STM32G0B1xB/xC/xE
Arm® Cortex®-M0+ 32-bit MCU, up to 512KB Flash, 144KB RAM,
6x USART, timers, ADC, DAC, comm. I/Fs, 1.7-3.6V
Datasheet - production data
Features
• Core: Arm® 32-bit Cortex®-M0+ CPU,
frequency up to 64 MHz
• -40°C to 85°C/105°C/125°C operating
temperature
• Memories
– Up to 512 Kbytes of Flash memory with
protection and securable area, two banks,
read-while-write support
– 144 Kbytes of SRAM (128 Kbytes with HW
parity check)
• CRC calculation unit
• Reset and power management
– Voltage range: 1.7 V to 3.6 V
– Separate I/O supply pin (1.6 V to 3.6 V)
– Power-on/Power-down reset (POR/PDR)
– Programmable Brownout reset (BOR)
– Programmable voltage detector (PVD)
– Low-power modes:
Sleep, Stop, Standby, Shutdown
– VBAT supply for RTC and backup registers
• Clock management
– 4 to 48 MHz crystal oscillator
– 32 kHz crystal oscillator with calibration
– Internal 16 MHz RC with PLL option (±1 %)
– Internal 48 MHz RC oscillator
– Internal 32 kHz RC oscillator (±5 %)
• Up to 94 fast I/Os
– All mappable on external interrupt vectors
– Multiple 5 V-tolerant I/Os
• 12-channel DMA controller with flexible
mapping
• 12-bit, 0.4 µs ADC (up to 16 ext. channels)
– Up to 16-bit with hardware oversampling
– Conversion range: 0 to 3.6V
• Two 12-bit DACs, low-power sample-and-hold
• Three fast low-power analog comparators, with
programmable input and output, rail-to-rail
• 15 timers (two 128 MHz capable): 16-bit for
advanced motor control, one 32-bit and six 16bit general-purpose, two basic 16-bit, two lowpower 16-bit, two watchdogs, SysTick timer
• Calendar RTC with alarm and periodic wakeup
from Stop/Standby/Shutdown
December 2022
This is information on a product in full production.
UFQFPN32
5 × 5 mm
UFQFPN48
7 × 7 mm
LQFP32
7 × 7 mm
LQFP48
7 × 7 mm
LQFP64
10 × 10 mm
LQFP80
12 × 12 mm
LQFP100
14 × 14 mm
UFBGA64
5 × 5 mm
UFBGA100
7 × 7 mm
WLCSP52
3.09 × 3.15 mm
• Communication interfaces
– Three I2C-bus interfaces supporting Fastmode Plus (1 Mbit/s) with extra current
sink, two supporting SMBus/PMBus and
wakeup from Stop mode
– Six USARTs with master/slave
synchronous SPI; three supporting
ISO7816 interface, LIN, IrDA capability,
auto baud rate detection and wakeup
feature
– Two low-power UARTs
– Three SPIs (32 Mbit/s) with 4- to 16-bit
programmable bitframe, two multiplexed
with I2S interface
– HDMI CEC interface, wakeup on header
• USB 2.0 FS device (crystal-less) and host
controller
• USB Type-C™ Power Delivery controller
• Two FDCAN controllers
• Development support: serial wire debug (SWD)
• 96-bit unique ID
• All packages ECOPACK 2 compliant
Table 1. Device summary
Reference
Part number
STM32G0B1xB
STM32G0B1CB, STM32G0B1KB,
STM32G0B1MB, STM32G0B1RB,
STM32G0B1VB
STM32G0B1xC
STM32G0B1CC, STM32G0B1KC,
STM32G0B1MC, STM32G0B1RC,
STM32G0B1VC
STM32G0B1xE
STM32G0B1CE, STM32G0B1KE,
STM32G0B1ME, STM32G0B1NE,
STM32G0B1RE, STM32G0B1VE
DS13560 Rev 4
1/158
www.st.com
Contents
STM32G0B1xB/xC/xE
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1
Arm® Cortex®-M0+ core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.1
3.4
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 16
3.7
Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7.1
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7.4
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7.5
Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7.6
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.8
Interconnect of peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.10
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.11
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.12
DMA request multiplexer (DMAMUX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.13
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.14
2/158
Securable area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.13.1
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 24
3.13.2
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 24
Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.14.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.14.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.14.3
VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.15
Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.16
Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
DS13560 Rev 4
STM32G0B1xB/xC/xE
Contents
3.17
Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.18
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.18.1
Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.18.2
General-purpose timers (TIM2, 3, 4, 14, 15, 16, 17) . . . . . . . . . . . . . . . 29
3.18.3
Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.18.4
Low-power timers (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . 29
3.18.5
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.18.6
System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.18.7
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.19
Real-time clock (RTC), tamper (TAMP) and backup registers . . . . . . . . . 30
3.20
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.21
Universal synchronous/asynchronous receiver transmitter (USART) . . . 32
3.22
Low-power universal asynchronous receiver transmitter (LPUART) . . . . 33
3.23
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.24
Universal serial bus device (USB) and host (USBH) . . . . . . . . . . . . . . . . 34
3.25
USB Type-C™ Power Delivery controller . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.26
Controller area network (FDCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.27
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.27.1
Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4
Pinouts, pin description and alternate functions . . . . . . . . . . . . . . . . . 36
5
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.2
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 68
5.3.3
Embedded reset and power control block characteristics . . . . . . . . . . . 68
DS13560 Rev 4
3/158
5
Contents
6
STM32G0B1xB/xC/xE
5.3.4
Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.5
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.6
Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.7
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.8
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.9
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.10
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.11
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.12
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.13
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.14
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.15
NRST input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.16
Analog switch booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.17
Analog-to-digital converter characteristics . . . . . . . . . . . . . . . . . . . . . . 100
5.3.18
Digital-to-analog converter characteristics . . . . . . . . . . . . . . . . . . . . . . 107
5.3.19
Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.20
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.21
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.22
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.23
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.24
Characteristics of communication interfaces . . . . . . . . . . . . . . . . . . . . 115
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.1
UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2
LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.4
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.5
WLCSP52 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.6
UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.7
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.8
LQFP80 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.9
UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.10
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.11
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.11.1
4/158
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
DS13560 Rev 4
STM32G0B1xB/xC/xE
6.11.2
Contents
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 154
7
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
DS13560 Rev 4
5/158
5
List of tables
STM32G0B1xB/xC/xE
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
6/158
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Access status versus readout protection level and execution modes. . . . . . . . . . . . . . . . . 15
Interconnect of peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Terms and symbols used in Table 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Pin assignment and description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Port A alternate function mapping (AF0 to AF7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Port A alternate function mapping (AF8 to AF15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Port B alternate function mapping (AF0 to AF7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Port B alternate function mapping (AF8 to AF15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Port C alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Port D alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Port E alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Port F alternate function mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 68
Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Current consumption in Run and Low-power run modes
at different die temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Typical current consumption in Run and Low-power run modes,
depending on code executed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Current consumption in Sleep and Low-power sleep modes . . . . . . . . . . . . . . . . . . . . . . . 74
Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Current consumption of peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Low-power mode wakeup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Regulator mode transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Wakeup time using LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
DS13560 Rev 4
STM32G0B1xB/xC/xE
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
List of tables
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Electrical sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Input characteristics of FT_e I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Analog switch booster characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
IWDG min/max timeout period at 32 kHz LSI clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Minimum I2CCLK frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
USB FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
UCPD operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
UFQFPN32 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
LQFP32 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
UFQFPN48 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
LQFP48 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
WLCSP52 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
WLCSP52 - Recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
UFBGA64 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Recommended PCB design rules for UFBGA64 package . . . . . . . . . . . . . . . . . . . . . . . . 140
LQFP64 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
LQFP80 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
UFBGA100 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
UFBGA100 recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
LQFP100 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
DS13560 Rev 4
7/158
7
List of figures
STM32G0B1xB/xC/xE
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
8/158
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
STM32G0B1VxT LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
STM32G0B1VxI UFBGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
STM32G0B1MxT LQFP80 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
STM32G0B1RxT LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
STM32G0B1RxI UFBGA64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
STM32G0B1NxY WLCSP52 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
STM32G0B1CxT LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
STM32G0B1CxU UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
STM32G0B1KxT LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
STM32G0B1KxU UFQFPN32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
VREFINT vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
HSI16 frequency vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
HSI48 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Current injection into FT_e input with diode active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
I/O AC characteristics definition(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
I2S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
I2S master timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
USB timings – definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . 123
UFQFPN32 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Recommended footprint for UFQFPN32 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
UFQFPN32 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
LQFP32 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Recommended footprint for LQFP32 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
LQFP32 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
UFQFPN48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Recommended footprint for UFQFPN48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
UFQFPN48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
LQFP48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Recommended footprint for LQFP48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
LQFP48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
DS13560 Rev 4
STM32G0B1xB/xC/xE
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
List of figures
WLCSP52 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
WLCSP52 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
WLCSP52 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
UFBGA64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Recommended footprint for UFBGA64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
UFBGA64 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
LQFP64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Recommended footprint for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
LQFP64 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
LQFP80 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
LQFP80 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
LQFP80 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
UFBGA100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Recommended footprint for UFBGA100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
UFBGA100 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
LQFP100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Recommended footprint for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
LQFP100 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
DS13560 Rev 4
9/158
9
Introduction
1
STM32G0B1xB/xC/xE
Introduction
This document provides information on STM32G0B1xB/xC/xE microcontrollers, such as
description, functional overview, pin assignment and definition, electrical characteristics,
packaging, and ordering codes.
Information on memory mapping and control registers is object of reference manual.
Information on Arm®(a) Cortex®-M0+ core is available from the www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
10/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
2
Description
Description
The STM32G0B1xB/xC/xE mainstream microcontrollers are based on high-performance
Arm® Cortex®-M0+ 32-bit RISC core operating at up to 64 MHz frequency. Offering a high
level of integration, they are suitable for a wide range of applications in consumer, industrial
and appliance domains and ready for the Internet of Things (IoT) solutions.
The devices incorporate a memory protection unit (MPU), high-speed embedded memories
(144 Kbytes of SRAM and up to 512 Kbytes of Flash program memory with read protection,
write protection, proprietary code protection, and securable area), DMA, an extensive range
of system functions, enhanced I/Os, and peripherals. The devices offer standard
communication interfaces (three I2Cs, three SPIs / two I2S, one HDMI CEC, one full-speed
USB, two FD CANs, and six USARTs), one 12-bit ADC (2.5 MSps) with up to 19 channels,
one 12-bit DAC with two channels, three fast comparators, an internal voltage reference
buffer, a low-power RTC, an advanced control PWM timer running at up to double the CPU
frequency, six general-purpose 16-bit timers with one running at up to double the CPU
frequency, a 32-bit general-purpose timer, two basic timers, two low-power 16-bit timers,
two watchdog timers, and a SysTick timer. The devices provide a fully integrated USB TypeC Power Delivery controller.
The devices operate within ambient temperatures from -40 to 125°C and with supply
voltages from 1.7 V to 3.6 V. Optimized dynamic consumption combined with a
comprehensive set of power-saving modes, low-power timers and low-power UART, allows
the design of low-power applications.
VBAT direct battery input allows keeping RTC and backup registers powered.
The devices come in packages with 32 to 100 pins. Some packages with low pin count are
available in two pinouts (standard and alternative indicated by “N” suffix). Products marked
by N suffix are offering VDDIO2 supply and additional UCPD port versus the standard pinout,
therefore those are better choice for UCPD/USB applications.
DS13560 Rev 4
11/158
35
Description
STM32G0B1xB/xC/xE
Table 2. Features and peripheral counts
STM32G0B1_
Peripheral
Flash memory (Kbyte)
_CBxxN/
_CCxxN/
_CExxN
_NE
128/256/ 128/256 128/256 128/256
512
/512
/512
/512
512
_KBxxN/
_KCxxN/
_KExxN
_KB/
_KC/
_KE
Timers
SRAM (Kbyte)
_RBxxN/
_RCxxN/
_RExxN
_RB/
_RC/
_RE
General-purpose
6 (16-bit) + 1 (16-bit) high frequency + 1 (32-bit)
Basic
2 (16-bit)
Low-power
2 (16-bit)
SysTick
1
Watchdog
2
[I2S](1)
3 [2]
2
I C
3
USART
6
LPUART
2
USB
1
1(2)
2
FDCAN
2
CEC
1
RTC
Yes
Tamper pins
3
VDDIO2 pin / VSS pin
No/No
Yes/No
No/No
Yes/Yes
Yes/Yes
Random number generator
No
AES
No
GPIOs
30
29
Wakeup pins
4
3
ADC channels (ext. + int.)
11 + 2
10 + 2
44
42
46
No/No
Yes/Yes
Yes/Yes
Yes/Yes
60
58
74
94
7
8
80
100
4
5
14 + 3
16 + 3
DAC channels
Internal voltage reference
buffer
2
No
Yes
Analog comparators
3
Max. CPU frequency
64 MHz
Operating voltage
1.7 to 3.6 V
Operating temperature(3)
Ambient: -40 to 85 °C / -40 to 105 °C / -40 to 125 °C
Junction: -40 to 105 °C / -40 to 125 °C / -40 to 130 °C
Number of pins
32
48
52
1. The numbers in brackets denote the count of SPI interfaces configurable as
I2S
64
interface.
2. One port with only one CC line available (supporting limited number of use cases).
3. Depends on order code. Refer to Section 7: Ordering information for details.
12/158
_VB/
_VC/
_VE
128 (parity-protected) or 144 (not parity-protected)
1 (16-bit) high frequency
UCPD
_MB/
_MC/
_ME
128/256 128/256 128/256 128/256
/512
/512
/512
/512
Advanced control
SPI
Comm. interfaces
_CB/
_CC/
_CE
DS13560 Rev 4
STM32G0B1xB/xC/xE
Description
Figure 1. Block diagram
POWER
DMAMUX
SWCLK
SWDIO
SWD
DMA
CORTEX-M0+
fmax = 64 MHz
NVIC
I/F
Bus matrix
CPU
IOPORT
Port B
PCx
Port C
PDx
Port D
PEx
Port E
PFx
Port F
VDD/VDDA
VSS/VSSA
VDDIO2
POR
Reset
Int
RC 48 MHz
POR/BOR
NRST
T sensor
RC 16 MHz
PVD
PLL
XTAL OSC
4-48 MHz
RC 32 kHz
RCC
from peripherals
LSE
VDD
LSE
System and
peripheral
clocks
XTAL32 kHz
RTC, TAMP
Backup regs
I/F
AHB-to-APB
TIM1
COMP2
RTC_OUT
RTC_REFIN
RTC_TS
TAMP_IN
DAC
I/F
DAC_OUT2
4 channels
ETR
TIM3 & 4
4 channels
ETR
TIM14
1 channel
TIM15
2 channels
BKIN
TIM16 &
17
TIMER
16/17
1 channel
BKIN
LPTIM1 &1/2
2
LPTIMER
ETR, IN, OUT
TIM6
I/F
MOSI/SD
MISO/MCK
SCK/CK
NSS/WS
SPI/I2S
1&2
SPI1/I2S
MOSI, MISO
SCK, NSS
SPI3
TIM7
PWRCTRL
APB
ADC
CC, DBCC
FRSTX
UCPD1
&2
UCPD
CEC
HDMI-CEC
APB
WWDG
IRTIM
IR_OUT
USART1
to 6
USART3/4
RX, TX
CTS, RTS
LPUART1
LPUART& && 22
RX, TX,
CTS, RTS
DBGMCU
USB FS
I2C1
&2
I2C2
FDCAN1
FDCAN1&&22
I2C3
Power domain of analog blocks :
4 channels
BKIN, BKIN2, ETR
TIM2 (32-bit)
SYSCFG
DAC_OUT1
RX, TX
OSC32_IN
OSC32_OUT
VREFBUF
COMP3
NOE, DM,
DP
VBAT
Low-voltage
detector
COMP1
16x IN
OSC_IN
OSC_OUT
IWDG
I/F
Reset & clock control
CRC
EXTI
IN+, IN-,
OUT
SUPPLY
SUPERVISION
HSE
AHB
Port A
Parity
HSI48
HSI16
PLLPCLK
PLLQCLK
PLLRCLK
LSI
decoder
PAx
PBx
VDDIO1
VDDA
Flash memory
VDD
up to 512 KB
VDDIO2
SRAM
144 KB
GPIOs
VREF+
Voltage
regulator
VCORE
VBAT
VDD
DS13560 Rev 4
VDDA
VDDIO1/VDDIO2
SCL, SDA
SMBA, SMBUS
SCL, SDA
MSv63193V2
13/158
35
Functional overview
STM32G0B1xB/xC/xE
3
Functional overview
3.1
Arm® Cortex®-M0+ core with MPU
The Cortex-M0+ is an entry-level 32-bit Arm Cortex processor designed for a broad range of
embedded applications. It offers significant benefits to developers, including:
•
a simple architecture, easy to learn and program
•
ultra-low power, energy-efficient operation
•
excellent code density
•
deterministic, high-performance interrupt handling
•
upward compatibility with Cortex-M processor family
•
platform security robustness, with integrated Memory Protection Unit (MPU).
The Cortex-M0+ processor is built on a highly area- and power-optimized 32-bit core, with a
2-stage pipeline Von Neumann architecture. The processor delivers exceptional energy
efficiency through a small but powerful instruction set and extensively optimized design,
providing high-end processing hardware including a single-cycle multiplier.
The Cortex-M0+ processor provides the exceptional performance expected of a modern
32-bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers.
Owing to embedded Arm core, the STM32G0B1xB/xC/xE devices are compatible with Arm
tools and software.
The Cortex-M0+ is tightly coupled with a nested vectored interrupt controller (NVIC)
described in Section 3.13.1.
3.2
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
3.3
Embedded Flash memory
STM32G0B1xB/xC/xE devices feature up to 512 Kbytes of embedded Flash memory
available for storing code and data.
14/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Functional overview
Flexible protections can be configured thanks to option bytes:
•
Readout protection (RDP) to protect the whole memory. Three levels are available:
–
Level 0: no readout protection
–
Level 1: memory readout protection: the Flash memory cannot be read from or
written to if either debug features are connected, boot in RAM or bootloader is
selected
–
Level 2: chip readout protection: debug features (Cortex-M0+ serial wire), boot in
RAM and bootloader selection are disabled. This selection is irreversible.
Table 3. Access status versus readout protection level and execution modes
Area
Protection
level
Debug, boot from RAM or boot
from system memory (loader)
User execution
Read
Write
Erase
Read
Write
Erase
User
memory
1
Yes
Yes
Yes
No
No
No
2
Yes
Yes
Yes
N/A
N/A
N/A
System
memory
1
Yes
No
No
Yes
No
No
2
Yes
No
No
N/A
N/A
N/A
Option
bytes
1
Yes
Yes
Yes
Yes
Yes
Yes
2
Yes
No
No
N/A
N/A
N/A
No
No
N/A(1)
N/A
N/A
N/A
Backup
registers
1
Yes
Yes
2
Yes
Yes
(1)
N/A
N/A
1. Erased upon RDP change from Level 1 to Level 0.
•
Write protection (WRP): the protected area is protected against erasing and
programming. Two areas per bank can be selected, with 2-Kbyte granularity.
•
Proprietary code readout protection (PCROP): a part of the Flash memory can be
protected against read and write from third parties. The protected area is execute-only:
it can only be reached by the STM32 CPU as instruction code, while all other accesses
(DMA, debug and CPU data read, write and erase) are strictly prohibited. An additional
option bit (PCROP_RDP) determines whether the PCROP area is erased or not when
the RDP protection is changed from Level 1 to Level 0.
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
3.3.1
•
single error detection and correction
•
double error detection
•
readout of the ECC fail address from the ECC register
Securable area
A part of the Flash memory can be hidden from the application once the code it contains is
executed. As soon as the write-once SEC_PROT bit is set, the securable memory cannot be
accessed until the system resets. The securable area generally contains the secure boot
code to execute only once at boot. This helps to isolate secret code from untrusted
application code.
DS13560 Rev 4
15/158
35
Functional overview
3.4
STM32G0B1xB/xC/xE
Embedded SRAM
STM32G0B1xB/xC/xE devices have 128 Kbytes of embedded SRAM with parity. Hardware
parity check allows memory data errors to be detected, which contributes to increasing
functional safety of applications.
When the parity protection is not required because the application is not safety-critical, the
parity memory bits can be used as additional SRAM, to increase its total size to 144 Kbytes.
The memory can be read/write-accessed at CPU clock speed, with 0 wait states.
3.5
Boot modes
At startup, the boot pin and boot selector option bit are used to select one of the three boot
options:
•
boot from User Flash memory
•
boot from System memory
•
boot from embedded SRAM
The boot pin is shared with a standard GPIO and can be enabled through the boot selector
option bit. The boot loader is located in System memory. It manages the Flash memory
reprogramming through one of the following interfaces:
3.6
•
USART on pins PA9/PA10, PC10/PC11, or PA2/PA3
•
I2C-bus on pins PB6/PB7 or PB10/PB11
•
SPI on pins PA4/PA5/PA6/PA7 or PB12/PB13/PB14/PB15
•
•
USB on pins PA11/PA12
FDCAN on pins PD0/PD1
Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link
time and stored at a given memory location.
16/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Functional overview
3.7
Power supply management
3.7.1
Power supply schemes
The STM32G0B1xB/xC/xE devices require a 1.7 V to 3.6 V operating supply voltage (VDD).
Several different power supplies are provided to specific peripherals:
•
VDD = 1.7 (1.6) to 3.6 V
VDD is the external power supply for the internal regulator and the system analog such
as reset, power management and internal clocks. It is provided externally through
VDD/VDDA pin.
The minimum voltage of 1.7 V corresponds to power-on reset release threshold
VPOR(max). Once this threshold is crossed and power-on reset is released, the
functionality is guaranteed down to power-down reset threshold VPDR(min).
•
VDDA = 1.62 V (ADC and COMP) / 1.8 V (DAC) / 2.4 V (VREFBUF) to 3.6 V
VDDA is the analog power supply for the A/D converter, D/A converter, voltage
reference buffer and comparators. VDDA voltage level is identical to VDD voltage as it is
provided externally through VDD/VDDA pin.
•
VDDIO1 = VDD
VDDIO1 is the power supply for the I/Os. VDDIO1 voltage level is identical to VDD voltage
as it is provided externally through VDD/VDDA pin.
•
VDDIO2 = 1.6 to 3.6 V
VDDIO2 is the power supply from VDDIO2 pin for selected I/Os and VDDUSB. On
packages without VDDIO2 pin, VDDUSB and VDDIO2 are internally connected with VDD.
Although VDDIO2 is independent of VDD or VDDA, it must not be applied without valid
VDD.
•
VBAT = 1.55 V to 3.6 V. VBAT is the power supply (through a power switch) for RTC,
TAMP, low-speed external 32.768 kHz oscillator and backup registers when VDD is not
present. VBAT is provided externally through VBAT pin. When this pin is not available
on the package, VBAT bonding pad is internally bonded to the VDD/VDDA pin.
•
VREF+ is the analog peripheral input reference voltage, or the output of the internal
voltage reference buffer (when enabled). When VDDA < 2 V, VREF+ must be equal to
VDDA. When VDDA ≥ 2 V, VREF+ must be between 2 V and VDDA. It can be grounded
when the analog peripherals using VREF+ are not active.
The internal voltage reference buffer supports two output voltages, which is configured
with VRS bit of the VREFBUF_CSR register:
–
VREF+ around 2.048 V (requiring VDDA equal to or higher than 2.4 V)
–
VREF+ around 2.5 V (requiring VDDA equal to or higher than 2.8 V)
VREF+ is delivered through VREF+ pin. On packages without VREF+ pin, VREF+ is
internally connected with VDD, and the internal voltage reference buffer must be kept
disabled (refer to datasheets for package pinout description).
•
VCORE
An embedded linear voltage regulator is used to supply the VCORE internal digital
power. VCORE is the power supply for digital peripherals, SRAM and Flash memory.
The Flash memory is also supplied with VDD.
DS13560 Rev 4
17/158
35
Functional overview
STM32G0B1xB/xC/xE
Figure 2. Power supply overview
VREF+
VREF+
VDDA
VSSA
VDDIO1
VDDIO2
VDDIO2
VDDA domain
A/D converter
Comparators
D/A converter
Voltage reference buffer
I/O ring
VDDIO1 domain
I/O ring
USB
VDDIO2 domain
VDD domain
VSS/VSSA
VDD/VDDA
VSS
Reset block
Temp. sensor
PLL, HSI
Standby circuitry
(Wakeup, IWDG)
VDD
Voltage
regulator
Low-voltage
detector
VCORE domain
Core
SRAM
VCORE
Digital
peripherals
Flash memory
RTC domain
BKP registers
LSE crystal 32.768 kHz osc
RCC BDCR register
RTC and TAMP
VBAT
MSv63104V2
3.7.2
Power supply supervisor
The device has an integrated power-on/power-down (POR/PDR) reset active in all power
modes except Shutdown and ensuring proper operation upon power-on and power-down. It
maintains the device in reset when the supply voltage is below VPOR/PDR threshold, without
the need for an external reset circuit. Brownout reset (BOR) function allows extra flexibility. It
can be enabled and configured through option bytes, by selecting one of four thresholds for
rising VDD and other four for falling VDD.
The device also features an embedded programmable voltage detector (PVD) that monitors
the VDD power supply and compares it to VPVD threshold. It allows generating an interrupt
when VDD level crosses the VPVD threshold, selectively while falling, while rising, or while
falling and rising. The interrupt service routine can then generate a warning message and/or
put the MCU into a safe state. The PVD is enabled by software.
3.7.3
Voltage regulator
Two embedded linear voltage regulators, main regulator (MR) and low-power regulator
(LPR), supply most of digital circuitry in the device.
The MR is used in Run and Sleep modes. The LPR is used in Low-power run, Low-power
sleep and Stop modes.
In Standby and Shutdown modes, both regulators are powered down and their outputs set in
high-impedance state, such as to bring their current consumption close to zero. However,
SRAM data retention is possible in Standby mode, in which case the LPR remains active
and it only supplies the SRAM.
18/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
3.7.4
Functional overview
Low-power modes
By default, the microcontroller is in Run mode after system or power reset. It is up to the
user to select one of the low-power modes described below:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
•
Low-power run mode
This mode is achieved with VCORE supplied by the low-power regulator to minimize the
regulator's operating current. The code can be executed from SRAM or from Flash,
and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can
be clocked by HSI16.
•
Low-power sleep mode
This mode is entered from the low-power run mode. Only the CPU clock is stopped.
When wakeup is triggered by an event or an interrupt, the system reverts to the Lowpower run mode.
•
Stop 0 and Stop 1 modes
In Stop 0 and Stop 1 modes, the device achieves the lowest power consumption while
retaining the SRAM and register contents. All clocks in the VCORE domain are stopped.
The PLL, as well as the HSI16 RC oscillator and the HSE crystal oscillator are
disabled. The LSE or LSI keep running. The RTC can remain active (Stop mode with
RTC, Stop mode without RTC).
Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode,
so as to get clock for processing the wakeup event. The main regulator remains active
in Stop 0 mode while it is turned off in Stop 1 mode.
•
Standby mode
The Standby mode is used to achieve the lowest power consumption, with POR/PDR
always active in this mode. The main regulator is switched off to power down VCORE
domain. The low-power regulator is either switched off or kept active. In the latter case,
it only supplies SRAM to ensure data retention. The PLL, as well as the HSI16 RC
oscillator and the HSE crystal oscillator are also powered down. The RTC can remain
active (Standby mode with RTC, Standby mode without RTC).
For each I/O, the software can determine whether a pull-up, a pull-down or no resistor
shall be applied to that I/O during Standby mode.
Upon entering Standby mode, register contents are lost except for registers in the RTC
domain and standby circuitry. The SRAM contents can be retained through register
setting.
The device exits Standby mode upon external reset event (NRST pin), IWDG reset
event, wakeup event (WKUP pin, configurable rising or falling edge) or RTC event
(alarm, periodic wakeup, timestamp, tamper), or when a failure is detected on LSE
(CSS on LSE).
•
Shutdown mode
The Shutdown mode allows to achieve the lowest power consumption. The internal
regulator is switched off to power down the VCORE domain. The PLL, as well as the
DS13560 Rev 4
19/158
35
Functional overview
STM32G0B1xB/xC/xE
HSI16 and LSI RC-oscillators and HSE crystal oscillator are also powered down. The
RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).
The BOR is not available in Shutdown mode. No power voltage monitoring is possible
in this mode. Therefore, switching to RTC domain is not supported.
SRAM and register contents are lost except for registers in the RTC domain.
The device exits Shutdown mode upon external reset event (NRST pin), IWDG reset
event, wakeup event (WKUP pin, configurable rising or falling edge) or RTC event
(alarm, periodic wakeup, timestamp, tamper).
3.7.5
Reset mode
During and upon exiting reset, the schmitt triggers of I/Os are disabled so as to reduce
power consumption. In addition, when the reset source is internal, the built-in pull-up
resistor on NRST pin is deactivated.
3.7.6
VBAT operation
The VBAT power domain, consuming very little energy, includes RTC, and LSE oscillator and
backup registers.
In VBAT mode, the RTC domain is supplied from VBAT pin. The power source can be, for
example, an external battery or an external supercapacitor. Two anti-tamper detection pins
are available.
The RTC domain can also be supplied from VDD/VDDA pin.
By means of a built-in switch, an internal voltage supervisor allows automatic switching of
RTC domain powering between VDD and voltage from VBAT pin to ensure that the supply
voltage of the RTC domain (VBAT) remains within valid operating conditions. If both voltages
are valid, the RTC domain is supplied from VDD/VDDA pin.
An internal circuit for charging the battery on VBAT pin can be activated if the VDD voltage is
within a valid range.
Note:
External interrupts and RTC alarm/events cannot cause the microcontroller to exit the VBAT
mode, as in that mode the VDD is not within a valid range.
3.8
Interconnect of peripherals
Several peripherals have direct connections between them. This allows autonomous
communication between peripherals, saving CPU resources thus power supply
consumption. In addition, these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep and Stop
modes.
