddd C
C
SEATINGPLANE
D1
b
e
E2
b
E1 E
1
L
32
D2
L
PIN 1 Identifier
A0B8_ME_V3
1. Drawing is not to scale.
2. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this backside pad to PCB ground.
Table 78. UFQFPN32 package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0.000
0.020
0.050
0.000
0.0007
0.0020
A3
-
0.152
-
-
0.0060
-
b
0.180
0.230
0.280
0.0071
0.0091
0.0110
(2)
D
4.900
5.000
5.100
0.1929
0.1969
0.2008
D1
3.400
3.500
3.600
0.1339
0.1378
0.1417
D2
3.400
3.500
3.600
0.1339
0.1378
0.1417
E(2)
4.900
5.000
5.100
0.1929
0.1969
0.2008
E1
3.400
3.500
3.600
0.1339
0.1378
0.1417
E2
3.400
3.500
3.600
0.1339
0.1378
0.1417
e
-
0.500
-
-
0.0197
-
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
ddd
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Dimensions D and E do not include mold protrusion, not to exceed 0,15mm.
DS13303 Rev 3
111/126
121
Package information
STM32G051x6/x8
Figure 42. Recommended footprint for UFQFPN32 package
5.30
3.80
25
32
1
0.60
24
3.45
3.80
5.30
3.45
0.50
0.30
8
17
16
9
0.75
3.80
A0B8_FP_V2
1. Dimensions are expressed in millimeters
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 43. UFQFPN32 package marking example
Product identification (1)
32G051K8U6
Date code
Y
WW R
Revision code
Pin 1 identifier
MSv66863V1
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
112/126
DS13303 Rev 3
STM32G051x6/x8
LQFP32 package information
LQFP32 is a 32-pin, 7 x 7 mm low-profile quad flat package.
Figure 44. LQFP32 package outline
c
A2
A1
A
SEATING
PLANE
C
0.25 mm
ccc
GAUGE PLANE
C
K
D
L
A1
D1
L1
D3
24
17
25
16
32
9
PIN 1
IDENTIFICATION
1
E
E1
E3
b
6.5
Package information
8
e
5V_ME_V2
1. Drawing is not to scale.
Table 79. LQFP32 mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
DS13303 Rev 3
113/126
121
Package information
STM32G051x6/x8
Table 79. LQFP32 mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
b
0.300
0.370
0.450
0.0118
0.0146
0.0177
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.600
-
-
0.2205
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.600
-
-
0.2205
-
e
-
0.800
-
-
0.0315
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 45. Recommended footprint for LQFP32 package
0.80
1.20
24
17
25
16
0.50
0.30
7.30
6.10
9.70
7.30
32
9
8
1
1.20
6.10
9.70
1. Dimensions are expressed in millimeters.
114/126
DS13303 Rev 3
5V_FP_V2
STM32G051x6/x8
Package information
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 46. LQFP32 package marking example
STM32G
Product identification (1)
051K8T6
Date code
Y WW
Revision code
Pin 1 identifier
R
MSv66861V1
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
DS13303 Rev 3
115/126
121
Package information
6.6
STM32G051x6/x8
UFQFPN48 package information
UFQFPN48 is a 48-lead, 7x7 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package
Figure 47. UFQFPN48 package outline
Pin 1 identifier
laser marking area
D
A
E
E
T
ddd
A1
Seating
plane
b
e
Detail Y
D
Exposed pad
area
Y
D2
1
L
48
C 0.500x45°
pin1 corner
R 0.125 typ.
Detail Z
E2
1
48
Z
A0B9_ME_V3
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this back-side pad to PCB ground.
Table 80. UFQFPN48 package mechanical data
inches(1)
millimeters
Symbol
116/126
Min
Typ
Max
Min
Typ
Max
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
D
6.900
7.000
7.100
0.2717
0.2756
0.2795
E
6.900
7.000
7.100
0.2717
0.2756
0.2795
D2
5.500
5.600
5.700
0.2165
0.2205
0.2244
E2
5.500
5.600
5.700
0.2165
0.2205
0.2244
DS13303 Rev 3
STM32G051x6/x8
Package information
Table 80. UFQFPN48 package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
T
-
0.152
-
-
0.0060
-
b
0.200
0.250
0.300
0.0079
0.0098
0.0118
e
-
0.500
-
-
0.0197
-
ddd
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 48. Recommended footprint for UFQFPN48 package
7.30
6.20
48
37
1
36
5.60
0.20
7.30
5.80
6.20
5.60
0.30
12
25
13
24
0.50
0.55
5.80
0.75
A0B9_FP_V2
1. Dimensions are expressed in millimeters.
DS13303 Rev 3
117/126
121
Package information
STM32G051x6/x8
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 49. UFQFPN48 package marking example
STM32G051
Product identification (1)
C8U6
Date code
Y WW
Revision code
Pin 1 identifier
R
MSv66859V1
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
118/126
DS13303 Rev 3
STM32G051x6/x8
LQFP48 package information
LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package.
