STM32H562xx and STM32H563xx
Arm® Cortex®-M33 32-bit MCU + TrustZone® + FPU, 375 DMIPS,
250 MHz, 2-Mbyte flash, 640-Kbyte RAM, math accelerators
Datasheet - production data
Features
Includes ST state-of-the-art patented
technology
LQFP64 (10 x 10 mm)
VFQFPN68 (8 x 8 mm)
LQFP100 14 x 14 mm)
Core
LQFP144 (20 x 20 mm)
®
®
®
• Arm Cortex -M33 CPU with TrustZone ,
FPU, frequency up to 250 MHz, MPU,
375 DMIPS (Dhrystone 2.1)
ART Accelerator
UFBGA
LQFP176 (24 x 24 mm)
UFBGA169 (7 x 7 mm)
UFBGA 176+25 (10 x 10 mm)
WLCSP80 (3.50 X 3.27 mm)
• 8-Kbyte instruction cache allowing
0-wait-state execution from flash and external
memories
Clock management
• 4-Kbyte data cache for external memories
• Internal oscillators: 64 MHz HSI,
48 MHz HSI48, 4 MHz CSI, 32 kHz LSI
Benchmarks
• External oscillators: 4-50 MHz HSE,
32.768 kHz LSE
• 1.5 DMIPS/MHz (Drystone 2.1)
• 1023 CoreMark® (4.092 CoreMark®/MHz)
General-purpose inputs/outputs
Memories
• Up to 140 fast I/Os with interrupt capability
(most of them 5 V-tolerant)
• Up to 2 Mbytes of embedded flash memory
with ECC, two banks read-while-write
• Up to ten I/Os with independent supply down to
1.08 V
• Up to 48-Kbyte per bank with high-cycling
capability (100 K cycles) for data flash
Low-power consumption
• 2-Kbyte OTP (one-time programmable)
• Sleep, Stop, and Standby modes
• 640 Kbytes of SRAM (64-Kbyte SRAM2 with
ECC and 320-Kbyte SRAM3 with flexible ECC)
• VBAT supply for RTC, 32 backup registers
(32-bit)
• 4 Kbytes of backup SRAM available in the
lowest power modes
Security
• Flexible external memory controller with up to
16-bit data bus: SRAM, PSRAM, FRAM,
SDRAM/LPSDR SDRAM, NOR/NAND
memories
• One Octo-SPI memory interface with support
for serial PSRAM/NAND/NOR, hyper
RAM/flash frame formats
• Two SD/SDIO/MMC interfaces
January 2025
This is information on a product in full production.
• Arm® TrustZone® with Armv8-M mainline
security extension
• Up to eight configurable SAU regions
• TrustZone® aware and securable peripherals
• Flexible life cycle scheme with secure debug
authentication
• SFI (secure firmware installation)
• Secure firmware upgrade support with TF-M
DS14258 Rev 5
1/270
www.st.com
STM32H562xx and STM32H563xx
• HASH hardware accelerator
• One I3C
• ECDSA signature verification
• Up to 12 U(S)ARTs (ISO7816 interface, LIN,
IrDA, modem control) and one LPUART
• True random number generator, NIST
SP800-90B compliant
Two DMA controllers to offload the CPU
• Up to six SPIs, including three muxed in
full-duplex I2S audio class accuracy via
internal audio PLL or external clock, and up to
five additional SPIs from five USARTs when
configured in Synchronous mode (one
additional SPI with OctoSPI)
• Two dual-port DMAs with FIFO
• Two SAIs
Mathematical acceleration
• Two FDCANs
• 96-bit unique ID
• Active tampers
• One 8- to 14-bit camera interface
• CORDIC for trigonometric functions
acceleration
• One 16-bit parallel slave synchronousinterface
• FMAC (filter mathematical accelerator)
• One HDMI-CEC
Reset and supply management
• 1.71 V to 3.6 V application supply and I/O
• One Ethernet MAC interface with DMA
controller
• POR, PDR, PVD, and BOR
• One USB 2.0 full-speed host and device
• Embedded regulator (LDO) or SMPS stepdown converter regulator with configurable
scalable output to supply the digital circuitry
Analog
• One USB Type-C®/USB Power Delivery r3.1
• Two 12-bit ADCs with up to 5 Msps in 12-bit
Up to 24 timers
• One 12-bit DAC with two channels
• 18 16-bit timers (including six low-power
16-bit timers available in Stop mode)
• Digital temperature sensor
• Two 32-bit timers with up to four IC/OC/PWM
or pulse counters and quadrature (incremental)
encoder input
• Two watchdogs
• Authenticated debug and flexible device life
cycle
• Serial wire-debug (SWD), JTAG, Embedded
Trace Macrocell™ (ETM)
• Two SysTick timers
Up to 34 communication interfaces
• Up to four I2Cs Fm+
Debug
ECOPACK2 compliant packages
(SMBus/PMBus®)
Table 1. Device summary
Reference
Part numbers
STM32H562xx
STM32H562AG, STM32H562AI, STM32H562IG, STM32H562II, STM32H562RG,
STM32H562RI, STM32H562VG, STM32H562VI, STM32H562ZG, STM32H562ZI
STM32H563xx
STM32H563AG, STM32H563AI, STM32H563IG, STM32H563II, STM32H563MI,
STM32H563RG, STM32H563RI, STM32H563VG, STM32H563VI, STM32H563ZG,
STM32H563ZI
2/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Contents
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1
Arm Cortex-M33 core with TrustZone and FPU . . . . . . . . . . . . . . . . . . . . 19
3.2
ART Accelerator (ICACHE and DCACHE) . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1
Instruction cache (ICACHE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2
Data cache (DCACHE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4
Embedded flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5
3.4.1
FLASH security and protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2
FLASH privilege protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Embedded SRAMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5.1
SRAMs TrustZone security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5.2
SRAMs privilege protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6
Security overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7.1
STM32H562/H563xx boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8
Global TrustZone controller (GTZC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.9
TrustZone security architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.10
3.9.1
TrustZone peripheral classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.9.2
Default TrustZone security state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.10.1
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.10.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.10.3
Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.10.4
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.10.5
PWR TrustZone security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.11
Peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.12
Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.12.1
3.13
RCC TrustZone security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
DS14258 Rev 5
3/270
Contents
STM32H562xx and STM32H563xx
3.14
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.14.1
3.15
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.16
General purpose direct memory access controller (GPDMA) . . . . . . . . . 35
3.17
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.17.1
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 37
3.17.2
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 37
3.18
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 38
3.19
CORDIC coprocessor (CORDIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.20
Filter math accelerator (FMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.21
Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.22
3.21.1
LCD parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.21.2
FMC TrustZone security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Octo-SPI interface (OCTOSPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.22.1
4/270
GPIOs TrustZone security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
OCTOSPI TrustZone security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.23
Delay block (DLYB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.24
Analog-to-digital converters (ADC1 and ADC2) . . . . . . . . . . . . . . . . . . . . 41
3.24.1
Analog temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.24.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.24.3
VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.25
Digital temperature sensor (DTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.26
Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.27
Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.28
Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.29
Parallel synchronous slave interface (PSSI) . . . . . . . . . . . . . . . . . . . . . . 44
3.30
True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.31
HASH hardware accelerator (HASH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.32
Public key accelerator (PKA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.33
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.33.1
Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.33.2
General-purpose timers
(TIM2, TIM3, TIM4, TIM5, TIM15, TIM16, TIM17) . . . . . . . . . . . . . . . . . 47
3.33.3
Basic timers (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.33.4
Low-power timers
(LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5, LPTIM6) . . . . . . . . . . . 47
DS14258 Rev 5
STM32H562xx and STM32H563xx
3.34
4
5
Contents
3.33.5
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.33.6
Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.33.7
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Real-time clock (RTC), tamper and backup registers . . . . . . . . . . . . . . . 49
3.34.1
Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.34.2
Tamper and backup registers (TAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.35
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.36
Improved inter-integrated circuit (I3C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.37
Universal synchronous/asynchronous receiver transmitter
(USART/UART) and low-power universal asynchronous
receiver transmitter (LPUART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.37.1
Universal synchronous/asynchronous receiver transmitter
(USART/UART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.37.2
Low-power universal asynchronous receiver transmitter (LPUART) . . . 55
3.38
Serial peripheral interface (SPI) / inter-integrated sound interfaces (I2S) 56
3.39
Serial audio interface (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.40
Secure digital input/output and MultiMediaCards interface (SDMMC) . . . 59
3.41
Controller area network (FDCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.42
USB full speed (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.43
USB Type-C/USB Power Delivery controller (UCPD) . . . . . . . . . . . . . . . 61
3.44
Ethernet MAC interface with dedicated DMA controller (ETH) . . . . . . . . . 61
3.45
High-definition multimedia interface (HDMI) - consumer
electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.46
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.46.1
Serial-wire/JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.46.2
Embedded Trace Macrocell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Pinout, pin description, and alternate functions . . . . . . . . . . . . . . . . . 63
4.1
Pinout/ballout schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3
Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
DS14258 Rev 5
5/270
Contents
6/270
STM32H562xx and STM32H563xx
5.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3.2
VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3.3
SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3.4
Operating conditions at power-up/down . . . . . . . . . . . . . . . . . . . . . . . 133
5.3.5
Embedded reset and power control block characteristics . . . . . . . . . . 133
5.3.6
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.3.7
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.3.8
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.3.9
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.3.10
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.3.11
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.3.12
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.3.13
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 159
5.3.14
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.3.15
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.3.16
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.3.17
Extended interrupt and event controller input (EXTI) characteristics . . 175
5.3.18
FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.3.19
Octo-SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.3.20
Delay block (DLYB) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.3.21
DCMI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.3.22
PSSI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
5.3.23
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.3.24
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.3.25
Analog temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . 214
5.3.26
Digital temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . 215
5.3.27
VCORE monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
5.3.28
Temperature and VBAT monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
5.3.29
Voltage booster for analog switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
5.3.30
VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
5.3.31
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
DS14258 Rev 5
STM32H562xx and STM32H563xx
6
Contents
5.3.32
Low-power timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.3.33
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
6.1
Device marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
6.2
LQFP64 package information (5W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
6.3
VFQFPN68 package information (B029) . . . . . . . . . . . . . . . . . . . . . . . . 243
6.4
WLCSP80 package information (B0D4) . . . . . . . . . . . . . . . . . . . . . . . . . 245
6.5
LQFP100 package information (1L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
6.6
LQFP144 package information (1A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
6.7
UFBGA169 package information (A0YV) . . . . . . . . . . . . . . . . . . . . . . . . 255
6.8
LQFP176 package information (1T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
6.9
UFBGA(176+25) package information (A0E7) . . . . . . . . . . . . . . . . . . . . 262
6.10
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
6.10.1
Reference documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
7
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
8
Important security notice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
DS14258 Rev 5
7/270
List of tables
STM32H562xx and STM32H563xx
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
8/270
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
STM32H56xxx features and peripheral counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
STM32H562/H563 boot mode when TrustZone is disabled (TZEN = 0xC3) . . . . . . . . . . . 24
STM32H562/H563 boot mode when TrustZone is enabled (TZEN = 0xB4). . . . . . . . . . . . 25
ADC features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
I3C peripheral controller/target features versus MIPI v1.1 . . . . . . . . . . . . . . . . . . . . . . . . . 52
USART, UART and LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
SPI features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
SAI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
SDMMC features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
STM32H562xx and STM32H563xx pin/ball definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Alternate functions AF0 to AF7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Alternate functions AF8 to AF15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Maximum allowed clock frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Supply voltage and maximum frequency configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Characteristics of SMPS step-down converter external components . . . . . . . . . . . . . . . . 130
Operating conditions at power-up/down (regulator ON) . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 133
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Internal reference voltage calibration value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Typical and maximum current consumption in Run mode, code with data processing
running from flash memory, 2-way instruction cache ON, PREFETCH ON . . . . . . . . . . . 136
Typical and maximum current consumption in Run mode, code with data processing
running from flash memory, 1-way instruction cache ON, PREFETCH ON . . . . . . . . . . . 137
Typical and maximum current consumption in Run mode, code with data processing
running from SRAM with cache 1-way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Typical and maximum current consumption in Run mode, code with data processing
running from SRAM with cache 2-way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Typical consumption in Run mode with CoreMark running
from flash memory and SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Typical consumption in Run mode with SecureMark running from
flash memory and SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . 140
Typical and maximum current consumption in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 141
Typical and maximum current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . 141
Typical and maximum current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . 142
Peripheral current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Low-power mode wake-up timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4-50 MHz HSE oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
DS14258 Rev 5
STM32H562xx and STM32H563xx
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
List of tables
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
CSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
PLL characteristics (wide VCO frequency range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
PLL characteristics (medium VCO frequency range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Output voltage characteristics for all I/Os except PC13, PC14, PC15, and PI8 . . . . . . . . 163
Output voltage characteristics for FT_c I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Output voltage characteristics for PC13 and PI8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Output voltage characteristics for PC14 and PC15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Output timing characteristics (HSLV OFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Output timing characteristics (HSLV ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Output timing characteristics VDDIO2 1.2 V range (HSLV OFF) . . . . . . . . . . . . . . . . . . . 171
Output timing characteristics VDDIO2 1.2 V (HSLV ON) . . . . . . . . . . . . . . . . . . . . . . . . . 173
Output timing characteristics for FT_c I/Os (PB13/PB14). . . . . . . . . . . . . . . . . . . . . . . . . 174
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
EXTI input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 177
Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . 177
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 178
Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 179
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 180
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 182
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 187
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Switching characteristics for NAND flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Switching characteristics for NAND flash write cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
LPSDR SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
OCTOSPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
OCTOSPI characteristics in DTR mode (no DQS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
OCTOSPI characteristics in DTR mode (with DQS) / HyperBus . . . . . . . . . . . . . . . . . . . 197
Delay block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
PSSI transmit characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
PSSI receive characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
DS14258 Rev 5
9/270
10
List of tables
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.
Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.
Table 107.
Table 108.
Table 109.
Table 110.
Table 111.
Table 112.
Table 113.
Table 114.
Table 115.
Table 116.
Table 117.
Table 118.
Table 119.
Table 120.
Table 121.
Table 122.
Table 123.
Table 124.
Table 125.
Table 126.
Table 127.
Table 128.
Table 129.
Table 130.
Table 131.
Table 132.
Table 133.
Table 134.
Table 135.
Table 136.
Table 137.
Table 138.
Table 139.
Table 140.
Table 141.
10/270
STM32H562xx and STM32H563xx
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Minimum sampling time versus RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Analog temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Digital temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
VCORE monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Temperature monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Voltage booster for analog switch characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
LPTIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
I3C open-drain measured timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
I3C push-pull measured timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
USB BCD DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Dynamic characteristics: SD/MMC, VDD = 2.7 to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Dynamic characteristics: eMMC, VDD = 1.71 to 1.9 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Dynamic characteristics: Ethernet MAC signals for SMI . . . . . . . . . . . . . . . . . . . . . . . . . 234
Dynamic characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 234
Dynamic characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Dynamic JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Dynamic SWD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
LQFP64 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
VFQFPN68 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
WLCSP80 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
WLCSP80 - Example of PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
LQFP100 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
LQFP144 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
UFBGA169 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
UFBGA169 - Example of PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . . . 257
LQFP176 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
UFBGA(176+25) - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
UFBGA(176+25) - Example of PCB design rules (0.65 mm pitch BGA) . . . . . . . . . . . . . 263
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
DS14258 Rev 5
STM32H562xx and STM32H563xx
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
STM32H562xx and STM32H563xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
STM32H562xx and STM32H563xx power supply overview (with SMPS) . . . . . . . . . . . . . 29
STM32H562xx and STM32H563xx power supply overview (with LDO). . . . . . . . . . . . . . . 30
Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
VFQFPN68 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
WLCSP80 SMPS ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
LQFP100 SMPS pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
LQFP144 SMPS pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
UFBGA169 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
UFBGA169 SMPS ballout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
LQFP176 SMPS pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
UFBGA176+25 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
UFBGA176+25 SMPS ballout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Power supply scheme with SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Power supply scheme with LDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
SMPS efficiency versus load current in Run, Sleep, and Stop modes
with SVOS3 mode, TJ = 30 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
SMPS efficiency versus load current in Run, Sleep, and Stop modes
with SVOS3 mode, TJ = 130 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
SMPS efficiency versus load current in stop SVOV4, SVOS5, TJ = 30 °C. . . . . . . . . . . . 132
SMPS efficiency versus load current in stop SVOV4, SVOS5, TJ = 130 °C. . . . . . . . . . . 132
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
VIL/VIH for all I/Os except BOOT0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 176
Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 178
Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 179
Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 181
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 187
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 190
NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 191
SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
DS14258 Rev 5
11/270
12
List of figures
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.
Figure 95.
12/270
STM32H562xx and STM32H563xx
OCTOSPI SDR read/write timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
OCTOSPI timing diagram - DTR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
OCTOSPI HyperBus clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
OCTOSPI HyperBus read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
OCTOSPI HyperBus write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
DCMI timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
PSSI transmit timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
PSSI receive timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
ADC conversion timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Typical connection diagram when using the ADC with FT/TT pins
featuring analog switch function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 209
Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 210
12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
USART timing diagram in Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
USART timing diagram in Slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
SPI timing diagram - Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
SPI timing diagram - Slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
SPI timing diagram - Slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
USB timings - definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 228
SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
SDIO high-speed/eMMC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
SD default speed timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
DDR mode timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
JTAG timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
SWD timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
LQFP64 - Outline(15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
LQFP64 - Footprint example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
VFQFPN68 - Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
VFQFPN68 - Footprint example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
WLCSP80 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
WLCSP80 - Footprint example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
WLCSP80 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
LQFP100 - Outline(15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
LQFP100 - Footprint example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
LQFP144 - Outline(15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
LQFP144 - Footprint example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
UFBGA169 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
UFBGA169 - Footprint example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
LQFP176 - Outline(15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
LQFP176 - Footprint example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
UFBGA(176+25) - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
UFBGA(176+25) - Footprint example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
DS14258 Rev 5
STM32H562xx and STM32H563xx
1
Introduction
Introduction
This document provides the ordering information and mechanical device characteristics of
the STM32H562xx and STM32H563xx microcontrollers.
For information on the device errata with respect to the datasheet and reference manual,
refer to the STM32H562xx and STM32H563xx errata sheet.
For information on the Arm®(a) Cortex®-M33 core, refer to the Cortex®-M33
Technical Reference Manual, available from the www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS14258 Rev 5
13/270
13
Description
2
STM32H562xx and STM32H563xx
Description
The STM32H562xx and STM32H563xx devices are high-performance microcontrollers of
the STM32H5 series, based on the high-performance Arm® Cortex®-M33 32-bit RISC core.
They operate at a frequency of up to 250 MHz.
The Cortex®-M33 core features a single-precision floating-point unit (FPU), which supports
all the Arm® single-precision data-processing instructions and all the data types. This core
implements a full set of DSP (digital signal processing) instructions and a memory protection
unit (MPU) that enhances the application security.
The devices embed high-speed memories (up to 2 Mbytes of dual bank flash memory and
640 Kbytes of SRAM), a flexible external memory controller (FMC) for devices with
packages of 100 pins and more, one OCTOSPI memory interface (at least one Quad-SPI
available on all packages), and an extensive range of enhanced I/Os and peripherals
connected to three APB buses, three AHB buses, and a 32-bit multi-AHB bus matrix.
The devices offer security foundation compliant with the trusted-based security architecture
(TBSA) requirements from Arm®. They embed the features to implement a secure firmware
update. Besides these capabilities, the devices incorporate a secure firmware installation
that allows the customer to secure the provisioning of the code during its production. A
flexible life cycle is managed thanks to multiple levels of protection and secure debug
authentication. Firmware hardware isolation is supported thanks to securable peripherals,
memories, and I/Os, and to privilege configuration of peripherals and memories.
The devices feature several protection mechanisms for embedded flash memory and
SRAM: readout protection, write protection, secure, and hide protection areas.
Dedicated peripherals reinforce security: an HASH hardware accelerator, and a true random
number generator.
The devices offer active tamper detection and protection against transient and
environmental perturbation attacks, thanks to several internal monitoring, generating secret
data erase in case of attack. This helps to fit the PCI requirements for point of sales
applications.
The devices offer two fast 12-bit ADCs, two DAC channels, an internal voltage reference
buffer, a low-power RTC, two 32-bit general-purpose timers, two 16-bit PWM timers
dedicated to motor control, eight 16-bit general-purpose timers, two 16-bit basic timers, and
six 16-bit low-power timers.
The devices also feature standard and advanced communication interfaces, namely: four
I2Cs, one I3C, six SPIs, three I2Ss, six USARTs, six UARTs and one low-power UART, two
SAIs, one digital camera interface (DCMI), up to two SDMMCs, up to two FDCANs, one
USB full-speed, one USB Type-C®/USB power delivery controller, an Ethernet interface
(available only on STM32H563xx).
The devices operate in the -40 to +85 °C (+130 °C junction) and -40 to +125 °C (+130 °C
junction) temperature ranges, with a 1.71 to 3.6 V power supply.
A comprehensive set of power-saving modes allow the design of low-power applications.
Independent power supplies are supported: an analog independent supply input for ADC,
DACs, a 3.3 V dedicated supply input for USB, and a dedicated supply input for some
GPIOs and SDMMC. A VBAT input is available to connect a backup battery, to preserve the
RTC functionality, and to backup 32 32-bit registers and a 4-Kbyte SRAM.
14/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Description
The devices offer eight packages, from 64 to 176 pins.
All packages are available with LDO or SMPS supply options for the VCORE (except for
LQFP64 and VFQFPN68 packages, not available in SMPS, and WLCSP80, not available in
LDO).
Flash memory
SRAM
STM32H562II/G
STM32H563II/G
STM32H562AI/G
STM32H563AI/G
STM32H562ZI/G
STM32H563ZI/G
Up to 2 Mbytes
System
640 (256 + 64 + 320) Kbytes
Backup
4 Kbytes
Flexible memory controller for
external memories (FMC)
No
Yes(1)
Yes
Yes
(2)
OCTOSPI
Timers
STM32H562VI/G
STM32H563VI/G
STM32H563MI
STM32H562RI/G
Peripherals
STM32H563RI/G
Table 2. STM32H56xxx features and peripheral counts
1
Advanced
control
2 (16 bits)
General
purpose
2 (32 bits) and 8 (16 bits)
Basic
2 (16 bits)
Low power
6 (16 bits)
SysTick timer
2
Watchdog
timers
(independent,
window)
2
DS14258 Rev 5
15/270
18
Description
STM32H562xx and STM32H563xx
1
2
1
2
1
1
2
1
2
1
No
Yes/
Yes
No
Yes/
Yes
No
5/3
6/3
I2C
4
I3C
1(3)
USART
5
6
UART
5
6
LPUART
1
SAI
2
FDCAN
2
1
2
1
2
USB
Yes
UCPD
Yes
SDMMC
1
2
1
Digital camera
interface
(DCMI)/PSSI(4)
2
Yes
Ethernet
Yes/
(legacy/SMPS) No
No
No/Yes
Yes/
No
No
HDMI-CEC
Yes/
No
Yes
CORDIC co-processor
Yes
Filter mathematical accelerator
(FMAC)
Yes
Real time clock (RTC)
Yes
Tamper pins (legacy/SMPS)
(5)
Active tampers (legacy/SMPS)
STM32H562AI/G
STM32H563AI/G
STM32H562ZI/G
STM32H563ZI/G
STM32H562VI/G
STM32H563VI/G
STM32H562II/G
Communication
interfaces
4/3
STM32H563II/G
SPI / I2S
STM32H563MI
Peripherals
STM32H562RI/G
STM32H563RI/G
Table 2. STM32H56xxx features and peripheral counts (continued)
5/NA
NA/5
8/8
4/NA
NA/4
7/7
True random number generator
Yes
HASH (SHA-512)
Yes
PKA
(ECDSA signature verification)
Yes
GPIOs (legacy/SMPS)
53(6)/NA
NA/57
80
/78
80
/NA
112
/110
112
/NA
136 136 140(7)
/134 /eNA /139
140
Wake-up pins (legacy/SMPS)
6/NA(8)
NA/6
7/7
7
/NA
7/7
7
/NA
8/8
8
/NA
8/8
8
/NA
Number of I/Os down to 1.08 V
(legacy/SMPS)
0/NA
NA/0
0/0
0
/NA
10
/10
10
/NA
10/7
10
/NA
10/7
10
/NA
16/270
DS14258 Rev 5
(7)
STM32H562xx and STM32H563xx
Description
DAC
STM32H562AI/G
STM32H563II/G
STM32H562II/G
20
/18
20
/NA
20
/20
20/
NA
20
/20
20/
NA
2
16/NA
NA / 16
16
/14
16
/NA
12-bit DAC
controller
1
Number of
12-bit D to A
converters
2
Internal voltage reference buffer
STM32H563AI/G
Number of
channels
(legacy/SMPS)
ADC
STM32H562ZI/G
12-bit ADC
STM32H563ZI/G
STM32H562VI/G
STM32H563VI/G
STM32H563MI
STM32H562RI/G
Peripherals
STM32H563RI/G
Table 2. STM32H56xxx features and peripheral counts (continued)
No
Yes
Maximum CPU frequency
250 MHz
Operating voltage
1.71 to 3.6 V
Operating
temperature
Ambient
-40 to 85 or 105 °C / -40 to 125 °C
Junction
Voltage range VOS0 (up to 250 MHz): -40 to 105 °C
Voltage range VOS1 (up to 200 MHz): -40 to 130 °C
Package
LQFP64
WLCSP80
VFQFPN68
LQFP100
LQFP144
UFBGA169
LQFP176
UFBGA176
1. 8-bit to interface LCD controller.
2. For the LQFP100 package, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory
using the NE1 chip select.
3. Shares the I/Os with I2C4.
4. DCMI and PSSI cannot be used at the same time, as they share the same circuitry.
5. Active tampers in output sharing mode (one output shared by all inputs).
6. 49 for LQFP64.
7. 136 for LQFP176.
8. 5 for VFQFPN68.
DS14258 Rev 5
17/270
18
Description
STM32H562xx and STM32H563xx
Figure 1. STM32H562xx and STM32H563xx block diagram
MPU
ETM
NVIC
Arm Cortex-M33
250 MHz
C-BUS
TrustZone FPU
SDMMC1
FIFO
SDMMC2
SRAM
4 KB
MAC ETHERNET
DCACHE
(4 Kbytes)
IO[7:0], CLK, NCLK,
NCS. DQS as AF
OCTOSPI1 memory interface
RNG
Flash memory
(up to 2 Mbytes)
HASH
SRAM1 (256 Kbytes)
VDDA
SRAM2 (64 Kbytes)
ITF
DAC1_OUT2
DCMI/PSSI
VDD
VDD
VDD
Power management
Voltage regulator LDO or
SMPS 3.3 to 1.2 V
HSI48
HS64
Reset
BOR
PF[15:0]
GPIO port F
PG[15:0]
GPIO port G
PH[15:0]
GPIO port H
PI[7:0]
GPIO port I
16 AF
EXT IT. WKP
CRC
VDDA
ADC1
20xIN
GTZC1
4 channels, ETR as AF
CORDIC
TIM3
16-bit
4 channels, ETR as AF
FMAC
TIM4
16-bit
4 channels, ETR as AF
TIM5
32-bit
4 channels, ETR as AF
EXTI
AHB/APB1
16-bit
1 channel,
1 compl. channel, BKIN as AF
TIM16
16-bit
TIM17
16-bit
smcard
USART1
irDA
APB2 250 MHz
TIM15
TIM6 16-bit
SPI6
TIM7 16-bit
SAI2
FIFO
PHY
VDDUSB
USB FS
AHB/APB3
VBAT
XTAL 32k
RTC
TAMP
VDDA
LPTIM1
I2C3/SMBUS
SCL, SDA, SMBA as AF
I2C4/SMBUS
APB3 250 MHz
VREF buffer
SCL, SDA, SMBA as AF
MOSI, MISO, SCK,
NSS as AF
RX, TX, CK, CTS,
RTS_DE as AF
SPI2/I2S2
MOSI, MISO, SCK,
NSS as AF
MOSI, MISO, SCK,
NSS as AF
I2C1/SMBUS
SCL, SDA, SMBA as AF
I2C2/SMBUS
SCL, SDA, SMBA as AF
FDCAN1
FDCAN2
UCPD1
TX, RX as AF
TX, RX as AF
CC1, DBCC1, CC2,
DBCC2, FRSCC1,
FRSCC2 as AF
IN1, IN2, CH1, CH2,
ETR as AF
TIM12 16-bit
2 channels, ETR as AF
TIM13 16-bit
1 channel, ETR as AF
TIM14 16-bit
AHB3 250 MHz
Temperature
monitoring
RX, TX, CTS, RTS_DE as
AF
RX, TX, CTS,
RTS_DE as AF
smcard
USART6 irDA
LPTIM2
AUDIOCLK as AF
VREF+
UART5
SAI1
MCLK_A, SD_A, FS_A,
SCK_A, MCLK_B, SD_B,
FS_B, SCK_B as AF
IN1, IN2, CH1, CH2,
ETR as AF
RX, TX, CTS,
RTS_DE as AF
FIFO
SPI4
MOSI, MISO, SCK,
NSS as AF
RTC_OUT[8:1],
RTC_IN[8:1]
RX, TX, CK, CTS,
RTS_DE as AF
UART4
PHY
IWDG
MCLK_A, SD_A, FS_A,
SCK_A, MCLK_B, SD_B,
FS_B, SCK_B as AF
RTC_OUT1, RTC_OUT2,
RTC_REFIN, RTC_TS
RX, TX, CK, CTS,
RTS_DE as AF
smcard
USART3 irDA
SPI1/I2S1
MOSI, MISO, SCK,
NSS as AF
DP
DM
smcard
USART2 irDA
SPI3/I2S3
DTS
WWDG
MOSI, MISO, SCK,
NSS as AF
WKUPx (x=1 to 8)
32-bit
16-bit
2 channels,
1 compl. channel, BKIN as AF
RX, TX, CK,CTS,
RTS_DE as AF
AHB/APB2
16-bit
TIM8/PWM
1 channel,
1 compl. channel, BKIN as AF
Standby
interface
TIM2
APB1 250 MHz (max)
TIM1/PWM
3 compl. channels
(TIM1_CH[1:3]N),
6 channels (TIM1_CH[1:4]),
ETR, BKIN, BKIN2 as AF
Reset and clock control
SRAM
512 B
ITF
OSC_IN
OSC_OUT
IWDG
CRS
ADC2
3 compl. channels
(TIM1_CH[1:3]N),
6 channels (TIM1_CH[1:4]),
ETR, BKIN, BKIN2 as AF
VDD
XTAL OSC
4- 50 MHz
HCLKx
GPIO port E
PE[15:0]
RAMCFG
VDDIO, VDDUSB, VDDA,
VSSA, VDD, VSS, NRST
PVD, PVM
PLL 1, 2, 3
FCLK
GPIO port D
AHB3 250 MHz
GPIO port B
GPIO port C
AHB1 250 MHz
PB[15:0]
PD[15:0]
Int
LSI
BKPSRAM
(4 Kbytes)
PCLKx
GPIO port A
VDD = 1.71 to 3.6 V
VSS
VDD
Supply supervision
CSI
VBAT
PC[15:0]
D[15:0], CK, CMD as AF
AHB2 250 MHz
GPDMA1
GPDMA2
PA[15:0]
DAC1_OUT1
DAC1
SRAM3 (320 Kbytes)
FIFO
D[7:0], D[3:1]dir
CMD, CMDdir,CK, CKin
D0dir, D2dir
FIFO
S-BUS
CLK, NE[4:1], NL, NBL[1:0],
A[25:0], D[15:0], NOE,
NWE, NWAIT, NCE, INT,
SDCLK,SDCLKE[1:0],
SDNE[1:0], SDNWE,
NRAS, NCAS, as AF
Flexible memory controller (FMC):
SDRAM, SRAM, PSRAM, NOR flash, FRAM, NAND flash
AHB bus-matrix
TRACECLK,
TRACED[3:0]
JTAG/ SW
ICACHE
(8 Kbytes)
NJTRST, JTDI, JTCK/SWCLK,
JTMS/SWDIO, JTDO
1 channel, ETR as AF
UART7
RX, TX, CTS, RTS_DE as AF
UART8
RX, TX, CTS, RTS_DE as AF
UART9
RX, TX, CTS, RTS_DE as AF
smcard
irDA
RX, TX, CK, CTS,
RTS_DE as AF
smcard
irDA
RX, TX, CK, CTS,
RTS_DE as AF
USART10
USART11
UART12
HDMI-CEC
I3C1
RX, TX, CTS, RTS_DE as AF
CEC
SCL, SDA
LPUART1
SPI5
SBS
IN1, IN2, CH1, CH2,
ETR as AF
LPTIM3
IN1, ETR as AF
LPTIM4
IN1, IN2, CH1, CH2,
ETR as AF
LPTIM5
IN1, IN2, CH1, CH2,
ETR as AF
LPTIM6
VDD power domain
VDDA power domain
VDDUSB power domain
VBAT power domain
MSv67308V6
Note:
18/270
PC[15:13] are in the VBAT domain.
DS14258 Rev 5
STM32H562xx and STM32H563xx
Functional overview
3
Functional overview
3.1
Arm Cortex-M33 core with TrustZone and FPU
The Cortex-M33 with TrustZone and FPU is a highly energy-efficient processor designed for
microcontrollers and deeply embedded applications, especially those requiring efficient
security. This processor delivers a high computational performance with low-power
consumption and an advanced response to interrupts. It features:
•
Arm TrustZone technology, using the Armv8-M main extension supporting secure and
nonsecure states
•
Memory protection units (MPUs), supporting up to 16 regions for secure and
nonsecure applications
•
Configurable secure attribute unit (SAU) supporting up to eight memory regions as
secure or nonsecure
•
Floating-point arithmetic functionality with support for single precision arithmetic
The processor supports a set of DSP instructions that allows an efficient signal processing
and a complex algorithm execution.
The Cortex-M33 processor supports the following bus interfaces:
•
System AHB bus:
The system AHB (S-AHB) bus interface is used for any instruction fetch and data
access to the memory-mapped SRAM, peripheral, external RAM and external device,
or Vendor_SYS regions of the Armv8-M memory map.
•
Code AHB bus:
The code AHB (C-AHB) bus interface is used for any instruction fetch and data access
to the code region of the Armv8-M memory map.
Figure 1 shows the general block diagram of the STM32H562xx and STM32H563xx
devices.
3.2
ART Accelerator (ICACHE and DCACHE)
3.2.1
Instruction cache (ICACHE)
The instruction cache (ICACHE) is introduced on C-AHB code bus of Cortex-M33 processor
to improve performance when fetching instruction (or data) from both internal and external
memories.
ICACHE offers the following features:
•
Multi-bus interface:
–
slave port receiving the memory requests from the Cortex-M33 C-AHB code
execution port
–
master1 port performing refill requests to internal memories (flash memory and
SRAMs)
–
master2 port performing refill requests to external memories (external flash
memory and RAMs through Octo-SPI and FMC interfaces)
–
a second slave port dedicated to ICACHE registers access
DS14258 Rev 5
19/270
62
Functional overview
•
3.2.2
STM32H562xx and STM32H563xx
Close to 0 wait-states instructions/data access performance:
–
0 wait-states on cache hit
–
hit-under-miss capability, allowing to serve new processor requests while a line
refill (due to a previous cache miss) is still ongoing
–
critical-word-first refill policy, minimizing processor stalls on cache miss
–
hit ratio improved by two-way set-associative architecture and pLRU-t
replacement policy (pseudo-least-recently-used, based on binary tree), algorithm
with best complexity/performance balance
–
dual master ports allowing to decouple internal and external memory traffic,
respectively, on fast and slow buses, minimizing impact on interrupt latency
–
optimal cache line refill thanks to AHB burst transactions (of the cache line size)
–
performance monitoring by means of a hit counter and a miss counter
•
Extension of cacheable region beyond the code memory space, by means of address
remapping logic that allows four cacheable external regions to be defined
•
Power consumption reduced intrinsically (more accesses to cache memory rather than
to bigger main memories); even improved by configuring ICACHE as direct mapped
(rather than the default two-way set-associative mode)
•
TrustZone security support
•
Maintenance operation for software management of cache coherency
•
Error management: detection of unexpected cacheable write access, with optional
interrupt raising
Data cache (DCACHE)
The data cache (DCACHE) is introduced on S-AHB system bus of Cortex-M33 processor to
improve the performance of data traffic to/from external memories.
DCACHE offers the following features:
•
•
20/270
Multi-bus interface:
–
slave port receiving the memory requests from the Cortex-M33 S-AHB system
port
–
master port performing refill requests to external memories (external flash memory
and RAMs through Octo-SPI and FMC interfaces)
–
a second slave port dedicated to DCACHE registers access
Close to zero wait-states external data access performance:
–
zero wait-states on cache hit
–
hit-under-miss capability, allowing to serve new processor requests to cached
data, while a line refill (due to a previous cache miss) is still ongoing
–
critical-word-first refill policy for read transactions, minimizing processor stalls on
cache miss
–
hit ratio improved by two-way set-associative architecture and pLRU-t
replacement policy (pseudo-least-recently-used, based on binary tree), algorithm
with best complexity/performance balance
–
optimal cache line refill thanks to AHB burst transactions (of the cache line size)
–
performance monitoring by means of two hit counters (for read and write) and two
miss counters (for read and write)
DS14258 Rev 5
STM32H562xx and STM32H563xx
•
Supported cache accesses:
–
supports both write-back and write-through policies (selectable with AHB
bufferable attribute)
–
read and write-back always allocated
–
write-through always non-allocated (write-around)
–
supports byte, half-word and word writes
•
TrustZone security support
•
Maintenance operations for software management of cache coherency:
•
3.3
Functional overview
–
full cache invalidation (non interruptible)
–
address range clean and/or invalidate operations (background task, interruptible)
Error management: detection of error for master port request initiated by DCACHE (line
eviction or clean operation), with optional interrupt raising
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to the memory
and to prevent one task to accidentally corrupt the memory or the resources used by other
active tasks. This memory area is organized into up to 20 protected areas (12 secure and 8
nonsecure). The MPU regions and registers are banked across secure and nonsecure
states.
The MPU is especially helpful for applications where critical or certified code must be
protected against the misbehavior of other tasks. It is usually managed by an RTOS
(real-time operating system).
If a program accesses a memory location prohibited by the MPU, the RTOS can detect it
and take action. In an RTOS environment, the kernel can dynamically update the MPU area
settings based on the process to be executed.
3.4
Embedded flash memory
The devices feature up to 2 Mbytes of embedded flash memory for storing programs and
data. The flash memory supports a high-cycle data area of up to 100 K cycles.
The flash memory interface features dual-bank operating modes, and read-while-write
(RWW). This allows a read operation to be performed on one bank while an erase or
program operation is performed on the other bank. Each bank contains 128 8-Kbyte pages.
The flash memory embeds a 2-Kbyte OTP (one-time programmable) for user data, and up
to 96 Kbytes supporting high cycling capability (100 K cycles), to use for data (EEPROM
emulation).
DS14258 Rev 5
21/270
62
Functional overview
STM32H562xx and STM32H563xx
Option bytes are available to set the flash memory protection mechanisms:
•
Different product states for protecting memory content from debug access
•
Write protection (WRP) to protect areas against erasing and programming. Two areas
per bank can be selected with 8-Kbyte granularity.
•
Sector group write-protection (WRPSG), protecting up to 32 groups of four sectors
(32 Kbytes) per bank
•
Two secure-only areas (one per user flash memory bank). When enabled, this area is
accessible only if the device operates in Secure-access mode
•
One HDP area per bank providing temporal isolation for startup code
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
3.4.1
•
Single-error detection and correction
•
Double-error detection
•
ECC fail address report
FLASH security and protections
Sensitive information is stored in the flash memory and it is important to protect the memory
against unwanted operations such as reading confidential areas, illegal programming of
immutable sectors, or malicious flash memory erasing.
For that purpose the following protection mechanisms are implemented:
•
TrustZone backed watermark and block security protection
•
Temporal isolation protection (HDP)
•
Configuration protection
•
User flash memory write protection
•
Device non-volatile security life cycle and application boot state management
•
OTP locking
Refer to the product reference manual for a detailed description of the security mechanisms.
3.4.2
FLASH privilege protection
Each flash memory sector can be programmed on the fly as privileged or unprivileged.
3.5
Embedded SRAMs
Four SRAMs are embedded in the STM32H562xx and STM32H563xx devices, each with
specific features. SRAM1, SRAM2, and SRAM3 are the main SRAMs.
These SRAMs are made of several blocks that can be powered down in Stop mode to
reduce consumption:
22/270
•
SRAM1: 256 Kbytes
•
SRAM2: 64 Kbytes with ECC
•
SRAM3: 320 Kbytes with optional ECC (when enabled, 64 bytes are reserved for it)
•
BKPSRAM (backup SRAM): 4 Kbytes with optional ECC, can be retained in all lowpower modes and when VDD is off in VBAT mode
DS14258 Rev 5
STM32H562xx and STM32H563xx
Functional overview
Note:
The ECC is supported by SRAM2, SRAM3, and BKPSRAM when enabled with the
SRAM2_ECC, SRAM3_ECC, and BKPRAM_ECC user option bits.
3.5.1
SRAMs TrustZone security
When the TrustZone security is enabled, all SRAMs are secure after reset. The SRAM1,
SRAM2, SRAM3, can be programmed as secure or nonsecure by blocks, using the MPCBB
(block-based memory protection controller).
The granularity of SRAM secure block based is a page of 512 bytes. Backup SRAM regions
can be programmed as secure or nonsecure with watermark, using the TZSC (TrustZone
security controller) in the GTZC (global TrustZone controller).
3.5.2
SRAMs privilege protection
The SRAM1, SRAM2, SRAM3, can be programmed as privileged or non-privileged by
blocks, using the MPCBB. The granularity of SRAM privilege block based is a page of
512 bytes. Backup SRAM regions can be programmed as privileged or non-privileged with
watermark, using the TZSC (TrustZone security controller) in the GTZC (global TrustZone
controller).
3.6
Security overview
The STM32H562xx and STM32H563xx security enables the possibility to reopen the debug
mode even if the product is in secure state.
The reopening of the debug mode is controlled with a debug authentication procedure which
permits the authentication of the host.
Sensible assets (such as keys or secret codes) must be protected when opening the debug
mode. The protection is made via code protection and hardware keys storage solutions
where all root of trust can be protected thanks to hardware mechanisms.
In cases where sensitive information cannot be protected, a partial or a full regression can
be launched to start a debug. Regressions are enabled by a debug authentication method.
Developers can introduce their own root of trust solution (OEM-iROT), including their
installation in a non-trusted environment, thanks to a secure firmware install (SFI) solution.
The boot stages are isolated via a hardware mechanism called HDPL (temporal isolation
level). The HDPL guarantees isolation of the different boot stages: ST assets, iROT
(immutable root of trust), uROT (updatable root of trust), secure operating system and
nonsecure applications.
The devices embed a hardware key storage solution with a dedicated flash memory area
per boot stages with access-control based on HDPL, which can be secure or nonsecure.
STM32H562xx and STM32H563xx are powered by an Arm Cortex-M33 core, associated
with all the TrustZone isolation infrastructure. This design permits to benefit from a run time
isolation to run secure applications.
DS14258 Rev 5
23/270
62
Functional overview
3.7
STM32H562xx and STM32H563xx
Boot modes
At startup, a BOOT0 pin and NSBOOTADD[31:8]/SECBOOTADD[31:8] option bytes are
used to select the boot memory address that includes:
•
Boot from any address in user flash memory
•
Boot from system memory
–
Bootloader
–
ST immutable root of trust (ST-iROT)
–
Root security service (RSS)
–
Debug authentication library (RSS-DA)
Embedded bootloader
The embedded bootloader is located in the system memory, programmed by ST during
production. It is used to reprogram the flash memory by using USART, I2C, I3C, SPI,
FDCAN, or USB_FS in device mode through the DFU (device firmware upgrade).
Refer to AN2606 “STM32 microcontroller system memory boot mode”.
Embedded root security services (RSS)
The embedded RSS are located in the secure information block, programmed by ST during
production.
Refer to AN4992 “Overview secure firmware install (SFI)”.
Embedded immutable root of trust (ST-iROT)
The embedded ST-iROT in the system memory, programmed by ST during production. STiROT is the immutable root of trust managing the secure boot and secure install of the first
updatable level to execute in a boot sequence.
Embedded debug authentication (ST-DA)
The embedded ST-DA in the system memory is programmed by ST during production.
ST-DA is the library that manages the debug authentication protocol, making it possible to
securely reopen the debug or to launch regressions on secured products in the field.
3.7.1
STM32H562/H563xx boot modes
Table 3 and Table 4, respectively, provide the detail of the boot mode when TrustZone is
disabled (TZEN = 0xC3) and enabled (TZEN = 0xB4).
Table 3. STM32H562/H563 boot mode when TrustZone is disabled (TZEN = 0xC3)
PRODUCT_STATE
BOOT0 pin
Boot address
option byte selection
Boot area
ST programmed
default value
Open
0
NSBOOTADD[31:8]
Boot address defined
by user option byte
NSBOOTADD[31:8]
Flash: 0x0800 0000
-
1
NA
Bootloader
Bootloader
Provisioning
x
NA
RSS
RSS
24/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Functional overview
Table 3. STM32H562/H563 boot mode when TrustZone is disabled (TZEN = 0xC3) (continued)
PRODUCT_STATE
BOOT0 pin
Boot address
option byte selection
Boot area
ST programmed
default value
Provisioned, Closed,
Locked
x
NSBOOTADD[31:8]
Boot address defined
by user option byte
NSBOOTADD[31:8]
Flash: 0x0800 0000
Table 4. STM32H562/H563 boot mode when TrustZone is enabled (TZEN = 0xB4)
PRODUCT_STATE
BOOT0 pin
Boot address optionbyte selection
Boot area
ST programmed
default value
Open
0
SECBOOTADD[31:8]
Boot address defined by
user option byte
SECBOOTADD[31:8]
Flash: 0x0C00 0000
-
1
NA
Bootloader
Bootloader
Provisioning
x
NA
RSS
RSS
Provisioned,
TZ_Closed,
Closed, Locked
x
SECBOOTADD[31:8]
Boot address defined by
user option byte
SECBOOTADD[31:8]
Flash: 0x0C00 0000
When TrustZone is enabled the boot space must be in secure area. SECBOOTADD0[24:0]
option bytes are used to select the boot secure memory address. A unique boot entry option
can be selected by setting the SECBOOT_LOCK option bit.
3.8
Global TrustZone controller (GTZC)
GTZC is used to configure TrustZone and privileged attributes within the full system.
The GTZC includes three different sub-blocks:
•
TZSC: TrustZone security controller
This sub-block defines the secure/privilege state of slave/master peripherals. It also
controls the nonsecure area size for the watermark memory peripheral controller
(MPCWM). The TZSC block informs some peripherals (such as RCC or GPIOs) about
the secure status of each securable peripheral, by sharing with RCC and I/O logic.
•
TZIC: TrustZone illegal access controller
This sub-block gathers all security illegal access events in the system and generates a
secure interrupt towards NVIC.
•
MPCBB: MPCBB: block-based memory protection controller
This sub-block controls secure states of all memory blocks (512-byte pages) of the
associated SRAM. This peripheral aims at configuring the internal RAM in a TrustZone
system product having segmented SRAM with programmable-security and privileged
attributes.