20/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Functional overview
Stop
TIMx
Sleep
Low-power sleep
Interconnect source
Run
Low-power run
Table 4. Interconnect of peripherals
TIMx
Timer synchronization or chaining
Y
Y
-
ADCx
DACx
Conversion triggers
Y
Y
-
DMA
Memory-to-memory transfer trigger
Y
Y
-
Comparator output blanking
Y
Y
-
TIM1,2,3,4
Timer input channel, trigger, break
from analog signals comparison
Y
Y
-
LPTIMERx
Low-power timer triggered by analog
signals comparison
Y
Y
Y
TIM1
Timer triggered by analog watchdog
Y
Y
-
TIM16
Timer input channel from RTC events
Y
Y
-
Low-power timer triggered by RTC
alarms or tampers
Y
Y
Y
Clock source used as input channel for
RC measurement and trimming
Y
Y
-
Interconnect
destination
COMPx
COMPx
ADCx
RTC
LPTIMERx
Interconnect action
All clock sources (internal and
external)
TIM14,16,17
CSS
RAM (parity error)
Flash memory (ECC error)
COMPx
PVD
TIM1,15,16,17
Timer break
Y
Y
-
CPU (hard fault)
TIM1,15,16,17
Timer break
Y
-
-
TIMx
External trigger
Y
Y
-
LPTIMERx
External trigger
Y
Y
Y
Conversion external trigger
Y
Y
-
GPIO
ADC
DACx
DS13560 Rev 4
21/158
35
Functional overview
3.9
STM32G0B1xB/xC/xE
Clocks and startup
The clock controller distributes the clocks coming from different oscillators to the core and
the peripherals. It also manages clock gating for low-power modes and ensures clock
robustness. It features:
•
Clock prescaler: to get the best trade-off between speed and current consumption,
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler
•
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
•
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
•
System clock source: three different sources can deliver SYSCLK system clock:
•
•
–
4-48 MHz high-speed oscillator with external crystal or ceramic resonator (HSE). It
can supply clock to system PLL. The HSE can also be configured in bypass mode
for an external clock.
–
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software. It can
supply clock to system PLL.
–
System PLL with maximum output frequency of 64 MHz. It can be fed with HSE or
HSI16 clocks.
Auxiliary clock source: two ultra-low-power clock sources for the real-time clock
(RTC):
–
32.768 kHz low-speed oscillator with external crystal (LSE), supporting four drive
capability modes. The LSE can also be configured in bypass mode for using an
external clock.
–
32 kHz low-speed internal RC oscillator (LSI) with ±5% accuracy, also used to
clock an independent watchdog.
USB clock source:
–
HSI 48 MHz in association with CRS can provide a dedicated clock to USB FS
allowing the peripheral to operate as device without requiring an external
resonator
•
Peripheral clock sources: several peripherals ( I2S, USARTs, I2Cs, LPTIMs, ADC,
USB FS) have their own clock independent of the system clock.
•
Clock security system (CSS): in the event of HSE clock failure, the system clock is
automatically switched to HSI16 and, if enabled, a software interrupt is generated. LSE
clock failure can also be detected and generate an interrupt. The CCS feature can be
enabled by software.
•
Clock output:
–
MCO (microcontroller clock output) provides one of the internal clocks for
external use by the application
–
LSCO (low speed clock output) provides LSI or LSE in all low-power modes
(except in VBAT operation).
Several prescalers allow the application to configure AHB and APB domain clock
frequencies, 64 MHz at maximum.
22/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
3.10
Functional overview
General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function (AF). Most of
the GPIO pins are shared with special digital or analog functions.
Through a specific sequence, this special function configuration of I/Os can be locked, such
as to avoid spurious writing to I/O control registers.
3.11
Direct memory access controller (DMA)
The direct memory access (DMA) controller is a bus master and system peripheral with
single-AHB architecture.
With 12 channels, it performs data transfers between memory-mapped peripherals and/or
memories, to offload the CPU.
Each channel is dedicated to managing memory access requests from one or more
peripherals. The unit includes an arbiter for handling the priority between DMA requests.
Main features of the DMA controller:
•
Single-AHB master
•
Peripheral-to-memory, memory-to-peripheral, memory-to-memory and peripheral-toperipheral data transfers
•
Access, as source and destination, to on-chip memory-mapped devices such as Flash
memory, SRAM, and AHB and APB peripherals
•
All DMA channels independently configurable:
•
3.12
–
Each channel is associated either with a DMA request signal coming from a
peripheral, or with a software trigger in memory-to-memory transfers. This
configuration is done by software.
–
Priority between the requests is programmable by software (four levels per
channel: very high, high, medium, low) and by hardware in case of equality (such
as request to channel 1 has priority over request to channel 2).
–
Transfer size of source and destination are independent (byte, half-word, word),
emulating packing and unpacking. Source and destination addresses must be
aligned on the data size.
–
Support of transfers from/to peripherals to/from memory with circular buffer
management
–
Programmable number of data to be transferred: 0 to 216 - 1
Generation of an interrupt request per channel. Each interrupt request originates from
any of the three DMA events: transfer complete, half transfer, or transfer error.
DMA request multiplexer (DMAMUX)
The DMAMUX request multiplexer enables routing a DMA request line between the
peripherals and the DMA controller. Each channel selects a unique DMA request line,
unconditionally or synchronously with events from its DMAMUX synchronization inputs.
DMAMUX may also be used as a DMA request generator from programmable events on its
input trigger signals.
DS13560 Rev 4
23/158
35
Functional overview
3.13
STM32G0B1xB/xC/xE
Interrupts and events
The device flexibly manages events causing interrupts of linear program execution, called
exceptions. The Cortex-M0+ processor core, a nested vectored interrupt controller (NVIC)
and an extended interrupt/event controller (EXTI) are the assets contributing to handling the
exceptions. Exceptions include core-internal events such as, for example, a division by zero
and, core-external events such as logical level changes on physical lines. Exceptions result
in interrupting the program flow, executing an interrupt service routine (ISR) then resuming
the original program flow.
The processor context (contents of program pointer and status registers) is stacked upon
program interrupt and unstacked upon program resume, by hardware. This avoids context
stacking and unstacking in the interrupt service routines (ISRs) by software, thus saving
time, code and power. The ability to abandon and restart load-multiple and store-multiple
operations significantly increases the device’s responsiveness in processing exceptions.
3.13.1
Nested vectored interrupt controller (NVIC)
The configurable nested vectored interrupt controller is tightly coupled with the core. It
handles physical line events associated with a non-maskable interrupt (NMI) and maskable
interrupts, and Cortex-M0+ exceptions. It provides flexible priority management.
The tight coupling of the processor core with NVIC significantly reduces the latency between
interrupt events and start of corresponding interrupt service routines (ISRs). The ISR
vectors are listed in a vector table, stored in the NVIC at a base address. The vector
address of an ISR to execute is hardware-built from the vector table base address and the
ISR order number used as offset.
If a higher-priority interrupt event happens while a lower-priority interrupt event occurring
just before is waiting for being served, the later-arriving higher-priority interrupt event is
served first. Another optimization is called tail-chaining. Upon a return from a higher-priority
ISR then start of a pending lower-priority ISR, the unnecessary processor context
unstacking and stacking is skipped. This reduces latency and contributes to power
efficiency.
Features of the NVIC:
3.13.2
•
Low-latency interrupt processing
•
4 priority levels
•
Handling of a non-maskable interrupt (NMI)
•
Handling of 32 maskable interrupt lines
•
Handling of 10 Cortex-M0+ exceptions
•
Later-arriving higher-priority interrupt processed first
•
Tail-chaining
•
Interrupt vector retrieval by hardware
Extended interrupt/event controller (EXTI)
The extended interrupt/event controller adds flexibility in handling physical line events and
allows identifying wake-up events at processor wakeup from Stop mode.
The EXTI controller has a number of channels, of which some with rising, falling or rising,
and falling edge detector capability. Any GPIO and a few peripheral signals can be
connected to these channels.
24/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Functional overview
The channels can be independently masked.
The EXTI controller can capture pulses shorter than the internal clock period.
A register in the EXTI controller latches every event even in Stop mode, which allows the
software to identify the origin of the processor's wake-up from Stop mode or, to identify the
GPIO and the edge event having caused an interrupt.
3.14
Analog-to-digital converter (ADC)
A native 12-bit analog-to-digital converter is embedded into STM32G0B1xB/xC/xE devices.
It can be extended to 16-bit resolution through hardware oversampling. The ADC has up to
16 external channels and 3 internal channels (temperature sensor, voltage reference, VBAT
monitoring). It performs conversions in single-shot or scan mode. In scan mode, automatic
conversion is performed on a selected group of analog inputs.
The ADC frequency is independent from the CPU frequency, allowing maximum sampling
rate of ~2 MSps even with a low CPU speed. An auto-shutdown function guarantees that
the ADC is powered off except during the active conversion phase.
The ADC can be served by the DMA controller. It can operate in the whole VDD supply
range.
The ADC features a hardware oversampler up to 256 samples, improving the resolution to
16 bits (refer to AN2668).
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all scanned channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the general-purpose timers (TIMx) can be internally connected to
the ADC start triggers, to allow the application to synchronize A/D conversions with timers.
3.14.1
Temperature sensor
The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature.
The temperature sensor is internally connected to an ADC input to convert the sensor
output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor may
vary from part to part due to process variation, the uncalibrated internal temperature sensor
is suitable only for relative temperature measurements.
To improve the accuracy of the temperature sensor, each part is individually factorycalibrated by ST. The resulting calibration data are stored in the part’s engineering bytes,
accessible in read-only mode.
DS13560 Rev 4
25/158
35
Functional overview
STM32G0B1xB/xC/xE
Table 5. Temperature sensor calibration values
3.14.2
Calibration value name
Description
Memory address
TS_CAL1
TS ADC raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75A8 - 0x1FFF 75A9
TS_CAL2
TS ADC raw data acquired at a
temperature of 130 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75CA - 0x1FFF 75CB
Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and comparators. VREFINT is internally connected to an ADC input. The VREFINT
voltage is individually precisely measured for each part by ST during production test and
stored in the part’s engineering bytes. It is accessible in read-only mode.
Table 6. Internal voltage reference calibration values
3.14.3
Calibration value name
Description
Memory address
VREFINT
Raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75AA - 0x1FFF 75AB
VBAT battery voltage monitoring
This embedded hardware feature allows the application to measure the VBAT battery voltage
using an internal ADC input. As the VBAT voltage may be higher than VDDA and thus outside
the ADC input range, the VBAT pin is internally connected to a bridge divider by three. As a
consequence, the converted digital value is one third the VBAT voltage.
3.15
Digital-to-analog converter (DAC)
The 2-channel 12-bit buffered DAC converts a digital value into an analog voltage available
on the channel output. The architecture of either channel is based on integrated resistor
string and an inverting amplifier. The digital circuitry is common for both channels.
26/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Functional overview
Features of the DAC:
3.16
•
Two DAC output channels
•
8-bit or 12-bit output mode
•
Buffer offset calibration (factory and user trimming)
•
Left or right data alignment in 12-bit mode
•
Synchronized update capability
•
Noise-wave generation
•
Triangular-wave generation
•
Independent or simultaneous conversion for DAC channels
•
DMA capability for either DAC channel
•
Triggering with timer events, synchronized with DMA
•
Triggering with external events
•
Sample-and-hold low-power mode, with internal or external capacitor
Voltage reference buffer (VREFBUF)
When enabled, an embedded buffer provides the internal reference voltage to analog
blocks (for example ADC) and to VREF+ pin for external components.
The internal voltage reference buffer supports two voltages:
•
2.048 V
•
2.5 V
An external voltage reference can be provided through the VREF+ pin when the internal
voltage reference buffer is disabled.
On some packages, the VREF+ pad of the silicon die is double-bonded with supply pad to
common VDD/VDDA pin and so the internal voltage reference buffer cannot be used.
3.17
Comparators (COMP)
Three embedded rail-to-rail analog comparators have programmable reference voltage
(internal or external), hysteresis, speed (low for low-power) and output polarity.
The reference voltage can be one of the following:
•
external, from an I/O
•
internal, from DAC
•
internal reference voltage (VREFINT) or its submultiple (1/4, 1/2, 3/4)
The comparators can wake up the device from Stop mode, generate interrupts, breaks or
triggers for the timers and can be also combined into a window comparator.
3.18
Timers and watchdogs
The device includes an advanced-control timer, seven general-purpose timers, two basic
timers, two low-power timers, two watchdog timers and a SysTick timer. Table 7 compares
features of the advanced-control, general-purpose and basic timers.
DS13560 Rev 4
27/158
35
Functional overview
STM32G0B1xB/xC/xE
Table 7. Timer feature comparison
Timer type
Timer
Counter
resolution
Counter
type
Maximum
operating
frequency
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
outputs
Advancedcontrol
TIM1
16-bit
Up, down,
up/down
128 MHz
Integer from
1 to 216
Yes
4
3
TIM2
32-bit
Up, down,
up/down
64 MHz
Integer from
1 to 216
Yes
4
-
TIM3
16-bit
Up, down,
up/down
64 MHz
Integer from
1 to 216
Yes
4
-
TIM4
16-bit
Up, down,
up/down
64 MHz
Integer from
1 to 216
Yes
4
-
TIM14
16-bit
Up
64 MHz
Integer from
1 to 216
No
1
-
TIM15
16-bit
Up
128 MHz
Integer from
1 to 216
Yes
2
1
TIM16
TIM17
16-bit
Up
64 MHz
Integer from
1 to 216
Yes
1
1
Basic
TIM6
TIM7
16-bit
Up
64 MHz
Integer from
1 to 216
Yes
-
-
Low-power
LPTIM1
LPTIM2
16-bit
Up
64 MHz
2n where
n=0 to 7
No
N/A
-
Generalpurpose
3.18.1
Advanced-control timer (TIM1)
The advanced-control timer can be seen as a three-phase PWM unit multiplexed on 6
channels. It has complementary PWM outputs with programmable inserted dead-times. It
can also be seen as a complete general-purpose timer. The four independent channels can
be used for:
•
input capture
•
output compare
•
PWM output (edge or center-aligned modes) with full modulation capability (0-100%)
•
one-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs
disabled, so as to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIMx timers (described in
Section 3.18.2) using the same architecture, so the advanced-control timers can work
together with the TIMx timers via the Timer Link feature for synchronization or event
chaining.
28/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
3.18.2
Functional overview
General-purpose timers (TIM2, 3, 4, 14, 15, 16, 17)
There are seven synchronizable general-purpose timers embedded in the device (refer to
Table 7 for comparison). Each general-purpose timer can be used to generate PWM outputs
or act as a simple timebase.
•
TIM2, TIM3, and TIM4
These are full-featured general-purpose timers:
–
TIM2 with 32-bit auto-reload up/downcounter and 16-bit prescaler
–
TIM3 and TIM4 with 16-bit auto-reload up/downcounter and 16-bit prescaler
They have four independent channels for input capture/output compare, PWM or onepulse mode output. They can operate in combination with other general-purpose timers
via the Timer Link feature for synchronization or event chaining. They can generate
independent DMA request and support quadrature encoders. Their counter can be
frozen in debug mode.
•
TIM14
This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. It has one
channel for input capture/output compare, PWM output or one-pulse mode output. Its
counter can be frozen in debug mode.
•
TIM15, TIM16, TIM17
These are general-purpose timers featuring:
–
16-bit auto-reload upcounter and 16-bit prescaler
–
2 channels and 1 complementary channel for TIM15
–
1 channel and 1 complementary channel for TIM16 and TIM17
All channels can be used for input capture/output compare, PWM or one-pulse mode
output. The timers can operate together via the Timer Link feature for synchronization
or event chaining. They can generate independent DMA request. Their counters can
be frozen in debug mode.
3.18.3
Basic timers (TIM6 and TIM7)
These timers are mainly used for triggering DAC conversions. They can also be used as
generic 16-bit timebases.
3.18.4
Low-power timers (LPTIM1 and LPTIM2)
These timers have an independent clock. When fed with LSE, LSI or external clock, they
keep running in Stop mode and they can wake up the system from it.
DS13560 Rev 4
29/158
35
Functional overview
STM32G0B1xB/xC/xE
Features of LPTIM1 and LPTIM2:
3.18.5
•
16-bit up counter with 16-bit autoreload register
•
16-bit compare register
•
Configurable output (pulse, PWM)
•
Continuous/one-shot mode
•
Selectable software/hardware input trigger
•
Selectable clock source:
–
Internal: LSE, LSI, HSI16 or APB clocks
–
External: over LPTIM input (working even with no internal clock source running,
used by pulse counter application)
•
Programmable digital glitch filter
•
Encoder mode
Independent watchdog (IWDG)
The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with
user-defined refresh window. It is clocked from an independent 32 kHz internal RC (LSI).
Independent of the main clock, it can operate in Stop and Standby modes. It can be used
either as a watchdog to reset the device when a problem occurs, or as a free-running timer
for application timeout management. It is hardware- or software-configurable through the
option bytes. Its counter can be frozen in debug mode.
3.18.6
System window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked by the
system clock. It has an early-warning interrupt capability. Its counter can be frozen in debug
mode.
3.18.7
SysTick timer
This timer is dedicated to real-time operating systems, but it can also be used as a standard
down counter.
Features of SysTick timer:
3.19
•
24-bit down counter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0
•
Programmable clock source
Real-time clock (RTC), tamper (TAMP) and backup registers
The device embeds an RTC and five 32-bit backup registers, located in the RTC domain of
the silicon die.
The ways of powering the RTC domain are described in Section 3.7.6.
The RTC is an independent BCD timer/counter.
30/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Functional overview
Features of the RTC:
•
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format
•
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month
•
Programmable alarm
•
On-the-fly correction from 1 to 32767 RTC clock pulses, usable for synchronization with
a master clock
•
Reference clock detection - a more precise second-source clock (50 or 60 Hz) can be
used to improve the calendar precision
•
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy
•
Two anti-tamper detection pins with programmable filter
•
Timestamp feature to save a calendar snapshot, triggered by an event on the
timestamp pin or a tamper event, or by switching to VBAT mode
•
17-bit auto-reload wakeup timer (WUT) for periodic events, with programmable
resolution and period
•
Multiple clock sources and references:
–
A 32.768 kHz external crystal (LSE)
–
An external resonator or oscillator (LSE)
–
The internal low-power RC oscillator (LSI, with typical frequency of 32 kHz)
–
The high-speed external clock (HSE) divided by 32
When clocked by LSE, the RTC operates in VBAT mode and in all low-power modes. When
clocked by LSI, the RTC does not operate in VBAT mode, but it does in low-power modes
except for the Shutdown mode.
All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt
and wake the device up from the low-power modes.
The backup registers allow keeping 20 bytes of user application data in the event of VDD
failure, if a valid backup supply voltage is provided on VBAT pin. They are not affected by
the system reset, power reset, and upon the device’s wakeup from Standby or Shutdown
modes.
3.20
Inter-integrated circuit interface (I2C)
The device embeds three I2C peripherals. Refer to Table 8 for the features.
The I2C-bus interface handles communication between the microcontroller and the serial
I2C-bus. It controls all I2C-bus-specific sequencing, protocol, arbitration and timing.
DS13560 Rev 4
31/158
35
Functional overview
STM32G0B1xB/xC/xE
Features of the I2C peripheral:
•
I2C-bus specification and user manual rev. 5 compatibility:
–
•
Slave and master modes, multimaster capability
–
Standard-mode (Sm), with a bitrate up to 100 kbit/s
–
Fast-mode (Fm), with a bitrate up to 400 kbit/s
–
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and extra output drive I/Os
–
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
–
Programmable setup and hold times
–
Clock stretching
SMBus specification rev 3.0 compatibility:
–
Hardware PEC (packet error checking) generation and verification with ACK
control
–
Command and data acknowledge control
–
Address resolution protocol (ARP) support
–
Host and Device support
–
SMBus alert
–
Timeouts and idle condition detection
•
PMBus rev 1.3 standard compatibility
•
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent of the PCLK reprogramming
•
Wakeup from Stop mode on address match
•
Programmable analog and digital noise filters
•
1-byte buffer with DMA capability
Table 8. I2C implementation
I2C1
I2C2
I2C3
Standard mode (up to 100 kbit/s)
X
X
Fast mode (up to 400 kbit/s)
X
X
Fast Mode Plus (up to 1 Mbit/s) with extra output drive I/Os
X
X
Programmable analog and digital noise filters
X
X
SMBus/PMBus hardware support
X
-
Independent clock
X
-
Wakeup from Stop mode on address match
X
-
I2C features(1)
1. X: supported
3.21
Universal synchronous/asynchronous receiver transmitter
(USART)
The device embeds universal synchronous/asynchronous receivers/transmitters that
communicate at speeds of up to 8 Mbit/s.
32/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Functional overview
They provide hardware management of the CTS, RTS and RS485 DE signals,
multiprocessor communication mode, master synchronous communication and single-wire
half-duplex communication mode. Some can also support SmartCard communication (ISO
7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and have
a clock domain independent of the CPU clock, which allows them to wake up the MCU from
Stop mode. The wakeup events from Stop mode are programmable and can be:
•
start bit detection
•
any received data frame
•
a specific programmed data frame
All USART interfaces can be served by the DMA controller.
Table 9. USART implementation
USART1
USART2
USART3
USART4
USART5
USART6
Hardware flow control for modem
X
X
Continuous communication using DMA
X
X
Multiprocessor communication
X
X
Synchronous mode
X
X
Smartcard mode
X
-
Single-wire half-duplex communication
X
X
IrDA SIR ENDEC block
X
-
LIN mode
X
-
Dual clock domain and wakeup from Stop mode
X
-
Receiver timeout interrupt
X
-
Modbus communication
X
-
Auto baud rate detection
X
-
Driver Enable
X
X
USART modes/features(1)
1. X: supported
3.22
Low-power universal asynchronous receiver transmitter
(LPUART)
The device embeds two LPUARTs. The peripheral supports asynchronous serial
communication with minimum power consumption. It supports half duplex single wire
communication and modem operations (CTS/RTS). It allows multiprocessor
communication.
The LPUART has a clock domain independent of the CPU clock, and can wakeup the
system from Stop mode. The Stop mode wakeup events are programmable and can be:
•
start bit detection
•
any received data frame
•
a specific programmed data frame
DS13560 Rev 4
33/158
35
Functional overview
STM32G0B1xB/xC/xE
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600
baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while
having an extremely low energy consumption. Higher speed clock can be used to reach
higher baudrates.
The LPUART interface can be served by the DMA controller.
3.23
Serial peripheral interface (SPI)
The device contains three SPIs running at up to 32 Mbits/s in master and slave modes. It
supports half-duplex, full-duplex and simplex communications. A 3-bit prescaler gives eight
master mode frequencies. The frame size is configurable from 4 bits to 16 bits. The SPI
peripherals support NSS pulse mode, TI mode and hardware CRC calculation.
The SPI peripherals can be served by the DMA controller.
The I2S interface mode of the SPI peripheral (if supported, see the following table) supports
four different audio standards can operate as master or slave, in half-duplex communication
mode. It can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data
resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to
192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master
mode, it can output a clock for an external audio component at 256 times the sampling
frequency.
Table 10. SPI/I2S implementation
SPI1
SPI2
SPI3
Hardware CRC calculation
X
X
Rx/Tx FIFO
X
X
NSS pulse mode
X
X
X
-
X
X
SPI features(1)
I
2S
mode
TI mode
1. X = supported.
3.24
Universal serial bus device (USB) and host (USBH)
The devices embed a USB controller with full-speed USB device and host functionality
compliant with the USB specification version 2.0. The internal USB PHY supports USB FS
signaling, embedded DP pull-up and also battery charging detection according to Battery
Charging Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s)
function interface with added support for USB 2.0 Link Power Management. It has softwareconfigurable endpoint setting with packet memory up to 1 KB and suspend/resume support.
It requires a precise 48 MHz clock that is generated from the internal main PLL (the clock
source must use a HSE crystal oscillator) or by the internal 48 MHz oscillator in automatic
trimming mode. The synchronization for this oscillator can be taken from the USB data
stream itself (SOF signalization) which allows crystal less operation.
34/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
3.25
Functional overview
USB Type-C™ Power Delivery controller
The device embeds two controllers (UCPD1 and UCPD2) compliant with USB Type-C Rev.
1.2 and USB Power Delivery Rev. 3.0 specifications.
The controllers use specific I/Os supporting the USB Type-C and USB Power Delivery
requirements, featuring:
•
USB Type-C pull-up (Rp, all values) and pull-down (Rd) resistors
•
“Dead battery” support
•
USB Power Delivery message transmission and reception
•
FRS (fast role swap) support
The digital controller handles notably:
•
USB Type-C level detection with de-bounce, generating interrupts
•
FRS detection, generating an interrupt
•
byte-level interface for USB Power Delivery payload, generating interrupts (DMA
compatible)
•
USB Power Delivery timing dividers (including a clock pre-scaler)
•
CRC generation/checking
•
4b5b encode/decode
•
ordered sets (with a programmable ordered set mask at receive)
•
frequency recovery in receiver during preamble
The interface offers low-power operation compatible with Stop mode, maintaining the
capacity to detect incoming USB Power Delivery messages and FRS signaling.
3.26
Controller area network (FDCAN)
The controller area network (CAN) subsystem consists of two CAN modules and a message
RAM.
The CAN modules are compliant with ISO 11898-1 (CAN protocol specification version 2.0
part A, B) and CAN FD protocol specification version 1.0.
The 1-Kbyte message RAM per CAN module implements filters, receive FIFOs, receive
buffers, transmit event FIFOs, and transmit buffers.
3.27
Development support
3.27.1
Serial wire debug port (SW-DP)
An Arm SW-DP interface is provided to allow a serial wire debugging tool to be connected to
the MCU.
DS13560 Rev 4
35/158
35
Pinouts, pin description and alternate functions
4
STM32G0B1xB/xC/xE
Pinouts, pin description and alternate functions
The devices housed in 32-pin, 48-pin, and 64-pin packages come in two variants - “GP” and
“N” (the latter with ordering code having N behind the temperature range digit). Refer to
Table 2: Features and peripheral counts for differences.
