STM32G491xC
STM32G491xE
Arm® Cortex®-M4 32-bit MCU+FPU, 170 MHz / 213 DMIPS,
up to 512 KB Flash, 112 KB SRAM, rich analog, math accelerator
Datasheet - production data
Features
FBGA
Includes ST state-of-the-art patented
technology
• Core: Arm® 32-bit Cortex®-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator) allowing 0-wait-state execution
from Flash memory, frequency up to 170 MHz
with 213 DMIPS, MPU, DSP instructions
• Operating conditions:
– VDD, VDDA voltage range:
1.71 V to 3.6 V
WLCSP64
(Pitch 0.4)
• Up to 86 fast I/Os
– All mappable on external interrupt vectors
– Several I/Os with 5 V tolerant capability
• 16-channel DMA controller
• 3 x ADCs 0.25 µs (up to 36 channels).
Resolution up to 16-bit with hardware
oversampling, 0 to 3.6 V conversion range
• Memories
– 512 Kbytes of Flash memory with ECC
support, proprietary code readout
protection (PCROP), securable memory
area, 1 Kbyte OTP
– 96 Kbytes of SRAM, with hardware parity
check implemented on the first 32 Kbytes
– Routine booster: 16 Kbytes of SRAM on
instruction and data bus, with hardware
parity check (CCM SRAM)
– Quad-SPI memory interface
• Reset and supply management
– Power-on/power-down reset
(POR/PDR/BOR)
– Programmable voltage detector (PVD)
– Low-power modes: sleep, stop, standby
and shutdown
– VBAT supply for RTC and backup registers
• Clock management
– 4 to 48 MHz crystal oscillator
– 32 kHz oscillator with calibration
– Internal 16 MHz RC with PLL option (± 1%)
– Internal 32 kHz RC oscillator (± 5%)
This is information on a product in full production.
UFBGA64
(5 x 5 mm)
• Interconnect matrix
• Mathematical hardware accelerators
– CORDIC for trigonometric functions
acceleration
– FMAC: filter mathematical accelerator
September 2021
LQFP48 (7 x 7 mm)
UFQFPN32 (5 x 5 mm)
LQFP64 (10 x 10 mm) UFQFPN48 (7 x 7 mm)
LQFP80 (12 x 12 mm)
LQFP80 (14 x 14 mm)
LQFP100 (14 x 14 mm)
• 4 x 12-bit DAC channels
– 2 x buffered external channels 1 MSPS
– 2 x unbuffered internal channels 15 MSPS
• 4 x ultra-fast rail-to-rail analog comparators
• 4 x operational amplifiers that can be used in
PGA mode, all terminals accessible
• Internal voltage reference buffer (VREFBUF)
supporting three output voltages (2.048 V,
2.5 V, 2.9 V)
• 15 timers:
– 1 x 32-bit timer and 2 x 16-bit timers with up
to four IC/OC/PWM or pulse counter and
quadrature (incremental) encoder input
– 3 x 16-bit 8-channel advanced motor
control timers, with up to 8 x PWM
channels, dead time generation and
emergency stop
– 1 x 16-bit timer with 2 x IC/OCs, one
OCN/PWM, dead time generation and
emergency stop
– 2 x 16-bit timers with IC/OC/OCN/PWM,
dead time generation and emergency stop
– 2 x watchdog timers (independent, window)
DS13122 Rev 3
1/199
www.st.com
STM32G491xC STM32G491xE
– 1 x SysTick timer: 24-bit downcounter
– 2 x 16-bit basic timers
– 1 x low-power timer
• Calendar RTC with alarm, periodic wakeup
from stop/standby
– 3 x SPIs, 4 to 16 programmable bit frames,
2 x with multiplexed half duplex I2S
interface
– 1 x SAI (serial audio interface)
– USB 2.0 full-speed interface with LPM and
BCD support
– IRTIM (infrared interface)
– USB Type-C™ /USB power delivery
controller (UCPD)
• Communication interfaces
– 2 x FDCAN controller supporting flexible
data rate
– 3 x I2C Fast mode plus (1 Mbit/s) with
• True random number generator (RNG)
20 mA current sink, SMBus/PMBus,
• CRC calculation unit, 96-bit unique ID
wakeup from stop
– 5 x USART/UARTs (ISO 7816 interface,
• Development support: serial wire debug
LIN, IrDA, modem control)
(SWD), JTAG, Embedded Trace Macrocell™
– 1 x LPUART
Table 1. Device summary
Reference
Part number
STM32G491xC
STM32G491CC, STM32G491KC, STM32G491RC, STM32G491VC, STM32G491MC
STM32G491xE
STM32G491CE, STM32G491KE, STM32G491RE, STM32G491VE, STM32G491ME
2/199
DS13122 Rev 3
STM32G491xC STM32G491xE
Contents
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1
Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2
Adaptive real-time memory accelerator (ART accelerator) . . . . . . . . . . . 17
3.3
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8
CORDIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9
Filter mathematical accelerator (FMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.10
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 21
3.11
Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.11.1
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.11.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.11.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.11.4
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.11.5
Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.11.6
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.12
Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.13
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.14
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.15
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.16
DMA request router (DMAMUX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.17
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.18
3.17.1
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 28
3.17.2
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 28
Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.18.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
DS13122 Rev 3
3/199
6
Contents
STM32G491xC STM32G491xE
3.18.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.18.3
VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.18.4
Operational amplifier internal output (OPAMPxINT): . . . . . . . . . . . . . . . 30
3.19
Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.20
Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.21
Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.22
Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.23
Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.24
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.24.1
Advanced motor control timer (TIM1, TIM8, TIM20) . . . . . . . . . . . . . . . 33
3.24.2
General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16,
TIM17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.24.3
Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.24.4
Low-power timer (LPTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.24.5
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.24.6
System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.24.7
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.25
Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 36
3.26
Tamper and backup registers (TAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.27
Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.28
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.29
Universal synchronous/asynchronous receiver transmitter (USART) . . . 39
3.30
Low-power universal asynchronous receiver transmitter (LPUART) . . . . 40
3.31
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.32
Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.32.1
4/199
SAI peripheral supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.33
Controller area network (FDCAN1, FDCAN2) . . . . . . . . . . . . . . . . . . . . . 42
3.34
Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.35
USB Type-C™ / USB Power Delivery controller (UCPD) . . . . . . . . . . . . . 42
3.36
Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.37
Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.38
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.38.1
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.38.2
Embedded trace macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
DS13122 Rev 3
STM32G491xC STM32G491xE
4
5
Contents
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1
UFQFPN32 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2
UFQFPN48 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3
LQFP48 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4
WLCSP64 ballout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5
LQFP64 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6
UFBGA64 ballout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.7
LQFP80 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.8
LQFP100 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.9
Pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.10
Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.2
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 74
5.3.3
Embedded reset and power control block characteristics . . . . . . . . . . . 74
5.3.4
Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.5
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.6
Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.7
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.8
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.9
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.10
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.11
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3.12
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
DS13122 Rev 3
5/199
6
Contents
6
STM32G491xC STM32G491xE
5.3.13
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.14
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.15
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3.16
Extended interrupt and event controller input (EXTI) characteristics . . 119
5.3.17
Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.18
Analog-to-digital converter characteristics . . . . . . . . . . . . . . . . . . . . . . 120
5.3.19
Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 135
5.3.20
Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 142
5.3.21
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.3.22
Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.3.23
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.3.24
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.3.25
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.3.26
Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 152
5.3.27
QUADSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.3.28
UCPD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.1
UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.2
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.3
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.4
WLCSP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.5
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.6
UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.7
LQFP80 12 x 12 mm package information . . . . . . . . . . . . . . . . . . . . . . . 184
6.8
LQFP80 14 x 14 mm package information . . . . . . . . . . . . . . . . . . . . . . . 187
6.9
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.10
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.10.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
6.10.2
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 195
7
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
8
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6/199
DS13122 Rev 3
STM32G491xC STM32G491xE
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
STM32G491xC/xE features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
STM32G491xC/xE peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
USART/UART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
SAI features implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
STM32G491xC/xE pin definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Alternate function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 74
Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Current consumption in Run and Low-power run modes, code with data
processing running from Flash in single Bank, ART enable (Cache ON Prefetch OFF) . . 78
Current consumption in Run and Low-power run modes,
code with data processing running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 82
Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Typical current consumption in Run and Low-power run modes, with different codes
running from CCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Current consumption in Sleep and Low-power sleep mode Flash ON . . . . . . . . . . . . . . . . 86
Current consumption in low-power sleep modes, Flash in power-down. . . . . . . . . . . . . . . 87
Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Wakeup time using USART/LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
DS13122 Rev 3
7/199
9
List of tables
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
8/199
STM32G491xC STM32G491xE
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
I/O (except FT_c) AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
I/O FT_c AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
EXTI input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
ADC accuracy (Multiple ADCs operation) - limited test conditions 1 . . . . . . . . . . . . . . . . 131
ADC accuracy (Multiple ADCs operation) - limited test conditions 2 . . . . . . . . . . . . . . . . 132
ADC accuracy (Multiple ADCs operation) - limited test conditions 3 . . . . . . . . . . . . . . . . 133
DAC 1MSPS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
DAC 1MSPS accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
DAC 15MSPS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
DAC 15MSPS accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
WWDG min/max timeout value at 170 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
USART electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Quad SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
UCPD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
UFQFPN32 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
UFQFPN48 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
LQFP48 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
WLCSP64 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
DS13122 Rev 3
STM32G491xC STM32G491xE
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.
Table 101.
Table 102.
Table 103.
Table 104.
List of tables
WLCSP64 - Recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
LQFP64 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
UFBGA64 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
UFBGA64 - Recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . . 182
LQFP80 12 x 12 mm - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
LQFP80 14 x 14 mm mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
LQPF100 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
DS13122 Rev 3
9/199
9
List of figures
STM32G491xC STM32G491xE
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
10/199
STM32G491xC/xE block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Voltage reference buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
STM32G491xC/xE UFQFPN32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
STM32G491xC/xE UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
STM32G491xC/xE LQFP48 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
STM32G491xC/xE WLCSP64 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
STM32G491xC/xE LQFP64 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
STM32G491xC/xE UFBGA64 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
STM32G491xC/xE LQFP80 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
STM32G491xC/xE LQFP100 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
HSI48 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
I/O AC characteristics definition(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Typical connection diagram when using the ADC with FT/TT pins
featuring analog switch function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
VREFOUT_TEMP in case VRS = 00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
VREFOUT_TEMP in case VRS = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
VREFOUT_TEMP in case VRS = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
OPAMP noise density @ 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Quad SPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Quad SPI timing diagram - DDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
UFQFPN32 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
UFQFPN32 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
UFQFPN32 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
UFQFPN48 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
UFQFPN48 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
UFQFPN48 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
LQFP48 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
DS13122 Rev 3
STM32G491xC STM32G491xE
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
List of figures
LQFP48 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
LQFP48 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
WLCSP64 - outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
WLCSP64 - recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
WLCSP64 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
LQFP64 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
LQFP64 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
LQFP64 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
UFBGA64 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
UFBGA64 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
UFBGA64 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
LQFP80 12 x 12 mm - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
LQFP80 12 x 12 mm - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
LQFP80 12 x 12 mm top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
LQFP80 14 x 14 mm - outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
LQFP80 14 x 14 mm- recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
LQFP80 14 x 14 mm - top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
LQFP100 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
LQFP100 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
LQFP100 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
DS13122 Rev 3
11/199
11
Introduction
1
STM32G491xC STM32G491xE
Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32G491xC/xE microcontrollers.
This document should be read in conjunction with the reference manual RM0440
“STM32G4 Series advanced Arm® 32-bit MCUs”. The reference manual is available from
the STMicroelectronics website www.st.com.
For information on the Arm®(a) Cortex®-M4 core, refer to the Cortex®-M4 technical
reference manual, available from the www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
12/199
DS13122 Rev 3
STM32G491xC STM32G491xE
2
Description
Description
The STM32G491xC/xE devices are based on the high-performance Arm® Cortex®-M4 32bit RISC core. They operate at a frequency of up to 170 MHz.
The Cortex-M4 core features a single-precision floating-point unit (FPU), which supports all
the Arm single-precision data-processing instructions and all the data types. It also
implements a full set of DSP (digital signal processing) instructions and a memory protection
unit (MPU) which enhances the application’s security.
These devices embed high-speed memories (512 Kbytes of Flash memory, and 112 Kbytes
of SRAM), a Quad-SPI Flash memory interface, an extensive range of enhanced I/Os and
peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus
matrix.
The devices also embed several protection mechanisms for embedded Flash memory and
SRAM: readout protection, write protection, securable memory area and proprietary code
readout protection.
The devices embed peripherals allowing mathematical/arithmetic function acceleration
(CORDIC for trigonometric functions and FMAC unit for filter functions).
They offer three fast 12-bit ADCs (5 Msps), four comparators, four operational amplifiers,
four DAC channels (2 external and 2 internal), an internal voltage reference buffer, a lowpower RTC, one general-purpose 32-bit timers, three 16-bit PWM timers dedicated to motor
control, seven general-purpose 16-bit timers, and one 16-bit low-power timer.
They also feature standard and advanced communication interfaces such as:
- Three I2Cs
- Three SPIs multiplexed with two half duplex I2Ss
- Three USARTs, two UARTs and one low-power UART.
- Two FDCANs
- One SAI
- USB device
- UCPD
The devices operate in the -40 to +85 °C (+105 °C junction) and -40 to +125 °C (+130 °C
junction) temperature ranges from a 1.71 to 3.6 V power supply. A comprehensive set of
power-saving modes allows the design of low-power applications.
Some independent power supplies are supported including an analog independent supply
input for ADC, DAC, OPAMPs and comparators. A VBAT input allows backup of the RTC and
the registers.
The STM32G491xC/xE family offers 9 packages from 32-pin to 100-pin.
DS13122 Rev 3
13/199
44
Description
STM32G491xC STM32G491xE
Table 2. STM32G491xC/xE features and peripheral counts
Peripheral
Flash memory
STM32G491Kx
STM32G491Cx
STM32G491Rx STM32G491Mx STM32G491Vx
256
512
Kbytes Kbytes
256
Kbytes
256
512
256
512
256
512
Kbytes Kbytes Kbytes Kbytes Kbytes Kbytes
512
Kbytes
SRAM1
80 Kbytes
SRAM2
16 Kbytes
CCM SRAM
16 Kbytes
QUADSPI
Timers
1
Advanced
motor control
3 (16-bit)
General
purpose
5 (16-bit)
1 (32-bit)
Basic
2 (16-bit)
Low power
1 (16-bit)
SysTick timer
1
Watchdog
timers
(independent,
window)
2
PWM channels
(all)
23
32
38
38
44
PWM channels
(except
complementary)
23
26
28
28
29
SPI(I2S)(1)
3 (2)
2C
3
I
Comm.
interfac
es
USART
2
UART
0
3
0 in LQFP48
1 in UFQFPN48
2
LPUART
1
FDCANs
2
USB device
Yes
UCPD
Yes
SAI
Yes
RTC
Tamper pins
Yes
1
2
2
Random number
generator
Yes
AES
No
CORDIC
Yes
14/199
DS13122 Rev 3
3
STM32G491xC STM32G491xE
Description
Table 2. STM32G491xC/xE features and peripheral counts (continued)
Peripheral
STM32G491Kx
STM32G491Cx
STM32G491Rx STM32G491Mx STM32G491Vx
FMAC
Yes
GPIOs
26
Wakeup pins
2
12-bit ADCs
Number of channels
38 in LQFP48
42 in UFQFPN48
3
52
66
86
4
4
5
32
36
3
18 in LQFP48
19 in UFQFPN48
11
12-bit DAC
Number of channels
24
2
4 (2 external + 2 internal)
Internal voltage reference
buffer
Yes
Analog comparator
4
Operational amplifiers
4
Max. CPU frequency
170 MHz
Operating voltage
Operating temperature
Packages
1.71 V to 3.6 V
Ambient operating temperature: -40 to 85 °C / -40 to 125 °C
UFQFPN32
LQFP48/
UFQFPN48
LQFP64/
UFBGA4
WLCSP64
LQFP80
LQFP100
1. The SPI2/3 interfaces can work in an exclusive way in either the SPI mode or the I2S audio mode.
DS13122 Rev 3
15/199
44
Description
STM32G491xC STM32G491xE
Figure 1. STM32G491xC/xE block diagram
JTAG & SW
ETM
MPU
NVIC
FPU
Arm®
Cortex-M4
170 MHz
QUADSPI
D-BUS
I-BUS
S-BUS
GP-DMA2
8 Chan
GP-DMA1
8 Chan
ACCEL/
CACHE
TRACECK
TRACED(3:0)
AHB BUS-MATRIX 5M / 8S
JTRST, JTDI,
JTCK/SWCLK
JTDO/SWD, JTDO
CLK, NCS, BK1_IO[3:0]
FLASH 512 KB
CCM SRAM 16 KB
@VDDA
SRAM2 16 KB
CH1
DAC1
OUT1/OUT2
CH2
SRAM1 80 KB
DMAMUX
AHB2
CH1
DAC3
CH2
RNG
@VDDA
RNB1
analog
SAR ADC1
Ain ADC
IF
SAR ADC2
PC(15:0)
PD(15:0)
PE(15:0)
PF(10:9,2:0)
PG(10:10)
IF
FMAC
AHB1
PB(15:0)
VOLT. REG.
3.3V TO 1.2V
VDD12
SAR ADC3
PA(15:0)
POWER MNGT
CORDIC
GPIO PORT A
@VDD
SUPPLY
SUPERVISION
@VDD
USART
GPIO2MBps
PORT B
USART
GPIO2MBps
PORT C
LSI
POR
PLL
Reset
Int
USART
GPIO2MBps
PORT D
HSI
USART
GPIO2MBps
PORT E
HSI48
VDD = 1.71 to 3.6V
VSS
POR / BOR
VDD, VSS,
VDDA, VSSA,
RESET
PVD, PWM
USART
GPIO2MBps
PORT F
XTAL OSC
4-48MHz
GPIO2MBps
PORT G
USART
IWDG
RESET&
FS, SCK, SD,
MCLK as AF
CLOCKCTRL
SAI1
OSC_IN
OSC_OUT
Standby Interface
VBAT = 1.55 to 3.6V
@VBAT
4 PWM,4PWM,
ETR,BKIN as F
TIMER8
RTC AWU
BKPREG
16b PWM
CRC
RTC Interface
16b PWM
CH as AF
TIMER15
USART
2MBps
CH as AF
TIMER16
USART
2MBps
16b
MOSI, MISO
SCK, NSS as AF
1
USART SPI
2MBps
4 CH, ETR as AF
TIMER3&4
4 CH, ETR as AF
PWRCTRL
Smcard
irDA
APB2 60MHzAPB1
USART
USART12MBps
TIMER2
LP_UART1
RX, TX as AF
I2C1&2&3
SCL, SDA, SMBAL as AF
WinWATCHDOG
LP timer1
RX, TX, SCK,CTS,
RTS as AF
TIMER6
16b trigg
TIMER7
16b trigg
CRS
USART2&3
UART4&5
SPI2&3
CAN1&2
Vref_Buf
Smcard
irDA
irDA
I2S half
duplex
RX, TX, SCK,
CTS, RTS as AF
RX, TX, CTS,
RTS as AF
MOSI, MISO, SCK
NSS, as AF
RX,TX as AF
USBPD
OPAMP
1,2,3,6
FIFO
@VDDA
PHY
SysCfg
COMP
1,2,3,4
RTC_OUT
RTC_TS
RTC_TAMPx
16b
16b
TIMER17
USART
2MBps
OSC32_IN
OSC_OUT
AHB/APB2 AHB/APB1
16b PWM
FIFO
TIMER1
TIMER20
XTAL 32kHz
USB
Device
PHY
4 PWM,4PWM,
ETR,BKIN as F
4 PWM,4PWM,
ETR,BKIN as F
CH as AF16b
peripheralclocks
and system
EXT IT.
WKUP
USART
2MBps
APB2
86 AFP
D+
D-
CC1
CC2
MSv63423V2
1. AF: alternate function on I/O pins.
16/199
DS13122 Rev 3
STM32G491xC STM32G491xE
Functional overview
3
Functional overview
3.1
Arm® Cortex®-M4 core with FPU
The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
the MCU implementation, with a reduced pin count and with low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The Arm® Cortex®-M4 with FPU 32-bit RISC processor features an exceptional codeefficiency, delivering the expected high-performance from an Arm core in a memory size
usually associated with 8-bit and 16-bit devices.
The processor supports a set of DSP instructions which allows an efficient signal processing
and a complex algorithm execution. Its single precision FPU speeds up the software
development by using metalanguage development tools to avoid saturation.
With its embedded Arm core, the STM32G491xC/xE family is compatible with all Arm tools
and software.
Figure 1 shows the general block diagram of the STM32G491xC/xE devices.
3.2
Adaptive real-time memory accelerator (ART accelerator)
The ART accelerator is a memory accelerator that is optimized for the STM32 industrystandard Arm® Cortex®-M4 processors. It balances the inherent performance advantage of
the Arm® Cortex®-M4 over Flash memory technologies, which normally requires the
processor to wait for the Flash memory at higher frequencies.
3.3
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to the memory
and to prevent one task to accidentally corrupt the memory or the resources used by any
other active task. This memory area is organized into up to 8 protected areas, which can be
divided in up into 8 subareas each. The protection area sizes range between 32 bytes and
the whole 4 gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
3.4
Embedded Flash memory
The STM32G491xC/xE devices feature 512 kbytes of embedded Flash memory which is
available for storing programs and data.
Flexible protections can be configured thanks to the option bytes:
DS13122 Rev 3
17/199
44
Functional overview
STM32G491xC STM32G491xE
• Readout protection (RDP) to protect the whole memory. Three levels of protection are
available:
– Level 0: no readout protection
– Level 1: memory readout protection; the Flash memory cannot be read from or written
to if either the debug features are connected or the boot in RAM or bootloader are
selected
– Level 2: chip readout protection; the debug features (Cortex-M4 JTAG and serial
wire), the boot in RAM and the bootloader selection are disabled (JTAG fuse). This
selection is irreversible.
•
Write protection (WRP): the protected area is protected against erasing and
programming.
•
Proprietary code readout protection (PCROP): a part of the Flash memory can be
protected against read and write from third parties. The protected area is execute-only
and it can only be reached by the STM32 CPU as an instruction code, while all other
accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited. An
additional option bit (PCROP_RDP) allows to select if the PCROP area is erased or not
when the RDP protection is changed from Level 1 to Level 0.
•
Securable memory area: a part of Flash memory can be configured by option bytes to
be securable. After reset this securable memory area is not secured and it behaves like
the remainder of main Flash memory (execute, read, write access). When secured, any
access to this securable memory area generates corresponding read/write error.
Purpose of the Securable memory area is to protect sensitive code and data (secure
keys storage) which can be executed only once at boot, and never again unless a new
reset occurs.
The Flash memory embeds the error correction code (ECC) feature supporting:
3.5
•
Single error detection and correction
•
Double error detection
•
The address of the ECC fail can be read in the ECC register
•
1 Kbyte (128 double word) OTP (one-time programmable) for user data. The OTP area
is available in Bank 1 only. The OTP data cannot be erased and can be written only
once.
Embedded SRAM
STM32G491xC/xE devices feature 112 Kbytes of embedded SRAM. This SRAM is split into
three blocks:
18/199
•
80 Kbytes mapped at address 0x2000 0000 (SRAM1). The CM4 can access the
SRAM1 through the System Bus (or through the I-Code/D-Code buses when boot from
SRAM1 is selected or when physical remap is selected by SYSCFG_MEMRMP
register). The first 32 Kbytes of SRAM1 support hardware parity check.
•
16 Kbytes mapped at address 0x2001 4000 (SRAM2). The CM4 can access the
SRAM2 through the System bus. SRAM2 can be kept in stop and standby modes.
•
16 Kbytes mapped at address 0x1000 0000 (CCM SRAM). It is accessed by the CPU
through I-Code/D-Code bus for maximum performance.
It is also aliased at 0x2001 8000 address to be accessed by all masters (CPU, DMA1,
DMA2) through SBUS contiguously to SRAM1 and SRAM2.The CCM SRAM supports
hardware parity check and can be write-protected with 1-Kbyte granularity.
•
The memory can be accessed in read/write at max CPU clock speed with 0 wait states.