DS14258 Rev 5
25/270
62
Functional overview
STM32H562xx and STM32H563xx
The GTZC main features are:
•
Three independent 32-bit AHB interfaces for TZSC, TZIC and MPCBB
•
MPCBB and TZIC accessible only with secure transactions
–
Secure and nonsecure access supported for privileged/non-privileged part of TZSC
•
Set of registers to define product security settings:
–
3.9
Enable illegal access events that may trigger a secure interrupt
•
Secure/privilege regions for external memories
–
Secure/privilege access mode for securable peripherals
–
Secure/privilege access mode for securable legacy masters
TrustZone security architecture
The security architecture is based on Arm TrustZone with the Armv8-M main extension.
The TrustZone security is activated by the TZEN option bit in the FLASH_OPTR register.
When the TrustZone is enabled, the SAU (security attribution unit) and IDAU
(implementation defined attribution unit) define the access permissions based on secure
and nonsecure state.
•
SAU: up to eight SAU configurable regions are available for security attribution.
•
IDAU: It provides a first memory partition as nonsecure or nonsecure callable
attributes. It is then combined with the results from the SAU security attribution and the
higher security state is selected.
Based on IDAU security attribution, the flash memory, system SRAMs and peripherals
memory space is aliased twice for secure and nonsecure states. However, the external
memories space is not aliased.
3.9.1
TrustZone peripheral classification
When the TrustZone security is active, a peripheral can be either securable or TrustZoneaware type as follows:
3.9.2
•
securable: peripheral protected by an AHB/APB firewall gate controlled from TZSC to
define security properties
•
TrustZone-aware: peripheral connected directly to AHB or APB bus and implementing
a specific TrustZone behavior such as a subset of registers being secure
Default TrustZone security state
The default system security state is detailed below:
•
CPU:
–
•
Memory map:
–
•
SAU is fully secure after reset. Consequently, all memory map is fully secure. Up
to eight SAU configurable regions are available for security attribution.
Flash memory:
–
26/270
Cortex-M33 is in secure state after reset. The boot address must be in secure
address.
Flash memory security area is defined by watermark user options.
DS14258 Rev 5
STM32H562xx and STM32H563xx
–
•
FMC, OCTOSPI banks are secure after reset. MPCWMx (memory protection
watermark based controller) is secure.
Peripherals
–
Securable peripherals are nonsecure after reset.
–
TrustZone-aware peripherals are nonsecure after reset. Their secure configuration
registers are secure.
•
All GPIOs are secure after reset.
•
Interrupts:
–
•
3.10
All SRAMs are secure after reset. MPCBB (memory protection block based
controller) is secure.
External memories:
–
•
Flash memory block based area is nonsecure after reset.
SRAMs:
–
•
Functional overview
NVIC: All interrupts are secure after reset. NVIC is banked for secure and
nonsecure state.
TZIC: All illegal access interrupts are disabled after reset.
Power supply management
The power controller (PWR) main features are:
•
•
•
•
Power supplies and supply domains
–
Core domain (VCORE)
–
VDD domain
–
Backup domain (VBAT)
–
Analog domain (VDDA)
–
SMPS power stage (VDDSMPS, available only on SMPS packages)
–
VDDIO2 domain
–
VDDUSB for USB transceiver
System supply voltage regulation
–
SMPS step down converter
–
Voltage regulator (LDO)
Power supply supervision
–
POR/PDR monitor
–
BOR monitor
–
PVD monitor
Power management
–
Operating modes
–
Voltage scaling control
–
Low-power modes
•
VBAT battery charging
•
TrustZone security and privileged protection
DS14258 Rev 5
27/270
62
Functional overview
3.10.1
STM32H562xx and STM32H563xx
Power supply schemes
The devices require a 1.71 to 3.6 V VDD operating voltage supply. Several independent
supplies can be provided for specific peripherals:
•
VDD = 1.71 V to 3.6 V
VDD is the external power supply for the I/Os, the internal regulator and the system
analog such as reset, power management and internal clocks. It is provided externally
through the VDD pins.
•
VDDA = 1.62 V (ADCs), 1.8 V (DACs), or 2.1 V (VREFBUF) to 3.6 V
VDDA is the external analog power supply for ADCs, DACs and voltage reference
buffer. This voltage level is independent from VDD, and must preferably be connected to
VDD when these peripherals are not used.
•
VDDSMPS = 1.71 V to 3.6 V
VDDSMPS is the external power supply for the SMPS step down converter. It is provided
externally through VDDSMPS supply pin and must be connected to the same supply
than VDD.
•
VLXSMPS is the switched SMPS step down converter output. The SMPS power supply
pins are available only on packages with SMPS step down converter option.
•
VDDUSB = 3.0 V to 3.6 V
VDDUSB is the external independent power supply for USB transceivers. It is
independent from VDD, and must preferably be connected to VDD when the USB is not
used.
•
VDDIO2 = 1.08 V to 3.6 V
VDDIO2 is the external power supply for 10 I/Os (PD6, PD7, PG9:14, PB8, PB9). This
voltage level is independent from VDD, voltage and must preferably be connected to
VDD when those pins are not used.
•
VBAT = 1.2 V to 3.6 V
VBAT is the power supply for RTC, external clock 32 kHz oscillator and backup registers
(through power switch) when VDD is not present.
•
VREF-, VREF+
VREF+ is the input reference voltage for ADCs and DACs. It is also the output of the
internal voltage reference buffer when enabled.
VREF+ can be grounded when ADC and DAC are not active.
VREF- and VREF+ pins are not available on all packages. When not available, they are
bonded to VSSA and VDDA, respectively.
When the VREF+ is double-bonded with VDDA in a package, the internal voltage
reference buffer is not available and must be kept disabled.
VREF- must always be equal to VSSA.
Depending upon the package, the devices embed an LDO and/or an SMPS regulator, to
provide the VCORE supply for digital peripherals, SRAM1, SRAM2, SRAM3, and embedded
flash memory. The SMPS generates this voltage on VCAP (two pins), with a total external
capacitor of 10 μF (typical). The SMPS requires an external coil. The LDO generates this
voltage on VCAP pin connected to an external capacitor of 2x 2.2 μF (typical).
Both regulators can provide four different voltages (voltage scaling), and can operate in Stop
modes.
28/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Functional overview
Figure 2. STM32H562xx and STM32H563xx power supply overview (with SMPS)
VDDA domain
A/D converters
VDDA
VSSA
D/A converters
Voltage reference buffer
VDDUSB
VSS
VDDIO2
VSS
USB transceiver
VDDIO2 domain
VDDIO2
I/O ring
VDD domain
VDDIO1 I/O ring
Reset block
Temperature sensor
3 x PLL
Internal RC oscillators
VCORE domain
Core
VSS
Standby circuitry
(Wakeup logic, IWDG)
SRAM1
SRAM2
SRAM3
VDD
Voltage regulator
VCORE
2x VCAP
VLXSMPS
VDDSMPS
VSSSMPS
SMPS regulator
Digital
peripherals
Flash memory
Low-voltage detector
Backup domain
VBAT
LSE crystal 32kHz oscillator
Backup registers
RCC_BDCR register
RTC
TAMP
BKPSRAM
MSv64010V2
DS14258 Rev 5
29/270
62
Functional overview
STM32H562xx and STM32H563xx
Figure 3. STM32H562xx and STM32H563xx power supply overview (with LDO)
VDDA domain
A/D converters
VDDA
VSSA
D/A converters
Voltage reference buffer
VDDUSB
VSS
VDDIO2
VSS
USB transceiver
VDDIO2 domain
VDDIO2
I/O ring
VDD domain
VDDIO1 I/O ring
VSS
VDD
VCORE domain
Reset block
Temperature sensor
3 x PLL
Internal RC oscillators
Core
SRAM1
SRAM2
SRAM3
Standby circuitry
(Wakeup logic, IWDG)
VCORE
VCAP
LDO regulator
Digital
peripherals
Flash memory
Low-voltage detector
Backup domain
VBAT
LSE crystal 32kHz oscillator
Backup registers
RCC_BDCR register
RTC
TAMP
BKPSRAM
MSv64011V1
During power-up and power-down phases, the following power sequence requirements
must be respected:
30/270
•
When VDD is below 1 V, other power supplies (VDDA, VDDIO2, VDDUSB) must remain
below VDD + 300 mV.
•
When VDD is above 1 V, all power supplies are independent.
•
During the power-down phase, VDD can temporarily become lower than other supplies
only if the energy provided to the MCU remains below 1 mJ. This allows external
decoupling capacitors to be discharged with different time constants during the powerdown transient phase.
DS14258 Rev 5
STM32H562xx and STM32H563xx
Functional overview
Figure 4. Power-up/down sequence
V
3.6
VDDX(1)
VDD
VBOR0
1
0.3
Power-on
Invalid supply area
Operating mode
VDDX < VDD + 300 mV
Power-down
time
VDDX independent from VDD
MSv47490V1
1. VDDX refers to any power supply among VDDA, VDDUSB, and VDDIO2.
3.10.2
Power supply supervisor
The devices have an integrated ultra-low-power brownout reset (BOR) active in all modes;
The BOR ensures proper operation of the devices after power on and during power down.
The devices remain in reset mode when the monitored supply voltage VDD is below a
specified threshold, without the need for an external reset circuit.
The lowest BOR level is 1.71 V at power on, and other higher thresholds can be selected
through option bytes.The devices feature an embedded programmable voltage detector
(PVD) that monitors the VDD power supply and compares it to the VPVD threshold.
An interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD
is higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
In addition, the devices embed a peripheral voltage monitor that compares the independent
supply voltages VDDA, VDDUSB and VDDIO2 to ensure that the peripheral is in its functional
supply range.
The devices support dynamic voltage scaling to optimize power consumption in Run mode.
The voltage from the main regulator that supplies the logic (VCORE) can be adjusted
according to the system maximum operating frequency.
The main regulator operates in the following ranges:
•
VOS0 (VCORE = 1.35 V) with CPU and peripherals running at up to 250 MHz
•
VOS1 (VCORE = 1.2 V) with CPU and peripherals running at up to 200 MHz
•
VOS2 (VCORE = 1.1 V) with CPU and peripherals running at up to 150 MHz
•
VOS3 (VCORE = 1.0 V) with CPU and peripherals running at up to 100 MHz
DS14258 Rev 5
31/270
62
Functional overview
STM32H562xx and STM32H563xx
Low-power modes
By default, the microcontroller is in Run mode after a system or a power reset. It is up to the
user to select one of the low-power modes described below:
•
Sleep mode
Only the CPU is stopped. All peripherals continue to operate and can wake up the CPU
when an interrupt/event occurs.
•
Stop mode
This mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the CSI, the
HSI, the HSI48, and the HSE crystal oscillators are disabled. The LSE or LSI is still
running.
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).
The system clock when exiting from Stop mode can be either HSI up to 64 MHz, or CSI
(4 MHz), depending on software configuration.
•
Standby mode
This mode is used to achieve the lowest power consumption with BOR. The PLL, the
HSI, the CSI, the HSI48, and the HSE crystal oscillators are also switched off.
The RTC can remain active (Standby mode with RTC, Standby mode without RTC).
The BOR always remains active.
The I/Os state during Standby mode can be retained.
After entering Standby mode, SRAMs and register contents are lost, except for
registers and backup SRAM in the Backup domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a
WKUP pin event (configurable rising or falling edge), an RTC event (alarm, periodic
wake-up, timestamp), or a tamper detection occurs. The tamper detection can be due
to external pins or to an internal failure detection.
The system clock after wake-up is HSI at 32 MHz.
3.10.3
Reset mode
To improve the consumption under reset, the I/Os state under and after reset is “analog
state” (the I/O Schmitt trigger is disabled).
3.10.4
VBAT operation
The VBAT pin allows the device VBAT domain to be powered from an external battery or by
an external super-capacitor.
The VBAT pin supplies the RTC with LSE, anti-tamper detection (TAMP), backup registers,
and 4-Kbyte backup SRAM. Eight anti-tamper detection pins are available in VBAT mode.
The VBAT operation is automatically activated when VDD is not present. An internal VBAT
battery charging circuit is embedded and can be activated when VDD is present.
Note:
32/270
When the microcontroller is supplied from VBAT, neither external interrupts nor RTC
alarm/events exit the microcontroller from the VBAT operation.
DS14258 Rev 5
STM32H562xx and STM32H563xx
3.10.5
Functional overview
PWR TrustZone security
When the TrustZone security is activated by the TZEN option bit, the PWR is switched in
TrustZone security mode.
The PWR TrustZone security secures the following configuration:
•
Low-power mode
•
Wake-up (WKUP) pins
•
Voltage detection and monitoring
•
VBAT mode
Some of the PWR configuration bits security are defined by the security of other peripherals:
3.11
•
The voltage scaling (VOS) configuration is secure when the system clock selection is
secure in RCC.
•
The I/O pull-up/pull-down in Standby mode configuration is secure when the
corresponding GPIO is secure.
•
The backup domain write protection is secure when the RTC is secure.
Peripheral interconnect matrix
Several peripherals have direct connections between them, for autonomous
communication, and to support the saving of CPU resources (thus power supply
consumption). In addition, these hardware connections allow fast and predictable latency.
Depending on the peripherals, these interconnections can operate in Run and Sleep modes.
3.12
Reset and clock controller (RCC)
The clock controller distributes the clocks coming from the different oscillators to the core
and to the peripherals. It also manages the clock gating for low-power modes and ensures
the clock robustness. It features:
•
Clock prescaler: to get the best trade-off between speed and current consumption,
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler.
•
Clock security system: clock sources can be changed safely on the fly in Run mode
through a configuration register.
•
Clock management: to reduce the power consumption, the clock controller can stop
the clock to the core, individual peripherals, or memory.
•
System clock source: four different clock sources can be used to drive the master
clock SYSCLK:
–
4 to 50 MHz high-speed external crystal or ceramic resonator (HSE), can supply a
PLL. The HSE can also be configured in bypass mode for an external clock.
–
64 MHz high-speed internal RC oscillator (HSI), trimmable by software, can
supply a PLL.
–
4 MHz low-power internal oscillator (CSI), trimmable by software, can supply a
PLL.
–
System PLL, which can be fed by HSE, HSI, or CSI, with a maximum frequency at
250 MHz.
DS14258 Rev 5
33/270
62
Functional overview
STM32H562xx and STM32H563xx
•
RC48 with clock recovery system (HSI48): internal 48 MHz clock source (HSI48),
can be used to drive the USB.
•
UCPD kernel clock, derived from HSI clock. The HSI RC oscillator must be enabled
prior to the UCPD kernel clock use.
•
Auxiliary clock source: two ultra-low power clock sources that can be used to drive
the real-time clock:
–
32.768 kHz low-speed external crystal (LSE), supporting four drive capability
modes. The LSE can also be configured in bypass mode for an external clock.
–
32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
•
Peripheral clock sources: several peripherals have their own independent clock,
whatever the system clock. Three PLLs, each having three independent outputs
allowing the highest flexibility, can generate independent clocks for the ADC, USB,
SDMMC, RNG, FDCAN1, OCTOSPI, and the two SAIs.
•
Startup clock: after reset, the microcontroller restarts by default with an internal
32 MHz clock (HSI/2). The prescaler ratio and clock source can be changed by the
application program as soon as the code execution starts.
•
Clock security system (CSS): this feature can be enabled by software. If a HSE clock
failure occurs, the master clock automatically switches to HSI and a software interrupt
is generated if enabled. LSE failure can also be detected and generates an interrupt.
•
Clock-out capability:
–
MCO (microcontroller clock output): outputs one of the internal clocks for
external use by the application.
–
LSCO (low-speed clock output): outputs LSI or LSE in all low-power modes
(except VBAT mode).
Several prescalers allow AHB and APB frequencies configuration. The maximum frequency
of the AHB and the APB clock domains is 250 MHz.
3.12.1
RCC TrustZone security
When the TrustZone security is activated by the TZEN option bit, the RCC is switched in
TrustZone security mode.
The RCC TrustZone security secures some RCC system configuration and peripheral
configuration clock from being read or modified by nonsecure accesses: when a peripheral
is secure, the related peripheral clock, reset, clock source selection and clock enable during
low-power modes control bits are secure.
A peripheral is in secure state:
3.13
•
when its corresponding SEC security bit is set in the TZSC (TrustZone security
controller), for securable peripherals.
•
when a security feature of this peripheral is enabled through its dedicated bits, for
TrustZone-aware peripherals.
Clock recovery system (CRS)
The devices embed a special block that allows automatic trimming of the internal 48 MHz
oscillator to guarantee its optimal accuracy over the whole device operational range. The
trimming is based on the external synchronization signal, derived from USB SOF
signalization, from LSE oscillator, from an external signal on CRS_SYNC pin, or generated
34/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Functional overview
by user software. For faster lock-in during startup, automatic and manual trimming actions
can be combined.
3.14
General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions.
After reset, all GPIOs are in analog mode to reduce power consumption.
If needed, the I/Os alternate function configuration can be locked following a specific
sequence, to avoid spurious writing to the I/Os registers.
Ten I/Os (PD6, PD7, PG9:14, PB8, PB9) can be independently supplied by a dedicated
VDDIO supply.
3.14.1
GPIOs TrustZone security
Each I/O pin of GPIO port can be individually configured as secure. When the selected I/O
pin is configured as secure, its corresponding configuration bits for alternate function, mode
selection, I/O data are secure against a nonsecure access. The associated registers bit
access is restricted to a secure software only. After reset, all GPIO ports are secure.
3.15
Multi-AHB bus matrix
A 32-bit multi-AHB bus matrix interconnects all the masters (CPU, GPDMA1, GPDMA2,
SDMMC1, SDMMC2, Ethernet) and the slaves (flash memory, FMC, OCTOSPI, SRAMs,
AHB and APB) peripherals. It ensures seamless and efficient operation, even when several
high-speed peripherals work simultaneously.
3.16
General purpose direct memory access controller (GPDMA)
The GPDMA controller is a bus master and system peripheral. It used to perform
programmable data transfers between memory-mapped peripherals and/or memories via
linked-lists, upon the control of an off-loaded CPU. The GPDMA main features are:
•
Dual bidirectional AHB master
•
Memory-mapped data transfers from a source to a destination:
–
Peripheral-to-memory
–
Memory-to-peripheral
–
Memory-to-memory
–
Peripheral-to-peripheral
•
Autonomous data transfers during Sleep mode
•
Transfers arbitration based on a four-grade programmed priority at a channel level:
–
One high-priority traffic class, for time-sensitive channels (queue 3)
–
Three low-priority traffic classes, with a weighted round-robin allocation for non
time-sensitive channels (queues 0, 1, 2)
DS14258 Rev 5
35/270
62
Functional overview
•
Per channel event generation, on any of the following events: transfer complete or half
transfer complete or data transfer error or user setting error, and/or update linked-list
item error or completed suspension
•
Per channel interrupt generation, with separately programmed interrupt enable per
event
•
Eight concurrent DMA channels:
•
•
•
•
36/270
STM32H562xx and STM32H563xx
–
Per channel FIFO for queuing source and destination transfers
–
Intra-channel DMA transfers chaining via programmable linked-list into memory,
supporting two execution modes: run-to-completion and link step mode
–
Intra-channel and inter-channel DMA transfers chaining via programmable DMA
input triggers connection to DMA task completion events
Per linked-list item within a channel:
–
Separately programmed source and destination transfers
–
Programmable data handling between source and destination: byte-based
reordering, packing or unpacking, padding or truncation, sign extension and
left/right realignment
–
Programmable number of data bytes to be transferred from the source, defining
the block level
–
12 channels with linear source and destination addressing: either fixed or
contiguously incremented addressing, programmed at a block level, between
successive single transfers
–
Four channels with 2D source and destination addressing: programmable signed
address offsets between successive burst transfers (non-contiguous addressing
within a block, combined with programmable signed address offsets between
successive blocks, at a second 2D/repeated block level)
–
Support for scatter-gather (multi-buffer transfers), data interleaving and
de-interleaving via 2D addressing
–
Programmable DMA request and trigger selection
–
Programmable DMA half-transfer and transfer complete events generation
–
Pointer to the next linked-list item and its data structure in memory, with automatic
update of the DMA linked-list control registers
Debug:
–
Channel suspend and resume support
–
Channel status reporting including FIFO level and event flags
TrustZone support:
–
Support for secure and nonsecure DMA transfers, independently at a first channel
level, and independently at a source/destination and link sub-levels
–
Secure and nonsecure interrupts reporting, resulting from any of the respectively
secure and nonsecure channels
–
TrustZone-aware AHB slave port, protecting any DMA secure resource (register,
register field) from a nonsecure access
Privileged/unprivileged support:
–
Support for privileged and unprivileged DMA transfers, independently at a channel
level
–
Privileged-aware AHB slave port
DS14258 Rev 5
STM32H562xx and STM32H563xx
Functional overview
3.17
Interrupts and events
3.17.1
Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels
and to handle up to 125 maskable interrupt channels plus the 16 interrupt lines of the
Cortex-M33.
The NVIC benefits are the following:
•
closely coupled NVIC giving low-latency interrupt processing
•
interrupt entry vector table address passed directly to the core
•
early processing of interrupts
•
processing of late arriving higher priority interrupts
•
support for tail chaining
•
processor state automatically saved
•
interrupt entry restored on interrupt exit with no instruction overhead
•
TrustZone support: NVIC registers banked across secure and nonsecure states
The NVIC hardware block provides flexible interrupt management features with minimal
interrupt latency.
3.17.2
Extended interrupt/event controller (EXTI)
The extended interrupts and event controller (EXTI) manages the individual CPU and
system wake-up through configurable event inputs. It provides wake-up requests to the
power control, and generates an interrupt request to the CPU NVIC and events to the CPU
event input. For the CPU an additional event generation block (EVG) is needed to generate
the CPU event signal.
The EXTI wake-up requests allow the system to be woken up from Stop modes.
The interrupt request and event request generation can also be used in Run modes. The
EXTI also includes the EXTI multiplexer IO port selection.
The EXTI main features are the following:
•
All event inputs allowed to wake up the system
•
Configurable events (signals from I/Os or peripherals able to generate a pulse)
•
–
Selectable active trigger edge
–
Interrupt pending status register bit independent for the rising and falling edge
–
Individual interrupt and event generation mask, used for conditioning the CPU
wake-up, interrupt and event generation
–
Software trigger possibility
TrustZone secure events
–
•
The access to control and configuration bits of secure input events can be made
secure
EXTI IO port selection
DS14258 Rev 5
37/270
62
Functional overview
3.18
STM32H562xx and STM32H563xx
Cyclic redundancy check calculation unit (CRC)
The CRC is used to get a CRC code using a configurable generator with polynomial value
and size.
Among other applications, the CRC-based techniques are used to verify data transmission
or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a mean to verify
the flash memory integrity.
The CRC calculation unit helps to compute a signature of the software during runtime, which
can be ulteriorly compared with a reference signature generated at link-time and that can be
stored at a given memory location.
3.19
CORDIC coprocessor (CORDIC)
The CORDIC coprocessor provides hardware acceleration of certain mathematical
functions, notably trigonometric, commonly used in motor control, metering, signal
processing and many other applications. It speeds up the calculation of these functions
compared to a software implementation, allowing a lower operating frequency, or freeing up
processor cycles in order to perform other tasks.
The CORDIC main features are:
3.20
•
24-bit CORDIC rotation engine
•
Circular and hyperbolic modes
•
Rotation and vectoring modes
•
Functions: sine, cosine, sinh, cosh, atan, atan2, atanh, modulus, square root, natural
logarithm
•
Programmable precision
•
Low-latency AHB slave interface
•
Results can be read as soon as ready without polling or interrupt
•
DMA read and write channels
•
Multiple register read/write by DMA
Filter math accelerator (FMAC)
The FMAC performs arithmetic operations on vectors. It comprises a multiplier/accumulator
(MAC) unit, together with address generation logic that allows it to index vector elements
held in local memory.
The unit includes support for circular buffers on input and output, which allows digital filters
to be implemented. Both finite and infinite impulse response filters can be done.
The unit allows frequent or lengthy filtering operations to be offloaded from the CPU, freeing
up the processor for other tasks. In many cases it can accelerate such calculations
compared to a software implementation, resulting in a speed-up of time critical tasks.
The FMAC main features are:
38/270
•
16 x 16-bit multiplier
•
24 + 2-bit accumulator with addition and subtraction
•
16-bit input and output data
DS14258 Rev 5
STM32H562xx and STM32H563xx
3.21
Functional overview
•
256 x 16-bit local memory
•
Up to three areas can be defined in memory for data buffers (two input, one output),
defined by programmable base address pointers and associated size registers
•
Input and output buffers can be circular
•
Filter functions: FIR, IIR (direct form 1)
•
Vector functions: dot product, convolution, correlation
•
AHB slave interface
•
DMA read and write data channels
Flexible memory controller (FMC)
The FMC includes three memory controllers:
•
NOR/PSRAM memory controller
•
NAND memory controller
•
SDRAM memory controller
The main features of the FMC controller are the following:
•
Interface with static-memory mapped devices including:
–
3.21.1
Static random access memory (SRAM)
–
NOR flash memory/OneNAND flash memory
–
PSRAM (four memory banks)
–
NAND flash memory with ECC hardware to check up to 8 Kbytes of data
–
Ferroelectric RAM (FRAM, FeRAM)
•
Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM)
•
8-,16- bit data bus width
•
Independent chip select control for each memory bank
•
Independent configuration for each memory bank
•
Write FIFO
LCD parallel interface
The FMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel® 8080 and Motorola® 6800 modes, and is flexible enough to adapt to
specific LCD interfaces.
This LCD parallel interface capability makes it easy to build cost effective graphic
applications using LCD modules with embedded controllers or high-performance solutions
using external controllers with dedicated acceleration.
3.21.2
FMC TrustZone security
When the TrustZone security is enabled, the whole FMC banks are secure after reset.
Nonsecure area can be configured using the TZSC MPCWMx controller.
•
The FMC NOR/PSRAM bank:
–
•
Up to two nonsecure area can be configured thought the TZSC MPCWM2
controller with a 64-Kbyte granularity
The FMC NAND bank:
DS14258 Rev 5
39/270
62
Functional overview
–
STM32H562xx and STM32H563xx
Can be either configured as fully secure or fully nonsecure using the TZSC
MPCWM3 controller
The FMC registers can be configured as secure through the TZSC controller.
3.22
Octo-SPI interface (OCTOSPI)
The OCTOSPI supports most external serial memories such as serial PSRAMs, serial
NAND and serial NOR flash memories, HyperRAMs™ and HyperFlash™ memories, with
the following functional modes:
•
Indirect mode: all the operations are performed using the OCTOSPI registers.
•
Status-polling mode: the external memory status register is periodically read and an
interrupt can be generated in case of flag setting.
•
Memory-mapped mode: the external memory is memory mapped and is seen by the
system as if it were an internal memory supporting read and write operation.
The OCTOSPI supports the following protocols with associated frame formats:
•
the standard frame format with the command, address, alternate byte, dummy cycles
and data phase
•
the HyperBus™ frame format
The OCTOSPI offers the following features:
3.22.1
•
Three functional modes: Indirect, Status-polling, and Memory-mapped
•
Read and write support in Memory-mapped mode
•
Supports for single, dual, quad and octal communication
•
Dual-quad mode, where eight bits can be sent/received simultaneously by accessing
two quad memories in parallel.
•
SDR (single-data rate) and DTR (double-transfer rate) support
•
Data strobe support
•
Fully programmable opcode
•
Fully programmable frame format
•
HyperBus support
•
Integrated FIFO for reception and transmission
•
8-, 16-, and 32-bit data accesses allowed
•
DMA channel for Indirect mode operations
•
Interrupt generation on FIFO threshold, timeout, operation complete, and access error
OCTOSPI TrustZone security
When the TrustZone security is enabled, the whole OCTOSPI bank is secure after reset.
Up to two nonsecure area can be configured thought the TZSC MPCWM1 controller with a
granularity of 64 Kbytes.
The OCTOSPI registers can be configured as secure through the TZSC controller.
40/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
3.23
Functional overview
Delay block (DLYB)
The delay block (DLYB) is used to generate an output clock dephased from the input clock.
The phase of the output clock must be programmed by the user application. The output
clock is then used to clock the data received by another peripheral such as an SDMMC or
Octo-SPI interface. The delay is voltage and temperature dependent, that may require the
application to re-configure and recenter the output clock phase with the received data.
The delay block main features are:
3.24
•
Input clock frequency ranging from 25 to 250 MHz
•
Up to 12 oversampling phases
Analog-to-digital converters (ADC1 and ADC2)
The devices embed two successive approximation analog-to-digital converters.
Table 5. ADC features
Mode/feature
ADC1
ADC2
Resolution
12 bit
Maximum sampling speed
5 Msps (12-bit resolution)
Dual mode operation
X
Hardware offset calibration
X
Hardware linearity calibration
-
Single-end input
X
Differential input
X
Injected channel conversion
X
Oversampling
Up to x256
Data register
16 bits
Data register FIFO depth
3 stages
DMA support
X
Parallel data output to ADF
-
Offset compensation
X
Gain compensation
-
Number of analog watchdogs
3
Option register
-
DS14258 Rev 5
X
41/270
62
Functional overview
3.24.1
STM32H562xx and STM32H563xx
Analog temperature sensor
This sensor generates a voltage (VSENSE) that varies linearly with temperature. It is
internally connected to an ADC input channel used to convert the output voltage into a
digital value.
The sensor provides good linearity but it must be calibrated to obtain a good accuracy of the
temperature measurement. As the offset depends upon process variation, the uncalibrated
internal temperature sensor is suitable for applications that detect only temperature
changes.
To improve the measurement accuracy, each device is individually factory-calibrated by ST.
The calibration data are stored in the system memory area, accessible in read-only mode.
3.24.2
Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC. The VREFINT is internally connected to ADC input channel.
The precise voltage of VREFINT is individually measured for each part during manufacturing,
and stored in the system memory area. It is accessible in read-only mode.
3.24.3
VBAT battery voltage monitoring
This embedded hardware enables the application to measure the VBAT battery voltage using
ADC or input channel. As the VBAT voltage may be higher than the VDDA, and thus outside
the ADC input range, the VBAT pin is internally connected to a bridge divider by four. As a
consequence, the converted digital value is a quarter of the VBAT voltage.
3.25
Digital temperature sensor (DTS)
The devices embeds a sensor that converts the temperature into a square wave, whose
frequency is proportional to the temperature. The PCLK or the LSE clock can be used as
reference clock for the measurements. Use the formula given in the product reference
manual to calculate the temperature according to the measured frequency stored in the
DTS_DR register.
3.26
Digital to analog converter (DAC)
The DAC module is a 12-bit voltage output digital-to-analog converter. The DAC can be
configured in 8- or 12-bit mode, and can be used in conjunction with the DMA controller. In
12-bit mode, the data can be left- or right-aligned.
The DAC features two output channels, each with its own converter. In dual DAC channel
mode, conversions can be done independently or simultaneously when both channels are
grouped together for synchronous update operations. An input reference pin, VREF+
(shared with others analog peripherals), is available for better resolution. An internal
reference can also be set on the same input.
The DAC_OUTx pin can be used as general purpose input/output (GPIO) when the DAC
output is disconnected from output pad and connected to on chip peripheral. The DAC
output buffer can be optionally enabled to allow a high drive output current. An individual
42/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Functional overview
calibration can be applied on each DAC output channel. The DAC output channels support
a low power mode, the Sample and hold mode.
The digital interface supports the following features:
3.27
•
One DAC interface, maximum two output channels
•
Left or right data alignment in 12-bit mode
•
Synchronized update capability
•
Noise-wave and triangular-wave generation
•
Sawtooth wave generation
•
Dual DAC channel for independent or simultaneous conversions
•
DMA capability for each channel including DMA underrun error detection
•
Double data DMA capability to reduce the bus activity
•
External triggers for conversion
•
DAC output channel buffered/unbuffered modes
•
Buffer offset calibration
•
Each DAC output can be disconnected from the DAC_OUTx output pin
•
DAC output connection to on chip peripherals
•
Sample and Hold mode for low-power operation in Stop mode. The DAC voltage can
be changed autonomously with the DMA while the device is in Stop mode.
•
Voltage reference input
Voltage reference buffer (VREFBUF)
The devices embed a voltage reference buffer that can be used as reference for ADCs and
DACs, and also as reference for external components through the VREF+ pin.
The internal voltage reference buffer supports three voltages: 1.8, 2.048, and 2.5 V.
An external voltage reference can be provided through the VREF+ pin when the internal
voltage reference buffer is off.
The VREF+ pin is double-bonded with VDDA on some packages. In these packages the
internal voltage reference buffer is not available.
3.28
Digital camera interface (DCMI)
The digital camera is a synchronous parallel interface able to receive a high-speed data flow
from an external 8-, 10-, 12- or 14-bit CMOS camera module. It supports different data
formats: YCbCr4:2:2/RGB565 progressive video and compressed data (JPEG). It can be
used with black and white cameras, X24 and X5 cameras (it is assumed that all
preprocessing such as resizing is performed in the camera module).
Main features:
•
8-, 10-, 12-, or 14-bit parallel interface
•
Embedded/external line and frame synchronization
•
Continuous or snapshot mode
•
Crop feature
•
Support of the following data formats:
DS14258 Rev 5
43/270
62
Functional overview
3.29
STM32H562xx and STM32H563xx
–
8/10/12/14-bit progressive video: monochrome or raw Bayer
–
YCbCr 4:2:2 progressive video
–
RGB 565 progressive video
–
Compressed data: JPEG
Parallel synchronous slave interface (PSSI)
The PSSI peripheral and the DCMI (digital camera interface) use the same circuitry. As a
result, these two peripherals cannot be used at the same time: when using the PSSI, the
DCMI registers cannot be accessed, and vice versa. In addition, the PSSI and the DCMI
share the same alternate functions and the same interrupt vector.
The PSSI is a generic synchronous 8-/16-bit parallel data input/output slave interface. It
enables the transmitter to send a data valid signal that indicates when the data is valid, and
the receiver to output a flow control signal that indicates when it is ready to sample the data.
The PSSI peripheral main features are the following:
•
Slave mode operation
•
8-bit or 16-bit parallel data input or output
•
4-word (16-byte) FIFO
•
Data enable (PSSI_DE) alternate function input and ready (PSSI_RDY) alternate
function output
When selected, these inputs can either enable the transmitter to indicate when the data is
valid, or allow the receiver to indicate when it is ready to sample the data, or both.
3.30
True random number generator (RNG)
The RNG is a true random number generator that provides full entropy outputs to the
application as 32-bit samples. It is composed of a live entropy source (analog) and an
internal conditioning component.
The RNG is a NIST SP 800-90B compliant entropy source that can be used to construct a
non-deterministic random bit generator (NDRBG).
The true random generator:
44/270
•
delivers 32-bit true random numbers, produced by an analog entropy source
conditioned by a NIST SP800-90B approved conditioning stage
•
can be used as entropy source to construct a non-deterministic random bit generator
(NDRBG)
•
produces four 32-bit random samples every 412 AHB clock cycles if fAHB < 77 MHz
(256 RNG clock cycles otherwise)
•
embeds start-up and NIST SP800-90B approved continuous health tests (repetition
count and adaptive proportion tests), associated with specific error management
•
can be disabled to reduce power consumption, or enabled with an automatic low-power
mode (default configuration)
•
has an AMBA AHB slave peripheral, accessible through 32-bit word single accesses
only (else an AHB bus error is generated, and the write accesses are ignored)
DS14258 Rev 5
STM32H562xx and STM32H563xx
3.31
Functional overview
HASH hardware accelerator (HASH)
The HASH is a fully compliant implementation of the secure hash (SHA-1, SHA-224,
SHA-256, SHA-512) and the HMAC (keyed-hash message authentication code) algorithms.
HMAC is suitable for applications requiring message authentication.
The HASH computes FIPS (Federal information processing standards) approved digests of
length of 160, 224, 256, 512 bits, for messages of up to (264 – 1).
The HASH main features are:
•
•
Suitable for data authentication applications, compliant with:
–
FIPS PUB 180-4, Secure Hash Standard (SHA-1 and SHA-2 family)
–
FIPS PUB 186-4, Digital Signature Standard (DSS)
–
Internet Engineering Task Force (IETF) Request For Comments RFC 2104,
HMAC: Keyed-Hashing for Message Authentication and Federal Information
Processing Standards Publication FIPS PUB 198-1, The Keyed-Hash Message
Authentication Code (HMAC)
Fast computation of SHA-1, SHA-224, SHA-256, SHA-512
–
•
3.32
82 (respectively 66) clock cycles for processing one 512-bit block of data using
SHA-1 (respectively SHA-256) algorithm
Corresponding 32-bit words of the digest from consecutive message blocks are added
to each other to form the digest of the whole message
–
Automatic 32-bit words swapping to comply with the internal little-endian
representation of the input bit string
–
Word swapping supported: bits, bytes, half-words and 32-bit words
•
Automatic padding to complete the input bit string to fit digest minimum block size of
512 bits (16 × 32 bits)
•
Single 32-bit input register associated to an internal input FIFO of sixteen 32-bit words,
corresponding to one block size
•
AHB slave peripheral, accessible through 32-bit word accesses only (else an AHB
error is generated)
•
8 × 32-bit words (H0 to H7) for output message digest
•
Automatic data flow control with support of direct memory access (DMA) using one
channel. Single or fixed burst of 4 supported.
•
Interruptible message digest computation, on a per-32-bit word basis
–
Re-loadable digest registers
–
Hashing computation suspend/resume mechanism, including using DMA
Public key accelerator (PKA)
The PKA can verify ECDSA signatures, with all needed computation performed within the
accelerator. The application CPU is needed only to manage the inputs and the outputs of
the operation.
DS14258 Rev 5
45/270
62
Functional overview
STM32H562xx and STM32H563xx
The PKA main features are:
3.33
•
ECDSA signature verification
•
Capability to handle operands up to 640 bits
•
AMBA AHB slave peripheral, accessible through 32-bit word single accesses only
(otherwise an AHB bus error is generated, and write accesses are ignored)
Timers and watchdogs
The devices include two advanced control timers, up to seven general-purpose timers, two
basic timers, six low-power timers, two watchdog timers and two SysTick timers.
Table 6 compares the features of the advanced control, general-purpose and basic timers.
Table 6. Timer features
Type
Timer
Counter
resolution
Advanced
control
TIM1, TIM8
16 bits
General
purpose
General
purpose
Basic
3.33.1
TIM2, TIM5
32 bits
TIM3, TIM4
16 bits
Counter
type
Prescaler
factor
DMA
request
generation
Up, down,
up/down
Any integer
between 1 and
65536
TIM12, TIM15
TIM13, TIM14,
TIM16, TIM17
16 bits
Up
TIM6, TIM7
16 bits
Up
Yes
Capture/
compare
channels
Complementary
outputs
4
3
4
No
4
No
2
1
1
1
0
No
Advanced-control timers (TIM1, TIM8)
These timers can be seen as a three-phase PWM multiplexed on six channels. They have
complementary PWM outputs with programmable inserted dead-times. They can also be
seen as complete general-purpose timers.
The four independent channels can be used for:
•
Input capture
•
Output compare
•
PWM generation (edge or center-aligned modes) with full modulation capability
(0 - 100 %)
•
One-pulse mode output
In Debug mode, the advanced-control timer counter can be frozen and the PWM outputs
disabled to turn off any power switches driven by these outputs.
Many features are shared with the general-purpose TIMx timers (described in the next
section) using the same architecture, so the advanced-control timers can work together with
the TIMx timers via the Timer Link feature for synchronization or event chaining.
46/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
3.33.2
Functional overview
General-purpose timers
(TIM2, TIM3, TIM4, TIM5, TIM15, TIM16, TIM17)
The devices embed up to seven synchronizable general-purpose timers (see Table 6), each
of them can be used to generate PWM outputs, or act as a simple time base.
•
TIM2 and TIM5
Full-featured general-purpose timers with 32-bit auto-reload up/down counter and
32-bit prescaler.
These timers feature four independent channels for input capture/output compare,
PWM or one-pulse mode output. They can work together, or with the other generalpurpose timers via the Timer Link feature for synchronization or event chaining.
The counters can be frozen in Debug mode. All have independent DMA request
generation and support quadrature encoders.
•
TIM3 and TIM4
Full-featured general-purpose timers, with 16-bit auto-reload up/down counter and
16-bit prescaler.
These timers feature four independent channels for input capture/output compare,
PWM or one-pulse mode output.
They can work together, or with the other general-purpose timers via the Timer Link
feature for synchronization or event chaining.
The counters can be frozen in Debug mode. All have independent DMA request
generation and support quadrature encoders.
•
TIM12, TIM13, TIM14, TIM15, TIM16, and TIM17
General-purpose timers with mid-range features, with 16-bit auto-reload up counter
and 16-bit prescaler.
–
TIM12 and TIM15 have two channels and one complementary channel
–
TIM13, TIM14, TIM16, and TIM17 have one channel and one complementary
channel
All channels can be used for input capture/output compare, PWM or one-pulse mode
output.
The timers can work together via the Timer Link feature for synchronization or event
chaining. The timers have independent DMA request generation.
The counters can be frozen in Debug mode.
3.33.3
Basic timers (TIM6, TIM7)
These timers are mainly used for DAC trigger generation. They can also be used as generic
16-bit timebase.
3.33.4
Low-power timers
(LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5, LPTIM6)
The devices embed six low-power timers. These timers have an independent clock and are
running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to
wake up the system from Stop mode.
The low-power timers support the following features:
•
16-bit up counter with 16-bit autoreload register
DS14258 Rev 5
47/270
62
Functional overview
3.33.5
STM32H562xx and STM32H563xx
•
3-bit prescaler with eight possible dividing factors (1, 2, 4, 8, 16, 32, 64, 128)
•
Selectable clock
–
Internal clock sources: LSE, LSI, HSI or APB clock
–
External clock source over LPTIM input (working with no LP oscillator running,
used by Pulse Counter application)
•
16-bit ARR autoreload register
•
16-bit capture/compare register
•
Continuous/One-shot mode
•
Selectable software/hardware input trigger
•
Programmable digital glitch filter
•
Configurable output: pulse, PWM
•
Configurable I/O polarity
•
Encoder mode (except for LPTIM4)
•
Repetition counter
•
Up to two independent channels (except for LPTIM4) for:
–
Input capture
–
PWM generation (edge-aligned mode)
–
One-pulse mode output
•
Interrupt generation on ten events
•
DMA request generation on the following events:
–
Update event
–
Input capture
Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and an 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC (LSI) and, as it operates independently
from the main clock, it can operate in Stop and Standby modes. It can be used either as a
watchdog to reset the device when a problem occurs, or as a free running timer for
application timeout management. It is hardware or software configurable through the option
bytes. The counter can be frozen in Debug mode.
3.33.6
Window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
Debug mode.
3.33.7
SysTick timer
The Cortex-M33 with TrustZone embeds two SysTick timers.
When TrustZone is activated, two SysTick timer are available:
48/270
•
SysTick, secure instance
•
SysTick, nonsecure instance
DS14258 Rev 5
STM32H562xx and STM32H563xx
Functional overview
When TrustZone is disabled, only one SysTick timer is available. This timer (secure or
nonsecure) is dedicated to real-time operating systems, but can also be used as a standard
down counter. It features:
•
A 24-bit down counter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0
•
Programmable clock source.
3.34
Real-time clock (RTC), tamper and backup registers
3.34.1
Real-time clock (RTC)
The RTC supports the following features:
•
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), weekday, date,
month, year, in BCD (binary-coded decimal) format
•
Binary mode with 32-bit free-running counter
•
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month
•
Two programmable alarms
•
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock
•
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision
•
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy
•
Timestamp feature that can be used to save the calendar content. This function can be
triggered by an event on the timestamp pin, or by a tamper event, or by a switch to
VBAT mode
•
17-bit auto-reload wake-up timer (WUT) for periodic events with programmable
resolution and period
•
TrustZone support:
–
RTC fully securable
–
Alarm A, alarm B, wake-up timer and timestamp individual secure or nonsecure
configuration
–
Alarm A, alarm B, wake-up timer and timestamp individual privileged protection
The RTC is supplied through a switch that takes power either from the VDD supply when
present or from the VBAT pin.
The RTC clock sources can be one of the following:
•
32.768 kHz external crystal (LSE)
•
external resonator or oscillator (LSE)
•
internal low-power RC oscillator (LSI, with typical frequency of 32 kHz)
•
high-speed external clock (HSE), divided by a prescaler in the RCC.
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the
LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in
all low-power modes.
DS14258 Rev 5
49/270
62
Functional overview
STM32H562xx and STM32H563xx
All RTC events (alarm, wake-up timer, timestamp) can generate an interrupt and wake up
the device from the low-power modes.
3.34.2
Tamper and backup registers (TAMP)
The anti-tamper detection circuit is used to protect sensitive data from external attacks.
32 32-bit backup registers are retained in all low-power modes and in VBAT mode. The
backup registers, as well as other secrets in the device, are protected by this anti-tamper
detection circuit with eight tamper pins and nine internal tampers. The external tamper pins
can be configured for edge detection, or level detection with or without filtering, or active
tamper that increases the security level by auto checking that the tamper pins are not
externally opened or shorted.
TAMP main features:
•
A tamper detection can erase the backup registers, backup SRAM, SRAM2, caches
and cryptographic peripherals.
•
32 32-bit backup registers:
–
•
Note:
The backup registers (TAMP_BKPxR) are implemented in the Backup domain that
remains powered-on by VBAT when the VDD power is switched off.
Up to 8 tamper pins for 8 external tamper detection events:
–
Active tamper mode: continuous comparison between tamper output and input to
protect from physical open-short attacks
–
Flexible active tamper I/O management: from 4 meshes (each input associated to
its own exclusive output) to 7 meshes (single output shared for up to 7 tamper
inputs)
–
Passive tampers: ultra-low power edge or level detection with internal pull-up
hardware management
–
Configurable digital filter
As input, only PC13, PI8, PA0, PA1, and PA2 are functional in Standby and VBAT modes.
As output, only PC13 and PA1, and PI8 are functional in Standby and VBAT modes.
•
Internal tamper events to protect against transient or environmental perturbation
attacks
•
Each tamper can be configured in two modes:
–
Hardware mode: immediate erase of secrets on tamper detection, including
backup registers erase
–
Software mode: erase of secrets following a tamper detection launched by
software
•
Any tamper detection can generate an RTC time stamp event.
•
TrustZone support:
–
Tamper secure or nonsecure configuration.
–
Backup registers configuration in three configurable-size areas:
- 1 read/write secure area
- 1 write secure/read nonsecure area
- 1 read/write nonsecure area
–
50/270
Secret key, stored in backup registers, protected against read and write access
•
Tamper configuration and backup registers privilege protection
•
Monotonic counter
DS14258 Rev 5
STM32H562xx and STM32H563xx
3.35
Functional overview
Inter-integrated circuit interface (I2C)
The devices embed four I2Cs. Refer to Table 7 for the implemented features.
The I2C bus interface handles communications between the microcontroller and the serial
I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
•
•
I2C-bus specification and user manual rev. 5 compatibility:
–
Target and controller modes, multicontroller capability
–
Standard-mode (Sm), with a bit rate up to 100 Kbit/s
–
Fast-mode (Fm), with a bit rate up to 400 Kbit/s
–
Fast-mode Plus (Fm+), with a bit rate up to 1 Mbit/s and 20 mA output drive I/Os
–
7- and 10-bit addressing modes, multiple 7-bit target addresses
–
Programmable setup and hold times
–
Optional clock stretching
System management bus (SMBus) specification rev 3.0 compatibility:
–
Hardware PEC (packet error checking) generation and verification with ACK
control
–
Address resolution protocol (ARP) support
–
SMBus alert
•
Power system management protocol (PMBus) specification rev 1.3 compatibility
•
Independent clock: a choice of independent clock sources allowing the I2C
commun.ication speed to be independent from the PCLK reprogramming
•
Wake-up from Stop capability
•
Programmable analog and digital noise filters
•
1-byte buffer with DMA capability
Table 7. I2C implementation
Feature(1)
I2C1
I2C2
I2C3
I2C4
Standard-mode (up to 100 Kbit/s)
X
X
X
X
Fast-mode (up to 400 Kbit/s)
X
X
X
X
Fast-mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)
X
X
X
X
Programmable analog and digital noise filters
X
X
X
X
SMBus/PMBus hardware support
X
X
X
X
Independent clock
X
X
X
X
Wake-up capability
X
X
X
X
1. X: supported
DS14258 Rev 5
51/270
62
Functional overview
3.36
STM32H562xx and STM32H563xx
Improved inter-integrated circuit (I3C)
The I3C interface handles communication between the MCU and others, like sensors and
host processor(s), all connected on an I3C bus.