Figure 3. STM32G0B1VxT LQFP100 pinout
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
1
75
2
74
3
73
4
72
5
71
6
70
7
69
8
68
9
67
10
66
11
65
12
64
LQFP100
13
63
50
49
48
47
46
45
44
43
42
41
PA1
PA2
PA3
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF6
PF7
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
40
51
39
52
25
38
53
24
37
54
23
36
55
22
35
56
21
34
57
20
33
58
19
32
59
18
31
60
17
30
61
16
29
15
28
62
27
14
26
PB9
PC10
PC11
PE4
PE5
PE6
PC12
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
VBAT
VREF+
VDD/VDDA
VSS/VSSA
PF0-OSC_IN
PF1-OSC_OUT
PF2-NRST
PF3
PF4
PF5
PC0
PC1
PC2
PC3
PA0
99
100
PB8
PB7
PB6
PE3
PE2
PE1
PE0
PB5
PB4
PB3
PF13
PF12
PF11
PF10
PF9
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC9
PC8
Top view
1. The I/O pins supplied by VDDIO2 are shown in gray.
36/158
DS13560 Rev 4
PA15
PA14-BOOT0
PA13
PF8
PA12 [PA10]
PA11 [PA9]
PA10
PD15
PD14
PD13
PD12
VDDIO2
VSS
PD11
PD10
PD9
PD8
PC7
PC6
PA9
PA8
PB15
PB14
PB13
PB12
STM32G0B1xB/xC/xE
Pinouts, pin description and alternate functions
Figure 4. STM32G0B1VxI UFBGA100 pinout
Top view
1
2
3
4
5
6
7
8
9
10
11
12
A
PB8
PE3
PE2
PE0
PB3
PF13
PF11
PF9
PD6
PD5
PD2
PC9
B
PC11
PC10
PB7
PE1
PB4
PF12
PF10
PD7
PD4
PD0
PA15
PA14BOOT0
C
PE6
PE4
PB9
PB6
PB5
PD3
PD1
PC8
PA13
PA12
[PA10]
D
PC14OSC32
_IN
PC12
PE5
PF8
PD15
PA11
[PA9]
E
PC15OSC32
_OUT
VBAT
PC13
PA10
PD14
PD13
F
VDD
VREF+
PD12
VDDIO
2
G
VSS
PF2NRST
PD11
VSS
H
PF0OSC_I
N
PF4
PF3
PA9
PD9
PD10
J
PF1OSC_
OUT
PF5
PC1
PB15
PC6
PD8
K
PC0
PC2
PA0
PA3
PA7
L
PC3
PA1
PA4
PC4
PB0
PB2
M
PA2
PA5
PA6
PC5
PB1
PF6
PE9
PE14
PB12
PB14
PC7
PF7
PE10
PE12
PE15
PB11
PA8
PE7
PE8
PE11
PE13
PB10
PB13
1. The I/O pads supplied by VDDIO2 are shown in gray.
DS13560 Rev 4
37/158
55
Pinouts, pin description and alternate functions
STM32G0B1xB/xC/xE
PD5
PD4
PD3
PD2
PD1
PD0
PC9
PC8
PA15
68
67
66
65
64
63
62
61
PB4
PD6
PB5
73
69
PE0
74
70
PE1
75
PB3
PE3
76
PD7
PB6
77
71
PB7
78
72
PB8
79
Top view
80
Figure 5. STM32G0B1MxT LQFP80 pinout
PB9
1
60
PA14-BOOT0
PC10
2
59
PA13
PC11
3
58
PA12 [PA10]
PC12
4
57
PA11 [PA9]
PC13
5
56
PA10
PD15
PC14-OSC32_IN
6
55
PC15-OSC32_OUT
7
54
PD14
VBAT
8
53
PD13
VREF+
9
52
PD12
VDD
10
51
VDDIO2
VSS
11
PF0-OSC_IN
PF1-OSC_OUT
LQFP80
50
VSS
12
49
PD11
31
32
33
34
35
36
37
38
39
40
PB2
PE8
PE9
PE10
PB10
PB11
PB12
PB13
PB14
PB15
PE7
41
30
20
PB1
PA1
29
PA8
PB0
42
28
19
PC5
PA9
PA0
27
43
PC4
18
26
PC6
PC3
PA7
44
25
17
PA6
PC7
PC2
24
PD8
45
PA5
46
16
23
15
PC1
PA4
PC0
22
PD9
21
PD10
47
PA3
48
14
PA2
13
PF2-NRST
1. The I/O pins supplied by VDDIO2 are shown in gray.
38/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Pinouts, pin description and alternate functions
PD1
PD0
PC9
49
PD4
54
50
PD5
55
51
PD6
56
PD3
PB3
57
PD2
PB4
58
52
PB5
59
53
PB7
PB6
PB8
60
PB9
62
61
PC10
63
Top view
64
Figure 6. STM32G0B1RxT LQFP64 pinout
PC11
1
48
PC8
PC12
2
47
PA15
PC13
3
46
PA14-BOOT0
PC14-OSC32_IN
4
45
PA13
PC15-OSC32_OUT
5
44
PA12 [PA10]
VBAT
6
43
PA11 [PA9]
VREF+
7
42
PA10
VDD/VDDA
8
41
PD9
VSS/VSSA
9
40
PD8
PF0-OSC_IN
10
39
PC7
PF1-OSC_OUT
11
38
PC6
PF2-NRST
12
37
PA9
PC0
13
36
PA8
PC1
14
35
PB15
PC2
15
34
PB14
PC3
16
33
PB13
32
PB12
PC9
31
49
30
PB11
PD0
50
PB10
PD1
51
29
PB2
PD2
52
28
PB1
PD3
53
27
PB0
PD4
54
26
PD5
PC5
PD6
55
25
PC4
56
24
PA7
PB3
23
57
22
PA6
PB4
58
PA5
PB5
59
21
PA4
PB6
60
20
PB7
PA3
PB8
19
PA2
61
18
62
17
PB9
63
PA1
PC10
64
Top view
PA0
LQFP64
GP version
(_RxT)
PC11
1
48
PC8
PC12
2
47
PA15
PC13
3
46
PA14-BOOT0
PC14-OSC32_IN
4
45
PA13
PC15-OSC32_OUT
5
44
PA12 [PA10]
VBAT
6
43
PA11 [PA9]
VREF+
7
42
PA10
VDD/VDDA
8
41
VDDIO2
VSS/VSSA
9
40
VSS
PF0-OSC_IN
10
39
PC7
PF1-OSC_OUT
11
38
PC6
PF2-NRST
12
37
PA9
PC0
13
36
PA8
PC1
14
35
PB15
PC2
15
34
PB14
PC3
16
33
PB13
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PA2
PA3
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
PB12
17
PA0
PA1
LQFP64
N version
(_RxTxN)
1. The I/O pins supplied by VDDIO2 are shown in gray.
DS13560 Rev 4
39/158
55
Pinouts, pin description and alternate functions
STM32G0B1xB/xC/xE
Figure 7. STM32G0B1RxI UFBGA64 pinout
1
2
3
4
5
6
7
8
A
PC11
PC10
PB7
PB6
PD6
PD2
PD0
PC8
B
PC15OSC32
_OUT
PC12
PB8
PB3
PD5
PD1
PC9
PA12
[PA10]
C
PC14OSC32
_IN
PC13
PB9
PB4
PD4
PA15
PA14BOOT0
PA11
[PA9]
D
VDD/
VDDA
VREF+
VBAT
PB5
PD3
PA10
PA13
VDDIO
2
E
VSS/
VSSA
PF2NRST
PC0
PA7
PC7
PA9
PC6
VSS
F
PF0OSC_I
N
PC1
PA3
PA6
PB0
PB14
PB15
PA8
G
PF1OSC_
OUT
PC2
PA2
PA5
PB1
PB10
PB12
PB13
H
PC3
PA0
PA1
PA4
PC4
PC5
PB2
PB11
Top view
N version
1. The I/O pads supplied by VDDIO2 are shown in gray.
40/158
DS13560 Rev 4
(_RxIxN)
STM32G0B1xB/xC/xE
Pinouts, pin description and alternate functions
Figure 8. STM32G0B1NxY WLCSP52 pinout
Top view
1
A
B
PA12
[PA10]
H
PC7
PA8
PC6
PB15
8
PD2
VREF+
PF2NRST
PA5
PF0OSC_IN
PF1OSC_
OUT
PA4
PA7
VDD/
VDDA
VSS/
VSSA
PA1
PC4
PC14OSC32
_IN
PC15OSC32
_OUT
VBAT
PA2
PB0
PB8
PC13
PB9
PA6
PB1
PB5
PB6
PC5
10 11 12 13
PB4
PB7
PB11
9
PB3
PB12
PB2
PB10
7
PD1
PA9
PB14
6
PD3
PA10
VSS
PB13
5
PA14BOOT0
PA13
VDDIO
2
G
4
PD0
PA11
[PA9]
E
F
3
PA15
C
D
2
PA3
PA0
1. The I/O pads supplied by VDDIO2 are shown in gray.
DS13560 Rev 4
41/158
55
Pinouts, pin description and alternate functions
STM32G0B1xB/xC/xE
Figure 9. STM32G0B1CxT LQFP48 pinout
37
38
39
40
41
42
43
44
45
46
1
36
2
35
3
34
4
33
5
32
6
31
LQFP48
7
30
GP version
(_RxT)
24
23
22
21
20
PA14-BOOT0
PA13
PA12 [PA10]
PA11 [PA9]
PA10
PC7
PC6
PA9
PA8
PB15
PB14
PB13
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
PB12
19
25
18
26
12
17
27
11
16
28
10
15
29
9
14
8
13
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
VBAT
VREF+
VDD/VDDA
VSS/VSSA
PF0-OSC_IN
PF1-OSC_OUT
PF2-NRST
PA0
PA1
47
48
PB9
PB8
PB7
PB6
PB5
PB4
PB3
PD3
PD2
PD1
PD0
PA15
Top view
37
38
39
40
41
42
43
44
45
46
1
36
2
35
3
34
4
33
5
32
6
31
LQFP48
7
30
24
23
22
21
20
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
PB12
19
25
18
26
12
17
27
11
16
28
10
15
29
9
14
8
13
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
VBAT
VREF+
VDD/VDDA
VSS/VSSA
PF0-OSC_IN
PF1-OSC_OUT
PF2-NRST
PA0
PA1
47
48
PB9
PB8
PB7
PB6
PB5
PB4
PB3
PD3
PD2
PD1
PD0
PA15
Top view
1. The I/O pins supplied by VDDIO2 are shown in gray.
42/158
DS13560 Rev 4
PA14-BOOT0
PA13
PA12 [PA10]
PA11 [PA9]
PA10
VDDIO2
N version
VSS
(_RxTxN)
PA9
PA8
PB15
PB14
PB13
STM32G0B1xB/xC/xE
Pinouts, pin description and alternate functions
Figure 10. STM32G0B1CxU UFQFPN48 pinout
37
38
39
40
41
42
43
44
45
46
1
36
2
35
3
34
4
33
5
32
6
31
UFQFPN48
7
30
8
29
9
28
10
27
Exposed pad
23
22
21
20
19
18
17
16
15
14
12
26
25
24
11
13
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
VBAT
VREF+
VDD/VDDA
VSS/VSSA
PF0-OSC_IN
PF1-OSC_OUT
PF2-NRST
PA0
PA1
47
48
PB9
PB8
PB7
PB6
PB5
PB4
PB3
PD3
PD2
PD1
PD0
PA15
Top view
PA14-BOOT0
PA13
PA12 [PA10]
PA11 [PA9]
PA10
PC7
PC6
PA9
PA8
PB15
PB14
PB13
GP version
(_CxT)
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
PB12
VSS
37
7
38
8
39
9
40
0
41
1
42
2
43
3
44
4
45
5
46
6
1
36
6
2
35
5
3
34
4
4
33
3
5
32
2
6
31
1
UFQFPN48
7
30
0
8
29
9
9
28
8
10
1
0
27
7
Exposed pad
23
23
22
22
21
21
20
20
19
19
18
18
17
17
16
16
15
15
14
14
12
1
2
26
6
25
5
24
24
11
1
1
13
13
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
VBAT
VREF+
VDD/VDDA
VSS/VSSA
PF0-OSC_IN
PF1-OSC_OUT
PF2-NRST
PA0
PA1
47
7
48
PB9
PB8
PB7
PB6
PB5
PB4
PB3
PD3
PD2
PD1
PD0
PA15
Top view
PA14-BOOT0
PA13
PA12 [PA10]
PA11 [PA9]
PA10
VDDIO2
VSS
PA9
PA8
PB15
PB14
PB13
N version
(_CxTxN)
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
PB12
VSS
1. The I/O leads supplied by VDDIO2 are shown in dark gray.
DS13560 Rev 4
43/158
55
Pinouts, pin description and alternate functions
STM32G0B1xB/xC/xE
PB5
PB4
PB3
PA15
PA14-BOOT0
27
26
25
PB6
28
PB7
30
29
PB8
31
Top view
32
Figure 11. STM32G0B1KxT LQFP32 pinout
PB9
1
24
PA13
PC14-OSC32_IN
2
23
PA12 [PA10]
PC15-OSC32_OUT
3
22
PA11 [PA9]
VDD/VDDA
4
21
PA10
VSS/VSSA
5
20
PC6
PF2-NRST
6
19
PA9
PA0
7
18
PA8
GP version
PA1
8
17
PB2
(_KxT)
9
10
11
12
13
14
15
16
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PB1
LQFP32
PB8
PB7
PB6
PD3
PD2
PD1
PD0
PA14-BOOT0
31
30
29
28
27
26
25
Top view
32
MSv39712V3
PB9
1
24
PA13
PC14-OSC32_IN
2
23
PA12 [PA10]
PC15-OSC32_OUT
3
22
PA11 [PA9]
VDD/VDDA
4
21
PA10
VSS/VSSA
5
20
VDDIO2
PF2-NRST
6
19
PA9
PA0
7
18
PA8
PA1
8
17
PB15
9
10
11
12
13
14
15
16
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PB1
LQFP32
1. The I/O pins supplied by VDDIO2 are shown in dark gray.
44/158
DS13560 Rev 4
N version
(_KxTxN)
STM32G0B1xB/xC/xE
Pinouts, pin description and alternate functions
25
26
27
28
29
1
24
2
23
3
22
4
21
UFQFPN32
5
20
6
19
Exposed pad
7
18
8
PA13
PA12 [PA10]
PA11 [PA9]
PA10
PC6
PA9
PA8
PB2
GP version
(_KxU)
16
15
14
13
12
11
9
17
10
PB9
PC14-OSC32_IN
PC15-OSC32_OUT
VDD/VDDA
VSS/VSSA
PF2-NRST
PA0
PA1
30
32
Top view
31
PB8
PB7
PB6
PB5
PB4
PB3
PA15
PA14-BOOT0
Figure 12. STM32G0B1KxU UFQFPN32 pinout
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PB1
VSS
25
26
27
28
29
1
24
2
23
3
22
4
5
UFQFPN32
6
21
20
19
Exposed pad
7
18
8
PA13
PA12 [PA10]
PA11 [PA9]
PA10
VDDIO2
PA9
PA8
PB15
N version
(_KxUxN)
16
15
14
13
12
11
10
17
9
PB9
PC14-OSC32_IN
PC15-OSC32_OUT
VDD/VDDA
VSS/VSSA
PF2-NRST
PA0
PA1
30
32
Top view
31
PB8
PB7
PB6
PD3
PD2
PD1
PD0
PA14-BOOT0
MSv39715V3
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PB1
VSS
1. The I/O leads supplied by VDDIO2 are shown in dark gray.
DS13560 Rev 4
45/158
55
Pinouts, pin description and alternate functions
STM32G0B1xB/xC/xE
Table 11. Terms and symbols used in Table 12
Column
Pin name
Pin type
Symbol
Terminal name corresponds to its by-default function at reset, unless otherwise specified in
parenthesis under the pin name.
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
TT
3.6 V tolerant I/O
RST
Bidirectional reset pin with embedded weak pull-up resistor
Options for TT or FT I/Os
I/O structure
Note
Definition
_f
I/O, Fm+ capable
_a
I/O, with analog switch function
_c
I/O, USB Type-C PD capable
_e
I/O, with switchable diode to VDDIOx
_d
I/O, USB Type-C PD Dead Battery function
_s
I/O, supplied from VDDIO2 only
Upon reset, all I/Os are set as analog inputs, unless otherwise specified.
Alternate
Functions selected through GPIOx_AFR registers
functions
Pin
functions Additional
Functions directly selected/enabled through peripheral registers
functions
46/158
DS13560 Rev 4
WLCSP52
LQFP64 - GP
LQFP64 - N
UFBGA64 - N
LQFP80
LQFP100
UFBGA100
-
-
-
64
64
A2
2
2
B2
PC10
-
-
-
-
-
1
1
A1
3
3
B1
PC11
I/O
FT
-
USART3_RX, USART4_RX, TIM1_CH4, SPI3_MISO
-
-
-
-
-
-
-
-
-
-
4
C2
PE4
I/O
FT
-
TIM3_CH2
-
-
-
-
-
-
-
-
-
-
5
D3
PE5
I/O
FT
-
TIM3_CH3
-
-
-
-
-
-
-
-
-
-
6
C1
PE6
I/O
FT
-
TIM3_CH4
TAMP_IN3, WKUP3
-
-
-
-
-
2
2
B2
4
7
D2
PC12
I/O
FT
-
LPTIM1_IN1, UCPD1_FRSTX, TIM14_CH1,
USART5_TX, SPI3_MOSI
-
-
-
1
1
B11
3
3
C2
5
8
E3
PC13
I/O
FT
(1)(2)
TIM1_BKIN
TAMP_IN1, RTC_TS,
RTC_OUT1, WKUP2
-
-
2
2
B13
4
4
C1
6
9
D1
PC14OSC32_IN
I/O
FT
(1)(2)
TIM1_BKIN2
OSC32_IN
2
2
-
-
-
-
-
-
-
-
-
PC14OSC32_IN
I/O
FT
(1)(2)
TIM1_BKIN2
OSC32_IN, OSC_IN
3
3
3
3
C12
5
5
B1
7
10
E1
PC15OSC32_OUT
I/O
FT
(1)(2)
OSC32_EN, OSC_EN, TIM15_BKIN
OSC32_OUT
-
-
4
4
C10
6
6
D3
8
11
E2
VBAT
S
-
-
-
-
-
-
5
5
D11
7
7
D2
9
12
F2
VREF+
S
-
-
-
VREFBUF_OUT
4
4
6
6
D13
8
8
D1
10
13
F1
VDD/VDDA
S
-
-
-
-
5
5
7
7
E12
9
9
E1
11
14
G1
VSS/VSSA
S
-
-
-
-
-
-
8
8
F13
10
10
F1
12
15
H1
PF0-OSC_IN
I/O
FT
-
CRS1_SYNC, EVENTOUT, TIM14_CH1
OSC_IN
I/O
Note
LQFP48 / UFQFPN48 - N
-
I/O structure
LQFP48 / UFQFPN48 - GP
-
Pin type
LQFP32 / UFQFPN32 - N
47/158
Pin name
Alternate
functions
Additional
functions
FT
-
USART3_TX, USART4_TX, TIM1_CH3, SPI3_SCK
-
Pinouts, pin description and alternate functions
DS13560 Rev 4
LQFP32 / UFQFPN32 - GP
Pin number
STM32G0B1xB/xC/xE
Table 12. Pin assignment and description
LQFP48 / UFQFPN48 - GP
LQFP48 / UFQFPN48 - N
WLCSP52
LQFP64 - GP
LQFP64 - N
UFBGA64 - N
LQFP80
LQFP100
UFBGA100
Pin type
I/O structure
Note
Alternate
functions
-
-
9
9
G12
11
11
G1
13
16
J1
PF1OSC_OUT
I/O
FT
-
OSC_EN, EVENTOUT, TIM15_CH1N
OSC_OUT
6
6
10
10
F11
12
12
E2
14
17
G2
PF2-NRST
I/O
-
-
MCO, LPUART2_TX, LPUART2_RTS_DE
NRST
-
-
-
-
-
-
-
-
-
18
H3
PF3
I/O
FT
-
LPUART2_RX, USART6_RTS_DE_CK
-
-
-
-
-
-
-
-
-
-
19
H2
PF4
I/O
FT
-
LPUART1_TX
-
-
-
-
-
-
-
-
-
-
20
J2
PF5
I/O
FT
-
LPUART1_RX
-
-
-
-
-
-
13
13
E3
15
21
K1
PC0
I/O
FT_a
-
LPTIM1_IN1, LPUART1_RX, LPTIM2_IN1,
LPUART2_TX, USART6_TX, I2C3_SCL,
COMP3_OUT
COMP3_INM7
-
-
-
-
-
14
14
F2
16
22
J3
PC1
I/O
FT_a
-
LPTIM1_OUT, LPUART1_TX, TIM15_CH1,
LPUART2_RX, USART6_RX, I2C3_SDA
COMP3_INP1
-
-
-
-
-
15
15
G2
17
23
K2
PC2
I/O
FT
-
LPTIM1_IN2, SPI2_MISO/I2S2_MCK, TIM15_CH2,
FDCAN2_RX, COMP3_OUT
-
-
-
-
-
-
16
16
H1
18
24
L1
PC3
I/O
FT
-
LPTIM1_ETR, SPI2_MOSI/I2S2_SD, LPTIM2_ETR,
FDCAN2_TX
-
7
7
11
11
H13
17
17
H2
19
25
K3
PA0
I/O
FT_a
-
SPI2_SCK/I2S2_CK, USART2_CTS,
TIM2_CH1_ETR, USART4_TX, LPTIM1_OUT,
UCPD2_FRSTX, COMP1_OUT
COMP1_INM8, ADC_IN0,
TAMP_IN2, WKUP1
8
8
12
12
E10
18
18
H3
20
26
L2
PA1
I/O
FT_ea
-
SPI1_SCK/I2S1_CK, USART2_RTS_DE_CK,
TIM2_CH2, USART4_RX, TIM15_CH1N,
I2C1_SMBA, EVENTOUT
COMP1_INP2, ADC_IN1
9
9
13
13
E8
19
19
G3
21
27
M1
PA2
I/O
FT_a
-
SPI1_MOSI/I2S1_SD, USART2_TX, TIM2_CH3,
UCPD1_FRSTX, TIM15_CH1, LPUART1_TX,
COMP2_OUT
COMP2_INM8, ADC_IN2,
WKUP4, LSCO
Pin name
Additional
functions
STM32G0B1xB/xC/xE
LQFP32 / UFQFPN32 - N
DS13560 Rev 4
LQFP32 / UFQFPN32 - GP
Pin number
Pinouts, pin description and alternate functions
48/158
Table 12. Pin assignment and description (continued)
LQFP48 / UFQFPN48 - N
WLCSP52
LQFP64 - GP
LQFP64 - N
UFBGA64 - N
LQFP80
LQFP100
UFBGA100
10
14
14
H11
20
20
F3
22
28
K4
PA3
I/O
Alternate
functions
Additional
functions
FT_ea
-
SPI2_MISO/I2S2_MCK, USART2_RX, TIM2_CH4,
UCPD2_FRSTX, TIM15_CH2, LPUART1_RX,
EVENTOUT
COMP2_INP2, ADC_IN3
ADC_IN4, DAC1_OUT1,
RTC_OUT2
21
H4
23
29
L3
PA4
I/O
TT_a
-
SPI1_NSS/I2S1_WS, SPI2_MOSI/I2S2_SD,
USB_NOE, USART6_TX, TIM14_CH1,
LPTIM2_OUT, UCPD2_FRSTX, EVENTOUT,
SPI3_NSS
-
-
-
-
-
-
PA4
I/O
TT_a
-
SPI1_NSS/I2S1_WS, SPI2_MOSI/I2S2_SD,
USB_NOE, USART6_TX, TIM14_CH1,
LPTIM2_OUT, UCPD2_FRSTX, EVENTOUT,
SPI3_NSS
ADC_IN4, DAC1_OUT1,
TAMP_IN1, RTC_TS,
RTC_OUT1, WKUP2
F9
22
22
G4
24
30
M2
PA5
I/O
TT_ea
-
SPI1_SCK/I2S1_CK, CEC, TIM2_CH1_ETR,
USART6_RX, USART3_TX, LPTIM2_ETR,
UCPD1_FRSTX, EVENTOUT
ADC_IN5, DAC1_OUT2
F7
23
23
F4
25
31
M3
PA6
I/O
FT_ea
-
SPI1_MISO/I2S1_MCK, TIM3_CH1, TIM1_BKIN,
USART6_CTS, USART3_CTS, TIM16_CH1,
LPUART1_CTS, COMP1_OUT, I2C2_SDA,
I2C3_SDA
ADC_IN6
ADC_IN7
-
-
15
15 G10 21
11
11
-
-
-
12
12
16
16
13
13
17
17
49/158
14
14
18
18
H9
24
24
E4
26
32
K5
PA7
I/O
FT_a
-
SPI1_MOSI/I2S1_SD, TIM3_CH2, TIM1_CH1N,
USART6_RTS_DE_CK, TIM14_CH1, TIM17_CH1,
UCPD1_FRSTX, COMP2_OUT, I2C2_SCL,
I2C3_SCL
-
-
-
-
G8
25
25
H5
27
33
L4
PC4
I/O
FT_a
-
USART3_TX, USART1_TX, TIM2_CH1_ETR,
FDCAN1_RX
COMP1_INM7, ADC_IN17
-
-
-
-
G6
26
26
H6
28
34
M4
PC5
I/O
FT_a
-
USART3_RX, USART1_RX, TIM2_CH2,
FDCAN1_TX
COMP1_INP0, ADC_IN18,
WKUP5
Pinouts, pin description and alternate functions
DS13560 Rev 4
Note
LQFP48 / UFQFPN48 - GP
10
I/O structure
LQFP32 / UFQFPN32 - N
Pin name
Pin type
LQFP32 / UFQFPN32 - GP
Pin number
STM32G0B1xB/xC/xE
Table 12. Pin assignment and description (continued)
LQFP48 / UFQFPN48 - GP
LQFP48 / UFQFPN48 - N
WLCSP52
LQFP64 - GP
LQFP64 - N
UFBGA64 - N
LQFP80
LQFP100
UFBGA100
Pin name
Pin type
I/O structure
Note
Alternate
functions
15
15
19
19
H7
27
27
F5
29
35
L5
PB0
I/O
FT_ea
-
SPI1_NSS/I2S1_WS, TIM3_CH3, TIM1_CH2N,
FDCAN2_RX, USART3_RX, LPTIM1_OUT,
UCPD1_FRSTX, COMP1_OUT, USART5_TX,
LPUART2_CTS
COMP3_INP0, ADC_IN8
16
16
20
20
H5
28
28
G5
30
36
M5
PB1
I/O
FT_ea
-
TIM14_CH1, TIM3_CH4, TIM1_CH3N, FDCAN2_TX,
USART3_RTS_DE_CK, LPTIM2_IN1,
LPUART1_RTS_DE, COMP3_OUT, USART5_RX,
LPUART2_RTS_DE
COMP1_INM6, ADC_IN9
17
-
21
21
G4
29
29
H7
31
37
L6
PB2
I/O
FT_ea
-
SPI2_MISO/I2S2_MCK, MCO2, USART3_TX,
LPTIM1_OUT, EVENTOUT
COMP1_INP1,
COMP3_INM6, ADC_IN10
-
-
-
-
-
-
-
-
-
38
M6
PF6
I/O
FT
-
LPUART1_RTS_DE
-
-
-
-
-
-
-
-
-
-
39
L7
PF7
I/O
FT
-
LPUART1_CTS, USART5_CTS
-
-
-
-
-
-
-
-
-
32
40
M7
PE7
I/O
FT_a
-
TIM1_ETR, USART5_RTS_DE_CK
COMP3_INP2
-
-
-
-
-
-
-
-
33
41
M8
PE8
I/O
FT_a
-
USART4_TX, TIM1_CH1N
COMP3_INM8
-
-
-
-
-
-
-
-
34
42
K8
PE9
I/O
FT
-
USART4_RX, TIM1_CH1
-
-
-
-
-
-
-
-
-
35
43
L8
PE10
I/O
FT
-
TIM1_CH2N, USART5_TX
-
-
-
-
-
-
-
-
-
-
44
M9
PE11
I/O
FT
-
TIM1_CH2, USART5_RX
-
-
-
-
-
-
-
-
-
-
45
L9
PE12
I/O
FT
-
SPI1_NSS/I2S1_WS, TIM1_CH3N
-
-
-
-
-
-
-
-
-
-
46
M10
PE13
I/O
FT
-
SPI1_SCK/I2S1_CK, TIM1_CH3
-
-
-
-
-
-
-
-
-
-
47
K9
PE14
I/O
FT
-
SPI1_MISO/I2S1_MCK, TIM1_CH4, TIM1_BKIN2
-
-
-
-
-
-
-
-
-
-
48
L10
PE15
I/O
FT
-
SPI1_MOSI/I2S1_SD, TIM1_BKIN
-
Additional
functions
STM32G0B1xB/xC/xE
LQFP32 / UFQFPN32 - N
DS13560 Rev 4
LQFP32 / UFQFPN32 - GP
Pin number
Pinouts, pin description and alternate functions
50/158
Table 12. Pin assignment and description (continued)
LQFP32 / UFQFPN32 - N
LQFP48 / UFQFPN48 - GP
LQFP48 / UFQFPN48 - N
WLCSP52
LQFP64 - GP
LQFP64 - N
UFBGA64 - N
LQFP80
LQFP100
UFBGA100
Pin type
I/O structure
Note
51/158
Pin name
Alternate
functions
-
-
22
22
H3
30
30
G6
36
49
M11
PB10
I/O
FT_fa
-
CEC, LPUART1_RX, TIM2_CH3, USART3_TX,
SPI2_SCK/I2S2_CK, I2C2_SCL, COMP1_OUT
ADC_IN11
-
-
23
23
F5
31
31
H8
37
50
L11
PB11
I/O
FT_fa
-
SPI2_MOSI/I2S2_SD, LPUART1_TX, TIM2_CH4,
USART3_RX, I2C2_SDA, COMP2_OUT
ADC_IN15
-
-
24
24
E6
32
32
G7
38
51
K10
PB12
I/O
FT_fa
-
SPI2_NSS/I2S2_WS, LPUART1_RTS_DE,
TIM1_BKIN, FDCAN2_RX, TIM15_BKIN,
UCPD2_FRSTX, EVENTOUT, I2C2_SMBA
ADC_IN16
-
-
25
25
H1
33
33
G8
39
52
M12
PB13
I/O
FT_fs
-
SPI2_SCK/I2S2_CK, LPUART1_CTS, TIM1_CH1N,
FDCAN2_TX, USART3_CTS, TIM15_CH1N,
I2C2_SCL, EVENTOUT
-
-
-
26
26
G2
34
34
F6
40
53
K11
PB14
I/O
FT_fs
-
SPI2_MISO/I2S2_MCK, UCPD1_FRSTX,
TIM1_CH2N, USART3_RTS_DE_CK, TIM15_CH1,
I2C2_SDA, EVENTOUT, USART6_RTS_DE_CK
-
-
17
27
27
F3
35
35
F7
41
54
J10
PB15
I/O
FT_fcs
(3)
SPI2_MOSI/I2S2_SD, TIM1_CH3N, TIM15_CH1N,
TIM15_CH2, EVENTOUT, USART6_CTS
UCPD1_CC2, RTC_REFIN
18
18
28
28
F1
36
36
F8
42
55
L12
PA8
I/O
FT_fcs
(3)
MCO, SPI2_NSS/I2S2_WS, TIM1_CH1,
CRS1_SYNC, LPTIM2_OUT, EVENTOUT,
I2C2_SMBA
UCPD1_CC1
19
19
29
29
E4
37
37
E6
43
56
H10
PA9
I/O
FT_fds
(3)
MCO, USART1_TX, TIM1_CH2,
SPI2_MISO/I2S2_MCK, TIM15_BKIN, I2C1_SCL,
EVENTOUT, I2C2_SCL
UCPD1_DBCC1
20
-
30
-
D5
38
38
E7
44
57
J11
PC6
I/O
FT_s
-
UCPD1_FRSTX, TIM3_CH1, TIM2_CH3,
LPUART2_TX
-
-
-
31
-
D3
39
39
E5
45
58
K12
PC7
I/O
FT_s
-
UCPD2_FRSTX, TIM3_CH2, TIM2_CH4,
LPUART2_RX
-
Additional
functions
Pinouts, pin description and alternate functions
DS13560 Rev 4
LQFP32 / UFQFPN32 - GP
Pin number
STM32G0B1xB/xC/xE
Table 12. Pin assignment and description (continued)
LQFP48 / UFQFPN48 - GP
LQFP48 / UFQFPN48 - N