DS13122 Rev 3
STM32G491xC STM32G491xE
3.6
Functional overview
Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves
(Flash memory, RAM, QUADSPI, AHB and APB peripherals). It also ensures a seamless
and efficient operation even when several high-speed peripherals work simultaneously.
Figure 2. Multi-AHB bus matrix
DMA1
DMA2
S-bus
D-bus
I-bus
Cortex®-M4
with FPU
DCode
ACCEL
ICode
FLASH
512 KB
SRAM1
CCM
SRAM
SRAM2
AHB1
peripherals
AHB2
peripherals
QUADSPI
BusMatrix-S
MS52814V1
3.7
Boot modes
At startup, a BOOT0 pin (or nBOOT0 option bit)and an nBOOT1 option bit are used to select
one of three boot options:
•
Boot from user Flash
•
Boot from system memory
•
Boot from embedded SRAM
The BOOT0 value may come from the PB8-BOOT0 pin or from an nBOOT0 option bit
depending on the value of a user nBOOT_SEL option bit to free the GPIO pad if needed.
The boot loader is located in the system memory. It is used to reprogram the Flash memory
by using USART, I2C, SPI, and USB through the DFU (device firmware upgrade).
DS13122 Rev 3
19/199
44
Functional overview
3.8
STM32G491xC STM32G491xE
CORDIC
The CORDIC provides hardware acceleration of certain mathematical functions, notably
trigonometric, commonly used in motor control, metering, signal processing and many other
applications.
It speeds up the calculation of these functions compared to a software implementation,
allowing a lower operating frequency, or freeing up processor cycles in order to perform
other tasks.
Cordic features
3.9
•
24-bit CORDIC rotation engine
•
Circular and Hyperbolic modes
•
Rotation and Vectoring modes
•
Functions: Sine, Cosine, Sinh, Cosh, Atan, Atan2, Atanh, Modulus, Square root,
Natural logarithm
•
Programmable precision up to 20-bit
•
Fast convergence: 4 bits per clock cycle
•
Supports 16-bit and 32-bit fixed point input and output formats
•
Low latency AHB slave interface
•
Results can be read as soon as ready without polling or interrupt
•
DMA read and write channels
Filter mathematical accelerator (FMAC)
The filter mathematical accelerator unit performs arithmetic operations on vectors. It
comprises a multiplier/accumulator (MAC) unit, together with address generation logic,
which allows it to index vector elements held in local memory.
The unit includes support for circular buffers on input and output, which allows digital filters
to be implemented. Both finite and infinite impulse response filters can be realized.
The unit allows frequent or lengthy filtering operations to be offloaded from the CPU, freeing
up the processor for other tasks. In many cases it can accelerate such calculations
compared to a software implementation, resulting in a speed-up of time critical tasks.
20/199
DS13122 Rev 3
STM32G491xC STM32G491xE
Functional overview
FMAC features
3.10
•
16 x 16-bit multiplier
•
24+2-bit accumulator with addition and subtraction
•
16-bit input and output data
•
256 x 16-bit local memory
•
Up to three areas can be defined in memory for data buffers (two input, one output),
defined by programmable base address pointers and associated size registers
•
Input and output sample buffers can be circular
•
Buffer “watermark” feature reduces overhead in interrupt mode
•
Filter functions: FIR, IIR (direct form 1)
•
AHB slave interface
•
DMA read and write data channels
Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator with polynomial value and size.
Among other applications, the CRC-based techniques are used to verify data transmission
or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a mean to verify
the Flash memory integrity.
The CRC calculation unit helps to compute a signature of the software during runtime, which
can be ulteriorly compared with a reference signature generated at link-time and which can
be stored at a given memory location.
3.11
Power supply management
3.11.1
Power supply schemes
The STM32G491xC/xE devices require a 1.71 V to 3.6 V VDD operating voltage supply.
Several independent supplies, can be provided for specific peripherals:
•
VDD = 1.71 V to 3.6 V
VDD is the external power supply for the I/Os, the internal regulator and the system
analog such as reset, power management and internal clocks. It is provided externally
through the VDD pins.
•
•
VDDA = 1.62 V to 3.6 V (see Section 5: Electrical characteristics for the minimum VDDA
voltage required for ADC, DAC, COMP, OPAMP, VREFBUF operation).
VDDA is the external analog power supply for A/D converters, D/A converters, voltage
reference buffer, operational amplifiers and comparators. The VDDA voltage level is
independent from the VDD voltage and should preferably be connected to VDD when
these peripherals are not used.
VBAT = 1.55 V to 3.6 V
VBAT is the power supply for RTC, external clock 32 kHz oscillator and backup registers
(through power switch) when VDD is not present.
DS13122 Rev 3
21/199
44
Functional overview
•
STM32G491xC STM32G491xE
VREF-, VREF+
VREF+ is the input reference voltage for ADCs and DACs. It is also the output of the
internal voltage reference buffer when enabled.
When VDDA < 2 V VREF+ must be equal to VDDA.
When VDDA ≥ 2 V VREF+ must be between 2 V and VDDA.
The internal voltage reference buffer supports three output voltages, which are
configured with VRS bits in the VREFBUF_CSR register:
–
VREF+ = 2.048 V
–
VREF+ = 2.5 V
–
VREF+ = 2.9 V
VREF- is double bonded with VSSA.
3.11.2
Power supply supervisor
The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes
(except for Shutdown mode). The BOR ensures proper operation of the device after poweron and during power down. The device remains in reset mode when the monitored supply
voltage VDD is below a specified threshold, without the need for an external reset circuit.
The lowest BOR level is 1.71 V at power on, and other higher thresholds can be selected
through option bytes.The device features an embedded programmable voltage detector
(PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An
interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
In addition, the device embeds a peripheral voltage monitor which compares the
independent supply voltages VDDA, with a fixed threshold in order to ensure that the
peripheral is in its functional supply range.
3.11.3
Voltage regulator
Two embedded linear voltage regulators, main regulator (MR) and low-power regulator
(LPR), supply most of digital circuitry in the device. The MR is used in Run and Sleep
modes. The LPR is used in Low-power run, Low-power sleep and Stop modes. In Standby
and Shutdown modes, both regulators are powered down and their outputs set in highimpedance state, such as to bring their current consumption close to zero.
The device supports dynamic voltage scaling to optimize its power consumption in Run
mode. the voltage from the main regulator that supplies the logic (VCORE) can be adjusted
according to the system’s maximum operating frequency.
The main regulator (MR) operates in the following ranges:
22/199
•
Range 1 boost mode with the CPU running at up to 170 MHz.
•
Range 1 normal mode with CPU running at up to 150 MHz.
•
Range 2 with a maximum CPU frequency of 26 MHz.
DS13122 Rev 3
STM32G491xC STM32G491xE
3.11.4
Functional overview
Low-power modes
By default, the microcontroller is in Run mode after system or power Reset. It is up to the
user to select one of the low-power modes described below:
3.11.5
•
Sleep mode: In Sleep mode, only the CPU is stopped. All peripherals continue to
operate and can wake up the CPU when an interrupt/event occurs.
•
Low-power run mode: This mode is achieved with VCORE supplied by the low-power
regulator to minimize the regulator's operating current. The code can be executed from
SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with
independent clock can be clocked by HSI16.
•
Low-power sleep mode: This mode is entered from the low-power run mode. Only the
CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the
system reverts to the Low power run mode.
•
Stop mode: In Stop mode, the device achieves the lowest power consumption while
retaining the SRAM and register contents. All clocks in the VCORE domain are
stopped. The PLL, as well as the HSI16 RC oscillator and the HSE crystal oscillator are
disabled. The LSE or LSI keep running. The RTC can remain active (Stop mode with
RTC, Stop mode without RTC). Some peripherals with wakeup capability can enable
the HSI16 RC during Stop mode, so as to get clock for processing the wakeup event.
•
Standby mode: The Standby mode is used to achieve the lowest power consumption
with brown-out reset, BOR. The internal regulator is switched off to power down the
VCORE domain. The PLL, as well as the HSI16 RC oscillator and the HSE crystal
oscillator are also powered down. The RTC can remain active (Standby mode with
RTC, Standby mode without RTC). The BOR always remains active in Standby mode.
For each I/O, the software can determine whether a pull-up, a pull-down or no resistor
shall be applied to that I/O during Standby mode. Upon entering Standby mode, SRAM
and register contents are lost except for registers in the RTC domain and standby
circuitry. The device exits Standby mode upon external reset event (NRST pin), IWDG
reset event, wakeup event (WKUP pin, configurable rising or falling edge) or RTC
event (alarm, periodic wakeup, timestamp, tamper), or when a failure is detected on
LSE (CSS on LSE).
•
Shutdown mode: The Shutdown mode allows to achieve the lowest power
consumption. The internal regulator is switched off to power down the VCORE domain.
The PLL, as well as the HSI16 and LSI RC-oscillators and HSE crystal oscillator are
also powered down. The RTC can remain active (Shutdown mode with RTC, Shutdown
mode without RTC). The BOR is not available in Shutdown mode. No power voltage
monitoring is possible in this mode. Therefore, switching to RTC domain is not
supported. SRAM and register contents are lost except for registers in the RTC
domain. The device exits Shutdown mode upon external reset event (NRST pin),
IWDG reset event, wakeup event (WKUP pin, configurable rising or falling edge) or
RTC event (alarm, periodic wakeup, timestamp, tamper).
Reset mode
In order to improve the consumption under reset, the I/Os state under and after reset is
“analog state” (the I/O schmitt trigger is disabled). In addition, the internal reset pull-up is
deactivated when the reset source is internal.
DS13122 Rev 3
23/199
44
Functional overview
3.11.6
STM32G491xC STM32G491xE
VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
supercapacitor, or from VDD when there is no external battery and when an external
supercapacitor is present. The VBAT pin supplies the RTC with LSE and the backup
registers. Three anti-tamper detection pins are available in VBAT mode.
The VBAT operation is automatically activated when VDD is not present. An internal VBAT
battery charging circuit is embedded and can be activated when VDD is present.
Note:
24/199
When the microcontroller is supplied from VBAT, neither external interrupts nor RTC
alarm/events exit the microcontroller from the VBAT operation.
DS13122 Rev 3
STM32G491xC STM32G491xE
Interconnect matrix
Several peripherals have direct connections between them. This allows autonomous
communication between peripherals, saving CPU resources thus power supply
consumption. In addition, these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep and Stop
modes.
Sleep
Low-power run
Stop
Table 3. STM32G491xC/xE peripherals interconnect matrix
Run
3.12
Functional overview
TIMx
Timers synchronization or chaining
Y
Y
Y
-
ADCx
DACx
Conversion triggers
Y
Y
Y
-
DMA
Memory to memory transfer trigger
Y
Y
Y
-
COMPx
Comparator output blanking
Y
Y
Y
-
IRTIM
Infrared interface output generation
Y
Y
Y
-
TIM1, 8, 20
TIM2, 3, 4
Timer input channel, trigger, break
from analog signals comparison
Y
Y
Y
-
LPTIMER1
Low-power timer triggered by
analog signals comparison
Y
Y
Y
Y
TIM1, 8, 20
Timer triggered by analog watchdog
Y
Y
Y
-
TIM16
Timer input channel from RTC
events
Y
Y
Y
-
LPTIMER1
Low-power timer triggered by RTC
alarms or tampers
Y
Y
Y
Y
All clocks sources (internal
and external)
TIM15, 16, 17
Clock source used as input channel
for RC measurement and trimming
Y
Y
Y
-
USB
TIM2
Timer triggered by USB SOF
Y
Y
-
-
CSS
CPU (hard fault)
RAM (parity error)
Flash memory (ECC error)
COMPx
PVD
TIM1, 8, 20
Timer break
TIM15, 16, 17
Y
Y
Y
-
TIMx
External trigger
Y
Y
Y
-
LPTIMER1
External trigger
Y
Y
Y
-
ADCx
DACx
Conversion external trigger
Y
Y
Y
-
Interconnect source
TIMx
TIM16/TIM17
COMPx
ADCx
Interconnect
destination
RTC
GPIO
Interconnect action
DS13122 Rev 3
25/199
44
Functional overview
3.13
STM32G491xC STM32G491xE
Clocks and startup
The clock controller distributes the clocks coming from different oscillators to the core and
the peripherals. It also manages clock gating for low-power modes and ensures clock
robustness. It features:
•
Clock prescaler: to get the best trade-off between speed and current consumption,
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler
•
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
•
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
•
System clock source: three different sources can deliver SYSCLK system clock:
–
4 - 48 MHz high-speed oscillator with external crystal or ceramic resonator (HSE).
It can supply clock to system PLL. The HSE can also be configured in bypass
mode for an external clock.
–
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software. It can
supply clock to system PLL.
–
System PLL with maximum output frequency of 170 MHz. It can be fed with HSE
or HSI16 clocks.
•
RC48 with clock recovery system (HSI48): internal HSIRC48 MHz clock source can
be used to drive the USB or the RNG peripherals.
•
Auxiliary clock source: two ultra-low-power clock sources for the real-time clock
(RTC):
–
32.768 kHz low-speed oscillator with external crystal (LSE), supporting four drive
capability modes. The LSE can also be configured in bypass mode for using an
external clock.
–
32 kHz low-speed internal RC oscillator (LSI) with ±5% accuracy, also used to
clock an independent watchdog.
•
Peripheral clock sources: several peripherals (I2S, USART, I2C, LPTimer, ADC, SAI,
RNG) have their own clock independent of the system clock.
•
Clock security system (CSS): in the event of HSE clock failure, the system clock is
automatically switched to HSI16 and, if enabled, a software interrupt is generated. LSE
clock failure can also be detected and generate an interrupt.
•
Clock-out capability:
–
MCO: microcontroller clock output: it outputs one of the internal clocks for external
use by the application
–
LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes.
Several prescalers allow to configure the AHB frequency, the High-speed APB (APB2) and
the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB
domains is 170 MHz.
26/199
DS13122 Rev 3
STM32G491xC STM32G491xE
3.14
Functional overview
General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be
achieved thanks to their mapping on the AHB2 bus.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
3.15
Direct memory access controller (DMA)
The device embeds 2 DMAs. Refer to Table 4: DMA implementation for the features
implementation.
Direct memory access (DMA) is used in order to provide a high-speed data transfer
between peripherals and memory as well as from memory to memory. Data can be quickly
moved by DMA without any CPU actions. This keeps the CPU resources free for other
operations.
The two DMA controllers have 16 channels in total, each one dedicated to manage memory
access requests from one or more peripherals. Each controller has an arbiter for handling
the priority between DMA requests.
The DMA supports:
•
16 independently configurable channels (requests)
–
Each channel is connected to a dedicated hardware DMA request, a software
trigger is also supported on each channel. This configuration is done by software.
•
Priorities between requests from channels of one DMA are both software
programmable (4 levels: very high, high, medium, low) or hardware programmable in
case of equality (request 1 has priority over request 2, etc.)
•
Independent source and destination transfer size (byte, half word, word), emulating
packing and unpacking. Source/destination addresses must be aligned on the data
size.
•
Support for circular buffer management
•
3 event flags (DMA half transfer, DMA transfer complete and DMA transfer error)
logically ORed together in a single interrupt request for each channel
•
Memory-to-memory transfer
•
Peripheral-to-memory, memory-to-peripheral, and peripheral-to-peripheral transfers
•
Access to Flash, SRAM, APB and AHB peripherals as source and destination
•
Programmable number of data to be transferred: up to 65536.
Table 4. DMA implementation
DMA features
DMA1
DMA2
Number of regular channels
8
8
DS13122 Rev 3
27/199
44
Functional overview
3.16
STM32G491xC STM32G491xE
DMA request router (DMAMUX)
When a peripheral indicates a request for DMA transfer by setting its DMA request line, the
DMA request is pending until it is served and the corresponding DMA request line is reset.
The DMA request router allows to route the DMA control lines between the peripherals and
the DMA controllers of the product.
An embedded multi-channel DMA request generator can be considered as one of such
peripherals. The routing function is ensured by a multi-channel DMA request line
multiplexer. Each channel selects a unique set of DMA control lines, unconditionally or
synchronously with events on synchronization inputs.
For simplicity, the functional description is limited to DMA request lines. The other DMA
control lines are not shown in figures or described in the text. The DMA request generator
produces DMA requests following events on DMA request trigger inputs.
3.17
Interrupts and events
3.17.1
Nested vectored interrupt controller (NVIC)
The STM32G491xC/xE devices embed a nested vectored interrupt controller which is able
to manage 16 priority levels, and to handle up to 71 maskable interrupt channels plus the 16
interrupt lines of the Cortex®-M4.
The NVIC benefits are the following:
•
Closely coupled NVIC gives low latency interrupt processing
•
Interrupt entry vector table address passed directly to the core
•
Allows early processing of interrupts
•
Processing of late arriving higher priority interrupts
•
Support for tail chaining
•
Processor state automatically saved
•
Interrupt entry restored on interrupt exit with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal
interrupt latency.
3.17.2
Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 40 edge detector lines used to generate
interrupt/event requests and to wake-up the system from the Stop mode. Each external line
can be independently configured to select the trigger event (rising edge, falling edge, both)
and can be masked independently.
A pending register maintains the status of the interrupt requests. The internal lines are
connected to peripherals with wakeup from Stop mode capability. The EXTI can detect an
external line with a pulse width shorter than the internal clock period. Up to 86 GPIOs can
be connected to the 16 external interrupt lines.
28/199
DS13122 Rev 3
STM32G491xC STM32G491xE
3.18
Functional overview
Analog-to-digital converter (ADC)
The device embeds three successive approximation analog-to-digital converters with the
following features:
•
12-bit native resolution, with built-in calibration
•
4 Msps maximum conversion rate with full resolution
Down to 41.67 ns sampling time
–
Increased conversion rate for lower resolution (up to 6.66 Msps for 6-bit
resolution)
•
One external reference pin is available on all packages, allowing the input voltage
range to be independent from the power supply
•
Single-ended and differential mode inputs
•
Low-power design
•
3.18.1
–
–
Capable of low-current operation at low conversion rate (consumption decreases
linearly with speed)
–
Dual clock domain architecture: ADC speed independent from CPU frequency
Highly versatile digital interface
–
Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups
of analog signals conversions can be programmed to differentiate background and
high-priority real-time conversions
–
Each ADC support multiple trigger inputs for synchronization with on-chip timers
and external signals
–
Results stored into a data register or in RAM with DMA controller support
–
Data pre-processing: left/right alignment and per channel offset compensation
–
Built-in oversampling unit for enhanced SNR
–
Channel-wise programmable sampling time
–
Analog watchdog for automatic voltage monitoring, generating interrupts and
trigger for selected timers
–
Hardware assistant to prepare the context of the injected channels to allow fast
context switching
–
Flexible sample time control
–
Hardware gain and offset compensation
Temperature sensor
The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature.
The temperature sensor is internally connected to the ADC1_IN16 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
DS13122 Rev 3
29/199
44
Functional overview
STM32G491xC STM32G491xE
Table 5. Temperature sensor calibration values
3.18.2
Calibration value name
Description
Memory address
TS_CAL1
TS ADC raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75A8 - 0x1FFF 75A9
TS_CAL2
TS ADC raw data acquired at a
temperature of 130 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75CA - 0x1FFF 75CB
Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for
the ADC and the comparators. The VREFINT is internally connected to the ADC1_IN18 and
ADC3_IN18 input channel. The precise voltage of VREFINT is individually measured for
each part by ST during production test and stored in the system memory area. It is
accessible in read-only mode.
Table 6. Internal voltage reference calibration values
3.18.3
Calibration value name
Description
Memory address
VREFINT
Raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75AA - 0x1FFF 75AB
VBAT battery voltage monitoring
This embedded hardware enables the application to measure the VBAT battery voltage using
the internal ADC1_IN17 channel. As the VBAT voltage may be higher than the VDDA, and
thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by
3. As a consequence, the converted digital value is one third of the VBAT voltage.
3.18.4
Operational amplifier internal output (OPAMPxINT):
The OPAMPx (x = 1,2,3,6) output OPAMPxINT can be sampled using an ADCx (x = 1,2,3)
internal input channel. In this case, the I/O on which the OPAMPx output is mapped can be
used as GPIO.
3.19
Digital to analog converter (DAC)
Four 12 bit DAC channels (2 external buffered and 2 internal unbuffered) can be used to
convert digital signals into analog voltage signal outputs. The chosen design structure is
composed of integrated resistor strings and an amplifier in inverting configuration.
30/199
DS13122 Rev 3
STM32G491xC STM32G491xE
Functional overview
This digital interface supports the following features:
•
Up to two DAC output channels
•
8-bit or 12-bit output mode
•
Buffer offset calibration (factory and user trimming)
•
Left or right data alignment in 12-bit mode
•
Synchronized update capability
•
Noise-wave generation
•
Triangular-wave generation
•
Saw tooth wave generation
•
Dual DAC channel independent or simultaneous conversions
•
DMA capability for each channel
•
External triggers for conversion
•
Sample and hold low-power mode, with internal or external capacitor
•
Up to 1 Msps for external output and 15 Msps for internal output
The DAC channels are triggered through the timer update outputs that are also connected
to different DMA channels.
3.20
Voltage reference buffer (VREFBUF)
The STM32G491xC/xE devices embed a voltage reference buffer which can be used as
voltage reference for ADC, DACs and also as voltage reference for external components
through the VREF+ pin.
The internal voltage reference buffer supports three voltages:
•
2.048 V
•
2.5 V
•
2.9 V
An external voltage reference can be provided through the VREF+ pin when the internal
voltage reference buffer is off.
The VREF+ pin is double-bonded with VDDA on some packages. In these packages the
internal voltage reference buffer is not available.
Figure 3. Voltage reference buffer
VREFBUF
VDDA
Bandgap
+
DAC, ADC
VREF+
Low frequency
cut-off capacitor
100 nF
MSv40197V1
DS13122 Rev 3
31/199
44
Functional overview
3.21
STM32G491xC STM32G491xE
Comparators (COMP)
The STM32G491xC/xE devices embed four rail-to-rail comparators with programmable
reference voltage (internal or external), hysteresis.
The reference voltage can be one of the following:
•
External I/O
•
DAC output channels
•
Internal reference voltage or submultiple (1/4, 1/2, 3/4).
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers.
3.22
Operational amplifier (OPAMP)
The STM32G491xC/xE devices embed four operational amplifiers (OPAMP1, OPAMP2,
OPAMP3, OPAMP6) with external or internal follower routing and PGA capability.
The operational amplifier features:
3.23
•
13 MHz bandwidth
•
Rail-to-rail input/output
•
PGA with a non-inverting gain ranging of 2, 4, 8, 16, 32 or 64 or inverting gain ranging
of -1, -3, -7, -15, -31 or -63
Random number generator (RNG)
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated
analog circuit.
3.24
Timers and watchdogs
The STM32G491xC/xE devices include three advanced motor control timers, up to six
general-purpose timers, two basic timers, one low-power timer, two watchdog timers and a
SysTick timer. The table below compares the features of the advanced motor control,
general purpose and basic timers.
Table 7. Timer feature comparison
DMA
request
generation
Capture/
compare
channels
Complementary
outputs
Up,
Any integer
down, between 1 and
Up/down
65536
Yes
4
4
32-bit
Up,
Any integer
down, between 1 and
Up/down
65536
Yes
4
No
16-bit
Up,
Any integer
down, between 1 and
Up/down
65536
Yes
4
No
Timer type
Timer
Counter
resolution
Advanced
motor
control
TIM1, TIM8,
TIM20
16-bit
Generalpurpose
TIM2
Generalpurpose
TIM3, TIM4
32/199
Counter
type
Prescaler
factor
DS13122 Rev 3
STM32G491xC STM32G491xE
Functional overview
Table 7. Timer feature comparison (continued)
Timer type
Timer
Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
outputs
Generalpurpose
TIM15
16-bit
Up
Any integer
between 1 and
65536
Yes
2
1
Generalpurpose
TIM16, TIM17
16-bit
Up
Any integer
between 1 and
65536
Yes
1
1
Basic
TIM6, TIM7
16-bit
Up
Any integer
between 1 and
65536
Yes
0
No
3.24.1
Advanced motor control timer (TIM1, TIM8, TIM20)
The advanced motor control timers can each be seen as a four-phase
PWM multiplexed on 8 channels. They have complementary PWM outputs with
programmable inserted dead-times. They can also be seen as complete general-purpose
timers.