The peripheral implements the required features of the MIPI I3C specification v1.1. It can
control I3C bus-specific sequencing, protocol, arbitration and timing, and can act as
controller (formerly known as master) or as target (formerly known as slave). When acting
as controller the peripheral improves the features of the I2C interface, preserving some
backward compatibility: it allows an I2C target to operate on an I3C bus in legacy I2C
fast-mode (Fm) or legacy I2C fast-mode plus (Fm+), provided that the latter does not
perform clock stretching.
The I3C peripheral can be used with DMA to off-load the CPU.
Table 8. I3C peripheral controller/target features versus MIPI v1.1
Feature
MIPI
When
When
v1.1 controller target
Comments
I3C SDR message
X
X
X
Legacy I2C message (Fm/Fm+)
X
X
-
HDR DDR message
X
-
-
HDR-TSL/TSP, HDR-BT
X
-
-
Dynamic address assignment
X
X
X
Static address
X
X
-
No (intended) support of I3C peripheral as a
target on an I2C bus.
Grouped addressing
X
X
-
Optional in MIPI v1.1
CCCs
X
X
X
Mandatory and some optional CCCs supported.
Error detection and recovery
X
X
X
-
In-band interrupt (with MDB)
X
X
X
-
Secondary controller
X
X
X
-
Hot-join mechanism
X
X
X
-
Target reset
X
X
X
-
Synchronous timing control
X
X
-
Asynchronous timing control 0
X
X
-
Asynchronous timing control 1, 2, 3
X
-
-
Device to device tunneling
X
X
-
Multi-lane data transfer
X
X
-
Monitoring device early termination
X
-
-
52/270
Mandatory when controller, and the I3C bus is
mixed with (external) legacy I2C target(s).
Optional in MIPI v1.1 when target.
Optional in MIPI v1.1
-
Optional in MIPI v1.1
DS14258 Rev 5
STM32H562xx and STM32H563xx
3.37
Functional overview
Universal synchronous/asynchronous receiver transmitter
(USART/UART) and low-power universal asynchronous
receiver transmitter (LPUART)
The devices have six embedded universal synchronous receiver transmitters
(USART1/USART2/USART3/USART6/USART10/USART11), six universal asynchronous
receiver transmitters (UART4/UART5/UART7/UART8/UART9/UART12), and one low-power
universal asynchronous receiver transmitter (LPUART1).
Table 9. USART, UART and LPUART features
USART
1/2/3/6/10/11
UART
4/5/7/8/9/12
LPUART
1
Hardware flow control for modem
X
X
X
Continuous communication using DMA
X
X
X
Multiprocessor communication
X
X
X
Synchronous mode (master/slave)
X
-
-
Smartcard mode
X
-
-
Single-wire half-duplex communication
X
X
X
IrDA SIR ENDEC block
X
X
-
LIN mode
X
X
-
Dual-clock domain and wake-up from Stop mode
(2)
X(2)
X(2)
Mode/feature(1)
X
Receiver timeout interrupt
X
X
-
Modbus communication
X
X
-
Auto-baud rate detection
X
X
-
Driver enable
X
X
X
USART data length
7, 8, and 9 bits
Tx/Rx FIFO
X
Tx/Rx FIFO size
X
X
8 bytes
1. X = supported.
2. Wake-up supported from Stop mode.
3.37.1
Universal synchronous/asynchronous receiver transmitter
(USART/UART)
The USART offers a flexible means to perform full-duplex data exchange with external
equipments requiring an industry standard NRZ asynchronous serial data format. A very
wide range of baud rates can be achieved through a fractional baud rate generator.
The USART supports both synchronous one-way and half-duplex single-wire
communications, as well as LIN (local interconnection network), Smartcard protocol, IrDA
(infrared data association) SIR ENDEC specifications, and modem operations (CTS/RTS).
Multiprocessor communications are also supported.
High-speed data communication (up to 20 Mbauds) is possible by using the DMA (direct
memory access) for multibuffer configuration.
DS14258 Rev 5
53/270
62
Functional overview
STM32H562xx and STM32H563xx
The USART main features are:
•
Full-duplex asynchronous communication
•
NRZ standard format (mark/space)
•
Configurable oversampling method by 16 or by 8, to achieve the best compromise
between speed and clock tolerance
•
Baud rate generator systems
•
Two internal FIFOs for transmit and receive data
Each FIFO can be enabled/disabled by software and come with a status flag.
•
A common programmable transmit and receive baud rate
•
Dual-clock domain with dedicated kernel clock for peripherals independent from PCLK
•
Auto baud rate detection
•
Programmable data word length (7, 8 or 9 bits)
•
Programmable data order with MSB-first or LSB-first shifting
•
Configurable stop bits (1 or 2 stop bits)
•
Synchronous Master/Slave mode and clock output/input for synchronous
communications
•
SPI slave transmission underrun error flag
•
Single-wire half-duplex communications
•
Continuous communications using DMA
•
Received/transmitted bytes are buffered in reserved SRAM using centralized DMA
•
Separate enable bits for transmitter and receiver
•
Separate signal polarity control for transmission and reception
•
Swappable Tx/Rx pin configuration
•
Hardware flow control for modem and RS-485 transceiver
•
Communication control/error detection flags
•
Parity control:
–
Transmits parity bit
–
Checks parity of received data byte
•
Interrupt sources with flags
•
Multiprocessor communications: wake-up from Mute mode by idle line detection or
address mark detection
•
Autonomous functionality in Stop mode with wake-up from stop capability
•
LIN master synchronous break send capability and LIN slave break detection capability
–
•
IrDA SIR encoder decoder supporting 3/16 bit duration for Normal mode
•
Smartcard mode
•
54/270
13-bit break generation and 10/11-bit break detection when USART is hardware
configured for LIN
–
Supports the T = 0 and T = 1 asynchronous protocols for smartcards as defined in
the ISO/IEC 7816-3 standard
–
0.5 and 1.5 stop bits for Smartcard operation
Support for Modbus communication
–
Timeout feature
–
CR/LF character recognition
DS14258 Rev 5
STM32H562xx and STM32H563xx
3.37.2
Functional overview
Low-power universal asynchronous receiver transmitter (LPUART)
The LPUART supports bidirectional asynchronous serial communication with minimum
power consumption. It also supports half-duplex single-wire communication and modem
operations (CTS/RTS). It allows multiprocessor communication.
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to
9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame
while having an extremely low energy consumption. Higher-speed clock can be used to
reach higher baud-rates.
The LPUART interface can be served by the DMA controller.
The LPUART main features are:
•
Full-duplex asynchronous communications
•
NRZ standard format (mark/space)
•
Programmable baud rate
•
From 300 to 9600 bauds using a 32.768 kHz clock source
•
Higher baud rates can be achieved by using a higher frequency clock source
•
Two internal FIFOs to transmit and receive data
Each FIFO can be enabled/disabled by software and come with status flags for FIFOs
states.
•
Dual-clock domain with dedicated kernel clock for peripherals independent from PCLK
•
Programmable data word length (7 or 8 or 9 bits)
•
Programmable data order with MSB-first or LSB-first shifting
•
Configurable stop bits (1 or 2 stop bits)
•
Single-wire half-duplex communications
•
Continuous communications using DMA
•
Received/transmitted bytes are buffered in reserved SRAM using centralized DMA
•
Separate enable bits for transmitter and receiver
•
Separate signal polarity control for transmission and reception
•
Swappable Tx/Rx pin configuration
•
Hardware flow control for modem and RS-485 transceiver
•
Transfer detection flags:
•
•
•
–
Receive buffer full
–
Transmit buffer empty
–
Busy and end of transmission flags
Parity control:
–
Transmits parity bit
–
Checks parity of received data byte
Four error detection flags:
–
Overrun error
–
Noise detection
–
Frame error
–
Parity error
Interrupt sources with flags
DS14258 Rev 5
55/270
62
Functional overview
3.38
STM32H562xx and STM32H563xx
•
Multiprocessor communications: wake-up from Mute mode by idle line detection or
address mark detection
•
Wake-up from Stop capability
Serial peripheral interface (SPI) / inter-integrated sound
interfaces (I2S)
The devices embed six serial peripheral interfaces (SPI) that can be used to communicate
with external devices while using the specific synchronous protocol. The SPI protocol
supports half-duplex, full-duplex and simplex synchronous, serial communication with
external devices.
The interface can be configured as master or slave, and can operate in multi-slave or multimaster configurations. The device configured as master provides communication clock
(SCK) to the slave device. The slave select (SS) and ready (RDY) signals can be applied
optionally just to set up communication with concrete slave and to assure it handles the data
flow properly. The Motorola data format is used by default, but some other specific modes
are supported as well.
The SPI main features are:
56/270
•
Full-duplex synchronous transfers on three lines
•
Half-duplex synchronous transfer on two lines (with bidirectional data line)
•
Simplex synchronous transfers on two lines (with unidirectional data line)
•
4-bit to 32-bit data size selection or fixed to 8-bit and 16-bit only
•
Multi master or multi slave mode capability
•
Dual-clock domain, separated clock for the peripheral kernel that can be independent
of PCLK
•
Baud rate prescaler up to kernel frequency divided by 2 or bypass from RCC in Master
mode
•
Protection of configuration and setting
•
Hardware or software management of SS for both master and slave
•
Adjustable minimum delays between data and between SS and data flow
•
Configurable SS signal polarity and timing, MISO x MOSI swap capability
•
Programmable clock polarity and phase
•
Programmable data order with MSB-first or LSB-first shifting
•
Programmable number of data within a transaction to control SS and CRC
•
Dedicated transmission and reception flags with interrupt capability
•
SPI Motorola and TI formats support
•
Hardware CRC feature can secure communication at the end of transaction by:
–
Adding CRC value in Tx mode
–
Automatic CRC error checking for Rx mode
•
Error detection with interrupt capability in case of data overrun, CRC error, data
underrun at slave, mode fault at master
•
Two 16x or 8x 8-bit embedded Rx and TxFIFOs with DMA capability
•
Programmable number of data in transaction
•
Configurable FIFO thresholds (data packing)
DS14258 Rev 5
STM32H562xx and STM32H563xx
Functional overview
•
Configurable behavior at slave underrun condition (support of cascaded circular
buffers)
•
Wake-up from Stop capability
•
Optional status pin RDY signalizing the slave device ready to handle the data flow.
Three standard I2S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They
can be operated in Master or Slave mode, in full-duplex communication modes, and can be
configured to operate with configurable resolution as input or output channel.
I2S main features:
•
Full duplex communication
•
Simplex communication (only transmitter or receiver)
•
Master or slave operations
•
8-bit programmable linear prescaler
•
Data length may be 16, 24 or 32 bits
•
Channel length can be 16 or 32 in master, any value in slave
•
Programmable clock polarity
•
Error flags signaling for improved reliability: Underrun, Overrun, and Frame Error
•
Embedded Rx and TxFIFOs
•
Supported I2S protocols:
–
I2S Philips standard
–
MSB-Justified standard (left-justified)
–
LSB-Justified standard (right-justified)
–
PCM standard (with short and long frame synchronization)
•
Data ordering programmable (LSb or MSb first)
•
DMA capability for transmission and reception
•
Master clock can be output to drive an external audio component. The ratio is fixed at
256 x FWS (where FWS is the audio sampling frequency)
Table 10. SPI features
SPI1, SPI2, SPI3
(full feature set instances)
SPI4, SPI5, SPI6
(full feature set instances)
Data size
Configurable from 4- to 32-bit
Configurable from 4- to 16-bit
CRC computation
CRC polynomial length
configurable from 5- to 33-bit
CRC polynomial length
configurable from 5- to 17-bit
16x 8-bit
8x 8-bit
Feature
Size of FIFOs
Number of transfered data
Up to 65535
I2S feature
3.39
Yes
No
Serial audio interface (SAI)
The devices embed two SAIs. Refer to Table 11 for the features implementation. The SAI
bus interface handles communications between the MCU and the serial audio protocol.
DS14258 Rev 5
57/270
62
Functional overview
STM32H562xx and STM32H563xx
The SAI peripheral supports:
•
Two independent audio sub-blocks that can be transmitters or receivers with their
respective FIFO
•
8-word integrated FIFOs for each audio sub-block
•
Synchronous or Asynchronous mode between the audio sub-blocks
•
Master or slave configuration independent for both audio sub-blocks
•
Clock generator for each audio block to target independent audio frequency sampling
when both audio sub-blocks are configured in master mode
•
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit
•
Peripheral with large configurability and flexibility, allowing to target the following audio
protocols: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF out
•
Up to 16 slots available with configurable size and with the possibility to select which
ones are active in the audio frame
•
Number of bits by frame may be configurable
•
Frame synchronization active level configurable (offset, bit length, level)
•
First active bit position in the slot is configurable
•
LSB first or MSB first for data transfer
•
Mute mode
•
Stereo/mono audio frame capability
•
Communication clock strobing edge configurable (SCK)
•
Error flags with associated interrupts if enabled respectively
•
•
–
Overrun and underrun detection
–
Anticipated frame synchronization signal detection in Slave mode
–
Late frame synchronization signal detection in Slave mode
–
Codec not ready for the AC’97 mode in reception
Interruption sources when enabled:
–
Errors
–
FIFO requests
DMA interface with two dedicated channels to handle access to the dedicated
integrated FIFO of each SAI audio sub-block.
Table 11. SAI implementation
Feature(1)
SAI1
SAI2
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97
X
X
Mute mode
X
X
Stereo/mono audio frame capability.
X
X
16 slots
X
X
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit
X
X
X (8 words)
X (8 words)
SPDIF
X
X
PDM
X
-
FIFO size
1. X: supported
58/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
3.40
Functional overview
Secure digital input/output and MultiMediaCards interface
(SDMMC)
The SD/SDIO, embedded MultiMediaCard (eMMC™) host interface (SDMMC) provides an
interface between the AHB bus and SD memory cards, SDIO cards, and eMMC devices.
The MultiMediaCard system specifications are available through the MultiMediaCard
association website at www.mmca.org, published by the MMCA technical committee.
SD memory card and SD I/O card system specifications are available through the SD card
association website at www.sdcard.org.
The SDMMC features include the following:
•
Compliance with Embedded MultiMediaCard System Specification Version 5.1
Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit (HS200
SDMMC_CK speed limited to maximum allowed I/O speed, HS400 is not supported).
•
•
Full compatibility with previous versions of MultiMediaCards (backward compatibility).
Full compliance with SD memory card specifications version 6.0
(SDR104 SDMMC_CK speed limited to maximum allowed I/O speed, SPI mode and
UHS-II mode not supported).
•
Full compliance with SDIO card specification version 4.0
Card support for two different databus modes: 1-bit (default) and 4-bit (SDR104
SDMMC_CK speed limited to maximum allowed I/O speed, SPI mode and UHS-II
mode not supported).
•
Data transfer up to 208 Mbyte/s for the 8-bit mode, depending maximum allowed I/O
speed.
•
Data and command output enable signals to control external bidirectional drivers
•
IDMA linked list support
The MultiMediaCard/SD bus connects cards to the host.
The current version of the SDMMC supports only one SD/SDIO/eMMC card at any one time
and a stack of eMMC.
Table 12. SDMMC features
Mode/feature
(1)
SDMMC1
SDMMC2
Variable delay (SDR104, HS200)
X
X
SDMMC_CKIN
X
X
SDMMC_CDIR, SDMMC_D0DIR
X
-
SDMMC_D123DIR
X
-
1. X = supported.
DS14258 Rev 5
59/270
62
Functional overview
STM32H562xx and STM32H563xx
When SDMMC peripherals are used simultaneously:
3.41
•
Only one can be used in eMMC with 8-bit bus width.
•
Usage of SDMMC1 SDIO voltage switch use is mutually exclusive with SDMMC2
eMMC with 8-bit bus width.
•
If SDMMC1 must support SDIO UHS-I modes (SDR12, SDR25, SDR50, SDR104, or
DDR50), SDMMC2 cannot support eMMC with 8-bit bus width.
•
If SDMMC2 must support eMMC with 8-bit bus width, SDMMC1 can only support SDIO
Default mode and High-speed mode.
Controller area network (FDCAN)
The controller area network (CAN) subsystem consists of one CAN module, a shared
message RAM memory and a configuration block.
The modules (FDCAN) are compliant with ISO 11898-1: 2015 (CAN protocol specification
version 2.0 part A, B) and CAN FD protocol specification version 1.0.
A 0.8-Kbyte message RAM implements filters, receives FIFOs, transmits event FIFOs and
transmits FIFOs.
The FDCAN main features are:
3.42
•
Conform with CAN protocol version 2.0 part A, B and ISO 11898-1: 2015, -4
•
CAN FD with maximum 64 data bytes supported
•
CAN error logging
•
AUTOSAR and J1939 support
•
Improved acceptance filtering
•
Two receive FIFOs of three payloads each (up to 64 bytes per payload)
•
Separate signaling on reception of high priority messages
•
Configurable transmit FIFO / queue of three payload (up to 64 bytes per payload)
•
Configurable transmit Event FIFO
•
Programmable loop-back test mode
•
Maskable module interrupts
•
Two clock domains: APB bus interface and CAN core kernel clock
•
Power-down support
USB full speed (USB)
USB main features:
60/270
•
USB specification version 2.0 full-speed compliant
•
Host and device functions
•
2048 bytes of dedicated SRAM data buffer memory with 32-bit access
•
USB clock recovery
•
Configurable number of endpoints from 1 to 8
•
Cyclic redundancy check (CRC) generation/checking, non-return-to-zero inverted
(NRZI) encoding/decoding and bit-stuffing
•
Isochronous transfers support
DS14258 Rev 5
STM32H562xx and STM32H563xx
3.43
Functional overview
•
Double-buffered bulk/isochronous endpoint support
•
USB suspend/resume operations
•
Frame-locked clock pulse generation
•
USB 2.0 Link power management support
•
Battery charging specification revision 1.2 support in device
USB Type-C/USB Power Delivery controller (UCPD)
The devices embed one controller (UCPD) compliant with USB Type-C Cable and
Connector Specification release 2.0 and USB Power Delivery Rev. 3.0 specifications.
The controller uses specific I/Os supporting the USB Type-C and USB power delivery
requirements, featuring:
•
USB Type-C pull-up (Rp, all values) and pull-down (Rd) resistors
•
“Dead battery” support
•
USB power delivery message transmission and reception
•
FRS (fast role swap) support
The digital controller handles:
•
USB Type-C level detection with debounce, generating interrupts
•
FRS detection, generating an interrupt
•
Byte-level interface for USB power delivery payload, generating interrupts (DMA
compatible)
•
USB power delivery timing dividers (including a clock pre-scaler)
•
CRC generation/checking
•
4b5b encode/decode
•
Ordered sets (with a programmable ordered set mask at receive)
•
Frequency recovery in receiver during preamble
The interface offers low-power operation compatible with Stop mode, maintaining the
capacity to detect incoming USB power delivery messages and FRS signaling.
3.44
Ethernet MAC interface with dedicated DMA controller (ETH)
The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for
Ethernet LAN communications through an industry-standard medium-independent interface
(MII) or a reduced medium-independent interface (RMII). The microcontroller requires an
external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair,
fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals
for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.
The devices include the following features:
•
Support of 10 and 100 Mbit/s rates
•
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors
•
Tagged MAC frame support (VLAN support)
•
Half-duplex (CSMA/CD) and full-duplex operation
DS14258 Rev 5
61/270
62
Functional overview
3.45
STM32H562xx and STM32H563xx
•
MAC control sublayer (control frames) support
•
32-bit CRC generation and removal
•
Several address filtering modes for physical and multicast address (multicast and
group addresses)
•
32-bit status code for each transmitted or received frame
•
Internal 2-Kbyte FIFOs to buffer transmit and receive frames
•
Support of hardware PTP (precision time protocol) in accordance with IEEE 1588 2008
(PTP V2) with the time stamp comparator connected to the TIM2 input
•
Trigger of interrupt when system time becomes greater than target time
High-definition multimedia interface (HDMI) - consumer
electronics control (CEC)
The devices embed an HDMI-CEC controller that provides hardware support for the
Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).
This protocol provides high-level control functions between all audiovisual products in an
environment. It is specified to operate at low speeds with minimum processing and memory
overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC
controller to wake up the MCU from Stop mode on data reception.
3.46
Development support
3.46.1
Serial-wire/JTAG debug port (SWJ-DP)
The Arm SWJ-DP interface is embedded and is a combined JTAG and serial-wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using two pins only instead of five required by the JTAG (JTAG pins can
be re-used as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
3.46.2
Embedded Trace Macrocell
The Arm Embedded Trace Macrocell (ETM) provides a greater visibility of the instruction
and data flow inside the CPU core by streaming compressed data at a very high rate from
the devices through a small number of ETM pins to an external hardware trace port analyzer
(TPA) device.
Real-time instruction and data flow activity be recorded and then formatted for display on
the host computer that runs the debugger software. TPA hardware is commercially available
from common development tool vendors.
The ETM operates with third party debugger software tools.
62/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Pinout, pin description, and alternate functions
4
Pinout, pin description, and alternate functions
4.1
Pinout/ballout schematics
VSS
VCAP
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
VBAT
1
48
VDD
PC13
2
47
VSS
PC14-OSC32_IN
3
46
PA13
PC15-OSC32_OUT
4
45
PA12
PH0-OSC_IN
5
44
PA11
PH1-OSC_OUT
6
43
PA10
NRST
7
42
PA9
PC0
8
41
PA8
PC1
9
40
PC9
PC2
10
39
PC8
PC3
11
38
PC7
VSSA/VREF-
12
37
PC6
VDDA/VREF+
13
36
PB15
PA0
14
35
PB14
PA1
15
34
PB13
PA2
16
33
PB12
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
VCAP
VSS
VDD
LQFP64
MSv67303V4
VDD
64
Figure 5. LQFP64 pinout
1. The above figure shows the package top view.
DS14258 Rev 5
63/270
75
Pinout, pin description, and alternate functions
STM32H562xx and STM32H563xx
VDD
VSS
VCAP
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PC12
PC11
PC10
PA15
PA14
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
Figure 6. VFQFPN68 pinout
VBAT
1
51
PC13
2
50
PC14-OSC32_IN
3
49
PC15-OSC32_OUT
4
48
PH0-OSC_IN
5
47
PH1-OSC_OUT
6
46
NRST
7
45
PC0
8
44
PC1
9
PC2
10
42
PC3
VFQFPN68
43
11
41
VSSA
12
40
VDDA
13
39
PA0
14
38
PA1
15
37
PA2
16
PA3
17
36
Exposed pad
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VCAP
VSS
VDD
PB12
35
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PD12
PD11
PB15
PB14
PB13
VSS
MS56628V1
1. The above figure shows the package top view.
2. VSS pads are connected to the exposed pad.
Figure 7. WLCSP80 SMPS ballout
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
2
VDD
3
4
PD0
VDDUSB
PA12
VSS
VDD
PA8
VSS
PD15
PC6
PD14
PB15
PC7
PB13
VSS
VCAP
PC3
PA2
PB1
VLXSMP
S
PC2
VSSA
VSS
PB0
PE7
PH0OSC_IN
PA0
PC5
PE9
VDD
PH1OSC_OU
T
PA5
PC4
PB10
VDDSMP
S
VDD
VSS
PA1
PE8
PC15OSC32_
OUT
PC0
PA7
PE10
VSSSMP
S
PB8
PC1
PB2
PC14OSC32_I
N
NRST
PA6
PC8
PB12
PB14
PB6
PA10
PA9
VBAT
PC13
BOOT0
PC12
10
VCAP
PB7
PC11
9
VSS
PB5
PA13
8
VDD
PB3
PA14
7
PB4
PA15
PC9
6
PD2
PD1
PC10
PA11
5
VDDA
PA4
VDD
PA3
MSv73080V1
1. The above figure shows the package top view.
64/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Pinout, pin description, and alternate functions
VDD
VSS
VCAP
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
Figure 8. LQFP100 pinout
PE2
1
75
VDD
PE3
2
74
VSS
PE4
3
73
VDDUSB
PE5
4
72
PA13
PE6
5
71
PA12
VBAT
6
70
PA11
PC13
7
69
PA10
PC14-OSC32_IN
8
68
PA9
PC15-OSC32_OUT
9
67
PA8
VSS
10
66
PC9
VDD
11
65
PC8
PH0-OSC_IN
12
64
PC7
PH1-OSC_OUT
13
63
PC6
NRST
14
62
PD15
PC0
15
61
PD14
PC1
16
60
PD13
PC2
17
59
PD12
PC3
18
58
PD11
VSSA
19
57
PD10
VREF-
20
56
PD9
VREF+
21
55
PD8
VDDA
22
54
PB15
PA0
23
53
PB14
PA1
24
52
PB13
PA2
25
51
PB12
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
VCAP
VSS
VDD
LQFP100
MSv67304V3
1. The above figure shows the package top view.
DS14258 Rev 5
65/270
75
Pinout, pin description, and alternate functions
STM32H562xx and STM32H563xx
VDD
VSS
VCAP
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
Figure 9. LQFP100 SMPS pinout
PE2
1
75
VDD
PE3
2
74
VSS
PE4
3
73
VDDUSB
PE5
4
72
PA13
PE6
5
71
PA12
VBAT
6
70
PA11
PC13
7
69
PA10
PC14-OSC32_IN
8
68
PA9
PC15-OSC32_OUT
9
67
PA8
VSS
10
66
PC9
VDD
11
65
PC8
PH0-OSC_IN
12
64
PC7
PH1-OSC_OUT
13
63
PC6
NRST
14
62
PD15
PC0
15
61
PD14
PC1
16
60
PD13
PC2
17
59
PD12
PC3
18
58
PD11
VSSA
19
57
PD10
VREF+
20
56
PD9
VDDA
21
55
PD8
PA0
22
54
PB15
PA1
23
53
PB14
PA2
24
52
PB13
PA3
25
51
VDD
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
VSS
VDD
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VLXSMPS
VDDSMPS
VSSSMPS
VCAP
VSS
LQFP100
MSv64012V3
1. The above figure shows the package top view.
66/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Pinout, pin description, and alternate functions
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
VDD
VSS
VCAP
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
VDD
VSS
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
VDDIO2
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
Figure 10. LQFP144 pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
LQFP144
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
VDD
VSS
VDDUSB
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
VDD
VSS
PG8
PG7
PG6
PG5
PG4
PG3
PG2
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
VCAP
VSS
VDD
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
PE2
PE3
PE4
PE5
PE6
VBAT
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PF0
PF1
PF2
PF3
PF4
PF5
VSS
VDD
PF6
PF7
PF8
PF9
PF10
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VDD
VSSA
VREF+
VDDA
PA0
PA1
PA2
MSv67305V3
1. The above figure shows the package top view.
DS14258 Rev 5
67/270
75
Pinout, pin description, and alternate functions
STM32H562xx and STM32H563xx
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
VDD
VSS
VCAP
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
VDD
VSS
PG14
PG13
PG12
PG10
PG9
PD7
PD6
VDDIO2
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
Figure 11. LQFP144 SMPS pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
LQFP144
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
VDD
VSS
VDDUSB
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
VDD
VSS
PG8
PG7
PG6
PG5
PG4
PG3
PG2
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
VDD
VSS
VDD
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PF11
PF12
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VLXSMPS
VDDSMPS
VSSSMPS
VCAP
VSS
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
PE2
PE3
PE4
PE5
PE6
VBAT
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PF0
PF1
PF2
PF3
PF4
PF5
VSS
VDD
PF6
PF7
PF8
PF9
PF10
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VREF+
VDDA
PA0
PA1
PA2
PA3
1. The above figure shows the package top view.
68/270
DS14258 Rev 5
MSv64013V3
STM32H562xx and STM32H563xx
Pinout, pin description, and alternate functions
Figure 12. UFBGA169 ballout
1
2
3
4
5
6
7
8
9
10
11
12
13
A
PE2
PI7
VDD
PB9
PB6
PB4
VDDIO2
PG10
PD3
VDD
PC11
PA14
PI2
B
PC14OSC32
_IN
PE3
VSS
VCAP
BOOT0
PG15
VSS
PD7
PC12
VSS
PA15
PI1
PI0
C
PC15OSC32
_OUT
PE5
PI6
PI4
PE0
PB5
PG14
PG12
PD2
PC10
PI3
VSS
VDD
D
VDD
VSS
PE6
PE4
PE1
PB7
PG13
PD5
PD0
PH14
PH15
PH13
VDDUS
B
E
PF1
VBAT
PI8
PC13
PB8
PB3
PG11
PD6
PD1
PA10
PA9
PA13
PA12
F
PF4
PF2
PF0
PI11
PF3
PF5
PG9
PD4
PC6
PC7
PG8
PA8
PA11
G
VDD
VSS
PF7
PF6
PF8
PF10
PE8
PG7
PG3
PG5
PG6
PC8
PC9
H
PH0OSC_IN
PH1OSC_O
UT
PF9
NRST
PC3
PC5
PF13
PE10
PD15
PD11
PD14
VSS
VDD
J
PC0
PC1
PC2
PA0
PA1
PF11
PF15
PE14
PD9
PB15
PD10
PG2
PG4
K
VREF-
VSSA
PH2
PA5
PA7
PB1
PG1
PE12
PB10
PH6
PB12
PD12
PD13
L
VDDA
VREF+
PA2
PA4
PB0
PB2
PG0
PE9
PE13
PH7
PB13
PD8
VDD
M
VDD
VSS
PH5
VSS
PA6
PF14
VSS
PE11
PB11
PH8
PH10
VSS
PB14
N
PH4
PH3
PA3
VDD
PC4
PF12
VDD
PE7
PE15
VCAP
VDD
PH11
PH12
MSv68827V2
1. The above figure shows the package top view.
DS14258 Rev 5
69/270
75
Pinout, pin description, and alternate functions
STM32H562xx and STM32H563xx
Figure 13. UFBGA169 SMPS ballout
1
2
3
4
5
6
7
8
9
10
11
12
13
A
PI7
PI6
VDD
VCAP
PB4
VDDIO2
PD5
VDD
PC11
PC10
VDD
PI3
PH15
B
VDD
VSS
PI5
VSS
BOOT0
PG15
PD7
VSS
PD1
PA15
VSS
PI0
PA12
C
VBAT
PE5
PE2
PI4
PE1
PB6
PG10
PD3
PD0
PA14
PI1
PH13
PA11
D
PC14OSC32
_IN
PE6
PE4
PE3
PE0
PB7
PG12
PD4
PC12
PI2
PH14
PA13
VDD
E
PC15OSC32
_OUT
PF0
PC13
PI8
PB9
PB5
PG9
PD2
PC8
PA8
PA10
VSS
VDDUS
B
F
PF7
VSS
PF1
PF2
PB8
PB3
PD6
PG5
PG7
PC6
PC7
PC9
PA9
G
VDD
PF9
PF5
PF8
PF4
PF3
PF6
PD13
PG3
PD15
PG4
PG6
PG8
H
PH0OSC_IN
VSS
NRST
PF10
PA1
PB1
PF13
PD11
PD9
PB15
PD12
PD14
PG2
J
PH1OSC_O
UT
PC0
PC1
PH2
PA5
PF11
PF15
PE8
PE14
PB14
PD8
VSS
VDD
K
PC2
PC3
PA0
PA3
PA7
PF12
PG1
PE13
PB10
PH10
PB12
PB13
PD10
L
VSSA
VREF-
PA2
PH5
PC4
PF14
PE7
PE10
PE15
PB11
PH7
PH12
PH11
M
VDDA
VREF+
VSS
PA4
PC5
PG0
VSS
PE11
PE12
VSSSM
PS
VSS
PH8
PH9
N
PH4
PH3
VDD
PA6
PB0
PB2
VDD
PE9
VLXSM
PS
VDDSM
PS
VCAP
VDD
PH6
MSv64014V3
1. The above figure shows the package top view.
70/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Pinout, pin description, and alternate functions
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
PI7
PI6
PI5
PI4
VDD
VCAP
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
VDD
VSS
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
VDDIO2
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
VDD
VSS
PI3
PI2
Figure 14. LQFP176 pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
LQFP176
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
PI1
PI0
PH15
PH14
PH13
VDD
VSS
VDDUSB
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
VDD
VSS
PG8
PG7
PG6
PG5
PG4
PG3
PG2
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
VDD
PH12
PH11
PH4
PH5
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VCAP
VSS
VDD
PH6
PH7
PH8
PH9
PH10
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
PE2
PE3
PE4
PE5
PE6
VBAT
PI8
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PI9
PI10
PI11
VSS
VDD
PF0
PF1
PF2
PF3
PF4
PF5
VSS
VDD
PF6
PF7
PF8
PF9
PF10
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VDD
VSSA
VREF+
VDDA
PA0
PA1
PA2
PH2
PH3
MSv67307V3
1. The above figure shows the package top view.
DS14258 Rev 5
71/270
75
Pinout, pin description, and alternate functions
STM32H562xx and STM32H563xx
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
PI7
PI6
PI5
PI4
VDD
VCAP
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
VDD
VSS
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
VDDIO2
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
VDD
VSS
PI3
PI2
Figure 15. LQFP176 SMPS pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
LQFP176
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
PI1
PI0
PH15
PH14
PH13
VDD
VSS
VDDUSB
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
VDD
VSS
PG8
PG7
PG6
PG5
PG4
PG3
PG2
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
VDD
VSS
PH12
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VLXSMPS
VDDSMPS
VSSSMPS
VCAP
VSS
VDD
PH6
PH7
PH9
PH10
PH11
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
PE2
PE3
PE4
PE5
PE6
VBAT
PI8
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PI9
PI10
PI11
VSS
VDD
PF0
PF1
PF2
PF3
PF4
PF5
VSS
VDD
PF6
PF7
PF8
PF9
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VDD
VSSA
VREF+
VDDA
PA0
PA1
PA2
PH2
PH3
PA3
MSv67301V3
1. The above figure shows the package top view.
72/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Pinout, pin description, and alternate functions
Figure 16. UFBGA176+25 ballout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
A
PE3
PE2
PE1
PE0
PB8
PB5
PG14
PG13
PB4
PB3
PD7
PC12
PA15
PA14
PA13
B
PE4
PE5
PE6
PB9
PB7
PB6
PG15
PG12
PG11
PG10
PD6
PD0
PC11
PC10
PA12
C
VBAT
PI7
PI6
PI5
VDD
VCAP
VDD
VDDIO2
VDD
PG9
PD5
PD1
PI3
PI2
PA11
D
PC13
PI8
PI9
PI4
VSS
BOOT0
VSS
VSS
VSS
PD4
PD3
PD2
PH15
PI1
PA10
E
PC14OSC32_
IN
PF0
PI10
PI11
PH13
PH14
PI0
PA9
F
PC15OSC32_
OUT
VSS
VDD
PH2
VSS
VSS
VSS
VSS
VSS
VSS
VDD
PC9
PA8
G
PH0OSC_IN
VSS
VDD
PH3
VSS
VSS
VSS
VSS
VSS
VSS
VDD
PC8
PC7
H
PH1OSC_O
UT
PF2
PF1
PH4
VSS
VSS
VSS
VSS
VSS
VSS
VDDUS
B
PG8
PC6
J
NRST
PF3
PF4
PH5
VSS
VSS
VSS
VSS
VSS
VDD
VDD
PG7
PG6
K
PF7
PF6
PF5
VDD
VSS
VSS
VSS
VSS
VSS
PH12
PG5
PG4
PG3
L
PF10
PF9
PF8
VSS
PH11
PH10
PD15
PG2
M
VSSA
PC0
PC1
PC2
PC3
PB2
PG1
VSS
VSS
VCAP
PH6
PH8
PH9
PD14
PD13
N
VREF-
PA1
PA0
PA4
PC4
PF13
PG0
VDD
VDD
VDD
PE13
PH7
PD12
PD11
PD10
P
VREF+
PA2
PA6
PA5
PC5
PF12
PF15
PE8
PE9
PE11
PE14
PB12
PB13
PD9
PD8
R
VDDA
PA3
PA7
PB1
PB0
PF11
PF14
PE7
PE10
PE12
PE15
PB10
PB11
PB14
PB15
MSv67306V3
1. The above figure shows the package top view.
DS14258 Rev 5
73/270
75
Pinout, pin description, and alternate functions
STM32H562xx and STM32H563xx
Figure 17. UFBGA176+25 SMPS ballout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
A
PI7
PI5
VCAP
PB9
BOOT0
PB5
PG15
PG14
PG10
PD7
PD5
PD3
PD1
PI3
PI1
B
VBAT
PE3
PI4
PE1
PB8
PB6
PB3
PG12
PG9
PD6
PD4
PD0
PA14
PI2
PH13
C
VSS
PE6
PE4
PI6
PE0
PB7
PB4
PG13
PG11
PD2
PC12
PC11
PA15
PH15
PA12
PE5
PE2
VDD
VSS
VDDIO2
VDD
VSS
VDD
VSS
PC10
PH14
VSS
PA11
VDD
PA13
PA10
PA9
D
PC15PC14OSC32_ OSC32_
OUT
IN
E
PI9
PI8
PC13
VDD
F
PF1
PF0
PI11
PI10
VSS
VSS
VSS
VSS
VSS
VDD33U
SB
PC9
PC8
PA8
G
PF4
PF3
PF2
VSS
VSS
VSS
VSS
VSS
VSS
VSS
PC7
PC6
PG8
H
PF6
PF8
PF5
VDD
VSS
VSS
VSS
VSS
VSS
VSS
PG7
PG3
PG5
J
PH0OSC_IN
PH1OSC_O
UT
PF9
PF10
VSS
VSS
VSS
VSS
VSS
VDD
PD15
PG6
PG4
K
VSS
PF7
NRST
PC2
VSS
VSS
VSS
VSS
VSS
PD10
PD14
PD12
PG2
L
PC0
PC1
PA1
VDD
PB12
PD9
PD11
PD13
M
VDDA
VSSA
PA2
VSS
PA4
VDD
VSS
VDD
VSS
PB10
VDD
PH9
PH12
PB15
PD8
N
VREF+
VREF-
PC3
PC4
PA3
PB1
PF12
PF15
PE9
PE14
PE15
PB11
PH8
PH10
PB14
P
PH5
PA0
PH3
PC5
PA6
PB2
PF13
PG1
PE8
PE11
PE13
VSSSM
PS
PH6
PH7
PH11
R
PH4
PH2
PA5
PA7
PB0
PF11
PF14
PG0
PE7
PE10
PE12
VLXSM
PS
VDDSM
PS
VCAP
PB13
MSv67300V3
1. The above figure shows the package top view.
74/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
4.2
Pinout, pin description, and alternate functions
Pin description
Table 13. Legend/abbreviations used in the pinout table
Name
Pin name
Pin type
Abbreviation
Definition
Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
S
Supply pin
I
Input only pin
I/O
Input/output pin
FT
5 V-tolerant I/O
TT
3.6 V-tolerant I/O
RST
Bidirectional reset pin with embedded weak pull-up resistor
Option for TT or FT I/Os(1)
I/O structure
Notes
_a
I/O, with analog switch function supplied by VDDA
_c
I/O with USB Type-C power delivery function
_d
I/O with USB Type-C power delivery dead battery function
_f
I/O, Fm+ capable
_h
I/O with high-speed low-voltage mode
_s
I/O supplied only by VDDIO2
_t
I/O with tamper function functional in VBAT mode
_u
I/O, with USB function supplied by VDDUSB
Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset
Alternate
Functions selected through GPIOx_AFR registers
functions
Pin
functions Additional
Functions directly selected/enabled through peripheral registers
functions
1. The related I/O structures in the following table are a concatenation of various options. Examples: FT_hat, FT_fs, FT_u,
TT_a.