WLCSP52
LQFP64 - GP
LQFP64 - N
UFBGA64 - N
LQFP80
LQFP100
UFBGA100
Pin name
Pin type
I/O structure
Note
Alternate
functions
-
-
-
-
-
40
-
-
46
59
J12
PD8
I/O
FT_s
-
USART3_TX, SPI1_SCK/I2S1_CK, LPTIM1_OUT
-
-
-
-
-
-
41
-
-
47
60
H11
PD9
I/O
FT_s
-
USART3_RX, SPI1_NSS/I2S1_WS, TIM1_BKIN2
-
-
-
-
-
-
-
-
-
48
61
H12
PD10
I/O
FT_s
-
MCO
-
-
-
-
-
-
-
-
-
49
62
G11
PD11
I/O
FT_s
-
USART3_CTS, LPTIM2_ETR
-
-
-
-
30
E2
-
40
E8
50
63
G12
VSS
S
-
-
-
-
-
20
-
31
D1
-
41
D8
51
64
F12
VDDIO2
S
-
-
-
-
-
-
-
-
-
-
-
-
52
65
F11
PD12
I/O
FT_s
-
USART3_RTS_DE_CK, LPTIM2_IN1, TIM4_CH1,
FDCAN1_RX
-
-
-
-
-
-
-
-
-
53
66
E12
PD13
I/O
FT_s
-
LPTIM2_OUT, TIM4_CH2, FDCAN1_TX
-
-
-
-
-
-
-
-
-
54
67
E11
PD14
I/O
FT_s
-
LPUART2_CTS, TIM4_CH3, FDCAN2_RX
-
-
-
-
-
-
-
-
-
55
68
D11
PD15
I/O
FT_s
-
CRS1_SYNC, LPUART2_RTS_DE, TIM4_CH4,
FDCAN2_TX
-
21
21
32
32
C4
42
42
D6
56
69
E10
PA10
I/O
FT_fds
(3)
SPI2_MOSI/I2S2_SD, USART1_RX, TIM1_CH3,
MCO2, TIM17_BKIN, I2C1_SDA, EVENTOUT,
I2C2_SDA
UCPD1_DBCC2
22
22
33
33
C2
43
43
C8
57
70
D12
PA11 [PA9]
I/O
FT_fs
(4)
SPI1_MISO/I2S1_MCK, USART1_CTS, TIM1_CH4,
FDCAN1_RX, TIM1_BKIN2, I2C2_SCL,
COMP1_OUT
USB_DM
23
23
34
34
B1
44
44
B8
58
71
C12
PA12 [PA10]
I/O
FT_fs
(4)
SPI1_MOSI/I2S1_SD, USART1_RTS_DE_CK,
TIM1_ETR, FDCAN1_TX, I2S_CKIN, I2C2_SDA,
COMP2_OUT
USB_DP
-
-
-
-
-
-
-
-
-
72
D10
PF8
I/O
FT_s
-
-
-
Additional
functions
STM32G0B1xB/xC/xE
LQFP32 / UFQFPN32 - N
DS13560 Rev 4
LQFP32 / UFQFPN32 - GP
Pin number
Pinouts, pin description and alternate functions
52/158
Table 12. Pin assignment and description (continued)
WLCSP52
LQFP64 - GP
LQFP64 - N
UFBGA64 - N
LQFP80
LQFP100
UFBGA100
35
35
B3
45
45
D7
59
73
C11
PA13
25
25
36
36
B5
46
46
C7
60
74
B12 PA14-BOOT0
I/O
FT_s
(5)
SWCLK, USART2_TX, EVENTOUT, LPUART2_TX
BOOT0
26
-
37
37
A2
47
47
C6
61
75
B11
PA15
I/O
FT_s
-
SPI1_NSS/I2S1_WS, USART2_RX,
TIM2_CH1_ETR, MCO2, USART4_RTS_DE_CK,
USART3_RTS_DE_CK, USB_NOE, EVENTOUT,
I2C2_SMBA, SPI3_NSS
-
-
-
-
-
-
48
48
A8
62
76
C10
PC8
I/O
FT_s
-
UCPD2_FRSTX, TIM3_CH3, TIM1_CH1,
LPUART2_CTS
-
-
-
-
-
-
49
49
B7
63
77
A12
PC9
I/O
FT_s
-
I2S_CKIN, TIM3_CH4, TIM1_CH2,
LPUART2_RTS_DE, USB_NOE
-
-
26
38
38
A4
50
50
A7
64
78
B10
PD0
I/O
FT_cs
(3)
EVENTOUT, SPI2_NSS/I2S2_WS, TIM16_CH1,
FDCAN1_RX
UCPD2_CC1
-
27
39
39
C6
51
51
B6
65
79
C9
PD1
I/O
FT_ds
(3)
EVENTOUT, SPI2_SCK/I2S2_CK, TIM17_CH1,
FDCAN1_TX
UCPD2_DBCC1
-
28
40
40
B7
52
52
A6
66
80
A11
PD2
I/O
FT_cs
(3)
USART3_RTS_DE_CK, TIM3_ETR, TIM1_CH1N,
USART5_RX
UCPD2_CC2
-
29
41
41
A6
53
53
D5
67
81
C8
PD3
I/O
FT_ds
(3)
USART2_CTS, SPI2_MISO/I2S2_MCK,
TIM1_CH2N, USART5_TX
UCPD2_DBCC2
-
-
-
-
-
54
54
C5
68
82
B9
PD4
I/O
FT_s
-
USART2_RTS_DE_CK, SPI2_MOSI/I2S2_SD,
TIM1_CH3N, USART5_RTS_DE_CK
-
-
-
-
-
-
55
55
B5
69
83
A10
PD5
I/O
FT
-
USART2_TX, SPI1_MISO/I2S1_MCK, TIM1_BKIN,
USART5_CTS
-
-
-
-
-
-
56
56
A5
70
84
A9
PD6
I/O
FT
-
USART2_RX, SPI1_MOSI/I2S1_SD, LPTIM2_OUT
-
I/O
Note
LQFP48 / UFQFPN48 - N
24
I/O structure
LQFP48 / UFQFPN48 - GP
24
Pin type
LQFP32 / UFQFPN32 - N
53/158
Pin name
Alternate
functions
Additional
functions
FT_es
(5)
SWDIO, IR_OUT, USB_NOE, EVENTOUT,
LPUART2_RX
-
Pinouts, pin description and alternate functions
DS13560 Rev 4
LQFP32 / UFQFPN32 - GP
Pin number
STM32G0B1xB/xC/xE
Table 12. Pin assignment and description (continued)
LQFP48 / UFQFPN48 - GP
LQFP48 / UFQFPN48 - N
WLCSP52
LQFP64 - GP
LQFP64 - N
UFBGA64 - N
LQFP80
LQFP100
UFBGA100
Pin name
Pin type
I/O structure
Note
Alternate
functions
-
-
-
-
-
-
-
-
71
85
B8
PD7
I/O
FT
-
MCO2
-
-
-
-
-
-
-
-
-
-
86
A8
PF9
I/O
FT
-
USART6_TX
-
-
-
-
-
-
-
-
-
-
87
B7
PF10
I/O
FT
-
USART6_RX
-
-
-
-
-
-
-
-
-
-
88
A7
PF11
I/O
FT
-
USART6_RTS_DE_CK
-
-
-
-
-
-
-
-
-
-
89
B6
PF12
I/O
FT
-
TIM15_CH1, USART6_CTS
-
-
-
-
-
-
-
-
-
-
90
A6
PF13
I/O
FT
-
TIM15_CH2
-
27
-
42
42
A8
57
57
B4
72
91
A5
PB3
I/O
FT_a
-
SPI1_SCK/I2S1_CK, TIM1_CH2, TIM2_CH2,
USART5_TX, USART1_RTS_DE_CK, I2C3_SCL,
EVENTOUT, I2C2_SCL, SPI3_SCK
COMP2_INM6
28
-
43
43
B9
58
58
C4
73
92
B5
PB4
I/O
FT_a
-
SPI1_MISO/I2S1_MCK, TIM3_CH1, USART5_RX,
USART1_CTS, TIM17_BKIN, I2C3_SDA,
EVENTOUT, I2C2_SDA, SPI3_MISO
COMP2_INP0
29
-
44
44
A10
59
59
D4
74
93
C5
PB5
I/O
FT
-
SPI1_MOSI/I2S1_SD, TIM3_CH2, TIM16_BKIN,
FDCAN2_RX, LPTIM1_IN1, I2C1_SMBA,
COMP2_OUT, USART5_RTS_DE_CK, SPI3_MOSI
WKUP6
-
-
-
-
-
-
-
-
75
94
A4
PE0
I/O
FT
-
TIM16_CH1, EVENTOUT, TIM4_ETR
-
-
-
-
-
-
-
-
-
76
95
B4
PE1
I/O
FT
-
TIM17_CH1, EVENTOUT
-
-
-
-
-
-
-
-
-
-
96
A3
PE2
I/O
FT
-
TIM3_ETR
-
-
-
-
-
-
-
-
-
77
97
A2
PE3
I/O
FT
-
TIM3_CH1
-
Additional
functions
STM32G0B1xB/xC/xE
LQFP32 / UFQFPN32 - N
DS13560 Rev 4
LQFP32 / UFQFPN32 - GP
Pin number
Pinouts, pin description and alternate functions
54/158
Table 12. Pin assignment and description (continued)
LQFP32 / UFQFPN32 - N
LQFP48 / UFQFPN48 - GP
LQFP48 / UFQFPN48 - N
WLCSP52
LQFP64 - GP
LQFP64 - N
UFBGA64 - N
LQFP80
LQFP100
UFBGA100
Pin name
Pin type
I/O structure
Note
Alternate
functions
30
30
45
45
C8
60
60
A4
78
98
C4
PB6
I/O
FT_fa
-
USART1_TX, TIM1_CH3, TIM16_CH1N,
FDCAN2_TX, SPI2_MISO/I2S2_MCK, LPTIM1_ETR,
I2C1_SCL, EVENTOUT, USART5_CTS, TIM4_CH1,
LPUART2_TX
COMP2_INP1
31
31
46
46
D7
61
61
A3
79
99
B3
PB7
I/O
FT_fa
-
USART1_RX, SPI2_MOSI/I2S2_SD, TIM17_CH1N,
USART4_CTS, LPTIM1_IN2, I2C1_SDA,
EVENTOUT, TIM4_CH2, LPUART2_RX
COMP2_INM7, PVD_IN
32
32
47
47
A12
62
62
B3
80
100
A1
PB8
I/O
FT_f
-
CEC, SPI2_SCK/I2S2_CK, TIM16_CH1,
FDCAN1_RX, USART3_TX, TIM15_BKIN,
I2C1_SCL, EVENTOUT, USART6_TX, TIM4_CH3
-
1
1
48
48
D9
63
63
C3
1
1
C3
PB9
I/O
FT_f
-
IR_OUT, UCPD2_FRSTX, TIM17_CH1,
FDCAN1_TX, USART3_RX, SPI2_NSS/I2S2_WS,
I2C1_SDA, EVENTOUT, USART6_RX, TIM4_CH4
-
Additional
functions
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output
mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (for example to drive a LED).
2. After an RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers. The RTC registers are not reset
upon system reset. For details on how to manage these GPIOs, refer to the RTC domain and RTC register descriptions in the RM0444 reference manual.
3. Upon reset, a pull-down resistor might be present on PA8, PB15, PD0, or PD2 depending on voltage level on PA9, PA10, PD1, and PD3, respectively. In order to disable this
resistor, strobe the UCPDx_STROBE bit in SYSCFG_CFGR1 register during start-up sequence.
4. Pins PA9/PA10 can be remapped in place of pins PA11/PA12 (default mapping), using SYSCFG_CFGR1 register.
5. Upon reset, these pins are configured as SW debug alternate functions, and the internal pull-up on PA13 pin and the internal pull-down on PA14 pin are activated.
55/158
Pinouts, pin description and alternate functions
DS13560 Rev 4
LQFP32 / UFQFPN32 - GP
Pin number
STM32G0B1xB/xC/xE
Table 12. Pin assignment and description (continued)
56/158
Table 13. Port A alternate function mapping (AF0 to AF7)
DS13560 Rev 4
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
PA0
SPI2_SCK/
I2S2_CK
USART2_CTS
TIM2_CH1_ETR
-
USART4_TX
LPTIM1_OUT
UCPD2_FRSTX
COMP1_OUT
PA1
SPI1_SCK/
I2S1_CK
USART2_RTS
_DE_CK
TIM2_CH2
-
USART4_RX
TIM15_CH1N
I2C1_SMBA
EVENTOUT
PA2
SPI1_MOSI/
I2S1_SD
USART2_TX
TIM2_CH3
-
UCPD1_FRSTX
TIM15_CH1
LPUART1_TX
COMP2_OUT
PA3
SPI2_MISO/
I2S2_MCK
USART2_RX
TIM2_CH4
-
UCPD2_FRSTX
TIM15_CH2
LPUART1_RX
EVENTOUT
PA4
SPI1_NSS/
I2S1_WS
SPI2_MOSI/
I2S2_SD
USB_NOE
USART6_TX
TIM14_CH1
LPTIM2_OUT
UCPD2_FRSTX
EVENTOUT
PA5
SPI1_SCK/
I2S1_CK
CEC
TIM2_CH1_ETR
USART6_RX
USART3_TX
LPTIM2_ETR
UCPD1_FRSTX
EVENTOUT
PA6
SPI1_MISO/
I2S1_MCK
TIM3_CH1
TIM1_BKIN
USART6_CTS
USART3_CTS
TIM16_CH1
LPUART1_CTS
COMP1_OUT
PA7
SPI1_MOSI/
I2S1_SD
TIM3_CH2
TIM1_CH1N
USART6_RTS
_DE_CK
TIM14_CH1
TIM17_CH1
UCPD1_FRSTX
COMP2_OUT
PA8
MCO
SPI2_NSS/
I2S2_WS
TIM1_CH1
-
CRS1_SYNC
LPTIM2_OUT
-
EVENTOUT
PA9
MCO
USART1_TX
TIM1_CH2
-
SPI2_MISO/
I2S2_MCK
TIM15_BKIN
I2C1_SCL
EVENTOUT
PA10
SPI2_MOSI/
I2S2_SD
USART1_RX
TIM1_CH3
MCO2
-
TIM17_BKIN
I2C1_SDA
EVENTOUT
PA11
SPI1_MISO/
I2S1_MCK
USART1_CTS
TIM1_CH4
FDCAN1_RX
-
TIM1_BKIN2
I2C2_SCL
COMP1_OUT
PA12
SPI1_MOSI/
I2S1_SD
USART1_RTS
_DE_CK
TIM1_ETR
FDCAN1_TX
-
I2S_CKIN
I2C2_SDA
COMP2_OUT
PA13
SWDIO
IR_OUT
USB_NOE
-
-
-
-
EVENTOUT
PA14
SWCLK
USART2_TX
-
-
-
-
-
EVENTOUT
PA15
SPI1_NSS/
I2S1_WS
USART2_RX
TIM2_CH1_ETR
MCO2
USART4_RTS
_DE_CK
USART3_RTS
_DE_CK
USB_NOE
EVENTOUT
STM32G0B1xB/xC/xE
Port
DS13560 Rev 4
Port
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
PA0
-
-
-
-
-
-
-
-
PA1
-
-
-
-
-
-
-
-
PA2
-
-
-
-
-
-
-
-
PA3
-
-
-
-
-
-
-
-
PA4
-
SPI3_NSS
-
-
-
-
-
-
PA5
-
-
-
-
-
-
-
-
PA6
I2C2_SDA
I2C3_SDA
-
-
-
-
-
-
PA7
I2C2_SCL
I2C3_SCL
-
-
-
-
-
-
PA8
I2C2_SMBA
-
-
-
-
-
-
-
PA9
I2C2_SCL
-
-
-
-
-
-
-
PA10
I2C2_SDA
-
-
-
-
-
-
-
PA11
-
-
-
-
-
-
-
-
PA12
-
-
-
-
-
-
-
-
PA13
-
-
LPUART2_RX
-
-
-
-
-
PA14
-
-
LPUART2_TX
-
-
-
-
-
PA15
I2C2_SMBA
SPI3_NSS
-
-
-
-
-
-
STM32G0B1xB/xC/xE
Table 14. Port A alternate function mapping (AF8 to AF15)
57/158
58/158
Table 15. Port B alternate function mapping (AF0 to AF7)
DS13560 Rev 4
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
PB0
SPI1_NSS/
I2S1_WS
TIM3_CH3
TIM1_CH2N
FDCAN2_RX
USART3_RX
LPTIM1_OUT
UCPD1_FRSTX
COMP1_OUT
PB1
TIM14_CH1
TIM3_CH4
TIM1_CH3N
FDCAN2_TX
USART3_RTS
_DE_CK
LPTIM2_IN1
LPUART1_RTS
_DE
COMP3_OUT
PB2
-
SPI2_MISO/
I2S2_MCK
-
MCO2
USART3_TX
LPTIM1_OUT
-
EVENTOUT
PB3
SPI1_SCK/
I2S1_CK
TIM1_CH2
TIM2_CH2
USART5_TX
USART1_RTS
_DE_CK
-
I2C3_SCL
EVENTOUT
PB4
SPI1_MISO/
I2S1_MCK
TIM3_CH1
-
USART5_RX
USART1_CTS
TIM17_BKIN
I2C3_SDA
EVENTOUT
PB5
SPI1_MOSI/
I2S1_SD
TIM3_CH2
TIM16_BKIN
FDCAN2_RX
-
LPTIM1_IN1
I2C1_SMBA
COMP2_OUT
PB6
USART1_TX
TIM1_CH3
TIM16_CH1N
FDCAN2_TX
SPI2_MISO/
I2S2_MCK
LPTIM1_ETR
I2C1_SCL
EVENTOUT
PB7
USART1_RX
SPI2_MOSI/
I2S2_SD
TIM17_CH1N
-
USART4_CTS
LPTIM1_IN2
I2C1_SDA
EVENTOUT
PB8
CEC
SPI2_SCK/
I2S2_CK
TIM16_CH1
FDCAN1_RX
USART3_TX
TIM15_BKIN
I2C1_SCL
EVENTOUT
PB9
IR_OUT
UCPD2_FRSTX
TIM17_CH1
FDCAN1_TX
USART3_RX
SPI2_NSS/
I2S2_WS
I2C1_SDA
EVENTOUT
PB10
CEC
LPUART1_RX
TIM2_CH3
-
USART3_TX
SPI2_SCK/
I2S2_CK
I2C2_SCL
COMP1_OUT
PB11
SPI2_MOSI/
I2S2_SD
LPUART1_TX
TIM2_CH4
-
USART3_RX
-
I2C2_SDA
COMP2_OUT
PB12
SPI2_NSS/
I2S2_WS
LPUART1_RTS
_DE
TIM1_BKIN
FDCAN2_RX
-
TIM15_BKIN
UCPD2_FRSTX
EVENTOUT
PB13
SPI2_SCK/
I2S2_CK
LPUART1_CTS
TIM1_CH1N
FDCAN2_TX
USART3_CTS
TIM15_CH1N
I2C2_SCL
EVENTOUT
STM32G0B1xB/xC/xE
Port
Port
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
PB14
SPI2_MISO/
I2S2_MCK
UCPD1_FRSTX
TIM1_CH2N
-
USART3_RTS
_DE_CK
TIM15_CH1
I2C2_SDA
EVENTOUT
PB15
SPI2_MOSI/
I2S2_SD
-
TIM1_CH3N
-
TIM15_CH1N
TIM15_CH2
-
EVENTOUT
Table 16. Port B alternate function mapping (AF8 to AF15)
DS13560 Rev 4
Port
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
PB0
USART5_TX
-
LPUART2_CTS
-
-
-
-
-
PB1
USART5_RX
-
LPUART2_RTS
_DE
-
-
-
-
-
PB2
-
-
-
-
-
-
-
-
PB3
I2C2_SCL
SPI3_SCK
-
-
-
-
-
-
PB4
I2C2_SDA
SPI3_MISO
-
-
-
-
-
-
PB5
USART5_RTS
_DE_CK
SPI3_MOSI
-
-
-
-
-
-
PB6
USART5_CTS
TIM4_CH1
LPUART2_TX
-
-
-
-
-
PB7
-
TIM4_CH2
LPUART2_RX
-
-
-
-
-
PB8
USART6_TX
TIM4_CH3
-
-
-
-
-
-
PB9
USART6_RX
TIM4_CH4
-
-
-
-
-
-
PB10
-
-
-
-
-
-
-
-
PB11
-
-
-
-
-
-
-
-
PB12
I2C2_SMBA
-
-
-
-
-
-
-
PB13
-
-
-
-
-
-
-
-
PB14
USART6_RTS
_DE_CK
-
-
-
-
-
-
-
PB15
USART6_CTS
-
-
-
-
-
-
-
STM32G0B1xB/xC/xE
Table 15. Port B alternate function mapping (AF0 to AF7) (continued)
59/158
60/158
Table 17. Port C alternate function mapping
DS13560 Rev 4
Port
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
PC0
LPTIM1_IN1
LPUART1_RX
LPTIM2_IN1
LPUART2_TX
USART6_TX
-
I2C3_SCL
COMP3_OUT
PC1
LPTIM1_OUT
LPUART1_TX
TIM15_CH1
LPUART2_RX
USART6_RX
-
I2C3_SDA
-
PC2
LPTIM1_IN2
SPI2_MISO/
I2S2_MCK
TIM15_CH2
FDCAN2_RX
-
-
-
COMP3_OUT
PC3
LPTIM1_ETR
SPI2_MOSI/
I2S2_SD
LPTIM2_ETR
FDCAN2_TX
-
-
-
-
PC4
USART3_TX
USART1_TX
TIM2_CH1_ETR
FDCAN1_RX
-
-
-
-
PC5
USART3_RX
USART1_RX
TIM2_CH2
FDCAN1_TX
-
-
-
-
PC6
UCPD1_FRSTX
TIM3_CH1
TIM2_CH3
LPUART2_TX
-
-
-
-
PC7
UCPD2_FRSTX
TIM3_CH2
TIM2_CH4
LPUART2_RX
-
-
-
-
PC8
UCPD2_FRSTX
TIM3_CH3
TIM1_CH1
LPUART2_CTS
-
-
-
-
PC9
I2S_CKIN
TIM3_CH4
TIM1_CH2
LPUART2_RTS_
DE
-
-
USB_NOE
-
PC10
USART3_TX
USART4_TX
TIM1_CH3
-
SPI3_SCK
-
-
-
PC11
USART3_RX
USART4_RX
TIM1_CH4
-
SPI3_MISO
-
-
-
PC12
LPTIM1_IN1
UCPD1_FRSTX
TIM14_CH1
USART5_TX
SPI3_MOSI
-
-
-
PC13
-
-
TIM1_BKIN
-
-
-
-
-
PC14
-
-
TIM1_BKIN2
-
-
-
-
-
PC15
OSC32_EN
OSC_EN
TIM15_BKIN
-
-
-
-
-
STM32G0B1xB/xC/xE
Table 18. Port D alternate function mapping
DS13560 Rev 4
Port
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
PD0
EVENTOUT
SPI2_NSS/
I2S2_WS
TIM16_CH1
FDCAN1_RX
-
-
-
-
PD1
EVENTOUT
SPI2_SCK/
I2S2_CK
TIM17_CH1
FDCAN1_TX
-
-
-
-
PD2
USART3_RTS
_DE_CK
TIM3_ETR
TIM1_CH1N
USART5_RX
-
-
-
-
PD3
USART2_CTS
SPI2_MISO/
I2S2_MCK
TIM1_CH2N
USART5_TX
-
-
-
-
PD4
USART2_RTS
_DE_CK
SPI2_MOSI/
I2S2_SD
TIM1_CH3N
USART5_RTS
_DE_CK
-
-
-
-
PD5
USART2_TX
SPI1_MISO/
I2S1_MCK
TIM1_BKIN
USART5_CTS
-
-
-
-
PD6
USART2_RX
SPI1_MOSI/
I2S1_SD
LPTIM2_OUT
-
-
-
-
-
PD7
-
-
-
MCO2
-
-
-
-
PD8
USART3_TX
SPI1_SCK/
I2S1_CK
LPTIM1_OUT
-
-
-
-
-
PD9
USART3_RX
SPI1_NSS/
I2S1_WS
TIM1_BKIN2
-
-
-
-
-
PD10
MCO
-
-
-
-
-
-
-
PD11
USART3_CTS
LPTIM2_ETR
-
-
-
-
-
-
PD12
USART3_RTS
_DE_CK
LPTIM2_IN1
TIM4_CH1
FDCAN1_RX
-
-
-
-
PD13
-
LPTIM2_OUT
TIM4_CH2
FDCAN1_TX
-
-
-
-
PD14
-
LPUART2_CTS
TIM4_CH3
FDCAN2_RX
-
-
-
-
PD15
CRS1_SYNC
LPUART2_RTS
_DE
TIM4_CH4
FDCAN2_TX
-
-
-
-
STM32G0B1xB/xC/xE
*
61/158
62/158
Table 19. Port E alternate function mapping
DS13560 Rev 4
Port
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
PE0
TIM16_CH1
EVENTOUT
TIM4_ETR
-
-
-
-
-
PE1
TIM17_CH1
EVENTOUT
-
-
-
-
-
-
PE2
-
TIM3_ETR
-
-
-
-
-
-
PE3
-
TIM3_CH1
-
-
-
-
-
-
PE4
-
TIM3_CH2
-
-
-
-
-
-
PE5
-
TIM3_CH3
-
-
-
-
-
-
PE6
-
TIM3_CH4
-
-
-
-
-
-
PE7
-
TIM1_ETR
-
USART5_RTS_D
E_CK
-
-
-
-
PE8
USART4_TX
TIM1_CH1N
-
-
-
-
-
-
PE9
USART4_RX
TIM1_CH1
-
-
-
-
-
-
PE10
-
TIM1_CH2N
-
USART5_TX
-
-
-
-
PE11
-
TIM1_CH2
-
USART5_RX
-
-
-
-
PE12
SPI1_NSS/
I2S1_WS
TIM1_CH3N
-
-
-
-
-
-
PE13
SPI1_SCK/
I2S1_CK
TIM1_CH3
-
-
-
-
-
-
PE14
SPI1_MISO/I2S1
_MCK
TIM1_CH4
TIM1_BK2
-
-
-
-
-
PE15
SPI1_MOSI/I2S1
_SD
TIM1_BK
-
-
-
-
-
-
STM32G0B1xB/xC/xE
DS13560 Rev 4
Port
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
PF0
CRS1_SYNC
EVENTOUT
TIM14_CH1
-
-
-
-
-
PF1
OSC_EN
EVENTOUT
TIM15_CH1N
-
-
-
-
-
PF2
MCO
LPUART2_TX
-
LPUART2_RTS
_DE
-
-
-
-
PF3
-
LPUART2_RX
-
USART6_RTS
_DE_CK
-
-
-
-
PF4
-
LPUART1_TX
-
-
-
-
-
-
PF5
-
LPUART1_RX
-
-
-
-
-
-
PF6
-
LPUART1_RTS
_DE
-
-
-
-
-
-
PF7
-
LPUART1_CTS
-
USART5_CTS
-
-
-
-
PF8
-
-
-
-
-
-
-
-
PF9
-
-
-
USART6_TX
-
-
-
-
PF10
-
-
-
USART6_RX
-
-
-
-
PF11
-
-
-
USART6_RTS
_DE_CK
-
-
-
-
PF12
TIM15_CH1
-
-
USART6_CTS
-
-
-
-
PF13
TIM15_CH2
-
-
-
-
-
-
-
STM32G0B1xB/xC/xE
Table 20. Port F alternate function mapping
63/158
Electrical characteristics
STM32G0B1xB/xC/xE
5
Electrical characteristics
5.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
Parameter values defined at temperatures or in temperature ranges out of the ordering
information scope are to be ignored.
Packages used for characterizing certain electrical parameters may differ from the
commercial packages as per the ordering information.
5.1.1
Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TA(max) (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3σ).
5.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = VDDIO2 = 3
V. They are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2σ).
5.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
5.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 13.
5.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 14.
Figure 13. Pin loading conditions
Figure 14. Pin input voltage
MCU pin
MCU pin
C = 50 pF
64/158
VIN
DS13560 Rev 4
STM32G0B1xB/xC/xE
5.1.6
Electrical characteristics
Power supply scheme
Figure 15. Power supply scheme
VBAT
Backup circuitry
(LSE, RTC and
backup registers)
1.55 V to 3.6 V
Power
switch
VDD
VCORE
VDD/VDDA
VDD
Regulator
1 x 100 nF
+ 1 x 4.7 μF
GPIOs
IN
Level shifter
OUT
IO
logic
Level shifter
VDDIO1
IO
logic
Kernel logic
(CPU, digital and
memories)
VSS
VDDIO2
VDDIO2
VDDIO2
OUT
GPIOs
IN
100 nF
+4.7 μF
VREF
VDDA
VREF+
VREF+
100 nF
1 μF
VREF-
ADC
DAC
COMPs
VREFBUF
VSSA
VSS/VSSA
MSv66839V2
Caution:
Power supply pin pair (VDD/VDDA/VDDIO2 and VSS/VSSA) must be decoupled with
filtering ceramic capacitors as shown above. These capacitors must be placed as close as
possible to, or below, the appropriate pins on the underside of the PCB to ensure the good
functionality of the device.
DS13560 Rev 4
65/158
123
Electrical characteristics
5.1.7
STM32G0B1xB/xC/xE
Current consumption measurement
Figure 16. Current consumption measurement scheme
IDDVBAT
VBAT
VDD
(VDDA)
IDD
VBAT
VDD/VDDA
VDDIO2
MSv66840V1
5.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 21, Table 22 and Table 23
may cause permanent damage to the device. These are stress ratings only and functional
operation of the device at these conditions is not implied. Exposure to maximum rating
conditions for extended periods may affect device reliability.
All voltages are defined with respect to VSS.
Table 21. Voltage characteristics
Symbol
Min
Max
External supply voltage
-0.3
4.0
External supply voltage for selected I/Os
-0.3
4.0
VBAT
External supply voltage on VBAT pin
-0.3
4.0
VREF+
External voltage on VREF+ pin
-0.3
Min(VDD + 0.4, 4.0)
VDD
VDDIO2
VIN(1)
Ratings
-0.3
Input voltage on FT_c pins
-0.3
5.5
Input voltage on any other pin
-0.3
4.0
2. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
66/158
(2)
Input voltage on FT_xx pins except FT_c
1. Refer to Table 22 for the maximum allowed injected current values.
DS13560 Rev 4
Unit
VDD + 4.0
V
STM32G0B1xB/xC/xE
Electrical characteristics
Table 22. Current characteristics
Symbol
Ratings
IVDD/VDDA
/VDDIO2
IVSS/VSSA
IIO(PIN)
∑IIO(PIN)
Max
Current into VDD/VDDA/VDDIO2 power pin (source)(1)
100
Current out of VSS/VSSA ground pin (sink)(1)
100
Output current sunk by any I/O and control pin except FT_f
15
Output current sunk by any FT_f pin
20
Output current sourced by any I/O and control pin
15
Total output current sunk by sum of all I/Os and control pins
80
Total output current sourced by sum of all I/Os and control pins
80
Injected current on a TT_a pin(4)
∑|IINJ(PIN)|
mA
-5 / NA(3)
Injected current on a FT_xx pin
IINJ(PIN)(2)
Unit
-5 / 0
Total injected current (sum of all I/Os and control pins)
(5)
25
1. All main power (VDD/VDDA/VDDIO2, VBAT) and ground (VSS/VSSA) pins must always be connected to the external
power supplies, in the permitted range.
2. A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be
exceeded. Refer also to Table 21: Voltage characteristics for the maximum allowed input voltage values.