The 4 independent channels can be used for:
•
Input capture
•
Output compare
•
PWM generation (edge or center-aligned modes) with full modulation capability
(0-100%)
•
One-pulse mode output
In debug mode, the advanced motor control timer counter can be frozen and the PWM
outputs disabled in order to turn off any power switches driven by these outputs.
Many features are shared with the general-purpose TIMx timers (described in
Section 3.24.2) using the same architecture, so the advanced motor control timers can work
together with the TIMx timers via the Timer Link feature for synchronization or event
chaining.
DS13122 Rev 3
33/199
44
Functional overview
3.24.2
STM32G491xC STM32G491xE
General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16,
TIM17)
There are up to six synchronizable general-purpose timers embedded in the
STM32G491xC/xE devices (see Table 7 for differences). Each general-purpose timer can
be used to generate PWM outputs, or act as a simple time base.
•
TIM2, TIM3, and TIM4
They are full-featured general-purpose timers:
–
TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler
–
TIM3 and TIM4 have 16-bit auto-reload up/downcounter and 16-bit prescaler.
These timers feature 4 independent channels for input capture/output compare, PWM
or one-pulse mode output. They can work together, or with the other general-purpose
timers via the Timer Link feature for synchronization or event chaining.
The counters can be frozen in debug mode.
All have independent DMA request generation and support quadrature encoders.
•
TIM15, 16 and 17
They are general-purpose timers with mid-range features:
They have 16-bit auto-reload upcounters and 16-bit prescalers.
–
TIM15 has 2 channels and 1 complementary channel
–
TIM16 and TIM17 have 1 channel and 1 complementary channel
All channels can be used for input capture/output compare, PWM or one-pulse mode
output.
The timers can work together via the Timer Link feature for synchronization or event
chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.
3.24.3
Basic timers (TIM6 and TIM7)
The basic timers are mainly used for DAC trigger generation. They can also be used as
generic 16-bit timebases.
34/199
DS13122 Rev 3
STM32G491xC STM32G491xE
3.24.4
Functional overview
Low-power timer (LPTIM1)
The devices embed a low-power timer. This timer has an independent clock and are running
in Stop mode if it is clocked by LSE, LSI or an external clock. It is able to wakeup the system
from Stop mode.
LPTIM1 is active in Stop mode.
This low-power timer supports the following features:
3.24.5
•
16-bit up counter with 16-bit autoreload register
•
16-bit compare register
•
Configurable output: pulse, PWM
•
Continuous/ one shot mode
•
Selectable software/hardware input trigger
•
Selectable clock source
–
Internal clock sources: LSE, LSI, HSI16 or APB clock
–
External clock source over LPTIM input (working even with no internal clock
source running, used by pulse counter application).
•
Programmable digital glitch filter
•
Encoder mode
Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and an 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC (LSI) and as it operates independently
from the main clock, it can operate in Stop and Standby modes. It can be used either as a
watchdog to reset the device when a problem occurs, or as a free running timer for
application timeout management. It is hardware or software configurable through the option
bytes. The counter can be frozen in debug mode.
3.24.6
System window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.24.7
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
•
A 24-bit down counter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0.
•
Programmable clock source
DS13122 Rev 3
35/199
44
Functional overview
3.25
STM32G491xC STM32G491xE
Real-time clock (RTC) and backup registers
The RTC supports the following features:
•
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
•
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
•
Two programmable alarms.
•
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
•
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
•
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy.
•
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to
VBAT mode.
•
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable
resolution and period.
The RTC is supplied through a switch that takes power either from the VDD supply when
present or from the VBAT pin.
The RTC clock sources can be:
•
A 32.768 kHz external crystal (LSE)
•
An external resonator or oscillator (LSE)
•
The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
•
The high-speed external clock (HSE) divided by 32.
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the
LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in
all low-power modes except Shutdown mode.
All RTC events (Alarm, WakeUp Timer, Timestamp) can generate an interrupt and wakeup
the device from the low-power modes.
3.26
36/199
Tamper and backup registers (TAMP)
•
32 32-bit backup registers, retained in all low-power modes and also in VBAT mode.
They can be used to store sensitive data as their content is protected by an tamper
detection circuit. They are not reset by a system or power reset, or when the device
wakes up from Standby or Shutdown mode.
•
Up to three tamper pins for external tamper detection events. The external tamper pins
can be configured for edge detection, edge and level, level detection with filtering.
•
Five internal tampers events.
•
Any tamper detection can generate a RTC timestamp event.
•
Any tamper detection erases the backup registers.
•
Any tamper detection can generate an interrupt and wake-up the device from all lowpower modes.
DS13122 Rev 3
STM32G491xC STM32G491xE
3.27
Functional overview
Infrared transmitter
The STM32G491xC/xE devices provide an infrared transmitter solution. The solution is
based on internal connections between TIM16 and TIM17 as shown in the figure below.
TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be
sent. The infrared output signal is available on PB9 or PA13.
To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must
be properly configured to generate correct waveforms. All standard IR pulse modulation
modes can be obtained by programming the two timers output compare channels.
Figure 4. Infrared transmitter
TIM17_CH1
IRTIM
IR_OUT
TIM16_CH1
MS30474V2
DS13122 Rev 3
37/199
44
Functional overview
3.28
STM32G491xC STM32G491xE
Inter-integrated circuit interface (I2C)
The device embeds three I2Cs. Refer to Table 8: I2C implementation for the features
implementation.
The I2C bus interface handles communications between the microcontroller and the serial
I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
•
•
I2C-bus specification and user manual rev. 5 compatibility:
–
Slave and master modes, multimaster capability
–
Standard-mode (Sm), with a bitrate up to 100 kbit/s
–
Fast-mode (Fm), with a bitrate up to 400 kbit/s
–
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
–
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
–
Programmable setup and hold times
–
Optional clock stretching
System management bus (SMBus) specification rev 2.0 compatibility:
–
Hardware PEC (packet error checking) generation and verification with ACK
control
–
Address resolution protocol (ARP) support
–
SMBus alert
•
Power system management protocol (PMBusTM) specification rev 1.1 compatibility
•
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming.
•
Wakeup from Stop mode on address match
•
Programmable analog and digital noise filters
•
1-byte buffer with DMA capability
Table 8. I2C implementation
I2C features(1)
I2C1
I2C2
I2C3
Standard-mode (up to 100 kbit/s)
X
X
X
Fast-mode (up to 400 kbit/s)
X
X
X
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)
X
X
X
Programmable analog and digital noise filters
X
X
X
SMBus/PMBus hardware support
X
X
X
Independent clock
X
X
X
Wakeup from Stop mode on address match
X
X
X
1. X: supported
38/199
DS13122 Rev 3
STM32G491xC STM32G491xE
3.29
Functional overview
Universal synchronous/asynchronous receiver transmitter
(USART)
The STM32G491xC/xE devices have three embedded universal synchronous receiver
transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver
transmitters (UART4, UART5).
These interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN master/slave capability. They provide hardware management of the CTS and RTS
signals, and RS485 driver enable.
The USART1, USART2 and USART3 also provide a Smartcard mode (ISO 7816 compliant)
and an SPI-like communication capability.
The USART comes with a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO
mode is enabled by software and is disabled by default.
All USART have a clock domain independent from the CPU clock, allowing the USARTx
(x=1,2,3,4,5) to wake up the MCU from Stop mode. The wakeup from Stop mode can be
done on:
•
Start bit detection
•
Any received data frame
•
A specific programmed data frame
•
Some specific TXFIFO/RXFIFO status interrupts when FIFO mode is enabled
All USART interfaces can be served by the DMA controller.
Table 9. USART/UART/LPUART features
USART modes/features(1)
USART1 USART2 USART3
UART4
UART5
LPUART1
Hardware flow control for modem
X
X
X
X
X
X
Continuous communication using DMA
X
X
X
X
X
X
Multiprocessor communication
X
X
X
X
X
X
Synchronous mode
X
X
X
-
-
-
Smartcard mode
X
X
X
-
-
-
Single-wire half-duplex communication
X
X
X
X
X
X
IrDA SIR ENDEC block
X
X
X
X
X
-
LIN mode
X
X
X
X
X
-
Dual clock domain
X
X
X
X
X
X
Wakeup from Stop mode
X
X
X
X
X
X
Receiver timeout interrupt
X
X
X
X
X
-
Modbus communication
X
X
X
X
X
-
Auto baud rate detection
Driver Enable
X (4 modes)
X
X
LPUART/USART data length
X
X
X
X
7, 8 and 9 bits
DS13122 Rev 3
39/199
44
Functional overview
STM32G491xC STM32G491xE
Table 9. USART/UART/LPUART features (continued)
USART modes/features(1)
USART1 USART2 USART3
UART4
Tx/Rx FIFO
X
Tx/Rx FIFO size
8
UART5
LPUART1
1. X = supported.
3.30
Low-power universal asynchronous receiver transmitter
(LPUART)
The STM32G491xC/xE devices embed one Low-Power UART. The LPUART supports
asynchronous serial communication with minimum power consumption. It supports halfduplex single-wire communication and modem operations (CTS/RTS). It allows
multiprocessor communication.
The LPUART comes with a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO
mode is enabled by software and is disabled by default. It has a clock domain independent
from the CPU clock, and can wakeup the system from Stop mode. The wake up from Stop
mode can be done on:
•
Start bit detection
•
Any received data frame
•
A specific programmed data frame
•
Some specific TXFIFO/RXFIFO status interrupts when FIFO mode is enabled
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600
baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while
having an extremely low energy consumption. Higher speed clock can be used to reach
higher baudrates.
The LPUART interface can be served by the DMA controller.
3.31
Serial peripheral interface (SPI)
Three SPI interfaces allow communication up to 75 Mbits/s in master and up to 41 Mbits/s in
slave, half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI interfaces
support NSS pulse mode, TI mode and hardware CRC calculation.
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) supporting four different audio
standards can operate as master or slave at half-duplex communication modes. They can
be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and
synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can
be set by 8-bit programmable linear prescaler. When operating in master mode it can output
a clock for an external audio component at 256 times the sampling frequency.
All SPI interfaces can be served by the DMA controller.
40/199
DS13122 Rev 3
STM32G491xC STM32G491xE
3.32
Functional overview
Serial audio interfaces (SAI)
The device embeds 1 SAI. The SAI bus interface handles communications between the
microcontroller and the serial audio protocol.
3.32.1
SAI peripheral supports
•
Two independent audio sub-blocks which can be transmitters or receivers with their
respective FIFO.
•
8-word integrated FIFOs for each audio sub-block.
•
Synchronous or asynchronous mode between the audio sub-blocks.
•
Master or slave configuration independent for both audio sub-blocks.
•
Clock generator for each audio block to target independent audio frequency sampling
when both audio sub-blocks are configured in master mode.
•
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.
•
Peripheral with large configurability and flexibility allowing to target as example the
following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF
out.
•
Up to 16 slots available with configurable size and with the possibility to select which
ones are active in the audio frame.
•
Number of bits by frame may be configurable.
•
Frame synchronization active level configurable (offset, bit length, level).
•
First active bit position in the slot is configurable.
•
LSB first or MSB first for data transfer.
•
Mute mode.
•
Stereo/Mono audio frame capability.
•
Communication clock strobing edge configurable (SCK).
•
Error flags with associated interrupts if enabled respectively.
•
•
–
Overrun and underrun detection.
–
Anticipated frame synchronization signal detection in slave mode.
–
Late frame synchronization signal detection in slave mode.
–
Codec not ready for the AC’97 mode in reception.
Interruption sources when enabled:
–
Errors.
–
FIFO requests.
DMA interface with 2 dedicated channels to handle access to the dedicated integrated
FIFO of each SAI audio sub-block.
Table 10. SAI features implementation
SAI features
Support(1)
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97
X
Mute mode
X
Stereo/Mono audio frame capability
X
16 slots
X
DS13122 Rev 3
41/199
44
Functional overview
STM32G491xC STM32G491xE
Table 10. SAI features implementation (continued)
SAI features
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit
FIFO size
Support(1)
X
X (8 word)
SPDIF
X
1. X: supported.
3.33
Controller area network (FDCAN1, FDCAN2)
The controller area network (CAN) subsystem consists of two CAN modules and message
RAM memory.
The two CAN modules (FDCAN1, and FDCAN2) are compliant with ISO 11898-1 (CAN
protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0.
A 2-Kbyte message RAM memory implements filters, receive FIFOs, receive buffers,
transmit event FIFOs, transmit buffers.
3.34
Universal serial bus (USB)
The STM32G491xC/xE devices embed a full-speed USB device peripheral compliant with
the USB specification version 2.0. The internal USB PHY supports USB FS signaling,
embedded DP pull-up and also battery charging detection according to Battery Charging
Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function
interface with added support for USB 2.0 Link Power Management. It has softwareconfigurable endpoint setting with packet memory up-to 1 Kbyte and suspend/resume
support. It requires a precise 48 MHz clock which can be generated from the internal main
PLL (the clock source must use a HSE crystal oscillator) or by the internal 48 MHz oscillator
in automatic trimming mode. The synchronization for this oscillator can be taken from the
USB data stream itself (SOF signalization) which allows crystal less operation.
3.35
USB Type-C™ / USB Power Delivery controller (UCPD)
The device embeds one controller (UCPD) compliant with USB Type-C Rev. 1.2 and USB
Power Delivery Rev. 3.0 specifications.
The controller uses specific I/Os supporting the USB Type-C and USB Power Delivery
requirements, featuring:
42/199
•
USB Type-C pull-up (Rp, all values) and pull-down (Rd) resistors
•
“Dead battery” support
•
USB Power Delivery message transmission and reception
•
FRS (fast role swap) support
DS13122 Rev 3
STM32G491xC STM32G491xE
Functional overview
The digital controller handles notably:
•
USB Type-C level detection with de-bounce, generating interrupts
•
FRS detection, generating an interrupt
•
Byte-level interface for USB Power Delivery payload, generating interrupts (DMA
compatible)
•
USB Power Delivery timing dividers (including a clock pre-scaler)
•
CRC generation/checking
•
4b5b encode/decode
•
Ordered sets (with a programmable ordered set mask at receive)
•
Frequency recovery in receiver during preamble
The interface offers low-power operation compatible with Stop mode, maintaining the
capacity to detect incoming USB Power Delivery messages and FRS signaling.
3.36
Clock recovery system (CRS)
The devices embed a special block which allows automatic trimming of the internal 48 MHz
oscillator to guarantee its optimal accuracy over the whole device operational range. This
automatic trimming is based on the external synchronization signal, which could be either
derived from USB SOF signalization, from LSE oscillator, from an external signal on
CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also
possible to combine automatic trimming with manual trimming action.
3.37
Quad-SPI memory interface (QUADSPI)
The Quad-SPI is a specialized communication interface targeting single, dual or quad SPI
Flash memories. It can operate in any of the three following modes:
•
Indirect mode: all the operations are performed using the QUADSPI registers
•
Status polling mode: the external Flash status register is periodically read and an
interrupt can be generated in case of flag setting
•
Memory-mapped mode: the external Flash is memory mapped and is seen by the
system as if it were an internal memory.
Both throughput and capacity can be increased two-fold using dual-flash mode, where two
quad SPI Flash memories are accessed simultaneously.
DS13122 Rev 3
43/199
44
Functional overview
STM32G491xC STM32G491xE
The Quad-SPI interface supports:
•
Indirect mode: all the operations are performed using the QUADSPI registers
•
Status polling mode: the external Flash status register is periodically read and an
interrupt can be generated in case of flag setting
•
Memory-mapped mode: the external Flash is memory mapped and is seen by the
system as if it were an internal memory
•
Three functional modes: indirect, status-polling, and memory-mapped
•
SDR and DDR support
•
Fully programmable opcode for both indirect and memory mapped mode
•
Fully programmable frame format for both indirect and memory mapped mode
–
Each of the 5 following phases can be configured independently (enable, length,
single/dual/quad communication)
–
Instruction phase
–
Address phase
–
Alternate bytes phase
–
Dummy cycles phase
–
Data phase
•
Integrated FIFO for reception and transmission
•
8, 16, and 32-bit data accesses are allowed
•
DMA channel for indirect mode operations
•
Programmable masking for external Flash flag management
•
Timeout management
•
Interrupt generation on FIFO threshold, timeout, status match, operation complete, and
access error
3.38
Development support
3.38.1
Serial wire JTAG debug port (SWJ-DP)
The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
3.38.2
Embedded trace macrocell™
The Arm embedded trace macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32G491xC/xE devices through a small number of ETM pins to an external hardware
trace port analyzer (TPA) device. Real-time instruction and data flow activity be recorded
and then formatted for display on the host computer that runs the debugger software. TPA
hardware is commercially available from common development tool vendors.
The Embedded trace macrocell operates with third party debugger software tools.