DS14258 Rev 5
75/270
75
76/270
Table 14. STM32H562xx and STM32H563xx pin/ball definition
DS14258 Rev 5
C3
1
D4
-
1
1
A1
1
A2
-
PE2
I/O
FT_h
-
-
2
2
D4
2
B2
-
2
2
B2
2
A1
-
PE3
I/O
FT_h
-
TRACED0, TIM15_BKIN,
SAI1_SD_B, USART10_TX,
FMC_A19, EVENTOUT
TAMP_IN6/TAMP_OUT3
-
3
3
D3
3
C3
-
3
3
D4
3
B1
-
PE4
I/O
FT_h
-
TRACED1, SAI1_D2,
TIM15_CH1N, SPI4_NSS,
SAI1_FS_A, FMC_A20,
DCMI_D4/PSSI_D4, EVENTOUT
TAMP_IN7/TAMP_OUT8
-
4
4
C2
4
D3
-
4
4
C2
4
B2
-
PE5
I/O
FT_h
-
TRACED2, SAI1_CK2,
TIM15_CH1, SPI4_MISO,
SAI1_SCK_A, FMC_A21,
DCMI_D6/PSSI_D6, EVENTOUT
TAMP_IN8/TAMP_OUT7
TAMP_IN3/TAMP_OUT6
LQFP176
1
LQFP144
1
LQFP100
-
TRACECLK, LPTIM1_IN2,
SAI1_CK1, SPI4_SCK,
SAI1_MCLK_A, USART10_RX,
UART8_TX, OCTOSPI1_IO2,
ETH_MII_TXD3, FMC_A23,
DCMI_D3/PSSI_D3, EVENTOUT
LQFP64
Alternate functions
Additional functions
-
-
5
5
D2
5
C2
-
5
5
D3
5
B3
-
PE6
I/O
FT_h
-
TRACED3, TIM1_BKIN2,
SAI1_D1, TIM15_CH2,
SPI4_MOSI, SAI1_SD_A,
SAI2_MCLK_B, FMC_A22,
DCMI_D7/PSSI_D7, EVENTOUT
A1
-
-
-
-
-
-
-
-
-
-
-
-
VDD
S
-
-
-
-
B8
-
-
-
-
-
-
-
-
-
-
-
-
VSS
S
-
-
-
-
B10
6
6
C1
6
B1
1
6
6
E2
6
C1
1
VBAT
S
-
-
-
-
D2
-
-
-
-
-
-
-
-
-
-
-
-
VSS
S
-
-
-
-
STM32H562xx and STM32H563xx
Notes
I/O structure
Pin name
(function
after
reset)(3)(4)
Pin type
VFQFPN68
UFBGA176+25
UFBGA169
UFBGA176+25 SMPS
LQFP176 SMPS
UFBGA169 SMPS
LQFP144 SMPS
LQFP100 SMPS
WLCSP80 SMPS
Pin number(1)(2)
LQFP100 SMPS
LQFP144 SMPS
UFBGA169 SMPS
LQFP176 SMPS
UFBGA176+25 SMPS
LQFP64
LQFP100
LQFP144
UFBGA169
LQFP176
UFBGA176+25
VFQFPN68
Pin type
I/O structure
Notes
DS14258 Rev 5
WLCSP80 SMPS
Pin number(1)(2)
Alternate functions
-
-
-
E4
7
E2
-
-
-
E3
7
D2
-
PI8
I/O
FT_t
(5)
EVENTOUT
TAMP_IN2/TAMP_OUT3,
RTC_OUT2, WKUP3
C9
7
7
E3
8
E3
2
7
7
E4
8
D1
2
PC13
I/O
FT_t
(5)
EVENTOUT
TAMP_IN1/TAMP_OUT2/
TAMP_OUT3, RTC_OUT1/
RTC_TS, WKUP4
G9
-
-
-
-
-
-
-
-
-
-
-
-
VSS
S
-
-
-
-
D10
8
8
D1
9
D2
3
8
8
B1
9
E1
3
PC14OSC32_IN
(OSC32_IN)
I/O
FT
-
EVENTOUT
OSC32_IN
F10
9
9
E1
10
D1
4
9
9
C1
10
F1
4
PC15OSC32_OUT
(OSC32_OUT)
I/O
FT
-
EVENTOUT
OSC32_OUT
-
-
-
-
11
E1
-
-
-
-
11
D3
-
PI9
I/O
FT_h
-
UART4_RX, FDCAN1_RX,
EVENTOUT
-
-
-
-
-
12
F4
-
-
-
-
12
E3
-
PI10
I/O
FT_h
-
FDCAN1_RX, ETH_MII_RX_ER,
PSSI_D14, EVENTOUT
-
-
-
-
-
13
F3
-
-
-
F4
13
E4
-
PI11
I/O
FT
-
PSSI_D15, EVENTOUT
TAMP_IN4/TAMP_OUT5
-
-
-
B2
14
C1
-
-
-
D2
14
D5
-
VSS
S
-
-
-
-
-
-
-
B1
15
D5
-
-
-
D1
15
C5
-
VDD
S
-
-
-
-
-
-
10
E2
16
F2
-
-
10
F3
16
E2
-
PF0
I/O
FT_f
-
I2C2_SDA, FMC_A0,
LPTIM5_CH1, EVENTOUT
-
-
-
11
F3
17
F1
-
-
11
E1
17
H3
-
PF1
I/O
FT_f
-
I2C2_SCL, FMC_A1,
LPTIM5_CH2, EVENTOUT
-
Pin name
(function
after
reset)(3)(4)
Additional functions
STM32H562xx and STM32H563xx
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
77/270
78/270
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
LQFP100 SMPS
LQFP144 SMPS
UFBGA169 SMPS
LQFP176 SMPS
UFBGA176+25 SMPS
LQFP64
LQFP100
LQFP144
UFBGA169
LQFP176
UFBGA176+25
VFQFPN68
Pin type
I/O structure
Notes
DS14258 Rev 5
WLCSP80 SMPS
Pin number(1)(2)
Alternate functions
-
-
12
F4
18
G3
-
-
12
F2
18
H2
-
PF2
I/O
FT_h
-
LPTIM3_CH2, LPTIM3_IN2,
I2C2_SMBA, UART12_TX,
USART11_CK, FMC_A2,
LPTIM5_IN1, EVENTOUT
-
-
-
13
G6
19
G2
-
-
13
F5
19
J2
-
PF3
I/O
FT_h
-
LPTIM3_IN1, USART11_TX,
FMC_A3, LPTIM5_IN2,
EVENTOUT
-
-
-
14
G5
20
G1
-
-
14
F1
20
J3
-
PF4
I/O
FT_h
-
LPTIM3_ETR, USART11_RX,
FMC_A4, EVENTOUT
-
-
Pin name
(function
after
reset)(3)(4)
Additional functions
-
15
G3
21
H3
-
-
15
F6
21
K3
-
PF5
I/O
FT_fh
-
H2
10
16
F2
22
G4
-
10
16
G2
22
F2
-
VSS
S
-
-
-
-
A7
11
17
G1
23
E4
-
11
17
G1
23
F3
-
VDD
S
-
-
-
-
-
-
18
G7
24
H1
-
-
18
G4
24
K2
-
PF6
I/O
FT_h
-
TIM16_CH1, SPI5_NSS,
SAI1_SD_B, UART7_RX,
OCTOSPI1_IO3, LPTIM5_CH1,
EVENTOUT
-
-
-
19
F1
25
K2
-
-
19
G3
25
K1
-
PF7
I/O
FT_h
-
TIM17_CH1, SPI5_SCK,
SAI1_MCLK_B, UART7_TX,
OCTOSPI1_IO2, LPTIM5_CH2,
EVENTOUT
-
-
TIM16_CH1N, SPI5_MISO,
SAI1_SCK_B,
UART7_RTS/UART7_DE,
TIM13_CH1, OCTOSPI1_IO0,
LPTIM5_IN1, EVENTOUT
-
-
-
20
G4
26
H2
-
-
20
G5
26
L3
-
PF8
I/O
FT_h
STM32H562xx and STM32H563xx
-
LPTIM3_CH1, I2C4_SCL,
I3C1_SCL, UART12_RX,
USART11_CTS/USART11_NSS,
FMC_A5, LPTIM3_IN1,
EVENTOUT
LQFP100 SMPS
LQFP144 SMPS
UFBGA169 SMPS
LQFP176 SMPS
UFBGA176+25 SMPS
LQFP64
LQFP100
LQFP144
UFBGA169
LQFP176
UFBGA176+25
VFQFPN68
Pin type
I/O structure
Notes
DS14258 Rev 5
WLCSP80 SMPS
Pin number(1)(2)
Alternate functions
-
-
21
G2
27
J3
-
-
21
H3
27
L2
-
PF9
I/O
FT_h
-
TIM17_CH1N, SPI5_MOSI,
SAI1_FS_B, UART7_CTS,
TIM14_CH1, OCTOSPI1_IO1,
LPTIM5_IN2, EVENTOUT
-
-
-
22
H4
-
J4
-
-
22
G6
28
L1
-
PF10
I/O
FT_h
-
TIM16_BKIN, SAI1_D3,
PSSI_D15, OCTOSPI1_CLK,
DCMI_D11/PSSI_D11,
EVENTOUT
-
K10
12
23
H1
28
J1
5
12
23
H1
29
G1
5
PH0OSC_IN(PH0)
I/O
FT
-
EVENTOUT
OSC_IN
J9
13
24
J1
29
J2
6
13
24
H2
30
H1
6
PH1OSC_OUT(PH1)
I/O
FT
-
EVENTOUT
OSC_OUT
F8
14
25
H3
30
K3
7
14
25
H4
31
J1
7
NRST
I/O
RST
-
-
-
-
TIM16_BKIN, SAI1_MCLK_A,
SPI2_RDY, SAI2_FS_B,
FMC_A25, OCTOSPI1_IO7,
FMC_SDNWE, EVENTOUT
ADC12_INP10
-
TRACED0, SAI1_D1,
SPI2_MOSI/I2S2_SDO,
SAI1_SD_A,
USART11_RTS/USART11_DE,
SAI2_SD_A, SDMMC2_CK,
OCTOSPI1_IO4, ETH_MDC,
EVENTOUT
ADC12_INP11,
ADC12_INN10,
TAMP_IN3/TAMP_OUT5,
WKUP6
-
PWR_CSLEEP, TIM17_CH1,
TIM4_CH4, SPI2_MISO/I2S2_SDI,
OCTOSPI1_IO5, OCTOSPI1_IO2,
ETH_MII_TXD2, FMC_SDNE0,
EVENTOUT
ADC12_INP12,
ADC12_INN11
H8
G7
M10
15
16
17
26
27
28
J2
J3
K1
31
32
33
L1
L2
K4
8
9
10
15
16
17
26
27
28
J1
J2
J3
32
33
34
M2
M3
M4
8
9
10
Pin name
(function
after
reset)(3)(4)
PC0
PC1
PC2
I/O
I/O
I/O
FT_a
FT_ah
FT_a
Additional functions
STM32H562xx and STM32H563xx
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
79/270
80/270
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
DS14258 Rev 5
29
K2
34
N3
11
18
29
H5
35
M5
11
PC3
I/O
FT_a
-
G1
-
-
-
35
H4
-
-
30
M1
36
G3
-
VDD
S
-
-
-
LQFP176
18
LQFP144
L9
PWR_CSTOP, SAI1_D3,
LPTIM3_CH1,
SPI2_MOSI/I2S2_SDO,
OCTOSPI1_IO6, OCTOSPI1_IO0,
ETH_MII_TX_CLK,
FMC_SDCKE0, EVENTOUT
LQFP100
Alternate functions
LQFP64
Notes
I/O structure
Pin name
(function
after
reset)(3)(4)
Pin type
VFQFPN68
UFBGA176+25
UFBGA169
UFBGA176+25 SMPS
LQFP176 SMPS
UFBGA169 SMPS
LQFP144 SMPS
LQFP100 SMPS
WLCSP80 SMPS
Pin number(1)(2)
Additional functions
ADC12_INP13,
ADC12_INN12
-
-
-
H2
-
K1
-
-
-
M2
-
G2
-
VSS
S
-
-
-
-
19
30
L1
36
M2
12
19
31
K2
37
M1
12
VSSA
S
-
-
-
-
-
-
-
L2
-
N2
-
20
-
K1
-
N1
-
VREF-
S
-
-
-
-
-
20
31
M2
37
N1
-
21
32
L2
38
P1
-
VREF+
S
-
-
-
-
P10
21
32
M1
38
M1
13
22
33
L1
39
R1
13
VDDA
S
-
-
-
-
(5)
TIM2_CH1, TIM5_CH1,
TIM8_ETR, TIM15_BKIN,
SPI6_NSS, SPI3_RDY,
USART2_CTS/USART2_NSS,
UART4_TX, SDMMC2_CMD,
SAI2_SD_B, ETH_MII_CRS,
TIM2_ETR, EVENTOUT
ADC12_INP0, ADC12_INN1,
TAMP_IN2/TAMP_OUT1,
WKUP1
(5)
TIM2_CH2, TIM5_CH2,
TIM15_CH1N, LPTIM1_IN1,
OCTOSPI1_DQS,
USART2_RTS/USART2_DE,
UART4_RX, OCTOSPI1_IO3,
SAI2_MCLK_B,
ETH_MII_RX_CLK/ETH_RMII_RE
F_CLK, EVENTOUT
ADC12_INP1,
TAMP_IN5/TAMP_OUT4
K8
J7
22
23
33
34
K3
H5
39
40
P2
L3
14
15
23
24
34
35
J4
J5
40
41
N3
N2
14
15
PA0
PA1
I/O
I/O
FT_at
FT_aht
STM32H562xx and STM32H563xx
P2
N9
LQFP100 SMPS
LQFP144 SMPS
UFBGA169 SMPS
LQFP176 SMPS
UFBGA176+25 SMPS
LQFP64
LQFP100
LQFP144
UFBGA169
LQFP176
UFBGA176+25
VFQFPN68
Pin type
I/O structure
Notes
DS14258 Rev 5
WLCSP80 SMPS
Pin number(1)(2)
Alternate functions
M8
24
35
L3
41
M3
16
25
36
L3
42
P2
16
PA2
I/O
FT_hat
(5)
TIM2_CH3, TIM5_CH3,
TIM15_CH1, LPTIM1_IN2,
USART2_TX, SAI2_SCK_B,
ETH_MDIO, EVENTOUT
ADC12_INP14,
TAMP_IN4/TAMP_OUT3,
WKUP2
-
-
-
J4
42
R2
-
-
-
K3
43
F4
-
PH2
I/O
FT_h
-
LPTIM1_IN2, OCTOSPI1_IO4,
SAI2_SCK_B, ETH_MII_CRS,
FMC_SDCKE0, EVENTOUT
-
H10
-
-
-
-
L4
-
-
-
-
-
K4
-
VDD
S
-
-
-
-
P8
-
-
-
-
M4
-
-
-
-
-
L4
-
VSS
S
-
-
-
-
-
-
-
N2
43
P3
-
-
-
N2
44
G4
-
PH3
I/O
FT_ah
-
OCTOSPI1_IO5, SAI2_MCLK_B,
ETH_MII_COL, FMC_SDNE0,
EVENTOUT
-
-
-
-
N1
-
R1
-
-
-
N1
45
H4
-
PH4
I/O
FT_fa
-
I2C2_SCL, SPI5_RDY, SPI6_RDY,
PSSI_D14, EVENTOUT
-
-
-
-
L4
-
P1
-
-
-
M3
46
J4
-
PH5
I/O
FT_fa
-
I2C2_SDA, SPI5_NSS,
SPI6_RDY, FMC_SDNWE,
EVENTOUT
-
ADC12_INP15
Pin name
(function
after
reset)(3)(4)
Additional functions
T10
25
36
K4
44
N5
17
26
37
N3
47
R2
17
PA3
I/O
FT_ah
-
TIM2_CH4, TIM5_CH4,
OCTOSPI1_CLK, TIM15_CH2,
SPI2_NSS/I2S2_WS, SAI1_SD_B,
USART2_RX, ETH_MII_COL,
EVENTOUT
-
26
37
M3
45
M7
18
27
38
M4
48
M8
18
VSS
S
-
-
-
-
R1
27
38
N3
46
M6
19
28
39
N4
49
N8
19
VDD
S
-
-
-
-
STM32H562xx and STM32H563xx
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
81/270
82/270
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
DS14258 Rev 5
L7
H6
M6
29
30
31
-
40
41
42
-
M4
J5
N4
K5
L5
47
48
49
50
51
M5
R3
P5
R4
N4
20
21
22
23
24
29
30
31
32
33
40
41
42
43
44
L4
K4
M5
K5
N5
50
51
52
53
54
N4
P4
P3
R3
N5
20
21
22
23
24
PA4
PA5
PA6
PA7
PC4
I/O
I/O
I/O
I/O
I/O
I/O structure
Pin type
VFQFPN68
UFBGA176+25
LQFP176
UFBGA169
LQFP144
LQFP100
LQFP64
UFBGA176+25 SMPS
LQFP176 SMPS
UFBGA169 SMPS
LQFP144 SMPS
39
TT_a
TT_ah
FT_ah
FT_ah
FT_a
Alternate functions
Additional functions
-
TIM5_ETR, LPTIM2_CH1,
SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS,
USART2_CK, SPI6_NSS,
DCMI_HSYNC/PSSI_DE,
EVENTOUT
ADC12_INP18, DAC1_OUT1
-
TIM2_CH1, TIM8_CH1N,
SPI1_SCK/I2S1_CK, SPI6_SCK,
ETH_MII_TX_EN/ETH_RMII_TX_
EN, PSSI_D14, TIM2_ETR,
EVENTOUT
ADC12_INP19,
ADC12_INN18,
DAC1_OUT2
-
TIM1_BKIN, TIM3_CH1,
TIM8_BKIN,
SPI1_MISO/I2S1_SDI,
OCTOSPI1_IO3, USART11_TX,
SPI6_MISO, TIM13_CH1,
DCMI_PIXCLK/PSSI_PDCK,
EVENTOUT
ADC12_INP3
-
TIM1_CH1N, TIM3_CH2,
TIM8_CH1N,
SPI1_MOSI/I2S1_SDO,
USART11_RX, SPI6_MOSI,
TIM14_CH1, OCTOSPI1_IO2,
ETH_MII_RX_DV/ETH_RMII_CRS
_DV, FMC_SDNWE, FMC_NWE,
EVENTOUT
ADC12_INP7, ADC12_INN3
-
TIM2_CH4, SAI1_CK1,
LPTIM2_ETR, I2S1_MCK,
USART3_RX,
ETH_MII_RXD0/ETH_RMII_RXD0
, FMC_SDNE0, EVENTOUT
ADC12_INP4
STM32H562xx and STM32H563xx
K6
28
Pin name
(function
after
reset)(3)(4)
Notes
R9
LQFP100 SMPS
WLCSP80 SMPS
Pin number(1)(2)
DS14258 Rev 5
-
M5
52
P4
25
34
45
H6
55
P5
25
PC5
I/O
FT_ah
-
T8
-
-
-
-
M8
-
-
-
-
-
-
-
VDD
S
-
-
-
-
ADC12_INP9, ADC12_INN5
LQFP176
-
LQFP144
N7
TIM1_CH4N, SAI1_D3,
PSSI_D15, SAI1_FS_A,
UART12_RTS/UART12_DE,
OCTOSPI1_DQS,
ETH_MII_RXD1/ETH_RMII_RXD1
, FMC_SDCKE0, EVENTOUT
LQFP100
Alternate functions
LQFP64
Notes
I/O structure
Pin name
(function
after
reset)(3)(4)
Pin type
VFQFPN68
UFBGA176+25
UFBGA169
UFBGA176+25 SMPS
LQFP176 SMPS
UFBGA169 SMPS
LQFP144 SMPS
LQFP100 SMPS
WLCSP80 SMPS
Pin number(1)(2)
Additional functions
ADC12_INP8, ADC12_INN4
R7
32
43
N5
53
R5
26
35
46
L5
56
R5
26
PB0
I/O
FT_ah
-
TIM1_CH2N, TIM3_CH3,
TIM8_CH2N, OCTOSPI1_IO1,
USART11_CK, UART4_CTS,
ETH_MII_RXD2, LPTIM3_CH1,
EVENTOUT
P6
33
44
H6
54
N6
27
36
47
K6
57
R4
27
PB1
I/O
FT_ah
-
TIM1_CH3N, TIM3_CH4,
TIM8_CH3N, OCTOSPI1_IO0,
ETH_MII_RXD3, LPTIM3_CH2,
EVENTOUT
ADC12_INP5
-
RTC_OUT2, SAI1_D1,
TIM8_CH4N, SPI1_RDY,
LPTIM1_CH1, SAI1_SD_A,
SPI3_MOSI/I2S3_SDO,
OCTOSPI1_CLK,
OCTOSPI1_DQS,
SDMMC1_CMD, LPTIM5_ETR,
EVENTOUT
LSCO
ADC1_INP2
ADC1_INP6, ADC1_INN2
L5
34
45
N6
55
P6
28
37
48
L6
58
M6
28
PB2
I/O
FT_ah
83/270
-
-
46
J6
56
R6
-
-
49
J6
59
R6
-
PF11
I/O
FT_ah
-
SPI5_MOSI, OCTOSPI1_NCLK,
SAI2_SD_B, FMC_NRAS,
DCMI_D12/PSSI_D12,
LPTIM6_CH1, EVENTOUT
-
-
47
K6
57
N7
-
-
50
N6
60
P6
-
PF12
I/O
FT_ah
-
FMC_A6, LPTIM6_CH2,
EVENTOUT
STM32H562xx and STM32H563xx
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
84/270
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
LQFP144 SMPS
UFBGA169 SMPS
LQFP176 SMPS
UFBGA176+25 SMPS
LQFP64
LQFP100
LQFP144
UFBGA169
LQFP176
UFBGA176+25
VFQFPN68
Pin type
I/O structure
Notes
Alternate functions
-
-
48
M7
58
-
-
-
51
M7
61
-
-
VSS
S
-
-
-
-
-
-
49
N7
59
-
-
-
52
N7
62
N9
-
VDD
S
-
-
-
-
-
-
50
H7
60
P7
-
-
53
H7
63
N6
-
PF13
I/O
FT_ah
-
I2C4_SMBA, FMC_A7,
LPTIM6_IN1, EVENTOUT
ADC2_INP2
-
-
51
L6
61
R7
-
-
54
M6
64
R7
-
PF14
I/O
FT_fah
-
FMC_A8, LPTIM6_IN2,
EVENTOUT
ADC2_INP6, ADC2_INN2
-
-
52
J7
62
N8
-
-
55
J7
65
P7
-
PF15
I/O
FT_fh
-
I2C4_SDA, I3C1_SDA, FMC_A9,
EVENTOUT
-
-
-
53
M6
63
R8
-
-
56
L7
66
N7
-
PG0
I/O
FT_h
-
UART9_RX, FMC_A10,
LPTIM4_IN1, EVENTOUT
-
-
-
54
K7
64
P8
-
-
57
K7
67
M7
-
PG1
I/O
FT_h
-
SPI2_MOSI/I2S2_SDO,
UART9_TX, FMC_A11,
EVENTOUT
-
-
TIM1_ETR,
UART12_RTS/UART12_DE,
UART7_RX, OCTOSPI1_IO4,
FMC_D4/FMC_AD4, EVENTOUT
-
-
TIM1_CH1N,
UART12_CTS/UART12_NSS,
UART7_TX, OCTOSPI1_IO5,
FMC_D5/FMC_AD5, EVENTOUT
-
-
T6
N5
35
36
55
56
L7
J8
65
66
R9
P9
-
-
38
39
58
59
N8
G7
68
69
R8
P8
-
-
Pin name
(function
after
reset)(3)(4)
PE7
PE8
I/O
I/O
FT_ah
FT_ah
Additional functions
R5
37
57
N8
67
N9
-
40
60
L8
70
P9
-
PE9
I/O
FT_ah
-
TIM1_CH1, UART12_RX,
UART7_RTS/UART7_DE,
OCTOSPI1_IO6,
FMC_D6/FMC_AD6, EVENTOUT
-
-
58
-
68
-
-
-
61
-
71
-
-
VSS
S
-
-
-
-
-
-
59
-
69
-
-
-
62
-
72
-
-
VDD
S
-
-
-
-
STM32H562xx and STM32H563xx
LQFP100 SMPS
DS14258 Rev 5
WLCSP80 SMPS
Pin number(1)(2)
LQFP100 SMPS
LQFP144 SMPS
UFBGA169 SMPS
LQFP176 SMPS
UFBGA176+25 SMPS
LQFP64
LQFP100
LQFP144
UFBGA169
LQFP176
UFBGA176+25
VFQFPN68
Pin type
I/O structure
Notes
DS14258 Rev 5
WLCSP80 SMPS
Pin number(1)(2)
Alternate functions
M4
38
60
L8
70
R10
-
41
63
H8
73
R9
-
PE10
I/O
FT_ah
-
TIM1_CH2N, UART12_TX,
UART7_CTS, OCTOSPI1_IO7,
FMC_D7/FMC_AD7, EVENTOUT
-
-
39
61
M8
71
P10
-
42
64
M8
74
P10
-
PE11
I/O
FT_ah
-
TIM1_CH2, SPI1_RDY,
SPI4_NSS, OCTOSPI1_NCS,
SAI2_SD_B, FMC_D8/FMC_AD8,
EVENTOUT
-
-
40
62
M9
72
R11
-
43
65
K8
75
R10
-
PE12
I/O
FT_h
-
TIM1_CH3N, SPI4_SCK,
SAI2_SCK_B,
FMC_D9/FMC_AD9, EVENTOUT
-
-
TIM1_CH3, SPI4_MISO,
SAI2_FS_B,
FMC_D10/FMC_AD10,
EVENTOUT
-
-
TIM1_CH4, SPI4_MOSI,
SAI2_MCLK_B,
FMC_D11/FMC_AD11,
EVENTOUT
-
-
TIM1_BKIN, TIM1_CH4N,
USART10_CK,
FMC_D12/FMC_AD12,
EVENTOUT
-
-
TIM2_CH3, LPTIM3_CH1,
LPTIM2_IN1, I2C2_SCL,
SPI2_SCK/I2S2_CK,
USART3_TX, OCTOSPI1_NCS,
ETH_MII_RX_ER, EVENTOUT
-
-
-
-
P4
41
42
43
44
63
64
65
66
K8
J9
L9
K9
73
74
75
76
P11
N10
N11
M10
-
-
-
29
44
45
46
47
66
67
68
69
L9
J8
N9
K9
76
77
78
79
N11
P11
R11
R12
-
-
-
29
Pin name
(function
after
reset)(3)(4)
PE13
PE14
PE15
PB10
I/O
I/O
I/O
I/O
FT_h
FT_h
FT_h
FT_f
Additional functions
STM32H562xx and STM32H563xx
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
85/270
86/270
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
DS14258 Rev 5
L10
77
N12
-
-
-
M9
80
R13
30
PB11
I/O
FT_f
-
T4
46
68
N9
78
R12
-
-
-
-
-
-
-
VLXSMPS
S
-
-
-
-
R3
47
69
N10
79
R13
-
-
-
-
-
-
-
VDDSMPS
S
-
-
-
-
N3
48
70
M10
80
P12
-
-
-
-
-
-
-
VSSSMPS
S
-
-
-
-
T2
49
71
N11
81
R14
30
48
70
N10
81
M10
31
VCAP
S
-
-
-
-
-
50
72
M11
82
M9
31
49
71
M12
82
M9
32
VSS
S
-
-
-
-
-
51
73
N12
83
M11
32
50
72
N11
83
N10
33
VDD
S
-
-
-
-
-
LQFP176
67
LQFP144
45
LQFP100
-
TIM2_CH4, LPTIM2_ETR,
I2C2_SDA, SPI2_RDY, SPI4_RDY,
USART3_RX,
ETH_MII_TX_EN/ETH_RMII_TX_
EN, FMC_NBL1, EVENTOUT
LQFP64
Alternate functions
Additional functions
-
-
-
-
N13
84
P13
-
-
-
K10
84
M11
-
PH6
I/O
FT
-
TIM1_CH3N, TIM12_CH1,
TIM8_CH1, I2C2_SMBA,
SPI5_SCK, ETH_MII_RXD2,
FMC_SDNE1,
DCMI_D8/PSSI_D8, EVENTOUT
-
-
-
L11
85
P14
-
-
-
L10
85
N12
-
PH7
I/O
FT_f
-
TIM1_CH3, TIM8_CH1N,
I2C3_SCL, SPI5_MISO,
ETH_MII_RXD3, FMC_SDCKE1,
DCMI_D9/PSSI_D9, EVENTOUT
-
-
TIM1_CH2N, TIM5_ETR,
TIM8_CH2, I2C3_SDA,
SPI5_MOSI,
DCMI_HSYNC/PSSI_DE,
EVENTOUT
-
-
-
-
M12
-
N13
-
-
-
M10
86
M12
-
PH8
I/O
FT_fh
STM32H562xx and STM32H563xx
Notes
I/O structure
Pin name
(function
after
reset)(3)(4)
Pin type
VFQFPN68
UFBGA176+25
UFBGA169
UFBGA176+25 SMPS
LQFP176 SMPS
UFBGA169 SMPS
LQFP144 SMPS
LQFP100 SMPS
WLCSP80 SMPS
Pin number(1)(2)
LQFP100 SMPS
LQFP144 SMPS
UFBGA169 SMPS
LQFP176 SMPS
UFBGA176+25 SMPS
LQFP64
LQFP100
LQFP144
UFBGA169
LQFP176
UFBGA176+25
VFQFPN68
Pin type
I/O structure
Notes
DS14258 Rev 5
WLCSP80 SMPS
Pin number(1)(2)
Alternate functions
-
-
-
M13
86
M12
-
-
-
-
87
M13
-
PH9
I/O
FT_h
-
TIM1_CH2, TIM12_CH2,
TIM8_CH2N, I2C3_SMBA,
SPI5_NSS, DCMI_D0/PSSI_D0,
EVENTOUT
-
-
-
-
K10
87
N14
-
-
-
M11
88
L13
-
PH10
I/O
FT_h
-
TIM1_CH1N, TIM5_CH1,
TIM8_CH3, I2C4_SMBA,
SPI5_RDY, DCMI_D1/PSSI_D1,
EVENTOUT
-
-
-
-
L13
88
P15
-
-
-
N12
89
L12
-
PH11
I/O
FT_fh
-
TIM1_CH1, TIM5_CH2,
TIM8_CH3N, I2C4_SCL,
I3C1_SCL, DCMI_D2/PSSI_D2,
EVENTOUT
-
-
-
-
L12
89
M13
-
-
-
N13
90
K12
-
PH12
I/O
FT_fh
-
TIM1_BKIN, TIM5_CH3,
TIM8_BKIN, I2C4_SDA,
I3C1_SDA, TIM8_CH4N,
DCMI_D3/PSSI_D3, EVENTOUT
-
-
-
-
-
90
H12
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
-
91
J12
-
-
-
L13
91
J12
-
VDD
S
-
-
-
-
-
TIM1_BKIN, OCTOSPI1_NCLK,
I2C2_SDA, SPI2_NSS/I2S2_WS,
UCPD1_FRSTX, USART3_CK,
FDCAN2_RX,
ETH_MII_TXD0/ETH_RMII_TXD0,
UART5_RX, EVENTOUT
-
L3
-
-
K11
92
L12
33
51
73
K11
92
P12
34
Pin name
(function
after
reset)(3)(4)
PB12
I/O
FT_fh
Additional functions
STM32H562xx and STM32H563xx
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
87/270
88/270
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
DS14258 Rev 5
N1
52
53
75
K12
J10
93
94
R15
N15
34
35
52
53
74
75
L11
M13
93
94
P13
R14
35
36
PB13
PB14
I/O
I/O
I/O structure
Pin type
VFQFPN68
UFBGA176+25
LQFP176
UFBGA169
LQFP144
LQFP100
LQFP64
UFBGA176+25 SMPS
LQFP176 SMPS
UFBGA169 SMPS
LQFP144 SMPS
74
Pin name
(function
after
reset)(3)(4)
FT_c
FT_c
Alternate functions
Additional functions
(6)
TIM1_CH1N, LPTIM3_IN1,
LPTIM2_CH1, I2C2_SMBA,
SPI2_SCK/I2S2_CK,
USART3_CTS/USART3_NSS,
FDCAN2_TX, SDMMC1_D0,
UART5_TX, EVENTOUT
UCPD1_CC1
(6)
TIM1_CH2N, TIM12_CH1,
TIM8_CH2N, USART1_TX,
SPI2_MISO/I2S2_SDI,
USART3_RTS/USART3_DE,
UART4_RTS/UART4_DE,
SDMMC2_D0, LPTIM3_ETR,
EVENTOUT
UCPD1_CC2
PVD_IN
L1
54
76
H10
95
M14
36
54
76
J10
95
R15
37
PB15
I/O
FT_h
-
RTC_REFIN, TIM1_CH3N,
TIM12_CH2, TIM8_CH3N,
USART1_RX,
SPI2_MOSI/I2S2_SDO,
USART11_CTS/USART11_NSS,
UART4_CTS, SDMMC2_D1,
OCTOSPI1_CLK,
ETH_MII_TXD1/ETH_RMII_TXD1,
DCMI_D2/PSSI_D2, UART5_RX,
EVENTOUT
-
55
77
J11
96
M15
-
55
77
L12
96
P15
-
PD8
I/O
FT_h
-
USART3_TX,
FMC_D13/FMC_AD13,
EVENTOUT
-
-
-
-
-
-
G12
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
56
78
H9
97
L13
-
56
78
J9
97
P14
-
PD9
I/O
FT_h
-
USART3_RX, FDCAN2_RX,
FMC_D14/FMC_AD14,
EVENTOUT
-
STM32H562xx and STM32H563xx
Notes
M2
LQFP100 SMPS
WLCSP80 SMPS
Pin number(1)(2)
UFBGA169 SMPS
LQFP176 SMPS
UFBGA176+25 SMPS
LQFP64
LQFP100
LQFP144
UFBGA169
LQFP176
UFBGA176+25
VFQFPN68
79
K13
98
K12
-
57
79
J11
98
N15
-
-
58
80
H8
99
L14
-
58
80
H10
99
N14
38
PD10
I/O
PD11
I/O
Notes
LQFP144 SMPS
57
I/O structure
LQFP100 SMPS
-
Pin name
(function
after
reset)(3)(4)
Pin type
WLCSP80 SMPS
Pin number(1)(2)
Alternate functions
Additional functions
FT_h
-
LPTIM2_CH2, USART3_CK,
FMC_D15/FMC_AD15,
EVENTOUT
-
-
SAI1_CK1, LPTIM2_IN2,
I2C4_SMBA,
USART3_CTS/USART3_NSS,
UART4_RX, OCTOSPI1_IO0,
SAI2_SD_A,
FMC_A16/FMC_CLE, EVENTOUT
-
-
LPTIM1_IN1, TIM4_CH1,
LPTIM2_IN1, I2C4_SCL,
I3C1_SCL, SAI1_D1,
USART3_RTS/USART3_DE,
UART4_TX, OCTOSPI1_IO1,
SAI2_FS_A, FMC_A17/FMC_ALE,
DCMI_D12/PSSI_D12,
EVENTOUT
-
-
FT_h
DS14258 Rev 5
-
59
81
H11
100
K14
-
59
81
K12
100
N13
39
PD12
I/O
FT_fh
89/270
-
60
82
G8
101
L15
-
60
82
K13
101
M15
-
PD13
I/O
FT_fh
-
LPTIM1_CH1, TIM4_CH2,
LPTIM2_CH1, I2C4_SDA,
I3C1_SDA, OCTOSPI1_IO3,
SAI2_SCK_A,
UART9_RTS/UART9_DE,
FMC_A18, DCMI_D13/PSSI_D13,
LPTIM4_IN1, EVENTOUT
-
-
83
J12
102
-
-
-
83
H12
102
H12
-
VSS
S
-
-
-
-
-
-
84
J13
103
-
-
-
84
H13
103
J13
-
VDD
S
-
-
-
-
K2
61
85
H12
104
K13
-
61
85
H11
104
M14
-
PD14
I/O
FT_h
-
TIM4_CH3, UART8_CTS,
UART9_RX, FMC_D0/FMC_AD0,
EVENTOUT
-
STM32H562xx and STM32H563xx
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
90/270
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
LQFP144 SMPS
UFBGA169 SMPS
LQFP176 SMPS
UFBGA176+25 SMPS
LQFP64
LQFP100
LQFP144
UFBGA169
LQFP176
UFBGA176+25
VFQFPN68
Pin type
I/O structure
Notes
Alternate functions
J1
62
86
G10
105
J13
-
62
86
H9
105
L14
-
PD15
I/O
FT_h
-
TIM4_CH4,
UART8_RTS/UART8_DE,
UART9_TX, FMC_D1/FMC_AD1,
EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VDD
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
87
H13
106
K15
-
-
87
J12
106
L15
-
PG2
I/O
FT_h
-
TIM8_BKIN, UART12_RX,
FMC_A12, LPTIM6_ETR,
EVENTOUT
-
-
-
88
G9
107
H14
-
-
88
G9
107
K15
-
PG3
I/O
FT_h
-
TIM8_BKIN2, UART12_TX,
FMC_A13, LPTIM5_ETR,
EVENTOUT
-
-
-
89
G11
108
J15
-
-
89
J13
108
K14
-
PG4
I/O
FT_h
-
TIM1_BKIN2,
FMC_A14/FMC_BA0,
LPTIM4_ETR, EVENTOUT
-
-
-
90
F8
109
H15
-
-
90
G10
109
K13
-
PG5
I/O
FT_h
-
TIM1_ETR, FMC_A15/FMC_BA1,
EVENTOUT
-
-
TIM17_BKIN, I3C1_SDA,
I2C4_SDA, SPI1_RDY,
OCTOSPI1_NCS,
UCPD1_FRSTX, FMC_NE3,
DCMI_D12/PSSI_D12,
EVENTOUT
-
-
SAI1_CK2, I3C1_SCL, I2C4_SCL,
SAI1_MCLK_A, USART6_CK,
UCPD1_FRSTX, FMC_INT,
DCMI_D13/PSSI_D13,
EVENTOUT
-
-
-
-
-
91
92
G12
F9
110
111
J14
H13
-
-
-
-
91
92
G11
G8
110
111
J15
J14
-
-
Pin name
(function
after
reset)(3)(4)
PG6
PG7
I/O
I/O
FT_fh
FT_fh
Additional functions
STM32H562xx and STM32H563xx
LQFP100 SMPS
DS14258 Rev 5
WLCSP80 SMPS
Pin number(1)(2)
LQFP100 SMPS
LQFP144 SMPS
UFBGA169 SMPS
LQFP176 SMPS
UFBGA176+25 SMPS
LQFP64
LQFP100
LQFP144
UFBGA169
LQFP176
UFBGA176+25
VFQFPN68
Pin type
I/O structure
Notes
DS14258 Rev 5
WLCSP80 SMPS
Pin number(1)(2)
Alternate functions
-
-
93
G13
112
G15
-
-
93
F11
112
H14
-
PG8
I/O
FT_h
-
TIM8_ETR, SPI6_NSS,
USART6_RTS/USART6_DE,
ETH_PPS_OUT, FMC_SDCLK,
EVENTOUT
-
-
-
94
-
113
-
-
-
94
-
113
-
-
VSS
S
-
-
-
-
-
-
95
-
114
-
-
-
95
-
114
-
-
VDD
S
-
-
-
-
-
TIM3_CH1, TIM8_CH1,
I2S2_MCK, SAI1_SCK_A,
USART6_TX, SDMMC1_D0DIR,
FMC_NWAIT, SDMMC2_D6,
OCTOSPI1_IO5, SDMMC1_D6,
DCMI_D0/PSSI_D0, EVENTOUT
-
-
TRGIO, TIM3_CH2, TIM8_CH2,
I2S3_MCK, USART6_RX,
SDMMC1_D123DIR, FMC_NE1,
SDMMC2_D7, OCTOSPI1_IO6,
SDMMC1_D7,
DCMI_D1/PSSI_D1, EVENTOUT
-
-
TRACED1, TIM3_CH3,
TIM8_CH3, USART6_CK,
UART5_RTS/UART5_DE,
FMC_NE2/FMC_NCE, FMC_INT,
FMC_ALE, SDMMC1_D0,
DCMI_D2/PSSI_D2, EVENTOUT
-
-
MCO2, TIM3_CH4, TIM8_CH4,
I2C3_SDA, AUDIOCLK,
UART5_CTS, OCTOSPI1_IO0,
FMC_CLE, SDMMC1_D1,
DCMI_D3/PSSI_D3, EVENTOUT
UCPD1_DB2
J3
K4
J5
F2
63
64
65
66
96
97
98
99
F10
F11
E9
F12
115
116
117
118
G14
G13
F14
F13
37
38
39
40
63
64
65
66
96
97
98
99
F9
F10
G12
G13
115
116
117
118
H15
G15
G14
F14
40
41
42
43
Pin name
(function
after
reset)(3)(4)
PC6
PC7
PC8
PC9
I/O
I/O
I/O
I/O
FT_h
FT_h
FT_h
FT_fh
Additional functions
STM32H562xx and STM32H563xx
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
91/270
92/270
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
LQFP100 SMPS
LQFP144 SMPS
UFBGA169 SMPS
LQFP176 SMPS
UFBGA176+25 SMPS
LQFP64
LQFP100
LQFP144
UFBGA169
LQFP176
UFBGA176+25
VFQFPN68
Pin type
I/O structure
Notes
Alternate functions
-
-
-
-
-
-
-
-
-
-
-
G12
-
VSS
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
G13
-
VDD
S
-
-
-
-
-
MCO1, TIM1_CH1, TIM8_BKIN2,
I2C3_SCL, SPI1_RDY,
USART1_CK, USB_SOF,
UART7_RX, FMC_NOE,
DCMI_D3/PSSI_D3, EVENTOUT
-
-
TIM1_CH2, LPUART1_TX,
I2C3_SMBA, SPI2_SCK/I2S2_CK,
USART1_TX, ETH_MII_TX_ER,
FMC_NWE, DCMI_D0/PSSI_D0,
EVENTOUT
UCPD1_DB1
-
TIM1_CH3, LPUART1_RX,
LPTIM2_IN2, UCPD1_FRSTX,
USART1_RX, FDCAN2_TX,
SDMMC1_D0,
DCMI_D1/PSSI_D1, EVENTOUT
-
-
TIM1_CH4, LPUART1_CTS,
SPI2_NSS/I2S2_WS, UART4_RX,
USART1_CTS/USART1_NSS,
FDCAN1_RX, USB_DM,
EVENTOUT
-
-
TIM1_ETR,
LPUART1_RTS/LPUART1_DE,
SPI2_SCK/I2S2_CK, UART4_TX,
USART1_RTS/USART1_DE,
SAI2_FS_B, FDCAN1_TX,
USB_DP, EVENTOUT
-
G3
DS14258 Rev 5
H4
G5
E1
C1
67
68
69
70
71
100
101
102
103
104
E10
F13
E11
C13
B13
119
120
121
122
123
F15
E15
E14
D15
C15
41
42
43
44
45
67
68
69
70
71
100
101
102
103
104
F12
E11
E10
F13
E13
119
120
121
122
123
F15
E15
D15
C15
B15
44
45
46
47
48
Pin name
(function
after
reset)(3)(4)
PA8
PA9
PA10
PA11
PA12
I/O
I/O
I/O
I/O
I/O
FT_fh
FT_d
FT_h
FT_u
FT_u
Additional functions
STM32H562xx and STM32H563xx
WLCSP80 SMPS
Pin number(1)(2)
LQFP144 SMPS
UFBGA169 SMPS
LQFP176 SMPS
UFBGA176+25 SMPS
LQFP64
LQFP100
LQFP144
UFBGA169
LQFP176
UFBGA176+25
VFQFPN68
Pin type
I/O structure
Notes
93/270
LQFP100 SMPS
DS14258 Rev 5
WLCSP80 SMPS
Pin number(1)(2)
Alternate functions
F4
72
105
D12
124
E13
46
72
105
E12
124
A15
49
PA13
(JTMS/SWDIO)
I/O
FT
(7)
JTMS/SWDIO, EVENTOUT
-
-
74
107
E12
126
D14
47
74
107
C12
126
F12
50
VSS
S
-
-
-
-
-
75
108
D13
127
E12
48
75
108
C13
127
F13
51
VDD
S
-
-
-
-
B2
73
106
E13
125
F12
-
73
106
D13
125
H13
-
VDDUSB
S
-
-
-
-
-
-
-
C12
128
B15
-
-
-
D12
128
E12
-
PH13
I/O
FT_h
-
LPTIM1_IN2, TIM8_CH1N,
UART8_TX, UART4_TX,
FDCAN1_TX, DCMI_D3/PSSI_D3,
EVENTOUT
-
-
-
-
D11
129
D13
-
-
-
D10
129
E13
-
PH14
I/O
FT_h
-
TIM8_CH2N, UART4_RX,
FDCAN1_RX,
DCMI_D4/PSSI_D4, EVENTOUT
-
-
-
-
A13
130
C14
-
-
-
D11
130
D13
-
PH15
I/O
FT_h
-
TIM8_CH3N,
DCMI_D11/PSSI_D11,
EVENTOUT
-
-
-
-
B12
131
-
-
-
-
B13
131
E14
-
PI0
I/O
FT_h
-
TIM5_CH4, SPI2_NSS/I2S2_WS,
DCMI_D13/PSSI_D13,
EVENTOUT
-
-
-
-
C11
132
A15
-
-
-
B12
132
D14
-
PI1
I/O
FT_h
-
TIM8_BKIN2,
SPI2_SCK/I2S2_CK,
DCMI_D8/PSSI_D8, EVENTOUT
-
-
-
-
D10
133
B14
-
-
-
A13
133
C14
-
PI2
I/O
FT_h
-
TIM8_CH4, SPI2_MISO/I2S2_SDI,
DCMI_D9/PSSI_D9, EVENTOUT
-
-
-
-
A12
134
A14
-
-
-
C11
134
C13
-
PI3
I/O
FT_h
-
TIM8_ETR,
SPI2_MOSI/I2S2_SDO,
DCMI_D10/PSSI_D10,
EVENTOUT
-
Pin name
(function
after
reset)(3)(4)
Additional functions
STM32H562xx and STM32H563xx
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
94/270
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
LQFP144 SMPS
UFBGA169 SMPS
LQFP176 SMPS
UFBGA176+25 SMPS
LQFP64
LQFP100
LQFP144
UFBGA169
LQFP176
UFBGA176+25
VFQFPN68
Pin type
I/O structure
Notes
Alternate functions
-
-
-
B8
135
D9
-
-
-
B10
135
D9
-
VSS
S
-
-
-
-
-
-
-
A8
136
D8
-
-
-
A10
136
C9
-
VDD
S
-
-
-
-
E3
76
109
C10
137
B13
49
76
109
A12
137
A14
52
PA14
(JTCK/SWCLK)
I/O
FT
(7)
JTCK/SWCLK, EVENTOUT
-
(7)
JTDI, TIM2_CH1, LPTIM3_IN2,
HDMI_CEC, SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS, SPI6_NSS,
UART4_RTS/UART4_DE,
UART7_TX, FMC_NBL1,
DCMI_D11/PSSI_D11, TIM2_ETR,
EVENTOUT
-
-
LPTIM3_ETR,
SPI3_SCK/I2S3_CK,
USART3_TX, UART4_TX,
OCTOSPI1_IO1,
ETH_MII_TXD0/ETH_RMII_TXD0,
SDMMC1_D2,
DCMI_D8/PSSI_D8, EVENTOUT
-
-
LPTIM3_IN1,
SPI3_MISO/I2S3_SDI,
USART3_RX, UART4_RX,
OCTOSPI1_NCS, SDMMC1_D3,
DCMI_D4/PSSI_D4, EVENTOUT
-
-
TRACED3, TIM15_CH1,
SPI6_SCK,
SPI3_MOSI/I2S3_SDO,
USART3_CK, UART5_TX,
SDMMC1_CK,
DCMI_D9/PSSI_D9, EVENTOUT
-
D4
C3
E5
F6
77
78
79
80
110
111
112
113
B10
A10
A9
D9
138
139
140
141
C13
D12
C12
C11
50
51
52
53
77
78
79
80
110
111
112
113
B11
C10
A11
B9
138
139
140
141
A13
B14
B13
A12
53
54
55
56
Pin name
(function
after
reset)(3)(4)
PA15(JTDI)
PC10
PC11
PC12
I/O
I/O
I/O
I/O
FT
FT_h
FT_h
FT_h
Additional functions
STM32H562xx and STM32H563xx
LQFP100 SMPS
DS14258 Rev 5
WLCSP80 SMPS
Pin number(1)(2)
LQFP100 SMPS
LQFP144 SMPS
UFBGA169 SMPS
LQFP176 SMPS
UFBGA176+25 SMPS
LQFP64
LQFP100
LQFP144
UFBGA169
LQFP176
UFBGA176+25
VFQFPN68
Pin type
I/O structure
Notes
DS14258 Rev 5
WLCSP80 SMPS
Pin number(1)(2)
Alternate functions
-
-
-
B11
-
D11
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
-
A11
-
D10
-
-
-
-
-
-
-
VDD
S
-
-
-
-
A3
81
114
C9
142
B12
-
81
114
D9
142
B12
-
PD0
I/O
FT_h
-
TIM8_CH4N, UART4_RX,
FDCAN1_RX, UART9_CTS,
FMC_D2/FMC_AD2, EVENTOUT
-
B4
82
115
B9
143
A13
-
82
115
E9
143
C12
-
PD1
I/O
FT_h
-
UART4_TX, FDCAN1_TX,
FMC_D3/FMC_AD3, EVENTOUT
-
WKUP7
Pin name
(function
after
reset)(3)(4)
Additional functions
A5
83
116
E8
144
C10
54
83
116
C9
144
D12
-
PD2
I/O
FT_h
-
TRACED2, TIM3_ETR,
TIM15_BKIN, UART5_RX,
SDMMC1_CMD,
DCMI_D11/PSSI_D11,
LPTIM4_ETR, EVENTOUT
-
84
117
C8
145
A12
-
84
117
A9
145
D11
-
PD3
I/O
FT_h
-
SPI2_SCK/I2S2_CK,
USART2_CTS/USART2_NSS,
FMC_CLK, DCMI_D5/PSSI_D5,
EVENTOUT
WKUP8
-
85
118
D8
146
B11
-
85
118
F8
146
D10
-
PD4
I/O
FT_h
-
USART2_RTS/USART2_DE,
OCTOSPI1_IO4, FMC_NOE,
EVENTOUT
-
-
86
119
A7
147
A11
-
86
119
D8
147
C11
-
PD5
I/O
FT_h
-
TIM1_CH4N, SPI2_RDY,
USART2_TX, FDCAN1_TX,
OCTOSPI1_IO5, FMC_NWE,
EVENTOUT
-
-
-
120
-
148
-
-
-
120
B7
148
D8
-
VSS
S
-
-
-
-
-
-
121
A6
149
D7
-
-
121
A7
149
C8
-
VDDIO2
S
-
-
-
-
STM32H562xx and STM32H563xx
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
95/270
96/270
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
87
F7
150
B10
-
87
122
E8
150
B11
-
PD6
I/O
I/O structure
Pin type
VFQFPN68
UFBGA176+25
LQFP176
UFBGA169
LQFP144
LQFP100
LQFP64
UFBGA176+25 SMPS
LQFP176 SMPS
UFBGA169 SMPS
LQFP144 SMPS
122
Pin name
(function
after
reset)(3)(4)
FT_sh
DS14258 Rev 5
Notes
-
LQFP100 SMPS
WLCSP80 SMPS
Pin number(1)(2)
Alternate functions
Additional functions
-
SAI1_D1, SPI3_MOSI/I2S3_SDO,
SAI1_SD_A, USART2_RX,
OCTOSPI1_IO6, SDMMC2_CK,
FMC_NWAIT,
DCMI_D10/PSSI_D10,
EVENTOUT
-
-
-
88
123
B7
151
A10
-
88
123
B8
151
A11
-
PD7
I/O
FT_sh
-
SPI1_MOSI/I2S1_SDO,
USART2_CK, OCTOSPI1_IO7,
SDMMC2_CMD,
FMC_NE1/FMC_NCE,
LPTIM4_OUT, EVENTOUT
-
-
-
-
-
D6
-
-
-
-
-
-
-
VSS
S
-
-
-
-
-
-
124
E7
152
B9
-
-
124
F7
152
C10
-
PG9
I/O
FT_sh
-
-
-
125
C7
153
A9
-
-
125
A8
153
B10
-
PG10
I/O
FT_sh
-
SPI1_NSS/I2S1_WS, SAI2_SD_B,
SDMMC2_D1, FMC_NE3,
DCMI_D2/PSSI_D2, EVENTOUT
-
-
LPTIM1_IN2, SPI1_SCK/I2S1_CK,
USART10_RX,
USART11_RTS/USART11_DE,
SDMMC2_D2,
ETH_MII_TX_EN/ETH_RMII_TX_
EN, DCMI_D3/PSSI_D3,
EVENTOUT
-
-
-
-
-
154
C9
-
-
126
E7
154
B9
-
PG11
I/O
FT_sh
STM32H562xx and STM32H563xx
-
SPI1_MISO/I2S1_SDI,
USART6_RX, OCTOSPI1_IO6,
SAI2_FS_B, SDMMC2_D0,
FMC_NE2/FMC_NCE,
DCMI_VSYNC/PSSI_RDY,
EVENTOUT
DS14258 Rev 5
-
-
-
127
D7
-
155
156
B8
C8
-
-
-
-
127
128
C8
D7
155
156
B8
A8
-
-
PG12
PG13
I/O
I/O
I/O structure
Pin type
VFQFPN68
UFBGA176+25
LQFP176
UFBGA169
LQFP144
LQFP100
LQFP64
UFBGA176+25 SMPS
LQFP176 SMPS
UFBGA169 SMPS
LQFP144 SMPS
126
Pin name
(function
after
reset)(3)(4)
FT_sh
FT_sh
Notes
-
LQFP100 SMPS
WLCSP80 SMPS
Pin number(1)(2)
Alternate functions
Additional functions
-
LPTIM1_IN1, PSSI_D15,
SPI6_MISO, USART10_TX,
USART6_RTS/USART6_DE,
SDMMC2_D3,
ETH_MII_TXD1/ETH_RMII_TXD1,
FMC_NE4, DCMI_D11/PSSI_D11,
LPTIM5_CH1, EVENTOUT
-
-
TRACED0, LPTIM1_CH1,
SPI6_SCK,
USART10_CTS/USART10_NSS,
USART6_CTS/USART6_NSS,
SDMMC2_D6,
ETH_MII_TXD0/ETH_RMII_TXD0,
FMC_A24, LPTIM5_CH2,
EVENTOUT
-
-
-
-
128
-
157
A8
-
-
129
C7
157
A7
-
PG14
I/O
FT_sh
-
TRACED1, LPTIM1_ETR,
LPTIM1_CH2, SPI6_MOSI,
USART10_RTS/USART10_DE,
USART6_TX, OCTOSPI1_IO7,
SDMMC2_D7,
ETH_MII_TXD1/ETH_RMII_TXD1,
FMC_A25, LPTIM5_IN1,
EVENTOUT
-
-
129
B4
158
-
-
-
130
-
158
D7
-
VSS
S
-
-
-
-
-
-
130
A3
159
-
-
-
131
-
159
C7
-
VDD
S
-
-
-
-
-
SPI4_RDY, USART10_CK,
USART6_CTS/USART6_NSS,
FMC_NCAS,
DCMI_D13/PSSI_D13,
EVENTOUT
-
-
-
131
B6
160
A7
-
-
132
B6
160
B7
-
PG15
I/O
FT_h
STM32H562xx and STM32H563xx
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
97/270
98/270
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
DS14258 Rev 5
B6
E7
90
91
92
133
134
135
F6
A5
E6
C6
161
162
163
164
B7
C7
A6
B6
55
56
57
58
89
90
91
92
133
134
135
136
E6
A6
C6
A5
161
162
163
164
A10
A9
A6
B6
57
58
59
60
PB3(JTDO/TRA
CESWO)
PB4(NJTRST)
PB5
PB6
I/O
I/O
I/O
I/O
I/O structure
Pin type
VFQFPN68
UFBGA176+25
LQFP176
UFBGA169
LQFP144
LQFP100
LQFP64
UFBGA176+25 SMPS
LQFP176 SMPS
UFBGA169 SMPS
LQFP144 SMPS
132
FT_fh
FT_h
FT_h
FT_f
Alternate functions
Additional functions
-
JTDO/TRACESWO, TIM2_CH2,
I2C2_SDA, SPI1_SCK/I2S1_CK,
SPI3_SCK/I2S3_CK,
UART12_CTS/UART12_NSS,
SPI6_SCK, SDMMC2_D2,
CRS_SYNC, UART7_RX,
LPTIM6_ETR, EVENTOUT
-
-
NJTRST, TIM16_BKIN,
TIM3_CH1, OCTOSPI1_CLK,
LPTIM1_CH2,
SPI1_MISO/I2S1_SDI,
SPI3_MISO/I2S3_SDI,
SPI2_NSS/I2S2_WS, SPI6_MISO,
SDMMC2_D3, UART7_TX,
DCMI_D7/PSSI_D7, EVENTOUT
-
-
TIM17_BKIN, TIM3_CH2,
OCTOSPI1_NCLK, I2C1_SMBA,
SPI1_MOSI/I2S1_SDO,
I2C4_SMBA,
SPI3_MOSI/I2S3_SDO,
SPI6_MOSI, FDCAN2_RX,
ETH_PPS_OUT, FMC_SDCKE1,
DCMI_D10/PSSI_D10,
UART5_RX, EVENTOUT
-
-
TIM16_CH1N, TIM4_CH1,
I3C1_SCL, I2C1_SCL,
HDMI_CEC, I2C4_SCL,
USART1_TX, LPUART1_TX,
FDCAN2_TX, OCTOSPI1_NCS,
FMC_SDNE1,
DCMI_D5/PSSI_D5, UART5_TX,
EVENTOUT
-
STM32H562xx and STM32H563xx
D6
89
Pin name
(function
after
reset)(3)(4)
Notes
C5
LQFP100 SMPS
WLCSP80 SMPS
Pin number(1)(2)
DS14258 Rev 5
136
D6
165
C6
59
93
137
D6
165
B5
61
PB7
I/O
FT_fa
-
D8
94
137
B5
166
A5
60
94
138
B5
166
D6
62
BOOT0
I
B
-
-
-
-
TIM16_CH1, TIM4_CH3,
I3C1_SCL, I2C1_SCL, SPI4_RDY,
I2C4_SCL, SDMMC1_CKIN,
UART4_RX, FDCAN1_RX,
SDMMC2_D4, ETH_MII_TXD3,
SDMMC1_D4,
DCMI_D6/PSSI_D6, EVENTOUT
-
-
TIM17_CH1, TIM4_CH4,
I3C1_SDA, I2C1_SDA,
SPI2_NSS/I2S2_WS, I2C4_SDA,
SDMMC1_CDIR, UART4_TX,
FDCAN1_TX, SDMMC2_D5,
SDMMC2_CKIN, SDMMC1_D5,
DCMI_D7/PSSI_D7, EVENTOUT
-
-
LPTIM1_ETR, TIM4_ETR,
LPTIM2_CH2, LPTIM2_ETR,
SPI3_RDY, UART8_RX,
FDCAN1_RX, SAI2_MCLK_A,
FMC_NBL0, DCMI_D2/PSSI_D2,
EVENTOUT
-
E9
-
-
95
96
97
138
139
140
F5
E5
D5
167
168
169
B5
A4
C5
61
-
-
95
96
97
139
140
141
E5
A4
C5
LQFP176
93
LQFP144
C7
TIM17_CH1N, TIM4_CH2,
I3C1_SDA, I2C1_SDA,
I2C4_SDA, USART1_RX,
LPUART1_RX, FDCAN1_TX,
SDMMC2_D5, SDMMC2_CKIN,
FMC_NL,
DCMI_VSYNC/PSSI_RDY,
EVENTOUT
LQFP100
Alternate functions
LQFP64
Notes
I/O structure
Pin name
(function
after
reset)(3)(4)
Pin type
VFQFPN68
UFBGA176+25
UFBGA169
UFBGA176+25 SMPS
LQFP176 SMPS
UFBGA169 SMPS
LQFP144 SMPS
LQFP100 SMPS
WLCSP80 SMPS
Pin number(1)(2)
167
168
169
A5
B4
A4
63
64
65
PB8
PB9
PE0
I/O
I/O
I/O
FT_fhs
FT_fhs
FT_h
Additional functions
WKUP5
STM32H562xx and STM32H563xx
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
99/270
100/270
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
UFBGA169 SMPS
LQFP176 SMPS
UFBGA176+25 SMPS
LQFP64
LQFP100
LQFP144
UFBGA169
LQFP176
UFBGA176+25
VFQFPN68
Pin type
I/O structure
Notes
-
141
C5
170
B4
-
-
-
D5
170
A3
-
PE1
I/O
FT_h
-
LPTIM1_IN2, UART8_TX,
FDCAN1_TX, FMC_NBL1,
DCMI_D3/PSSI_D3, EVENTOUT
-
98
142
A4
171
A3
62
98
142
B4
171
C6
66
VCAP
S
-
-
-
-
99
143
-
-
-
63
99
143
B3
-
-
67
VSS
S
-
-
-
-
-
100
144
-
172
-
64
100
144
A3
172
-
68
VDD
S
-
-
-
-
-
-
-
C4
173
B3
-
-
-
C4
173
D4
-
PI4
I/O
FT_h
-
TIM8_BKIN, SPI2_RDY,
SAI2_MCLK_A,
DCMI_D5/PSSI_D5, EVENTOUT
-
-
-
-
B3
174
A2
-
-
-
-
174
C4
-
PI5
I/O
FT_h
-
TIM8_CH1, SAI2_SCK_A,
DCMI_VSYNC/PSSI_RDY,
EVENTOUT
-
-
-
-
A2
175
C4
-
-
-
C3
175
C3
-
PI6
I/O
FT_h
-
TIM8_CH2, SAI2_SD_A,
DCMI_D6/PSSI_D6, EVENTOUT
-
-
-
-
A1
176
A1
-
-
-
A2
176
C2
-
PI7
I/O
FT_h
-
TIM8_CH3, SAI2_FS_A,
DCMI_D7/PSSI_D7, EVENTOUT
-
-
-
-
-
-
F6
-
-
-
-
-
F6
-
VSS
S
-
-
-
-
-
-
-
-
-
F7
-
-
-
-
-
F7
-
VSS
S
-
-
-
-
-
-
-
-
-
F8
-
-
-
-
-
F8
-
VSS
S
-
-
-
-
-
-
-
-
-
F9
-
-
-
-
-
F9
-
VSS
S
-
-
-
-
-
-
-
-
-
F10
-
-
-
-
-
F10
-
VSS
S
-
-
-
-
-
-
-
-
-
G6
-
-
-
-
-
G6
-
VSS
S
-
-
-
-
-
-
-
-
-
G7
-
-
-
-
-
G7
-
VSS
S
-
-
-
-
-
-
-
-
-
G8
-
-
-
-
-
G8
-
VSS
S
-
-
-
-
WLCSP80 SMPS
Alternate functions
A9
-
Pin name
(function
after
reset)(3)(4)
Additional functions
STM32H562xx and STM32H563xx
LQFP144 SMPS
DS14258 Rev 5
LQFP100 SMPS
Pin number(1)(2)
LQFP100 SMPS
LQFP144 SMPS
UFBGA169 SMPS
LQFP176 SMPS
UFBGA176+25 SMPS
LQFP64
LQFP100
LQFP144
UFBGA169
LQFP176
UFBGA176+25
VFQFPN68
Pin type
I/O structure
Notes
DS14258 Rev 5
WLCSP80 SMPS
Pin number(1)(2)
Alternate functions
-
-
-
-
-
G9
-
-
-
-
-
G9
-
VSS
S
-
-
-
-
-
-
-
-
-
G10
-
-
-
-
-
G10
-
VSS
S
-
-
-
-
-
-
-
-
-
H6
-
-
-
-
-
H6
-
VSS
S
-
-
-
-
-
-
-
-
-
H7
-
-
-
-
-
H7
-
VSS
S
-
-
-
-
-
-
-
-
-
H8
-
-
-
-
-
H8
-
VSS
S
-
-
-
-
-
-
-
-
-
H9
-
-
-
-
-
H9
-
VSS
S
-
-
-
-
-
-
-
-
-
H10
-
-
-
-
-
H10
-
VSS
S
-
-
-
-
-
-
-
-
-
J6
-
-
-
-
-
J6
-
VSS
S
-
-
-
-
-
-
-
-
-
J7
-
-
-
-
-
J7
-
VSS
S
-
-
-
-
-
-
-
-
-
J8
-
-
-
-
-
J8
-
VSS
S
-
-
-
-
-
-
-
-
-
J9
-
-
-
-
-
J9
-
VSS
S
-
-
-
-
-
-
-
-
-
J10
-
-
-
-
-
J10
-
VSS
S
-
-
-
-
-
-
-
-
-
K6
-
-
-
-
-
K6
-
VSS
S
-
-
-
-
-
-
-
-
K7
-
-
-
-
-
K7
-
VSS
S
-
-
-
-
-
-
-
-
-
K8
-
-
-
-
-
K8
-
VSS
S
-
-
-
-
-
-
-
-
-
K9
-
-
-
-
-
K9
-
VSS
S
-
-
-
-
-
-
-
-
-
K10
-
-
-
-
-
K10
-
VSS
S
-
-
-
-
-
Pin name
(function
after
reset)(3)(4)