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
4. On these I/Os, any current injection disturbs the analog performances of the device.
5. When several inputs are submitted to a current injection, the maximum ∑|IINJ(PIN)| is the absolute sum of the negative
injected currents (instantaneous values).
Table 23. Thermal characteristics
Symbol
TSTG
TJ
Ratings
Storage temperature range
Maximum junction temperature
5.3
Operating conditions
5.3.1
General operating conditions
Value
Unit
-65 to +150
°C
150
°C
Table 24. General operating conditions
Symbol
Parameter
Conditions
Min
Max
Unit
fHCLK
Internal AHB clock frequency
-
0
64
fPCLK
Internal APB clock frequency
-
0
64
VDD
Standard operating voltage
-
1.7(1)
3.6
V
VDDIO2
External supply voltage for
selected I/Os
-
1.7
3.6
V
DS13560 Rev 4
MHz
67/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
Table 24. General operating conditions (continued)
Symbol
VDDA
VBAT
VIN
Parameter
Conditions
Min
Max
For ADC and COMP
operation
1.62
3.6
For DAC operation
1.8
3.6
For VREFBUF operation
2.4
3.6
-
1.55
3.6
Analog supply voltage
Backup operating voltage
All except TT_xx and FT_c
-0.3
TT_xx
-0.3
VDD + 0.3
FT_c
-0.3
5.0(2)
Suffix 6(4)
-40
85
(4)
-40
105
3(4)
-40
125
Suffix 6(4)
-40
105
7(4)
-40
125
(4)
-40
130
I/O input voltage
TA
Ambient
temperature(3)
Suffix 7
Suffix
TJ
Suffix
Junction temperature
Suffix 3
Unit
V
V
Min(VDD + 3.6, 5.5)
(2)
V
°C
°C
1. When RESET is released functionality is guaranteed down to VPDR min.
2. For operation with voltage higher than VDD +0.3 V, the internal pull-up and pull-down resistors must be disabled.
3. The TA(max) applies to PD(max). At PD < PD(max) the ambient temperature is allowed to go higher than TA(max) provided
that the junction temperature TJ does not exceed TJ(max). Refer to Section 6.11: Thermal characteristics.
4. Temperature range digit in the order code. See Section 7: Ordering information.
5.3.2
Operating conditions at power-up / power-down
The parameters given in Table 25 are derived from tests performed under the ambient
temperature condition summarized in Table 24.
Table 25. Operating conditions at power-up / power-down
Symbol
Parameter
tVDD
5.3.3
VDD slew rate
Conditions
Min
Max
VDD rising
-
∞
VDD falling; ULPEN = 0
10
∞
VDD falling; ULPEN = 1
100
∞
Unit
µs/V
ms/V
Embedded reset and power control block characteristics
The parameters given in Table 26 are derived from tests performed under the ambient
temperature conditions summarized in Table 24: General operating conditions.
Table 26. Embedded reset and power control block characteristics
Symbol
tRSTTEMPO
VPOR(2)
68/158
(2)
Parameter
Conditions(1)
Min
Typ
Max
Unit
POR temporization when VDD crosses VPOR
VDD rising
-
250
400
μs
-
1.62
1.66
1.70
V
Power-on reset threshold
DS13560 Rev 4
STM32G0B1xB/xC/xE
Electrical characteristics
Table 26. Embedded reset and power control block characteristics (continued)
Symbol
Parameter
VPDR(2)
Power-down reset threshold
VBOR1
Brownout reset threshold 1
VBOR2
Brownout reset threshold 2
VBOR3
Brownout reset threshold 3
VBOR4
Brownout reset threshold 4
VPVD0
Programmable voltage detector threshold 0
VPVD1
PVD threshold 1
VPVD2
PVD threshold 2
VPVD3
PVD threshold 3
VPVD4
PVD threshold 4
VPVD5
PVD threshold 5
VPVD6
PVD threshold 6
Vhyst_POR_PDR
Hysteresis of VPOR and VPDR
Conditions(1)
Min
Typ
Max
Unit
-
1.60
1.64
1.69
V
VDD rising
2.05
2.10
2.18
VDD falling
1.95
2.00
2.08
VDD rising
2.20
2.31
2.38
VDD falling
2.10
2.21
2.28
VDD rising
2.50
2.62
2.68
VDD falling
2.40
2.52
2.58
VDD rising
2.80
2.91
3.00
VDD falling
2.70
2.81
2.90
VDD rising
2.05
2.15
2.22
VDD falling
1.95
2.05
2.12
VDD rising
2.20
2.30
2.37
VDD falling
2.10
2.20
2.27
VDD rising
2.35
2.46
2.54
VDD falling
2.25
2.36
2.44
VDD rising
2.50
2.62
2.70
VDD falling
2.40
2.52
2.60
VDD rising
2.65
2.74
2.87
VDD falling
2.55
2.64
2.77
VDD rising
2.80
2.91
3.03
VDD falling
2.70
2.81
2.93
VDD rising
2.90
3.01
3.14
VDD falling
2.80
2.91
3.04
Hysteresis in
continuous
mode
-
20
-
Hysteresis in
other mode
-
30
-
V
V
V
V
V
V
V
V
V
V
V
mV
Vhyst_BOR_PVD
Hysteresis of VBORx and VPVDx
-
-
100
-
mV
IDD(BOR_PVD)(2)
BOR and PVD consumption
-
-
1.1
1.6
µA
1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.
2. Guaranteed by design.
DS13560 Rev 4
69/158
123
Electrical characteristics
5.3.4
STM32G0B1xB/xC/xE
Embedded voltage reference
The parameters given in Table 27 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 24: General operating
conditions.
Table 27. Embedded internal voltage reference
Symbol
VREFINT
Parameter
Internal reference voltage
Conditions
Min
Typ
Max
Unit
-40°C < TJ < 130°C
1.182
1.212
1.232
V
tS_vrefint (1)
ADC sampling time when reading
the internal reference voltage
-
4(2)
-
-
µs
tstart_vrefint
Start time of reference voltage
buffer when ADC is enable
-
-
8
12(2)
µs
IDD(VREFINTBUF)
VREFINT buffer consumption from
VDD when converted by ADC
-
-
12.5
20(2)
µA
∆VREFINT
Internal reference voltage spread
over the temperature range
VDD = 3 V
-
5
7.5(2)
mV
-
-
30
50(2)
ppm/°C
300
1000(2)
ppm
-
250
1200(2)
ppm/V
24
25
26
49
50
51
74
75
76
TCoeff_vrefint
ACoeff
VDDCoeff
Temperature coefficient
Long term stability
1000 hours, T = 25 °C
Voltage coefficient
VREFINT_DIV1
1/4 reference voltage
VREFINT_DIV2
1/2 reference voltage
VREFINT_DIV3
3/4 reference voltage
3.0 V < VDD < 3.6 V
-
-
%
VREFINT
1. The shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
Figure 17. VREFINT vs. temperature
V
1.235
1.23
1.225
1.22
1.215
1.21
1.205
1.2
1.195
1.19
1.185
-40
-20
0
20
40
Mean
60
Min
80
100
120
°C
Max
MSv40169V1
70/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
5.3.5
Electrical characteristics
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 16: Current consumption
measurement scheme.
Typical and maximum current consumption
The MCU is placed under the following conditions:
•
All I/O pins are in analog input mode
•
All peripherals are disabled except when explicitly mentioned
•
The Flash memory access time is adjusted with the minimum wait states number,
depending on the fHCLK frequency (refer to the table “Number of wait states according
to CPU clock (HCLK) frequency” available in the RM0444 reference manual).
•
When the peripherals are enabled fPCLK = fHCLK
•
For Flash memory and shared peripherals fPCLK = fHCLK = fHCLKS
Unless otherwise stated, values given in Table 28 through Table 36 are derived from tests
performed under ambient temperature and supply voltage conditions summarized in
Table 24: General operating conditions.
DS13560 Rev 4
71/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
Table 28. Current consumption in Run and Low-power run modes
at different die temperatures
Conditions
Symbol
Parameter
General
25
°C
85
°C
125
°C
25
°C
85
°C
130
°C
64 MHz
8.6
8.8
9.4
9.0
9.1
9.7
56 MHz
7.5
7.8
8.3
7.9
8.0
8.6
6.7
7.0
7.6
7.1
7.2
7.8
4.6
4.8
5.4
4.8
5.0
5.5
24 MHz
3.6
3.8
4.3
3.8
4.1
4.6
16 MHz
2.3
2.5
3.0
2.4
2.6
3.2
64 MHz
8.8
8.9
9.4
9.3
9.4
9.9
56 MHz
7.7
7.8
8.3
8.2
8.3
8.8
6.9
7.0
7.5
7.3
7.4
7.9
4.7
4.8
5.3
5.0
5.1
5.6
24 MHz
3.6
3.8
4.3
4.1
4.2
4.7
16 MHz
2.3
2.4
2.9
2.5
2.6
3.2
1.8
2.0
2.4
2.2
2.3
2.9
1.0
1.1
1.6
1.3
1.4
2.1
2 MHz
0.3
0.4
0.9
0.6
0.9
1.4
16 MHz
1.9
2.0
2.5
2.3
2.4
3.0
1.0
1.1
1.6
1.3
1.5
2.1
2 MHz
0.3
0.4
0.9
0.6
0.9
1.4
2 MHz
280
415
950
585
845
1515
155
285
820
530
835
1315
90
220
750
475
795
1220
45
170
700
445
745
1190
30
155
695
430
720
1185
250
360
855
575
835
1495
140
260
730
530
825
1300
80
205
650
475
780
1230
125 kHz
40
155
635
440
745
1200
32 kHz
30
135
625
415
715
1180
fHCLK
48 MHz
Range 1;
PLL enabled;
fHCLK = fHSE_bypass
(≤16 MHz),
fHCLK = fPLLRCLK
(>16 MHz);
IDD(Run)
Supply
(3)
current in
Run mode
(from Flash
memory)
Range 2;
PLL enabled;
fHCLK = fHSE_bypass
(≤16 MHz),
fHCLK = fPLLRCLK
(>16 MHz);
(3)
32 MHz
48 MHz
32 MHz
Fetch
from(2)
Flash
memory
SRAM
16 MHz
8 MHz
8 MHz
Flash
memory
SRAM
1 MHz
500 kHz
IDD(LPRun)
Supply
current in
Low-power
run mode
Max(1)
Typ
PLL disabled;
125 kHz
fHCLK = fHSE
bypass (> 32 kHz), 32 kHz
fHCLK = fLSE
2 MHz
bypass (= 32 kHz);
(3)
1 MHz
500 kHz
Flash
memory
SRAM
Unit
mA
µA
1. Based on characterization results, not tested in production.
2. Prefetch and cache enabled when fetching from Flash memory. Code compiled with high optimization for space in SRAM.
3. VDD = 3.0 V for values in Typ columns and 3.6 V for values in Max columns, all peripherals disabled.
72/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Electrical characteristics
Table 29. Typical current consumption in Run and Low-power run modes,
depending on code executed
Conditions
Symbol
Typ
Parameter
General
Fetch
from(1)
8.70
136
8.15
127
8.00
125
Fibonacci
7.30
114
While(1) loop
5.90
92
8.85
138
9.10
142
8.95
140
Fibonacci
9.85
154
While(1) loop
8.85
Dhrystone 2.1
Reduced
Flash
memory
code(3)
Coremark
Dhrystone 2.1
IDD(Run)
Supply
current in
Run mode
Reduced
SRAM
code(3)
2.45
Coremark
(2)
119
Fibonacci
1.70
106
While(1) loop
1.35
84
Reduced code(3)
2.10
131
Coremark
2.10
131
2.05
128
Fibonacci
2.25
141
While(1) loop
2.05
128
485
243
475
238
480
240
500
250
Flash
memory
SRAM
code(3)
Coremark
Dhrystone 2.1
IDD(LPRun)
(2)
153
1.90
Reduced
fHCLK = fHSI16/8 =
2 MHz;
PLL disabled,
138
119
Dhrystone 2.1
Supply
current in
Low-power
run mode
mA
1.90
Dhrystone 2.1
Range 2;
fHCLK = fHSI16 =
16 MHz,
PLL disabled,
Unit
25 °C
Coremark
(2)
Unit
25 °C
Code
Reduced code(3)
Range 1;
fHCLK = fPLLRCLK =
64 MHz;
Typ
Flash
memory
Fibonacci
While(1) loop
Reduced code
515
(3)
490
Coremark
μA
258
245
485
243
480
240
Fibonacci
510
255
While(1) loop
480
240
Dhrystone 2.1
SRAM
μA/MHz
μA/MHz
1. Prefetch and cache enabled when fetching from Flash. Code compiled with high optimization for space in SRAM.
2. VDD = 3.3 V, all peripherals disabled, cache enabled, prefetch disabled for execution in Flash and enabled in SRAM
DS13560 Rev 4
73/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
3. Reduced code used for characterization results provided in Table 28.
Table 30. Current consumption in Sleep and Low-power sleep modes
Conditions
Symbol
Parameter
Voltage
scaling
General
IDD(Sleep)
Supply
current in
Sleep
mode
Max(1)
Typ
fHCLK
25
°C
85
°C
125
°C
25
°C
85
°C
130
°C
64 MHz
1.9
2.0
2.6
2.5
2.6
3.3
56 MHz
1.7
1.8
2.4
2.2
2.4
3.2
48 MHz
1.5
1.6
2.2
1.9
2.1
2.8
32 MHz
1.1
1.2
1.8
1.4
1.6
2.3
24 MHz
0.9
1.0
1.6
1.2
1.3
2.1
16 MHz
0.5
0.6
1.2
0.7
0.9
1.6
16 MHz
0.4
0.6
1.0
0.6
0.7
1.4
8 MHz
0.3
0.4
0.9
0.4
0.5
1.2
2 MHz
0.2
0.3
0.7
0.2
0.4
1.0
2 MHz
70
200
705
175 500 1325
1 MHz
48
175
685
145 438 1285
500 kHz
37
165
670
130 413 1255
125 kHz
28
155
665
105 388 1250
32 kHz
26
150
660
90
Flash memory enabled;
fHCLK = fHSE bypass
Range 1
(≤16 MHz; PLL
disabled),
fHCLK = fPLLRCLK
(>16 MHz; PLL
enabled);
All peripherals disabled
Range 2
Flash memory disabled;
Supply
PLL disabled;
current in
=f
bypass (> 32 kHz),
f
IDD(LPSleep)
Low-power HCLK HSE
fHCLK = fLSE bypass (= 32 kHz);
sleep mode
All peripherals disabled
Unit
mA
µA
375 1210
1. Based on characterization results, not tested in production.
Table 31. Current consumption in Stop 0 mode
Conditions
Symbol
Parameter
Unit
HSI kernel
Enabled
IDD(Stop 0)
Supply
current in
Stop 0
mode
Disabled
VDD
25°C
85°C
125°C
25°C
85°C
130°C
1.8 V
290
370
675
370
470
850
2.4 V
295
370
680
370
470
870
3V
295
375
695
375
475
930
3.6 V
300
380
695
375
475
1050
1.8 V
100
190
505
180
290
680
2.4 V
100
195
510
180
290
685
3V
105
195
525
180
295
695
3.6 V
105
200
530
185
305
830
1. Based on characterization results, not tested in production.
74/158
Max(1)
Typ
DS13560 Rev 4
µA
STM32G0B1xB/xC/xE
Electrical characteristics
Table 32. Current consumption in Stop 1 mode
Conditions
Symbol
Parameter
Flash
memory
Unit
RTC(2)
Disabled
Not
powered
IDD(Stop 1)
Supply
current in
Stop 1
mode
Enabled
Powered
Max(1)
Typ
Disabled
VDD
25°C
85°C
125°C
25°C
85°C
130°C
1.8 V
2.9
25
105
-
-
-
2.4 V
3.1
26
110
-
-
-
3V
3.3
26
110
-
-
-
3.6 V
3.6
26
110
-
-
-
1.8 V
3.3
25
105
-
-
-
2.4 V
3.6
26
110
-
-
-
3V
3.7
26
110
-
-
-
3.6 V
4.2
27
110
-
-
-
1.8 V
7.0
30
110
-
-
-
2.4 V
7.3
30
115
-
-
-
3V
7.5
30
115
-
-
-
3.6 V
7.8
31
115
-
-
-
µA
1. Based on characterization results, not tested in production.
2. Clocked by LSI
Table 33. Current consumption in Standby mode
Symbol
Parameter
Conditions
General
RTC disabled
RTC enabled,
clocked by LSI;
IDD(Standby)
Supply current
in Standby
mode(2)
IWDG enabled,
clocked by LSI
ULPEN = 0
Max(1)
Typ
VDD
25°C
85°C
1.8 V
0.1
2.4 V
0.1
3.0 V
125°C
25°C
85°C
130°C
2.1
9.4
0.8
14
45
2.5
11.5
1.2
17
54
0.2
3.0
13.5
1.4
18
64
3.6 V
0.3
3.5
16.0
1.8
21
74
1.8 V
0.4
2.3
9.7
2.0
15
45
2.4 V
0.5
2.8
11.5
2.5
18
55
3.0 V
0.7
3.4
14.0
3.0
20
64
3.6 V
0.9
4.0
16.0
3.3
23
75
1.8 V
0.3
2.3
9.6
2.1
14
45
2.4 V
0.4
2.7
11.5
2.3
17
54
3.0 V
0.5
3.3
13.5
2.6
19
64
3.6 V
0.7
3.8
16.0
3.0
22
74
1.8 V
0.7
2.0
9.4
-
-
-
2.4 V
0.9
2.4
11.0
-
-
-
3.0 V
1.1
2.9
13.5
-
-
-
3.6 V
1.3
3.4
15.5
-
-
-
DS13560 Rev 4
Unit
µA
75/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
Table 33. Current consumption in Standby mode (continued)
Symbol
∆IDD(SRAM)
Conditions
Parameter
General
Extra supply
current to
retain SRAM
content(3)
SRAM retention
enabled
Max(1)
Typ
VDD
25°C
85°C
125°C
25°C
85°C
130°C
1.8 V
1.0
11.5
57
4.3
41
265
2.4 V
1.0
11.5
57
4.3
41
265
3.0 V
1.1
11.6
58
4.4
41
270
3.6 V
1.2
11.6
59
4.4
42
270
Unit
µA
1. Based on characterization results, not tested in production.
2. Without SRAM retention and with ULPEN bit set
3. To be added to IDD(Standby) as appropriate
Table 34. Current consumption in Shutdown mode
Symbol
Conditions
Parameter
RTC
VDD
Disabled
IDD(Shutdown)
Supply current
in Shutdown
mode
Enabled, clocked
by LSE bypass at
32.768 kHz
Max(1)
Typ
25 °C 85 °C 125 °C 25 °C 85 °C 130 °C
1.8 V
23
840
7050
240
3210
39200
2.4 V
38
965
8050
370
3910
44600
3.0 V
38
1100
9550
370
4700
51500
3.6 V
57
1350
11000
500
5700
59400
1.8 V
235
1050
7400
290
3850
47000
2.4 V
320
1250
8400
440
4690
53500
3.0 V
425
1500
9950
450
5640
61800
3.6 V
550
1850
11500
590
6840
71200
Unit
nA
1. Based on characterization results, not tested in production.
Table 35. Current consumption in VBAT mode
Symbol
Parameter
Conditions
RTC
Enabled, clocked by
LSE bypass at
32.768 kHz
IDD(VBAT)
Supply current in
VBAT mode
Enabled, clocked by
LSE crystal at
32.768 kHz
Disabled
76/158
DS13560 Rev 4
Typ
VDD
25°C
85°C
125°C
1.8 V
195
416
2015
2.4 V
320
530
2366
3.0 V
492
635
2838
3.6 V
627
908
3339
1.8 V
130
325
1550
2.4 V
160
400
1800
3.0 V
210
500
2050
3.6 V
285
605
2400
1.8 V
4
160
1450
2.4 V
4
190
1700
3.0 V
4
220
1950
3.6 V
7
270
2250
Unit
nA
STM32G0B1xB/xC/xE
Electrical characteristics
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 55: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously
(seeTable 36: Current consumption of peripherals ), the I/Os used by an application also
contribute to the current consumption. When an I/O pin switches, it uses the current from
the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive
load (internal or external) connected to the pin:
I SW = V DDIOx × f SW × C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDIOx is the I/O supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
DS13560 Rev 4
77/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in the following table. The MCU
is placed under the following conditions:
•
All I/O pins are in Analog mode
•
The given value is calculated by measuring the difference of the current consumptions:
–
when the peripheral is clocked on
–
when the peripheral is clocked off
•
Ambient operating temperature and supply voltage conditions summarized in Table 21:
Voltage characteristics
•
The power consumption of the digital part of the on-chip peripherals is given in the
following table. The power consumption of the analog part of the peripherals (where
applicable) is indicated in each related section of the datasheet.
Table 36. Current consumption of peripherals
Consumption in µA/MHz
Peripheral
Range 1
Range 2
Low-power run
and sleep
IOPORT Bus
IOPORT
0.5
0.4
0.3
GPIOA
IOPORT
3.1
2.4
3.0
GPIOB
IOPORT
2.9
2.3
3.0
GPIOC
IOPORT
3.0
2.4
2.8
GPIOD
IOPORT
2.7
2.2
2.5
GPIOE
IOPORT
1.6
1.4
1.6
GPIOF
IOPORT
2.8
2.3
2.6
Bus matrix
AHB
0.5
0.5
0.5
All AHB Peripherals
AHB
31
26
30
DMA1/DMAMUX
AHB
5.1
4.3
4.9
CRC
AHB
0.4
0.4
0.5
FLASH
AHB
22
18
21
All APB peripherals
APB
120
110
220
APB
0.2
0.2
0.1
APB
0.4
0.3
0.4
WWDG
APB
0.4
0.4
0.4
DMA2
APB
1.5
1.3
1.5
TIM1
APB
7.6
6.3
7.2
TIM2
APB
5.2
4.3
4.9
TIM3
APB
4.7
3.9
4.3
TIM4
APB
4.4
3.7
4.2
TIM6
APB
1.2
1.0
1.1
TIM7
APB
0.8
0.7
0.8
TIM14
APB
1.4
1.2
1.3
AHB to APB
bridge(1)
PWR
78/158
Bus
DS13560 Rev 4
STM32G0B1xB/xC/xE
Electrical characteristics
Table 36. Current consumption of peripherals (continued)
Consumption in µA/MHz
Peripheral
Bus
Range 1
Range 2
Low-power run
and sleep
TIM15
APB
4.2
3.5
3.9
TIM16
APB
2.7
2.3
2.5
TIM17
APB
0.8
0.7
0.7
LPTIM1
APB
3.3
2.7
3.1
LPTIM2
APB
3.2
2.7
3.1
I2C1
APB
3.6
3.0
3.3
I2C2
APB
3.4
2.8
3.2
I2C3
APB
0.9
0.7
0.8
SPI1
APB
2.2
1.9
2.1
SPI2
APB
2.1
1.7
2.0
SPI3
APB
1.4
1.2
1.3
USART1
APB
7.4
6.2
6.9
USART2
APB
7.4
6.2
7.0
USART3
APB
7.4
6.2
6.9
USART4
APB
2.1
1.8
2.0
USART5
APB
2.3
1.9
2.1
USART6
APB
2.2
1.8
2.1
LPUART1
APB
4.5
3.7
4.2
LPUART2
APB
4.9
4.1
4.6
ADC
APB
2.4
2.0
2.3
DAC1
APB
1.9
1.6
1.8
SYSCFG/VREFBUF/COMP
APB
0.5
0.4
0.5
CEC
APB
0.4
0.3
0.3
CRS
APB
0.2
0.2
0.3
USB
APB
3.3
2.7
3.0
FDCAN
APB
16
13
15
UCPD1
APB
4.0
7.9
59.0(2)
UCPD2
APB
4.0
7.9
59.5(2)
1. The AHB to APB Bridge is automatically active when at least one peripheral is ON on the APB.
2. UCPDx are always clocked by HSI16.
DS13560 Rev 4
79/158
123
Electrical characteristics
5.3.6
STM32G0B1xB/xC/xE
Wakeup time from low-power modes and voltage scaling
transition times
The wakeup times given in Table 37 are the latency between the event and the execution of
the first user instruction.
Table 37. Low-power mode wakeup times(1)
Symbol
Parameter
Conditions
Typ
Max
tWUSLEEP
Wakeup time from
Sleep to Run
mode
-
11
11
Wakeup time from Transiting to Low-power-run-mode execution in Flash
tWULPSLEEP Low-power sleep memory not powered in Low-power sleep mode;
mode
HCLK = HSI16 / 8 = 2 MHz
tWUSTOP0
Transiting to Run-mode execution in Flash memory not
powered in Stop 0 mode;
HCLK = HSI16 = 16 MHz;
Wakeup time from Regulator in Range 1 or Range 2
Stop 0
Transiting to Run-mode execution in SRAM or in Flash
memory powered in Stop 0 mode;
HCLK = HSI16 = 16 MHz;
Regulator in Range 1 or Range 2
Transiting to Run-mode execution in Flash memory not
powered in Stop 1 mode;
HCLK = HSI16 = 16 MHz;
Regulator in Range 1 or Range 2
tWUSTOP1
Transiting to Run-mode execution in SRAM or in Flash
memory powered in Stop 1 mode;
HCLK = HSI16 = 16 MHz;
Wakeup time from Regulator in Range 1 or Range 2
Stop 1
Transiting to Low-power-run-mode execution in Flash
memory not powered in Stop 1 mode;
HCLK = HSI16/8 = 2 MHz;
Regulator in low-power mode (LPR = 1 in PWR_CR1)
Transiting to Low-power-run-mode execution in SRAM or
in Flash memory powered in Stop 1 mode;
HCLK = HSI16 / 8 = 2 MHz;
Regulator in low-power mode (LPR = 1 in PWR_CR1)
tWUSTBY
80/158
Transiting to Run mode;
Wakeup time from
HCLK = HSI16 = 16 MHz;
Standby mode
Regulator in Range 1
DS13560 Rev 4
Unit
CPU
cycles
11
14
5.6
6
µs
2
2.4
9.0
11.2
5
7.5
µs
22
25.3
18
23.5
14.5
30
µs
STM32G0B1xB/xC/xE
Electrical characteristics
Table 37. Low-power mode wakeup times(1) (continued)
Symbol
Parameter
Conditions
tWUSHDN
Transiting to Run mode;
Wakeup time from
HCLK = HSI16 = 16 MHz;
Shutdown mode
Regulator in Range 1
tWULPRUN
Wakeup time from Transiting to Run mode;
Low-power run
HSISYS = HSI16/8 = 2 MHz
mode(2)
Typ
Max
Unit
258
340
µs
5
7
µs
1. Based on characterization results, not tested in production.
2. Time until REGLPF flag is cleared in PWR_SR2.
Table 38. Regulator mode transition times(1)
Symbol
Parameter
Conditions
Transition times between regulator
Range 1 and Range 2(2)
tVOST
HSISYS = HSI16
Typ
Max
Unit
20
40
µs
Typ
Max
Unit
-
1.7
-
8.5
1. Based on characterization results, not tested in production.
2. Time until VOSF flag is cleared in PWR_SR2.
Table 39. Wakeup time using LPUART(1)
Symbol
Parameter
tWULPUART
Conditions
Stop mode 0
Wakeup time needed to calculate the maximum
LPUART baud rate allowing to wakeup up from Stop
mode when LPUART clock source is HSI16
Stop mode 1
µs
1. Guaranteed by design.
5.3.7
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 5.3.14. See
Figure 18 for recommended clock input waveform.
Table 40. High-speed external user clock characteristics(1)
Symbol
fHSE_ext
Parameter
User external clock source frequency
Conditions
Min
Typ
Max
Voltage scaling
Range 1
-
8
48
Voltage scaling
Range 2
-
8
26
MHz
VHSEH
OSC_IN input pin high level voltage
-
0.7 VDDIO1
-
VDDIO1
VHSEL
OSC_IN input pin low level voltage
-
VSS
-
0.3 VDDIO1
DS13560 Rev 4
Unit
V
81/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
Table 40. High-speed external user clock characteristics(1) (continued)
Symbol
Parameter
tw(HSEH)
OSC_IN high or low time
tw(HSEL)
Conditions
Min
Typ
Max
Voltage scaling
Range 1
7
-
-
Voltage scaling
Range 2
18
Unit
ns
-
-
1. Guaranteed by design.
Figure 18. High-speed external clock source AC timing diagram
tw(HSEH)
VHSEH
90%
10%
VHSEL
tr(HSE)
tf(HSE)
t
tw(HSEL)
THSE
MS19214V2
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 5.3.14. See
Figure 19 for recommended clock input waveform.