44/199
DS13122 Rev 3
STM32G491xC STM32G491xE
Pinouts and pin description
4
Pinouts and pin description
4.1
UFQFPN32 pinout description
PB3
PA15
PB5
PB4
PB7
PB6
VSS
PB8-BOOT0
Figure 5. STM32G491xC/xE UFQFPN32 pinout
VDD
1
32 31 30 29 28 27 26 25
24
PA14
PF0-OSC_IN
2
23
PA13
PF1-OSC_OUT
3
22
PA12
PG10-NRST
4
21
PA11
PA0
5
20
PA10
PA1
6
19
PA9
PA2
7
18
PA8
PA3
8
17
VDD
VSS
VDDA
PB0
VSSA
PA5
PA7
10 11 12 13 14 15 16
PA6
9
PA4
UFQFPN32
MSv47174V3
1. The above figure shows the package top view.
DS13122 Rev 3
45/199
68
Pinouts and pin description
4.2
STM32G491xC STM32G491xE
UFQFPN48 pinout description
VDD
PB9
PB8-BOOT0
PB7
PB6
PB5
PB4
PB3
PC11
PC10
PA15
PA14
48
47
46
45
44
43
42
41
40
39
38
37
Figure 6. STM32G491xC/xE UFQFPN48 pinout
VBAT
1
36
PA13
PC13
2
35
VDD
PC14-OSC32_IN
3
34
PA12
PC15-OSC32_OUT
4
33
PA11
PF0-OSC_IN
5
32
PA10
PF1-OSC_OUT
6
31
PA9
PG10-NRST
7
30
PA8
PA0
8
29
PC6
PA1
9
28
PB15
PA2
10
27
PB14
PA3
11
26
PB13
PA4
12
25
PB12
UFQFPN48
24
VSS
PB11
23
VDD
22
PB10
21
VDDA
20
VREF+
19
PB2
18
PB1
17
PB0
16
PC4
15
PA7
14
PA6
PA5
13
Exposed pad
MSv47172V1
1. The above figure shows the package top view.
2. VSS pads are connected to the exposed pad.
4.3
LQFP48 pinout description
VDD
VSS
PB9
PB8-BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
PA13
48
47
46
45
44
43
42
41
40
39
38
37
Figure 7. STM32G491xC/xE LQFP48 pinout
VBAT
1
36
VDD
PC13
2
35
VSS
PC14 - OSC32_IN
3
34
PA12
PC15 - OSC32_OUT
4
33
PA11
PF0 - OSC_IN
5
32
PA10
PF1 - OSC_OUT
6
31
PA9
PG10 - NRST
7
30
PA8
PA0
8
29
PB15
PA1
9
28
PB14
PA2
10
27
PB13
PA3
11
26
PB12
PA4
12
25
PB11
13
14
15
16
17
18
19
20
21
22
23
24
PA5
PA6
PA7
PB0
PB1
PB2
VSSA
VREF+
VDDA
PB10
VSS
VDD
LQFP48
1. The above figure shows the package top view.
46/199
DS13122 Rev 3
MSv42659V2
STM32G491xC STM32G491xE
4.4
Pinouts and pin description
WLCSP64 ballout description
Figure 8. STM32G491xC/xE WLCSP64 ballout
1
2
3
4
5
6
7
8
A
VDD
PC11
PC12
PD2
PB5
PB7
PB9
VDD
B
PA12
VSS
PC10
PA15
PB6
PB8BOOT0
VSS
VBAT
C
PA11
PA10
PA13
PA14
PB4
PC13
PC1
PC14OSC32
_IN
D
PA9
PA8
PC9
PB3
PA2
PC2
PG10
-NRST
PC15OSC32
_OUT
E
PC7
PC8
PC6
PA5
PA4
PC3
PF1OSC_OUT
PF0OSC_IN
F
PB15
PB14
PB0
PC5
PA7
PA3
PA1
PC0
G
PB13
VSS
PB12
PB2
VSSA
PC4
VSS
PA0
H
VDD
PB10
PB11
VDDA
VREF+
PB1
PA6
VDD
MSv63424V1
1. The above figure shows the package top view.
LQFP64 pinout description
VDD
VSS
PB9
PB8-BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
PA13
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
Figure 9. STM32G491xC/xE LQFP64 pinout
VBAT
1
48
VDD
PC13
2
47
VSS
PC14-OSC32_IN
3
46
PA12
PC15-OSC32_OUT
4
45
PA11
PF0-OSC_IN
5
44
PA10
PF1-OSC_OUT
6
43
PA9
PG10-NRST
7
42
PA8
PC0
8
41
PC9
PC1
9
40
PC8
PC2
10
39
PC7
PC3
11
38
PC6
PA0
12
37
PB15
PA1
13
36
PB14
PA2
14
35
PB13
VSS
15
34
PB12
VDD
16
33
PB11
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
VSSA
VREF+
VDDA
PB10
VSS
VDD
LQFP64
PA3
4.5
MSv42658V2
1. The above figure shows the package top view.
DS13122 Rev 3
47/199
68
Pinouts and pin description
4.6
STM32G491xC STM32G491xE
UFBGA64 ballout description
Figure 10. STM32G491xC/xE UFBGA64 ballout
1
2
3
4
5
6
7
8
A
VDD
PB9
PB7
PB6
PB3
PC12
PA15
VDD
B
PC13
VSS
PB8-BOOT0
PB5
PD2
PC11
VSS
PA12
C
PC14OSC32_IN
VBAT
PC1
PB4
PC10
PA14
PA13
PA11
D
PC15OSC32_OUT
PG10-NRST
PC2
PA4
PC4
PA10
PA9
PC9
E
PF0-OSC_IN
PC0
PA1
PA5
PB0
PA8
PC7
PC6
F
PF1-OSC_OUT
PA0
PA2
PC5
PB1
PC8
PB15
PB14
PA6
VSSA
VREF+
PB13
VSS
PB12
PA7
PB2
VDDA
PB10
PB11
VDD
G
PC3
VSS
H
VDD
PA3
MSv47177V3
1. The above figure shows the package top view.
48/199
DS13122 Rev 3
STM32G491xC STM32G491xE
LQFP80 pinout description
VDD
VSS
PB9
PB8-BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
PA13
VDD
VSS
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
Figure 11. STM32G491xC/xE LQFP80 pinout
VBAT
1
60
PA12
PC13
2
59
PA11
PC14-OSC32_IN
3
58
PA10
PC15-OSC32_OUT
4
57
PA9
PF0-OSC_IN
5
56
PA8
PF1-OSC_OUT
6
55
PC9
PG10-NRST
7
54
PC8
PC0
8
53
PC7
PC1
9
52
PC6
PC2
10
51
VDD
PC3
11
50
VSS
PA0
12
49
PD10
PA1
13
48
PD9
PA2
14
47
PD8
VSS
15
46
PB15
VDD
16
45
PB14
PA3
17
44
PB13
PA4
18
43
PB12
PA5
19
42
PB11
PA6
20
41
VDD
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
PA7
PC5
PB0
PB1
PB2
VSSA
VREF+
VDDA
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
VSS
LQFP80
PC4
4.7
Pinouts and pin description
MSv60826V1
1. The above figure shows the package top view.
DS13122 Rev 3
49/199
68
Pinouts and pin description
4.8
STM32G491xC STM32G491xE
LQFP100 pinout description
VDD
VSS
PE1
PE0
PB9
PB8-BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
PA13
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
Figure 12. STM32G491xC/xE LQFP100 pinout
PE2
1
75
VDD
PE3
2
74
VSS
PE4
3
73
PA12
PE5
4
72
PA11
PE6
5
71
PA10
VBAT
6
70
PA9
PC13
7
69
PA8
PC14-OSC32_IN
8
68
PC9
PC15-OSC32_OUT
9
67
PC8
PF9
10
66
PC7
PF10
11
65
PC6
PF0-OSC_IN
12
64
VDD
PF1-OSC_OUT
13
63
VSS
PG10-NRST
14
62
PD15
PC0
15
61
PD14
PC1
16
60
PD13
PC2
17
59
PD12
PC3
18
58
PD11
PF2
19
57
PD10
PA0
20
56
PD9
PA1
21
55
PD8
PA2
22
54
PB15
VSS
23
53
PB14
VDD
24
52
PB13
PA3
25
51
PB12
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
VSSA
VREF+
VDDA
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
VSS
VDD
PB11
LQFP100
1. The above figure shows the package top view.
50/199
DS13122 Rev 3
MSv42661V3
STM32G491xC STM32G491xE
4.9
Pinouts and pin description
Pin definition
Table 11. Legend/abbreviations used in the pinout table
Name
Pin name
Pin type
Abbreviation
Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
TT
3.6 V tolerant I/O
B
Dedicated BOOT0 pin
NRST
I/O structure
Pin functions
Bidirectional reset pin with embedded weak pull-up resistor
Option for TT or FT I/Os
_a
I/O, with Analog switch function supplied by VDDA
_c
I/O, USB Type-C PD capable
_d
I/O, USB Type-C PD Dead Battery function
_f
I/O, Fm+ capable
_u
Notes
Definition
(1)
I/O, with USB function
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate
functions
Functions selected through GPIOx_AFR registers
Additional
functions
Functions directly selected/enabled through peripheral registers
1. The related I/O structures in are FT_u.
DS13122 Rev 3
51/199
68
Pinouts and pin description
STM32G491xC STM32G491xE
Table 12. STM32G491xC/xE pin definition(1)
-
-
-
-
-
1
I/O
PE2
I/O structure
Pin type
LQFP100
LQFP80
UFBGA64
LQFP64
WLCSP64
-
Pin name
(function
after reset)
FT
Notes
-
LQFP48
UFQFPN48
UFQFPN32
Pin Number
Alternate functions
Additional
functions
-
TRACECK, TIM3_CH1,
SAI1_CK1, TIM20_CH1,
SAI1_MCLK_A,
EVENTOUT
-
-
-
-
-
-
-
-
-
2
PE3
I/O
FT
-
TRACED0, TIM3_CH2,
TIM20_CH2,
SAI1_SD_B,
EVENTOUT
-
-
-
-
-
-
-
3
PE4
I/O
FT
-
TRACED1, TIM3_CH3,
SAI1_D2, TIM20_CH1N,
SAI1_FS_A, EVENTOUT
-
-
TRACED2, TIM3_CH4,
SAI1_CK2,
TIM20_CH2N,
SAI1_SCK_A,
EVENTOUT
-
WKUP3,
RTC_TAMP3
-
-
-
-
-
-
-
4
I/O
PE5
FT
-
-
-
-
-
-
-
5
PE6
I/O
FT
-
TRACED3, SAI1_D1,
TIM20_CH3N,
SAI1_SD_A,
EVENTOUT
-
1
1
B8
1
C2
1
6
VBAT
S
-
-
-
-
TIM1_BKIN,
TIM1_CH1N,
TIM8_CH4N,
EVENTOUT
WKUP2,
RTC_TAMP1,
RTC_TS,
RTC_OUT1
EVENTOUT
OSC32_IN
(3)
EVENTOUT
OSC32_OUT
-
TIM20_BKIN,
TIM15_CH1, SPI2_SCK,
QUADSPI1_BK1_IO1,
SAI1_FS_B, EVENTOUT
-
-
TIM20_BKIN2,
TIM15_CH2, SPI2_SCK,
QUADSPI1_CLK,
SAI1_D3, EVENTOUT
-
-
2
2
C6
2
B1
2
7
PC13
I/O
FT
-
3
3
C8
3
C1
3
8
PC14OSC32_IN
I/O
FT
-
4
4
D8
4
D1
4
9
PC15OSC32_OUT
I/O
FT
-
-
52/199
-
-
-
-
-
-
-
-
-
-
-
-
10
11
PF9
PF10
(2)
(3)
(2)
I/O
I/O
FT
FT
DS13122 Rev 3
(3)
(2)
STM32G491xC STM32G491xE
Pinouts and pin description
Table 12. STM32G491xC/xE pin definition(1) (continued)
Notes
I/O structure
Pin name
(function
after reset)
Pin type
LQFP100
LQFP80
UFBGA64
LQFP64
WLCSP64
LQFP48
UFQFPN48
UFQFPN32
Pin Number
Alternate functions
FT_f
PF0-OSC_IN I/O
a
-
I2C2_SDA,
SPI2_NSS/I2S2_WS,
TIM1_CH3N,
EVENTOUT
Additional
functions
ADC1_IN10,
OSC_IN
2
5
5
E8
5
E1
5
12
3
6
6
E7
6
F1
6
13
PF1OSC_OUT
I/O
FT_
a
-
SPI2_SCK/I2S2_CK,
EVENTOUT
ADC2_IN10,
COMP3_INM,
OSC_OUT
4
7
7
D7
7
D2
7
14
PG10-NRST
I/O
FT
-
MCO, EVENTOUT
NRST
-
-
-
F8
8
E2
8
15
PC0
I/O
FT_
a
-
LPTIM1_IN1, TIM1_CH1,
LPUART1_RX,
EVENTOUT
ADC12_IN6,
COMP3_INM
-
LPTIM1_OUT,
TIM1_CH2,
LPUART1_TX,
QUADSPI1_BK2_IO0,
SAI1_SD_A,
EVENTOUT
ADC12_IN7,
COMP3_INP
-
LPTIM1_IN2, TIM1_CH3,
COMP3_OUT,
TIM20_CH2,
QUADSPI1_BK2_IO1,
EVENTOUT
ADC12_IN8
ADC12_IN9
-
-
-
-
-
-
C7
D6
9
10
C3
D3
9
10
16
17
PC1
PC2
I/O
I/O
TT_
a
FT_
a
-
-
-
E6
11
G1
11
18
PC3
I/O
FT_
a
-
LPTIM1_ETR,
TIM1_CH4, SAI1_D1,
TIM1_BKIN2,
QUADSPI1_BK2_IO2,
SAI1_SD_A,
EVENTOUT
-
-
-
-
-
-
-
19
PF2
I/O
FT
-
TIM20_CH3,
I2C2_SMBA,
EVENTOUT
-
-
TIM2_CH1,
USART2_CTS,
COMP1_OUT,
TIM8_BKIN, TIM8_ETR,
TIM2_ETR, EVENTOUT
ADC12_IN1,
COMP1_INM,
COMP3_INP,
RTC_TAMP2,
WKUP1
-
RTC_REFIN, TIM2_CH2,
USART2_RTS_DE,
TIM15_CH1N,
EVENTOUT
ADC12_IN2,
COMP1_INP,
OPAMP1_VINP,
OPAMP3_VINP,
OPAMP6_VINM
5
6
8
9
8
9
G8
F7
12
13
F2
E3
12
13
20
21
PA0
PA1
I/O
I/O
TT_
a
TT_
a
DS13122 Rev 3
53/199
68
Pinouts and pin description
STM32G491xC STM32G491xE
Table 12. STM32G491xC/xE pin definition(1) (continued)
TT_
I/O
a
Notes
I/O structure
Pin name
(function
after reset)
Pin type
LQFP100
LQFP80
UFBGA64
LQFP64
WLCSP64
LQFP48
UFQFPN48
UFQFPN32
Pin Number
Alternate functions
Additional
functions
-
TIM2_CH3,
USART2_TX,
COMP2_OUT,
TIM15_CH1,
QUADSPI1_BK1_NCS,
LPUART1_TX,
UCPD1_FRSTX,
ADC1_IN3,
COMP2_INM,
OPAMP1_VOUT,
WKUP4/LSCO
7
10
10
D5
14
F3
14
22
PA2
-
-
-
G7
15
G2
15
23
VSS
S
-
-
-
-
-
-
-
H8
16
H1
16
24
VDD
S
-
-
-
-
-
TIM2_CH4, SAI1_CK1,
USART2_RX,
TIM15_CH2,
QUADSPI1_CLK,
LPUART1_RX,
SAI1_MCLK_A,
EVENTOUT
ADC1_IN4,
COMP2_INP,
OPAMP1_VINM/
OPAMP1_VINP
-
TIM3_CH2, SPI1_NSS,
SPI3_NSS/I2S3_WS,
USART2_CK,
SAI1_FS_B, EVENTOUT
ADC2_IN17,
DAC1_OUT1,
COMP1_INM
-
TIM2_CH1, TIM2_ETR,
SPI1_SCK,
UCPD1_FRSTX,
EVENTOUT
ADC2_IN13,
DAC1_OUT2,
COMP2_INM,
OPAMP2_VINM
8
9
10
11
12
-
11
12
13
14
15
16
54/199
11
12
13
14
15
-
F6
E5
E4
H7
F5
G6
17
18
19
20
21
22
H2
D4
E4
G3
H3
D5
17
18
19
20
21
22
25
26
27
28
29
30
PA3
TT_
I/O
a
PA4
TT_
I/O
a
PA5
TT_
I/O
a
PA6
I/O
TT_
a
PA7
TT_
I/O
a
PC4
FT_f
I/O
a
DS13122 Rev 3
-
TIM16_CH1, TIM3_CH1,
TIM8_BKIN, SPI1_MISO,
TIM1_BKIN,
ADC2_IN3,
COMP1_OUT,
OPAMP2_VOUT
QUADSPI1_BK1_IO3,
LPUART1_CTS,
EVENTOUT
-
TIM17_CH1, TIM3_CH2,
TIM8_CH1N,
SPI1_MOSI,
TIM1_CH1N,
COMP2_OUT,
QUADSPI1_BK1_IO2,
UCPD1_FRSTX,
ADC2_IN4,
COMP2_INP,
OPAMP1_VINP,
OPAMP2_VINP
-
TIM1_ETR, I2C2_SCL,
USART1_TX,
QUADSPI1_BK2_IO3,
EVENTOUT
ADC2_IN5
STM32G491xC STM32G491xE
Pinouts and pin description
Table 12. STM32G491xC/xE pin definition(1) (continued)
13
-
-
17
18
16
17
F4
F3
H6
23
24
25
F4
E5
F5
23
24
25
31
32
33
I/O structure
Pin type
LQFP100
LQFP80
UFBGA64
LQFP64
WLCSP64
LQFP48
-
Pin name
(function
after reset)
TT_
I/O
a
PC5
I/O
PB0
I/O
PB1
TT_
a
TT_
a
Notes
-
UFQFPN48
UFQFPN32
Pin Number
Alternate functions
Additional
functions
-
TIM15_BKIN, SAI1_D3,
TIM1_CH4N,
USART1_RX,
EVENTOUT
ADC2_IN11,
OPAMP1_VINM,
OPAMP2_VINM,
WKUP5
-
TIM3_CH3, TIM8_CH2N,
TIM1_CH2N,
QUADSPI1_BK1_IO1,
UCPD1_FRSTX,
EVENTOUT
ADC1_IN15/AD
C3_IN12,
COMP4_INP,
OPAMP2_VINP,
OPAMP3_VINP
-
TIM3_CH4, TIM8_CH3N,
ADC1_IN12/AD
TIM1_CH3N,
C3_IN1,
COMP4_OUT,
COMP1_INP,
QUADSPI1_BK1_IO0,
OPAMP3_VOUT,
LPUART1_RTS_DE,
OPAMP6_VINM
EVENTOUT
-
19
18
G4
26
H4
26
34
PB2
I/O
TT_
a
-
RTC_OUT2,
LPTIM1_OUT,
TIM20_CH1,
I2C3_SMBA,
QUADSPI1_BK2_IO1,
EVENTOUT
14
-
19
G5
27
G4
27
35
VSSA
S
-
-
-
-
-
20
20
H5
28
G5
28
36
VREF+
S
-
-
-
VREFBUF_OUT
-
21
21
H4
29
H5
29
37
VDDA
S
-
-
-
-
15
-
-
-
-
-
-
-
VDDA/VREF+
S
-
-
-
-
-
-
-
-
-
-
30
38
PE7
I/O
TT_
a
-
TIM1_ETR, SAI1_SD_B,
EVENTOUT
ADC3_IN4,
COMP4_INP
-
-
-
-
-
-
31
39
PE8
I/O
FT_
a
-
TIM1_CH1N,
SAI1_SCK_B,
EVENTOUT
ADC3_IN6,
COMP4_INM
-
-
-
-
-
-
32
40
PE9
I/O
FT_
a
-
TIM1_CH1, SAI1_FS_B,
EVENTOUT
ADC3_IN2
-
TIM1_CH2N,
QUADSPI1_CLK,
SAI1_MCLK_B,
EVENTOUT
ADC3_IN14
FT_
a
-
TIM1_CH2,
QUADSPI1_BK1_NCS,
EVENTOUT
ADC3_IN15
-
-
-
-
-
-
33
41
PE10
FT_
I/O
a
-
-
-
-
-
-
34
42
PE11
I/O
DS13122 Rev 3
ADC2_IN12,
COMP4_INM,
OPAMP3_VINM
55/199
68
Pinouts and pin description
STM32G491xC STM32G491xE
Table 12. STM32G491xC/xE pin definition(1) (continued)
UFQFPN32
UFQFPN48
LQFP48
WLCSP64
LQFP64
UFBGA64
LQFP80
LQFP100
Pin type
I/O structure
Notes
Pin Number
Alternate functions
-
-
-
-
-
-
35
43
PE12
I/O
FT_
a
-
TIM1_CH3N,
QUADSPI1_BK1_IO0,
EVENTOUT
ADC3_IN16
-
-
-
-
-
-
36
44
PE13
I/O
FT_
a
-
TIM1_CH3,
QUADSPI1_BK1_IO1,
EVENTOUT
ADC3_IN3
-
TIM1_CH4,
TIM1_BKIN2,
QUADSPI1_BK1_IO2,
EVENTOUT
-
-
TIM1_BKIN,
TIM1_CH4N,
USART3_RX,
QUADSPI1_BK1_IO3,
EVENTOUT
-
OPAMP3_VINM
-
-
-
-
-
-
-
-
-
-
-
-
37
38
45
46
Pin name
(function
after reset)
PE14
PE15
I/O
I/O
FT
FT
Additional
functions
-
22
22
H2
30
H6
39
47
PB10
I/O
TT_
a
-
TIM2_CH3,
USART3_TX,
LPUART1_RX,
QUADSPI1_CLK,
TIM1_BKIN,
SAI1_SCK_A,
EVENTOUT
16
-
23
G2
31
G7
40
48
VSS
S
-
-
-
-
17
23
24
H1
32
H8
41
49
VDD
S
-
-
-
-
-
TIM2_CH4,
USART3_RX,
LPUART1_TX,
QUADSPI1_BK1_NCS,
EVENTOUT
ADC12_IN14,
OPAMP6_VOUT
-
I2C2_SMBA,
SPI2_NSS/I2S2_WS,
TIM1_BKIN,
USART3_CK,
LPUART1_RTS_DE,
FDCAN2_RX,
EVENTOUT
ADC1_IN11,
OPAMP6_VINP
-
SPI2_SCK/I2S2_CK,
TIM1_CH1N,
USART3_CTS,
LPUART1_CTS,
FDCAN2_TX,
EVENTOUT
ADC3_IN5,
OPAMP3_VINP,
OPAMP6_VINP
-
-
-
24
25
26
56/199
25
26
27
H3
G3
G1
33
34
35
H7
G8
G6
42
43
44
50
51
52
PB11
PB12
PB13
I/O
I/O
I/O
TT_
a
TT_
a
TT_
a
DS13122 Rev 3
STM32G491xC STM32G491xE
Pinouts and pin description
Table 12. STM32G491xC/xE pin definition(1) (continued)
27
F2
36
F8
45
53
PB14
I/O
I/O structure
Pin type
LQFP100
LQFP80
UFBGA64
LQFP64
WLCSP64
LQFP48
28
Pin name
(function
after reset)
TT_
a
Notes
-
UFQFPN48
UFQFPN32
Pin Number
Alternate functions
Additional
functions
-
TIM15_CH1,
SPI2_MISO,
TIM1_CH2N,
USART3_RTS_DE,
COMP4_OUT,
EVENTOUT
ADC1_IN5,
OPAMP2_VINP
ADC2_IN15
-
28
29
F1
37
F7
46
54
PB15
I/O
FT_
a
-
RTC_REFIN,
TIM15_CH2,
TIM15_CH1N,
COMP3_OUT,
TIM1_CH3N,
SPI2_MOSI/I2S2_SD,
EVENTOUT
-
-
-
-
-
-
47
55
PD8
I/O
FT_
a
-
USART3_TX,
EVENTOUT
-
-
-
-
-
-
-
48
56
PD9
I/O
TT_
a
-
USART3_RX,
EVENTOUT
OPAMP6_VINP
-
-
-
-
-
-
49
57
PD10
I/O
FT_
a
-
USART3_CK,
EVENTOUT
ADC3_IN7
-
-
-
-
-
-
-
58
PD11
I/O
FT_
a
-
USART3_CTS,
EVENTOUT
ADC3_IN8
-
-
-
-
-
-
-
59
PD12
I/O
FT_
a
-
TIM4_CH1,
USART3_RTS_DE,
EVENTOUT
ADC3_IN9
-
-
-
-
-
-
-
60
PD13
I/O
FT_
a
-
TIM4_CH2, EVENTOUT
ADC3_IN10
-
-
-
-
-
-
-
61
PD14
I/O
TT_
a
-
TIM4_CH3, EVENTOUT
ADC3_IN11,
OPAMP2_VINP
-
-
-
-
-
-
-
62
PD15
I/O
FT
-
TIM4_CH4, SPI2_NSS,
EVENTOUT
-
-
-
-
-
-
-
50
63
VSS
S
-
-
-
-
-
-
-
-
-
-
51
64
VDD
S
-
-
-
-
-
29
-
E3
38
E8
52
65
PC6
I/O
FT
-
TIM3_CH1, TIM8_CH1,
I2S2_MCK, EVENTOUT
-
-
-
-
E1
39
E7
53
66
PC7
I/O
FT
-
TIM3_CH2, TIM8_CH2,
I2S3_MCK, EVENTOUT
-
-
-
-
E2
40
F6
54
67
PC8
I/O FT_f
-
TIM3_CH3, TIM8_CH3,
TIM20_CH3, I2C3_SCL,
EVENTOUT
-
DS13122 Rev 3
57/199
68
Pinouts and pin description
STM32G491xC STM32G491xE
Table 12. STM32G491xC/xE pin definition(1) (continued)
WLCSP64
LQFP64
UFBGA64
LQFP80
LQFP100
-
D3
41
D8
55
68
18
19
20
21
30
31
32
33
30
31
32
33
D2
D1
C2
C1
42
43
44
45
E6
D7
D6
C8
56
57
58
59
69
70
71
72
PC9
PA8
PA9
PA10
PA11
Notes
LQFP48
-
I/O structure
UFQFPN48
-
Pin name
(function
after reset)
Pin type
UFQFPN32
Pin Number
Alternate functions
Additional
functions
-
TIM3_CH4, TIM8_CH4,
I2SCKIN, TIM8_BKIN2,
I2C3_SDA, EVENTOUT
-
-
MCO, I2C3_SCL,
I2C2_SDA, I2S2_MCK,
TIM1_CH1,
USART1_CK,
TIM4_ETR, SAI1_CK2,
SAI1_SCK_A,
EVENTOUT
-
FT_f (4)
d
I2C3_SMBA, I2C2_SCL,
I2S3_MCK, TIM1_CH2,
USART1_TX,
TIM15_BKIN,
TIM2_CH3, SAI1_FS_A,
EVENTOUT
UCPD1_DBCC1
FT_
da
(4)
TIM17_BKIN,
USB_CRS_SYNC,
I2C2_SMBA,
SPI2_MISO, TIM1_CH3,
USART1_RX,
TIM2_CH4, TIM8_BKIN,
SAI1_D1, SAI1_SD_A,
UCPD1_DBCC2
-
SPI2_MOSI/I2S2_SD,
TIM1_CH1N,
USART1_CTS,
COMP1_OUT,
FDCAN1_RX,
TIM4_CH1, TIM1_CH4,
TIM1_BKIN2,
EVENTOUT
USB_DM
USB_DP
I/O FT_f
I/O FT_f
I/O
I/O
I/O
FT_
u
22
34
34
B1
46
B8
60
73
PA12
I/O
FT_
u
-
TIM16_CH1, I2SCKIN,
TIM1_CH2N,
USART1_RTS_DE,
COMP2_OUT,
FDCAN1_TX,
TIM4_CH2, TIM1_ETR,
EVENTOUT
-
-
35
B2
47
B7
61
74
VSS
S
-
-
-
-
-
35
36
A1
48
A8
62
75
VDD
S
-
-
-
-
58/199
DS13122 Rev 3
STM32G491xC STM32G491xE
Pinouts and pin description
Table 12. STM32G491xC/xE pin definition(1) (continued)
24
25
-
-
36
37
38
39
40
38
39
-
-
C3
C4
B4
B3
A2
49
50
51
52
53
C7
C6
A7
C5
B6
63
64
65
66
67
76
77
78
79
80
PA13
PA14
PA15
PC10
PC11
I/O structure
Pin type
LQFP100
LQFP80
UFBGA64
LQFP64
WLCSP64
LQFP48
37
Pin name
(function
after reset)
I/O FT_f
I/O FT_f
I/O FT_f
I/O
FT
I/O FT_f
Notes
23
UFQFPN48
UFQFPN32
Pin Number
Alternate functions
Additional
functions
(5)
SWDIO-JTMS,
TIM16_CH1N,
I2C1_SCL, IR_OUT,
USART3_CTS,
TIM4_CH3, SAI1_SD_B,
EVENTOUT
-
(5)
SWCLK-JTCK,
LPTIM1_OUT,
I2C1_SDA, TIM8_CH2,
TIM1_BKIN,
USART2_TX,
SAI1_FS_B, EVENTOUT
-
(5)
JTDI, TIM2_CH1,
TIM8_CH1, TIM20_ETR,
I2C1_SCL, SPI1_NSS,
SPI3_NSS/I2S3_WS,
USART2_RX,
UART4_RTS_DE,
TIM1_BKIN, TIM2_ETR,
-
-
TIM8_CH1N,
UART4_TX,
SPI3_SCK/I2S3_CK,
USART3_TX,
EVENTOUT
-
-
TIM8_CH2N,
UART4_RX,
SPI3_MISO,
USART3_RX,
I2C3_SDA, EVENTOUT
-
-
-
-
-
A3
54
A6
68
81
PC12
I/O
FT
-
TIM8_CH3N,
UART5_TX,
SPI3_MOSI/I2S3_SD,
USART3_CK,
UCPD1_FRSTX,
EVENTOUT
-
-
-
-
-
-
69
82
PD0
I/O
FT
-
TIM8_CH4N,
FDCAN1_RX,
EVENTOUT
-
-
TIM8_CH4,
TIM8_BKIN2,
FDCAN1_TX,
EVENTOUT
-
-
-
-
-
-
-
70
83
PD1
I/O
FT
DS13122 Rev 3
59/199
68
Pinouts and pin description
STM32G491xC STM32G491xE
Table 12. STM32G491xC/xE pin definition(1) (continued)
WLCSP64
LQFP64
UFBGA64
LQFP80
LQFP100
-
A4
55
B5
71
84
-
-
-
-
-
-
-
85
PD2
I/O
PD3
I/O
Notes
LQFP48
-
I/O structure
UFQFPN48
-
Pin name
(function
after reset)
Pin type
UFQFPN32
Pin Number
Alternate functions
Additional
functions
FT
-
TIM3_ETR, TIM8_BKIN,
UART5_RX, EVENTOUT
-
-
TIM2_CH1/TIM2_ETR,
USART2_CTS,
QUADSPI1_BK2_NCS,
EVENTOUT
-
-
FT
-
-
-
-
-
-
-
86
PD4
I/O
FT
-
TIM2_CH2,
USART2_RTS_DE,
QUADSPI1_BK2_IO0,
EVENTOUT
-
-
-
-
-
-
-
87
PD5
I/O
FT
-
USART2_TX,
QUADSPI1_BK2_IO1,
EVENTOUT
-
-
TIM2_CH4, SAI1_D1,
USART2_RX,
QUADSPI1_BK2_IO2,
SAI1_SD_A,
EVENTOUT
-
-
TIM2_CH3,
USART2_CK,
QUADSPI1_BK2_IO3,
EVENTOUT
-
(5)
JTDO/TRACESWO,
TIM2_CH2, TIM4_ETR,
USB_CRS_SYNC,
TIM8_CH1N, SPI1_SCK,
SPI3_SCK/I2S3_CK,
USART2_TX,
TIM3_ETR,
SAI1_SCK_B,
EVENTOUT
-
JTRST, TIM16_CH1,
TIM3_CH1, TIM8_CH2N,
SPI1_MISO,
SPI3_MISO,
USART2_RX,
UART5_RTS_DE,
TIM17_BKIN,
SAI1_MCLK_B,
EVENTOUT
UCPD1_CC2
-
-
-
26
27
-
41
42
60/199
-
-
40
41
-
-
D4
C5
-
-
56
57
-
-
A5
C4
-
-
72
73
88
89
90
91
PD6
PD7
PB3
PB4
I/O
I/O
I/O
I/O
FT
FT
FT
FT_
c
DS13122 Rev 3
(4)
(5)
STM32G491xC STM32G491xE
Pinouts and pin description
Table 12. STM32G491xC/xE pin definition(1) (continued)
29
30
31
-
43
44
45
46
47
43
44
45
46
A5
B5
A6
B6
A7
58
59
60
61
62
B4
A4
A3
B3
A2
74
75
76
77
78
92
93
94
95
96
I/O structure
I/O FT_f
PB5
PB7
PB8-BOOT0
Alternate functions
Additional
functions
-
TIM16_BKIN,
TIM3_CH2, TIM8_CH3N,
I2C1_SMBA,
SPI1_MOSI,
SPI3_MOSI/I2S3_SD,
USART2_CK,
I2C3_SDA,
FDCAN2_RX,
TIM17_CH1,
LPTIM1_IN1,
SAI1_SD_B,
UART5_CTS,
EVENTOUT
-
FT_
c
TIM16_CH1N,
TIM4_CH1, TIM8_CH1,
TIM8_ETR,
USART1_TX,
(4)
COMP4_OUT,
FDCAN2_TX,
TIM8_BKIN2,
LPTIM1_ETR,
SAI1_FS_B, EVENTOUT
I/O FT_f
TIM17_CH1N,
TIM4_CH2, I2C1_SDA,
TIM8_BKIN,
USART1_RX,
COMP3_OUT,
TIM3_CH4, LPTIM1_IN2,
UART4_CTS,
EVENTOUT
PVD_IN
I/O FT_f (6)
TIM16_CH1, TIM4_CH3,
SAI1_CK1, I2C1_SCL,
USART3_RX,
COMP1_OUT,
FDCAN1_RX,
TIM8_CH2, TIM1_BKIN,
SAI1_MCLK_A,
EVENTOUT
-
I/O FT_f
TIM17_CH1, TIM4_CH4,
SAI1_D2, I2C1_SDA,
IR_OUT, USART3_TX,
COMP2_OUT,
FDCAN1_TX,
TIM8_CH3, TIM1_CH3N,
SAI1_FS_A, EVENTOUT
-
I/O
PB6
PB9
Pin type
LQFP100
LQFP80
UFBGA64
LQFP64
WLCSP64
LQFP48
42
Pin name
(function
after reset)
Notes
28
UFQFPN48
UFQFPN32
Pin Number
DS13122 Rev 3
-
-
UCPD1_CC1
61/199
68
Pinouts and pin description
STM32G491xC STM32G491xE
Table 12. STM32G491xC/xE pin definition(1) (continued)
-
-
-
-
-
97
PE0
I/O
I/O structure
Pin type
LQFP100
LQFP80
UFBGA64
LQFP64
WLCSP64
-
Pin name
(function
after reset)