Figure 50. LQFP48 package outline
SEATING
PLANE
C
c
A1
A
A2
0.25 mm
GAUGE PLANE
ccc C
K
D
A1
L
D1
L1
D3
36
25
37
24
48
E
E1
b
E3
6.7
Package information
13
PIN 1
IDENTIFICATION
1
12
e
5B_ME_V2
1. Drawing is not to scale.
Table 81. LQFP48 mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.500
-
-
0.2165
-
DS13303 Rev 3
119/126
121
Package information
STM32G051x6/x8
Table 81. LQFP48 mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.500
-
-
0.2165
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 51. Recommended footprint for LQFP48 package
0.50
1.20
9.70
0.30
25
36
37
24
0.20
7.30
5.80
7.30
48
13
12
1
1.20
5.80
9.70
ai14911d
1. Dimensions are expressed in millimeters.
120/126
DS13303 Rev 3
STM32G051x6/x8
Package information
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 52. LQFP48 package marking example
STM32G051
Product identification (1)
C8T6
Date code
Y WW
Revision code
Pin 1 identifier
R
MSv66857V1
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
DS13303 Rev 3
121/126
121
STM32G051x6/x8
6.8
Thermal characteristics
The operating junction temperature TJ must never exceed the maximum given in
Table 21: General operating conditions.
The maximum junction temperature in °C that the device can reach if respecting the
operating conditions, is:
TJ(max) = TA(max) + PD(max) x ΘJA
where:
•
TA(max) is the maximum operating ambient temperature in °C,
•
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
•
PD = PINT + PI/O,
–
PINT is power dissipation contribution from product of IDD and VDD
–
PI/O is power dissipation contribution from output ports where:
PI/O = Σ (VOL × IOL) + Σ ((VDDIO1 – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high
level in the application.
Table 82. Package thermal characteristics
Symbol
ΘJA
6.8.1
Parameter
Thermal resistance
junction-ambient
Package
Value
LQFP48 7 × 7 mm
65
UFQFPN48 7 × 7 mm
30
LQFP32 7 × 7 mm
65
UFQFPN32 5 × 5 mm
40
UFQFPN28 4 × 4 mm
75
TSSOP20 6.4 × 4.4 mm
80
WLCSP20 1.94 × 2.40 mm
83
Unit
°C/W
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (still air). Available from www.jedec.org.
6.8.2
Selecting the product temperature range
The temperature range is specified in the ordering information scheme shown in Section 7:
Ordering information.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and to a specific maximum junction temperature.
As applications do not commonly use microcontrollers at their maximum power
consumption, it is useful to calculate the exact power consumption and junction temperature
to determine which temperature range best suits the application.
122/126
DS13303 Rev 3
STM32G051x6/x8
The following example shows how to calculate the temperature range needed for a given
application.
Example:
Assuming the following worst application conditions:
•
ambient temperature TA = 50 °C (measured according to JESD51-2)
•
IDD = 50 mA; VDD = 3.6 V
•
20 I/Os simultaneously used as output at low level with IOL = 8 mA (VOL= 0.4 V), and
•
8 I/Os simultaneously used as output at low level with IOL = 20 mA (VOL= 1.3 V),
the power consumption from power supply PINT is:
PINT = 50 mA × 3.6 V= 118 mW,
the power loss through I/Os PIO is
PIO = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW,
and the total power PD to dissipate is:
PD = 180 mW + 272 mW = 452 mW
For a package with ΘJA= 65 °C/W, the junction temperature stabilizes at:
TJ = 50°C + (65 °C/W × 452 mW) = 50 °C + 29.4 °C = 79.4 °C
As a conclusion, product version with suffix 6 (maximum allowed TJ = 105° C) is sufficient
for this application.
If the same application was used in a hot environment with maximum TA greater than
75.5 °C, the junction temperature would exceed 105°C and the product version allowing
higher maximum TJ would have to be ordered.
DS13303 Rev 3
123/126
123
Ordering information
7
STM32G051x6/x8
Ordering information
Example
STM32
G
051
C
8
U
6
xyy
Device family
STM32 = Arm® based 32-bit microcontroller
Product type
G = general-purpose
Device subfamily
051 = STM32G051
Pin count
F = 20
G = 28
K = 32
C = 48
Flash memory size
6 = 32 Kbytes
8 = 64 Kbytes
Package type
T = LQFP
U = UFQFPN
Y = WLCSP
P = TSSOP
Temperature range
6 = -40 to 85°C (105°C junction)
7 = -40 to 105°C (125°C junction)
3 = -40 to 125°C (130°C junction)
Options
˽TR = tape and reel packing
˽˽˽ = tray packing
other = 3-character ID incl. custom Flash code and packing information
For a list of available options (memory, package, and so on) or for further information on any
aspect of this device, please contact your nearest ST sales office.
124/126
DS13303 Rev 3
STM32G051x6/x8
8
Revision history
Revision history
Table 83. Document revision history
Date
Revision
16-Dec-2020
1
Initial release
2
Modified classes in Table 48: ESD absolute maximum
ratings.
Modified values in Table 29: Current consumption in
Stop 1 mode.
Added values in Table 30: Current consumption in
Standby mode.
3
Updated Table 12: Pin assignment and description.
Updated Table 21: General operating conditions.
Updated last footnote of Table 43: PLL characteristics.
Updated Table 62: VREFBUF characteristics.
09-Feb-2021
25-Nov-2021
Changes
DS13303 Rev 3
125/126
125
STM32G051x6/x8
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2021 STMicroelectronics – All rights reserved
126/126
DS13303 Rev 3