Additional functions
1. The devices with SMPS correspond to commercial code STM32H563xIxxQ.
101/270
2. A non-connected I/O in a given package is configured as an output tied to VSS. When VREF+ pad is not available on a package, the internal voltage reference buffer
(VREFBUF) is not available and must be kept disabled.
3. PC13, PC14 and PC15 are supplied through the power switch (by VSW). This switch sinks a limited amount of current, hence the use of PC13 to PC15 GPIOs in output mode
is limited: The speed must not exceed 2 MHz with a maximum load of 30 pF. These GPIOs must not be used as current sources (for example to drive a LED).
STM32H562xx and STM32H563xx
Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)
102/270
4. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function depends upon the content of the RTC registers that are not reset by the system
reset. For details on how to manage these GPIOs, refer to the backup domain and RTC register descriptions in the product reference manual.
5. As a tamper input, only PC13, PI8, PA0, PA1, and PA2 are functional in Standby and VBAT mode. As a tamper output, only PC13, PA1, and PI8 are functional in Standby and
VBAT mode.
6. For the output timing characteristics refer to Table 67.
7. After reset, these pins are configured as JTAG/SW debug alternate functions. The internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are
activated too.
DS14258 Rev 5
STM32H562xx and STM32H563xx
Alternate functions
Table 15. Alternate functions AF0 to AF7(1)
AF0
AF1
AF2
AF3
AF4
AF5
SYS
LPTIM1/
TIM1/2/16/17
LPTIM3/
PDM_SAI1/
TIM3/4/5/12/15
I3C1/LPTIM2/3/
LPUART1/
OCTOSPI/TIM1/8
CEC/DCMI/
I2C1/2/3/4/
LPTIM1/2/SPI1/
I2S1/TIM15/
USART1
CEC/I3C1/LPTIM1/
SPI1/I2S1/SPI2/I2S2/
SPI3/I2S3/SPI4/5/6
PA0
-
TIM2_CH1
TIM5_CH1
TIM8_ETR
TIM15_BKIN
SPI6_NSS
SPI3_RDY
USART2_CTS/
USART2_NSS
PA1
-
TIM2_CH2
TIM5_CH2
-
TIM15_CH1N
LPTIM1_IN1
OCTOSPI1_DQS
USART2_RTS/
USART2_DE
PA2
-
TIM2_CH3
TIM5_CH3
-
TIM15_CH1
LPTIM1_IN2
-
USART2_TX
PA3
-
TIM2_CH4
TIM5_CH4
OCTOSPI1_CLK
TIM15_CH2
SPI2_NSS/I2S2_WS
SAI1_SD_B
USART2_RX
PA4
-
-
TIM5_ETR
LPTIM2_CH1
-
SPI1_NSS/I2S1_WS
SPI3_NSS/
I2S3_WS
USART2_CK
PA5
-
TIM2_CH1
-
TIM8_CH1N
-
SPI1_SCK/I2S1_CK
-
-
PA6
-
TIM1_BKIN
TIM3_CH1
TIM8_BKIN
-
SPI1_MISO/I2S1_SDI
OCTOSPI1_IO3
USART11_TX
PA7
-
TIM1_CH1N
TIM3_CH2
TIM8_CH1N
-
SPI1_MOSI/I2S1_SDO
-
USART11_RX
PA8
MCO1
TIM1_CH1
-
TIM8_BKIN2
I2C3_SCL
SPI1_RDY
-
USART1_CK
PA9
-
TIM1_CH2
-
LPUART1_TX
I2C3_SMBA
SPI2_SCK/I2S2_CK
-
USART1_TX
PA10
-
TIM1_CH3
-
LPUART1_RX
LPTIM2_IN2
-
UCPD1_FRSTX
USART1_RX
PA11
-
TIM1_CH4
-
LPUART1_CTS
-
SPI2_NSS/I2S2_WS
UART4_RX
USART1_CTS/
USART1_NSS
PA12
-
TIM1_ETR
-
LPUART1_RTS/
LPUART1_DE
-
SPI2_SCK/I2S2_CK
UART4_TX
USART1_RTS/
USART1_DE
PA13
JTMS/SWDIO
-
-
-
-
-
-
-
PA14
JTCK/SWCLK
-
-
-
-
-
-
-
PA15
JTDI
TIM2_CH1
LPTIM3_IN2
-
HDMI_CEC
SPI1_NSS/I2S1_WS
SPI3_NSS/I2S3_
WS
SPI6_NSS
Port
DS14258 Rev 5
A
AF6
AF7
SDMMC1/SPI2/
I2C4/OCTOSPI/
SAI1/SPI3/I2S3/ I2S2/SPI3/I2S3/
SPI4/UART4/12/ SPI6/UART7/8/12
/USART1/2/3/6/
USART10/
10/11
USB_PD
STM32H562xx and STM32H563xx
4.3
103/270
104/270
Table 15. Alternate functions AF0 to AF7(1) (continued)
AF0
AF1
AF2
AF3
AF4
AF5
SYS
LPTIM1/
TIM1/2/16/17
LPTIM3/
PDM_SAI1/
TIM3/4/5/12/15
I3C1/LPTIM2/3/
LPUART1/
OCTOSPI/TIM1/8
CEC/DCMI/
I2C1/2/3/4/
LPTIM1/2/SPI1/
I2S1/TIM15/
USART1
CEC/I3C1/LPTIM1/
SPI1/I2S1/SPI2/I2S2/
SPI3/I2S3/SPI4/5/6
PB0
-
TIM1_CH2N
TIM3_CH3
TIM8_CH2N
-
-
OCTOSPI1_IO1
USART11_CK
PB1
-
TIM1_CH3N
TIM3_CH4
TIM8_CH3N
-
-
OCTOSPI1_IO0
-
PB2
RTC_OUT2
-
SAI1_D1
TIM8_CH4N
SPI1_RDY
LPTIM1_CH1
SAI1_SD_A
SPI3_MOSI/
I2S3_SDO
PB3
JTDO/TRACE
SWO
TIM2_CH2
-
-
I2C2_SDA
SPI1_SCK/I2S1_CK
SPI3_SCK/I2S3_
CK
UART12_CTS/
UART12_NSS
PB4
NJTRST
TIM16_BKIN
TIM3_CH1
OCTOSPI1_CLK
LPTIM1_CH2
SPI1_MISO/I2S1_SDI
SPI3_MISO/I2S3
_SDI
SPI2_NSS/
I2S2_WS
PB5
-
TIM17_BKIN
TIM3_CH2
OCTOSPI1_NCLK
I2C1_SMBA
SPI1_MOSI/I2S1_SDO
I2C4_SMBA
SPI3_MOSI/
I2S3_SDO
PB6
-
TIM16_CH1N
TIM4_CH1
I3C1_SCL
I2C1_SCL
HDMI_CEC
I2C4_SCL
USART1_TX
PB7
-
TIM17_CH1N
TIM4_CH2
I3C1_SDA
I2C1_SDA
-
I2C4_SDA
USART1_RX
PB8
-
TIM16_CH1
TIM4_CH3
I3C1_SCL
I2C1_SCL
SPI4_RDY
I2C4_SCL
SDMMC1_CKIN
PB9
-
TIM17_CH1
TIM4_CH4
I3C1_SDA
I2C1_SDA
SPI2_NSS/I2S2_WS
I2C4_SDA
SDMMC1_CDIR
PB10
-
TIM2_CH3
LPTIM3_CH1
LPTIM2_IN1
I2C2_SCL
SPI2_SCK/I2S2_CK
-
USART3_TX
PB11
-
TIM2_CH4
-
LPTIM2_ETR
I2C2_SDA
SPI2_RDY
SPI4_RDY
USART3_RX
PB12
-
TIM1_BKIN
-
OCTOSPI1_NCLK
I2C2_SDA
SPI2_NSS/I2S2_WS
UCPD1_FRSTX
USART3_CK
PB13
-
TIM1_CH1N
LPTIM3_IN1
LPTIM2_CH1
I2C2_SMBA
SPI2_SCK/I2S2_CK
-
USART3_CTS/
USART3_NSS
PB14
-
TIM1_CH2N
TIM12_CH1
TIM8_CH2N
USART1_TX
SPI2_MISO/I2S2_SDI
-
USART3_RTS/
USART3_DE
PB15
RTC_REFIN
TIM1_CH3N
TIM12_CH2
TIM8_CH3N
USART1_RX
SPI2_MOSI/I2S2_SDO
-
USART11_CTS/
USART11_NSS
Port
DS14258 Rev 5
B
AF6
AF7
SDMMC1/SPI2/
I2C4/OCTOSPI/
SAI1/SPI3/I2S3/ I2S2/SPI3/I2S3/
SPI4/UART4/12/ SPI6/UART7/8/12
/USART1/2/3/6/
USART10/
10/11
USB_PD
STM32H562xx and STM32H563xx
AF0
AF1
AF2
AF3
AF4
AF5
SYS
LPTIM1/
TIM1/2/16/17
LPTIM3/
PDM_SAI1/
TIM3/4/5/12/15
I3C1/LPTIM2/3/
LPUART1/
OCTOSPI/TIM1/8
CEC/DCMI/
I2C1/2/3/4/
LPTIM1/2/SPI1/
I2S1/TIM15/
USART1
CEC/I3C1/LPTIM1/
SPI1/I2S1/SPI2/I2S2/
SPI3/I2S3/SPI4/5/6
PC0
-
TIM16_BKIN
-
-
-
-
SAI1_MCLK_A
SPI2_RDY
PC1
TRACED0
-
SAI1_D1
-
-
SPI2_MOSI/I2S2_SDO
SAI1_SD_A
USART11_RTS/
USART11_DE
PC2
PWR_CSLEEP
TIM17_CH1
TIM4_CH4
-
-
SPI2_MISO/I2S2_SDI
OCTOSPI1_IO5
-
PC3
PWR_CSTOP
-
SAI1_D3
LPTIM3_CH1
-
SPI2_MOSI/I2S2_SDO
OCTOSPI1_IO6
-
PC4
-
TIM2_CH4
SAI1_CK1
LPTIM2_ETR
-
I2S1_MCK
-
USART3_RX
PC5
-
TIM1_CH4N
SAI1_D3
-
PSSI_D15
-
SAI1_FS_A
UART12_RTS/
UART12_DE
PC6
-
-
TIM3_CH1
TIM8_CH1
-
I2S2_MCK
SAI1_SCK_A
USART6_TX
PC7
TRGIO
-
TIM3_CH2
TIM8_CH2
-
-
I2S3_MCK
USART6_RX
PC8
TRACED1
-
TIM3_CH3
TIM8_CH3
-
-
-
USART6_CK
PC9
MCO2
-
TIM3_CH4
TIM8_CH4
I2C3_SDA
AUDIOCLK
-
-
PC10
-
-
LPTIM3_ETR
-
-
-
SPI3_SCK/
I2S3_CK
USART3_TX
PC11
-
-
LPTIM3_IN1
-
-
-
SPI3_MISO/
I2S3_SDI
USART3_RX
PC12
TRACED3
-
TIM15_CH1
-
-
SPI6_SCK
SPI3_MOSI/
I2S3_SDO
USART3_CK
PC13
-
-
-
-
-
-
-
-
PC14
-
-
-
-
-
-
-
-
PC15
-
-
-
-
-
-
-
-
Port
DS14258 Rev 5
C
AF6
AF7
SDMMC1/SPI2/
I2C4/OCTOSPI/
SAI1/SPI3/I2S3/ I2S2/SPI3/I2S3/
SPI4/UART4/12/ SPI6/UART7/8/12
/USART1/2/3/6/
USART10/
10/11
USB_PD
STM32H562xx and STM32H563xx
Table 15. Alternate functions AF0 to AF7(1) (continued)
105/270
106/270
Table 15. Alternate functions AF0 to AF7(1) (continued)
AF0
AF1
AF2
AF3
AF4
AF5
SYS
LPTIM1/
TIM1/2/16/17
LPTIM3/
PDM_SAI1/
TIM3/4/5/12/15
I3C1/LPTIM2/3/
LPUART1/
OCTOSPI/TIM1/8
CEC/DCMI/
I2C1/2/3/4/
LPTIM1/2/SPI1/
I2S1/TIM15/
USART1
CEC/I3C1/LPTIM1/
SPI1/I2S1/SPI2/I2S2/
SPI3/I2S3/SPI4/5/6
PD0
-
-
-
TIM8_CH4N
-
-
-
-
PD1
-
-
-
-
-
-
-
-
PD2
TRACED2
-
TIM3_ETR
-
TIM15_BKIN
-
-
-
PD3
-
-
-
-
-
SPI2_SCK/I2S2_CK
-
USART2_CTS/
USART2_NSS
PD4
-
-
-
-
-
-
-
USART2_RTS/
USART2_DE
PD5
-
TIM1_CH4N
-
-
-
SPI2_RDY
-
USART2_TX
PD6
-
-
SAI1_D1
-
-
SPI3_MOSI/I2S3_SDO
SAI1_SD_A
USART2_RX
PD7
-
-
-
-
-
SPI1_MOSI/I2S1_SDO
-
USART2_CK
PD8
-
-
-
-
-
-
-
USART3_TX
PD9
-
-
-
-
-
-
-
USART3_RX
PD10
-
-
-
LPTIM2_CH2
-
-
-
USART3_CK
PD11
-
-
SAI1_CK1
LPTIM2_IN2
I2C4_SMBA
-
-
USART3_CTS/
USART3_NSS
PD12
-
LPTIM1_IN1
TIM4_CH1
LPTIM2_IN1
I2C4_SCL
I3C1_SCL
SAI1_D1
USART3_RTS/
USART3_DE
PD13
-
LPTIM1_CH1
TIM4_CH2
LPTIM2_CH1
I2C4_SDA
I3C1_SDA
-
-
PD14
-
-
TIM4_CH3
-
-
-
-
-
PD15
-
-
TIM4_CH4
-
-
-
-
-
Port
DS14258 Rev 5
D
AF6
AF7
SDMMC1/SPI2/
I2C4/OCTOSPI/
SAI1/SPI3/I2S3/ I2S2/SPI3/I2S3/
SPI4/UART4/12/ SPI6/UART7/8/12
/USART1/2/3/6/
USART10/
10/11
USB_PD
STM32H562xx and STM32H563xx
AF0
AF1
AF2
AF3
AF4
AF5
SYS
LPTIM1/
TIM1/2/16/17
LPTIM3/
PDM_SAI1/
TIM3/4/5/12/15
I3C1/LPTIM2/3/
LPUART1/
OCTOSPI/TIM1/8
CEC/DCMI/
I2C1/2/3/4/
LPTIM1/2/SPI1/
I2S1/TIM15/
USART1
CEC/I3C1/LPTIM1/
SPI1/I2S1/SPI2/I2S2/
SPI3/I2S3/SPI4/5/6
PE0
-
LPTIM1_ETR
TIM4_ETR
LPTIM2_CH2
LPTIM2_ETR
-
SPI3_RDY
-
PE1
-
LPTIM1_IN2
-
-
-
-
-
-
PE2
TRACECLK
LPTIM1_IN2
SAI1_CK1
-
-
SPI4_SCK
SAI1_MCLK_A
USART10_RX
PE3
TRACED0
-
-
-
TIM15_BKIN
-
SAI1_SD_B
USART10_TX
PE4
TRACED1
-
SAI1_D2
-
TIM15_CH1N
SPI4_NSS
SAI1_FS_A
-
PE5
TRACED2
-
SAI1_CK2
-
TIM15_CH1
SPI4_MISO
SAI1_SCK_A
-
PE6
TRACED3
TIM1_BKIN2
SAI1_D1
-
TIM15_CH2
SPI4_MOSI
SAI1_SD_A
-
PE7
-
TIM1_ETR
-
-
-
-
UART12_RTS/
UART12_DE
UART7_RX
PE8
-
TIM1_CH1N
-
-
-
-
UART12_CTS/
UART12_NSS
UART7_TX
PE9
-
TIM1_CH1
-
-
-
-
UART12_RX
UART7_RTS/
UART7_DE
PE10
-
TIM1_CH2N
-
-
-
-
UART12_TX
UART7_CTS
PE11
-
TIM1_CH2
-
-
SPI1_RDY
SPI4_NSS
OCTOSPI1_NCS
-
PE12
-
TIM1_CH3N
-
-
-
SPI4_SCK
-
-
PE13
-
TIM1_CH3
-
-
-
SPI4_MISO
-
-
PE14
-
TIM1_CH4
-
-
-
SPI4_MOSI
-
-
PE15
-
TIM1_BKIN
-
TIM1_CH4N
-
-
-
USART10_CK
Port
DS14258 Rev 5
E
AF6
AF7
SDMMC1/SPI2/
I2C4/OCTOSPI/
SAI1/SPI3/I2S3/ I2S2/SPI3/I2S3/
SPI4/UART4/12/ SPI6/UART7/8/12
/USART1/2/3/6/
USART10/
10/11
USB_PD
STM32H562xx and STM32H563xx
Table 15. Alternate functions AF0 to AF7(1) (continued)
107/270
108/270
Table 15. Alternate functions AF0 to AF7(1) (continued)
AF0
AF1
AF2
AF3
AF4
AF5
SYS
LPTIM1/
TIM1/2/16/17
LPTIM3/
PDM_SAI1/
TIM3/4/5/12/15
I3C1/LPTIM2/3/
LPUART1/
OCTOSPI/TIM1/8
CEC/DCMI/
I2C1/2/3/4/
LPTIM1/2/SPI1/
I2S1/TIM15/
USART1
CEC/I3C1/LPTIM1/
SPI1/I2S1/SPI2/I2S2/
SPI3/I2S3/SPI4/5/6
PF0
-
-
-
-
I2C2_SDA
-
-
-
PF1
-
-
-
-
I2C2_SCL
-
-
-
PF2
-
-
LPTIM3_CH2
LPTIM3_IN2
I2C2_SMBA
-
UART12_TX
USART11_CK
PF3
-
-
LPTIM3_IN1
-
-
-
-
USART11_TX
PF4
-
-
LPTIM3_ETR
-
-
-
-
USART11_RX
PF5
-
-
LPTIM3_CH1
-
I2C4_SCL
I3C1_SCL
UART12_RX
USART11_CTS/
USART11_NSS
PF6
-
TIM16_CH1
-
-
-
SPI5_NSS
SAI1_SD_B
UART7_RX
PF7
-
TIM17_CH1
-
-
-
SPI5_SCK
SAI1_MCLK_B
UART7_TX
PF8
-
TIM16_CH1N
-
-
-
SPI5_MISO
SAI1_SCK_B
UART7_RTS/
UART7_DE
PF9
-
TIM17_CH1N
-
-
-
SPI5_MOSI
SAI1_FS_B
UART7_CTS
PF10
-
TIM16_BKIN
SAI1_D3
-
PSSI_D15
-
-
-
PF11
-
-
-
-
-
SPI5_MOSI
-
-
PF12
-
-
-
-
-
-
-
-
PF13
-
-
-
-
I2C4_SMBA
-
-
-
PF14
-
-
-
-
-
-
-
-
PF15
-
-
-
-
I2C4_SDA
I3C1_SDA
-
-
Port
DS14258 Rev 5
F
AF6
AF7
SDMMC1/SPI2/
I2C4/OCTOSPI/
SAI1/SPI3/I2S3/ I2S2/SPI3/I2S3/
SPI4/UART4/12/ SPI6/UART7/8/12
/USART1/2/3/6/
USART10/
10/11
USB_PD
STM32H562xx and STM32H563xx
AF0
AF1
AF2
AF3
AF4
AF5
SYS
LPTIM1/
TIM1/2/16/17
LPTIM3/
PDM_SAI1/
TIM3/4/5/12/15
I3C1/LPTIM2/3/
LPUART1/
OCTOSPI/TIM1/8
CEC/DCMI/
I2C1/2/3/4/
LPTIM1/2/SPI1/
I2S1/TIM15/
USART1
CEC/I3C1/LPTIM1/
SPI1/I2S1/SPI2/I2S2/
SPI3/I2S3/SPI4/5/6
PG0
-
-
-
-
-
-
-
-
PG1
-
-
-
-
-
-
-
SPI2_MOSI/
I2S2_SDO
PG2
-
-
-
TIM8_BKIN
-
-
-
UART12_RX
PG3
-
-
-
TIM8_BKIN2
-
-
-
UART12_TX
PG4
-
TIM1_BKIN2
-
-
-
-
-
-
PG5
-
TIM1_ETR
-
-
-
-
-
-
PG6
-
TIM17_BKIN
-
I3C1_SDA
I2C4_SDA
SPI1_RDY
-
-
PG7
-
-
SAI1_CK2
I3C1_SCL
I2C4_SCL
-
SAI1_MCLK_A
USART6_CK
PG8
-
-
-
TIM8_ETR
-
SPI6_NSS
-
USART6_RTS/
USART6_DE
PG9
-
-
-
-
-
SPI1_MISO/I2S1_SDI
-
USART6_RX
PG10
-
-
-
-
-
SPI1_NSS/I2S1_WS
-
-
PG11
-
LPTIM1_IN2
-
-
-
SPI1_SCK/I2S1_CK
USART10_RX
USART11_RTS/
USART11_DE
PG12
-
LPTIM1_IN1
-
-
PSSI_D15
SPI6_MISO
USART10_TX
USART6_RTS/
USART6_DE
PG13
TRACED0
LPTIM1_CH1
-
-
-
SPI6_SCK
USART10_CTS/
USART10_NSS
USART6_CTS/
USART6_NSS
PG14
TRACED1
LPTIM1_ETR
-
-
LPTIM1_CH2
SPI6_MOSI
USART10_RTS/
USART10_DE
USART6_TX
PG15
-
-
-
-
-
SPI4_RDY
USART10_CK
USART6_CTS/
USART6_NSS
Port
DS14258 Rev 5
G
AF6
AF7
SDMMC1/SPI2/
I2C4/OCTOSPI/
SAI1/SPI3/I2S3/ I2S2/SPI3/I2S3/
SPI4/UART4/12/ SPI6/UART7/8/12
/USART1/2/3/6/
USART10/
10/11
USB_PD
STM32H562xx and STM32H563xx
Table 15. Alternate functions AF0 to AF7(1) (continued)
109/270
110/270
Table 15. Alternate functions AF0 to AF7(1) (continued)