FT
Notes
-
LQFP48
UFQFPN48
UFQFPN32
Pin Number
Alternate functions
Additional
functions
-
TIM4_ETR,
TIM20_CH4N,
TIM16_CH1,
TIM20_ETR,
USART1_TX,
EVENTOUT
-
-
-
-
-
-
-
-
-
98
PE1
I/O
FT
-
TIM17_CH1,
TIM20_CH4,
USART1_RX,
EVENTOUT
32
-
47
B7
63
B2
79
99
VSS
S
-
-
-
-
1
48
48
A8
64
A1
80
100
VDD
S
-
-
-
-
1. Function availability depends on the chosen device.
2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3
mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (e.g. to drive an LED).
3.
After a backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of
the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup
domain and RTC register descriptions in the reference manual RM0440 "STM32G4 Series advanced Arm®-based 32-bit
MCUs".
4. After reset, a pull-down resistor (Rd = 5.1kΩ from UCPD peripheral) can be activated on PB6, PB4 (UCPD1_CC1,
UCPD1_CC2). The pull-down on PB6 (UCPD1_CC1) is activated by high level on PA9 (UCPD1_DBCC1). The pull-down
on PB4 (UCPD1_CC2) is activated by high level on PA10 (UCPD1_DBCC2). This pull-down control (dead battery support
on UCPD peripheral) can be disabled by setting bit UCPD1_DBDIS=1 in the PWR_CR3 register. PB4, PB6 have
UCPD_CC functionality which implements an internal pull-down resistor (5.1kΩ) which is controlled by the voltage on the
UCPD_DBCC pin (PA10, PA9). A high level on the UCPD_DBCC pin activates the pull-down on the UCPD_CC pin. The
pull-down effect on the CC lines can be removed by using the bit UCPD1_DBDIS =1 (USB Type-C and power delivery dead
battery disable) in the PWR_CR3 register.
5. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4
pins and the internal pull-down on PA14 pin are activated.
6.
It is recommended to set PB8 in another mode than analog mode after startup to limit consumption if the pin is left
unconnected.
62/199
DS13122 Rev 3
Alternate functions
Table 13. Alternate function
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
SYS_AF
LPTIM1/TIM2
/15/16/17
COMP1/I2C3
/TIM1/2/3/4/8/
15/20
COMP3/SAI1/
TIM8/15/20/U
SB
I2C1/2/3/TIM
1/8/16/17
I2S2/3/Infrar
ed/SPI1/2/TI
M8/UART4/5
I2S2/3/Infrare
d/SPI2/3/TIM
1/8/20
USART1/2/3
COMP1/2/3/4/I
2C3/LPUART1/
UART4/5
FDCAN1/2/T
IM1/8/15
QUADSPI1/
TIM2/3/4/8/1
7
LPTIM1/
TIM1/8
LPUART1/S
AI1/TIM1
SAI1
SAI1/TIM
2/15/UAR
T4/5/UCP
D1
EVENT
PA0
-
TIM2_CH1
-
-
-
-
-
USART2_CTS
COMP1_OUT
TIM8_BKIN
TIM8_ETR
-
-
-
TIM2_ET
R
EVENT
OUT
PA1
RTC_REFIN
TIM2_CH2
-
-
-
-
-
USART2_RTS
_DE
-
TIM15_CH1
N
-
-
-
-
-
EVENT
OUT
PA2
-
TIM2_CH3
-
-
-
-
-
USART2_TX
COMP2_OUT
TIM15_CH1
QUADSPI1_
BK1_NCS
-
LPUART1_T
X
-
UCPD1_F
RSTX
EVENT
OUT
PA3
-
TIM2_CH4
-
SAI1_CK1
-
-
-
USART2_RX
-
TIM15_CH2
QUADSPI1_
CLK
-
LPUART1_R
X
SAI1_M
CLK_A
-
EVENT
OUT
PA4
-
-
TIM3_CH2
-
-
SPI1_NSS
SPI3_NSS/I2
S3_WS
USART2_CK
-
-
-
-
-
SAI1_FS
_B
-
EVENT
OUT
PA5
-
TIM2_CH1
TIM2_ETR
-
-
SPI1_SCK
-
-
-
-
-
-
-
-
UCPD1_F
RSTX
EVENT
OUT
PA6
-
TIM16_CH1
TIM3_CH1
-
TIM8_BKIN
SPI1_MISO
TIM1_BKIN
-
COMP1_OUT
-
QUADSPI1_
BK1_IO3
-
LPUART1_C
TS
-
-
EVENT
OUT
PA7
-
TIM17_CH1
TIM3_CH2
-
TIM8_CH1N
SPI1_MOSI
TIM1_CH1N
-
COMP2_OUT
-
QUADSPI1_
BK1_IO2
-
-
-
UCPD1_F
RSTX
EVENT
OUT
PA8
MCO
-
I2C3_SCL
-
I2C2_SDA
I2S2_MCK
TIM1_CH1
USART1_CK
-
-
TIM4_ETR
-
SAI1_CK2
-
SAI1_SC
K_A
EVENT
OUT
PA9
-
-
I2C3_SMBA
-
I2C2_SCL
I2S3_MCK
TIM1_CH2
USART1_TX
-
TIM15_BKIN
TIM2_CH3
-
-
-
SAI1_FS_
A
EVENT
OUT
PA10
-
TIM17_BKIN
-
USB_CRS_S
YNC
I2C2_SMBA
SPI2_MISO
TIM1_CH3
USART1_RX
-
-
TIM2_CH4
TIM8_BK
IN
SAI1_D1
-
SAI1_SD_
A
EVENT
OUT
PA11
-
-
-
-
-
SPI2_MOSI/I
2S2_SD
TIM1_CH1N
USART1_CTS
COMP1_OUT
FDCAN1_RX
TIM4_CH1
TIM1_CH
4
TIM1_BKIN2
-
-
EVENT
OUT
PA12
-
TIM16_CH1
-
-
-
I2SCKIN
TIM1_CH2N
USART1_RTS
_DE
COMP2_OUT
FDCAN1_TX
TIM4_CH2
TIM1_ET
R
-
-
-
EVENT
OUT
PA13
SWDIOJTMS
TIM16_CH1N
-
-
I2C1_SCL
IR_OUT
-
USART3_CTS
-
-
TIM4_CH3
-
-
SAI1_SD
_B
-
EVENT
OUT
PA14
SWCLKJTCK
LPTIM1_OUT
-
-
I2C1_SDA
TIM8_CH2
TIM1_BKIN
USART2_TX
-
-
-
-
-
SAI1_FS
_B
-
EVENT
OUT
PA15
JTDI
TIM2_CH1
TIM8_CH1
TIM20_ETR
I2C1_SCL
SPI1_NSS
SPI3_NSS/I2
S3_WS
USART2_RX
UART4_RTS_
DE
TIM1_BKIN
-
-
-
-
TIM2_ET
R
EVENT
OUT
DS13122 Rev 3
Port A
Port
63/199
Pinouts and pin description
AF0
STM32G491xC STM32G491xE
4.10
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
SYS_AF
LPTIM1/TIM2
/15/16/17
COMP1/I2C3
/TIM1/2/3/4/8/
15/20
COMP3/SAI1/
TIM8/15/20/U
SB
I2C1/2/3/TIM
1/8/16/17
I2S2/3/Infrar
ed/SPI1/2/TI
M8/UART4/5
I2S2/3/Infrare
d/SPI2/3/TIM
1/8/20
USART1/2/3
COMP1/2/3/4/I
2C3/LPUART1/
UART4/5
FDCAN1/2/T
IM1/8/15
QUADSPI1/
TIM2/3/4/8/1
7
LPTIM1/
TIM1/8
LPUART1/S
AI1/TIM1
SAI1
SAI1/TIM
2/15/UAR
T4/5/UCP
D1
EVENT
PB0
-
-
TIM3_CH3
-
TIM8_CH2N
-
TIM1_CH2N
-
-
-
QUADSPI1_
BK1_IO1
-
-
-
UCPD1_F
RSTX
EVENT
OUT
PB1
-
-
TIM3_CH4
-
TIM8_CH3N
-
TIM1_CH3N
-
COMP4_OUT
-
QUADSPI1_
BK1_IO0
-
LPUART1_R
TS_DE
-
-
EVENT
OUT
PB2
RTC_OUT2
LPTIM1_OUT
-
TIM20_CH1
I2C3_SMBA
-
-
-
-
-
QUADSPI1_
BK2_IO1
-
-
-
-
EVENT
OUT
PB3
JTDO/TRAC
ESWO
TIM2_CH2
TIM4_ETR
USB_CRS_S
YNC
TIM8_CH1N
SPI1_SCK
SPI3_SCK/I2
S3_CK
USART2_TX
-
-
TIM3_ETR
-
-
-
SAI1_SC
K_B
EVENT
OUT
PB4
JTRST
TIM16_CH1
TIM3_CH1
-
TIM8_CH2N
SPI1_MISO
SPI3_MISO
USART2_RX
UART5_RTS_
DE
-
TIM17_BKIN
-
-
-
SAI1_MC
LK_B
EVENT
OUT
PB5
-
TIM16_BKIN
TIM3_CH2
TIM8_CH3N
I2C1_SMBA
SPI1_MOSI
SPI3_MOSI/I
2S3_SD
USART2_CK
I2C3_SDA
FDCAN2_RX
TIM17_CH1
LPTIM1_
IN1
SAI1_SD_B
-
UART5_C
TS
EVENT
OUT
PB6
-
TIM16_CH1N
TIM4_CH1
-
-
TIM8_CH1
TIM8_ETR
USART1_TX
COMP4_OUT
FDCAN2_TX
TIM8_BKIN2
LPTIM1_
ETR
-
-
SAI1_FS_
B
EVENT
OUT
PB7
-
TIM17_CH1N
TIM4_CH2
-
I2C1_SDA
TIM8_BKIN
-
USART1_RX
COMP3_OUT
-
TIM3_CH4
LPTIM1_
IN2
-
-
UART4_C
TS
EVENT
OUT
PB8
-
TIM16_CH1
TIM4_CH3
SAI1_CK1
I2C1_SCL
-
-
USART3_RX
COMP1_OUT
FDCAN1_RX
TIM8_CH2
-
TIM1_BKIN
-
SAI1_MC
LK_A
EVENT
OUT
PB9
-
TIM17_CH1
TIM4_CH4
SAI1_D2
I2C1_SDA
-
IR_OUT
USART3_TX
COMP2_OUT
FDCAN1_TX
TIM8_CH3
-
TIM1_CH3N
-
SAI1_FS_
A
EVENT
OUT
PB10
-
TIM2_CH3
-
-
-
-
-
USART3_TX
LPUART1_RX
-
QUADSPI1_
CLK
-
TIM1_BKIN
-
SAI1_SC
K_A
EVENT
OUT
PB11
-
TIM2_CH4
-
-
-
-
-
USART3_RX
LPUART1_TX
-
QUADSPI1_
BK1_NCS
-
-
-
-
EVENT
OUT
PB12
-
-
-
-
I2C2_SMBA
SPI2_NSS/I2
S2_WS
TIM1_BKIN
USART3_CK
LPUART1_RTS
_DE
FDCAN2_RX
-
-
-
-
-
EVENT
OUT
PB13
-
-
-
-
-
SPI2_SCK/I2
S2_CK
TIM1_CH1N
USART3_CTS
LPUART1_CTS
FDCAN2_TX
-
-
-
-
-
EVENT
OUT
PB14
-
TIM15_CH1
-
-
-
SPI2_MISO
TIM1_CH2N
USART3_RTS
_DE
COMP4_OUT
-
-
-
-
-
-
EVENT
OUT
PB15
RTC_REFIN
TIM15_CH2
TIM15_CH1N
COMP3_OUT
TIM1_CH3N
SPI2_MOSI/I
2S2_SD
-
-
-
-
-
-
-
-
-
EVENT
OUT
DS13122 Rev 3
Port B
Port
STM32G491xC STM32G491xE
AF0
Pinouts and pin description
64/199
Table 13. Alternate function (continued)
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
SYS_AF
LPTIM1/TIM2
/15/16/17
COMP1/I2C3
/TIM1/2/3/4/8/
15/20
COMP3/SAI1/
TIM8/15/20/U
SB
I2C1/2/3/TIM
1/8/16/17
I2S2/3/Infrar
ed/SPI1/2/TI
M8/UART4/5
I2S2/3/Infrare
d/SPI2/3/TIM
1/8/20
USART1/2/3
COMP1/2/3/4/I
2C3/LPUART1/
UART4/5
FDCAN1/2/T
IM1/8/15
QUADSPI1/
TIM2/3/4/8/1
7
LPTIM1/
TIM1/8
LPUART1/S
AI1/TIM1
SAI1
SAI1/TIM
2/15/UAR
T4/5/UCP
D1
EVENT
PC0
-
LPTIM1_IN1
TIM1_CH1
-
-
-
-
-
LPUART1_RX
-
-
-
-
-
-
EVENT
OUT
PC1
-
LPTIM1_OUT
TIM1_CH2
-
-
-
-
-
LPUART1_TX
-
QUADSPI1_
BK2_IO0
-
-
SAI1_SD
_A
-
EVENT
OUT
PC2
-
LPTIM1_IN2
TIM1_CH3
COMP3_OUT
-
-
TIM20_CH2
-
-
-
QUADSPI1_
BK2_IO1
-
-
-
-
EVENT
OUT
PC3
-
LPTIM1_ETR
TIM1_CH4
SAI1_D1
-
-
TIM1_BKIN2
-
-
-
QUADSPI1_
BK2_IO2
-
-
SAI1_SD
_A
-
EVENT
OUT
PC4
-
-
TIM1_ETR
-
I2C2_SCL
-
-
USART1_TX
-
-
QUADSPI1_
BK2_IO3
-
-
-
-
EVENT
OUT
PC5
-
-
TIM15_BKIN
SAI1_D3
-
-
TIM1_CH4N
USART1_RX
-
-
-
-
-
-
-
EVENT
OUT
PC6
-
-
TIM3_CH1
-
TIM8_CH1
-
I2S2_MCK
-
-
-
-
-
-
-
-
EVENT
OUT
PC7
-
-
TIM3_CH2
-
TIM8_CH2
-
I2S3_MCK
-
-
-
-
-
-
-
-
EVENT
OUT
PC8
-
-
TIM3_CH3
-
TIM8_CH3
-
TIM20_CH3
-
I2C3_SCL
-
-
-
-
-
-
EVENT
OUT
PC9
-
-
TIM3_CH4
-
TIM8_CH4
I2SCKIN
TIM8_BKIN2
-
I2C3_SDA
-
-
-
-
-
-
EVENT
OUT
PC10
-
-
-
-
TIM8_CH1N
UART4_TX
SPI3_SCK/I2
S3_CK
USART3_TX
-
-
-
-
-
-
-
EVENT
OUT
PC11
-
-
-
-
TIM8_CH2N
UART4_RX
SPI3_MISO
USART3_RX
I2C3_SDA
-
-
-
-
-
-
EVENT
OUT
PC12
-
-
-
-
TIM8_CH3N
UART5_TX
SPI3_MOSI/I
2S3_SD
USART3_CK
-
-
-
-
-
-
UCPD1_F
RSTX
EVENT
OUT
PC13
-
-
TIM1_BKIN
-
TIM1_CH1N
-
TIM8_CH4N
-
-
-
-
-
-
-
-
EVENT
OUT
PC14
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PC15
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
DS13122 Rev 3
Port C
Port
65/199
Pinouts and pin description
AF0
STM32G491xC STM32G491xE
Table 13. Alternate function (continued)
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
SYS_AF
LPTIM1/TIM2
/15/16/17
COMP1/I2C3
/TIM1/2/3/4/8/
15/20
COMP3/SAI1/
TIM8/15/20/U
SB
I2C1/2/3/TIM
1/8/16/17
I2S2/3/Infrar
ed/SPI1/2/TI
M8/UART4/5
I2S2/3/Infrare
d/SPI2/3/TIM
1/8/20
USART1/2/3
COMP1/2/3/4/I
2C3/LPUART1/
UART4/5
FDCAN1/2/T
IM1/8/15
QUADSPI1/
TIM2/3/4/8/1
7
LPTIM1/
TIM1/8
LPUART1/S
AI1/TIM1
SAI1
SAI1/TIM
2/15/UAR
T4/5/UCP
D1
EVENT
PD0
-
-
-
-
-
-
TIM8_CH4N
-
-
FDCAN1_RX
-
-
-
-
-
EVENT
OUT
PD1
-
-
-
-
TIM8_CH4
-
TIM8_BKIN2
-
-
FDCAN1_TX
-
-
-
-
-
EVENT
OUT
PD2
-
-
TIM3_ETR
-
TIM8_BKIN
UART5_RX
-
-
-
-
-
-
-
-
-
EVENT
OUT
PD3
-
-
TIM2_CH1/TI
M2_ETR
-
-
-
-
USART2_CTS
-
-
QUADSPI1_
BK2_NCS
-
-
-
-
EVENT
OUT
PD4
-
-
TIM2_CH2
-
-
-
-
USART2_RTS
_DE
-
-
QUADSPI1_
BK2_IO0
-
-
-
-
EVENT
OUT
PD5
-
-
-
-
-
-
-
USART2_TX
-
-
QUADSPI1_
BK2_IO1
-
-
-
-
EVENT
OUT
PD6
-
-
TIM2_CH4
SAI1_D1
-
-
-
USART2_RX
-
-
QUADSPI1_
BK2_IO2
-
-
SAI1_SD
_A
-
EVENT
OUT
PD7
-
-
TIM2_CH3
-
-
-
-
USART2_CK
-
-
QUADSPI1_
BK2_IO3
-
-
-
-
EVENT
OUT
PD8
-
-
-
-
-
-
-
USART3_TX
-
-
-
-
-
-
-
EVENT
OUT
PD9
-
-
-
-
-
-
-
USART3_RX
-
-
-
-
-
-
-
EVENT
OUT
PD10
-
-
-
-
-
-
-
USART3_CK
-
-
-
-
-
-
-
EVENT
OUT
PD11
-
-
-
-
-
-
-
USART3_CTS
-
-
-
-
-
-
-
EVENT
OUT
PD12
-
-
TIM4_CH1
-
-
-
-
USART3_RTS
_DE
-
-
-
-
-
-
-
EVENT
OUT
PD13
-
-
TIM4_CH2
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PD14
-
-
TIM4_CH3
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PD15
-
-
TIM4_CH4
-
-
-
SPI2_NSS
-
-
-
-
-
-
-
-
EVENT
OUT
DS13122 Rev 3
Port D
Port
STM32G491xC STM32G491xE
AF0
Pinouts and pin description
66/199
Table 13. Alternate function (continued)
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
SYS_AF
LPTIM1/TIM2
/15/16/17
COMP1/I2C3
/TIM1/2/3/4/8/
15/20
COMP3/SAI1/
TIM8/15/20/U
SB
I2C1/2/3/TIM
1/8/16/17
I2S2/3/Infrar
ed/SPI1/2/TI
M8/UART4/5
I2S2/3/Infrare
d/SPI2/3/TIM
1/8/20
USART1/2/3
COMP1/2/3/4/I
2C3/LPUART1/
UART4/5
FDCAN1/2/T
IM1/8/15
QUADSPI1/
TIM2/3/4/8/1
7
LPTIM1/
TIM1/8
LPUART1/S
AI1/TIM1
SAI1
SAI1/TIM
2/15/UAR
T4/5/UCP
D1
EVENT
PE0
-
-
TIM4_ETR
TIM20_CH4N
TIM16_CH1
-
TIM20_ETR
USART1_TX
-
-
-
-
-
-
-
EVENT
OUT
PE1
-
-
-
-
TIM17_CH1
-
TIM20_CH4
USART1_RX
-
-
-
-
-
-
-
EVENT
OUT
PE2
TRACECK
-
TIM3_CH1
SAI1_CK1
-
-
TIM20_CH1
-
-
-
-
-
-
SAI1_M
CLK_A
-
EVENT
OUT
PE3
TRACED0
-
TIM3_CH2
-
-
-
TIM20_CH2
-
-
-
-
-
-
SAI1_SD
_B
-
EVENT
OUT
PE4
TRACED1
-
TIM3_CH3
SAI1_D2
-
-
TIM20_CH1N
-
-
-
-
-
-
SAI1_FS
_A
-
EVENT
OUT
PE5
TRACED2
-
TIM3_CH4
SAI1_CK2
-
-
TIM20_CH2N
-
-
-
-
-
-
SAI1_SC
K_A
-
EVENT
OUT
PE6
TRACED3
-
-
SAI1_D1
-
-
TIM20_CH3N
-
-
-
-
-
-
SAI1_SD
_A
-
EVENT
OUT
PE7
-
-
TIM1_ETR
-
-
-
-
-
-
-
-
-
-
SAI1_SD
_B
-
EVENT
OUT
PE8
-
-
TIM1_CH1N
-
-
-
-
-
-
-
-
-
-
SAI1_SC
K_B
-
EVENT
OUT
PE9
-
-
TIM1_CH1
-
-
-
-
-
-
-
-
-
-
SAI1_FS
_B
-
EVENT
OUT
PE10
-
-
TIM1_CH2N
-
-
-
-
-
-
-
QUADSPI1_
CLK
-
-
SAI1_M
CLK_B
-
EVENT
OUT
PE11
-
-
TIM1_CH2
-
-
-
-
-
-
-
QUADSPI1_
BK1_NCS
-
-
-
-
EVENT
OUT
PE12
-
-
TIM1_CH3N
-
-
-
-
-
-
-
QUADSPI1_
BK1_IO0
-
-
-
-
EVENT
OUT
PE13
-
-
TIM1_CH3
-
-
-
-
-
-
-
QUADSPI1_
BK1_IO1
-
-
-
-
EVENT
OUT
PE14
-
-
TIM1_CH4
-
-
-
TIM1_BKIN2
-
-
-
QUADSPI1_
BK1_IO2
-
-
-
-
EVENT
OUT
PE15
-
-
TIM1_BKIN
-
-
-
TIM1_CH4N
USART3_RX
-
-
QUADSPI1_
BK1_IO3
-
-
-
-
EVENT
OUT
DS13122 Rev 3
Port E
Port
67/199
Pinouts and pin description
AF0
STM32G491xC STM32G491xE
Table 13. Alternate function (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
SYS_AF
LPTIM1/TIM2
/15/16/17
COMP1/I2C3
/TIM1/2/3/4/8/
15/20
COMP3/SAI1/
TIM8/15/20/U
SB
I2C1/2/3/TIM
1/8/16/17
I2S2/3/Infrar
ed/SPI1/2/TI
M8/UART4/5
I2S2/3/Infrare
d/SPI2/3/TIM
1/8/20
USART1/2/3
COMP1/2/3/4/I
2C3/LPUART1/
UART4/5
FDCAN1/2/T
IM1/8/15
QUADSPI1/
TIM2/3/4/8/1
7
LPTIM1/
TIM1/8
LPUART1/S
AI1/TIM1
SAI1
SAI1/TIM
2/15/UAR
T4/5/UCP
D1
EVENT
PF0
-
-
-
-
I2C2_SDA
SPI2_NSS/I2
S2_WS
TIM1_CH3N
-
-
-
-
-
-
-
-
EVENT
OUT
PF1
-
-
-
-
-
SPI2_SCK/I2
S2_CK
-
-
-
-
-
-
-
-
-
EVENT
OUT
PF2
-
-
TIM20_CH3
-
I2C2_SMBA
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
PF9
-
-
TIM20_BKIN
TIM15_CH1
-
SPI2_SCK
-
-
-
-
QUADSPI1_
BK1_IO1
-
-
SAI1_FS
_B
-
EVENT
OUT
PF10
-
-
TIM20_BKIN
2
TIM15_CH2
-
SPI2_SCK
-
-
-
-
QUADSPI1_
CLK
-
-
SAI1_D3
-
EVENT
OUT
PG10
MCO
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT
OUT
Port G
Port F
Port
Pinouts and pin description
68/199
Table 13. Alternate function (continued)
DS13122 Rev 3
STM32G491xC STM32G491xE
STM32G491xC STM32G491xE
Electrical characteristics
5
Electrical characteristics
5.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
5.1.1
Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3σ).