Table 41. Low-speed external user clock characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
kHz
fLSE_ext
User external clock source frequency
-
-
32.768
1000
VLSEH
OSC32_IN input pin high level voltage
-
0.7 VDDIO1
-
VDDIO1
VLSEL
OSC32_IN input pin low level voltage
-
VSS
-
0.3 VDDIO1
-
250
-
-
tw(LSEH)
OSC32_IN high or low time
tw(LSEL)
1. Guaranteed by design.
82/158
DS13560 Rev 4
V
ns
STM32G0B1xB/xC/xE
Electrical characteristics
Figure 19. Low-speed external clock source AC timing diagram
tw(LSEH)
VLSEH
90%
10%
VLSEL
tr(LSE)
t
tf(LSE)
tw(LSEL)
TLSE
MS19215V2
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 42. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Table 42. HSE oscillator characteristics(1)
Conditions(2)
Min
Typ
Max
Unit
Oscillator frequency
-
4
8
48
MHz
Feedback resistor
-
-
200
-
kΩ
-
-
5.5
VDD = 3 V,
Rm = 30 Ω,
CL = 10 pF@8 MHz
-
0.44
-
VDD = 3 V,
Rm = 45 Ω,
CL = 10 pF@8 MHz
-
0.45
-
VDD = 3 V,
Rm = 30 Ω,
CL = 5 pF@48 MHz
-
0.68
-
VDD = 3 V,
Rm = 30 Ω,
CL = 10 pF@48 MHz
-
0.94
-
VDD = 3 V,
Rm = 30 Ω,
CL = 20 pF@48 MHz
-
1.77
-
Maximum critical crystal
transconductance
Startup
-
-
1.5
mA/V
Startup time
VDD is stabilized
-
2
-
ms
Symbol
fOSC_IN
RF
Parameter
During startup
IDD(HSE)
Gm
tSU(HSE)(4)
HSE current consumption
(3)
mA
1. Guaranteed by design.
2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
DS13560 Rev 4
83/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 20). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 20. Typical application with an 8 MHz crystal
Resonator with integrated
capacitors
CL1
OSC_IN
8 MHz
resonator
CL2
REXT (1)
fHSE
RF
Bias
controlled
gain
OSC_OUT
MS19876V1
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. All the information given in this paragraph are based on design simulation results
obtained with typical external components specified in Table 43. In the application, the
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
84/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Electrical characteristics
Table 43. LSE oscillator characteristics (fLSE = 32.768 kHz)(1)
Symbol
IDD(LSE)
Conditions(2)
Parameter
LSE current consumption
Maximum critical crystal
Gmcritmax
gm
tSU(LSE)(3) Startup time
Min
Typ
Max
LSEDRV[1:0] = 00
Low drive capability
-
250
-
LSEDRV[1:0] = 01
Medium low drive capability
-
315
-
LSEDRV[1:0] = 10
Medium high drive capability
-
500
-
LSEDRV[1:0] = 11
High drive capability
-
630
-
LSEDRV[1:0] = 00
Low drive capability
-
-
0.5
LSEDRV[1:0] = 01
Medium low drive capability
-
-
0.75
LSEDRV[1:0] = 10
Medium high drive capability
-
-
1.7
LSEDRV[1:0] = 11
High drive capability
-
-
2.7
VDD is stabilized
-
2
-
Unit
nA
µA/V
s
1. Guaranteed by design.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
3.
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 21. Typical application with a 32.768 kHz crystal
Resonator with integrated
capacitors
CL1
OSC32_IN
fLSE
Drive
programmable
amplifier
32.768 kHz
resonator
OSC32_OUT
CL2
MS30253V2
Note:
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
DS13560 Rev 4
85/158
123
Electrical characteristics
5.3.8
STM32G0B1xB/xC/xE
Internal clock source characteristics
The parameters given in Table 44 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 24: General operating
conditions. The provided curves are characterization results, not tested in production.
High-speed internal (HSI16) RC oscillator
Table 44. HSI16 oscillator characteristics(1)
Symbol
fHSI16
Parameter
Conditions
Min
Typ
Max
Unit
15.88
-
16.08
MHz
HSI16 Frequency
VDD=3.0 V, TA=30 °C
∆Temp(HSI16)
HSI16 oscillator frequency drift over
temperature
TA= 0 to 85 °C
-1
-
1
%
TA= -40 to 125 °C
-2
-
1.5
%
∆VDD(HSI16)
HSI16 oscillator frequency drift over
VDD
-0.1
-
0.05
%
-8
-6
-4
-5.8
-3.8
-1.8
0.2
0.3
0.4
VDD=1.62 V to 3.6 V
From code 127 to 128
From code 63 to 64
HSI16 frequency user trimming step From code 191 to 192
TRIM
For all other code
increments
DHSI16(2)
tsu(HSI16)(2)
tstab(HSI16)
(2)
IDD(HSI16)(2)
Duty Cycle
-
45
-
55
%
HSI16 oscillator start-up time
-
-
0.8
1.2
μs
HSI16 oscillator stabilization time
-
-
3
5
μs
HSI16 oscillator power consumption
-
-
155
190
μA
1. Based on characterization results, not tested in production.
2. Guaranteed by design.
86/158
%
DS13560 Rev 4
STM32G0B1xB/xC/xE
Electrical characteristics
Figure 22. HSI16 frequency vs. temperature
MHz
16.4
+2%
16.3
+1.5%
16.2
+1%
16.1
16
15.9
-1%
15.8
-1.5%
15.7
-2%
15.6
-40
-20
0
20
40
min
60
80
mean
100
120 °C
max
MSv39299V1
High-speed internal 48 MHz (HSI48) RC oscillator
Table 45. HSI48 oscillator characteristics(1)
Symbol
Parameter
fHSI48
HSI48 Frequency
TRIM
HSI48 user trimming step
USER TRIM
COVERAGE
Conditions
Typ
Max
Unit
-
48
-
MHz
-
0.11(2)
0.18(2)
%
±6(3)
±7(3)
-
%
45(2)
-
55(2)
%
VDD = 3.0 V to 3.6 V,
TA = –15 to 85 °C
-
-
±3(3)
VDD = 1.65 V to 3.6 V,
TA = –40 to 125 °C
-
-
±4.5(3)
VDD = 3 V to 3.6 V
-
0.025(3)
0.05(3)
VDD = 1.65 V to 3.6 V
-
0.05(3)
0.1(3)
VDD=3.0V, TA=30°C
-
HSI48 user trimming coverage
±64 steps
DuCy(HSI48) Duty Cycle
-
Accuracy of the HSI48 oscillator
ACCHSI48_REL over temperature (factory
calibrated)
DVDD(HSI48)
Min
HSI48 oscillator frequency drift
with VDD
%
%
tsu(HSI48)
HSI48 oscillator start-up time
-
-
2.5(2)
6(2)
μs
IDD(HSI48)
HSI48 oscillator power
consumption
-
-
340(2)
380(2)
μA
NT jitter
Next transition jitter
Accumulated jitter on 28 cycles(4)
-
-
+/-0.15(2)
-
ns
PT jitter
Paired transition jitter
Accumulated jitter on 56 cycles(4)
-
-
+/-0.25(2)
-
ns
DS13560 Rev 4
87/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
1. VDD = 3 V, TA = –40 to 125°C unless otherwise specified.
2. Guaranteed by design.
3. Guaranteed by characterization results.
4. Jitter measurement are performed without clock source activated in parallel.
Figure 23. HSI48 frequency versus temperature
%
6
4
2
0
-2
-4
-6
-50
-30
-10
10
30
Avg
50
70
90
min
110
130
°C
max
MSv40989V1
Low-speed internal (LSI) RC oscillator
Table 46. LSI oscillator characteristics(1)
Symbol
Parameter
LSI frequency
fLSI
tSU(LSI)(2)
(2)
tSTAB(LSI)
IDD(LSI)(2)
Conditions
Min
Typ
Max
VDD = 3.0 V, TA = 30 °C
31.04
-
32.96
VDD = 1.62 V to 3.6 V, TA = -40 to
125 °C
29.5
-
34
-
80
130
μs
-
125
180
μs
-
110
180
nA
LSI oscillator start-up time
LSI oscillator stabilization time
5% of final frequency
LSI oscillator power
consumption
-
1. Based on characterization results, not tested in production.
2. Guaranteed by design.
88/158
DS13560 Rev 4
Unit
kHz
STM32G0B1xB/xC/xE
5.3.9
Electrical characteristics
PLL characteristics
The parameters given in Table 47 are derived from tests performed under temperature and
VDD supply voltage conditions summarized in Table 24: General operating conditions.
Table 47. PLL characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
fPLL_IN
PLL input clock frequency(2)
-
2.66
-
16
MHz
DPLL_IN
PLL input clock duty cycle
-
45
-
55
%
Voltage scaling Range 1
3.09
-
122
Voltage scaling Range 2
3.09
-
40
Voltage scaling Range 1
12
-
128
Voltage scaling Range 2
12
-
33
Voltage scaling Range 1
12
-
64
Voltage scaling Range 2
12
-
16
Voltage scaling Range 1
96
-
344
Voltage scaling Range 2
96
-
128
-
15
40
-
50
-
-
40
-
VCO freq = 96 MHz
-
200
260
VCO freq = 192 MHz
-
300
380
VCO freq = 344 MHz
-
520
650
fPLL_P_OUT PLL multiplier output clock P
fPLL_Q_OUT PLL multiplier output clock Q
fPLL_R_OUT PLL multiplier output clock R
fVCO_OUT
tLOCK
Jitter
IDD(PLL)
PLL VCO output
PLL lock time
-
RMS cycle-to-cycle jitter
RMS period jitter
PLL power consumption
on VDD(1)
System clock 56 MHz
MHz
MHz
MHz
MHz
μs
±ps
μA
1. Guaranteed by design.
2. Make sure to use the appropriate division factor M to obtain the specified PLL input clock values.
5.3.10
Flash memory characteristics
Table 48. Flash memory characteristics(1)
Symbol
tprog
Parameter
Row (32 double word) programming time
tprog_page
Page (2 Kbyte) programming time
tprog_bank
tME
Typ
Max
Unit
-
85
125
µs
Normal programming
2.7
4.6
Fast programming
1.7
2.8
Normal programming
21.8
36.6
Fast programming
13.7
22.4
22.0
40.0
Normal programming
2.8
4.7
Fast programming
1.8
2.9
22.1
40.1
64-bit programming time
tprog_row
tERASE
Conditions
Page (2 Kbyte) erase time
-
Bank (512 Kbyte(2)) programming time
Mass erase time
-
DS13560 Rev 4
ms
s
ms
89/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
Table 48. Flash memory characteristics(1) (continued)
Symbol
IDD(FlashA)
IDD(FlashP)
Parameter
Conditions
Average consumption from VDD
Maximum current (peak)
Typ
Max
Programming
3
-
Page erase
3
-
Mass erase
5
-
Programming, 2 µs peak
duration
7
-
Erase, 41 µs peak duration
7
-
Unit
mA
mA
1. Guaranteed by design.
2. Values provided also apply to devices with less Flash memory than one 512 Kbyte bank
Table 49. Flash memory endurance and data retention
Symbol
NEND
Parameter
Endurance
Conditions
TA = -40 to +105 °C
1
kcycle(2)
10
kcycles
30
at TA = 105 °C
15
1 kcycle(2) at TA = 125 °C
7
10 kcycles(2) at TA = 55 °C
30
10 kcycles(2) at TA = 85 °C
15
1 kcycle
Data retention
Unit
at TA = 85 °C
(2)
tRET
Min(1)
(2)
10 kcycles
at TA = 105 °C
Years
10
1. Guaranteed by characterization results.
2. Cycling performed over the whole temperature range.
5.3.11
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 50. They are based on the EMS levels and classes
defined in application note AN1709.
90/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Electrical characteristics
Table 50. EMS characteristics
Symbol
Parameter
Conditions
Level/
Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 64 MHz, LQFP100,
conforming to IEC 61000-4-2
2B
VEFTB
VDD = 3.3 V, TA = +25 °C,
Fast transient voltage burst limits to be applied
through 100 pF on VDD and VSS pins to induce a fHCLK = 64 MHz, LQFP100,
functional disturbance
conforming to IEC 61000-4-4
5A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
•
corrupted program counter
•
unexpected reset
•
critical data corruption (for example control registers)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
DS13560 Rev 4
91/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
Table 51. EMI characteristics
Symbol
Parameter
Conditions
Max vs.
[fHSE/fHCLK]
Monitored
frequency band
Unit
8 MHz / 64 MHz
SEMI
Peak level
VDD = 3.6 V, TA = 25 °C,
LQFP100 package
compliant with IEC 61967-2
0.1 MHz to 30 MHz
9
30 MHz to 130 MHz
16
130 MHz to 1 GHz
4
1 GHz to 2 GHz
8
EMI level
5.3.12
dBµV
2.5
-
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the ANSI/JEDEC standard.
Table 52. ESD absolute maximum ratings
Symbol
Ratings
Conditions
Class
Maximum
value(1)
VESD(HBM)
Electrostatic discharge voltage
(human body model)
TA = +25 °C, conforming to
ANSI/ESDA/JEDEC JS-001
2
2000
VESD(CDM)
Electrostatic discharge voltage
(charge device model)
TA = +25 °C, conforming to
ANSI/ESDA/JEDEC JS-002
C2a
250
Unit
V
1. Based on characterization results, not tested in production.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
•
A supply overvoltage is applied to each power supply pin.
•
A current is injected to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 53. Electrical sensitivity
Symbol
LU
92/158
Parameter
Static latch-up class
Conditions
TA = +125 °C conforming to JESD78
DS13560 Rev 4
Class
II Level A
STM32G0B1xB/xC/xE
5.3.13
Electrical characteristics
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal
product operation. However, in order to give an indication of the robustness of the
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests
are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out-of-range parameter: ADC error above a certain limit
(higher than 5 LSB TUE), induced leakage current on adjacent pins out of conventional
limits (-5 µA/+0 µA range) or other functional failure (for example reset occurrence or
oscillator frequency deviation).
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
Table 54. I/O current injection susceptibility(1)
Functional susceptibility
Symbol
IINJ
Description
Injected current on
pin
Unit
Negative
injection
Positive
injection
All except PA4, PA5, PA6, PB0,
PB3, and PC0
-5
N/A
mA
PA4, PA5
-5
0
mA
PA6, PB0, PB3, and PC0
0
N/A
mA
1. Based on characterization results, not tested in production.
DS13560 Rev 4
93/158
123
Electrical characteristics
5.3.14
STM32G0B1xB/xC/xE
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 55 are derived from tests
performed under the conditions summarized in Table 24: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant.
Table 55. I/O static characteristics
Symbol
VIL(1)
Parameter
I/O input low level
voltage
Conditions
All
except 1.62 V < VDDIOx < 3.6 V
FT_c
I/O input high level
voltage
I/O input hysteresis
Ilkg
(2)
-
2.7 V < VDDIOx < 3.6 V
-
1.62 V < VDDIOx < 2.7 V
-
-
0.39 x VDDIOx
- 0.06 (3)
V
2)
-
-
0.49 x VDDIOx
+ 0.26(3)
-
-
0.7 x VDDIOx
-
5
TT_xx,
FT_xx, 1.62 V < VDDIOx < 3.6 V
NRST
-
200
-
0 < VIN ≤ VDDIOx
-
-
±70
VDDIOx ≤ VIN ≤ VDDIOx+1 V
-
-
600(4)
VDDIOx +1 V < VIN ≤
5.5 V(3)
-
-
150(4)
0 < VIN ≤ VDDIOx
-
-
2000
VDDIOx < VIN ≤ 5 V
-
-
3000(4)
0 < VIN ≤ VDDIOx
-
-
4500
VDDIOx < VIN ≤ 5.5 V
-
-
9000(4)
0 < VIN ≤ VDDIOx
-
-
±150
VDDIOx < VIN ≤
VDDIOx + 0.3 V
-
-
2000(4)
25
40
55
kΩ
25
40
55
kΩ
-
5
-
pF
All
except 1.62 V < VDDIOx < 3.6 V
FT_c
FT_c
TT_a
1.62 V < VDDIOx < 3.6 V
RPU
Weak pull-up
equivalent resistor
RPD
Weak pull-down
V = VDDIOx
equivalent resistor(5) IN
CIO
I/O pin capacitance
VIN = VSS
-
1. Refer to Figure 24: I/O input characteristics.
2. Tested in production.
3. Guaranteed by design.
94/158
0.3 x VDDIOx
0.25 x VDDIOx
FT_d
(5)
Unit
-
FT_xx
except
FT_c
and
FT_d
Input leakage
current(3)
Max
0.3 x VDDIOx
FT_c
Vhys(3)
Typ
-
FT_c
VIH(1)
Min
DS13560 Rev 4
0.7 x VDDIOx
(
V
mV
nA
STM32G0B1xB/xC/xE
Electrical characteristics
4. This value represents the pad leakage of the I/O itself. The total product pad leakage is provided by this formula:
ITotal_Ileak_max = 10 µA + [number of I/Os where VIN is applied on the pad] ₓ Ilkg(Max).
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimal (~10% order).
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters, as shown
in Figure 24.
Figure 24. I/O input characteristics
3
2.5
Minimum required
logic level 1 zone
TTL standard requirement
nt)
2
rd r
tanda
Ss
(CMO
VIN (V)
1.5
V IHmin
= 0.7
VIHmin =
eme
equir
V DDIO
0.49 VDDIO
Undefined input range
+ 0.26
1
VILmax = 0.39
0.5
VILmax = 0.3
VDDIO - 0.06
VDDIO
TTL standard requirement
ment)
dard require
(CMOS stan
Minimum required
logic level 0 zone
0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VDDIO (V)
Device characteristics
Test thresholds
MSv47925V1
Characteristics of FT_e I/Os
The following table and figure specify input characteristics of FT_e I/Os.
Table 56. Input characteristics of FT_e I/Os
Symbol
IINJ
VDDIO1-VIN
Rd
Parameter
Conditions
Min
Typ
Max
Unit
-
-
-
5
mA
Voltage over VDDIO1
IINJ = 5 mA
-
-
2
V
Diode dynamic serial resistor
IINJ = 5 mA
-
-
300
Ω
Injected current on pin
DS13560 Rev 4
95/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
Figure 25. Current injection into FT_e input with diode active
5
-40°C
25°C
125°C
4
3
IINJ (mA)
2
1
0
0
0.2
0.4
0.6
0.8
1.0
1.2
VIN – VDDIO1 (V)
1.4
1.6
1.8
2
MSv63112V1
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and up to
±15 mA with relaxed VOL/VOH.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 5.2:
•
The sum of the currents sourced by all the I/Os on VDDIO1, plus the maximum
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 21: Voltage characteristics).
•
The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of
the MCU sunk on VSS, cannot exceed the absolute maximum rating IVSS (see Table 21:
Voltage characteristics).
Output voltage levels
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 24: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT OR TT
unless otherwise specified).
96/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Electrical characteristics
Table 57. Output voltage characteristics(1)
Symbol
Parameter
Conditions
VOL
Output low level voltage for an I/O pin
VOH
Output high level voltage for an I/O pin
VOL(3)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
VOL(3)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
VOL(3)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
CMOS port(2)
|IIO| = 2 mA for FT_c I/Os
= 8 mA for other I/Os
VDDIOx ≥ 2.7 V
TTL port(2)
|IIO| = 2 mA for FT_c I/Os
= 8 mA for other I/Os
VDDIOx ≥ 2.7 V
All I/Os except FT_c
|IIO| = 15 mA
VDDIOx ≥ 2.7 V
|IIO| = 1 mA for FT_c I/Os
= 3 mA for other I/Os
VDDIOx ≥ 1.62 V
Min
Max
-
0.4
VDDIOx - 0.4
-
-
0.4
2.4
-
-
1.3
VDDIOx - 1.3
-
-
0.4
VDDIOx - 0.45
-
-
0.4
-
0.4
|IIO| = 20 mA
VDDIOx ≥ 2.7 V
VOLFM+ Output low level voltage for an FT I/O
(3)
pin in FM+ mode (FT I/O with _f option) |I | = 9 mA
IO
VDDIOx ≥ 1.62 V
Unit
V
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 21:
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always
respect the absolute maximum ratings ΣIIO.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. Guaranteed by design.
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 26 and
Table 58, respectively.
Unless otherwise specified, the parameters given are derived from tests performed under
the ambient temperature and supply voltage conditions summarized in Table 24: General
operating conditions.
Table 58. I/O AC characteristics(1)(2)
Speed Symbol
Fmax
Parameter
Maximum frequency
00
Tr/Tf
Output rise and fall time
Conditions
Min
Max
C=50 pF, 2.7 V ≤ VDDIOx ≤ 3.6 V
-
2
C=50 pF, 1.6 V ≤ VDDIOx ≤ 2.7 V
-
0.35
C=10 pF, 2.7 V ≤ VDDIOx ≤ 3.6 V
-
3
C=10 pF, 1.6 V ≤ VDDIOx ≤ 2.7 V
-
0.45
C=50 pF, 2.7 V ≤ VDDIOx ≤ 3.6 V
-
100
C=50 pF, 1.6 V ≤ VDDIOx ≤ 2.7 V
-
225
C=10 pF, 2.7 V ≤ VDDIOx ≤ 3.6 V
-
75
C=10 pF, 1.6 V ≤ VDDIOx ≤ 2.7 V
-
150
DS13560 Rev 4
Unit
MHz
ns
97/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
Table 58. I/O AC characteristics(1)(2) (continued)
Speed Symbol
Fmax
Parameter
Maximum frequency
01
Tr/Tf
Fmax
Output rise and fall time
Maximum frequency
10
Tr/Tf
Fmax
Output rise and fall time
Maximum frequency
11
Tr/Tf
Fm+
Fmax
Tf
Output rise and fall time
Maximum frequency
Output fall time(4)
Min
Max
C=50 pF, 2.7 V ≤ VDDIOx ≤ 3.6 V
Conditions
-
10
C=50 pF, 1.6 V ≤ VDDIOx ≤ 2.7 V
-
2
C=10 pF, 2.7 V ≤ VDDIOx ≤ 3.6 V
-
15
C=10 pF, 1.6 V ≤ VDDIOx ≤ 2.7 V
-
2.5
C=50 pF, 2.7 V ≤ VDDIOx ≤ 3.6 V
-
30
C=50 pF, 1.6 V ≤ VDDIOx ≤ 2.7 V
-
60
C=10 pF, 2.7 V ≤ VDDIOx ≤ 3.6 V
-
15
C=10 pF, 1.6 V ≤ VDDIOx ≤ 2.7 V
-
30
C=50 pF, 2.7 V ≤ VDDIOx ≤ 3.6 V
-
30
C=50 pF, 1.6 V ≤ VDDIOx ≤ 2.7 V
-
15
C=10 pF, 2.7 V ≤ VDDIOx ≤ 3.6 V
-
60
C=10 pF, 1.6 V ≤ VDDIOx ≤ 2.7 V
-
30
C=50 pF, 2.7 V ≤ VDDIOx ≤ 3.6 V
-
11
C=50 pF, 1.6 V ≤ VDDIOx ≤ 2.7 V
-
22
C=10 pF, 2.7 V ≤ VDDIOx ≤ 3.6 V
-
4
C=10 pF, 1.6 V ≤ VDDIOx ≤ 2.7 V
-
8
C=30 pF, 2.7 V ≤ VDDIOx ≤ 3.6 V
-
60
C=30 pF, 1.6 V ≤ VDDIOx ≤ 2.7 V
-
30
C=10 pF, 2.7 V ≤ VDDIOx ≤ 3.6 V
-
80(3)
C=10 pF, 1.6 V ≤ VDDIOx ≤ 2.7 V
-
40
C=30 pF, 2.7 V ≤ VDDIOx ≤ 3.6 V
-
5.5
C=30 pF, 1.6 V ≤ VDDIOx ≤ 2.7 V
-
11
C=10 pF, 2.7 V ≤ VDDIOx ≤ 3.6 V
-
2.5
C=10 pF, 1.6 V ≤ VDDIOx ≤ 2.7 V
-
5
C=50 pF, 1.6 V ≤ VDDIOx ≤ 3.6 V
Unit
MHz
ns
MHz
ns
MHz
ns
-
1
MHz
-
5
ns
1. The I/O speed is configured using the OSPEEDRy[1:0] bits. The Fm+ mode is configured in the SYSCFG_CFGR1 register.
Refer to the RM0444 reference manual for a description of GPIO Port configuration register.
2. Guaranteed by design.
3. This value represents the I/O capability but the maximum system frequency is limited to 64 MHz.
4. The fall time is defined between 70% and 30% of the output waveform, according to I2C specification.
98/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Electrical characteristics
Figure 26. I/O AC characteristics definition(1)
90%
10%
50%
50%
10%
90%
t I,2RXW
t U,2RXW
T
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWW7DQGLIWKHGXW\F\FOHLV
r f
ZKHQORDGHGE\WKHVSHFLILHGFDSDFLWDQFH
MS32132V2
1. Refer to Table 58: I/O AC characteristics.
5.3.15
NRST input characteristics
The NRST input driver uses CMOS technology. It is connected to a permanent
pull-up resistor, RPU.
Unless otherwise specified, the parameters given in the following table are derived from
tests performed under the ambient temperature and supply voltage conditions summarized
in Table 24: General operating conditions.
Table 59. NRST pin characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
-
-
0.3 x VDDIO1
Unit
VIL(NRST)
NRST input low level
voltage
-
VIH(NRST)
NRST input high level
voltage
-
0.7 x VDDIO1
-
-
Vhys(NRST)
NRST Schmitt trigger
voltage hysteresis
-
-
200
-
mV
RPU
Weak pull-up
equivalent resistor(2)
VIN = VSS
25
40
55
kΩ
-
-
-
70
ns
1.7 V ≤ VDD ≤ 3.6 V
350
-
-
ns
VF(NRST)
NRST input filtered
pulse
VNF(NRST)
NRST input not filtered
pulse
1.
V
Guaranteed by design.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is minimal (~10% order).
DS13560 Rev 4
99/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
Figure 27. Recommended NRST pin protection
External
reset circuit(1)
VDD
RPU
NRST(2)
Internal reset
Filter
0.1 μF
MS19878V3
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 59: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.
3. The external capacitor on NRST must be placed as close as possible to the device.
5.3.16
Analog switch booster
Table 60. Analog switch booster characteristics(1)
Symbol
VDD
Parameter
Min
Typ
Max
Unit
1.62 V
-
3.6
V
Booster startup time
-
-
240
µs
Booster consumption for
1.62 V ≤ VDD ≤ 2.0 V
-
-
250
Booster consumption for
2.0 V ≤ VDD ≤ 2.7 V
-
-
500
Booster consumption for
2.7 V ≤ VDD ≤ 3.6 V
-
-
900
Supply voltage
tSU(BOOST)
IDD(BOOST)
µA
1. Guaranteed by design.
5.3.17
Analog-to-digital converter characteristics
Unless otherwise specified, the parameters given in Table 61 are preliminary values derived
from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage
conditions summarized in Table 24: General operating conditions.
Note:
It is recommended to perform a calibration after each power-up.
Table 61. ADC characteristics(1)
Symbol
Parameter
Conditions(2)
Min
Typ
Max
Unit
VDDA
Analog supply voltage
-
1.62
-
3.6
V
VREF+
Positive reference
voltage
VDDA ≥ 2 V
2
-
VDDA
100/158
VDDA < 2 V
DS13560 Rev 4
VDDA
V
STM32G0B1xB/xC/xE
Electrical characteristics
Table 61. ADC characteristics(1) (continued)
Conditions(2)
Min
Typ
Max
Range 1
0.14
-
35
Range 2
0.14
-
16
12 bits
-
-
2.50
10 bits
-
-
2.92
8 bits
-
-
3.50
6 bits
-
-
4.38
fADC = 35 MHz; 12 bits
-
-
2.33
12 bits
-
-
fADC/15
Conversion voltage
range
-
VSSA
-
VREF+
V
RAIN
External input
impedance
-
-
-
50
kΩ
CADC
Internal sample and
hold capacitor
-
-
5
-
pF
tSTAB
ADC power-up time
-
2
Conversion
cycle
tCAL
Calibration time
fADC = 35 MHz
2.35
µs
-
82
1/fADC
Symbol
fADC
fs
fTRIG
VAIN (3)
Parameter
ADC clock frequency
Sampling rate
External trigger
frequency
CKMODE = 00
tLATR
ts
Trigger conversion
latency
Sampling time
tADCVREG_STUP
ADC voltage regulator
start-up time
tCONV
Total conversion time
(including sampling
time)
tIDLE
Laps of time allowed
between two
conversions without
rearm
2
-
CKMODE = 01
6.5
CKMODE = 10
12.5
CKMODE = 11
3.5
3
Unit
MHz
MSps
MHz
1/fADC
1/fPCLK
fADC = 35 MHz;
VDDA > 2V
0.043
-
4.59
µs
1.5
-
160.5
1/fADC
fADC = 35 MHz;
VDDA < 2V
0.1
-
4.59
µs
160.5
1/fADC
-
-
-
20
µs
fADC = 35 MHz
Resolution = 12 bits
0.40
-
4.95
µs
Resolution = 12 bits
-
DS13560 Rev 4
3.5
ts + 12.5 cycles for successive
approximation
= 14 to 173
-
-
100
1/fADC
µs
101/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
Table 61. ADC characteristics(1) (continued)
Symbol
IDDA(ADC)
IDDV(ADC)
Parameter
ADC consumption
from VDDA
ADC consumption
from VREF+
Conditions(2)
Min
Typ
Max
fs = 2.5 MSps
-
410
-
fs = 1 MSps
-
164
-
fs = 10 kSps
-
17
-
fs = 2.5 MSps
-
65
-
fs = 1 MSps
-
26
-
fs = 10 kSps
-
0.26
-
Unit
µA
µA
1. Guaranteed by design
2. I/O analog switch voltage booster must be enabled (BOOSTEN = 1 in the SYSCFG_CFGR1) when VDDA < 2.4 V and
disabled when VDDA ≥ 2.4 V.
3. VREF+ is internally connected to VDDA on some packages.Refer to Section 4: Pinouts, pin description and alternate
functions for further details.
Table 62. Maximum ADC RAIN .
Resolution
12 bits
Sampling cycle at 35 MHz
Sampling time at 35 MHz
[ns]
Max. RAIN(1)(2)
(Ω)
1.5(3)
43
50
3.5
100
680
7.5
214
2200
12.5
357
4700
19.5
557
8200
39.5
1129
15000
79.5
2271
33000
160.5
4586
50000
43
68
3.5
100
820
7.5
214
3300
12.5
357
5600
19.5
557
10000
39.5
1129
22000
79.5
2271
39000
160.5
4586
50000
(3)
1.5
10 bits
102/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Electrical characteristics
Table 62. Maximum ADC RAIN . (continued)
Resolution
Sampling cycle at 35 MHz
Sampling time at 35 MHz
[ns]
Max. RAIN(1)(2)
(Ω)
1.5(3)
43
82
3.5
100
1500
7.5
214
3900
12.5
357
6800
19.5
557
12000
39.5
1129
27000
79.5
2271
50000
160.5
4586
50000
43
390
3.5
100
2200
7.5
214
5600
12.5
357
10000
19.5
557
15000
39.5
1129
33000
79.5
2271
50000
160.5
4586
50000
8 bits
(3)
1.5
6 bits
1. Guaranteed by design.
2. I/O analog switch voltage booster must be enabled (BOOSTEN = 1 in the SYSCFG_CFGR1) when VDDA < 2.4 V and
disabled when VDDA ≥ 2.4 V.