AF0
AF1
AF2
AF3
AF4
AF5
SYS
LPTIM1/
TIM1/2/16/17
LPTIM3/
PDM_SAI1/
TIM3/4/5/12/15
I3C1/LPTIM2/3/
LPUART1/
OCTOSPI/TIM1/8
CEC/DCMI/
I2C1/2/3/4/
LPTIM1/2/SPI1/
I2S1/TIM15/
USART1
CEC/I3C1/LPTIM1/
SPI1/I2S1/SPI2/I2S2/
SPI3/I2S3/SPI4/5/6
PH0
-
-
-
-
-
-
-
-
PH1
-
-
-
-
-
-
-
-
PH2
-
LPTIM1_IN2
-
-
-
-
-
-
PH3
-
-
-
-
-
-
-
-
PH4
-
-
-
-
I2C2_SCL
SPI5_RDY
-
SPI6_RDY
PH5
-
-
-
-
I2C2_SDA
SPI5_NSS
-
SPI6_RDY
PH6
-
TIM1_CH3N
TIM12_CH1
TIM8_CH1
I2C2_SMBA
SPI5_SCK
-
-
PH7
-
TIM1_CH3
-
TIM8_CH1N
I2C3_SCL
SPI5_MISO
-
-
PH8
-
TIM1_CH2N
TIM5_ETR
TIM8_CH2
I2C3_SDA
SPI5_MOSI
-
-
PH9
-
TIM1_CH2
TIM12_CH2
TIM8_CH2N
I2C3_SMBA
SPI5_NSS
-
-
PH10
-
TIM1_CH1N
TIM5_CH1
TIM8_CH3
I2C4_SMBA
SPI5_RDY
-
-
PH11
-
TIM1_CH1
TIM5_CH2
TIM8_CH3N
I2C4_SCL
I3C1_SCL
-
-
PH12
-
TIM1_BKIN
TIM5_CH3
TIM8_BKIN
I2C4_SDA
I3C1_SDA
-
-
PH13
-
LPTIM1_IN2
-
TIM8_CH1N
-
-
-
UART8_TX
PH14
-
-
-
TIM8_CH2N
-
-
-
-
PH15
-
-
-
TIM8_CH3N
-
-
-
-
Port
DS14258 Rev 5
H
AF6
AF7
SDMMC1/SPI2/
I2C4/OCTOSPI/
SAI1/SPI3/I2S3/ I2S2/SPI3/I2S3/
SPI4/UART4/12/ SPI6/UART7/8/12
/USART1/2/3/6/
USART10/
10/11
USB_PD
STM32H562xx and STM32H563xx
AF0
AF1
AF2
AF3
AF4
AF5
SYS
LPTIM1/
TIM1/2/16/17
LPTIM3/
PDM_SAI1/
TIM3/4/5/12/15
I3C1/LPTIM2/3/
LPUART1/
OCTOSPI/TIM1/8
CEC/DCMI/
I2C1/2/3/4/
LPTIM1/2/SPI1/
I2S1/TIM15/
USART1
CEC/I3C1/LPTIM1/
SPI1/I2S1/SPI2/I2S2/
SPI3/I2S3/SPI4/5/6
PI0
-
-
TIM5_CH4
-
-
SPI2_NSS/I2S2_WS
-
-
PI1
-
-
-
TIM8_BKIN2
-
SPI2_SCK/I2S2_CK
-
-
PI2
-
-
-
TIM8_CH4
-
SPI2_MISO/I2S2_SDI
-
-
PI3
-
-
-
TIM8_ETR
-
SPI2_MOSI/I2S2_SDO
-
-
PI4
-
-
-
TIM8_BKIN
-
-
-
SPI2_RDY
PI5
-
-
-
TIM8_CH1
-
-
-
-
PI6
-
-
-
TIM8_CH2
-
-
-
-
PI7
-
-
-
TIM8_CH3
-
-
-
-
PI8
-
-
-
-
-
-
-
-
PI9
-
-
-
-
-
-
-
-
PI10
-
-
-
-
-
-
-
-
PI11
-
-
-
-
-
-
-
-
Port
I
DS14258 Rev 5
1. Refer to the next table for AF8 to AF15.
AF6
AF7
SDMMC1/SPI2/
I2C4/OCTOSPI/
SAI1/SPI3/I2S3/ I2S2/SPI3/I2S3/
SPI4/UART4/12/ SPI6/UART7/8/12
/USART1/2/3/6/
USART10/
10/11
USB_PD
STM32H562xx and STM32H563xx
Table 15. Alternate functions AF0 to AF7(1) (continued)
111/270
112/270
Table 16. Alternate functions AF8 to AF15(1)
AF8
Port
AF9
AF10
AF11
AF12
AF13
FDCAN1/2/FMC
FMC[NAND16)/
ETH[MII/RMII)/
DCMI/FMC[NAND16)/
CRS/FMC[NAND
[NAND16)/FMC
FMC[NORmux)/
FMC[NAND16)/
LPUART1/SAI2
FMC[NORmux)/
16)/OCTOSPI/S
[NORmux)/FMC
FMC[NOR_RAM)/
OCTOSPI/
/SDMMC1/SPI6
FMC[NOR_RAM)/
AI2/SDMMC2/
[NOR_RAM)/
FMC[SDRAM_16bit)
SDMMC2/
/UART4/5/8
LPTIM5
TIM8/USB_PD
OCTOSPI/
/SDMMC1
UART7/9/USB_PD
SDMMC2/TIM13/14
AF14
AF15
LPTIM3/4/5/6/
TIM2/UART5
SYS
DS14258 Rev 5
UART4_TX
SDMMC2_CMD
SAI2_SD_B
ETH_MII_CRS
-
-
TIM2_ETR
EVENTOUT
PA1
UART4_RX
OCTOSPI1_IO3
SAI2_MCLK_B
ETH_MII_RX_CLK
/ETH_RMII_REF_
CLK
-
-
-
EVENTOUT
PA2
SAI2_SCK_B
-
-
ETH_MDIO
-
-
-
EVENTOUT
PA3
-
-
-
ETH_MII_COL
-
-
-
EVENTOUT
PA4
SPI6_NSS
-
-
-
-
DCMI_HSYNC/
PSSI_DE
-
EVENTOUT
PA5
SPI6_SCK
-
-
ETH_MII_TX_EN/
ETH_RMII_TX_EN
-
PSSI_D14
TIM2_ETR
EVENTOUT
PA6
SPI6_MISO
TIM13_CH1
-
-
-
DCMI_PIXCLK/
PSSI_PDCK
-
EVENTOUT
PA7
SPI6_MOSI
TIM14_CH1
OCTOSPI1_IO2
ETH_MII_RX_DV/
ETH_RMII_CRS_
DV
FMC_SDNWE
FMC_NWE
-
EVENTOUT
PA8
-
-
USB_SOF
UART7_RX
FMC_NOE
DCMI_D3/PSSI_D3
-
EVENTOUT
PA9
-
-
-
ETH_MII_TX_ER
FMC_NWE
DCMI_D0/PSSI_D0
-
EVENTOUT
PA10
-
FDCAN2_TX
-
-
SDMMC1_D0
DCMI_D1/PSSI_D1
-
EVENTOUT
PA11
-
FDCAN1_RX
USB_DM
-
-
-
-
EVENTOUT
PA12
SAI2_FS_B
FDCAN1_TX
USB_DP
-
-
-
-
EVENTOUT
PA13
-
-
-
-
-
-
-
EVENTOUT
PA14
-
-
-
-
-
-
-
EVENTOUT
PA15
UART4_RTS/
UART4_DE
-
-
UART7_TX
FMC_NBL1
DCMI_D11/PSSI_D11
TIM2_ETR
EVENTOUT
A
STM32H562xx and STM32H563xx
PA0
AF8
Port
DS14258 Rev 5
B
AF9
AF10
AF11
AF12
AF13
FDCAN1/2/FMC
FMC[NAND16)/
ETH[MII/RMII)/
DCMI/FMC[NAND16)/
CRS/FMC[NAND
[NAND16)/FMC
FMC[NORmux)/
FMC[NAND16)/
LPUART1/SAI2
FMC[NORmux)/
16)/OCTOSPI/S
[NORmux)/FMC
FMC[NOR_RAM)/
OCTOSPI/
/SDMMC1/SPI6
FMC[NOR_RAM)/
AI2/SDMMC2/
[NOR_RAM)/
FMC[SDRAM_16bit)
SDMMC2/
/UART4/5/8
LPTIM5
TIM8/USB_PD
OCTOSPI/
/SDMMC1
UART7/9/USB_PD
SDMMC2/TIM13/14
AF14
AF15
LPTIM3/4/5/6/
TIM2/UART5
SYS
PB0
UART4_CTS
-
-
ETH_MII_RXD2
-
-
LPTIM3_CH1
EVENTOUT
PB1
-
-
-
ETH_MII_RXD3
-
-
LPTIM3_CH2
EVENTOUT
PB2
-
OCTOSPI1_CLK
OCTOSPI1_DQS
-
SDMMC1_CMD
LPTIM5_ETR
-
EVENTOUT
PB3
SPI6_SCK
SDMMC2_D2
CRS_SYNC
UART7_RX
-
-
LPTIM6_ETR
EVENTOUT
PB4
SPI6_MISO
SDMMC2_D3
-
UART7_TX
-
DCMI_D7/PSSI_D7
-
EVENTOUT
PB5
SPI6_MOSI
FDCAN2_RX
-
ETH_PPS_OUT
FMC_SDCKE1
DCMI_D10/PSSI_D10
UART5_RX
EVENTOUT
PB6
LPUART1_TX
FDCAN2_TX
OCTOSPI1_NCS
-
FMC_SDNE1
DCMI_D5/PSSI_D5
UART5_TX
EVENTOUT
PB7
LPUART1_RX
FDCAN1_TX
SDMMC2_D5
SDMMC2_CKIN
FMC_NL
DCMI_VSYNC/
PSSI_RDY
-
EVENTOUT
PB8
UART4_RX
FDCAN1_RX
SDMMC2_D4
ETH_MII_TXD3
SDMMC1_D4
DCMI_D6/PSSI_D6
-
EVENTOUT
PB9
UART4_TX
FDCAN1_TX
SDMMC2_D5
SDMMC2_CKIN
SDMMC1_D5
DCMI_D7/PSSI_D7
-
EVENTOUT
PB10
-
OCTOSPI1_NCS
-
ETH_MII_RX_ER
-
-
-
EVENTOUT
PB11
-
-
-
ETH_MII_TX_EN/
ETH_RMII_TX_EN
FMC_NBL1
-
-
EVENTOUT
PB12
-
FDCAN2_RX
-
ETH_MII_TXD0/
ETH_RMII_TXD0
-
-
UART5_RX
EVENTOUT
PB13
-
FDCAN2_TX
-
-
SDMMC1_D0
-
UART5_TX
EVENTOUT
PB14
UART4_RTS/
UART4_DE
SDMMC2_D0
-
-
-
-
LPTIM3_ETR
EVENTOUT
PB15
UART4_CTS
SDMMC2_D1
OCTOSPI1_CLK
ETH_MII_TXD1/
ETH_RMII_TXD1
-
DCMI_D2/PSSI_D2
UART5_RX
EVENTOUT
STM32H562xx and STM32H563xx
Table 16. Alternate functions AF8 to AF15(1) (continued)
113/270
114/270
Table 16. Alternate functions AF8 to AF15(1) (continued)
AF8
Port
DS14258 Rev 5
C
AF9
AF10
AF11
AF12
AF13
FDCAN1/2/FMC
FMC[NAND16)/
ETH[MII/RMII)/
DCMI/FMC[NAND16)/
CRS/FMC[NAND
[NAND16)/FMC
FMC[NORmux)/
FMC[NAND16)/
LPUART1/SAI2
FMC[NORmux)/
16)/OCTOSPI/S
[NORmux)/FMC
FMC[NOR_RAM)/
OCTOSPI/
/SDMMC1/SPI6
FMC[NOR_RAM)/
AI2/SDMMC2/
[NOR_RAM)/
FMC[SDRAM_16bit)
SDMMC2/
/UART4/5/8
LPTIM5
TIM8/USB_PD
OCTOSPI/
/SDMMC1
UART7/9/USB_PD
SDMMC2/TIM13/14
AF14
AF15
LPTIM3/4/5/6/
TIM2/UART5
SYS
SAI2_FS_B
FMC_A25
OCTOSPI1_IO7
-
FMC_SDNWE
-
-
EVENTOUT
PC1
SAI2_SD_A
SDMMC2_CK
OCTOSPI1_IO4
ETH_MDC
-
-
-
EVENTOUT
PC2
-
OCTOSPI1_IO2
-
ETH_MII_TXD2
FMC_SDNE0
-
-
EVENTOUT
PC3
-
OCTOSPI1_IO0
-
ETH_MII_TX_CLK
FMC_SDCKE0
-
-
EVENTOUT
PC4
-
-
-
ETH_MII_RXD0/
ETH_RMII_RXD0
FMC_SDNE0
-
-
EVENTOUT
PC5
-
-
OCTOSPI1_DQS
ETH_MII_RXD1/
ETH_RMII_RXD1
FMC_SDCKE0
-
-
EVENTOUT
PC6
SDMMC1_D0D
IR
FMC_NWAIT
SDMMC2_D6
OCTOSPI1_IO5
SDMMC1_D6
DCMI_D0/PSSI_D0
-
EVENTOUT
PC7
SDMMC1_D12
3DIR
FMC_NE1
SDMMC2_D7
OCTOSPI1_IO6
SDMMC1_D7
DCMI_D1/PSSI_D1
-
EVENTOUT
PC8
UART5_RTS/
UART5_DE
FMC_NE2/
FMC_NCE
FMC_INT
FMC_ALE
SDMMC1_D0
DCMI_D2/PSSI_D2
-
EVENTOUT
PC9
UART5_CTS
OCTOSPI1_IO0
-
FMC_CLE
SDMMC1_D1
DCMI_D3/PSSI_D3
-
EVENTOUT
PC10
UART4_TX
OCTOSPI1_IO1
-
ETH_MII_TXD0/
ETH_RMII_TXD0
SDMMC1_D2
DCMI_D8/PSSI_D8
-
EVENTOUT
PC11
UART4_RX
OCTOSPI1_NCS
-
-
SDMMC1_D3
DCMI_D4/PSSI_D4
-
EVENTOUT
PC12
UART5_TX
-
-
-
SDMMC1_CK
DCMI_D9/PSSI_D9
-
EVENTOUT
PC13
-
-
-
-
-
-
-
EVENTOUT
PC14
-
-
-
-
-
-
-
EVENTOUT
PC15
-
-
-
-
-
-
-
EVENTOUT
STM32H562xx and STM32H563xx
PC0
AF8
Port
DS14258 Rev 5
D
AF9
AF10
AF11
AF12
AF13
FDCAN1/2/FMC
FMC[NAND16)/
ETH[MII/RMII)/
DCMI/FMC[NAND16)/
CRS/FMC[NAND
[NAND16)/FMC
FMC[NORmux)/
FMC[NAND16)/
LPUART1/SAI2
FMC[NORmux)/
16)/OCTOSPI/S
[NORmux)/FMC
FMC[NOR_RAM)/
OCTOSPI/
/SDMMC1/SPI6
FMC[NOR_RAM)/
AI2/SDMMC2/
[NOR_RAM)/
FMC[SDRAM_16bit)
SDMMC2/
/UART4/5/8
LPTIM5
TIM8/USB_PD
OCTOSPI/
/SDMMC1
UART7/9/USB_PD
SDMMC2/TIM13/14
AF14
AF15
LPTIM3/4/5/6/
TIM2/UART5
SYS
PD0
UART4_RX
FDCAN1_RX
-
UART9_CTS
FMC_D2/FMC_AD2
-
-
EVENTOUT
PD1
UART4_TX
FDCAN1_TX
-
-
FMC_D3/FMC_AD3
-
-
EVENTOUT
PD2
UART5_RX
-
-
-
SDMMC1_CMD
DCMI_D11/PSSI_D11
LPTIM4_ETR
EVENTOUT
PD3
-
-
-
-
FMC_CLK
DCMI_D5/PSSI_D5
-
EVENTOUT
PD4
-
-
OCTOSPI1_IO4
-
FMC_NOE
-
-
EVENTOUT
PD5
-
FDCAN1_TX
OCTOSPI1_IO5
-
FMC_NWE
-
-
EVENTOUT
PD6
-
-
OCTOSPI1_IO6
SDMMC2_CK
FMC_NWAIT
DCMI_D10/PSSI_D10
-
EVENTOUT
PD7
-
-
OCTOSPI1_IO7
SDMMC2_CMD
FMC_NE1/
FMC_NCE
-
LPTIM4_OUT
EVENTOUT
PD8
-
-
-
-
FMC_D13/
FMC_AD13
-
-
EVENTOUT
PD9
-
FDCAN2_RX
-
-
FMC_D14/
FMC_AD14
-
-
EVENTOUT
PD10
-
-
-
-
FMC_D15/
FMC_AD15
-
-
EVENTOUT
PD11
UART4_RX
OCTOSPI1_IO0
SAI2_SD_A
-
FMC_A16/FMC_CLE
-
-
EVENTOUT
PD12
UART4_TX
OCTOSPI1_IO1
SAI2_FS_A
-
FMC_A17/FMC_ALE DCMI_D12/PSSI_D12
-
EVENTOUT
PD13
-
OCTOSPI1_IO3
SAI2_SCK_A
UART9_RTS/
UART9_DE
FMC_A18
DCMI_D13/PSSI_D13
LPTIM4_IN1
EVENTOUT
PD14
UART8_CTS
-
-
UART9_RX
FMC_D0/FMC_AD0
-
-
EVENTOUT
PD15
UART8_RTS/
UART8_DE
-
-
UART9_TX
FMC_D1/FMC_AD1
-
-
EVENTOUT
STM32H562xx and STM32H563xx
Table 16. Alternate functions AF8 to AF15(1) (continued)
115/270
116/270
Table 16. Alternate functions AF8 to AF15(1) (continued)
AF8
Port
DS14258 Rev 5
E
AF9
AF10
AF11
AF12
AF13
FDCAN1/2/FMC
FMC[NAND16)/
ETH[MII/RMII)/
DCMI/FMC[NAND16)/
CRS/FMC[NAND
[NAND16)/FMC
FMC[NORmux)/
FMC[NAND16)/
LPUART1/SAI2
FMC[NORmux)/
16)/OCTOSPI/S
[NORmux)/FMC
FMC[NOR_RAM)/
OCTOSPI/
/SDMMC1/SPI6
FMC[NOR_RAM)/
AI2/SDMMC2/
[NOR_RAM)/
FMC[SDRAM_16bit)
SDMMC2/
/UART4/5/8
LPTIM5
TIM8/USB_PD
OCTOSPI/
/SDMMC1
UART7/9/USB_PD
SDMMC2/TIM13/14
AF14
AF15
LPTIM3/4/5/6/
TIM2/UART5
SYS
UART8_RX
FDCAN1_RX
SAI2_MCLK_A
-
FMC_NBL0
DCMI_D2/PSSI_D2
-
EVENTOUT
PE1
UART8_TX
FDCAN1_TX
-
-
FMC_NBL1
DCMI_D3/PSSI_D3
-
EVENTOUT
PE2
UART8_TX
OCTOSPI1_IO2
-
ETH_MII_TXD3
FMC_A23
DCMI_D3/PSSI_D3
-
EVENTOUT
PE3
-
-
-
-
FMC_A19
-
-
EVENTOUT
PE4
-
-
-
-
FMC_A20
DCMI_D4/PSSI_D4
-
EVENTOUT
PE5
-
-
-
-
FMC_A21
DCMI_D6/PSSI_D6
-
EVENTOUT
PE6
-
-
SAI2_MCLK_B
-
FMC_A22
DCMI_D7/PSSI_D7
-
EVENTOUT
PE7
-
-
OCTOSPI1_IO4
-
FMC_D4/FMC_AD4
-
-
EVENTOUT
PE8
-
-
OCTOSPI1_IO5
-
FMC_D5/FMC_AD5
-
-
EVENTOUT
PE9
-
-
OCTOSPI1_IO6
-
FMC_D6/FMC_AD6
-
-
EVENTOUT
PE10
-
-
OCTOSPI1_IO7
-
FMC_D7/FMC_AD7
-
-
EVENTOUT
PE11
-
-
SAI2_SD_B
-
FMC_D8/FMC_AD8
-
-
EVENTOUT
PE12
-
-
SAI2_SCK_B
-
FMC_D9/FMC_AD9
-
-
EVENTOUT
PE13
-
-
SAI2_FS_B
-
FMC_D10/
FMC_AD10
-
-
EVENTOUT
PE14
-
-
SAI2_MCLK_B
-
FMC_D11/
FMC_AD11
-
-
EVENTOUT
PE15
-
-
-
-
FMC_D12/
FMC_AD12
-
-
EVENTOUT
STM32H562xx and STM32H563xx
PE0
AF8
Port
DS14258 Rev 5
F
AF9
AF10
AF11
AF12
AF13
FDCAN1/2/FMC
FMC[NAND16)/
ETH[MII/RMII)/
DCMI/FMC[NAND16)/
CRS/FMC[NAND
[NAND16)/FMC
FMC[NORmux)/
FMC[NAND16)/
LPUART1/SAI2
FMC[NORmux)/
16)/OCTOSPI/S
[NORmux)/FMC
FMC[NOR_RAM)/
OCTOSPI/
/SDMMC1/SPI6
FMC[NOR_RAM)/
AI2/SDMMC2/
[NOR_RAM)/
FMC[SDRAM_16bit)
SDMMC2/
/UART4/5/8
LPTIM5
TIM8/USB_PD
OCTOSPI/
/SDMMC1
UART7/9/USB_PD
SDMMC2/TIM13/14
AF14
AF15
LPTIM3/4/5/6/
TIM2/UART5
SYS
PF0
-
-
-
-
FMC_A0
LPTIM5_CH1
-
EVENTOUT
PF1
-
-
-
-
FMC_A1
LPTIM5_CH2
-
EVENTOUT
PF2
-
-
-
-
FMC_A2
LPTIM5_IN1
-
EVENTOUT
PF3
-
-
-
-
FMC_A3
LPTIM5_IN2
-
EVENTOUT
PF4
-
-
-
-
FMC_A4
-
-
EVENTOUT
PF5
-
-
-
-
FMC_A5
-
LPTIM3_IN1
EVENTOUT
PF6
-
-
OCTOSPI1_IO3
-
-
LPTIM5_CH1
-
EVENTOUT
PF7
-
-
OCTOSPI1_IO2
-
-
LPTIM5_CH2
-
EVENTOUT
PF8
-
TIM13_CH1
OCTOSPI1_IO0
-
-
LPTIM5_IN1
-
EVENTOUT
PF9
-
TIM14_CH1
OCTOSPI1_IO1
-
-
LPTIM5_IN2
-
EVENTOUT
PF10
-
OCTOSPI1_CLK
-
-
-
DCMI_D11/PSSI_D11
-
EVENTOUT
PF11
-
OCTOSPI1_NCLK
SAI2_SD_B
-
FMC_NRAS
DCMI_D12/PSSI_D12
LPTIM6_CH1
EVENTOUT
PF12
-
-
-
-
FMC_A6
-
LPTIM6_CH2
EVENTOUT
PF13
-
-
-
-
FMC_A7
-
LPTIM6_IN1
EVENTOUT
PF14
-
-
-
-
FMC_A8
-
LPTIM6_IN2
EVENTOUT
PF15
-
-
-
-
FMC_A9
-
-
EVENTOUT
STM32H562xx and STM32H563xx
Table 16. Alternate functions AF8 to AF15(1) (continued)
117/270
118/270
Table 16. Alternate functions AF8 to AF15(1) (continued)
AF8
Port
DS14258 Rev 5
G
AF9
AF10
AF11
AF12
AF13
FDCAN1/2/FMC
FMC[NAND16)/
ETH[MII/RMII)/
DCMI/FMC[NAND16)/
CRS/FMC[NAND
[NAND16)/FMC
FMC[NORmux)/
FMC[NAND16)/
LPUART1/SAI2
FMC[NORmux)/
16)/OCTOSPI/S
[NORmux)/FMC
FMC[NOR_RAM)/
OCTOSPI/
/SDMMC1/SPI6
FMC[NOR_RAM)/
AI2/SDMMC2/
[NOR_RAM)/
FMC[SDRAM_16bit)
SDMMC2/
/UART4/5/8
LPTIM5
TIM8/USB_PD
OCTOSPI/
/SDMMC1
UART7/9/USB_PD
SDMMC2/TIM13/14
AF14
AF15
LPTIM3/4/5/6/
TIM2/UART5
SYS
-
-
-
UART9_RX
FMC_A10
-
LPTIM4_IN1
EVENTOUT
PG1
-
-
-
UART9_TX
FMC_A11
-
-
EVENTOUT
PG2
-
-
-
-
FMC_A12
-
LPTIM6_ETR
EVENTOUT
PG3
-
-
-
-
FMC_A13
LPTIM5_ETR
-
EVENTOUT
PG4
-
-
-
-
FMC_A14/FMC_BA0
-
LPTIM4_ETR
EVENTOUT
PG5
-
-
-
-
FMC_A15/FMC_BA1
-
-
EVENTOUT
PG6
-
-
OCTOSPI1_NCS
UCPD1_FRSTX
FMC_NE3
DCMI_D12/PSSI_D12
-
EVENTOUT
PG7
-
-
-
UCPD1_FRSTX
FMC_INT
DCMI_D13/PSSI_D13
-
EVENTOUT
PG8
-
-
-
ETH_PPS_OUT
FMC_SDCLK
-
-
EVENTOUT
PG9
-
OCTOSPI1_IO6
SAI2_FS_B
SDMMC2_D0
FMC_NE2/
FMC_NCE
DCMI_VSYNC/
PSSI_RDY
-
EVENTOUT
PG10
-
-
SAI2_SD_B
SDMMC2_D1
FMC_NE3
DCMI_D2/PSSI_D2
-
EVENTOUT
PG11
-
-
SDMMC2_D2
ETH_MII_TX_EN/
ETH_RMII_TX_EN
-
DCMI_D3/PSSI_D3
-
EVENTOUT
PG12
-
-
SDMMC2_D3
ETH_MII_TXD1/
ETH_RMII_TXD1
FMC_NE4
DCMI_D11/PSSI_D11
LPTIM5_CH1
EVENTOUT
PG13
-
-
SDMMC2_D6
ETH_MII_TXD0/
ETH_RMII_TXD0
FMC_A24
LPTIM5_CH2
-
EVENTOUT
PG14
-
OCTOSPI1_IO7
SDMMC2_D7
ETH_MII_TXD1/
ETH_RMII_TXD1
FMC_A25
LPTIM5_IN1
-
EVENTOUT
PG15
-
-
-
-
FMC_NCAS
DCMI_D13/PSSI_D13
-
EVENTOUT
STM32H562xx and STM32H563xx
PG0
AF8
Port
DS14258 Rev 5
H
AF9
AF10
AF11
AF12
AF13
FDCAN1/2/FMC
FMC[NAND16)/
ETH[MII/RMII)/
DCMI/FMC[NAND16)/
CRS/FMC[NAND
[NAND16)/FMC
FMC[NORmux)/
FMC[NAND16)/
LPUART1/SAI2
FMC[NORmux)/
16)/OCTOSPI/S
[NORmux)/FMC
FMC[NOR_RAM)/
OCTOSPI/
/SDMMC1/SPI6
FMC[NOR_RAM)/
AI2/SDMMC2/
[NOR_RAM)/
FMC[SDRAM_16bit)
SDMMC2/
/UART4/5/8
LPTIM5
TIM8/USB_PD
OCTOSPI/
/SDMMC1
UART7/9/USB_PD
SDMMC2/TIM13/14
AF14
AF15
LPTIM3/4/5/6/
TIM2/UART5
SYS
PH0
-
-
-
-
-
-
-
EVENTOUT
PH1
-
-
-
-
-
-
-
EVENTOUT
PH2
-
OCTOSPI1_IO4
SAI2_SCK_B
ETH_MII_CRS
FMC_SDCKE0
-
-
EVENTOUT
PH3
-
OCTOSPI1_IO5
SAI2_MCLK_B
ETH_MII_COL
FMC_SDNE0
-
-
EVENTOUT
PH4
-
-
-
-
-
PSSI_D14
-
EVENTOUT
PH5
-
-
-
-
FMC_SDNWE
-
-
EVENTOUT
PH6
-
-
-
ETH_MII_RXD2
FMC_SDNE1
DCMI_D8/PSSI_D8
-
EVENTOUT
PH7
-
-
-
ETH_MII_RXD3
FMC_SDCKE1
DCMI_D9/PSSI_D9
-
EVENTOUT
PH8
-
-
-
-
-
DCMI_HSYNC/
PSSI_DE
-
EVENTOUT
PH9
-
-
-
-
-
DCMI_D0/PSSI_D0
-
EVENTOUT
PH10
-
-
-
-
-
DCMI_D1/PSSI_D1
-
EVENTOUT
PH11
-
-
-
-
-
DCMI_D2/PSSI_D2
-
EVENTOUT
PH12
-
-
TIM8_CH4N
-
-
DCMI_D3/PSSI_D3
-
EVENTOUT
PH13
UART4_TX
FDCAN1_TX
-
-
-
DCMI_D3/PSSI_D3
-
EVENTOUT
PH14
UART4_RX
FDCAN1_RX
-
-
-
DCMI_D4/PSSI_D4
-
EVENTOUT
PH15
-
-
-
-
-
DCMI_D11/PSSI_D11
-
EVENTOUT
STM32H562xx and STM32H563xx
Table 16. Alternate functions AF8 to AF15(1) (continued)
119/270
120/270
Table 16. Alternate functions AF8 to AF15(1) (continued)
AF8
Port
DS14258 Rev 5
I
AF9
AF10
AF11
AF12
AF13
FDCAN1/2/FMC
FMC[NAND16)/
ETH[MII/RMII)/
DCMI/FMC[NAND16)/
CRS/FMC[NAND
[NAND16)/FMC
FMC[NORmux)/
FMC[NAND16)/
LPUART1/SAI2
FMC[NORmux)/
16)/OCTOSPI/S
[NORmux)/FMC
FMC[NOR_RAM)/
OCTOSPI/
/SDMMC1/SPI6
FMC[NOR_RAM)/
AI2/SDMMC2/
[NOR_RAM)/
FMC[SDRAM_16bit)
SDMMC2/
/UART4/5/8
LPTIM5
TIM8/USB_PD
OCTOSPI/
/SDMMC1
UART7/9/USB_PD
SDMMC2/TIM13/14
AF14
AF15
LPTIM3/4/5/6/
TIM2/UART5
SYS
-
-
-
-
-
DCMI_D13/PSSI_D13
-
EVENTOUT
PI1
-
-
-
-
-
DCMI_D8/PSSI_D8
-
EVENTOUT
PI2
-
-
-
-
-
DCMI_D9/PSSI_D9
-
EVENTOUT
PI3
-
-
-
-
-
DCMI_D10/PSSI_D10
-
EVENTOUT
PI4
-
-
SAI2_MCLK_A
-
-
DCMI_D5/PSSI_D5
-
EVENTOUT
PI5
-
-
SAI2_SCK_A
-
-
DCMI_VSYNC/
PSSI_RDY
-
EVENTOUT
PI6
-
-
SAI2_SD_A
-
-
DCMI_D6/PSSI_D6
-
EVENTOUT
PI7
-
-
SAI2_FS_A
-
-
DCMI_D7/PSSI_D7
-
EVENTOUT
PI8
-
-
-
-
-
-
-
EVENTOUT
PI9
UART4_RX
FDCAN1_RX
-
-
-
-
-
EVENTOUT
PI10
-
FDCAN1_RX
-
ETH_MII_RX_ER
-
PSSI_D14
-
EVENTOUT
PI11
-
-
-
-
-
PSSI_D15
-
EVENTOUT
1. Refer to the previous table for AF0 to AF7.
STM32H562xx and STM32H563xx
PI0
STM32H562xx and STM32H563xx
Electrical characteristics
5
Electrical characteristics
5.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
5.1.1
Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TJ = 25 °C and TJ = TJmax (given by the
selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes, and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3σ).
5.1.2
Typical values
Unless otherwise specified, typical data are based on TJ = 25 °C, VDD = VDDA = 3.3 V (for
the 1.71 ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2σ).
5.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
5.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 18.
5.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 19.
Figure 18. Pin loading conditions
Figure 19. Pin input voltage
MCU pin
MCU pin
C = 50 pF
VIN
MS19210V
DS14258 Rev 5
MS19211V
121/270
238
Electrical characteristics
5.1.6
STM32H562xx and STM32H563xx
Power supply scheme
Figure 20. Power supply scheme with SMPS
STM32H5
SMPS disabled
VDDSMPS
SMPS packages
VDDSMPS
ȝ)
4.7 ȝ)
ȝ)
ȝ)
ȝ+
SMPS
Switched Mode
Power Supply
step down
converter
VLXSMPS
floating 100 pF or 200 pF
VSSSMPS
VCAP1/2
Core domain
100 nF
LDO
Voltage
regulator
SMPS enabled
VDDIO2
VDDIO2
ȝ)
VDDIO2
IOs
100 nF
Two different possible use cases
VDD
100 nF
VDD
IOs
VDD
VDD
ȝ)
VDDLDO
100 nF
VDD
domain
VSS
Power switch
Backup
domain
Two different possible use cases
VBAT
Battery
ȝ)
100 nF
BKUP
IOs
VDD
Two different possible use cases
VDDUSB
VDDUSB
100 nF
ȝ)
VDDA
VDDA
VREF+
100 nF
ȝ)
Three different possible use cases
Analog domain
100 nF
ȝ)
USB FS
IOs
VREF+
VREFVSSA
ȝ)
Defines different use case options
Internal VREFBUF
enabled
Define power domaines
MSv71967V3
122/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Electrical characteristics
Figure 21. Power supply scheme with LDO
STM32H5
LDO packages
VDDSMPS
VLXSMPS
VSSSMPS
SMPS
Switched Mode
Power Supply
step down
converter
VCAP1/2
[ȝ)
100 nF
LDO enabled
Core domain
LDO
Voltage
regulator
LDO disabled
VDDIO2
VDDIO2
ȝ)
100 nF
Two different possible use cases
VDDLDO
VDDIO2
IOs
VDD
100 nF
VDD
IOs
VDD
VDD
ȝ)
100 nF
VDD
domain
VSS
Power switch
Two different possible use cases
Backup
domain
VBAT
Battery
ȝ)
100 nF
BKUP
IOs
VDD
Two different possible use cases
VDDUSB
VDDUSB
ȝ)
100 nF
USB FS
IOs
VDDA
VDDA
ȝ)
100 nF
100 nF
VREF+
ȝ)
Three different possible use cases
VREF+
VREFVSSA
Analog domain
ȝ)
Defines different use case options
Internal VREFBUF
enabled
Note:
Define power domaines
MSv71966V3
Refer to “Getting started with STM32H5 Series hardware development” (AN5711) for more
details.
DS14258 Rev 5
123/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Caution:
Each power supply pair must be decoupled with filtering ceramic capacitors as shown
above. These capacitors must be placed as close as possible to or below the appropriate
pins on the underside of the PCB to ensure the good functionality of the device. It is not
recommended to remove filtering capacitors to reduce PCB size or cost. This might cause
incorrect operation of the device.
5.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 17, Table 18, and Table 19
may cause permanent damage to the device. These are stress ratings only and the
functional operation of the device at these conditions is not implied. Exposure to maximum
rating conditions for extended periods may affect device reliability. Device mission profile
(application conditions) is compliant with JEDEC JESD47 Qualification Standard, extended
mission profiles are available on demand.
Table 17. Voltage characteristics(1)
Symbol
VDDx - VSS
VDDIOx(4) VSS
VIN(5)
Ratings
Min
Max
Unit
External main supply voltage (including
VDDSMPS(2), VDDA, VDDUSB, VDDIO2(2)(3)(4),
VBAT, and VREF+)
-0.3
4.0
V
I/O supply when HSLV(2) = 0
-0.3
4.0
-0.3
2.75
Input voltage on FT_xxx pins except FT_c pins
VSS - 0.3
min (min(VDD, VDDA, VDDUSB,
VDDIO2) + 4.0, 6.0 V)(6)(7)
Input voltage on FT_t in VBAT mode
VSS - 0.3
min (min(VBAT, VDDA, VDDUSB,
VDDIO2) + 4.0V, 6.0 V)
Input voltage on TT_xx pins
VSS - 0.3
4.0
Input voltage on BOOT0 pin
VSS
min (min(VDD, VDDA, VDDUSB,
VDDIO2) + 4.0, 6.0 V)(6)
Input voltage on FT_c pins
VSS - 0.3
5.5
Input voltage on any other pins
VSS - 0.3
4.0
(2)
I/O supply when HSLV
=1
VREF+-VDDA
Allowed voltage difference for VREF+ > VDDA
-
0.4
|∆VDDx|
Variations between different VDDX power pins
of the same domain
-
50.0
Variations between all the different ground pins
-
50.0
|VSSx-VSS|
V
V
V
mV
1. All main power (VDD, VDDA, VDDUSB, VDDIO2, VREF+, VDDSMPS, VBAT) and ground (VSS, VSSA) pins must always
be connected to the external power supply, in the permitted range.
2. HSLV = High-speed low-voltage mode. Refer to General-purpose I/Os (GPIO) section of RM0481.
3. If HSLV = 0.
4. VDDIO1 or VDDIO2. VDDIO1 = VDD.
5. VIN maximum must always be respected. Refer to the maximum allowed injected current values.
6. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
7. This formula must be applied on power supplies related to the I/O structure described by the pin definition table.
124/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Electrical characteristics
Table 18. Current characteristics
Symbol
Ratings
Max
∑IVDD
Total current into sum of all VDD power lines (source)(1)
350
∑IVSS
(sink)(1)
350
Total current out of sum of all VSS ground lines
IVDD
Maximum current into each VDD power pin
(source)(1)
100
IVSS
Maximum current out of each VSS ground pin (sink)(1)
100
IIO(PIN)
Output current sunk/sourced by any I/O and control pin
Total output current sunk by sum of all I/Os and control pins
140
(2)
Total output current sourced by sum of all I/Os and control pins
IINJ(PIN)(3)(4) Injected current on FT_xxx, TT_xx, NRST pins
∑|IINJ(PIN)|
Total injected current (sum of all I/Os and control
mA
20
(2)
∑IIO(PIN)
Unit
140
-5 / 0
pins)(5)
±25
1. All main power (VDD, VDDA, VDDIO2, and VBAT) and ground (VSS, VSSA) pins must always be
connected to the external power supplies, in the allowed range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output
current must not be sunk/sourced between two consecutive power supply pins referring to high pin count
LQFP packages.
3. Positive injection (when VIN > VDDIOx) is not possible on these I/Os, and does not occur for input voltages
lower than the specified maximum value.
4. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer to Table 17 for the
minimum allowed input voltage values.
5. When several inputs are submitted to a current injection, the maximum ∑|IINJ(PIN)| is the absolute sum of
the negative injected currents (instantaneous values).
Table 19. Thermal characteristics
Symbol
TSTG
TJ
Ratings
Storage temperature range
Value
Unit
-65 to +150
°C
130(1)
°C
Maximum junction temperature
1. The junction temperature is limited to 105 °C in the VOS0 voltage range.
5.3
Operating conditions
5.3.1
General operating conditions
Table 20. General operating conditions
Symbol
VDD
Parameter
Standard operating
voltage
Supply voltage for the
VDDSMPS internal SMPS
step-down converter
Operating conditions
HSLV(1) = 0
HSLV
(1)
=1
Min
Typ
Max
1.71(2)
-
3.6
(2)
-
2.7
-
VDD
1.71
VDD
VDD
DS14258 Rev 5
Unit
V
V
125/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 20. General operating conditions (continued)
Symbol
VDDIO2
Parameter
PB8, PB9, PD6, PD7,
PG[9:14] I/Os supply
voltage
Operating conditions
Min
Typ
Max
At least one I/O in PB8, PB9, PD6, PD7,
PG[9:14] is used, HSLV(1) = 0
1.08
-
3.6
At least one I/O in PB8, PB9, PD6, PD7,
PG[9:14] is used, HSLV(1) = 1
1.08
-
2.7
PB8, PB9, PD6, PD7, PG[9:14] are not used
VDDUSB USB supply voltage
VDDA
Analog supply voltage
USB is used
-
3.6
0
-
3.6
ADC is used
1.62
-
DAC is used
1.8
-
VREFBUF is used
2.1
-
0
-
1.2
-
USB is not used
Backup domain
supply voltage
-
All I/Os except FT_c and TT_xx
-0.3
V
3.6
3.0
ADC, DAC, and VREFBUF are not used
VBAT
0
Unit
-
V
3.6
V
3.6
V
min (min
(VDD,
VDDA,
VDDUSB,
VDDIO2)
+ 3.6V,
5.5 V)
(3)(4)
VIN
I/O input voltage
Input voltage on FT_t in VBAT mode
-0.3
-
min (min
(VBAT,
VDDA,
VDDUSB,
VDDIO2)
+ 3.6 V,
5.5 V)
(3)(4)
126/270
FT_c I/O
-0.3
-
5.0
TT_xx I/O
-0.3
-
VDDIOx +
0.3
DS14258 Rev 5
V
STM32H562xx and STM32H563xx
Electrical characteristics
Table 20. General operating conditions (continued)
Symbol
Parameter
Operating conditions
Min
Typ
Max
VOS0
(max frequency for AHB and APB: 250 MHz)
1.30
1.35
1.40
VOS1
(max frequency for AHB and APB: 200 MHz)
1.15
1.20
1.26
VOS2
(max frequency for AHB and APB: 150 MHz)
1.05
1.10
1.15
VOS3
(max frequency for AHB and APB: 100 MHz)
0.95
1.00
1.05
VOS0(5)
1.32
1.35
1.40
VOS1
1.17
1.20
1.26
VOS2
1.07
1.10
1.15
VOS3
0.97
1.00
1.05
SVOS3
-
1.0
-
SVOS4
-
0.9
-
SVOS5
-
0.74
-
-
-
250
VOS1
-
-
200
VOS2
-
-
150
VOS3
-
-
100
VOS0(5)
-
-
250
VOS1
-
-
200
VOS2
-
-
150
VOS3
-
-
100
(5)
Internal regulator ON
VCORE
Regulator OFF:
external VCORE voltage
must be supplied from
external regulator on
VCAP pins
Stop mode
VOS0
fHCLK
AHB clock frequency
fPCLKx APB1, APB2, APB3
(x=1,2,3) clock frequency
(5)
LQFP64
PD
Power dissipation at
TA = 85 or 105 °C
for suffix 6 or 7
versions(6)
V
See Table 140 for
appropriate thermal
resistance and package.
Power dissipation is
calculated according to
ambient temperature
(TA), maximum junction
temperature (TJ), and
selected thermal
resistance.
LQFP100
LQFP144
LQFP176
UFBGA169
UFBGA176
VFQFPN68
Unit
V
V
MHz
MHz
mW
WLCSP80
DS14258 Rev 5
127/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 20. General operating conditions (continued)
Symbol
Parameter
Operating conditions
Min
LQFP100
Power dissipation at
TA = 125 °C
for suffix 3 version(6)
LQFP176
UFBGA169
UFBGA176
WLCSP80
Ambient temperature
for the suffix 3 version
TA
TJ
Max
See Table 140 for
appropriate thermal
resistance and package.
Power dissipation is
calculated according to
ambient temperature
(TA), maximum junction
temperature (TJ), and
selected thermal
resistance.
LQFP144
PD
Typ
Maximum power dissipation
-40
-
125
Ambient temperature
for the suffix 6 version
Maximum power dissipation
-40
-
85
In LDO bypass mode
-40
-
125
Ambient temperature
for the suffix 7 version
Maximum power dissipation
-40
-
105
In LDO bypass mode
-40
-
125
Junction temperature
range
VOS0
-40
-
105
VOS1, VOS2, and VOS3
-40
-
130
Unit
mW
°C
°C
1. HSLV = High-speed low-voltage mode. Refer to General-purpose I/Os (GPIO) section of RM0481.
2. When RESET is released functionality is guaranteed down to BOR level 0 minimum voltage.
3. This formula must be applied on power supplies related to the I/O structure described by the pin definition table. Maximum
I/O input voltage is the smallest value between min (VDD, VDDA, VDDIO2) + 3.6 V and 5.5 V.
4. For operation with voltages higher than min (VDD, VDDA, VDDIO2) + 0.3V, the internal pull-up and pull-down resistors must
be disabled.
5. In VOS0 mode the max TJ is 105 °C.
6. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 19).
Table 21. Maximum allowed clock frequencies
Symbol(1)(2)
128/270
Parameter
VOS0
VOS1
VOS2
VOS3
fCPU
CPU
250
200
150
100
fHCLK
AHB
250
200
150
100
fPCLK
APB
250
200
150
100
-
FMC
250
200
150
100
foctospi_ker_ck
OCTOSPI[1:2]
250
200
150
100
fsdmmc_ker_ck
SDMMC[1:2]
250
200
150
100
-
HDMI_CEC
4
4
4
4
ffdcan_ker_ck
FDCAN
250
200
150
100
fI2C_ker_ck
I2C[1:4]
250
200
150
100
fI3C_ker_ck
I3C
250
200
150
100
flptim_ker_ck
LPTIM[1:6]
250
200
150
100
DS14258 Rev 5
Unit
MHz
STM32H562xx and STM32H563xx
Electrical characteristics
Table 21. Maximum allowed clock frequencies (continued)
Symbol(1)(2)
VOS0
VOS1
VOS2
VOS3
TIM[1:8], TIM[12:17]
250
200
150
100
TIM6/17
64
64
64
64
RNG
50
50
50
50
SAI1/2
250
200
150
100
SPI(I2S)1,2,3
125
100
75
50
SPI4,5,6
125
100
75
50
flpuart_ker_ck
LPUART1
250
200
150
100
fusart_ker_ck
USART/UART
250
200
150
100
fusb_ker_ck
USB FS
50
50
50
50
250
200
150
100
ftim_ker_ck
frng_clk
fsai_a_ker_ck
fsai_b_ker_ck
fspi_ker_ck
Parameter
fadc_ker_ck_input ADC
fadc_ker_ck(3)
ADC
125
100
75
50
fdac_ker_ck
DAC
250
200
150
100
fucpd_ker_ck
USBPD
64
64
64
64
frtc_ker_ck
RTC
1
1
1
1
-
DCMI
250
200
150
100
Unit
MHz
1. Specified by design - Not tested in production.
2. The maximum kernel clock frequencies can be limited by the maximum peripheral clock frequency
(refer to each peripheral electrical characteristics).
3. This maximum kernel clock frequency does not consider the maximum ADC clock frequency (refer to
Table 95).
5.3.2
VCAP external capacitor
The stabilization for the embedded LDO regulator is achieved by connecting an external
capacitor CEXT (whose value is specified in Table 22) to the VCAPx (one or two pins,
depending upon the package). Two external capacitors must be connected to VCAP pins
(refer to AN5711 “STM32H5 Series hardware development”).
Figure 22. External capacitor CEXT
C
ESR
R Leak
MS19044V2
DS14258 Rev 5
129/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 22. Supply voltage and maximum frequency configuration
Symbol
Parameter
Conditions
CEXT
External capacitor for LDO enabled
2.2 μF(1)
ESR
Equivalent series resistance of the external capacitor
< 100 mΩ
1. This value corresponds to CEXT typical value. A variation of ±20% is tolerated
5.3.3
SMPS step-down converter
The devices embed a high power efficiency SMPS step-down converter requiring external
components.
Table 23. Characteristics of SMPS step-down converter external components
Symbol
Cin
Cfilt
COUT
Parameter
Capacitance of external capacitor on VDDSMPS pins
ESR of external capacitor
Capacitance of external capacitor on VLXSMPS pin
Capacitance of external capacitor on VCAP pin
ESR of external capacitor
Inductance of external inductor on VLXSMPS pin
L
Series DC resistance
Conditions
Min
Typ
Max Unit
-
-
4.7(1)
-
µF
2.4 MHz
-
-
10
mΩ
-
-
220
-
pF
-
-
10(1)
-
µF
2.4 MHz
-
20
mΩ
-
µH
-
-
2.2(1)
All packages
-
-
150
WLCSP80 package,
VDDSMPS > 3 V
-
-
300
ISAT
DC current at which the inductance drops 30% from the
value without current
-
1
-
-
IRMS
Average current for which the temperature of the
inductor is raised 40 °C by the DC current
-
1
-
-
mΩ
A
1. Tolerance: -50% and + 30% for all conditions.
The SMPS current consumption can be determined using the following formula based on
the maximum LDO current consumption provided in Section 5.3.7:
IDDSMPS = IDDLDO × VCORE / (VDD × efficiency)
IDDLDO is the current in LDO configuration given in the following tables, VCORE is the digital
core supply (VCAP), and efficiency is defined in the following curves.
130/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Electrical characteristics
Figure 23. SMPS efficiency versus load current in Run, Sleep, and Stop modes
with SVOS3 mode, TJ = 30 °C
Efficiency (%)
100
90
VDDSMPS = 1.8V, VOS0
VDDSMPS = 3.3V, VOS0
VDDSMPS = 1.8V, VOS1
VDDSMPS = 3.3V, VOS1
VDDSMPS = 1.8V, VOS2
VDDSMPS = 3.3V, VOS2
VDDSMPS = 1.8V, VOS3
VDDSMPS = 3.3V, VOS3
80
70
60
50
40
30
1
Note:
10
100
1000
Current (mA)
MSv71968V1
SVOS3 is equivalent to VOS3 in Run and Sleep modes.
Figure 24. SMPS efficiency versus load current in Run, Sleep, and Stop modes
with SVOS3 mode, TJ = 130 °C
Efficiency (%)
100
90
VDDSMPS = 1.8V, VOS0
VDDSMPS = 3.3V, VOS0
80
VDDSMPS = 1.8V, VOS0
VDDSMPS = 3.3V, VOS0
70
VDDSMPS = 1.8V, VOS1
VDDSMPS = 3.3V, VOS1
VDDSMPS = 1.8V, VOS2
60
VDDSMPS = 3.3V, VOS2
VDDSMPS = 1.8V, VOS3
VDDSMPS = 3.3V, VOS3
50
40
Current (mA)
30
1
Note:
10
100
1000
MSv71969V1
SVOS3 is equivalent to VOS3 in Run and Sleep modes.
DS14258 Rev 5
131/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Figure 25. SMPS efficiency versus load current in stop SVOV4, SVOS5, TJ = 30 °C
Figure 26. SMPS efficiency versus load current in stop SVOV4, SVOS5, TJ = 130 °C
132/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
5.3.4
Electrical characteristics
Operating conditions at power-up/down
Subject to general operating conditions for TA.
v
Table 24. Operating conditions at power-up/down (regulator ON)
Symbol
TVDD
TVDDA
TVDDUSB
TVDDIO2
TVBAT
5.3.5
Parameter
Min
Max
VDD rise time rate
0
∞
VDD fall time rate
10
∞
VDDA rise time rate
0
∞
VDDA fall time rate
10
∞
TVDDUSB rise time rate
0
∞
TVDDUSB fall time rate
10
∞
TVDDIO2 rise time rate
0
∞
TVDDIO2 fall time rate
10
∞
TVBAT rise time rate
0
∞
TVBAT fall time rate
10
∞
Unit
μs/V
Embedded reset and power control block characteristics
The parameters given in Table 25 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 20.
Table 25. Embedded reset and power control block characteristics(1)
Symbol
tRSTTEMPO(2)
Parameter
Conditions
Reset temporization after BOR0 detection VDD rising
Min
Typ
Max
Unit
-
377
550
μs
Power-on/down reset threshold
(BORH_EN =0)
Rising edge
1.62
1.67
1.71
Falling edge
1.58
1.62
1.68
VBOR1
Brownout reset threshold 1
(BORH_EN =1)
Rising edge
2.04
2.10
2.15
Falling edge
1.95
2.00
2.06
VBOR2
Brownout reset threshold 2
(BORH_EN =1)
Rising edge
2.34
2.41
2.47
Falling edge
2.25
2.31
2.37
VBOR3
Brownout reset threshold 3
(BORH_EN =1)
Rising edge
2.63
2.70
2.78
Falling edge
2.54
2.61
2.68
VPOR/PDR
DS14258 Rev 5
V
V
133/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 25. Embedded reset and power control block characteristics(1) (continued)
Symbol
Parameter
VPVD0
PVD threshold 0
VPVD1
PVD threshold 1
VPVD2
PVD threshold 2
VPVD3
PVD threshold 3
VPVD4
PVD threshold 4
VPVD5
PVD threshold 5
VPVD6
PVD threshold 6
Conditions
Min
Typ
Max
Rising edge
1.90
1.96
2.01
Falling edge
1.81
1.86
1.91
Rising edge
2.05
2.10
2.16
Falling edge
1.96
2.01
2.06
Rising edge
2.19
2.26
2.32
Falling edge
2.10
2.15
2.21
Rising edge
2.35
2.41
2.47
Falling edge
2.25
2.31
2.37
Rising edge
2.49
2.56
2.62
Falling edge
2.39
2.45
2.51
Rising edge
2.64
2.71
2.78
Falling edge
2.55
2.61
2.68
Rising edge
2.78
2.86
2.94
Falling edge
2.69
2.76
2.83
VPOR/PDR
Hysteresis for power-on/down reset
Hysteresis in Run mode
-
43
-
Vhyst_BOR_PVD
Hysteresis voltage of BOR (unless
BORH_EN = 0) and PVD
-
-
100
-
IDD_BOR_PVD(2)
BOR and PVD consumption from VDD
-
-
-
0.630
IDD_POR_PDR
POR and PDR consumption from VDD
-
0.8
-
1.2
Rising edge
1.66
1.71
1.76
Falling edge
1.56
1.61
1.66
Rising edge
2.06
2.12
2.19
Falling edge
1.96
2.02
2.08
Rising edge
2.42
2.50
2.58
Falling edge
2.35
2.42
2.49
Rising edge
2.74
2.83
2.91
Falling edge
2.64
2.72
2.80
VAVD0
VDDA voltage monitor 0 threshold
VAVD1
VDDA voltage monitor 1threshold
Unit
V
mV
µA
V
VAVD2
VDDA voltage monitor 2 threshold
VAVD3
VDDA voltage monitor 3 threshold
VIO2VM
VDDIO2 voltage monitor threshold
-
-
0.9
-
V
Hysteresis of VDDA voltage monitor
-
-
100
-
mV
IDD_AVD_IO2VM(2)
Power voltage detector consumption
from VDD (AVD, IO2VM)
-
-
-
0.25
IDD_AVD_A(2)
Analog voltage detector consumption
from VDDA (resistor bridge)
-
-
-
0.25
Vhyst_AVD
µA
1. Evaluated by characterization and not tested in production, unless otherwise specified.
2. Specified by design - Not tested in production
134/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
5.3.6
Electrical characteristics
Embedded reference voltage
The parameters given in Table 26 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 20.
Table 26. Embedded reference voltage
Symbol
Parameter
VREFINT(1)
Conditions
Internal reference voltage
ADC sampling time when reading the
internal reference voltage
tS_vbat
VBAT sampling time when reading the
internal VBAT voltage
tstart_vrefint(3)
Start time of reference voltage buffer
when the ADC is enabled
∆VREFINT(3)
TCoeff
VDDcoeff
VREFINT_DIV1
(3)
-
VREFINT_DIV3
Max
Unit
V
4.3
-
-
9
-
-
-
-
-
4.4
Reference buffer consumption for ADC VDD = 3.3 V
9
13.5
23
µA
Internal reference voltage spread over
-40 °C < TJ < +130 °C
the temperature range
-
5
15
mV
µs
Average temperature coefficient
Average temperature
coefficient
-
20
70
ppm/°C
Average voltage coefficient
3.0 V < VDD < 3.6 V
-
10
1370
ppm/V
-
25
-
-
50
-
-
75
-
1/4 reference voltage
VREFINT_DIV2(3) 1/2 reference voltage
(3)
Typ
-40 °C < TJ < +130 °C 1.180 1.216 1.255
tS_vrefint(2)(3)
Irefbuf(3)
Min
-
3/4 reference voltage
%VREFINT
1. VREFINT does not take into account package and soldering effects.
2. The shortest sampling time for the application can be determined by multiple iterations.
3. Specified by design - Not tested in production.
Table 27. Internal reference voltage calibration value
Symbol
VREFINT_CAL
5.3.7
Parameter
Raw data acquired at 30 °C, VDDA = 3.3 V
Memory address
0x08FF F810 - 0x08FF F811
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
All the run-mode current consumption measurements given in this section are performed
with a CoreMark code.
Typical and maximum current consumption
The MCU is placed under the following conditions:
•
All I/O pins are in analog input mode.
DS14258 Rev 5
135/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
•
All peripherals are disabled except when explicitly mentioned.
•
The flash memory access time is adjusted with the minimum wait-state number,
depending on the fHCLK frequency (refer to the tables “FLASH recommended number
of wait states and programming delay” available in the reference manual).
•
When the peripherals are enabled, the AHB clock frequency is the CPU frequency and
the APB clock frequency is AHB frequency.
The parameters given in the following tables are derived from tests performed under supply
voltage conditions summarized in Table 20, and, unless otherwise specified, at ambient
temperature.
The maximum current consumption is given for LDO regulator ON.