5.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2σ).
5.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
5.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 13.
5.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 14.
Figure 13. Pin loading conditions
Figure 14. Pin input voltage
MCU pin
MCU pin
C = 50 pF
VIN
MS19210V1
DS13122 Rev 3
MS19211V1
69/199
164
Electrical characteristics
5.1.6
STM32G491xC STM32G491xE
Power supply scheme
Figure 15. Power supply scheme
VBAT
Backup circuitry
(LSE, RTC,
Backup registers)
1.55 – 3.6 V
Power switch
VDD
VCORE
n x VDD
Regulator
OUT
n x 100 nF
GPIOs
IN
+1 x 4.7 μF
Level shifter
VDDIO
IO
logic
Kernel logic
(CPU, Digital
& Memories)
n x VSS
VDDA
VREF+
VREF
VREF+
10 nF
+1 μF
Reset block
Temp. sensor
PLL, HSI16, HSI48
VDDA
100 nF +1 μF
VREF-
ADCs/
DACs/
OPAMPs/
COMPs/
VREFBUF
Standby circuitry
(Wakeup logic,
IWDG)
VSSA
MS60206V1
Caution:
70/199
Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure the good functionality of
the device.
DS13122 Rev 3
STM32G491xC STM32G491xE
5.1.7
Electrical characteristics
Current consumption measurement
Figure 16. Current consumption measurement
IDD_VBAT
IDD
IDDA
VBAT
VDD
VDDA
MS60200V1
The IDD_ALL parameters given in Table 21 to Table 33 represent the total MCU consumption
including the current supplying VDD, VDDA and VBAT.
5.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 14: Voltage characteristics,
Table 15: Current characteristics and Table 16: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability. Exposure to maximum rating conditions for
extended periods may affect device reliability. Device mission profile (application conditions)
is compliant with JEDEC JESD47 qualification standard, extended mission profiles are
available on demand.
Table 14. Voltage characteristics(1)
Symbol
VDD - VSS
VIN(2)
|∆VDDx|
|VSSx-VSS|
Ratings
Min
Max
-0.3
4.0
Input voltage on FT_xxx pins except FT_c pins
VSS-0.3
min (VDD, VDDA)
+ 4.0(3)(4)
Input voltage on FT_c pins
VSS-0.3
5.5
Input voltage on TT_xx pins
VSS-0.3
4.0
Input voltage on any other pins
VSS-0.3
4.0
-
50
-
50
-
0.4
External main supply voltage (including VDD,
VDDA, VBAT and VREF+)
Variations between different VDDX power pins of
the same domain
Variations between all the different ground pins
VREF+-VDDA Allowed voltage difference for VREF+ > VDDA
(5)
Unit
V
mV
V
1. All main power (VDD, VDDA, VBAT) and ground (VSS, VSSA) pins must always be connected to the external
power supply, in the permitted range.
DS13122 Rev 3
71/199
164
Electrical characteristics
STM32G491xC STM32G491xE
2. VIN maximum must always be respected. Refer to Table 15: Current characteristics for the maximum
allowed injected current values.
3. This formula has to be applied only on the power supplies related to the IO structure described in the pin
definition table.
4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
5. Include VREF- pin.
Table 15. Current characteristics
Symbol
Ratings
Max
∑IVDD
Total current into sum of all VDD power lines (source)(1)
150
∑IVSS
(sink)(1)
150
IVDD(PIN)
IVSS(PIN)
IIO(PIN)
Total current out of sum of all VSS ground lines
(1)
100
(sink)(1)
100
Maximum current into each VDD power pin (source)
Maximum current out of each VSS ground pin
Output current sunk by any I/O and control pin except FT_f
20
Output current sunk by any FT_f pin
20
Output current sourced by any I/O and control pin
∑IIO(PIN)
Total output current sunk by sum of all I/Os and control
Unit
mA
20
pins(2)
100
Total output current sourced by sum of all I/Os and control pins(2)
IINJ(PIN)(3)
Injected current on FT_xxx, TT_xx, NRST pins
∑|IINJ(PIN)|
Total injected current (sum of all I/Os and control pins)(5)
100
-5/0(4)
±25
1. All main power (VDD, VDDA, VBAT) and ground (VSS, VSSA) pins must always be connected to the external
power supplies, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output
current must not be sunk/sourced between two consecutive power supply pins referring to high pin count
LQFP packages.
3. Positive injection (when VIN > VDD) is not possible on these I/Os and does not occur for input voltages
lower than the specified maximum value.
4. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 14:
Voltage characteristics for the minimum allowed input voltage values.
5. When several inputs are submitted to a current injection, the maximum ∑|IINJ(PIN)| is the absolute sum of
the negative injected currents (instantaneous values).
Table 16. Thermal characteristics
Symbol
TSTG
TJ
72/199
Ratings
Storage temperature range
Maximum junction temperature
DS13122 Rev 3
Value
Unit
–65 to +150
°C
150
°C
STM32G491xC STM32G491xE
Electrical characteristics
5.3
Operating conditions
5.3.1
General operating conditions
Table 17. General operating conditions
Symbol
Parameter
Conditions
Min
Max
fHCLK
Internal AHB clock frequency
-
0
170
fPCLK1
Internal APB1 clock frequency
-
0
170
fPCLK2
Internal APB2 clock frequency
-
0
170
Standard operating voltage
-
1.71(1)
3.6
VDD
VDDA
Analog supply voltage
ADC or COMP used
1.62
DAC 1 MSPS or DAC 15 MSPS
1.71
OPAMP used
2.0
VREFBUF used
2.4
ADC, DAC, OPAMP, COMP,
VREFBUF not used
VBAT
VIN
Backup operating voltage
-
TA
TJ
Power dissipation
V
3.6
TT_xx
-0.3
VDD+0.3
FT_c I/O
-0.3
5
-0.3
MIN(MIN(VDD,
VDDA)+3.6 V,
5.5 V)(2)(3)
V
V
See Section 6.10: Thermal characteristics for application
appropriate thermal resistance and package.
Power dissipation is then calculated according ambient
temperature (TA) and maximum junction temperature (TJ) and
selected thermal resistance.
Ambient temperature for the
suffix 6 version
Maximum power dissipation
-40
85
Low-power dissipation(4)
-40
105
Ambient temperature for the
suffix 3 version
Maximum power dissipation
-40
125
Low-power dissipation(4)
-40
130
Suffix 6 version
-40
105
Suffix 3 version
-40
130
Junction temperature range
V
3.6
3.6
I/O input voltage
MHz
3.6
1.55
All I/O except TT_xx and FT_c
PD
0
Unit
mW
°C
°C
1. When RESET is released functionality is guaranteed down to VBOR0 Min.
2. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table.
Maximum I/O input voltage is the smallest value between MIN(VDD, VDDA)+3.6 V and 5.5V.
3. For operation with voltage higher than Min (VDD, VDDA) +0.3 V, the internal Pull-up and Pull-Down resistors must be
disabled.
4. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 6.10:
Thermal characteristics).
DS13122 Rev 3
73/199
164
Electrical characteristics
5.3.2
STM32G491xC STM32G491xE
Operating conditions at power-up / power-down
The parameters given in Table 18 are derived from tests performed under the ambient
temperature condition summarized in Table 17.
Table 18. Operating conditions at power-up / power-down
Symbol
Parameter
VDD rise time rate
tVDD
Min
Max
0
∞
10
∞
0
∞
10
∞
-
VDD fall time rate
VDDA rise time rate
tVDDA
5.3.3
Conditions
-
VDDA fall time rate
Unit
µs/V
µs/V
Embedded reset and power control block characteristics
The parameters given in Table 19 are derived from tests performed under the ambient
temperature conditions summarized in Table 17: General operating conditions.
Table 19. Embedded reset and power control block characteristics
Symbol
tRSTTEMPO(2)
74/199
Parameter
Reset temporization after
BOR0 is detected
VBOR0(2)
Brown-out reset threshold 0
VBOR1
Brown-out reset threshold 1
VBOR2
Brown-out reset threshold 2
VBOR3
Brown-out reset threshold 3
VBOR4
Brown-out reset threshold 4
VPVD0
Programmable voltage
detector threshold 0
VPVD1
PVD threshold 1
VPVD2
PVD threshold 2
VPVD3
PVD threshold 3
Conditions(1)
Min
Typ
Max
Unit
-
250
400
μs
Rising edge
1.62
1.66
1.7
Falling edge
1.6
1.64
1.69
Rising edge
2.06
2.1
2.14
Falling edge
1.96
2
2.04
Rising edge
2.26
2.31
2.35
Falling edge
2.16
2.20
2.24
Rising edge
2.56
2.61
2.66
Falling edge
2.47
2.52
2.57
Rising edge
2.85
2.90
2.95
Falling edge
2.76
2.81
2.86
Rising edge
2.1
2.15
2.19
Falling edge
2
2.05
2.1
Rising edge
2.26
2.31
2.36
Falling edge
2.15
2.20
2.25
Rising edge
2.41
2.46
2.51
Falling edge
2.31
2.36
2.41
Rising edge
2.56
2.61
2.66
Falling edge
2.47
2.52
2.57
VDD rising
DS13122 Rev 3
V
V
V
V
V
V
V
V
V
STM32G491xC STM32G491xE
Electrical characteristics
Table 19. Embedded reset and power control block characteristics (continued)
Conditions(1)
Min
Typ
Max
Rising edge
2.69
2.74
2.79
Falling edge
2.59
2.64
2.69
Rising edge
2.85
2.91
2.96
Falling edge
2.75
2.81
2.86
Rising edge
2.92
2.98
3.04
Falling edge
2.84
2.90
2.96
Hysteresis in
continuous
Hysteresis voltage of BORH0 mode
-
20
-
Hysteresis in
other mode
-
30
-
Symbol
Parameter
VPVD4
PVD threshold 4
VPVD5
PVD threshold 5
VPVD6
PVD threshold 6
Vhyst_BORH0
Unit
V
V
V
mV
Hysteresis voltage of BORH
(except BORH0) and PVD
-
-
100
-
mV
BOR(3) (except BOR0) and
IDD
(BOR_PVD)(2) PVD consumption from VDD
-
-
1.1
1.6
µA
Vhyst_BOR_PVD
VPVM1
VDDA peripheral voltage
monitoring (COMP/ADC)
Rising edge
1.61
1.65
1.69
Falling edge
1.6
1.64
1.68
VPVM2
VDDA peripheral voltage
monitoring (OPAMP/DAC)
Rising edge
1.78
1.82
1.86
Falling edge
1.77
1.81
1.85
V
V
Vhyst_PVM1
PVM1 hysteresis
-
-
10
-
mV
Vhyst_PVM2
PVM2 hysteresis
-
-
10
-
mV
-
-
2
-
µA
IDD
PVM1 and PVM2
(PVM1/PVM2)
consumption from VDD
(2)
1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power
sleep modes.
2. Guaranteed by design.
3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply
current characteristics tables.
DS13122 Rev 3
75/199
164
Electrical characteristics
5.3.4
STM32G491xC STM32G491xE
Embedded voltage reference
The parameters given in Table 20 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 17: General operating
conditions.
Table 20. Embedded internal voltage reference
Symbol
Parameter
VREFINT
Internal reference
voltage
Conditions
Min
–40 °C < TA < +130 °C 1.182 1.212
Max
Unit
1.232
V
ADC sampling time
when reading the
internal reference
voltage
-
4(2)
-
-
µs
Start time of reference
voltage buffer when
ADC is enable
-
-
8
12(2)
µs
VREFINT buffer
consumption from VDD
IDD(VREFINTBUF) when converted by
ADC
-
-
12.5
20(2)
µA
tS_vrefint
(1)
tstart_vrefint
∆VREFINT
Internal reference
voltage spread over
the temperature range
VDD = 3 V
-
5
7.5(2)
mV
TCoeff
Average temperature
coefficient
–40°C < TA < +130°C
-
30
50(2)
ppm/°C
ACoeff
Long term stability
1000 hours, T = 25°C
-
300
1000(2)
ppm
Average voltage
coefficient
3.0 V < VDD < 3.6 V
-
250
1200(2)
ppm/V
24
25
26
49
50
51
74
75
76
VDDCoeff
VREFINT_DIV1
1/4 reference voltage
VREFINT_DIV2
1/2 reference voltage
VREFINT_DIV3
3/4 reference voltage
-
1. The shortest sampling time is determined in the application by multiple iterations.
2. Guaranteed by design.
76/199
Typ
DS13122 Rev 3
%
VREFINT
STM32G491xC STM32G491xE
Electrical characteristics
Figure 17. VREFINT versus temperature
V
1.235
1.23
1.225
1.22
1.215
1.21
1.205
1.2
1.195
1.19
1.185
-40
-20
0
20
40
Mean
60
Min
80
100
120
°C
Max
MSv40169V2
5.3.5
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code
The current consumption is measured as described in Figure 16: Current consumption
measurement.
Typical and maximum current consumption
The MCU is placed under the following conditions:
•
All I/O pins are in analog input mode
•
All peripherals are disabled except when explicitly mentioned
•
The Flash memory access time is adjusted with the minimum wait states number,
depending on the fHCLK frequency (refer to the table “number of wait states according
to CPU clock (HCLK) frequency” available in the reference manual RM0440
"STM32G4 Series advanced Arm®-based 32-bit MCUs").
•
When the peripherals are enabled fPCLK = fHCLK
•
The voltage scaling Range 1 is adjusted to fHCLK frequency as follows:
–
Voltage Range 1 Boost mode for 150 MHz < fHCLK ≤ 170 MHz
–
Voltage Range 1 Normal mode for 26 MHz < fHCLK ≤ 150 MHz
The parameters given in Table 26 to Table 33 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 17: General
operating conditions.