3. Only allowed with VDDA > 2 V
Table 63. ADC accuracy(1)(2)(3)
Symbol
ET
Parameter
Total
unadjusted
error
Conditions(4)
Min
Typ
Max
VDDA = VREF+ = 3 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = 25 °C
-
3
4
2 V < VDDA=VREF+ < 3.6 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = entire range
-
3
6.5
1.65 V < VDDA=VREF+ < 3.6 V;
TA = entire range
Range 1: fADC = 35 MHz; fs ≤ 2.2 MSps;
Range 2: fADC = 16 MHz; fs ≤ 1.1 MSps;
-
3
7.5
DS13560 Rev 4
Unit
LSB
103/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
Table 63. ADC accuracy(1)(2)(3) (continued)
Symbol
EO
EG
ED
EL
104/158
Parameter
Offset error
Gain error
Differential
linearity error
Integral
linearity error
Conditions(4)
Min
Typ
Max
VDDA = VREF+ = 3 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = 25 °C
-
1.5
2
2 V < VDDA = VREF+ < 3.6 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = entire range
-
1.5
4.5
1.65 V < VDDA=VREF+ < 3.6 V;
TA = entire range
Range 1: fADC = 35 MHz; fs ≤ 2.2 MSps;
Range 2: fADC = 16 MHz; fs ≤ 1.1 MSps;
-
1.5
5.5
VDDA = VREF+ = 3 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = 25 °C
-
3
3.5
2 V < VDDA = VREF+ < 3.6 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = entire range
-
3
5
1.65 V < VDDA = VREF+ < 3.6 V;
TA = entire range
Range 1: fADC = 35 MHz; fs ≤ 2.2 MSps;
Range 2: fADC = 16 MHz; fs ≤ 1.1 MSps;
-
3
6.5
VDDA = VREF+ = 3 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = 25 °C
-
1.2
1.5
2 V < VDDA = VREF+ < 3.6 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = entire range
-
1.2
1.5
1.65 V < VDDA = VREF+ < 3.6 V;
TA = entire range
Range 1: fADC = 35 MHz; fs ≤ 2.2 MSps;
Range 2: fADC = 16 MHz; fs ≤ 1.1 MSps;
-
1.2
1.5
VDDA = VREF+ = 3 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = 25 °C
-
2.5
3
2 V < VDDA = VREF+ < 3.6 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = entire range
-
2.5
3
1.65 V < VDDA = VREF+ < 3.6 V;
TA = entire range
Range 1: fADC = 35 MHz; fs ≤ 2.2 MSps;
Range 2: fADC = 16 MHz; fs ≤ 1.1 MSps;
-
2.5
3.5
DS13560 Rev 4
Unit
LSB
LSB
LSB
LSB
STM32G0B1xB/xC/xE
Electrical characteristics
Table 63. ADC accuracy(1)(2)(3) (continued)
Symbol
ENOB
SINAD
SNR
Parameter
Conditions(4)
Min
Typ
Max
VDDA = VREF+ = 3 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = 25 °C
10.1
10.2
-
2 V < VDDA = VREF+ < 3.6 V;
Effective
fADC = 35 MHz; fs ≤ 2.5 MSps;
number of bits TA = entire range
9.6
10.2
-
1.65 V < VDDA = VREF+ < 3.6 V;
TA = entire range
Range 1: fADC = 35 MHz; fs ≤ 2.2 MSps;
Range 2: fADC = 16 MHz; fs ≤ 1.1 MSps;
9.5
10.2
-
VDDA = VREF+ = 3 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = 25 °C
62.5
63
-
59.5
63
-
59
63
-
VDDA = VREF+ = 3 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = 25 °C
63
64
-
2 V < VDDA = VREF+ < 3.6 V;
Signal-to-noise fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = entire range
ratio
60
64
-
60
64
-
VDDA = VREF+ = 3 V;
fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = 25 °C
-
-74
-73
2 V < VDDA = VREF+ < 3.6 V;
Total harmonic fADC = 35 MHz; fs ≤ 2.5 MSps;
TA = entire range
distortion
-
-74
-70
-
-74
-70
2 V < VDDA = VREF+ < 3.6 V;
Signal-to-noise
fADC = 35 MHz; fs ≤ 2.5 MSps;
and distortion
TA = entire range
ratio
1.65 V < VDDA = VREF+ < 3.6 V;
TA = entire range
Range 1: fADC = 35 MHz; fs ≤ 2.2 MSps;
Range 2: fADC = 16 MHz; fs ≤ 1.1 MSps;
1.65 V < VDDA = VREF+ < 3.6 V;
TA = entire range
Range 1: fADC = 35 MHz; fs ≤ 2.2 MSps;
Range 2: fADC = 16 MHz; fs ≤ 1.1 MSps;
THD
1.65 V < VDDA = VREF+ < 3.6 V;
TA = entire range
Range 1: fADC = 35 MHz; fs ≤ 2.2 MSps;
Range 2: fADC = 16 MHz; fs ≤ 1.1 MSps;
Unit
bit
dB
dB
dB
1. Based on characterization results, not tested in production.
2. ADC DC accuracy values are measured after internal calibration.
3. Injecting negative current on any analog input pin significantly reduces the accuracy of A-to-D conversion of signal on
another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins susceptible to receive
negative current.
4. I/O analog switch voltage booster enabled (BOOSTEN = 1 in the SYSCFG_CFGR1) when VDDA < 2.4 V and disabled
when VDDA ≥ 2.4 V.
DS13560 Rev 4
105/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
Figure 28. ADC accuracy characteristics
EG
Code
(1) Example of an actual transfer curve
4095
(2) Ideal transfer curve
4094
(3) End point correlation line
4093
ET total unadjusted error: maximum deviation
between the actual and ideal transfer curves.
(2)
ET
EO offset error: maximum deviation between the
first actual transition and the first ideal one.
(3)
7
(1)
6
EG gain error: deviation between the last ideal
transition and the last actual one.
5
EL
EO
ED differential linearity error: maximum deviation
between actual steps and the ideal ones.
4
3
ED
EL integral linearity error: maximum deviation between
any actual transition and the end point correlation line.
2
1 LSB ideal
1
0
1
2
3
4
5
6
7
4093 4094 4095
(VAIN / VREF+)*4095
MSv19880V3
Figure 29. Typical connection diagram using the ADC
VDDA
VT
RAIN(1)
VAIN
Sample and hold ADC converter
RADC
AINx
Cparasitic(2)
VT
Ilkg (3)
12-bit
converter
CADC
MS33900V5
1. Refer to Table 61: ADC characteristics for the values of RAIN and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (refer to Table 55: I/O static characteristics for the value of the pad capacitance). A high
Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced.
3. Refer to Table 55: I/O static characteristics for the values of Ilkg.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 15: Power supply
scheme. The 100 nF capacitor should be ceramic (good quality) and it should be placed as
close as possible to the chip.
106/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
5.3.18
Electrical characteristics
Digital-to-analog converter characteristics
Table 64. DAC characteristics(1)
Symbol
VDDA
VREF+
Parameter
Analog supply voltage for
DAC ON
Positive reference voltage
Conditions
Min
Typ
Max
Unit
DAC output buffer OFF, DAC_OUT
pin not connected (internal
connection only)
1.71
3.6
V
Other modes
1.80
-
DAC output buffer OFF, DAC_OUT
pin not connected (internal
connection only)
1.71
VDDA
V
Other modes
1.80
-
connected to VSSA
5
-
-
connected to VDDA
25
-
-
9.6
11.7
13.8
RL
Resistive load
DAC output
buffer ON
RO
Output Impedance
DAC output buffer OFF
Output impedance sample
and hold mode, output
buffer ON
VDD = 2.7 V
-
-
2
RBON
VDD = 2.0 V
-
-
3.5
Output impedance sample
and hold mode, output
buffer OFF
VDD = 2.7 V
-
-
16.5
RBOFF
VDD = 2.0 V
-
-
18.0
DAC output buffer ON
-
-
50
pF
Sample and hold mode
-
0.1
1
µF
DAC output buffer ON
0.2
-
VREF+
– 0.2
V
DAC output buffer OFF
0
-
VREF+
±0.5 LSB
-
1.7
3
±1 LSB
-
1.6
2.9
±2 LSB
-
1.55
2.85
±4 LSB
-
1.48
2.8
±8 LSB
-
1.4
2.75
CL
CSH
VDAC_OUT
tSETTLING
tWAKEUP(2)
PSRR
Capacitive load
Voltage on DAC_OUT
output
Settling time (full scale: for
a 12-bit code transition
between the lowest and the
highest input codes when
DAC_OUT reaches final
value ±0.5LSB, ±1 LSB,
±2 LSB, ±4 LSB, ±8 LSB)
Normal mode
DAC output
buffer ON
CL ≤ 50 pF,
RL ≥ 5 kΩ
Normal mode DAC output buffer
OFF, ±1LSB, CL = 10 pF
-
2
2.5
Wakeup time from off state
(setting the ENx bit in the
DAC Control register) until
final value ±1 LSB
Normal mode DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
-
4.2
7.5
Normal mode DAC output buffer
OFF, CL ≤ 10 pF
-
2
5
Normal mode DAC output buffer ON
CL ≤ 50 pF, RL = 5 kΩ, DC
-
-80
-28
VDDA supply rejection ratio
DS13560 Rev 4
kΩ
kΩ
kΩ
kΩ
µs
µs
dB
107/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
Table 64. DAC characteristics(1) (continued)
Symbol
Parameter
TW_to_W
Minimum time between two
consecutive writes into the
DAC_DORx register to
guarantee a correct
DAC_OUT for a small
variation of the input code
(1 LSB)
tSAMP
Sampling time in sample
and hold mode (code
transition between the
lowest input code and the
highest input code when
DACOUT reaches final
value ±1LSB)
Conditions
DAC_MCR:MODEx[2:0] = 000 or
001
CL ≤ 50 pF; RL ≥ 5 kΩ
DAC_MCR:MODEx[2:0] = 010 or
011
CL ≤ 10 pF
µs
3.5
-
10.5
18
-
2
3.5
µs
-
-
-(3)
nA
5.2
7
8.8
pF
50
-
-
µs
-
1500
-
-
750
-
No load, middle
code (0x800)
-
315
500
No load, worst code
(0xF1C)
-
450
670
No load, middle
code (0x800)
-
-
0.2
DAC output buffer
OFF
CIint
Internal sample and hold
capacitor
tTRIM
Middle code offset trim time DAC output buffer ON
Voffset
Middle code offset for 1 trim VREF+ = 3.6 V
code step
VREF+ = 1.8 V
-
Sample and hold mode, CSH =
100 nF
108/158
-
0.7
Sample and hold mode,
DAC_OUT pin connected
DAC output
buffer OFF
-
-
Output leakage current
DAC consumption from
VDDA
1
Unit
-
Ileak
IDDA(DAC)
Max
-
DAC_OUT
pin connected DAC output buffer
OFF, CSH = 100 nF
DAC output
buffer ON
Typ
1.4
DAC output buffer
ON, CSH = 100 nF
DAC_OUT
pin not
connected
(internal
connection
only)
Min
DS13560 Rev 4
ms
-
315 ₓ
670 ₓ
Ton/(Ton+ Ton/(Ton+
Toff)(4)
Toff)(4)
µV
µA
STM32G0B1xB/xC/xE
Electrical characteristics
Table 64. DAC characteristics(1) (continued)
Symbol
Parameter
Conditions
DAC output
buffer ON
IDDV(DAC)
DAC consumption from
VREF+
DAC output
buffer OFF
Min
Typ
Max
No load, middle
code (0x800)
-
185
240
No load, worst code
(0xF1C)
-
340
400
No load, middle
code (0x800)
-
155
205
Unit
µA
Sample and hold mode, buffer ON,
CSH = 100 nF, worst case
-
185 ₓ
400 ₓ
Ton/(Ton+ Ton/(Ton+
Toff)(4)
Toff)(4)
Sample and hold mode, buffer OFF,
CSH = 100 nF, worst case
-
155 ₓ
205 ₓ
Ton/(Ton+ Ton/(Ton+
Toff)(4)
Toff)(4)
1. Guaranteed by design.
2. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).
3. Refer to Table 55: I/O static characteristics.
4. Ton is the Refresh phase duration. Toff is the Hold phase duration. Refer to RM0444 reference manual for more details.
Figure 30. 12-bit buffered / non-buffered DAC
Buffered / non-buffered DAC
Buffer(1)
RLOAD
12-bit
digital-to-analog
converter
DAC_OUTx
CLOAD
MSv47959V1
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
DS13560 Rev 4
109/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
Table 65. DAC accuracy(1)
.
Symbol
Parameter
DNL
Differential non
linearity (2)
-
monotonicity
10 bits
INL
Integral non
linearity(3)
Offset
Offset1
OffsetCal
Gain
TUE
TUECal
SNR
THD
110/158
Offset error at
code 0x800(3)
Offset error at
code 0x001(4)
Conditions
Min
Typ
Max
DAC output buffer ON
-
-
±2
DAC output buffer OFF
-
-
±2
guaranteed
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
-
-
±4
DAC output buffer OFF
CL ≤ 50 pF, no RL
-
-
±4
VREF+ = 3.6 V
-
-
±12
VREF+ = 1.8 V
-
-
±25
DAC output buffer OFF
CL ≤ 50 pF, no RL
-
-
±8
DAC output buffer OFF
CL ≤ 50 pF, no RL
-
-
±5
VREF+ = 3.6 V
-
-
±5
VREF+ = 1.8 V
-
-
±7
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
-
-
±0.5
DAC output buffer OFF
CL ≤ 50 pF, no RL
-
-
±0.5
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
-
-
±30
DAC output buffer OFF
CL ≤ 50 pF, no RL
-
-
±12
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
-
-
±23
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
1 kHz, BW 500 kHz
-
71.2
-
DAC output buffer OFF
CL ≤ 50 pF, no RL, 1 kHz
BW 500 kHz
-
71.6
-
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz
-
-78
-
DAC output buffer OFF
CL ≤ 50 pF, no RL, 1 kHz
-
-79
-
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
Offset Error at
DAC output buffer ON
code 0x800
CL ≤ 50 pF, RL ≥ 5 kΩ
after calibration
(5)
Gain error
Total
unadjusted
error
Total
unadjusted
error after
calibration
Signal-to-noise
ratio
Total harmonic
distortion
Unit
LSB
DS13560 Rev 4
%
LSB
LSB
dB
dB
STM32G0B1xB/xC/xE
Electrical characteristics
Table 65. DAC accuracy(1) (continued)
Symbol
Parameter
SINAD
Signal-to-noise
and distortion
ratio
ENOB
Effective
number of bits
Conditions
Min
Typ
Max
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz
-
70.4
-
DAC output buffer OFF
CL ≤ 50 pF, no RL, 1 kHz
-
71
-
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz
-
11.4
-
DAC output buffer OFF
CL ≤ 50 pF, no RL, 1 kHz
-
Unit
dB
bits
11.5
-
1. Guaranteed by design.
2. Difference between two consecutive codes - 1 LSB.
3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.
4. Difference between the value measured at Code (0x001) and the ideal value.
5. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when
buffer is OFF, and from code giving 0.2 V and (VREF+ – 0.2) V when buffer is ON.
5.3.19
Voltage reference buffer characteristics
Table 66. VREFBUF characteristics(1)
Symbol
Parameter
Conditions
Normal mode
VDDA
VREFBUF_
OUT
Analog supply
voltage
Degraded mode(2)
Iload = 100 µA
Voltage
reference output T = 30 °C
Min
Typ
Max
VRS = 0
2.4
-
3.6
VRS = 1
2.8
-
3.6
VRS = 0
1.65
-
2.4
VRS = 1
1.65
-
2.8
VRS = 0
2.038
2.042
2.046
VRS = 1
2.497
2.5
2.503
VRS = 0
VDDA-150 mV
-
VDDA
VRS = 1
VDDA-150 mV
-
VDDA
Unit
V
Trim step
resolution
-
-
-
±0.05
±0.1
%
CL
Load capacitor
-
-
0.5
1
1.5
µF
esr
Equivalent
Serial Resistor
of Cload
-
-
-
-
2
Ω
Iload
Static load
current
-
-
-
-
4
mA
Iload = 500 µA
-
200
1000
Iload = 4 mA
-
100
500
-
50
500
TRIM
Iline_reg
Line regulation
2.8 V ≤ VDDA ≤ 3.6 V
Iload_reg
Load regulation
500 μA ≤ Iload ≤4 mA Normal mode
DS13560 Rev 4
ppm/V
ppm/mA
111/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
Table 66. VREFBUF characteristics(1) (continued)
Symbol
Parameter
Temperature
TCoeff_vrefbuf coefficient of
VREFBUF(3)
PSRR
tSTART
Power supply
rejection
Start-up time
Conditions
Min
Typ
Max
Unit
-
-
50
ppm/ °C
DC
40
60
-
100 kHz
25
40
-
CL = 0.5 µF(4)
-
300
350
(4)
-
500
650
µF(4)
-
650
800
-
8
-
Iload = 0 µA
-
16
25
Iload = 500 µA
-
18
30
Iload = 4 mA
-
35
50
-40 °C < TJ < +125 °C
CL = 1.1 µF
CL = 1.5
IINRUSH
IDDA(VREFB
UF)
Control of
maximum DC
current drive on
VREFBUF_OUT
during start-up
phase (5)
VREFBUF
consumption
from VDDA
-
dB
µs
mA
µA
1. Guaranteed by design.
2. In degraded mode, the voltage reference buffer can not maintain accurately the output voltage which will follow (VDDA drop voltage).
3. The temperature coefficient at VREF+ output is the sum of TCoeff_vrefint and TCoeff_vrefbuf.
4. The capacitive load must include a 100 nF capacitor in order to cut-off the high frequency noise.
5. To correctly control the VREFBUF inrush current during start-up phase and scaling change, the VDDA voltage should be in
the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for VRS = 0 and VRS = 1.
5.3.20
Comparator characteristics
Table 67. COMP characteristics(1)
Symbol
Conditions
Min
Typ
Max
Unit
Analog supply
voltage
-
1.62
-
3.6
V
VIN
Comparator
input voltage range
-
0
-
VDDA
V
VBG(2)
Scaler input voltage
-
VSC
Scaler offset voltage
-
VDDA
IDDA(SCALER)
Parameter
Scaler static
consumption from
VDDA
tSTART_SCALER Scaler startup time
112/158
VREFINT
V
-
±5
±10
mV
BRG_EN=0 (bridge disable)
-
200
300
nA
BRG_EN=1 (bridge enable)
-
0.8
1
µA
-
100
200
µs
-
DS13560 Rev 4
STM32G0B1xB/xC/xE
Electrical characteristics
Table 67. COMP characteristics(1) (continued)
Symbol
Parameter
Comparator startup
time to reach
propagation delay
specification
tSTART
tD
Propagation delay
Comparator offset
error
Voffset
Comparator
hysteresis
Vhys
IDDA(COMP)
Comparator
consumption from
VDDA
Conditions
Min
Typ
Max
-
-
5
High-speed mode
Unit
µs
Medium-speed mode
-
-
15
200 mV step;
100 mV
overdrive
High-speed mode
-
30
50
ns
Medium-speed mode
-
0.3
0.6
µs
>200 mV step;
100 mV
overdrive
High-speed mode
-
-
70
ns
Medium-speed mode
-
-
1.2
µs
Full common mode range
-
±5
±20
mV
No hysteresis
-
0
-
Low hysteresis
-
10
-
Medium hysteresis
-
20
-
High hysteresis
-
30
-
Medium-speed
mode;
No deglitcher
Static
-
5
7.5
With 50 kHz and ±100 mV
overdrive square signal
-
6
-
Medium-speed
mode;
With deglitcher
Static
-
7
10
With 50 kHz and ±100 mV
overdrive square signal
-
8
-
Static
-
250
400
With 50 kHz and ±100 mV
overdrive square signal
-
250
-
High-speed
mode
mV
µA
1. Guaranteed by design.
2. Refer to Table 27: Embedded internal voltage reference.
5.3.21
Temperature sensor characteristics
Table 68. TS characteristics
Symbol
Min
Typ
Max
Unit
-
±1
±2
°C
2.3
2.5
2.7
mV/°C
0.742
0.76
0.785
V
tSTART(TS_BUF)(1) Sensor Buffer Start-up time in continuous mode(4)
-
8
15
µs
Start-up time when entering in continuous mode(4)
-
70
120
µs
TL(1)
Avg_Slope(2)
V30
tSTART(1)
Parameter
VTS linearity with temperature
Average slope
Voltage at 30°C (±5 °C)(3)
DS13560 Rev 4
113/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
Table 68. TS characteristics (continued)
Symbol
Parameter
Min
Typ
Max
Unit
tS_temp(1)
ADC sampling time when reading the temperature
5
-
-
µs
IDD(TS)(1)
Temperature sensor consumption from VDD, when
selected by ADC
-
4.7
7
µA
1. Guaranteed by design.
2. Based on characterization results, not tested in production.
3. Measured at VDDA = 3.0 V ±10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte.
4.
Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.
5.3.22
VBAT monitoring characteristics
Table 69. VBAT monitoring characteristics
Symbol
Parameter
Min
Typ
Max
Unit
R
Resistor bridge for VBAT
-
39
-
kΩ
Q
Ratio on VBAT measurement
-
3
-
-
Error on Q
-10
-
10
%
ADC sampling time when reading the VBAT
12
-
-
µs
Er(1)
(1)
tS_vbat
1. Guaranteed by design.
Table 70. VBAT charging characteristics
Symbol
RBC
5.3.23
Parameter
Battery
charging
resistor
Conditions
Min
Typ
Max
VBRS = 0
-
5
-
VBRS = 1
-
1.5
-
Unit
kΩ
Timer characteristics
The parameters given in the following tables are guaranteed by design. Refer to
Section 5.3.14: I/O port characteristics for details on the input/output alternate function
characteristics (output compare, input capture, external clock, PWM output).
Table 71. TIMx(1) characteristics
Symbol
Parameter
tres(TIM)
Timer resolution time
fEXT
ResTIM
114/158
Conditions
Min
Max
Unit
-
1
-
tTIMxCLK
15.625
-
ns
0
fTIMxCLK/2
0
40
TIMx (except TIM2)
-
16
TIM2
-
32
fTIMxCLK = 64 MHz
Timer external clock frequency
on CH1 to CH4
fTIMxCLK = 64 MHz
Timer resolution
DS13560 Rev 4
MHz
bit
STM32G0B1xB/xC/xE
Electrical characteristics
Table 71. TIMx(1) characteristics (continued)
Symbol
Parameter
tCOUNTER
16-bit counter clock period
Maximum possible count with
32-bit counter
tMAX_COUNT
Conditions
Min
Max
Unit
-
1
65536
tTIMxCLK
0.015625
1024
µs
-
65536 × 65536
tTIMxCLK
-
67.10
s
fTIMxCLK = 64 MHz
fTIMxCLK = 64 MHz
1. TIMx, is used as a general term in which x stands for 1, 2, 3, 4, 5, 6, 7, 8, 15, 16 or 17.
Table 72. IWDG min/max timeout period at 32 kHz LSI clock(1)
Prescaler divider
PR[2:0] bits
Min timeout RL[11:0]= 0x000
Max timeout RL[11:0]= 0xFFF
/4
0
0.125
512
/8
1
0.250
1024
/16
2
0.500
2048
/32
3
1.0
4096
/64
4
2.0
8192
/128
5
4.0
16384
/256
6 or 7
8.0
32768
Unit
ms
1. The exact timings further depend on the phase of the APB interface clock versus the LSI clock, which causes an
uncertainty of one RC period.
5.3.24
Characteristics of communication interfaces
I2C-bus interface characteristics
The I2C-bus interface meets timing requirements of the I2C-bus specification and user
manual rev. 03 for:
•
Standard-mode (Sm): with a bit rate up to 100 kbit/s
•
Fast-mode (Fm): with a bit rate up to 400 kbit/s
•
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.
The timings are guaranteed by design as long as the I2C peripheral is properly configured
(refer to the reference manual RM0444) and when the I2CCLK frequency is greater than the
minimum shown in the following table.
DS13560 Rev 4
115/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
Table 73. Minimum I2CCLK frequency
Symbol
Parameter
Condition
Typ
Standard-mode
2
Analog filter enabled
fI2CCLK(min)
Fast-mode
Minimum I2CCLK
frequency for correct
operation of I2C
peripheral
DNF = 0
Analog filter disabled
DNF = 1
Analog filter enabled
Fast-mode Plus
DNF = 0
Analog filter disabled
DNF = 1
Unit
9
9
MHz
18
16
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDDIO1 is disabled, but is still present. Only FT_f I/O pins
support Fm+ low-level output current maximum requirement. Refer to Section 5.3.14: I/O
port characteristics for the I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the following table for its
characteristics:
Table 74. I2C analog filter characteristics(1)
Symbol
Parameter
Limiting duration of spikes suppressed
by the filter(2)
tAF
Min
Max
Unit
50
260
ns
1. Based on characterization results, not tested in production.
2. Spikes shorter than the limiting duration are suppressed.
SPI/I2S characteristics
Unless otherwise specified, the parameters given in Table 75 for SPI are derived from tests
performed under the ambient temperature, fPCLKx frequency and supply voltage conditions
summarized in Table 24: General operating conditions. The additional general conditions
are:
•
OSPEEDRy[1:0] set to 11 (output speed)
•
capacitive load C = 30 pF
•
measurement points at CMOS levels: 0.5 x VDD
Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
116/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Electrical characteristics
Table 75. SPI characteristics(1)
Symbol
fSCK
1/tc(SCK)
Parameter
SPI clock frequency
tsu(NSS) NSS setup time
th(NSS)
NSS hold time
Conditions
Min
Typ
Max
Master mode
1.65 < VDD < 3.6 V
Range 1
32
Master transmitter
1.65 < VDD < 3.6 V
Range 1
32
Slave receiver
1.65 < VDD < 3.6 V
Range 1
32
-
-
Unit
MHz
Slave transmitter/full duplex
2.7 < VDD < 3.6 V
Range 1
32
Slave transmitter/full duplex
1.65 < VDD < 3.6 V
Range 1
23
1.65 < VDD < 3.6 V
Range 2
8
Slave mode, SPI prescaler = 2
4 ₓ TPCLK
-
-
ns
Slave mode, SPI prescaler = 2
2 ₓ TPCLK
-
-
ns
tw(SCKH) SCK high time
Master mode
TPCLK
- 1.5
TPCLK
TPCLK
+ 1.5
ns
tw(SCKL) SCK low time
Master mode
TPCLK
- 1.5
TPCLK
TPCLK
+ 1.5
ns
tsu(MI)
Master data input setup
time
-
1
-
-
ns
tsu(SI)
Slave data input setup
time
-
1
-
-
ns
th(MI)
Master data input hold
time
-
5
-
-
ns
th(SI)
Slave data input hold
time
-
1
-
-
ns
ta(SO)
Data output access time Slave mode
9
-
34
ns
tdis(SO)
Data output disable time Slave mode
9
-
16
ns
2.7 < VDD < 3.6 V
Range 1
-
9
14
1.65 < VDD < 3.6 V
Range 1
-
9
21
1.65 < VDD < 3.6 V
Voltage Range 2
-
11
24
-
3
5
tv(SO)
tv(MO)
Slave data output valid
time
Master data output valid
time
-
DS13560 Rev 4
ns
ns
117/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
Table 75. SPI characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
th(SO)
Slave data output hold
time
-
5
-
-
ns
th(MO)
Master data output hold
time
-
1
-
-
ns
1. Based on characterization results, not tested in production.
Figure 31. SPI timing diagram - slave mode and CPHA = 0
NSS input
tc(SCK)
tsu(NSS)
th(NSS)
tw(SCKH)
tr(SCK)
SCK input
CPHA=0
CPOL=0
CPHA=0
CPOL=1
ta(SO)
tw(SCKL)
MISO output
tv(SO)
th(SO)
First bit OUT
tf(SCK)
Next bits OUT
tdis(SO)
Last bit OUT
th(SI)
tsu(SI)
MOSI input
First bit IN
Next bits IN
Last bit IN
MSv41658V1
Figure 32. SPI timing diagram - slave mode and CPHA = 1
NSS input
tc(SCK)
tsu(NSS)
tw(SCKH)
ta(SO)
tw(SCKL)
tf(SCK)
th(NSS)
SCK input
CPHA=1
CPOL=0
CPHA=1
CPOL=1
MISO output
tv(SO)
First bit OUT
tsu(SI)
MOSI input
th(SO)
Next bits OUT
tr(SCK)
tdis(SO)
Last bit OUT
th(SI)
First bit IN
Next bits IN
Last bit IN
MSv41659V1
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
118/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Electrical characteristics
Figure 33. SPI timing diagram - master mode
High
NSS input
SCK Output
SCK Output
tc(SCK)
CPHA=0
CPOL=0
CPHA=0
CPOL=1
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tw(SCKH)
tw(SCKL)
tsu(MI)
MISO
INPUT
tr(SCK)
tf(SCK)
BIT6 IN
MSB IN
LSB IN
th(MI)
MOSI
OUTPUT
BIT1 OUT
MSB OUT
LSB OUT
th(MO)
tv(MO)
ai14136c
1. Measurement points are set at CMOS levels: 0.3 VDD and 0.7 VDD.
Table 76. I2S characteristics(1)
Symbol
Parameter
Conditions
Min
Max
Unit
fMCK
I2S main clock output
fMCK= 256 x Fs; (Fs = audio sampling
frequency)
Fsmin = 8 kHz; Fsmax = 192 kHz;
2.048
49.152
MHz
fCK
I2S clock frequency
Master data
-
64xFs
Slave data
-
64xFs
DCK
I2S clock frequency duty
cycle
30
70
Slave receiver
DS13560 Rev 4
MHz
%
119/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
Table 76. I2S characteristics(1) (continued)
Symbol
Parameter
tv(WS)
WS valid time
th(WS)
Min
Max
Master mode
-
8
WS hold time
Master mode
2
-
tsu(WS)
WS setup time
Slave mode
4
-
th(WS)
WS hold time
Slave mode
2
-
Master receiver
4
-
Slave receiver
5
-
Master receiver
4.5
-
Slave receiver
2
-
tsu(SD_MR)
Conditions
Data input setup time
tsu(SD_SR)
th(SD_MR)
Data input hold time
th(SD_SR)
after enable edge; 2.7 < VDD < 3.6V
Unit
ns
16
tv(SD_ST)
Data output valid time slave transmitter
tv(SD_MT)
Data output valid time master transmitter
after enable edge
-
5.5
th(SD_ST)
Data output hold time slave transmitter
after enable edge
8
-
th(SD_MT)
Data output hold time master transmitter
after enable edge
1
-
-
after enable edge; 1.65 < VDD < 3.6V
23
1. Based on characterization results, not tested in production.
Figure 34. I2S slave timing diagram (Philips protocol)
CK Input
tc(CK)
CPOL = 0
CPOL = 1
tw(CKH)
th(WS)
tw(CKL)
WS input
tv(SD_ST)
tsu(WS)
SDtransmit
LSB transmit(2)
MSB transmit
tsu(SD_SR)
SDreceive
LSB receive(2)
th(SD_ST)
Bitn transmit
th(SD_SR)
MSB receive
Bitn receive
LSB receive
MSv39721V1
1. Measurement points are done at CMOS levels: 0.3 VDDIO1 and 0.7 VDDIO1.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
120/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Electrical characteristics
Figure 35. I2S master timing diagram (Philips protocol)
90%
10%
tr(CK)
tf(CK)
CK output
tc(CK)
CPOL = 0
tw(CKH)
CPOL = 1
tv(WS)
th(WS)
tw(CKL)
WS output
tv(SD_MT)
SDtransmit
LSB transmit(2)
MSB transmit
LSB receive(2)
Bitn transmit
LSB transmit
th(SD_MR)
tsu(SD_MR)
SDreceive
th(SD_MT)
MSB receive
Bitn receive
LSB receive
MSv39720V1
1. Based on characterization results, not tested in production.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
USART characteristics
Unless otherwise specified, the parameters given in Table 77 for USART are derived from
tests performed under the ambient temperature, fPCLKx frequency and supply voltage
conditions summarized in Table 24: General operating conditions. The additional general
conditions are:
•
OSPEEDRy[1:0] set to 10 (output speed)
•
capacitive load C = 30 pF
•
measurement points at CMOS levels: 0.5 x VDD
Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, CK, TX, and RX for USART).