Table 28. Typical and maximum current consumption in Run mode, code with data processing
running from flash memory, 2-way instruction cache ON, PREFETCH ON
Max(1)(2)
Symbol
Parameter
Conditions
VOS0
VOS1
All peripherals
disabled
VOS2
VOS3
Supply current
IDD(Run)
in Run mode
VOS0
VOS1
All peripherals
enabled
VOS2
VOS3
136/270
fHCLK
(MHz)
Typ
LDO
Typ
SMPS
250
32.1
17.5
37
65
87
-
215
27.9
15.0
32
60
82
-
200
25.7
13.8
30
59
81
-
200
22.1
11.0
25
45
62
93
180
20.3
10.1
23
43
59
90
168
18.8
9.3
21
42
58
89
150
16.9
8.5
20
40
56
88
150
15.4
7.4
17
33
47
73
100
10.8
5.2
13
28
41
68
100
9.8
4.5
11
23
34
55
60
6.4
3.0
8.0
20
30
52
25
3.2
1.7
5.0
17
27
49
250
86.8
49.8
90
118
140
-
215
75.0
43.2
78
107
128
-
200
69.5
40.1
72
102
123
-
200
60.7
31.7
62
82
99
130
180
55.1
28.5
56
76
92
124
150
45.8
23.4
47
68
84
116
150
41.9
20.0
43
59
72
98
100
28.5
13.8
30
45
58
85
100
25.9
11.7
27
39
49
71
60
16.2
7.5
17
29
40
61
25
7.5
3.8
9.0
21
31
53
DS14258 Rev 5
TJ =
25 °C
TJ =
TJ =
TJ =
85 °C 105 °C 130 °C
Unit
mA
STM32H562xx and STM32H563xx
Electrical characteristics
1. Evaluated by characterization - Not tested in production.
2. The maximum values are given for LDO regulator ON. Refer to Section 5.3.3 for the SMPS maximum current consumption.
Table 29. Typical and maximum current consumption in Run mode, code with data processing
running from flash memory, 1-way instruction cache ON, PREFETCH ON
Max(1)(2)
Symbol
Parameter
Conditions
fHCLK
(MHz)
Typ
LDO
Typ
SMPS
250
29.2
15.9
34
62
84
-
200
23.3
12.5
28
56
78
-
200
20.1
10.0
23
43
59
91
180
18.5
9.2
21
41
57
89
150
15.4
7.8
18
38
54
86
150
14.0
6.7
16
32
45
71
100
9.8
4.8
12
27
40
67
100
8.9
4.2
10
22
33
54
25
3.0
1.6
4.0
17
27
49
VOS0
VOS1
Supply current All peripherals
IDD(Run)
in Run mode
disabled
VOS2
VOS3
TJ = TJ =
TJ =
TJ =
25 °C 85 °C 105 °C 130 °C
Unit
mA
1. Evaluated by characterization - Not tested in production.
2. The maximum values are given for LDO regulator ON. Refer to Section 5.3.3 for the SMPS maximum current consumption.
Symbol
Table 30. Typical and maximum current consumption in Run mode, code with data processing
running from SRAM with cache 1-way
Max(1)(2)
Parameter
Conditions
VOS0
VOS1
Supply current All peripherals
disabled
(Run) in Run mode
IDD
VOS2
VOS3
fHCLK
(MHz)
Typ
LDO
Typ
SMPS
250
27.8
15.5
32
61
82
-
215
24.1
13.4
29
57
79
-
200
22.1
12.3
27
55
77
-
200
19.1
9.9
22
42
58
90
180
17.6
9.1
20
40
56
88
150
14.6
7.6
22
42
58
90
150
13.3
6.6
17
37
53
85
100
9.4
4.7
11
27
40
66
100
8.5
4.1
10
22
33
54
60
5.6
2.8
7
19
30
51
25
2.9
1.6
4
16
27
48
TJ = TJ =
TJ =
TJ =
25 °C 85 °C 105 °C 130 °C
Unit
mA
1. Evaluated by characterization - Not tested in production.
2. The maximum values are given for LDO regulator ON. Refer to Section 5.3.3 for the SMPS maximum current consumption.
DS14258 Rev 5
137/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 31. Typical and maximum current consumption in Run mode, code with data processing
running from SRAM with cache 2-way
Max(1)(2)
Symbol
Parameter
Conditions
fHCLK
(MHz)
Typ
LDO
Typ
SMPS
250
30.8
17.2
35
64
86
-
215
26.7
14.4
31
60
81
-
200
24.6
13.3
29
58
80
-
200
21.2
10.5
24
44
61
93
180
19.5
9.7
22
42
58
90
168
18.0
9.0
21
41
57
89
150
16.2
8.4
19
39
55
87
150
14.8
7.2
17
33
46
72
100
10.3
5.1
12
28
41
67
100
9.4
4.5
11
23
33
55
60
6.1
2.9
8.0
20
30
52
25
3.2
1.7
5.0
17
27
49
VOS0
VOS1
IDD(Run)
Supply current All peripherals
in Run mode
disabled
VOS2
VOS3
TJ = TJ =
TJ =
TJ =
25 °C 85 °C 105 °C 130 °C
Unit
mA
1. Evaluated by characterization - Not tested in production.
2. The maximum values are given for LDO regulator ON. Refer to Section 5.3.3 for the SMPS maximum current consumption.
138/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Electrical characteristics
Table 32. Typical consumption in Run mode with CoreMark running
from flash memory and SRAM(1)
Conditions
Symbol
Parameter
Peripheral
All peripherals
disabled,
instruction cache
2-way,
prefetch ON
IDD(Run)
Supply current
in Run mode
All peripherals
disabled,
instruction cache
1-way,
prefetch ON
All peripherals
disabled,
instruction cache
2-way
All peripherals
disabled,
instruction cache
1-way
Code
FLASH
FLASH
SRAM
SRAM
fHCLK
(MHz)
Typ
LDO
Typ
SMPS
250
32.1
200
Typ
LDO
Typ
SMPS
17.5
128.6
70.1
22.1
10.97
110.7
54.8
168
18.8
9.3
111.8
55.6
150
15.4
8.5
102.7
56.9
100
9.8
4.5
97.9
45.3
250
29.2
15.9
116.6
63.8
200
20.1
12.5
100.4
62.7
150
14.0
10.0
93.3
66.4
100
8.9
4.2
88.9
41.7
250
30.8
17.2
123.3
68.7
200
21.2
10.5
106.2
52.6
168
18.0
9.0
107.3
53.4
150
14.8
7.2
98.5
48.2
100
9.4
4.5
94.1
44.6
250
27.8
15.5
111.1
61.9
200
19.1
9.9
95.4
49.3
150
13.3
6.6
88.9
43.8
100
8.5
4.1
84.9
40.7
Unit
mA
Unit
μA/MHz
1. Evaluated by characterization - Not tested in production.
DS14258 Rev 5
139/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 33. Typical consumption in Run mode with SecureMark running from
flash memory and SRAM(1)
Conditions
Symbol Parameter
Peripheral
Code
All peripherals disabled,
instruction cache 2-way,
prefetch ON
fHCLK
(MHz)
FLASH
Supply
IDD(Run) current in
Run mode
All peripherals disabled,
instruction cache 1-way,
prefetch ON
FLASH
Typ
Typ
Unit
LDO SMPS
Typ
LDO
Typ
SMPS
250
34.1
17.9
136.3
71.8
180
21.8
10.6
120.9
58.8
168
20.1
9.8
119.7
58.5
150
24.9
7.7
166.2
51.2
100
10.6
4.8
106.0
47.6
250
31.3
16.6
125.2
66.3
180
20.1
9.8
111.6
54.5
168
18.5
9.1
110.4
54.2
150
18.8
7.2
125.1
47.7
100
9.8
4.5
98.3
44.5
mA
Unit
μA/MHz
1. Evaluated by characterization - Not tested in production.
Table 34. Typical and maximum current consumption in Sleep mode
Max(1) (2)
Symbol
Parameter
Conditions
VOS0
VOS1
IDD(sleep)
Supply current All peripherals
in sleep mode disabled
VOS2
VOS3
fHCLK
(MHz)
Typ
LDO
Typ
SMPS
250
7.3
200
TJ =
25°C
TJ =
85°C
4.2
12
40
61
-
5.8
3.3
10
38
60
-
200
4.8
2.6
8
27
43
75
180
4.8
2.6
8
27
43
75
168
4.3
2.3
7
26
42
74
150
3.9
2.2
7
26
42
74
150
3.5
1.9
6
21
34
60
100
2.8
1.6
5
20
33
59
100
2.5
1.4
4
16
26
48
60
2.0
1.2
4
15
26
47
TJ =
TJ =
105°C 130°C
Unit
mA
1. Evaluated by characterization - Not tested in production.
2. The maximum values are given for LDO regulator ON. Refer to Section 5.3.3 for the SMPS maximum current consumption.
140/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
v
Electrical characteristics
Table 35. Typical and maximum current consumption in Stop mode
Max(1) (2)
Typ
LDO
Typ
SMPS
SVOS3
0.37
0.09
2.00
13.98
24.00
44.39
SVOS4
0.27
0.07
1.40
10.48
18.37
34.76
SVOS5
0.19
0.06
0.86
7.08
12.88
25.31
SVOS3
0.38
0.10
2.02
14.01
24.06
44.55
SVOS4
Supply current
IDD(stop)
SVOS3
Flash memory in
in Stop
low power mode,
SVOS4
SRAMs OFF except
SRAM2 16 Kbytes ON SVOS5
0.29
0.09
1.42
10.52
18.46
34.88
0.34
0.09
1.93
13.28
22.75
41.99
0.25
0.07
1.35
9.87
17.33
32.65
0.17
0.05
0.81
6.46
11.68
22.86
SVOS3
0.35
0.10
1.95
13.45
23.02
42.52
SVOS4
0.26
0.08
1.36
10.01
17.52
33.10
SVOS5
0.17
0.08
0.82
6.59
11.92
23.37
Symbol
Parameter
Conditions
Flash memory in
low power mode,
SRAMs ON
Flash memory in
normal mode,
SRAMs ON
Flash memory in
low power mode,
SRAMs OFF except
SRAM2 ON
TJ = TJ =
TJ =
TJ =
25 °C 85 °C 105 °C 130 °C
Unit
mA
1. Evaluated by characterization - Not tested in production.
2. The maximum values are given for LDO regulator ON. Refer to Section 5.3.3 for the SMPS maximum current consumption.
Table 36. Typical and maximum current consumption in Standby mode
Typ(1)
Conditions
Symbol
Parameter
Supply
current in
IDD(standby) standby
mode,
IWDG OFF
Backup RTC and
1.8 V 2.4 V
RAM
LSE(2)
Max(1)
3V
3.3 V
TJ =
TJ =
25 °C 85 °C
TJ =
TJ =
105 °C 130 °C
OFF
OFF
2.58
2.78
3.01
3.19
5.9
11.7
21.2
53
ON
OFF
3.79
4.05
4.38
4.63
8.2
21.0
37.0
90
OFF
ON
2.91
3.15
3.47
3.67
6.9
12.9
22.5
55
ON
ON
4.16
4.46
4.85
5.12
9.2
22.2
38.3
92
Unit
μA
1. Evaluated by characterization - Not tested in production.
2. LSE is in medium-low drive mode.
DS14258 Rev 5
141/270
238
Electrical characteristics
v
STM32H562xx and STM32H563xx
Table 37. Typical and maximum current consumption in VBAT mode(1)
Conditions
Symbol
IDD(VBAT)
Parameter
Supply current
in VBAT mode
Typ
Backup RTC and
1.8 V 2.4 V
RAM
LSE(2)
Max
3V
TJ =
TJ =
TJ =
TJ =
3.3 V
25 °C 85 °C 105 °C 130 °C
OFF
OFF
0.01
0.01
0.02
0.02
0.2
2.45
6.2
19.0
ON
OFF
1.11
1.14
1.17
1.29
4.5
16.05
30.0
72.2
OFF
ON
0.45
0.46
0.48
0.59
1.2
3.65
7.5
21.0
ON
ON
1.56
1.57
1.62
1.84
5.5
17.25
31.3
74.2
Unit
μA
1. Evaluated by characterization - Not tested in production.
2. LSE is in medium-low drive mode.
I/O system current consumption
All the I/Os used as inputs with pull-up generate a current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 58.
To estimate the current consumption for the output pins, consider also external pull-downs
or loads.
An additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the Schmitt trigger
circuits used to discriminate the input value. Unless this specific configuration is required by
the application, this current consumption can be avoided by configuring the I/Os in analog
mode. This is notably the case of ADC input pins, to be configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid a current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done by using pull-up/down resistors, or by configuring the pins in
output mode.
In addition to the internal peripheral current consumption, the I/Os used by an application
also contribute to the current consumption. When an I/O pin switches, it uses the current
from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the
capacitive load (internal or external) connected to the pin:
I SW = V DDx × f SW × C L
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDx is the MCU supply voltage
fSW is the I/O switching frequency
CL is the total capacitance seen by the I/O pin: C = CINT+ CEXT + CS
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
142/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Electrical characteristics
On-chip peripheral current consumption
The MCU is placed under the following conditions:
•
At startup, all I/O pins are in analog input configuration
•
All peripherals are disabled unless otherwise mentioned
•
The I/O compensation cell is enabled
•
fHCLK is the CPU clock, fPCLK = frcc_cpu_ck, and fHCLK = frcc_cpu_ck.
The given value is calculated by measuring the difference of current consumption:
•
with all peripherals clocked off
•
with only one peripheral clocked on
•
frcc_cpu_ck = 250 MHz (Scale 0), frcc_cpu_ck = 200 MHz (Scale 1), frcc_cpu_ck = 150 MHz
(Scale 2), frcc_cpu_ck= 100 MHz (Scale 3)
•
the ambient operating temperature is 25 °C and VDD = 3.0 V
Table 38. Peripheral current consumption in Sleep mode
Bus
AHB1
IDD (typ)
Peripheral
Unit
VOS0
VOS1
VOS2
VOS3
SRAM1
0.9
0.85
0.78
0.7
BKPRAM
0.95
0.89
0.82
0.74
CORDIC
0.5
0.45
0.42
0.4
CRC
0.22
0.21
0.18
0.18
DCACHE
0.66
0.59
0.55
0.51
ETH
11.33
10
9.13
8.32
FLASH
10.19
8.87
8.09
7.35
FMAC
2.07
1.84
1.68
1.56
GPDMA1
0.62
0.55
0.51
0.45
GPDMA2
0.45
0.43
0.38
0.35
GTZC1
1.19
1.05
0.97
0.9
ICACHE
0.86
0.81
0.75
0.67
RAMCFG
0.88
0.79
0.71
0.67
AHB1
1.09
0.94
0.86
0.79
DS14258 Rev 5
μA/MHz
143/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 38. Peripheral current consumption in Sleep mode (continued)
Bus
AHB2
AHB4
144/270
IDD (typ)
Peripheral
Unit
VOS0
VOS1
VOS2
VOS3
ADC12
2.35
2.1
1.9
1.74
DAC1
1.35
1.19
1.07
0.98
DCMI
3.49
3.09
2.83
2.55
GPIOA
0.1
0.08
0.07
0.08
GPIOB
0.07
0.06
0.05
0.05
GPIOC
0.08
0.05
0.04
0.04
GPIOD
0.09
0.06
0.05
0.04
GPIOE
0.09
0.09
0.08
0.05
GPIOF
0.06
0.08
0.08
0.05
GPIOG
0.07
0.07
0.06
0.04
GPIOH
0.07
0.07
0.05
0.06
GPIOI
0.07
0.07
0.06
0.04
HASH1
1.37
1.2
1.1
1
PKA
5.43
4.78
4.37
3.98
RNG1
1.12
0.99
0.9
0.82
SRAM2
1.33
1.18
1.06
0.96
SRAM3
1.5
1.33
1.22
1.1
AHB2
1.59
1.39
1.29
1.16
FMC
9.73
8.48
7.69
6.95
OSPI1
2.88
2.54
2.29
2.08
SDMMC1
8.71
7.64
6.98
6.36
SDMMC2
8.46
7.45
6.82
6.2
AHB4
0.36
0.32
0.32
0.28
DS14258 Rev 5
μA/MHz
uA/MHz
STM32H562xx and STM32H563xx
Electrical characteristics
Table 38. Peripheral current consumption in Sleep mode (continued)
Bus
APB1
IDD (typ)
Peripheral
Unit
VOS0
VOS1
VOS2
VOS3
CEC
0.15
0.15
0.14
0.11
CRS
0.22
0.23
0.20
0.19
FDCAN1
6.37
5.63
5.14
4.70
I2C1
0.57
0.5
0.49
0.42
I2C2
0.57
0.52
0.5
0.46
I3C1
0.28
0.27
0.28
0.25
LPTIM2
0.91
0.81
0.75
0.69
SPI2
1.04
0.93
0.89
0.78
SPI3
1.00
0.92
0.85
0.76
TIM12
1.41
1.26
1.18
1.06
TIM13
0.92
0.82
0.77
0.70
TIM14
0.89
0.78
0.75
0.66
TIM2
2.86
2.51
2.30
2.11
TIM3
2.52
2.21
2.03
1.87
TIM4
2.43
2.15
1.96
1.79
TIM5
2.79
2.48
2.26
2.06
TIM6
0.54
0.49
0.45
0.42
TIM7
0.56
0.5
0.48
0.43
UART12
1.17
1.06
0.95
0.88
UART4
1.12
0.98
0.93
0.83
UART5
1.09
0.99
0.93
0.84
UART7
1.28
1.14
1.05
0.93
UART8
1.17
1.06
0.94
0.86
UART9
1.12
1.00
0.90
0.84
UCPD1
1.1
1.00
0.90
0.84
USART10
1.35
1.22
1.14
1.02
USART11
1.24
1.11
1.04
0.94
USART2
1.42
1.29
1.19
1.07
USART3
1.35
1.24
1.14
1.02
USART6
1.19
1.08
1.02
0.92
WWDG1
0.39
0.35
0.35
0.30
APB1
1.85
1.61
1.49
1.34
DS14258 Rev 5
μA/MHz
145/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 38. Peripheral current consumption in Sleep mode (continued)
Bus
APB2
APB3
IDD (typ)
Peripheral
Unit
VOS0
VOS1
VOS2
VOS3
SAI1
1.13
0.99
0.93
0.82
SAI2
1.06
0.9
0.85
0.75
SPI1
1.03
0.91
0.85
0.75
SPI4
1.03
0.89
0.83
0.73
SPI6
1.03
0.9
0.85
0.74
TIM1
4.35
3.86
3.52
3.2
TIM15
2.08
1.84
1.69
1.54
TIM16
1.43
1.26
1.16
1.05
TIM17
1.44
1.25
1.17
1.05
TIM8
4.33
3.82
3.5
3.18
USART1
1.24
1.11
1.02
0.91
USBFS
2.53
2.22
2.04
1.84
APB2
1.04
0.92
0.84
0.77
I2C3
2.43
2.14
1.93
1.76
I2C4
2.37
2.08
1.89
1.73
LPTIM1
0.92
0.82
0.75
0.67
LPTIM3
0.88
0.77
0.71
0.65
LPTIM4
0.49
0.45
0.41
0.37
LPTIM5
0.84
0.76
0.69
0.63
LPTIM6
0.93
0.82
0.76
0.70
LPUART1
0.84
0.74
0.66
0.63
RTCAPB
1.93
1.70
1.54
1.38
SBS
0.45
0.41
0.38
0.34
SPI5
1.05
0.93
0.84
0.75
VREFBUF
0.08
0.08
0.07
0.05
APB3
0.64
0.57
0.53
0.48
μA/MHz
uA/MHz
Wake-up time from low-power modes
The times given in Table 39 are measured starting from the wake-up event trigger up to the
first instruction executed by the CPU:
•
for Stop or Sleep modes: the wake-up event is WFE.
•
WKUP (PA0) pin is used to wake-up from Standby, Stop and Sleep modes.
All timings are derived from tests performed under ambient temperature and VDD = 3.0 V.
146/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Electrical characteristics
Table 39. Low-power mode wake-up timings(1)
Symbol
tWUSLEEP
tWUSTOP
tWUSTBY
Parameter
Conditions
Wake-up time from
Sleep mode
Wake-up time from
Stop mode
Wake-up time from
Standby mode
Typ
Max
Unit
Instruction cache enabled
15
16
Instruction cache disabled
15
16
CPU
clock
cycles
SVOS3, HSI 64 MHz, flash memory in normal mode
4.0
4.8
SVOS3, HSI 64 MHz, flash memory in low-power mode
7.9
11.5
SVOS4, HSI 64 MHz, flash memory in normal mode
13.8
16.0
SVOS4, HSI 64 MHz, flash memory in low-power mode
17.7
21.9
SVOS5, HSI 64 MHz, flash memory in low-power mode
31.4
36.8
SVOS3, CSI 4 MHz, flash memory in normal mode
25.5
31.0
SVOS3, CSI 4 MHz, flash memory in low power mode
27.7
34.2
SVOS4, CSI 4 MHz, flash memory in normal mode
35.3
40.8
SVOS4, CSI 4 MHz, flash memory in low-power mode
37.5
44.0
SVOS5, CSI 4 MHz, flash memory in low-power mode
51.2
58.9
VCAP capacitors discharged
506.0
653.6
µs
1. Evaluated by characterization - Not tested in production.
5.3.8
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal must respect the Table 40 in addition to Table 58. The external
clock can be low-swing (analog) or digital. In case of a low-swing analog input clock, the
clock squarer must be activated (refer to RM0481).
Table 40. High-speed external user clock characteristics(1)
Symbol
Parameter
fHSE_ext
User external clock
source frequency
VHSEH
Digital OSC_IN input
high-level voltage
VHSEL
Digital OSC_IN input
low-level voltage
tw(HSEH) / tw(HSEL)(2)
Digital OSC_IN input
high or low time
Conditions
External digital/analog
clock
Min
Typ
Max
Unit
4
25
50
MHz
0.7 VDD
-
VDD
VSS
-
0.3 VDD
7
-
-
V
External digital clock
External digital clock
DS14258 Rev 5
ns
147/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 40. High-speed external user clock characteristics(1) (continued)
Symbol
Parameter
Visw(HSEH)
(VHSEH -VHSEL)(3)
DuCyHSE
tr(HSE) / tf(HSE)
Conditions
Analog low-swing
OSC_IN peak-to-peak
External analog low
amplitude
swing clock
Analog low-swing
OSC_IN duty cycle
Analog low-swing
OSC_IN rise and fall
times
Min
Typ
Max
Unit
0.2
-
2/3 VDD
V
45
50
55
%
-
0.3 / fHSE_ext
ns
External analog low
0.05 / fHSE_ext
swing clock, 10% to 90%
1. Specified by design - Not tested in production..
2. The rise and fall times for a digital input signal are not specified, but the VHSEH and VHSEL conditions must be fulfilled
anyway.
3. The DC component of the signal must ensure that the signal peaks are located between VDD and VSS.
Figure 27. High-speed external clock source AC timing diagram
VHSEH
90 %
10 %
VHSEL
tr(HSE)
tf(HSE)
tW(HSE) t
tW(HSE)
THSE
External
clock source
fHSE_ext
OSC_IN
IL
STM32
ai17528b
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal must respect the Table 41 in addition to Table 58. The external
clock can be low-swing (analog) or digital. In case of a low-swing analog input clock, the
clock squarer must be activated (refer to RM0481).
Table 41. Low-speed external user clock characteristics(1)
Symbol
Parameter
Conditions
fLSE_ext
User external clock source
External digital/analog clock
frequency
VLSEH
Digital OSC32_IN input
high-level voltage
VLSEL
Digital OSC32_IN input
low-level voltage
148/270
Min
Typ
Max
Unit
-
32.768
1000
kHz
0.7 VDD
-
VDD
VSS
-
0.3 VDD
V
External digital clock
DS14258 Rev 5
STM32H562xx and STM32H563xx
Electrical characteristics
Table 41. Low-speed external user clock characteristics(1) (continued)
Symbol
Parameter
tw(LSEH)/tw(LSEL)
Digital OSC_IN input high
or low time
Visw_H
Analog low-swing OSC_IN
high-level voltage
Visw_L
ViswLSE
(VLSEH -VLSEL)
Conditions
Min
Typ
Max
Unit
External digital clock
250
-
-
ns
0.6
-
1.225
0.35
-
0.8
0.5
-
0.875
45
50
55
%
-
100
200
ns
Analog low-swing OSC_IN
low-level voltage
External analog low swing
Analog low-swing OSC_IN clock
peak-to-peak amplitude
Analog low-swing OSC_IN
duty cycle
DuCyLSE
tr(LSE)/tf(LSE)
Analog low-swing OSC_IN External analog low swing
rise and fall times
clock, 10% to 90%
V
1. Specified by design - Not tested in production.
Note:
For information on selecting the crystal, refer to AN2867 “Guidelines for oscillator design on
STM8AF/AL/S and STM32 MCUs/MPUs” available from www.st.com.
Figure 28. Low-speed external clock source AC timing diagram
VLSEH
90%
VLSEL
10%
tr(LSE)
tf(LSE)
tW(LSE)
OSC32_IN
IL
tW(LSE) t
TLSE
External
clock source
fLSE_ext
STM32
ai17529b
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 50 MHz crystal/ceramic
resonator oscillator.
All the information given in this paragraph are based on characterization results obtained
with typical external components specified in Table 42. In the application, the resonator and
the load capacitors must be placed as close as possible to the oscillator pins to minimize
output distortion and startup stabilization time. Refer to the crystal resonator manufacturer
for more details on the resonator characteristics (frequency, package, accuracy).
DS14258 Rev 5
149/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 42. 4-50 MHz HSE oscillator characteristics(1)
Symbol
F
RF
Operating conditions(2)
Min
Typ
Max
Unit
Oscillator frequency
-
4
-
50
MHz
Feedback resistor
-
-
200
-
kΩ
-
-
10
VDD = 3 V, Rm = 20 Ω,
CL = 10 pF at 4 MHz
-
0.44
-
VDD = 3 V, Rm = 20 Ω,
CL = 10 pF at 8 MHz
-
0.44
-
VDD = 3 V, Rm = 20 Ω,
CL = 10 pF at 16 MHz
-
0.55
-
VDD = 3 V, Rm = 20 Ω,
CL = 10 pF at 32 MHz
-
0.67
-
VDD = 3 V, Rm = 20 Ω,
CL = 10 pF at 48 MHz
-
1.17
-
Startup
-
-
1.5
mA/V
VDD is stabilized
-
2
-
ms
Parameter
During startup
IDD(HSE)
HSE current consumption
Gmcritmax Maximum critical crystal gm
tSU(HSE)
(4)
Startup time
(3)
mA
1. Evaluated by design - Not tested in production.
2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
Note:
For information on selecting the crystal, refer to AN2867 “Guidelines for oscillator design on
STM8AF/AL/S and STM32 MCUs/MPUs”, available from www.st.com.
Figure 29. Typical application with an 8 MHz crystal
Resonator with
integrated capacitors
CL1
8 MHz
resonator
CL2
fHSE
OSC_IN
REXT(1)
RF
OSC_OU T
Bias
controlled
gain
STM32
ai17530b
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. All the information given in this paragraph is based on design simulation results
obtained with typical external components specified in Table 43. In the application, the
resonator and the load capacitors must be placed as close as possible to the oscillator pins
to minimize output distortion and startup stabilization time. Refer to the crystal resonator
150/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Electrical characteristics
manufacturer for more details on the resonator characteristics (frequency, package,
accuracy).
Table 43. Low-speed external user clock characteristics(1)
Symbol
F
IDD
Conditions(2)
Min
Typ
Max
Unit
-
-
32.768
-
kHz
LSEDRV[1:0] = 00
Low drive capability
-
246
-
LSEDRV[1:0] = 01
Medium low drive capability
-
333
-
LSEDRV[1:0] = 10
Medium high drive capability
-
462
-
LSEDRV[1:0] = 11
High drive capability
-
747
-
LSEDRV[1:0] = 00
Low drive capability
-
-
0.5
LSEDRV[1:0] = 01
Medium low drive capability
-
-
0.75
LSEDRV[1:0] = 10
Medium high drive capability
-
-
1.7
LSEDRV[1:0] = 11
High drive capability
-
-
2.7
VDD is stabilized
-
2
-
Parameter
Oscillator frequency
LSE current consumption
Maximum critical crystal
Gmcritmax
gm
tSU(LSE)(3) Startup time
nA
µA/V
s
1. Specified by design - Not tested in production.
2. Refer to the note and caution paragraphs below the table, and to AN2867 “Guidelines for oscillator design
on STM8AF/AL/S and STM32 MCUs/MPUs”.
3.
Note:
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to when a stabilized
32.768 kHz oscillation is reached. This value is measured for a standard crystal and can vary significantly
with the crystal manufacturer
For information on selecting the crystal, refer to AN2867 “Guidelines for oscillator design on
STM8AF/AL/S and STM32 MCUs/MPUs”, available from www.st.com.
Figure 30. Typical application with a 32.768 kHz crystal
Resonator with
integrated
capacitors
CL1
fLSE
OSC32_IN
32.768 kHz
resonator
RF
OSC32_OUT
Bias
controlled
gain
STM32
CL2
ai17531d
Note:
An external resistor is not required between OSC32_IN and OSC32_OUT, and it is
forbidden to add one.
DS14258 Rev 5
151/270
238
Electrical characteristics
5.3.9
STM32H562xx and STM32H563xx
Internal clock source characteristics
The parameters given in Table 44 to Table 47 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 20.
48 MHz high-speed internal RC oscillator (HSI48)
Table 44. HSI48 oscillator characteristics
Symbol
Parameter
fHSI48
Conditions
(1)
HSI48 frequency
TRIM(3)
VDD = 3.3 V, TJ= 30 °C 47.5
User trimming step
-
USER TRIM
COVERAGE(2)
User trimming coverage
DuCy(HSI48)(3)
Duty cycle
ACCHSI48_REL(3)
Min
Typ
48
Max
48.5
(1)
Unit
MHz
-
0.175
0.250
±4.70
±5.6
-
45
-
55
%
-4.5
-
4
%
VDD = 3.0 to 3.6 V
-
0.025
0.05
VDD = 1.71 to 3.6 V
-
0.05
0.1
±32 steps
-
Accuracy of the HSI48 oscillator over
TJ = -40 to 130 °C
temperature (reference is 30 °C)
%
∆VDD(HSI48)
HSI48 oscillator frequency drift with
VDD (reference is 3.3 V)
tsu(HSI48)(3)
HSI48 oscillator start-up time
-
-
2.1
4.0
μs
IDD(HSI48)(3)
HSI48 oscillator power consumption
-
-
350
400
μA
NT jitter(3)
Next transition jitter accumulated
jitter on 28 cycles
-
-
±0.15
-
PT jitter(3)
Paired transition jitter accumulated
jitter on 56 cycles(4)
-
-
±0.25
-
Typ
Max
%
ns
1. Calibrated during manufacturing tests.
2. Evaluated by characterization - Not tested in production.
3. Specified by design - Not tested in production.
4. Jitter measurements are performed without clock sources activated in parallel.
64 MHz high-speed internal RC oscillator (HSI)
Table 45. HSI oscillator characteristics(1)
Symbol
fHSI
Parameter
Frequency
Conditions
Min
63.7(2) 64.0(2) 64.3(2)
VDD = 3.3 V, TJ = 30 °C
Trimming is not a multiple of
32(3)
-
0.24
0.32
-5.2
-1.8
-
-1.4
-0.8
-
Other trimmings are multiples of 32 (not
including multiples of 64 and 128)(3)
-0.6
-0.25
-
-
45
-
55
Trimming is 128, 256, and 384(3)
TRIM
User trimming step
DuCy(HSI) Duty cycle
152/270
Trimming is 64, 192, 320, and
DS14258 Rev 5
488(3)
Unit
MHz
%
%
STM32H562xx and STM32H563xx
Electrical characteristics
Table 45. HSI oscillator characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
-0.12
-
0.03
-1(4)
-
1(4)
-2(4)
-
1(4)
-
1.4
2.0
At 1% of target frequency
-
4
8
At 1% of target frequency
-
-
4
-
300
450
μA
Min
Typ
Max
Unit
3.96(2)
4
4.04(2)
MHz
Trimming is not a multiple of 16
-
0.40
0.75
Trimming is not a multiple of 32
-4.75
-2.75
0.75
Other trimmings are a multiple of 32
(not including multiples of 64 and 128)
-0.43
0.00
0.75
-
45
-
55
%
%
∆VDD(HSI)
Frequency drift with VDD
VDD= 1.71 to 3.6 V
(reference is 3.3 V)
∆TEMP(HSI)
Frequency drift with VDD TJ= -20 to 105 °C
(reference is 64 MHz)
TJ= -40 to 130 °C
tsu(HSI)
Start-up time
-
tstab(HSI)
Stabilization time
IDD(HSI)
Power consumption
-
Unit
%
μs
μs
1. Specified by design - Not tested in production, unless otherwise specified.
2. Calibrated during manufacturing tests.
3. Trimming value of HSICAL[8:0].
4. Guaranteed by characterization - Not tested in production.
4 MHz low-power internal RC oscillator (CSI)
Table 46. CSI oscillator characteristics(1)
Symbol
fCSI
TRIM
DuCy(CSI)
Parameter
Frequency
User trimming step
VDD = 3.3 V, TJ = 30 °C
Duty cycle
∆TEMP(CSI)
Frequency drift over
temperature
∆VDD(CSI)
Frequency drift over VDD
tsu(CSI)
Conditions
%
TJ= 0 to 85 °C
-3.7(3)
-
4.5(3)
TJ= -40 to TJ = 130 °C
-11(3)
-
7.5(3)
%
VDD= 1.71 to 3.6 V
-0.06
-
0.06
%
Start-up time
-
-
1
2
μs
tstab(CSI)
Stabilization time
(to reach ± 3% of fCSI)
-
-
-
4
cycle
IDD(CSI)
Power consumption
-
-
23
30
μA
1. Specified by design - Not tested in production, unless otherwise specified.
2. Calibrated during manufacturing tests.
3. Evaluated by characterization - Not tested in production.
DS14258 Rev 5
153/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Low-speed internal (LSI) RC oscillator
Table 47. LSI oscillator characteristics
Symbol
fLSI
Parameter
Frequency
Conditions
Min
Typ
Max
VDD = 3.3 V, TJ = 25 °C
31.4(1)
32
32.6(1)
TJ = -40 to 110 °C, VDD =1.71 to 3.6 V
29.76(2)
-
33.6(2)
-
(2)
TJ = -40 to 130 °C, VDD =1.71 to 3.6 V
tsu(LSI)
(3)
(2)
29.4
Unit
kHz
33.6
Start-up time
-
-
80
130
tstab(LSI)(3)
Stabilization time
(5% of final value)
-
-
120
170
IDD(LSI)(3)
Power consumption
-
-
130
280
μs
nA
1. Calibrated during manufacturing tests.
2. Evaluated by characterization - Not tested in production.
3. Specified by design - Not tested in production.
5.3.10
PLL characteristics
The parameters given in Table 48 are derived from tests performed under temperature and
VDD supply voltage conditions summarized in Table 20.
Table 48. PLL characteristics (wide VCO frequency range)(1)
Symbol
fPLL_IN
fPLL_P_OUT
fVCO_OUT
tLOCK
154/270
Parameter
Conditions
Min
Typ
Max
Unit
PLL input clock
-
2
-
16
MHz
PLL input clock duty cycle
-
10
-
90
%
PLL multiplier output clock
P, Q, R
PLL VCO output
PLL lock time
VOS0
1
-
250(2)
VOS1
1
-
200(2)
VOS2
1
-
150(2) MHz
VOS3
1
-
100(2)
-
128
-
560(2)
Normal mode
-
45
100(3)
60
120(3)
Sigma-delta mode (fPLL_IN ≥ 8 MHz)
DS14258 Rev 5
-
μs
STM32H562xx and STM32H563xx
Electrical characteristics
Table 48. PLL characteristics (wide VCO frequency range)(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
fVCO_OUT = 128 MHz
-
60
-
fVCO_OUT = 200 MHz
-
50
-
fVCO_OUT = 400 MHz
-
20
-
fVCO_OUT = 560 MHz
-
15
-
Normal mode (f PLL_IN = 2 MHz),
fVCO_OUT = 560 MHz
-
±0.2
-
Normal mode (f PLL_IN = 16 MHz),
fVCO_OUT = 560 MHz
-
±0.8
-
Sigma-delta mode (f PLL_IN = 2 MHz),
fVCO_OUT = 560 MHz
-
±0.2
-
Sigma-delta mode (f PLL_IN = 16 MHz),
fVCO_OUT = 560 MHz
-
±0.8
-
VDD
-
330
420
VCORE
-
630
-
VDD
-
155
230
VCORE
-
170
-
Cycle-to-cycle jitter
Jitter
Long term jitter
IDD(PLL)
PLL power consumption on
VDD
fVCO_OUT = 560 MHz
fVCO_OUT = 128 MHz
Unit
±ps
%
μA
1. Specified by design - Not tested in production, unless otherwise specified.
2. This value must be limited to the maximum frequency due to the product limitation.
3. Evaluated by characterization - Not tested in production.
Table 49. PLL characteristics (medium VCO frequency range)
Symbol
fPLL_IN
fPLL_OUT
fVCO_OUT
tLOCK
Parameter
Conditions
Min(1) Typ(1) Max(1)
Unit
PLL input clock
-
1
-
2
MHz
PLL input clock duty cycle
-
10
-
90
%
VOS0
1.17
-
210
VOS1
1.17
-
210
VOS2
1.17
-
160(2)
PLL multiplier output clock
P, Q, R
PLL VCO output
PLL lock time
VOS3
1.17
-
88
-
150
-
420
Normal mode
-
45
80(3)
Sigma-delta mode
DS14258 Rev 5
Forbidden
MHz
(2)
μs
155/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 49. PLL characteristics (medium VCO frequency range) (continued)
Symbol
Parameter
Cycle-to-cycle jitter
Jitter
Period jitter
fVCO_OUT = 150 MHz
-
-
60
-
fVCO_OUT = 200 MHz
-
-
40
-
fVCO_OUT = 400 MHz
-
-
18
-
fVCO_OUT = 420 MHz
-
-
15
-
fVCO_OUT = 150 MHz
fPLL_OUT =
50 MHz
-
75
-
-
25
-
Normal mode fVCO_OUT = 400 MHz
-
±0.2
-
VDD
-
275
360
VCORE
-
450
-
VDD
-
160
240
VCORE
-
165
-
fVCO_OUT = 400 MHz
Long term jitter
IDD(PLL)
Min(1) Typ(1) Max(1)
Conditions
PLL power consumption on
VDD
fVCO_OUT = 420 MHz
fVCO_OUT = 150 MHz
Unit
±ps
%
μA
1. Specified by design - Not tested in production, unless otherwise specified.
2. This value must be limited to the maximum frequency due to the product limitation.
3. Evaluated by characterization - Not tested in production.
5.3.11
Memory characteristics
Flash memory
The characteristics are given at TJ = -40 to 130 °C unless otherwise specified.
The devices are shipped to customers with the flash memory erased.
Table 50. Flash memory characteristics
Symbol
IDD
Min
Typ
Max(1)
Word program(2)
-
2.5
3.6
Sector erase
-
1.8
4
Mass erase
-
2.0
4
Parameter
Supply current
Conditions
Unit
mA
1. Specified by design - Not tested in production
2. Data are evaluated with a write of 50% of the programmed bits equal to 0.
Table 51. Flash memory programming(1)
Min(2)
Typ
Max(1)
128 bits (user area)
-
31
100
16 bits (OTP area)
-
31
100
Sector erase time (8 Kbytes)
-
2
10
tME
Mass erase time
-
0.512
2.6
tBE
Bank erase time
-
0.256
1.3
1.71
-
3.6
Symbol
tprog
tERASE
Vprog
156/270
Parameter
Conditions
Word program time
Programming voltage
DS14258 Rev 5
Unit
µs
ms
s
V
STM32H562xx and STM32H563xx
Electrical characteristics
1. Data are valid for program memory and high-cycling data memory.
2. Specified by design - Not tested in production.
Table 52. Flash memory endurance and data retention
Symbol
Parameter
Conditions
Min(1)
NPEND
Endurance program memory
TJ = -40 to +130 °C
10
NDEND
Endurance data memory
TJ = -40 to +130 °C
100
1 kcycle at TA = 125 °C
10
1 kcycles at TA = 85 °C
30
10 kcycles at TA = 55 °C
30
100 kcycle at TA = 125 °C
1
100 kcycles at TA = 85 °C
10
100 kcycles at TA = 55 °C
10
tPRET
tDRET
Program memory, data retention
Data retention for data memory
Unit
kcycles
Years
1. Evaluated by characterization - Not tested in production, unless otherwise specified.
5.3.12
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed (toggling two LEDs through I/O ports), the device is
stressed by two electromagnetic events until a failure occurs. The failure is indicated by the
LEDs:
•
Electrostatic discharge (ESD), positive and negative, is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
A device reset allows to resume normal operation.
The test results are given in Table 53. They are based on the EMS levels and classes
defined in AN1709 “EMC design guide for STM8, STM32 and legacy MCUs”.
Table 53. EMS characteristics
Symbol
VFESD
VFTB
Parameter
Voltage limits to apply on any I/O pin to
induce a functional disturbance
Fast transient voltage burst limits to apply
through 100 pF on VDD and VSS pins to
induce a functional disturbance
Conditions
VDD = 3.3 V, TA = 25 °C,
LQFP176-SMPS,
frcc_cpu_ck = 250 MHz,
conform to IEC 61000-4-2
Level/Class
2B
5A
As a consequence, it is recommended to add a serial resistor (1 kΩ), located as close as
possible to the MCU, to the pins exposed to noise (connected to tracks longer than 50 mm
on PCB).
DS14258 Rev 5
157/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. Note that good EMC performance is
highly dependent upon the user application, and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for its application.
Software recommendations
The software flow must include the management of runaway conditions such as:
•
Corrupted program counter
•
Unexpected reset
•
Critical data corruption (such as control registers)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST or on the oscillator pins for 1 s.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015 “Software
techniques for improving microcontrollers EMC performance”).
Electromagnetic interference (EMI)
The electromagnetic field emitted by the device is monitored while a simple application,
executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2
standard, which specifies the test board and the pin loading.
Table 54. EMI characteristics
Symbol Parameter
Conditions
Monitored
frequency band
Max vs.
[fHSE/fCPU]
Unit
25/250 MHz
SEMI
Peak
level(1)
VDD = 3.6 V, TA = 25 °C,
LQFP176-SMPS package,
conforming to IEC61967-2
0.1 to 30 MHz
21
30 to 130 MHz
22
130 MHz to 1 GHz
29
1 GHz to 2 GHz
21
EMI level
4
dBµV
-
1. Refer to the EMI radiated test chapter of application note AN1709 “EMC design guide for STM8, STM32 and legacy MCUs”
available from the ST website www.st.com.
158/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
5.3.13
Electrical characteristics
Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive pulse followed by a negative one) are applied to the pins
of each sample according to each pin combination. This test conforms to the
ANSI/ESDA/JEDEC JS-001 and ANSI/ESDA/JEDEC JS-002 standards.
Table 55. ESD absolute maximum ratings
Symbol
Ratings
Conditions
Electrostatic discharge
VESD(HBM)
voltage (human body model)
VESD(CDM)
TA = 25 °C, conforming to
ANSI/ESDA/JEDEC JS-001
Maximum
Unit
value(1)
Packages
Class
Packages
with SMPS
1C
1000(2)
Packages
without SMPS
2
2000
C2a
500
Electrostatic discharge
TA = 25 °C, conforming to
All packages
voltage (charge device model) ANSI/ESDA/JEDEC JS-002
V
V
1. Evaluated by characterization - Not tested in production.
2. The electrostatic discharge is 2000 V for all pins, except VFBSMPS, for which the test fails at 2000 V and passes at 1600 V.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
•
A supply overvoltage is applied to each power supply pin
•
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with the JESD78 IC latch-up standard.
Table 56. Electrical sensitivities
Symbol
LU
5.3.14
Parameter
Static latch-up class
Conditions
TJ = 130 °C, conforming to JESD78
Class
II level A
I/O current injection characteristics
As a general rule, avoid current injection to the I/O pins, due to external voltage below VSS
or above VDD (for standard, 3.3 V-capable I/O pins) during the normal product operation. To
give an indication of the device robustness when an abnormal injection accidentally
happens, susceptibility tests are performed on a sample basis during the characterization.
Functional susceptibility to I/O current injection
While a simple application is executed, the device is stressed by injecting current into the
I/O pins (one at the time) programmed in floating input mode, and checked for functional
failures. The failure is indicated by an out of range parameter: ADC error above a certain
DS14258 Rev 5
159/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
limit (higher than 5 LSB TUE), out of conventional limits (-5 / +0 µA range) of induced
leakage current on adjacent pins, or other functional failures (such as reset, oscillator
frequency deviation).
The following table shows I/Os current injection susceptibility data. Negative/positive
induced leakage currents are caused, respectively, by negative/positive injection.
Table 57. I/O current injection susceptibility(1)
Functional susceptibility
Symbol
IINJ
Description
Negative
injection
Positive
injection
Injected current on pins PA4, PA5, PB2, PB12,
PC14, PC15, PD8, and PH2
0
0
Injected current on all other pins
5
N/A
Unit
mA
1. Evaluated by characterization - Not tested in production.
5.3.15
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 58 are derived from tests
performed under the conditions summarized in Table 20. All I/Os are CMOS and TTL
compliant (except for BOOT0).
Note:
For information on GPIO configuration, refer to AN4899 “STM32 GPIO configuration for
hardware settings and low-power consumption”, available on www.st.com.
Table 58. I/O static characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
-
-
0.3 VDDIOx(2)
-
-
0.4 VDDIOx - 0.1(3)
-
-
0.19 VDDIOx + 0.1(3)
0.7 VDDIOx(2)
-
-
0.52 VDDIOx +
0.18(3)
-
-
0.17 VDDIOx +
0.6(3)
-
-
-
250
-
I/O input low level voltage
except BOOT0
VIL
I/O input low level voltage
except BOOT0
1.08 V < VDD < 3.6 V
BOOT0 I/O input low level
voltage
I/O input high level
voltage except BOOT0
VIH
I/O input high level
voltage except BOOT0
1.08 V < VDD < 3.6 V
BOOT0 I/O input high
level voltage
VHYS(3)
160/270
TT_xx, FT_xxx and NRST
I/O input hysteresis
1.08 V < VDD < 3.6 V
BOOT0 I/O input
hysteresis
1.71 V < VDD < 3.6 V
Unit
V
V
mV
DS14258 Rev 5
-
200
-
STM32H562xx and STM32H563xx
Electrical characteristics
Table 58. I/O static characteristics(1) (continued)
Symbol
Parameter
FT_xx input leakage
current(3)
Ileak(4)
TT_xx input leakage
current
BOOT0
RPU
Weak pull-up
equivalent resistor(6)
RPD
Weak pull-down
equivalent resistor(6)
CIO
I/O pin capacitance
Conditions
Min
Typ
Max
0 < VIN ≤
Max(VDDXXX)(7)
-
-
±200
Max(VDDXXX) <
VIN ≤ Max(VDDXXX) +
1 V) (5)(7)
-
-
2500
Max(VDDXXX) < VIN ≤
5.5 V (5)(7)
-
-
750
0 < VIN ≤ Max(VDDXXX)
(7)
-
-
±200
0 < VIN ≤ VDDOX
-
-
15
VIN = VSS
30
40
50
Unit
nA
kΩ
VIN = VDD
(7)
-
30
40
50
-
5
-
pF
1. VDDIOx represents VDD or VDDIO2.
2. Compliant with CMOS requirements.
3. Specified by design - Not tested in production.
4. This parameter represents the pad leakage of the I/O itself. The total product pad leakage is provided by the following
formula: ITotal_Ieak_max = 10 μA + [number of I/Os where VIN is applied on the pad] ₓ Ilkg(Max).
5. VIN must be lower than Max(VDDXXX) + 3.6 V.
6. The pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimal (~10%).
7. Max(VDDXXX) is the maximum value of all the I/O supplies.
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS technology or TTL parameters. The
coverage of these requirements for FT I/Os is shown in the following figure.
DS14258 Rev 5
161/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Figure 31. VIL/VIH for all I/Os except BOOT0
3
2.5
Minimum required
logic level 1 zone
TTL standard requirement VIHmin = 2V
2
xV DDIO
VIN (V)
1.5
Teste
Based
OS
n (CM
uctio
rod
d in p
VIHmin
ulation
ard
stand
= 0.52
nt) V IH
ireme
requ
VDDIO +
= 0.7
min
0.18
Undefined input range
on sim
1
Based on
simulation
VILmax = 0.4
VDDIO - 0.1
ment) VILmax
dard require
S stan
tion (CMO
ed in produc
0.5
TTL standard requirement VILmax = 0.8V
= 0.3 VDDIO
Test
Minimum required
logic level 0 zone
0
1.6
1.8
2.0
2.2
Device characteristics
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VDDIO (V)
Tested thresholds
MSv47925V1
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins that can drive current must be limited to
respect the absolute maximum rating specified in Section 5.2. In particular:
•
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 18).
•
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
ΣIVSS (see Table 18).
Output voltage levels
Unless otherwise specified, the parameters given in Table 59 and Table 61 are derived from
tests performed under ambient temperature and VDD supply voltage conditions summarized
in Table 20. All I/Os are CMOS and TTL compliant.
162/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Electrical characteristics
Table 59. Output voltage characteristics for all I/Os except PC13, PC14, PC15, and PI8
Symbol
Parameter
Conditions(1)
Min
Max
VOL
Output low level voltage
CMOS port(2), IIO = 8 mA
2.7 V ≤ VDD ≤ 3.6 V
-
0.4
VOH
Output high level voltage
CMOS port(2), IIO = -8 mA
2.7 V ≤ VDD ≤ 3.6 V
VDD− 0.4
-
VOL(3)
Output low level voltage
TTL port(2), IIO = 8 mA
2.7 V ≤ VDD ≤ 3.6 V
-
0.4
VOH(3)
Output high level voltage
TTL port(2), IIO = -8 mA
2.7 V ≤ VDD ≤ 3.6 V
2.4
-
VOL(3)
Output low level voltage
IIO = 20 mA
2.7 V ≤ VDD ≤ 3.6 V
-
1.3
VOH(3)
Output high level voltage
IIO = -20 mA
2.7 V ≤ VDD ≤ 3.6 V
VDD - 1.3
-
VOL(3)
Output low level voltage
IIO = 4 mA
1.71 V ≤ VDD ≤ 3.6 V
-
0.4
VOH (3)
Output high level voltage
IIO = -4 mA
1.71 V ≤ VDD 3.0V)
•
For 1.71 V < VDD < 1.8 V: maximum FMC_SDCLK = 95 MHz at 15 pF
•
For 1.71 V < VDD < 1.8 V: maximum FMC_SDCLK = 90 MHz at 20 pF
Figure 45. SDRAM read access waveforms (CL = 1)
FMC_SDCLK
td(SDCLKL_AddC)
th(SDCLKL_AddR)
td(SDCLKL_AddR)
FMC_A[12:0]
Row n
Col1
Col2
Coli
Coln
th(SDCLKL_AddC)
th(SDCLKL_SNDE)
td(SDCLKL_SNDE)
FMC_SDNE[1:0]
td(SDCLKL_NRAS)
th(SDCLKL_NRAS)
FMC_SDNRAS
th(SDCLKL_NCAS)
td(SDCLKL_NCAS)
FMC_SDNCAS
FMC_SDNWE
tsu(SDCLKH_Data)
th(SDCLKH_Data)
Data1
FMC_D[31:0]
Data2
Datai
Datan
MS32751V2
Table 84. SDRAM read timings(1)
Symbol
Parameter
Max
tw(SDCLK)
FMC_SDCLK period
2Tfmc_ker_ck - 0.5
2Tfmc_ker_ck + 0.5
tsu(SDCLKH _Data)
Data input setup time
3
-
th(SDCLKH_Data)
Data input hold time
0.5
-
td(SDCLKL_Add)
Address valid time
-
1.5
td(SDCLKL- SDNE)
Chip select valid time
-
1.5
th(SDCLKL_SDNE)
Chip select hold time
0
-
td(SDCLKL_SDNRAS)
SDNRAS valid time
-
1.5
th(SDCLKL_SDNRAS)
SDNRAS hold time
0
-
td(SDCLKL_SDNCAS)
SDNCAS valid time
-
1
th(SDCLKL_SDNCAS)
SDNCAS hold time
0
-
1. Evaluated by characterization - Not tested in production.
192/270
Min
DS14258 Rev 5
Unit
ns
STM32H562xx and STM32H563xx
Electrical characteristics
Table 85. LPSDR SDRAM read timings(1)
Symbol
Parameter
Min
Max
Unit
tW(SDCLK)
FMC_SDCLK period
2Tfmc_ker_ck - 0.5
2Tfmc_ker_ck + 0.5
tsu(SDCLKH_Data)
Data input setup time
3
-
th(SDCLKH_Data)
Data input hold time
0.5
-
td(SDCLKL_Add)
Address valid time
-
1.5
td(SDCLKL_SDNE)
Chip select valid time
-
1.5
th(SDCLKL_SDNE)
Chip select hold time
0
-
td(SDCLKL_SDNRAS
SDNRAS valid time
-
1.5
th(SDCLKL_SDNRAS)
SDNRAS hold time
0
-
td(SDCLKL_SDNCAS)
SDNCAS valid time
-
1
th(SDCLKL_SDNCAS)
SDNCAS hold time
0
-
ns
1. Evaluated by characterization - Not tested in production.
Figure 46. SDRAM write access waveforms
FMC_SDCLK
td(SDCLKL_AddC)
th(SDCLKL_AddR)
td(SDCLKL_AddR)
FMC_A[12:0]
Row n
Col1
Col2
Coli
Coln
th(SDCLKL_AddC)
th(SDCLKL_SNDE)
td(SDCLKL_SNDE)
FMC_SDNE[1:0]
td(SDCLKL_NRAS)
th(SDCLKL_NRAS)
FMC_SDNRAS
td(SDCLKL_NCAS)
th(SDCLKL_NCAS)
td(SDCLKL_NWE)
th(SDCLKL_NWE)
FMC_SDNCAS
FMC_SDNWE
td(SDCLKL_Data)
FMC_D[31:0]
Data1
Data2
Datai
Datan
th(SDCLKL_Data)
td(SDCLKL_NBL)
FMC_NBL[3:0]
MS32752V2
DS14258 Rev 5
193/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 86. SDRAM write timings(1)
Symbol
Parameter
Min
Max
tw(SDCLK)
FMC_SDCLK period
2Tfmc_ker_ck – 0.5
2Tfmc_ker_ck+0.5
td(SDCLKL _Data)
Data output valid time
-
1
th(SDCLKL _Data)
Data output hold time
0
-
td(SDCLKL_Add)
Address valid time
-
2
td(SDCLKL_SDNWE)
SDNWE valid time
-
1
th(SDCLKL_SDNWE)
SDNWE hold time
0
-
td(SDCLKL_ SDNE)
Chip select valid time
-
1
th(SDCLKL-_SDNE)
Chip select hold time
0
-
td(SDCLKL_SDNRAS)
SDNRAS valid time
-
1.5
th(SDCLKL_SDNRAS)
SDNRAS hold time
0
-
td(SDCLKL_SDNCAS)
SDNCAS valid time
-
1
td(SDCLKL_SDNCAS)
SDNCAS hold time
0
-
Unit
ns
1. Evaluated by characterization - Not tested in production.
Table 87. LPSDR SDRAM write timings(1)
Symbol
Parameter
Min
Max
tw(SDCLK)
FMC_SDCLK period
2Tfmc_ker_ck - 0.5
2Tfmc_ker_ck+0.5
td(SDCLKL _Data)
Data output valid time
-
1
th(SDCLKL _Data)
Data output hold time
0.