DS13122 Rev 3
77/199
164
Condition
Symbol
Parameter
-
Typ
Voltage
scaling
Range 2
DS13122 Rev 3
IDD (Run)
Supply current
in Run mode
fHCLK = fHSE up to
48 MHz included,
bypass mode PLL
ON above 48 MHz
all peripherals
disable
fHCLK
Max
Unit
25°C
55°C
85°C 105°C 125°C 25°C
55°C
85°C 105°C 125°C
26 MHz
3.55
3.80
4.40
5.35
6.85
3.80
4.60
7.10
11.0
16.0
16 MHz
2.25
2.45
3.10
4.00
5.50
2.60
3.40
5.90
9.00
15.0
8 MHz
1.25
1.45
2.05
2.95
4.45
1.60
2.50
4.90
8.00
14.0
4 MHz
0.715 0.915
1.50
2.40
3.90
1.10
2.00
4.40
7.50
13.0
2 MHz
0.445 0.645
1.25
2.15
3.60
0.850
1.70
4.10
7.20
13.0
1 MHz
0.310 0.510
1.10
2.00
3.50
0.720
1.60
4.00
7.10
13.0
100 KHz 0.195 0.390 0.990
1.90
3.35
0.600
1.40
3.90
7.00
13.0
Range 1
Boost
170 MHz
mode
26.5
27.0
28.0
29.5
31.5
28.0
29.0
33.0
38.0
45.0
150 MHz
22.0
22.0
23.0
24.5
26.5
23.0
24.0
28.0
32.0
38.0
120 MHz
17.5
18.0
19.0
20.0
22.0
19.0
20.0
23.0
27.0
34.0
80 MHz
12.0
12.0
13.0
14.5
16.0
13.0
14.0
18.0
22.0
28.0
72 MHz
10.5
11.0
12.0
13.0
15.0
12.0
13.0
16.0
20.0
27.0
64 MHz
9.55
9.90
11.0
12.0
14.0
11.0
12.0
15.0
19.0
26.0
48 MHz
7.65
8.05
8.95
10.0
12.0
7.80
9.20
13.0
17.0
24.0
32 MHz
5.25
5.55
6.40
7.60
9.40
5.60
6.80
11.0
15.0
21.0
24 MHz
3.90
4.20
5.00
6.15
7.95
4.40
5.70
8.90
13.0
20.0
16 MHz
2.70
3.00
3.75
4.90
6.70
3.30
4.50
7.70
12.0
19.0
mA
STM32G491xC STM32G491xE
Range 1
Electrical characteristics
78/199
Table 21. Current consumption in Run and Low-power run modes, code with data
processing running from Flash in single Bank, ART enable (Cache ON Prefetch OFF)
Condition
Symbol
Parameter
-
fHCLK = fHSE
all peripherals disable
Supply current
IDD (LPRun) in Low-power
run mode
fHCLK = fHSI / HPRE
all peripherals disable
Typ
Voltage
scaling
fHCLK
Max
Unit
DS13122 Rev 3
25°C
55°C
85°C 105°C 125°C 25°C
55°C
85°C 105°C 125°C
2 MHz
390
590
1200
2000
3500
990
2000
4900
8600
15000
1 MHz
240
440
1050
1850
3350
840
1800
4700
8400
15000
250 KHz
130
330
940
1700
3250
690
1700
4700
8400
15000
62.5 KHz
100
300
915
1700
3200
670
1700
4700
8400
15000
2 MHz
815
1000
1600
2400
3950
1500
2600
5400
9300
16000
1 MHz
695
890
1500
2300
3800
1400
2400
5300
9100
15000
250 KHz
605
800
1400
2200
3750
1300
2200
5200
9000
15000
62.5 KHz
580
775
1400
2200
3700
1200
2300
5200
9000
15000
μA
STM32G491xC STM32G491xE
Table 21. Current consumption in Run and Low-power run modes, code with data
processing running from Flash in single Bank, ART enable (Cache ON Prefetch OFF) (continued)
Electrical characteristics
79/199
Typ
Condition
Symbol
Parameter
-
Voltage
scaling
Range 2
DS13122 Rev 3
IDD (Run)
Supply current
in Run mode
fHCLK = fHSE
up to 48 MHz
included, bypass
mode PLL ON
above 48 MHz all
peripherals disable
fHCLK
Max
Unit
25°C
55°C
85°C 105°C 125°C 25°C
55°C
85°C 105°C 125°C
26 MHz
3.15
3.40
4.05
4.95
6.50
3.40
4.30
6.70
9.80
15.0
16 MHz
2.00
2.25
2.85
3.75
5.30
2.40
3.20
5.60
8.80
14.0
8 MHz
1.10
1.30
1.95
2.85
4.35
1.50
2.30
4.70
7.90
13.0
4 MHz
0.650 0.855
1.45
2.35
3.90
0.970
1.90
4.30
7.40
13.0
2 MHz
0.415 0.615
1.20
2.10
3.65
0.750
1.70
4.10
7.20
13.0
1 MHz
0.295 0.495
1.10
2.00
3.50
0.640
1.50
3.90
7.10
13.0
100 KHz 0.190 0.385 0.985
1.90
3.40
0.530
1.40
3.80
7.00
12.0
Range 1
Boost
170 MHz
mode
23.5
24.0
25.0
26.5
28.5
25.0
26.0
30.0
35.0
42.0
150 MHz
19.5
19.5
20.5
22.0
24.0
20.0
22.0
25.0
29.0
36.0
120 MHz
15.5
16.0
17.0
18.0
20.0
17.0
18.0
21.0
25.0
32.0
80 MHz
10.5
11.0
11.5
13.0
15.0
12.0
13.0
16.0
20.0
27.0
72 MHz
9.50
9.85
10.5
12.0
14.0
11.0
12.0
15.0
19.0
26.0
64 MHz
8.50
8.85
9.65
11.0
12.5
9.00
11.0
14.0
18.0
25.0
48 MHz
6.85
7.25
8.10
9.30
11.0
7.00
8.40
12.0
16.0
23.0
32 MHz
4.70
5.05
5.85
7.00
8.90
5.10
6.30
9.50
14.0
21.0
24 MHz
3.50
3.80
4.60
5.75
7.60
4.00
5.30
8.50
13.0
19.0
16 MHz
2.45
2.70
3.50
4.60
6.45
3.00
4.20
7.40
12.0
18.0
Range 1
Electrical characteristics
80/199
Table 22. Current consumption in Run and Low-power run modes,
code with data processing running from SRAM1
mA
STM32G491xC STM32G491xE
Condition
Symbol
Parameter
-
fHCLK = fHSE
all peripherals disable
Supply current
IDD (LPRun) in Low-power
run mode
fHCLK = fHSI / HPRE
all peripherals disable
Typ
Voltage
scaling
fHCLK
Max
Unit
DS13122 Rev 3
25°C
55°C
85°C 105°C 125°C 25°C
55°C
85°C 105°C 125°C
2 MHz
350
550
1150
1950
3450
840
1900
5000
8700
15000
1 MHz
220
420
1050
1850
3450
710
1800
4800
8700
15000
250 KHz
120
320
930
1750
3350
610
1800
4500
8700
15000
62.5 KHz
93.0
290
905
1750
3300
580
1800
4600
8400
15000
2 MHz
775
970
1600
2450
4000
1500
2600
5400
9200
15000
1 MHz
670
865
1450
2350
3900
1400
2400
5300
9200
15000
250 KHz
595
790
1400
2250
3850
1300
2300
5200
8900
15000
62.5 KHz
575
770
1400
2250
3800
1300
2300
5200
8900
15000
μA
STM32G491xC STM32G491xE
Table 22. Current consumption in Run and Low-power run modes,
code with data processing running from SRAM1 (continued)
Electrical characteristics
81/199
Conditions
Symbol
Parameter
Code
-
Voltage scaling
Range2
fHCLK=26MHz
DS13122 Rev 3
IDD
(Run)
Supply current
in Run mode
fHCLK= fHSE up to 48
MHZ included, bypass
Range 1
mode PLL ON above
= 150 MHz
f
48 MHz all peripherals HCLK
disable
IDD
(LPRun)
Supply current
in Low-power
run
SYSCLK source is HSI
fHCLK = 2 MHz
all peripherals disable
TYP
Single Bank
Mode
Unit
25°C
Unit
25°C
Pseudo-dhrystone
3.55
mA
137
Coremark
3.60
mA
138
Dhrystone2.1
3.55
mA
137
Fibonacci
3.75
mA
144
While(1)
3.10
mA
119
Pseudo-dhrystone
22.0
mA
147
Coremark
21.5
mA
143
Dhrystone2.1
22.0
mA
147
Fibonacci
23.0
mA
153
While(1)
19.0
mA
127
Pseudo-dhrystone
26.5
mA
156
Coremark
26.5
mA
156
Dhrystone2.1
26.5
mA
156
Fibonacci
27.5
mA
162
While(1)
23.0
mA
135
Pseudo-dhrystone
815
uA
408
Coremark
840
uA
420
Dhrystone2.1
835
uA
418
Fibonacci
850
uA
425
While(1)
795
uA
398
µA/MHz
µA/MHz
-
µA/MHz
µA/MHz
STM32G491xC STM32G491xE
Range 1
Boost mode
fHCLK= 170 MHz
TYP
Single Bank
Mode
Electrical characteristics
82/199
Table 23. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF)
Conditions
Symbol
TYP 25°C
Parameter
Code
-
Voltage scaling
Range2
fHCLK=26 MHz
DS13122 Rev 3
IDD (Run)
fHCLK = fHSE up to 48 MHZ
Range 1
Supply current in included, bypass mode
PLL ON above 48 MHz all fHCLK= 150 MHz
Run mode
peripherals disable
Range 1
Boost mode
fHCLK= 170 MHz
SYSCLK source is HSI
Supply current in
fHCLK = 2 MHz
Low-power run
all peripherals disable
Unit
Single
bank
mode
83/199
Pseudo-dhrystone
3.15
mA
121
Coremark
3.25
mA
125
Dhrystone2.1
3.15
mA
121
Fibonacci
3.15
mA
121
While(1)
3.25
mA
125
Pseudo-dhrystone
19.5
mA
130
Coremark
20.0
mA
133
Dhrystone2.1
19.5
mA
130
Fibonacci
20.0
mA
133
While(1)
17.0
mA
113
Pseudo-dhrystone
23.5
mA
138
Coremark
24.5
mA
144
Dhrystone2.1
23.5
mA
138
Fibonacci
24.0
mA
141
While(1)
21.0
mA
124
Pseudo-dhrystone
775
uA
388
Coremark
815
uA
408
Dhrystone2.1
800
uA
400
Fibonacci
805
uA
403
While(1)
770
uA
385
Unit
µA/MHz
µA/MHz
µA/MHz
µA/MHz
Electrical characteristics
IDD
(LPRun)
Single bank
mode
TYP 25°C
STM32G491xC STM32G491xE
Table 24. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1
Conditions
Symbol
TYP 25°C
Parameter
Code
-
Voltage scaling
Range2
fHCLK=26 MHz
DS13122 Rev 3
IDD (Run)
fHCLK = fHSE up to 48 MHZ
Range 1
Supply current in included, bypass mode
PLL ON above 48 MHz all fHCLK= 150 MHz
Run mode
peripherals disable
Range 1
Boost mode
fHCLK= 170 MHz
SYSCLK source is HSI
Supply current in
fHCLK = 2 MHz
Low-power run
all peripherals disable
Unit
Single
bank
mode
Pseudo-dhrystone
2.55
mA
98
Coremark
2.65
mA
102
Dhrystone2.1
2.55
mA
98
Fibonacci
2.45
mA
94
While(1)
2.35
mA
90
Pseudo-dhrystone
15.0
mA
100
Coremark
15.5
mA
103
Dhrystone2.1
15.0
mA
100
Fibonacci
14.5
mA
97
While(1)
13.5
mA
90
Pseudo-dhrystone
18.0
mA
106
Coremark
19.0
mA
112
Dhrystone2.1
18.0
mA
106
Fibonacci
17.5
mA
103
While(1)
16.5
mA
97
Pseudo-dhrystone
720
uA
360
Coremark
760
uA
380
Dhrystone2.1
745
uA
373
Fibonacci
735
uA
368
While(1)
725
uA
363
Unit
µA/MHz
µA/MHz
µA/MHz
µA/MHz
STM32G491xC STM32G491xE
IDD
(LPRun)
Single bank
mode
TYP 25°C
Electrical characteristics
84/199
Table 25. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM2
Conditions
Symbol
TYP 25°C
Parameter
Code
-
Voltage scaling
Range2
fHCLK=26 MHz
DS13122 Rev 3
IDD (Run)
fHCLK = fHSE up to 48 MHZ
Range 1
Supply current in included, bypass mode
PLL ON above 48 MHz all fHCLK= 150 MHz
Run mode
peripherals disable
Range 1
Boost mode
fHCLK= 170 MHz
SYSCLK source is HSI
Supply current in
fHCLK = 2 MHz
Low-power run
all peripherals disable
Unit
Single
bank
mode
Pseudo-dhrystone
3.10
mA
119
Coremark
3.35
mA
129
Dhrystone2.1
3.10
mA
119
Fibonacci
3.55
mA
137
While(1)
3.40
mA
131
Pseudo-dhrystone
18.5
mA
123
Coremark
20.5
mA
137
Dhrystone2.1
18.5
mA
123
Fibonacci
22.0
mA
147
While(1)
21.0
mA
140
Pseudo-dhrystone
22.5
mA
132
Coremark
25.0
mA
147
Dhrystone2.1
22.5
mA
132
Fibonacci
27.0
mA
159
While(1)
25.5
mA
150
Pseudo-dhrystone
770
uA
385
Coremark
820
uA
410
Dhrystone2.1
790
uA
395
Fibonacci
830
uA
415
While(1)
820
uA
410
Unit
µA/MHz
µA/MHz
µA/MHz
µA/MHz
85/199
Electrical characteristics
IDD
(LPRun)
Single bank
mode
TYP 25°C
STM32G491xC STM32G491xE
Table 26. Typical current consumption in Run and Low-power run modes, with different codes
running from CCM
Typ
Condition
Symbol
Parameter
-
Voltage
scaling
Range 2
DS13122 Rev 3
IDD (Sleep)
Supply current
in Sleep mode
fHCLK = fHSE
up to 48 MHz
included, bypass
mode PLL ON
above 48 MHz all
peripherals disable
fHCLK
Max
Unit
25°C
55°C
85°C 105°C 125°C 25°C
55°C
85°C 105°C 125°C
26 MHz
1.20
1.40
2.05
2.95
4.45
1.50
2.30
4.70
7.80
13.0
16 MHz
0.790
1.00
1.60
2.50
4.00
1.20
2.00
4.40
7.50
13.0
8 MHz
0.500 0.705
1.30
2.20
3.70
0.800
1.70
4.10
7.20
13.0
4 MHz
0.345 0.545
1.15
2.05
3.50
0.670
1.60
4.00
7.10
13.0
2 MHz
0.265 0.460
1.05
1.95
3.45
0.600
1.50
3.90
7.00
13.0
1 MHz
0.220 0.420
1.00
1.90
3.40
0.560
1.50
3.90
7.00
13.0
100 KHz 0.185 0.380 0.980
1.85
3.35
0.530
1.40
3.80
6.90
12.0
Range 1
Boost
170 MHz
mode
6.45
6.80
7.70
8.95
11.0
7.30
8.70
13.0
17.0
24.0
150 MHz
5.35
5.65
6.50
7.65
9.45
6.10
7.30
11.0
15.0
22.0
120 MHz
4.40
4.70
5.50
6.60
8.45
5.10
6.30
9.50
14.0
20.0
80 MHz
3.10
3.35
4.15
5.25
7.10
3.70
4.90
8.20
13.0
19.0
72 MHz
2.80
3.10
3.90
5.00
6.80
3.50
4.70
7.90
12.0
19.0
64 MHz
2.55
2.85
3.60
4.75
6.55
3.20
4.40
7.60
12.0
19.0
48 MHz
2.40
2.75
3.55
4.70
6.50
2.70
3.80
7.00
12.0
18.0
32 MHz
1.70
2.05
2.85
3.95
5.75
2.10
3.30
6.50
11.0
17.0
24 MHz
1.25
1.55
2.35
3.45
5.25
1.80
3.00
6.20
11.0
17.0
16 MHz
0.930
1.20
2.00
3.10
4.85
1.50
2.70
5.90
9.90
17.0
Range 1
Electrical characteristics
86/199
Table 27. Current consumption in Sleep and Low-power sleep mode Flash ON
mA
STM32G491xC STM32G491xE
Condition
Symbol
Parameter
-
Typ
Voltage
scaling
fHCLK = fHSE
all peripherals disable
IDD
(LPSleep)
Supply current
in Low-power
sleep mode
fHCLK = fHSI / HPRE
all peripherals disable
fHCLK
Max
Unit
25°C
55°C
85°C 105°C 125°C 25°C
55°C
85°C 105°C 125°C
2 MHz
180
385
1000
1750
3300
1500
2500
5400
9000
15000
1 MHz
135
335
950
1850
3450
1000
2100
5000
8700
15000
250 KHz
100
300
915
1800
3400
600
1700
4700
8200
15000
62.5 KHz
92.5
295
905
1800
3400
590
1600
4100
7400
13000
2 MHz
600
795
1400
2300
3900
1300
2300
5300
8800
15000
1 MHz
585
785
1400
2300
3900
1300
2300
5300
8800
15000
250 KHz
575
775
1400
2250
3900
1300
2300
5300
8800
15000
62.5 KHz
575
770
1400
2250
3900
1300
2300
5300
8800
15000
μA
STM32G491xC STM32G491xE
Table 27. Current consumption in Sleep and Low-power sleep mode Flash ON (continued)
DS13122 Rev 3
Table 28. Current consumption in low-power sleep modes, Flash in power-down
Condition
Symbol
Parameter
-
fHCLK = fHSE
all peripherals
disable
Voltage
scaling
-
Supply current
in low-power
sleep mode
fHCLK = fHSI
all peripherals
disable
-
fHCLK
Max
Unit
25°C
55°C
85°C 105°C 125°C 25°C
55°C
85°C 105°C 125°C
2 MHz
175
380
990
1750
3300
670
1700
4800
8500
15000
1 MHz
130
330
945
1850
3450
620
1700
4700
8300
15000
250 KHz
95.5
295
905
1800
3400
590
1700
4500
8300
15000
62.5 KHz
87.0
285
895
1800
3400
530
1400
3800
6900
12000
2 MHz
595
790
1400
2300
3900
1300
2300
5200
9000
15000
1 MHz
580
775
1400
2300
3900
1300
2300
5200
9000
15000
250 KHz
570
765
1350
2250
3850
1300
2200
5200
8800
15000
62.5 KHz
570
765
1350
2250
3850
1000
1900
4300
7400
13000
μA
87/199
Electrical characteristics
IDD
(LPSleep)
Typ
Conditions
Symbol
Parameter
55°C
85°C
105°C
125°C
25°C
55°C
85°C
105°C
125°C
1.8 V
64.5
250
800
1600
3000
440
1000
3400
6300
11000
2.4 V
67.5
250
805
1600
3050
440
1000
3500
6400
11000
3.0 V
68.0
250
805
1650
3100
440
1000
3500
6400
12000
3.6 V
68.5
250
810
1650
3100
440
1200
3500
6400
12000
1.8 V
65.5
250
800
1600
3000
440
1000
3400
6300
11000
2.4 V
67.5
250
805
1600
3050
440
1000
3500
6400
11000
3.0 V
68.5
250
805
1650
3100
440
1200
3500
6400
12000
3.6 V
69.0
250
815
1650
3100
450
1200
3500
6400
12000
1.8 V
65.5
250
800
1600
3000
-
-
-
-
-
2.4 V
67.5
250
805
1600
3050
-
-
-
-
-
3.0 V
68.5
250
805
1650
3100
-
-
-
-
-
3.6 V
69.0
250
810
1650
3100
-
-
-
-
-
1.8 V
56.5
215
700
1450
-
-
-
-
-
-
2.4 V
57.0
215
705
1450
-
-
-
-
-
-
3.0 V
57.0
215
710
1450
-
-
-
-
-
-
3.6 V
58.0
220
715
1450
-
-
-
-
-
-
Wakeup clock is HSI
= 16 MHz,
3.0 V
1.70
-
-
-
-
-
-
-
-
-
Wakeup clock is
HSI = 4 MHz,
(HPRE divider=4),
voltage Range 2
3.0 V
1.25
-
-
-
-
-
-
-
-
-
RTC clocked by LSI
DS13122 Rev 3
IDD
Supply current RTC clocked by LSE
in Stop 1 mode, bypassed at 32768
(Stop 1
with RTC) RTC enabled Hz
RTC clocked by LSE
quartz in low drive
mode at 32768 Hz
IDD
(Stop 1
with RTC)
µA
mA
1. Guaranteed by characterization results, unless otherwise specified.
STM32G491xC STM32G491xE
25°C
Supply current
in Stop 1 mode, RTC disabled
RTC disabled
Supply current
during wakeup
from
Stop 1 mode
Unit
VDD
-
IDD
(Stop 1)
MAX(1)
TYP
Electrical characteristics
88/199
Table 29. Current consumption in Stop 1 mode
Conditions
Symbol
Parameter
-
IDD(Stop 0)
Supply current
in Stop 0 mode, RTC disabled
MAX(1)
TYP
Unit
VDD
25°C
55°C
85°C
105°C
125°C
25°C
55°C
85°C
105°C
125°C
1.8 V
170
365
955
1800
3350
570
1400
3800
6900
12000
2.4 V
170
365
955
1800
3350
570
1400
3800
6900
12000
3V
175
370
960
1850
3350
580
1400
3800
6900
12000
3.6 V
175
370
960
1850
3400
580
1400
3800
6900
12000
µA
1. Guaranteed by characterization results, unless otherwise specified.
STM32G491xC STM32G491xE
Table 30. Current consumption in Stop 0 mode
Table 31. Current consumption in Standby mode
Conditions
Symbol
Parameter
DS13122 Rev 3
-
No independent
watchdog
IDD
(Standby)
Supply current in Standby
mode (backup registers
retained),
RTC disabled
With independent
watchdog
MAX(1)
TYP
Unit
55°C
85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
1.8 V
105
325
1650
4750
12500
190
500
2900
7800
21000
2.4 V
115
370
1900
5500
14500
210
570
3200
8800
23000
3V
130
430
2250
6400
17000
230
670
3700 10000 26000
3.6 V
180
560
2700
7600
20000
330
890
4400 12000 30000
1.8 V
285
-
-
-
-
-
-
-
-
-
2.4 V
335
-
-
-
-
-
-
-
-
-
3V
395
-
-
-
-
-
-
-
-
-
3.6 V
495
-
-
-
-
-
-
-
-
-
nA
89/199
Electrical characteristics
VDD 25°C
Conditions
Symbol
Parameter
85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
1.8 V
435
660
2000
5050
12500
530
850
3200
8100
21000
2.4 V
545
810
2350
5900
15000
650
1200 3700
9200
24000
3V
675
985
2750
6900
17500
800
1400 4200 11000
27000
3.6 V
855
1250
3350
8250
20500 1100 1700 5100 13000 31000
1.8 V
470
-
-
-
-
-
-
-
-
-
2.4 V
600
-
-
-
-
-
-
-
-
-
3V
735
-
-
-
-
-
-
-
-
-
3.6 V
935
-
-
-
-
-
-
-
-
-
1.8 V
320
540
1900
4950
12500
-
-
-
-
-
2.4 V
410
670
2250
5850
15000
-
-
-
-
-
3V
530
830
2650
6800
17500
-
-
-
-
-
3.6 V
695
1100
3200
8150
20500
-
-
-
-
-
1.8 V
455
670
1950
4500
11500
-
-
-
-
-
RTC clocked by
2.4 V
LSE quartz(2) in low
3V
drive mode
565
810
2300
5250
13500
-
-
-
-
-
705
1000
2700
6100
15500
-
-
-
-
-
3.6 V
900
1250
3300
7250
18500
-
-
-
-
-
1.8 V
340
1125
4250
9750
20500
-
-
-
-
-
DS13122 Rev 3
IDD
(SRAM2)(3)
Supply current to be added in
Standby mode when SRAM2
is retained
2.4 V
340
1130
4250 10000 21000
-
-
-
-
-
3V
340
1120
4250
9600
21000
-
-
-
-
-
3.6 V
345
1140
4250
9900
21500
-
-
-
-
-
RTC clocked by
LSI, with
independent
watchdog
RTC clocked by
LSE bypassed at
32768 Hz
-
nA
nA
nA
STM32G491xC STM32G491xE
55°C
RTC clocked by
LSI, no
independent
watchdog
Supply current in Standby
mode (backup registers
(Standby with retained),
RTC)
RTC enabled
Unit
VDD 25°C
-
IDD
MAX(1)
TYP
Electrical characteristics
90/199
Table 31. Current consumption in Standby mode (continued)
Conditions
Symbol
Parameter
VDD 25°C
-
IDD (wakeup
Supply current during wakeup Wakeup clock is
from Standby) from Standby mode
HSI16 = 16 MHz(4)
MAX(1)
TYP
3.0
2.3
Unit
55°C
85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
-
-
-
-
-
-
-
-
-
mA
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
3. The supply current in Standby with SRAM2 mode is: IDD_ALL(Standby) + IDD_ALL(SRAM2). The supply current in Standby with RTC with SRAM2 mode is: IIDD_ALL(Standby
+ RTC) + IDD_ALL(SRAM2).
4. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 35: Low-power mode wakeup timings.
STM32G491xC STM32G491xE
Table 31. Current consumption in Standby mode (continued)
Table 32. Current consumption in Shutdown mode
Conditions
DS13122 Rev 3
Symbol
Parameter
-
IDD
(Shutdown)
Supply current
in Shutdown
mode (backup
registers
retained) RTC
disabled
-
MAX(1)
TYP
Unit
VDD
25°C
55°C
85°C
105°C
125°C
25°C
55°C
85°C
105°C
125°C
1.8 V
26.0
160
1050
3350
9800
51.0
320
2200
6300
18000
2.4 V
28.0
195
1200
3900
11500
66.0
370
2400
7000
20000
3V
42.0
230
1450
4550
13500
89.0
450
2800
8000
22000
3.6 V
69.0
335
1850
5500
15500
170
630
3400
9500
26000
nA
Electrical characteristics
91/199
Conditions
Symbol
Parameter
Supply current
in Shutdown
IDD
mode (backup
(Shutdown with registers
RTC)
retained) RTC
enabled
DS13122 Rev 3
IDD(wakeup
from
Shutdown)
Supply current
during wakeup
from Shutdown
mode
MAX(1)
TYP
Unit
-
VDD
25°C
55°C
85°C
105°C
125°C
25°C
55°C
85°C
105°C
125°C
RTC
clocked by
LSE
bypassed
at 32768
Hz
1.8 V
230
370
1250
3550
10000
-
-
-
-
-
2.4 V
330
495
1550
4200
11500
-
-
-
-
-
3V
440
640
1850
4950
13500
-
-
-
-
-
3.6 V
595
855
2350
6050
16500
-
-
-
-
-
RTC
clocked by
LSE
quartz(2) in
low drive
mode
1.8 V
370
510
1350
3550
-
-
-
-
-
-
2.4 V
470
640
1650
4200
-
-
-
-
-
-
3V
615
810
2000
5000
-
-
-
-
-
-
3.6 V
805
1050
2500
6100
-
-
-
-
-
-
3V
1.60
-
-
-
-
-
-
-
-
-
Wakeup
clock is
HSI16 =
16 MHz(3)
Electrical characteristics
92/199
Table 32. Current consumption in Shutdown mode (continued)
nA
mA
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 35: Low-power mode wakeup timings.
STM32G491xC STM32G491xE
Conditions
Symbol
Parameter
25°C
55°C
85°C
105°C
125°C
25°C
55°C
85°C
105°C
125°C
1.8 V
4.00
31.0
220
680
1950
-
-
-
-
-
2.4 V
5.00
41.0
255
780
2250
-
-
-
-
-
3V
7.00
45.0
300
910
2600
-
-
-
-
-
3.6 V
13.0
66.0
370
1100
3000
-
-
-
-
-
RTC
enabled and
clocked by
LSE
bypassed at
32768 Hz
1.8 V
215
245
435
895
-
-
-
-
-
-
2.4 V
300
340
555
1100
-
-
-
-
-
-
3V
405
445
695
1300
-
-
-
-
-
-
3.6 V
530
575
865
1600
-
-
-
-
-
-
RTC
enabled and
clocked by
LSE
quartz(2)
1.8 V
355
395
580
785
2050
-
-
-
-
-
2.4 V
460
500
720
890
2350
-
-
-
-
-
3V
585
635
890
1000
2650
-
-
-
-
-
3.6 V
735
800
1100
1200
3100
-
-
-
-
-
RTC
disabled
Backup domain
supply current
Unit
VBAT
-
IDD(VBAT)
MAX(1)
TYP
STM32G491xC STM32G491xE
Table 33. Current consumption in VBAT mode
nA
DS13122 Rev 3
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
Electrical characteristics
93/199
Electrical characteristics
STM32G491xC STM32G491xE
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 53: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC, OPAMP, COMP input pins
which should be configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This is done either by using pull-up/down resistors or by configuring the pins in
output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 35: Low-power mode wakeup timings), the I/Os used by an application also contribute
to the current consumption. When an I/O pin switches, it uses the current from the I/O
supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load
(internal or external) connected to the pin:
I SW = V DDIOx × f SW × C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the I/O supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
94/199
DS13122 Rev 3
STM32G491xC STM32G491xE
Electrical characteristics
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 34. The MCU is placed
under the following conditions:
•
All I/O pins are in Analog mode
•
The given value is calculated by measuring the difference of the current consumptions:
–
when the peripheral is clocked on
–
when the peripheral is clocked off
•
Ambient operating temperature and supply voltage conditions summarized in Table 14:
Voltage characteristics
•
The power consumption of the digital part of the on-chip peripherals is given in
Table 34. The power consumption of the analog part of the peripherals (where
applicable) is indicated in each related section of the datasheet.