Table 77. USART characteristics
Symbol
fCK
Parameter
USART clock frequency
Conditions
Min
Typ
Max
Master mode
-
-
8
Slave mode
-
-
21
DS13560 Rev 4
Unit
MHz
121/158
123
Electrical characteristics
STM32G0B1xB/xC/xE
Table 77. USART characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
tsu(NSS)
NSS setup time
Slave mode
tker + 2
-
-
th(NSS)
NSS hold time
Slave mode
2
-
-
tw(CKH)
CK high time
tw(CKL)
CK low time
Master mode
1 / fCK / 2
-1
1 / fCK / 2
1 / fCK / 2
+1
tsu(RX)
Data input setup time
Master mode
tker + 2
-
-
Slave mode
4
-
-
Master mode
1
-
-
Slave mode
0.5
-
-
Master mode
-
0.5
1
Slave mode
-
10
19
Master mode
0
-
-
Slave mode
7
-
-
th(RX)
Data input hold time
tv(TX)
Data output valid time
th(TX)
Data output hold time
ns
USB full speed (FS) characteristics
The STM32G0B1xB/xC/xE USB interface is fully compliant with the USB specification
version 2.0 and Battery charging rev 1.2 (primary and secondary detection).
Table 78. USB FS electrical characteristics(1)
Symbol
Parameter
Conditions
Min(2)
Typ
Max(2)
Unit
-
3.0(3)
-
3.6
V
14.25
-
24.8
kΩ
0.9
1.25
1.575
kΩ
1.425
2.25
3.09
kΩ
1.3
-
2.0
V
28
36
44
Ω
VDDIO2
USB full speed transceiver
operating voltage
RPD
Pull down resistor on PA11,
PA12 (USB_FS_DP/DM)
VIN = VDD
Pull Up Resistor on PA12
(USB_FS_DP)
VIN = VSS, during idle
Pull Up Resistor on PA12
(USB_FS_DP)
VIN = VSS during
reception
RPU
VCRS
Output signal crossover voltage
ZDRV
Output driver impedance(4)
Driving high or low
1. Guaranteed by design.
2. All the voltages are measured from the local ground potential.
3. The USB full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed
electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
4. No external termination series resistors are required on DP (D+) and DM (D-) pins as the matching
impedance is included in the embedded driver..
122/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Electrical characteristics
Figure 36. USB timings – definition of data signal rise and fall time
Cross over
points
Differential
data lines
VCRS
VSS
tf
tr
ai14137b
UCPD characteristics
UCPD1 and UCPD2 controllers comply with USB Type-C Rev.2 and USB Power Delivery
Rev. 3.0 specifications.
Table 79. UCPD operating conditions
Symbol
VDD
Parameter
UCPD operating supply
voltage
Vswing
Output voltage swing
ZDRV
Output driver impedance
Conditions
Sink mode only
Sink and source mode
Driving high or low
Min
Typ
Max
3.0
3.3
3.6
3.135
3.3
3.465
1.05
-
1.2
33
-
75
Unit
V
Ω
CAN (controller area network) interface
Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (FDCANx_TX and FDCANx_RX).
DS13560 Rev 4
123/158
123
Package information
6
STM32G0B1xB/xC/xE
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
6.1
UFQFPN32 package information
UFQFPN32 is a 32-pin, 5x5 mm, 0.5 mm pitch ultra-thin fine-pitch quad flat package.
Figure 37. UFQFPN32 package outline
D
A
A1
A3
e
ddd C
C
SEATINGPLANE
D1
b
e
E2
b
E1 E
1
L
32
D2
L
PIN 1 Identifier
A0B8_ME_V3
1. Drawing is not to scale.
2. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this backside pad to PCB ground.
Table 80. UFQFPN32 package mechanical data
inches(1)
millimeters
Symbol
124/158
Min
Typ
Max
Min
Typ
Max
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0.000
0.020
0.050
0.000
0.0007
0.0020
A3
-
0.152
-
-
0.0060
-
b
0.180
0.230
0.280
0.0071
0.0091
0.0110
(2)
D
4.900
5.000
5.100
0.1929
0.1969
0.2008
D1
3.400
3.500
3.600
0.1339
0.1378
0.1417
D2
3.400
3.500
3.600
0.1339
0.1378
0.1417
E(2)
4.900
5.000
5.100
0.1929
0.1969
0.2008
DS13560 Rev 4
STM32G0B1xB/xC/xE
Package information
Table 80. UFQFPN32 package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
E1
3.400
3.500
3.600
0.1339
0.1378
0.1417
E2
3.400
3.500
3.600
0.1339
0.1378
0.1417
e
-
0.500
-
-
0.0197
-
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
ddd
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Dimensions D and E do not include mold protrusion, not to exceed 0,15mm.
Figure 38. Recommended footprint for UFQFPN32 package
5.30
3.80
25
32
1
0.60
24
3.45
3.80
5.30
3.45
0.50
0.30
8
17
16
9
3.80
0.75
A0B8_FP_V2
1. Dimensions are expressed in millimeters
DS13560 Rev 4
125/158
153
Package information
STM32G0B1xB/xC/xE
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 39. UFQFPN32 package marking example
Product identification (1)
32G0B1KCU6
Date code
Y
WW
R
Revision code
Pin 1 identifier
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
126/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
LQFP32 package information
LQFP32 is a 32-pin, 7 x 7 mm low-profile quad flat package.
Figure 40. LQFP32 package outline
c
A2
A1
A
SEATING
PLANE
C
0.25 mm
ccc
GAUGE PLANE
C
K
D
A1
L
D1
L1
D3
24
17
25
16
32
9
PIN 1
IDENTIFICATION
1
E
E1
E3
b
6.2
Package information
8
e
5V_ME_V2
1. Drawing is not to scale.
Table 81. LQFP32 mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
DS13560 Rev 4
127/158
153
Package information
STM32G0B1xB/xC/xE
Table 81. LQFP32 mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
b
0.300
0.370
0.450
0.0118
0.0146
0.0177
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.600
-
-
0.2205
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.600
-
-
0.2205
-
e
-
0.800
-
-
0.0315
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 41. Recommended footprint for LQFP32 package
0.80
1.20
24
17
25
16
0.50
0.30
7.30
6.10
9.70
7.30
32
9
8
1
1.20
6.10
9.70
1. Dimensions are expressed in millimeters.
128/158
DS13560 Rev 4
5V_FP_V2
STM32G0B1xB/xC/xE
Package information
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 42. LQFP32 package marking example
STM32G
Product identification (1)
0B1KET6
Date code
Y WW
Revision code
Pin 1 identifier
R
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
DS13560 Rev 4
129/158
153
Package information
6.3
STM32G0B1xB/xC/xE
UFQFPN48 package information
UFQFPN48 is a 48-lead, 7x7 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package
Figure 43. UFQFPN48 package outline
Pin 1 identifier
laser marking area
D
A
E
E
T
ddd
A1
Seating
plane
b
e
Detail Y
D
Exposed pad
area
Y
D2
1
L
48
C 0.500x45°
pin1 corner
R 0.125 typ.
Detail Z
E2
1
48
Z
A0B9_ME_V3
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this back-side pad to PCB ground.
Table 82. UFQFPN48 package mechanical data
inches(1)
millimeters
Symbol
130/158
Min
Typ
Max
Min
Typ
Max
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
D
6.900
7.000
7.100
0.2717
0.2756
0.2795
E
6.900
7.000
7.100
0.2717
0.2756
0.2795
D2
5.500
5.600
5.700
0.2165
0.2205
0.2244
E2
5.500
5.600
5.700
0.2165
0.2205
0.2244
DS13560 Rev 4
STM32G0B1xB/xC/xE
Package information
Table 82. UFQFPN48 package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
T
-
0.152
-
-
0.0060
-
b
0.200
0.250
0.300
0.0079
0.0098
0.0118
e
-
0.500
-
-
0.0197
-
ddd
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 44. Recommended footprint for UFQFPN48 package
7.30
6.20
48
37
1
36
5.60
0.20
7.30
5.80
6.20
5.60
0.30
12
25
13
24
0.50
0.55
5.80
0.75
A0B9_FP_V2
1. Dimensions are expressed in millimeters.
DS13560 Rev 4
131/158
153
Package information
STM32G0B1xB/xC/xE
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 45. UFQFPN48 package marking example
STM32G0B1
Product identification (1)
CEU6
Date code
Y WW
Will be provided later
Revision code
Pin 1 identifier
R
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
132/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
LQFP48 package information
LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package.
Figure 46. LQFP48 package outline
SEATING
PLANE
C
c
A1
A
A2
0.25 mm
GAUGE PLANE
ccc C
K
D
A1
L
D1
L1
D3
36
25
37
24
48
E
E1
b
E3
6.4
Package information
13
PIN 1
IDENTIFICATION
1
12
e
5B_ME_V2
1. Drawing is not to scale.
Table 83. LQFP48 mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.500
-
-
0.2165
-
DS13560 Rev 4
133/158
153
Package information
STM32G0B1xB/xC/xE
Table 83. LQFP48 mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.500
-
-
0.2165
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 47. Recommended footprint for LQFP48 package
0.50
1.20
9.70
0.30
25
36
37
24
0.20
7.30
5.80
7.30
48
13
12
1
1.20
5.80
9.70
ai14911d
1. Dimensions are expressed in millimeters.
134/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Package information
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 48. LQFP48 package marking example
STM32G0B1
Product identification (1)
CET6
Date code
Y WW
Will be provided later
Revision code
Pin 1 identifier
R
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
DS13560 Rev 4
135/158
153
Package information
6.5
STM32G0B1xB/xC/xE
WLCSP52 package information
WLCSP52 is a 52-ball, 3.09 x 3.15 mm, 0.4 mm pitch, wafer-level chip-scale package.
Figure 49. WLCSP52 - Outline
bbb Z
A1 BALL ORIENTATION
A1
G
13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
E
e2
D
E
F
G
H
DETAIL B
e1
F
A
A2
D
aaa
(4x)
TOP VIEW
BOTTOM VIEW
SIDE VIEW
BUMP
DETAIL A
A2
eee Z
Z
b(52x)
ccc
ddd
ZXY
Z
SEATING PLANE
FRONT VIEW
DETAIL B
DETAIL A
B0BG_WLCSP52_ME_V1
1. Drawing is not to scale.
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
3. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
4. Bump position designation per JESD 95-1, SPP-010.
Table 84. WLCSP52 - Mechanical data
inches(1)
millimeters
Symbol
136/158
Min
Typ
Max
Min
Typ
Max
A(2)
-
-
0.58
-
-
0.023
A1
-
0.17
-
-
0.007
-
A2
-
0.38
-
-
0.015
-
A3(3)
-
0.025
-
-
0.001
-
DS13560 Rev 4
STM32G0B1xB/xC/xE
Package information
Table 84. WLCSP52 - Mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
b
0.23
0.26
0.28
0.009
0.010
0.011
D
3.06
3.09
3.12
0.120
0.122
0.123
E
3.12
3.15
3.18
0.123
0.124
0.125
e
-
0.40
-
-
0.016
-
e1
-
2.40
-
-
0.094
-
e2
-
2.42
-
-
0.095
-
(4)
-
0.35
-
-
0.014
-
G(4)
-
0.36
-
-
0.014
-
N
-
-
0.10
-
-
0.004
aaa
-
-
0.10
-
-
0.004
bbb
-
-
0.10
-
-
0.004
ccc
-
-
0.05
-
-
0.002
ddd
-
-
0.05
-
-
0.002
eee
-
-
0.58
-
-
0.023
F
1. Values in inches are converted from mm and rounded to 3 decimal digits.
2. The maximum total package height is calculated by the RSS method (Root Sum Square) using nominal
and tolerances values of A1 and A2.
3. Back side coating. Nominal dimension is rounded to the 3rd decimal place resulting from process
capability.
4. Calculated dimensions are rounded to the 3rd decimal place
Figure 50. WLCSP52 - Recommended footprint
Dpad
Dsm
BGA_WLCSP_FT_V1
DS13560 Rev 4
137/158
153
Package information
STM32G0B1xB/xC/xE
Table 85. WLCSP52 - Recommended PCB design rules
Dimension
Recommended values
Pitch
0.4 mm
Dpad
0,225 mm
Dsm
0.290 mm typ. (depends on soldermask registration
tolerance)
Stencil opening
0.250 mm
Stencil thickness
0.100 mm
Device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks that identify the parts throughout supply chain
operations, are not indicated below.
Figure 51. WLCSP52 package marking example
Pin 1 identifier
Product identification (1)
G0B1E6
Date code
Y WW R
Revision code
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
138/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
6.6
Package information
UFBGA64 package information
UFBGA64 is a 64-ball, 5 x 5 mm, 0.5 mm pitch ultra-low-profile fine-pitch ball grid array
package.
Figure 52. UFBGA64 package outline
Z Seating plane
ddd Z
A4
A3 A2
A1 A
E1
e
X
A1 ball
A1 ball
identifier index area
F
E
A
F
D1
D
e
Y
H
8
1
Øb (64 balls)
Ø eee M Z Y X
Ø fff M Z
BOTTOM VIEW
TOP VIEW
A019_ME_V1
1. Drawing is not to scale.
Table 86. UFBGA64 package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.460
0.530
0.600
0.0181
0.0209
0.0236
A1
0.050
0.080
0.110
0.0020
0.0031
0.0043
A2
0.400
0.450
0.500
0.0157
0.0177
0.0197
A3
0.080
0.130
0.180
0.0031
0.0051
0.0071
A4
0.270
0.320
0.370
0.0106
0.0126
0.0146
b
0.170
0.280
0.330
0.0067
0.0110
0.0130
D
4.850
5.000
5.150
0.1909
0.1969
0.2028
D1
3.450
3.500
3.550
0.1358
0.1378
0.1398
E
4.850
5.000
5.150
0.1909
0.1969
0.2028
E1
3.450
3.500
3.550
0.1358
0.1378
0.1398
e
-
0.500
-
-
0.0197
-
F
0.700
0.750
0.800
0.0276
0.0295
0.0315
DS13560 Rev 4
139/158
153
Package information
STM32G0B1xB/xC/xE
Table 86. UFBGA64 package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.460
0.530
0.600
0.0181
0.0209
0.0236
ddd
-
-
0.080
-
-
0.0031
eee
-
-
0.150
-
-
0.0059
fff
-
-
0.050
-
-
0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 53. Recommended footprint for UFBGA64 package
Dpad
Dsm
BGA_WLCSP_FT_V1
Table 87. Recommended PCB design rules for UFBGA64 package
Dimension
140/158
Recommended values
Pitch
0.5
Dpad
0.280 mm
Dsm
0.370 mm typ. (depends on the solder mask
registration tolerance)
Stencil opening
0.280 mm
Stencil thickness
Between 0.100 mm and 0.125 mm
Pad trace width
0.100 mm
DS13560 Rev 4
STM32G0B1xB/xC/xE
Package information
Device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 54. UFBGA64 package marking example
Product identification (1)
G0B1RE6N
Date code
Revision code
Will be provided later
Y WW
R
Pin 1 identifier
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
DS13560 Rev 4
141/158
153
Package information
6.7
STM32G0B1xB/xC/xE
LQFP64 package information
LQFP64 is a 64-pin, 10 x 10 mm low-profile quad flat package.
Figure 55. LQFP64 package outline
0.25 mm
GAUGE PLANE
c
A1
A
A2
SEATING PLANE
C
A1
ccc C
D
D1
D3
K
L
L1
33
48
32
49
64
E
E1
E3
b
17
PIN 1
IDENTIFICATION
16
1
e
5W_ME_V3
1. Drawing is not to scale.
Table 88. LQFP64 package mechanical data
inches(1)
millimeters
Symbol
142/158
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
-
12.000
-
-
0.4724
-
D1
-
10.000
-
-
0.3937
-
D3
-
7.500
-
-
0.2953
-
E
-
12.000
-
-
0.4724
-
E1
-
10.000
-
-
0.3937
-
DS13560 Rev 4
STM32G0B1xB/xC/xE
Package information
Table 88. LQFP64 package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
E3
-
7.500
-
-
0.2953
-
e
-
0.500
-
-
0.0197
-
K
0°
3.5°
7°
0°
3.5°
7°
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 56. Recommended footprint for LQFP64 package
33
48
0.3
0.5
49
32
12.7
10.3
10.3
17
64
1.2
16
1
7.8
12.7
ai14909c
1. Dimensions are expressed in millimeters.
DS13560 Rev 4
143/158
153
Package information
STM32G0B1xB/xC/xE
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 57. LQFP64 package marking example
STM32G0B1
Product identification (1)
RET6
Date code
Will be provided later
Y WW
Revision code
Pin 1 identifier
R
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
144/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
LQFP80 package information
This LQFP is an 80 pin, 12 x 12 mm low-profile quad flat package.
Figure 58. LQFP80 package outline
2
1
(2)
R1
TI
O
N
BB
R2
H
D 1/4
S
(6)
B
L
3
(L1)
(1) (11)
E 1/4
SECTION A-A
4x N/4 TIPS
aaa C A-B D
bbb H A-B D 4x
(N – 4)x e
(13)
C
A
0.05
GAUGE PLANE
0.25
B
SE
C
6.8
Package information
A2 A1(12)
b
C A-B D
(10)
(9) (11)
ccc C
D (3)
(11)
N
(11)
c
(4)
1
2
3
c1
E 1/4
b1
(3)
B
(6)
D 1/4
WITH
PLATING
b
(4)
D
D1
(2) (5)
(3) A
ddd
BASE METAL
SECTION B-B
E1
(2)
(5)
A
(11)
E
A
(Section A-A)
1. Drawing is not to scale.
Table 89. LQFP80 package mechanical data
inches(1)
mm
Dim.
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
-
14.000
-
-
0.5512
-
D1
-
12.000
-
-
0.4724
-
DS13560 Rev 4
145/158
153
Package information
STM32G0B1xB/xC/xE
Table 89. LQFP80 package mechanical data (continued)
inches(1)
mm
Dim.
Min
Typ
Max
Min
Typ
Max
D2
-
9.500
-
-
0.3740
-
E
-
14.000
-
-
0.5512
-
E1
-
12.000
-
-
0.4724
-
E3
-
9.500
-
-
0.3740
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
ccc
-
-
0.080
-
-
0.0031
θ
0.0°
-
7.0°
0.0°
-
7.0°
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 59. LQFP80 - Recommended footprint
1.25
0.3
12.30
14.70
0.5
1.2
9.80
14.70
1. Dimensions are expressed in millimeters.
146/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Package information
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 60. LQFP80 package marking example
STM32G0B1
MET6
Will be provided later
R
Y WW
Product identification (1)
Revision code
Date code
Pin 1 identifier
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
DS13560 Rev 4
147/158
153
Package information
6.9
STM32G0B1xB/xC/xE
UFBGA100 package information
UFBGA100 is a 100-ball, 7 x 7 mm, 0.5 mm pitch ultra-fine-profile ball grid array package.
Figure 61. UFBGA100 package outline
Z Seating plane
ddd Z
A4 A3 A2
A1 A
E1
A1 ball
identifier
Z
e
A1 ball
index area
X
E
A
Z
D1
D
e
Y
M
12
1
BOTTOM VIEW
Øb (100 balls)
Ø eee M Z Y X
Ø fff M Z
TOP VIEW
A0C2_ME_V5
1. Drawing is not to scale.
Table 90. UFBGA100 package mechanical data
inches(1)
millimeters
Symbol
148/158
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
0.600
-
-
0.0236
A1
-
-
0.110
-
-
0.0043
A2
-
0.450
-
-
0.0177
-
A3
-
0.130
-
-
0.0051
0.0094
A4
-
0.320
-
-
0.0126
-
b
0.240
0.290
0.340
0.0094
0.0114
0.0134
D
6.850
7.000
7.150
0.2697
0.2756
0.2815
D1
-
5.500
-
-
0.2165
-
E
6.850
7.000
7.150
0.2697
0.2756
0.2815
E1
-
5.500
-
-
0.2165
-
e
-
0.500
-
-
0.0197
-
Z
-
0.750
-
-
0.0295
-
ddd
-
-
0.080
-
-
0.0031
DS13560 Rev 4
STM32G0B1xB/xC/xE
Package information
Table 90. UFBGA100 package mechanical data (continued)
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
eee
-
-
0.150
-
-
0.0059
fff
-
-
0.050
-
-
0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 62. Recommended footprint for UFBGA100 package
Dpad
Dsm
A0C2_FP_V1
Table 91. UFBGA100 recommended PCB design rules
Dimension
Recommended values
Pitch
0.5
Dpad
0.280 mm
Dsm
0.370 mm typ. (depends on the solder mask
registration tolerance)
Stencil opening
0.280 mm
Stencil thickness
Between 0.100 mm and 0.125 mm
DS13560 Rev 4
149/158
153
Package information
STM32G0B1xB/xC/xE
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 63. UFBGA100 package marking example
STM32G
Product identification (1)
0B1VEI6
Date code
Revision code
Will be provided later
Y WW
R
Pin 1 identifier
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
150/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
LQFP100 package information
LQFP100 is a 100-pin, 14 x 14 mm low-profile quad flat package.
Figure 64. LQFP100 package outline
0.25 mm
c
A1
A
SEATING PLANE
C
A2
GAUGE PLANE
D
A1
K
ccc C
L
D1
L1
D3
51
75
76
50
100
26
PIN 1
1
IDENTIFICATION
E
E3
E1
b
6.10
Package information
25
e
1L_ME_V5
1. Drawing is not to scale.
Table 92. LQFP100 package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
15.800
16.000
16.200
0.6220
0.6299
0.6378
D1
13.800
14.000
14.200
0.5433
0.5512
0.5591
D3
-
12.000
-
-
0.4724
-
E
15.800
16.000
16.200
0.6220
0.6299
0.6378
E1
13.800
14.000
14.200
0.5433
0.5512
0.5591
DS13560 Rev 4
151/158
153
Package information
STM32G0B1xB/xC/xE
Table 92. LQFP100 package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
E3
-
12.000
-
-
0.4724
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0.0°
3.5°
7.0°
0.0°
3.5°
7.0°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 65. Recommended footprint for LQFP100 package
75
51
76
50
0.5
0.3
16.7
14.3
100
26
1.2
1
25
12.3
16.7
1. Dimensions are expressed in millimeters.
152/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Package information
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 66. LQFP100 package marking example
STM32G0B1
VET6
Will be provided later
R
Y WW
Product identification (1)
Revision code
Date code
Pin 1 identifier
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
DS13560 Rev 4
153/158
153
STM32G0B1xB/xC/xE
6.11
Thermal characteristics
The operating junction temperature TJ must never exceed the maximum given in
Table 24: General operating conditions.
The maximum junction temperature in °C that the device can reach if respecting the
operating conditions, is:
TJ(max) = TA(max) + PD(max) x ΘJA
where:
•
TA(max) is the maximum operating ambient temperature in °C,
•
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
•
PD = PINT + PI/O,
–
PINT is power dissipation contribution from product of IDD and VDD
–
PI/O is power dissipation contribution from output ports where:
PI/O = Σ (VOL × IOL) + Σ ((VDDIO1 – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high
level in the application.
Table 93. Package thermal characteristics
Value
Symbol
Θ
6.11.1
Parameter
Thermal resistance
Package
Junctionto-ambient
Junctionto-board
Junctionto-case
LQFP100 14 × 14 mm
47
23
9
UFBGA100 7 × 7 mm
48
30
12
LQFP80 12 x 12 mm
51
24
10
LQFP64 10 × 10 mm
53
25
11
UFBGA64 5 × 5 mm
51
32
32
WLCSP52 3.09 × 3.15 mm
55
23
3
LQFP48 7 × 7 mm
59
27
13
UFQFPN48 7 × 7 mm
28
12
9
LQFP32 7 × 7 mm
59
27
13
UFQFPN32 5 × 5 mm
35
20
14
Unit
°C/W
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (still air). Available from www.jedec.org.
6.11.2
Selecting the product temperature range
The temperature range is specified in the ordering information scheme shown in Section 7:
Ordering information.
154/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and to a specific maximum junction temperature.
As applications do not commonly use microcontrollers at their maximum power
consumption, it is useful to calculate the exact power consumption and junction temperature
to determine which temperature range best suits the application.
The following example shows how to calculate the temperature range needed for a given
application.
Example:
Assuming the following worst application conditions:
•
ambient temperature TA = 50 °C (measured according to JESD51-2)
•
IDD = 50 mA; VDD = 3.6 V
•
20 I/Os simultaneously used as output at low level with IOL = 8 mA (VOL= 0.4 V), and
•
8 I/Os simultaneously used as output at low level with IOL = 20 mA (VOL= 1.3 V),
the power consumption from power supply PINT is:
PINT = 50 mA × 3.6 V= 118 mW,
the power loss through I/Os PIO is
PIO = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW,
and the total power PD to dissipate is:
PD = 180 mW + 272 mW = 452 mW
For a package with ΘJA= 65 °C/W, the junction temperature stabilizes at:
TJ = 50°C + (65 °C/W × 452 mW) = 50 °C + 29.4 °C = 79.4 °C
As a conclusion, product version with suffix 6 (maximum allowed TJ = 105° C) is sufficient
for this application.
If the same application was used in a hot environment with maximum TA greater than
75.5 °C, the junction temperature would exceed 105°C and the product version allowing
higher maximum TJ would have to be ordered.
DS13560 Rev 4
155/158
155
Ordering information
7
STM32G0B1xB/xC/xE
Ordering information
Example
STM32
G
0B1
R
E
T
6
xyy
Device family
STM32 = Arm® based 32-bit microcontroller
Product type
G = general-purpose
Device subfamily
0B1 = STM32G0B1
Pin count
K = 32
C = 48
N = 52
M = 80
R = 64
V = 100
Flash memory size
B = 128 Kbytes
C = 256 Kbytes
E = 512 Kbytes
Package type
I = UFBGA
T = LQFP
U = UFQFPN
Y = WLCSP
Temperature range
6 = -40 to 85°C (105°C junction)
7 = -40 to 105°C (125°C junction)
3 = -40 to 125°C (130°C junction)
Options
xTR = tape and reel packing; x = N (“N” product version), otherwise blank
x˽˽ = tray packing; x = N (“N” product version) or blank
other = 3-character ID incl. custom Flash code and packing information; x = N for “N” product version
For a list of available options (memory, package, and so on) or for further information on any
aspect of this device, please contact your nearest ST sales office.
156/158
DS13560 Rev 4
STM32G0B1xB/xC/xE
8
Revision history
Revision history
Table 94. Document revision history
Date
Revision
13-Nov-2020
1
Initial release.
2
Table 1: Device summary table reordered;
Updated last paragraph in Section 2: Description;
Updated Table 12: Pin assignment and description;
Updated Table 66: VREFBUF characteristics;
Missing package marking examples added in Section 6:
Package information and Figure 42: LQFP32 package
marking example corrected;
Section 6.5: WLCSP52 package information updated;
Updated example in Section 6.11.2: Selecting the
product temperature range;
Section 6.11: Thermal characteristics - improved
UFBGA100, UFBGA64, and LQFP80 ΘJAvalues as a
result of characterization;
Updated Section 6.8: LQFP80 package information.
3
Updated Figure 3 to Figure 6 and Figure 9 to Figure 12:
marking of VDDIO2-only supplied pins corrected.
I/O type “_s” added to Table 11: Terms and symbols
used in Table 12 and Table 12: Pin assignment and
description.
4
Added HSI48 in features on the cover page and in
Figure 1: Block diagram;
Updated Table 2: Features and peripheral counts;
Updated Table 12: Pin assignment and description
(UFBGA80 corrected to LQFP80) in the header;
Updated Section : USB full speed (FS) characteristics;
Section UCPD characteristics made a sub-section of
Section 5.3.24: Characteristics of communication
interfaces;
Updated Figure 58: LQFP80 package outline.
30-Nov-2021
18-Jan-2022
12-Dec-2022
Changes
DS13560 Rev 4
157/158
157
STM32G0B1xB/xC/xE
IMPORTANT NOTICE – READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgment.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product
or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2022 STMicroelectronics – All rights reserved
158/158
DS13560 Rev 4