Table 34. Peripheral current consumption
Range 1
Boost Mode
Range 1
Range 2
Low-power
run and sleep
Bus Matrix
0.56
0.49
0.38
1.58
QUADSPI clock domain
3.94
3.67
3.03
3.44
QUADSPI independent clock domain
0.38
0.37
0.25
0.46
DMA1
3.16
2.94
2.39
2.81
DMA2
3.48
3.22
2.64
2.95
DMAMUX
6.73
6.26
5.17
5.96
CORDIC
1.17
1.10
0.89
1.10
FMAC
3.82
3.55
2.99
3.45
FLASH
4.88
4.53
3.73
4.38
SRAM1
0.39
0.35
0.33
0.35
BUS
AHB
AHB1
Peripheral
DS13122 Rev 3
Unit
µA/MHz
µA/MHz
95/199
164
Electrical characteristics
STM32G491xC STM32G491xE
Table 34. Peripheral current consumption (continued)
Range 1
Boost Mode
Range 1
Range 2
Low-power
run and sleep
CRC
0.90
0.84
0.68
1.02
GPIOA
0.60
0.56
0.43
0.46
GPIOB
0.59
0.55
0.44
0.58
GPIOC
0.65
0.61
0.52
0.52
GPIOD
0.52
0.48
0.41
0.62
GPIOE
0.59
0.55
0.44
0.71
GPIOF
0.61
0.56
0.48
0.68
GPIOG
0.68
0.63
0.51
0.66
CCMSRAM
0.05
0.04
0.03
0.03
SRAM2
0.12
0.11
0.12
0.28
ADC12 clock domain
6.30
5.85
4.86
5.65
ADC12 independent clock domain
0.61
0.55
0.42
0.54
ADC3 clock domain
3.67
3.40
2.84
3.13
ADC3 independent clock domain
0.81
0.73
0.56
0.91
DAC1
5.24
4.86
4.05
4.70
DAC3
5.17
4.80
4.01
4.67
RNG clock domain
2.93
2.72
NA
NA
RNG independent clock domain
3.38
3.70
NA
NA
TIM2
10.28
9.57
7.88
9.19
TIM3
8.30
7.72
6.36
7.40
TIM4
8.24
7.67
6.31
7.26
TIM6
2.42
2.25
1.86
2.14
TIM7
2.52
2.35
1.92
2.14
CRS
0.91
0.84
0.70
0.82
RTC
3.75
3.49
2.91
3.68
WWDG
1.14
1.06
0.88
1.22
SPI2
5.19
4.83
3.99
4.60
SPI3
5.17
4.83
3.99
4.57
I2S2 clock domain
3.55
3.30
2.75
3.12
I2S2 independent clock domain
1.64
1.53
1.24
1.48
I2S3 clock domain
3.55
3.31
2.75
3.29
I2S3 independent clock domain
1.63
1.52
1.23
1.28
BUS
AHB2
APB1
96/199
Peripheral
DS13122 Rev 3
Unit
µA/MHz
µA/MHz
STM32G491xC STM32G491xE
Electrical characteristics
Table 34. Peripheral current consumption (continued)
Range 1
Boost Mode
Range 1
Range 2
Low-power
run and sleep
USART2 clock domain
3.93
3.66
3.05
3.44
USART2 independent clock domain
7.56
7.05
5.81
6.84
USART3 clock domain
3.55
3.30
2.77
3.07
USART3 independent clock domain
7.76
7.23
5.95
6.98
UART4 clock domain
3.23
3.01
2.52
2.93
UART4 independent clock domain
6.28
5.85
4.81
5.41
UART5 clock domain
3.92
3.65
3.06
3.41
UART5 independent clock domain
6.35
5.92
4.86
5.77
I2C1 clock domain
1.91
1.79
1.50
1.53
I2C1 independent clock domain
4.34
4.04
3.32
4.06
I2C2 clock domain
1.89
1.76
1.47
1.58
I2C2 independent clock domain
4.07
3.80
3.11
3.60
USB clock domain
0.34
0.31
NA
NA
USB independent clock domain
3.27
3.60
NA
NA
FDCAN1 clock domain
21.82
20.36
16.90
18.16
FDCAN1 independent clock domain
3.04
2.77
2.24
3.78
PWR
0.88
0.81
0.69
0.72
I2C3 clock domain
1.79
1.67
1.41
1.54
I2C3 independent clock domain
5.00
4.65
3.79
4.45
LPTIM1 clock domain
1.74
1.62
1.37
1.61
LPTIM1 independent clock domain
4.90
4.56
3.72
4.22
LPUART1 clock domain
2.56
2.38
2.01
2.18
LPUART1 independent clock domain
5.07
4.71
3.86
4.62
UCPD1 clock domain
3.26
3.04
2.51
2.92
UCPD1 independent clock domain
2.36
2.57
NA
NA
BUS
APB1
Peripheral
DS13122 Rev 3
Unit
µA/MHz
97/199
164
Electrical characteristics
STM32G491xC STM32G491xE
Table 34. Peripheral current consumption (continued)
Peripheral
Range 1
Boost Mode
Range 1
Range 2
Low-power
run and sleep
SYSCFG/VREFBUF/COMPx/OPAMPx
1.64
1.54
1.31
1.51
TIM1
11.26
10.49
8.68
9.97
SPI1
2.92
2.73
2.23
2.61
TIM8
11.08
10.32
8.53
9.73
USART1 clock domain
2.94
2.74
2.30
2.34
USART1 independent clock domain
6.91
6.46
5.33
6.36
TIM15
5.82
5.44
4.49
5.18
TIM16
4.12
3.85
3.16
3.61
TIM17
3.99
3.73
3.08
3.62
TIM20
10.87
10.12
8.37
9.61
SAI1 clock domain
2.55
2.39
1.99
2.37
SAI1 independent clock domain
2.60
2.42
1.95
2.10
ALL peripherals
278
260
215
248
BUS
APB2
98/199
DS13122 Rev 3
Unit
µA/MHz
STM32G491xC STM32G491xE
5.3.6
Electrical characteristics
Wakeup time from low-power modes and voltage scaling
transition times
The wakeup times given in Table 35 are the latency between the event and the execution of
the first user instruction.
The device goes in low-power mode after the WFE (Wait For Event) instruction.
Table 35. Low-power mode wakeup timings(1)
Symbol
tWUSLEEP
Parameter
Conditions
Typ
Max
-
11
12
-
10
11
Wakeup time from Sleep
mode to Run mode
Wakeup time from LowtWULPSLEEP power sleep mode to Lowpower run mode
tWUSTOP0
tWUSTOP1
Wake up time from Stop 0
mode to Run mode in Flash
Range 1
Wakeup clock HSI16 = 16 MHz
6.8
7
Range 2
Wakeup clock HSI16 = 16 MHz
18.1
18.4
Wake up time from Stop 0
mode to Run mode in SRAM1
Range 1
Wakeup clock HSI16 = 16 MHz
2.9
3.1
Range 2
Wakeup clock HSI16 = 16 MHz
2.9
3.1
Wake up time from Stop 1
mode to Run in Flash
Range 1
Wakeup clock HSI16 = 16 MHz
10.4
10.8
Range 2
Wakeup clock HSI16 = 16 MHz
21.6
22
Wake up time from Stop 1
mode to Run mode in SRAM1
Range 1
Wakeup clock HSI16 = 16 MHz
6.6
6.9
Range 2
Wakeup clock HSI16 = 16 MHz
6.4
6.7
31.4
37
Wake up time from Stop 1
mode to Low-power run
mode in Flash
Wake up time from Stop 1
mode to Low-power run
mode in SRAM1
tWUSTBY
tWUSTBY
SRAM2
tWUSHDN
tWULPRUN
Regulator in
Wakeup clock
low-power
HSI16 = 16 MHz,
mode (LPR=1 with HPRE = 8
in PWR_CR1)
15.5
19.2
Range 1
Wakeup clock HSI16 = 16 MHz
24.4
29.6
Wakeup time from Standby
with SRAM2 to Run mode
Range 1
Wakeup clock HSI16 = 16 MHz
24.4
29.6
Wakeup time from
Shutdown mode to Run mode
Range 1
Wakeup clock HSI16 = 16 MHz
261
305
5
7
Wakeup clock HSI16 = 16 MHz
HPRE = 8
Nb of
CPU
cycles
µs
Wakeup time from Standby
mode to Run mode
Wakeup time from Lowpower run mode to Run
mode(2)
Unit
1. Guaranteed by characterization results.
2. Time until REGLPF flag is cleared in PWR_SR2.
DS13122 Rev 3
99/199
164
Electrical characteristics
STM32G491xC STM32G491xE
Table 36. Regulator modes transition times(1)
Symbol
tVOST
Parameter
Conditions
Regulator transition time from Range
2 to Range 1 or
Range 1 to Range 2(2)
Typ
Max
Unit
20
40
μs
Typ
Max
Unit
Stop 0 mode
-
1.7
Stop 1 mode
-
8.5
Wakeup clock HSI16 = 16 MHz
HPRE = 8
1. Guaranteed by characterization results.
2. Time until VOSF flag is cleared in PWR_SR2.
Table 37. Wakeup time using USART/LPUART(1)
Symbol
tWUUSART
tWULPUART
Parameter
Conditions
Wakeup time needed to calculate the
maximum USART/LPUART baudrate
allowing to wakeup up from stop mode
when USART/LPUART clock source is
HSI16
μs
1. Guaranteed by design.
5.3.7
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 5.3.14. However,
the recommended clock input waveform is shown in Figure 18: High-speed external clock
source AC timing diagram.
Table 38. High-speed external user clock characteristics(1)
Symbol
fHSE_ext
Parameter
User external clock
source frequency
Conditions
Min
Typ
Max
Voltage scaling
Range 1
-
8
48
Voltage scaling
Range 2
-
8
26
OSC_IN input pin high
level voltage
-
0.7 VDD
-
VDD
VHSEL
OSC_IN input pin low
level voltage
-
VSS
-
0.3 VDD
Voltage scaling
Range 1
7
-
-
Voltage scaling
Range 2
18
-
-
V
OSC_IN high or low time
1. Guaranteed by design.
100/199
MHz
VHSEH
tw(HSEH)
tw(HSEL)
Unit
DS13122 Rev 3
ns
STM32G491xC STM32G491xE
Electrical characteristics
Figure 18. High-speed external clock source AC timing diagram
tw(HSEH)
VHSEH
90%
VHSEL
10%
tr(HSE)
tf(HSE)
t
tw(HSEL)
THSE
MS19214V2
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 5.3.14. However,
the recommended clock input waveform is shown in Figure 19.
Table 39. Low-speed external user clock characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
kHz
fLSE_ext
User external clock source
frequency
-
-
32.768
1000
VLSEH
OSC32_IN input pin high
level voltage
-
0.7 VDD
-
VDD
VLSEL
OSC32_IN input pin low level
voltage
-
VSS
-
0.3 VDD
-
250
-
-
V
tw(LSEH)
OSC32_IN high or low time
tw(LSEL)
ns
1. Guaranteed by design.
Figure 19. Low-speed external clock source AC timing diagram
tw(LSEH)
VLSEH
90%
VLSEL
10%
tr(LSE)
tf(LSE)
t
tw(LSEL)
TLSE
MS19215V2
DS13122 Rev 3
101/199
164
Electrical characteristics
STM32G491xC STM32G491xE
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 40. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Table 40. HSE oscillator characteristics(1)
Symbol
fOSC_IN
RF
Conditions(2)
Min
Typ
Max
Unit
Oscillator frequency
-
4
8
48
MHz
Feedback resistor
-
-
200
-
kΩ
-
-
5.5
VDD = 3 V,
Rm = 30 Ω,
CL = 10 pF@8 MHz
-
0.44
-
VDD = 3 V,
Rm = 45 Ω,
CL = 10 pF@8 MHz
-
0.45
-
VDD = 3 V,
Rm = 30 Ω,
CL = 5 pF@48 MHz
-
0.68
-
VDD = 3 V,
Rm = 30 Ω,
CL = 10 pF@48 MHz
-
0.94
-
VDD = 3 V,
Rm = 30 Ω,
CL = 20 pF@48 MHz
-
1.77
-
Startup
-
-
1.5
mA/V
VDD is stabilized
-
2
-
ms
Parameter
During startup
IDD(HSE)
Gm
HSE current consumption
Maximum critical crystal
transconductance
tSU(HSE)(4) Startup time
(3)
mA
1. Guaranteed by design.
2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 20). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
102/199
DS13122 Rev 3
STM32G491xC STM32G491xE
Note:
Electrical characteristics
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 20. Typical application with an 8 MHz crystal
Resonator with integrated
capacitors
CL1
OSC_IN
8 MHz
resonator
CL2
REXT (1)
fHSE
RF
Bias
controlled
gain
OSC_OUT
MS19876V1
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. All the information given in this paragraph are based on design simulation results
obtained with typical external components specified in Table 41. In the application, the
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
DS13122 Rev 3
103/199
164
Electrical characteristics
STM32G491xC STM32G491xE
Table 41. LSE oscillator characteristics (fLSE = 32.768 kHz)(1)
Symbol
IDD(LSE)
Conditions(2)
Parameter
LSE current consumption
Maximum critical crystal
Gmcritmax
gm
tSU(LSE)(3) Startup time
Min
Typ
Max
LSEDRV[1:0] = 00
Low drive capability
-
250
-
LSEDRV[1:0] = 01
Medium low drive capability
-
315
-
LSEDRV[1:0] = 10
Medium high drive capability
-
500
-
LSEDRV[1:0] = 11
High drive capability
-
630
-
LSEDRV[1:0] = 00
Low drive capability
-
-
0.5
LSEDRV[1:0] = 01
Medium low drive capability
-
-
0.75
LSEDRV[1:0] = 10
Medium high drive capability
-
-
1.7
LSEDRV[1:0] = 11
High drive capability
-
-
2.7
VDD is stabilized
-
2
-
Unit
nA
µA/V
s
1. Guaranteed by design.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator
design guide for ST microcontrollers”.
3.
Note:
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly
with the crystal manufacturer
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 21. Typical application with a 32.768 kHz crystal
Resonator with integrated
capacitors
CL1
OSC32_IN
fLSE
Drive
programmable
amplifier
32.768 kHz
resonator
OSC32_OUT
CL2
MS30253V2
Note:
104/199
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
DS13122 Rev 3
STM32G491xC STM32G491xE
5.3.8
Electrical characteristics
Internal clock source characteristics
The parameters given in Table 42 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 17: General operating
conditions. The provided curves are characterization results, not tested in production.
High-speed internal (HSI16) RC oscillator
Table 42. HSI16 oscillator characteristics(1)
Symbol
fHSI16
TRIM
Parameter
HSI16 Frequency
HSI16 user trimming step
Conditions
Min
Typ
VDD=3.0 V, TA=30 °C
15.88
-
Trimming code is not a
multiple of 64
0.2
0.3
Trimming code is a
multiple of 64
-4
-6
-8
45
-
55
%
-1
-
1
%
-2
-
1.5
%
-0.1
-
0.05
%
DuCy(HSI16)(2) Duty Cycle
-
Max
Unit
16.08 MHz
0.4
%
∆Temp(HSI16)
HSI16 oscillator frequency TA= 0 to 85 °C
drift over temperature
TA= -40 to 125 °C
∆VDD(HSI16)
HSI16 oscillator frequency
VDD=1.62 V to 3.6 V
drift over VDD
tsu(HSI16)(2)
HSI16 oscillator start-up
time
-
-
0.8
1.2
μs
tstab(HSI16)(2)
HSI16 oscillator
stabilization time
-
-
3
5
μs
IDD(HSI16)(2)
HSI16 oscillator power
consumption
-
-
155
190
μA
1. Guaranteed by characterization results.
2. Guaranteed by design.
DS13122 Rev 3
105/199
164
Electrical characteristics
STM32G491xC STM32G491xE
Figure 22. HSI16 frequency versus temperature
MHz
16.4
+2 %
16.3
+1.5 %
16.2
+1 %
16.1
16
15.9
-1 %
15.8
-1.5 %
15.7
-2 %
15.6
-40
-20
0
20
Mean
40
60
80
min
100
120 °C
max
MSv39299V2
High-speed internal 48 MHz (HSI48) RC oscillator
Table 43. HSI48 oscillator characteristics(1)
Symbol
fHSI48
TRIM
USER TRIM
COVERAGE
Parameter
HSI48 Frequency
Conditions
VDD=3.0V, TA=30°C
HSI48 user trimming step
HSI48 user trimming
coverage
±32 steps
DuCy(HSI48) Duty Cycle
-
VDD = 3.0 V to 3.6 V,
Accuracy of the HSI48
TA = –15 to 85 °C
ACCHSI48_REL oscillator over temperature
VDD = 1.65 V to 3.6 V,
(factory calibrated)
TA = –40 to 125 °C
DVDD(HSI48)
106/199
HSI48 oscillator frequency VDD = 3 V to 3.6 V
drift with VDD
VDD = 1.65 V to 3.6 V
Min
Typ
Max
Unit
-
48
-
MHz
-
0.11(2)
0.18(2)
%
±3(3)
±3.5(3)
-
%
45(2)
-
55(2)
%
-
-
±3(3)
-
-
±4.5(3)
-
0.025(3)
0.05(3)
-
0.05(3)
0.1(3)
%
%
tsu(HSI48)
HSI48 oscillator start-up
time
-
-
2.5(2)
6(2)
μs
IDD(HSI48)
HSI48 oscillator power
consumption
-
-
340(2)
380(2)
μA
DS13122 Rev 3
STM32G491xC STM32G491xE
Electrical characteristics
Table 43. HSI48 oscillator characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
NT jitter
Next transition jitter
Accumulated jitter on 28
cycles(4)
-
-
+/-0.15(2)
-
ns
PT jitter
Paired transition jitter
Accumulated jitter on 56
cycles(4)
-
-
+/-0.25(2)
-
ns
1. VDD = 3 V, TA = –40 to 125°C unless otherwise specified.
2. Guaranteed by design.
3. Guaranteed by characterization results.
4. Jitter measurement are performed without clock source activated in parallel.
Figure 23. HSI48 frequency versus temperature
%
6
4
2
0
-2
-4
-6
-50
-30
-10
10
30
50
Avg
70
90
min
110
130
°C
max
MSv40989V1
Low-speed internal (LSI) RC oscillator
Table 44. LSI oscillator characteristics(1)
Symbol
fLSI
tSU(LSI)(2)
Parameter
LSI Frequency
Conditions
Min
Typ
Max
VDD = 3.0 V,
TA = 30 °C
31.04
-
32.96
VDD = 1.62 to 3.6 V,
TA = -40 to 125 °C
29.5
-
34
-
80
130
LSI oscillator start-up
time
DS13122 Rev 3
-
Unit
kHz
μs
107/199
164
Electrical characteristics
STM32G491xC STM32G491xE
Table 44. LSI oscillator characteristics(1) (continued)
Symbol
Parameter
tSTAB(LSI)(2)
IDD(LSI)(2)
Conditions
Min
Typ
Max
Unit
LSI oscillator stabilization
5% of final frequency
time
-
125
180
μs
LSI oscillator power
consumption
-
110
180
nA
-
1. Guaranteed by characterization results.
2. Guaranteed by design.
5.3.9
PLL characteristics
The parameters given in Table 45 are derived from tests performed under temperature and
VDD supply voltage conditions summarized in Table 17: General operating conditions.
Table 45. PLL characteristics(1)
Symbol
fPLL_IN
Parameter
Conditions
Min
Typ
Max
Unit
PLL input clock(2)
-
2.66
-
16
MHz
PLL input clock duty cycle
-
45
-
55
%
Voltage scaling Range 1
Boost mode
2.0645
-
170
Voltage scaling Range 1
2.0645
-
150
Voltage scaling Range 2
2.0645
-
26
Voltage scaling Range 1
Boost mode
8
-
170
Voltage scaling Range 1
8
-
150
Voltage scaling Range 2
8
-
26
Voltage scaling Range 1
Boost mode
8
-
170
Voltage scaling Range 1
8
-
150
Voltage scaling Range 2
8
-
26
Voltage scaling Range 1
96
-
344
Voltage scaling Range 2
96
-
128
-
-
15
40
-
28.6
-
-
21.4
-
VCO freq = 96 MHz
-
200
260
VCO freq = 192 MHz
-
300
380
VCO freq = 344 MHz
-
520
650
fPLL_P_OUT PLL multiplier output clock P
fPLL_Q_OUT PLL multiplier output clock Q
fPLL_R_OUT PLL multiplier output clock R
fVCO_OUT
tLOCK
Jitter
IDD(PLL)
PLL VCO output
PLL lock time
RMS cycle-to-cycle jitter
RMS period jitter
PLL power consumption on
VDD(1)
System clock 150 MHz
1. Guaranteed by design.
2. Take care of using the appropriate division factor M to obtain the specified PLL input clock
values.
108/199
DS13122 Rev 3
MHz
μs
±ps
μA
STM32G491xC STM32G491xE
5.3.10
Electrical characteristics
Flash memory characteristics
Table 46. Flash memory characteristics(1)
Symbol
Parameter
Conditions
Typ
Max
Unit
tprog
64-bit programming time
-
81.7
83.35
µs
tprog_row
One row (32 double
word) programming time
Normal programming
2.61
2.7
Fast programming
1.91
1.95
tprog_page
One page (2 Kbytes)
programming time
Normal programming
20.91
21.34
Fast programming
15.29
15.6
22.02
24.47
Normal programming
5.36
5.46
Fast programming
3.92
4
22.13
24.6
Write mode
3.5
-
Erase mode
3.5
-
Write mode
7 (for 6 µs)
-
Erase mode
7 (for 67 µs)
-
tERASE
Page (2 Kbytes) erase
time
tprog_bank
One bank (512 Kbyte)
programming time
tME
IDD
-
Mass erase time
-
Average consumption
from VDD
Maximum current (peak)
ms
s
ms
mA
1. Guaranteed by design.
Table 47. Flash memory endurance and data retention
Symbol
NEND
tRET
Min(1)
Unit
TA = -40 to +105 °C
10
kcycles
1 kcycle(2) at TA = 85 °C
30
Parameter
Endurance
Data retention
Conditions
1 kcycle
(2)
1 kcycle
(2)
at TA = 105 °C
15
at TA = 125 °C
7
(2)
at TA = 55 °C
30
10 kcycles(2) at TA = 85 °C
15
10 kcycles
10 kcycles
(2)
at TA = 105 °C
Years
10
1. Guaranteed by characterization results.
2. Cycling performed over the whole temperature range.
DS13122 Rev 3
109/199
164
Electrical characteristics
5.3.11
STM32G491xC STM32G491xE
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 48. They are based on the EMS levels and classes
defined in application note AN1709.
Table 48. EMS characteristics
Conditions
Level/
Class
Symbol
Parameter
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 170 MHz,
conforming to IEC 61000-4-2
3B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 170 MHz,
conforming to IEC 61000-4-4
5A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
•
Corrupted program counter
•
Unexpected reset
•
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
110/199
DS13122 Rev 3
STM32G491xC STM32G491xE
Electrical characteristics
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 49. EMI characteristics
Symbol
SEMI
Parameter
Peak level
Monitored
frequency band
Conditions
Max vs. [fHSE/fHCLK]
0.1 MHz to 30 MHz
5
30 MHz to 130 MHz
VDD = 3.6 V, TA = 25 °C,
LQFP100 package
130 MHz to 1 GHz
compliant with IEC 61967-2
1 GHz to 2 GHz
4
EMI Level
5.3.12
Unit
8 MHz / 170 MHz
dBµV
20
13
3.5
-
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the ANSI/JEDEC standard.
Table 50. ESD absolute maximum ratings
Symbol
VESD(HBM)
Ratings
Electrostatic discharge
voltage (human body model)
Conditions
TA = +25 °C, conforming to
ANSI/ESDA/JEDEC JS-001
LQFP80
(14 x 14 mm),
TA = +25 °C, conforming to LQFP100
Electrostatic discharge
ANSI/ESDA/JEDEC JSVESD(CDM)
WLCSP64
voltage (charge device model)
002
Other
packages
Class
Maximum
Unit
value(1)
2
2000
C1
250
C2a
500
C2a
500
V
V
1. Guaranteed by characterization results.
DS13122 Rev 3
111/199
164
Electrical characteristics
STM32G491xC STM32G491xE
Static latch-up
Two complementary static tests are required on three parts to assess the latch-up
performance:
•
A supply overvoltage is applied to each power supply pin.
•
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78E IC latch-up standard.
Table 51. Electrical sensitivities
Symbol
LU
5.3.13
Parameter
Static latch-up class
Conditions
Class
TA = +125 °C conforming to JESD78E
Class II level A
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3.3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or
oscillator frequency deviation).
The characterization results are given in Table 52.
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
Table 52. I/O current injection susceptibility
Functional
susceptibility
Symbol
(1)
IINJ
Description
Injected current on pin
Unit
Negative
injection
Positive
injection
All except TT_a, PF2, PC9, PA9, PA10
-5
NA
PF2, PC9
-0
NA
TT_a pins, PA9, PA10
-5
0
1. Guaranteed by characterization.
112/199
DS13122 Rev 3
mA
STM32G491xC STM32G491xE
5.3.14
Electrical characteristics
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 53 are derived from tests
performed under the conditions summarized in Table 17: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant.
Table 53. I/O static characteristics
Symbol Parameter
I/O input
VIL(1)(2) low level
voltage
I/O input
VIH(1)(2) high level
voltage
VHYS(3)
Input
hysteresis
Conditions
All except
FT_c
1.62 V