-
td(SDCLKL_Add)
Address valid time
-
2
td(SDCLKL-SDNWE)
SDNWE valid time
-
1
th(SDCLKL-SDNWE)
SDNWE hold time
0
-
td(SDCLKL- SDNE)
Chip select valid time
-
1.5
th(SDCLKL- SDNE)
Chip select hold time
0
-
td(SDCLKL-SDNRAS)
SDNRAS valid time
-
1.5
th(SDCLKL-SDNRAS)
SDNRAS hold time
0
-
td(SDCLKL-SDNCAS)
SDNCAS valid time
-
1
td(SDCLKL-SDNCAS)
SDNCAS hold time
0
-
1. Evaluated by characterization - Not tested in production.
194/270
DS14258 Rev 5
Unit
ns
STM32H562xx and STM32H563xx
5.3.19
Electrical characteristics
Octo-SPI interface characteristics
Unless otherwise specified, the parameters given in Table 88 and Table 89 are derived from
tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage
conditions summarized in Table 20, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 11
•
Measurement points are done at CMOS levels: 0.5 VDD
•
I/O compensation cell activated
•
HSLV activated when VDD ≤ 2.7 V
•
VOS level set to VOS0
Refer to Section 5.3.15 for more details on the input/output alternate function
characteristics.
Table 88. OCTOSPI characteristics in SDR mode(1)(2)
Symbol
F(CLK)
Parameter
Clock frequency
tw(CLKH) Clock high and low time,
even division
t
w(CLKL)
tw(CLKH)
tw(CLKL)
Clock high and low time,
odd division
Conditions
Min
Typ
Max(3)
1.71 V < VDD < 1.9 V,
CL = 15 pF
-
-
110
1.71 V < VDD < 3.6 V,
CL =15 pF
-
-
150
t(CLK) / 2 - 0.5
-
t(CLK) / 2 + 0.5
t(CLK) / 2 - 0.5
-
t(CK) / 2 + 0.5
(n / 2) * t(CLK) /
(n + 1) - 0.5
-
(n / 2) * t(CLK) /
(n + 1) + 0.5
(n / 2 + 1) * t(CLK) /
(n + 1) - 0.5
-
(n / 2 + 1) * t(CLK) /
(n + 1) + 0.5
PRESCALER[7:0] = n
(= 0, 1, 3, 5,..., 255)
PRESCALER[7:0] = n
(= 2, 4, 6, ..., 254)
Unit
MHz
ts(IN)
Data input setup time
-
4
-
-
th(IN)
Data input hold time
-
1
-
-
tv(OUT)
Data output valid time
-
-
0.5
1
th(OUT)
Data output hold time
-
0
-
-
ns
1. All values apply to Octal- and Quad-SPI mode.
2. Evaluated by characterization - Not tested in production.
3. At VOS1 these values are degraded by up to 5%.
Figure 47. OCTOSPI SDR read/write timing diagram
tr(CLK)
t(CLK)
tw(CLKH)
tw(CLKL)
tf(CLK)
Clock
tv(OUT)
Data output
th(OUT)
D1
D0
ts(IN)
Data input
D0
D2
th(IN)
D1
D2
MSv36878V3
DS14258 Rev 5
195/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 89. OCTOSPI characteristics in DTR mode (no DQS)(1)(2)(3)
Symbol
FCLK
Parameter
OCTOSPI clock
frequency
tw(CLKH) OCTOSPI clock
high and low time
t
w(CLKL)
tw(CLKH)
tw(CLKL)
OCTOSPI clock
high and low time
Conditions
Min
Typ
Max
1.71 V < VDD < 1.9 V,
CL = 15 pF
-
-
100(4)
2.7 V < VDD < 3.6 V,
CL = 15 pF
-
-
125(4)
t(CLK) / 2 - 0.5
-
t(CLK) / 2 + 0.5
t(CLK) / 2 - 0.5
-
t(CLK) / 2 + 0.5
(n / 2) * t(CLK)/
(n + 1) - 0.5
-
(n / 2) * t(CLK)/
(n + 1) + 0.5
-
(n / 2 + 1) * t(CLK)/
(n + 1) + 0.5
PRESCALER[7:0] = n
(= 0, 1, 3, 5, .., 255)
MHz
PRESCALER[7:0] = n
(= 2, 4, 6, 8, ..., 254) (n / 2 + 1) * t
(CLK)/
(n + 1) - 0.5
tv(CLK)
Clock valid time
-
-
-
t(CLK) +0.5
tsr(IN),
tsf(IN)
Data input setup time
-
4
-
-
thr(IN),
thf(IN)
Data input hold time
-
1.5
-
-
DHQC = 0
-
2.5
3.5
DHQC = 1,
Prescaler [7:0] = 1, 2...
-
t(CLK) / 4
+ 0.5
t(CLK) / 4 + 1
DHQC = 0
1.5
-
-
DHQC = 1,
Prescaler [7:0] = 1, 2...
t(CLK) / 4 - 1
-
-
tvr(OUT)
tvf(OUT)
Data output valid time
thr(OUT)
thf(OUT)
Data output hold time
1. All values apply to Octal and Quad-SPI mode.
2. Evaluated by characterization - Not tested in production.
3. Delay block bypassed.
4. DHQC must be set to reach the mentioned frequency.
196/270
Unit
DS14258 Rev 5
ns
ns
ns
STM32H562xx and STM32H563xx
Electrical characteristics
Table 90. OCTOSPI characteristics in DTR mode (with DQS) / HyperBus(1)(2)
Symbol
FCLK
tw(CLKH)
tw(CLKL)
tw(CLKH)
tw(CLKL)
Parameter
OCTOSPI clock frequency
OCTOSPI clock
high and low time
OCTOSPI clock
high and low time
Conditions
Min
Typ
Max
1.71 V < VDD < 1.9 V,
CL = 15 pF
-
-
125(3)(4)
2.7 V < VDD < 3.6 V,
CL = 15 pF
-
-
125(3)(5)
t(CLK)/2 - 0.5
-
t(CLK)/2 + 0.5
t(CLK)/2 - 0.5
-
t(CLK)/2 + 0.5
(n/2)*t(CLK)/
(n+1) - 0.5
-
(n/2)*t(CLK)/
(n+1) + 0.5
(n/2+1)*t(CLK)/
(n+1) - 0.5
-
(n/2+1)*t(CLK)/
(n+1) + 0.5
PRESCALER[7:0] = n
= (0, 1, 3, 5, …, 255)
PRESCALER[7:0] = n
= (2, 4, 6, 8, …, 254)
MHz
tv(CLK)
Clock valid time
-
-
-
t(CLK) + 2
th(CLK)
Clock hold time
-
t(CLK)/2 - 1
-
-
tODr(CLK)(5)
CLK, NCLK crossing level
on CLK rising edge
VDD = 1.8 V
890
-
1300
tODf(CLK)(5)
CLK, NCLK crossing level
on CLK falling edge
VDD = 1.8 V
790
-
1080
Chip select high time
-
3 * t(CLK)
-
-
tv(DQ)
Data input valid time
-
3
-
-
tv(DS)
Data strobe input valid time
-
1
-
-
th(DS)
Data strobe input hold time
-
0
-
-
Data strobe output valid time
-
-
-
3 * t(CLK)
tsr(DQ),
tsf(DQ)
Data input setup time
-
-0.5
-
-
thr(DQ),
thf(DQ)
Data input hold time
-
2
-
-
DHQC = 0
-
2.5
3.5
DHQC = 1, all
prescaler values
except 0
-
t(CLK)/4
+ 0.5
t(CLK)/4 + 1
DHQC = 0
1.5
-
-
DHQC = 1, all
prescaler values
except 0
t(CLK)/4 - 1
-
-
tvr(OUT)
tvf(OUT)
thr(OUT)
thf(OUT)
Data output valid time
Data output hold time
ns
mV
tw(CS)
tv(RWDS)
Unit
ns
ns
1. Evaluated by characterization - Not tested in production.
2. Delay block activated.
3. Maximum frequency value are given for a maximum RWDS to DQ skew of ± 1.0 ns.
4. DHQC must be set to reach the mentioned frequency.
5. It is recommended that PF10/PB5, PB4/PB5 and PA3/PB5 are in line with crossing specification.
DS14258 Rev 5
197/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Figure 48. OCTOSPI timing diagram - DTR mode
tr(CLK)
t(CLK)
tw(CLKH)
tw(CLKL)
tf(CLK)
Clock
tvf(OUT)
thr(OUT)
Data output
D0
tvr(OUT)
D1
D2
thf(OUT)
D3
D4
tsf(IN) thf(IN)
Data input
D0
D1
D5
tsr(IN) thr(IN)
D2
D4
D3
D5
MSv36879V4
Figure 49. OCTOSPI HyperBus clock
tr(CLK)
tf(NCLK)
tw(CLKH)
tw(NCLKL)
t(CLK)
t(NCLK)
tw(CLKL)
tw(NCLKH)
tf(CLK)
tr(NCLK)
NCLK
VOD(CLK)
CLK
MSv47732V3
Figure 50. OCTOSPI HyperBus read
tw(CS)
NCS
tv(CLK)
th(CLK)
t ACC= Initial access
CLK, NCLK
tv(RWDS)
tv(DS)
th(DS)
RWDS
tv(OUT)
DQ[7:0]
47:40 39:32
th(OUT)
31:24
23:16
Latency count
15:8
7:0
Command address
Host drives DQ[7:0] and the memory drives RWDS.
198/270
DS14258 Rev 5
tv(DQ) ts(DQ)
th(DQ)
Dn
A
Dn+1
A
Dn
B
Dn+1
B
Memory drives DQ[7:0] and RWDS.
MSv47733V3
STM32H562xx and STM32H563xx
Electrical characteristics
Figure 51. OCTOSPI HyperBus write
tw(CS)
NCS
Read write recovery
Access latency
tv(CLK)
th(CLK)
CLK, NCLK
tv(RWDS) High = 2x latency count
RWDS
tv(OUT)
th(OUT)
tv(OUT)
th(OUT)
Low = 1x latency count
Latency count
DQ[7:0]
tv(OUT)
th(OUT)
47:40
31:24
39:32
23:16
15:8
Dn
A
7:0
Command address
Dn
B
Dn+1
A
Dn+1
B
Host drives DQ[7:0] and RWDS.
Host drives DQ[7:0] and the memory drives RWDS.
MSv47734V3
5.3.20
Delay block (DLYB) characteristics
Unless otherwise specified, the parameters given in Table 91 are derived from tests
performed under the ambient temperature, fHCLK frequency and VDD supply voltage
summarized in Table 20, with the following configuration:
Table 91. Delay block characteristics
5.3.21
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
tinit
Initial delay
-
750
1100
1700
ps
t∆
Unit delay
-
38
44
54
ps
DCMI interface characteristics
Unless otherwise specified, the parameters given in Table 92 are derived from tests
performed under the ambient temperature, fHCLK frequency and VDD supply voltage
summarized in Table 20, with the following configuration:
•
DCMI_PIXCLK polarity: falling
•
DCMI_VSYNC and DCMI_HSYNC polarity: high
•
Data formats: 14 bits
•
Capacitive load CL = 30 pF
•
Measurement points done at CMOS levels: 0.5 VDD
•
I/O compensation cell activated
•
HSLV activated when VDD ≤ 2.7 V
•
Voltage scaling VOS0 selected
DS14258 Rev 5
199/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 92. DCMI characteristics(1)
Symbol
Min
Max
Unit
Frequency ratio DCMI_PIXCLK/fHCLK
-
0.4
-
Pixel clock input
-
100
MHz
Pixel clock input duty cycle
30
70
%
tsu(DATA)
Data input setup time
2.5
-
th(DATA)
Data hold time
2
-
2.5
-
1.5
-
DCMI_PIXCLK
DPIXEL
Parameter
tsu(HSYNC), tsu(VSYNC) DCMI_HSYNC and DCMI_VSYNC input setup times
th(HSYNC), th(VSYNC)
DCMI_HSYNC and DCMI_VSYNC input hold times
ns
1. Evaluated by characterization - Not tested in production.
Figure 52. DCMI timing diagrams
1/DCMI_PIXCLK
DCMI_PIXCLK
tsu(HSYNC)
th(HSYNC)
DCMI_HSYNC
tsu(VSYNC)
th(HSYNC)
DCMI_VSYNC
tsu(DATA) th(DATA)
DATA[0:13]
MS32414V2
5.3.22
PSSI interface characteristics
Unless otherwise specified, the parameters given in Table 92 and Table 93 are derived from
tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage
summarized in Table 20 and Section 5.3.1, with the following configuration:
200/270
•
PSSI_PDCK polarity: falling
•
PSSI_RDY and PSSI_DE polarity: low
•
Bus width: 16 lines
•
DATA width: 32 bits
•
Capacitive load CL= 30 pF
•
Measurement points are done at CMOS levels: 0.5 VDD
•
I/O compensation cell activated
•
HSLV activated when VDD ≤ 2.7 V
•
Voltage scaling VOS0 selected
DS14258 Rev 5
STM32H562xx and STM32H563xx
Electrical characteristics
Table 93. PSSI transmit characteristics(1)
Symbol
Parameter
Conditions
Min
Max
Unit
-
Frequency ratio PSSI_PDCK/fHCLK
-
-
0.4
-
(2)
2.7 V ≤ VDD ≤ 3.6 V
-
1.71 V ≤ VDD ≤ 3.6 V
-
86
30
70
2.7 V ≤ VDD ≤ 3.6 V
-
11
1.71 V ≤ VDD ≤ 3.6 V
-
11.5
Data output hold time
5.5
-
tov((DE)
DE output valid time
-
11.5
toh(DE)
DE output hold time
5.5
-
tsu(RDY)
RDY input setup time
0.5
-
th(RDY)
RDY input hold time
0.5
-
Min
Max
Unit
-
0.4
-
1.71 V ≤ VDD ≤ 3.6 V
-
100
MHz
-
30
70
%
PSSI_PDCK
PSSI clock input
Dpixel
PSSI clock input duty cycle
tov(DATA)
Data output valid time
toh(DATA)
1.71 V ≤ VDD ≤ 3.6 V
90
MHz
%
ns
1. Evaluated by characterization - Not tested in production.
2. This maximal frequency does not consider receiver setup and hold timings.
Table 94. PSSI receive characteristics(1)
Symbol
PSSI_PDCK
Dpixel
Parameter
Conditions
Frequency ratio PSSI_PDCK/fHCLK
PSSI clock input
PSSI clock input duty cycle
tsu(DATA)
Data input setup time
2
-
th(DATA)
Data input hold time
2.5
-
tsu((DE)
DE input setup time
1.5
-
th(DE)
DE input hold time
2
-
1.71 V ≤ VDD ≤ 3.6 V
tov(RDY)
RDY output valid time
-
16.5
toh(RDY)
RDY output hold time
5.5
-
ns
1. Evaluated by characterization - Not tested in production.
DS14258 Rev 5
201/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Figure 53. PSSI transmit timing diagram
tc(PDCK)
PSSI_PDCK
(input)
tw(PDCKH)
tw(PDCKL)
tf(PDCK)
tr(PDCK)
CKPOL = 0
CKPOL = 1
tov(DATA)
PSSI_RDY
(input)
PSSI_DE
(output)
PSSI D[15:0]
(output)
Invalid data OUT
toh(DATA)
Valid data OUT
Invalid data OUT
DEPOL = 0
tov(DE)
toh(DE)
DEPOL = 1
RDYPOL = 0
th(RDY)
tsu(RDY)
RDYPOL = 1
MSv65388V1
Figure 54. PSSI receive timing diagram
tc(PDCK)
PSSI_PDCK
(input)
tw(PDCKH)
tw(PDCKL)
tf(PDCK)
tr(PDCK)
CKPOL = 0
CKPOL = 1
tsu(DATA)
thDATA)
PSSI D[15:0]
(input)
Invalid data IN
Valid data IN
Invalid data IN
tsu(DE)
PSSI_DE
(output)
th(DE)
DEPOL = 0
DEPOL = 1
PSSI_RDY
(input)
tov(RDY)
toh(RDY)
RDYPOL = 0
RDYPOL = 1
MSv65389V1
202/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
5.3.23
Electrical characteristics
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 95 are derived from tests
performed under the ambient temperature, fHCLK frequency, and VDDA supply voltage
conditions summarized in Table 20.
Table 95. 12-bit ADC characteristics(1)(2)
Symbol
Parameter
Conditions
Min
Typ
Max
VDDA
Analog supply
voltage for
ADC ON
-
1.62
-
3.6
VREF+
Positive
reference
voltage
-
1.62
-
VDDA
V
VREF-
Negative
reference
voltage
-
fadc_ker_ck(3)
Clock
frequency
1.62 V ≤ VDDA ≤ 3.6 V
MHz
Continuous
mode
Resolution
= 12 bits
Single or
Discontinuous
mode
Sampling rate
for fast
channels
(VIN[0:5])
Continuous
mode
Resolution
= 10 bits
fS(4) with
RAIN = 47 Ω
Single or
Discontinuous
mode
and
CPCB = 22 pF
VSSA
Resolution
= 6 bits
Resolution
= 10 bits
Resolution
= 8 bits
75
-
5.00
-
1.6V ≤ VDDA ≤ 3.6V
fadc_ker_ck
= 70 MHz
-
4.66
-
2.4V ≤ VDDA ≤ 3.6V
fadc_ker_ck
= 60 MHz
-
4.00
-
1.6V ≤ VDDA ≤ 3.6V
fadc_ker_ck
= 50 MHz
-
3.33
-
-
5.77
-
-
5.77
-
-
5.00
-
-
6.82
-
-
8.33
-
-
2.30
-
-
2.70
-
fadc_ker_ck
= 50 MHz
-
4.50
-
fadc_ker_ck
= 50 MHz
-
5.50
-
1.6V ≤ VDDA ≤ 3.6V
fadc_ker_ck
= 75 MHz
2.4V ≤ VDDA ≤ 3.6V
-40°C ≤ TJ ≤ 130°C
1.6V ≤ VDDA ≤ 3.6V
Resolution
= 12 bits
Sampling rate
for slow
channels
-
fadc_ker_ck
= 75 MHz
Resolution
= 8 bits
All modes
1.5
1.8V ≤ VDDA ≤ 3.6V
1.6V ≤ VDDA ≤ 3.6V
Unit
fadc_ker_ck
= 65 MHz
SMP
=2.5
MSPS
fadc_ker_ck
= 75 MHz
fadc_ker_ck
= 35 MHz
All modes(5)
1.6V ≤ VDDA ≤ 3.6V
Resolution
= 6 bits
tTRIG
External trigger
period
Resolution = 12 bits
-
-
15
VAIN(2)
Conversion
voltage range
-
0
-
VREF+
VCMIV
Common
mode input
voltage
-
VREF / 2
− 10%
VREF / 2
VREF / 2
+ 10%
1/fadc_ker_ck
V
DS14258 Rev 5
203/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 95. 12-bit ADC characteristics(1)(2) (continued)
Symbol
RAIN(6)
Parameter
External input
impedance
Conditions
Min
Typ
Max
Resolution = 12 bits, TJ = 130°C (tolerance 4 LSBs)
-
-
321
Resolution = 12 bits, TJ = 125°C
-
-
220
Resolution = 10 bits, TJ = 130°C
-
-
1039
Resolution = 10 bits, TJ = 125°C
-
-
2100
Resolution = 8 bits, TJ = 130°C
-
-
6327
Resolution = 8 bits, TJ = 125°C
-
-
12000
Resolution = 6 bits, TJ = 130°C
-
-
47620
Resolution = 6 bits, TJ = 125°C
-
-
80000
Unit
Ω
CADC
Internal
sample and
hold capacitor
-
-
3
-
pF
tADCVREG_
STUP
LDO startup
time
-
-
5
10
µs
tSTAB
Power-up time
LDO already started
1
-
-
Conversion
cycle
tOFF_CAL
Offset
calibration time
CKMODE = 00
1.5
2
2.5
CKMODE = 01
-
-
2.5
tLATR
Trigger
conversion
latency for
regular and
injected
channels
without
aborting the
conversion
CKMODE = 10
-
-
2.5
CKMODE = 11
-
-
2.25
Trigger
conversion
latency for
regular and
injected
channels when
a regular
conversion is
aborted
CKMODE = 00
2.5
3
3.5
CKMODE = 01
-
-
3.5
CKMODE = 10
-
-
3.5
CKMODE = 11
-
-
3.25
tS
Sampling time
-
2.5
-
640.5
tCONV
Total
conversion
time (including
sampling)
N-bits resolution
tS + 0.5
+N
-
-
fs = 5 MSPS
-
600
-
IDDA_D(ADC)
Consumption
on VDDA and
VREF,
differential
mode
tLATRINJ
IDDA_SE(ADC)
Consumption
on VDDA and
VREF, singleended mode
1335
1/fadc_ker_ck
fs = 1 MSPS
-
190
-
fs = 0.1 MSPS
-
50
-
fs = 5 MSPS
-
500
-
fs = 1 MSPS
-
150
-
fs = 0.1 MSPS
-
50
-
fadc_ker_ck = 75 MHz
-
265
-
175
-
µA
fadc_ker_ck = 50 MHz
IDD(ADC)
Consumption
on VDD
fadc_ker_ck = 25 MHz
-
90
-
fadc_ker_ck = 12.5 MHz
-
45
-
fadc_ker_ck = 6.25 MHz
-
22
-
fadc_ker_ck = 3.125 MHz
-
11
-
1. Specified by design - Not tested in production.
2. The voltage booster on ADC switches must be used for VDDA < 2.7 V (embedded I/O switches).
204/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Electrical characteristics
3. This frequency is the analog ADC specification, it must respect the value in Table 21.
4. These values are valid on BGA packages.
5. Depending upon the package, VREF+ can be internally connected to VDDA, and VREF- to VSSA.
6. The tolerance is two LSBs for 12-bit, 10-bit and 8-bit resolutions, otherwise specified.
Table 96. Minimum sampling time versus RAIN(1)(2)
Minimum sampling time (s)
Resolution
12 bits
10 bits
RAIN (Ω)
Fast channel
Slow channel(3)
47
3.75E-08
6.12E-08
68
3.94E-08
6.25E-08
100
4.36E-08
6.51E-08
150
5.11E-08
7.00E-08
220
6.54E-08
7.86E-08
330
8.80E-08
9.57E-08
470
1.17E-07
1.23E-07
680
1.60E-07
1.65E-07
47
3.19E-08
5.17E-08
68
3.35E-08
5.28E-08
100
3.66E-08
5.45E-08
150
4.35E-08
5.83E-08
220
5.43E-08
6.50E-08
330
7.18E-08
7.89E-08
470
9.46E-08
1.00E-07
680
1.28E-07
1.33E-07
1000
1.81E-07
1.83E-07
1500
2.63E-07
2.63E-07
2200
3.79E-07
3.76E-07
3300
5.57E-07
5.52E-07
DS14258 Rev 5
205/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 96. Minimum sampling time versus RAIN(1)(2) (continued)
Minimum sampling time (s)
Resolution
8 bits
6 bits
RAIN (Ω)
Fast channel
Slow channel(3)
47
2.64E-08
4.17E-08
68
2.76E-08
4.24E-08
100
3.02E-08
4.39E-08
150
3.51E-08
4.66E-08
220
4.27E-08
5.13E-08
330
5.52E-08
6.19E-08
470
7.17E-08
7.72E-08
680
9.68E-08
1.00E-07
1000
1.34E-07
1.37E-07
1500
1.93E-07
1.94E-07
2200
2.76E-07
2.74E-07
3300
4.06E-07
4.01E-07
4700
5.73E-07
5.62E-07
6800
8.21E-07
7.99E-07
10000
1.20E-06
1.17E-06
15000
1.79E-06
1.74E-06
47
2.14E-08
3.16E-08
68
2.23E-08
3.21E-08
100
2.40E-08
3.31E-08
150
2.68E-08
3.52E-08
220
3.13E-08
3.87E-08
330
3.89E-08
4.51E-08
470
4.88E-08
5.39E-08
680
6.38E-08
6.79E-08
1000
8.70E-08
8.97E-08
1500
1.23E-07
1.24E-07
2200
1.73E-07
1.73E-07
3300
2.53E-07
2.49E-07
4700
3.53E-07
3.45E-07
6800
5.04E-07
4.90E-07
10000
7.34E-07
7.11E-07
15000
1.09E-06
1.05E-06
1. Specified by design - Not tested in production.
2. Data valid up to 130 °C, with a 22 pF PCB capacitor, and VDDA = 1.6 V.
206/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Electrical characteristics
3. Slow channels correspond to all ADC inputs except for the fast channels.
Figure 55. ADC conversion timing diagram
CLK
Mux
1/2
Sampling(1)
15
14
SMP
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Number of CLK clock cycles = ADC resolution / 2
Total conversion time: 0.5 +Tsamp + N/2
1. The sampling time defines the minimum sampling clock cycles (SMP) to be programmed in the ADC (refer to the product reference manual for details).
Table 97. ADC accuracy(1)(2)
Symbol
Parameter
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
ENOB
Effective number of bits
SINAD
Signal-to-noise and
distortion ratio
SNR
Signal-to-noise ratio
THD
Total harmonic distortion
Conditions
Min
Typ
Max
Fast and slow
channels
Single ended
-
±3.5
±12
Differential
-
±2.5
±7.5
-
Single ended
-
±3
±5.5
-
Differential
-
±2
±3.5
-
Single ended
-
±3.5
±11
-
Differential
±2.5
±7
-
Single ended
-
±0.75
+2/-1
-
Differential
-
±0.75
+2/-1
Fast and slow
channels
Single ended
-
±2
±6.5
Differential
-
±1
±4
Single ended
-
10.8
-
Differential
-
11.5
-
Single ended
-
68
-
Differential
-
71
-
Single ended
-
70
-
Differential
-
72
-
Single ended
-
-70
-
Differential
-
-80
-
1.
Evaluated by characterization for BGA packages. The values for LQFP package can differ. Not tested in production.
2.
ADC DC accuracy values are measured after internal calibration in continuous mode.
DS14258 Rev 5
Unit
LSB
Bits
dB
207/270
238
Electrical characteristics
Note:
STM32H562xx and STM32H563xx
ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins, which may potentially inject negative currents.
Figure 56. ADC accuracy characteristics
VREF+
[1LSB =
2n
Output code
VDDA
(or
)]
2n
EG
(1) Example of an actual transfer curve
(2) Ideal transfer curve
(3) End-point correlation line
2n-1
2n-2
2n-3
(2)
(3)
ET
EL
EO
ED
(2n/2n)*VREF+
(2n-1/2n)*VREF+
(2n-2/2n)*VREF+
(2n-3/2n)*VREF+
(7/2n)*VREF+
(6/2n)*VREF+
(5/2n)*VREF+
(4/2n)*VREF+
(3/2n)*VREF+
1 LSB ideal
(2/2n)*VREF+
0
VSSA
(1)
(1/2n)*VREF+
7
6
5
4
3
2
1
n = ADC resolution
ET = total unadjusted error: maximum deviation
between the actual and ideal transfer curves
EO = offset error: maximum deviation between the first
actual transition and the first ideal one
EG = gain error: deviation between the last ideal
transition and the last actual one
ED = differential linearity error: maximum deviation
between actual steps and the ideal one
EL = integral linearity error: maximum deviation between
any actual transition and the end point correlation line
VREF+ (VDDA)
MSv19880V6
1. Example of an actual transfer curve.
2. Ideal transfer curve.
3. End point correlation line.
4. ET = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves.
5. EO = Offset error: deviation between the first actual transition and the first ideal one.
6. EG = Gain error: deviation between the last ideal transition and the last actual one.
7. ED = Differential linearity error: maximum deviation between actual steps and the ideal one.
8. EL = Integral linearity error: maximum deviation between any actual transition and the end point correlation
line.
Figure 57. Typical connection diagram when using the ADC with FT/TT pins
featuring analog switch function
VDDA(4)
VREF+(4)
Sample-and-hold ADC converter
I/O
analog
switch
RAIN(1)
RADC
Converter
VAIN
Cparasitic(2)
Ilkg(3)
VSS
CADC
Sampling
switch with
multiplexing
VSS
VSSA
MSv67871V3
1. Refer to Table 95 for the values of RAIN, and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
208/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Electrical characteristics
pad capacitance (refer to Table 58). A high Cparasitic value downgrades conversion accuracy. To remedy
this, fADC should be reduced.
3. Refer to Table 58 for the value of Ilkg.
4. Refer to Figure 20.
General PCB design guidelines
It is recommended to perform power supply decoupling as shown in Figure 58 or Figure 59,
depending on whether VREF+ is connected to VDDA or not. The 100 nF capacitors must be
ceramic (good quality), and placed as close as possible to the chip.
Figure 58. Power supply and reference decoupling (VREF+ not connected to VDDA)
STM32
VREF+(1)
1 μF // 100 nF
VDDA
1 μF // 100 nF
VSSA/VREF-(1)
MSv50648V2
1. VREF+ input is not available on all packages (refer to Table 14), VREF- is available only on UFBGA176+25,
UFBGA169 with SMPS, LQFP100, UFBGA169, and UFBGA176+25 packages. When VREF+ is not
available, it is internally connected to VSSA.
DS14258 Rev 5
209/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Figure 59. Power supply and reference decoupling (VREF+ connected to VDDA)
STM32
VREF+/VDDA(1)
1 μF // 100 nF
VREF-/VSSA(1)
MSv50649V1
1. VREF+ input is not available on all packages (refer to Table 14), VREF- is available only on UFBGA176+25,
UFBGA169 with SMPS, LQFP100, UFBGA169, and UFBGA176+25 packages. When VREF- is not
available, it is internally connected to VSSA. If VREF- is available and connected to VDDA, refer to Figure 20
for more detailsIf.
5.3.24
DAC characteristics
Table 98. DAC characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VDDA
Analog supply voltage
-
1.8
3.3
3.6
VREF+
Positive reference voltage
-
1.8
-
VDDA
VREF-
Negative reference voltage
-
-
VSSA
-
Connected
to VSSA
5
-
-
Connected
to VDDA
25
-
-
10.3
13
16
VDD = 2.7 V
-
-
1.6
VDD = 2.0 V
-
-
2.6
VDD = 2.7 V
-
-
17.8
VDD = 2.0 V
-
-
18.7
DAC output buffer OFF
-
-
50
pF
Sample and Hold mode
-
0.1
1
µF
DAC output buffer ON
0.2
-
VDDA
−0.2
V
DAC output buffer OFF
0
-
VREF+
RL
RO
Resistive load
DAC output buffer
ON
Output impedance
DAC output buffer OFF
RBON
Output impedance sample
and hold mode, output
buffer ON
DAC output buffer
ON
RBOFF
Output impedance sample
and hold mode, output
buffer OFF
DAC output buffer
OFF
CL
CSH
VDAC_OUT
210/270
Capacitive load
Voltage on DAC_OUT
output
DS14258 Rev 5
V
kΩ
kΩ
kΩ
STM32H562xx and STM32H563xx
Electrical characteristics
Table 98. DAC characteristics(1) (continued)
Symbol
Parameter
Settling time (full scale: for a
12-bit code transition
between the lowest and the
tSETTLING highest input codes when
DAC_OUT reaches the final
value of ±0.5LSB, ±1LSB,
±2LSB, ±4LSB, ±8LSB)
Conditions
Min
Typ
Max
±0.5 LSB
-
2.05
3
±1 LSB
-
1.97
2.87
±2 LSB
-
1.67
2.84
±4 LSB
-
1.66
2.78
±8 LSB
-
1.65
2.7
Normal mode, DAC output buffer
OFF, ±1LSB CL= 10 pF
-
1.7
2
5
7.5
Normal mode, DAC
output buffer ON,
CL ≤ 50 pF,
RL ≥ 5 kΩ
Unit
µs
Wake-up time from off state
(setting the ENx bit in the
DAC control register) until
the final value of ±1LSB is
reached
Normal mode, DAC output buffer
ON, CL ≤ 50 pF, RL = 5 kΩ
-
Normal mode, DAC output buffer
OFF, CL ≤ 10 pF
-
2
5
PSRR
DC VDDA supply rejection
ratio
Normal mode, DAC output buffer
ON, CL ≤ 50 pF, RL = 5 kΩ
-
-80
-28
MODE_V12 = 100/101
(BUFFER ON)
-
0.7
2.6
tSAMP
Sampling time in Sample
and Hold mode, CL= 100 nF
(code transition between the
lowest and the highest input
code when DAC_OUT
reaches the ±1LSB final
value)
MODE_V12 = 110
(BUFFER OFF)
-
11.5
18.7
MODE_V12=111(3)
(INTERNAL BUFFER OFF)
-
0.3
0.6
µs
tWAKEUP
(2)
µs
dB
ms
Ileak
Output leakage current
-
-
-
(4)
nA
CIint
Internal sample and hold
capacitor
-
1.8
2.2
2.6
pF
tTRIM
Middle code offset trim time
Minimum time to verify each code
50
-
-
µs
Voffset
Middle code offset for
1 trim code step
VREF+ = 3.6 V
-
850
-
VREF+ = 1.8 V
-
425
-
No load,
middle
code
(0x800)
-
360
-
No load,
worst code
(0xF1C)
-
490
-
No load,
middle/
worst code
(0x800)
-
20
-
-
360*TON/
(TON+TOFF)(5)
-
DAC output buffer
ON
DAC quiescent consumption
IDDA(DAC)
from VDDA
DAC output buffer
OFF
Sample and Hold mode,
CSH = 100 nF
DS14258 Rev 5
µV
µA
211/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 98. DAC characteristics(1) (continued)
Symbol
Parameter
Conditions
DAC output buffer
ON
IDDV(DAC)
DAC consumption from
VREF+
Min
Typ
Max
No load,
middle
code
(0x800)
-
170
-
No load,
worst code
(0xF1C)
-
170
-
No load,
middle/
worst code
(0x800)
-
160
-
Sample and Hold mode, buffer ON,
CSH = 100 nF (worst code)
-
170*TON/
(TON+TOFF)(5)
-
Sample and Hold mode, buffer
OFF, CSH = 100 nF (worst code)
-
160*TON/
(TON+TOFF)(5)
-
DAC output buffer
OFF
Unit
µA
1. Specified by design - Not tested in production, unless otherwise specified.
2. In buffered mode, the output can overshoot above the final value for low input code (starting from the minimum value).
3. DACx_OUT pin is not connected externally (internal connection only).
4. Refer to Table 58.
5. TON is the refresh phase duration, TOFF is the hold phase duration. Refer to the reference manual for more details.
Table 99. DAC accuracy(1)
Symbol
DNL
-
INL
Offset
Offset1
Parameter
Min
Typ
Max
Differential non
linearity(2)
DAC output buffer ON
−2
-
2
DAC output buffer OFF
−2
-
2
Monotonicity
10 bits
-
-
-
DAC output buffer ON,
CL≤50 pF, RL≥5 kΩ
−4
-
4
DAC output buffer OFF,
CL ≤ 50 pF, no RL
−4
-
4
VREF+ = 3.6 V
-
-
±12
VREF+ = 1.8 V
-
-
±25
DAC output buffer OFF,
CL ≤ 50 pF, no RL
-
-
±8
DAC output buffer OFF,
CL ≤ 50 pF, no RL
-
-
±5
VREF+ = 3.6 V
-
-
±5
VREF+ = 1.8 V
-
-
±7
Integral non linearity(3)
Offset error at code
0x800 (3)
Offset error at code
0x001(4)
Offset error at code
OffsetCal 0x800 after factory
calibration
212/270
Conditions
DAC output buffer ON,
CL≤50 pF, RL ≥5 kΩ
DAC output buffer ON,
CL≤50 pF, RL ≥5 kΩ
DS14258 Rev 5
Unit
LSB
-
LSB
STM32H562xx and STM32H563xx
Electrical characteristics
Table 99. DAC accuracy(1) (continued)
Symbol
Gain
TUE
TUECal
SNR
THD
SINAD
ENOB
Parameter
Gain error(5)
Total unadjusted error
Conditions
Min
Typ
Max
DAC output buffer ON,
CL≤50 pF, RL ≥5 kΩ
-
-
±1
DAC output buffer OFF,
CL ≤ 50 pF, no RL
-
-
±1
DAC output buffer ON,
CL≤50 pF, RL ≥5 kΩ
-
-
±30
Signal-to-noise ratio(6)
Total harmonic
distortion(6)
Signal-to-noise and
distortion ratio(6)
%
DAC output buffer OFF,
CL≤50 pF, no RL
Total unadjusted error DAC output buffer ON,
after calibration
CL≤50 pF, RL ≥5 kΩ
±12
-
-
±23
DAC output buffer ON, CL≤50 pF,
RL ≥5 kΩ, 1 kHz, BW = 500 kHz
-
67.8
-
DAC output buffer OFF, CL ≤ 50 pF,
no RL,1 kHz, BW = 500 kHz
-
67.8
-
DAC output buffer ON,
CL≤50 pF, RL ≥5 kΩ, 1 kHz
-
−78.6
-
DAC output buffer OFF,
CL ≤ 50 pF, no RL, 1 kHz
-
−78.6
-
DAC output buffer ON,
CL≤50 pF, RL ≥5 kΩ, 1 kHz
-
67.5
-
DAC output buffer OFF,
CL ≤ 50 pF, no RL, 1 kHz
-
67.5
-
DAC output buffer ON,
CL≤50 pF, RL ≥ 5 kΩ, 1 kHz
-
10.9
-
DAC output buffer OFF,
CL ≤ 50 pF, no RL, 1 kHz
-
Effective number of
bits
Unit
LSB
dB
bits
10.9
-
1. Evaluated by characterization - Not tested in production.
2. Difference between two consecutive codes minus 1 LSB.
3. Difference between the value measured at Code i and the value measured at Code i on a line drawn between Code 0 and
last Code 4095.
4. Difference between the value measured at Code (0x001) and the ideal value.
5. Difference between the ideal slope of the transfer function and the measured slope computed from code 0x000 and 0xFFF
when the buffer is OFF, and from code giving 0.2 V and (VREF+ - 0.2 V) when the buffer is ON.
6. Signal is −0.5 dBFS with Fsampling = 1 MHz.
DS14258 Rev 5
213/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Figure 60. 12-bit buffered/non-buffered DAC
Buffered/Non-buffered DAC
Buffer(1)
RL
DAC_OUTx
12-bit
digital to
analog
converter
CL
ai17157V3
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly, without the use of an external operational amplifier. The buffer can be bypassed by
configuring the BOFFx bit in the DAC_CR register.
5.3.25
Analog temperature sensor characteristics
Table 100. Analog temperature sensor characteristics
Symbol
Parameter
TL(1)
Avg_Slope(2)
V30(3)
tstart_run
tS_temp
(1)
Isens(1)
Isensbuf(1)
Min Typ Max
VSENSE linearity with temperature (from VSENSOR voltage)
-
-
3
VSENSE linearity with temperature (from ADC counter)
-
-
3
Average slope (from VSENSOR voltage)
-
2
-
Average slope (from ADC counter)
-
2
-
Voltage at 30 °C ± 5 °C
-
0.62
-
Startup time in Run mode (buffer startup)
-
-
25.2
ADC sampling time when reading the temperature
9
-
-
Sensor consumption
-
0.18 0.31
Sensor buffer consumption
-
3.8
Unit
°C
mV/°C
6.5
V
µs
µA
1. Specified by design - Not tested in production.
2. Evaluated by characterization - Not tested in production.
3. Measured at VDDA = 3.3 V ± 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 bytes.
Table 101. Temperature sensor calibration values
Symbol
214/270
Parameter
Memory address
TS_CAL1
Temperature sensor raw data acquired value at 30 °C,
VDDA = 3.3 V
0x08FF F814 -0x08FF F815
TS_CAL2
Temperature sensor raw data acquired value at 130 °C,
VDDA = 3.3 V
0x08FF F818 - 0x08FF F819
DS14258 Rev 5
STM32H562xx and STM32H563xx
5.3.26
Electrical characteristics
Digital temperature sensor characteristics
Table 102. Digital temperature sensor characteristics(1)
Symbol
Parameter
fDTS(2)
Output clock frequency
TLC(2)
Temperature linearity coefficient
TTOTAL_ERROR(2)
TVDD_CORE
tTRIM
tWAKE_UP
IDDCORE_DTS
Conditions
Min
Typ
Max
Unit
-
500
750
1150
kHz
VOS2
1660 2100 2750 Hz/°C
TJ = −40 to 30 °C
-13
-
4
TJ = 30 °C to TJmax
-7
-
2
VOS2
0
-
0
VOS0, VOS1,
VOS3
-1
-
1
Calibration time
-
-
-
2
ms
Wake-up time from off state
until DTS ready bit is set
-
-
67
116
μs
DTS consumption on VDD_CORE
-
8.5
30
70
μA
Min
Typ
Max
Unit
1
-
-
μs
Temperature offset
measurement, all VOS
Additional error due to supply
variation
°C
°C
1. Specified by design - Not tested in production, unless otherwise specified.
2. Evaluated by characterization - Not tested in production.
5.3.27
VCORE monitoring characteristics
Table 103. VCORE monitoring characteristics(1)
Symbol
TS_VCORE
Parameter
ADC sampling time when reading the VCORE voltage
1. Specified by design - Not tested in production.
5.3.28
Temperature and VBAT monitoring
Table 104. VBAT monitoring characteristics
Symbol
Parameter
Min
Typ
Max
Unit
R
Resistor bridge for VBAT
-
4 x 26
-
kΩ
Q
Ratio on VBAT measurement
-
4
-
-
-10
-
+10
%
9
-
-
µs
(1)
Er
Error on Q
tS_vbat(1)
ADC sampling time when reading VBAT input
VBAThigh
High supply monitoring
3.50
3.575
3.63
VBATlow
Low supply monitoring
-
1.36
-
IVBATbuf
Sensor buffer consumption
-
3.8
6.5
V
µA
1. Specified by design - Not tested in production.
DS14258 Rev 5
215/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 105. VBAT charging characteristics
Symbol
RBC
Parameter
Conditions
Battery charging resistor
Min
Typ
Max
VBRS in PWR_CR3 = 0
-
5
-
VBRS in PWR_CR3 = 1
-
1.5
-
Unit
kΩ
Table 106. Temperature monitoring characteristics
Symbol
5.3.29
Parameter
Min
Typ
Max
TEMPhigh
High temperature monitoring
-
126
-
TEMPlow
Low temperature monitoring
-
-37
-
Unit
°C
Voltage booster for analog switch
Table 107. Voltage booster for analog switch characteristics(1)
Symbol
VDD
Parameter
Conditions
Min
Typ
Max
Unit
-
1.71
2.6
3.6
V
-
-
-
50
µs
1.71 V ≤ VDD ≤ 2.7 V
-
-
125
2.7 V < VDD < 3.6 V
-
-
250
Supply voltage
tSU(BOOST) Booster startup time
IDD(BOOST) Booster consumption
µA
1. Evaluated by characterization - Not tested in production.
5.3.30
VREFBUF characteristics
Table 108. VREFBUF characteristics(1)
Symbol
Parameter
Conditions
Normal mode at
VDDA = 3.3 V
VDDA
Analog supply
voltage
Degraded mode(2)
Normal mode at
30 °C, ILOAD = 100 µA
VREFBUF_ Voltage reference
buffer output
OUT
Degraded mode(2)
TRIM
216/270
Trim step
resolution
-
Min
Typ
Max
VRS = 000
2.8
3.3
3.6
VRS = 001
2.4
-
3.6
VRS = 010
2.1
-
3.6
VRS = 000
1.62
-
2.80
VRS = 001
1.62
-
2.40
VRS = 010
1.62
-
2.10
VRS = 000
2.498(3)
2.5000 2.5035(3)
VRS = 001
2.0460
2.0490
2.0520
VRS = 010
1.8010
1.8040
1.8060
VRS = 000
VDDA − 150 mV
-
2.5035
VRS = 001
VDDA − 150 mV
-
2.0520
VRS = 010
VDDA − 150 mV
-
1.8060
-
-
±0.05
±0.1
DS14258 Rev 5
Unit
V
V
%
STM32H562xx and STM32H563xx
Electrical characteristics
Table 108. VREFBUF characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
CL
Load capacitor
-
-
0.5
1
1.50
μF
esr
Equivalent serial
resistor of CL
-
-
-
-
2
Ω
Iload
Static load current
-
-
-
-
4
mA
Iload = 500 µA
-
200
-
Iload = 4 mA
-
100
-
ppm/
V
Iline_reg
Line regulation
2.8 V ≤ VDDA ≤ 3.6 V
Iload_reg
Load regulation
500 µA ≤ Iload ≤ 4 mA
Normal mode
-
50
-
ppm/
mA
Tcoeff
Temperature
coefficient
-40 °C < TJ < +130 °C
-
-
-
100
ppm/
°C
PSRR
Power supply
rejection
DC
-
-
60
-
100 kHz
-
-
40
-
CL= 0.5 µF
-
-
300
-
CL= 1 µF
-
-
500
-
CL= 1.5 µF
-
-
650
-
-
8
-
tSTART
IINRUSH
Start-up time
Control of
maximum DC
current drive on
VREFBUF_OUT
during startup(4)
IDDA(VREF Consumption
from VDDA
BUF)
-
ILOAD = 0 µA
-
-
15
25
ILOAD = 500 µA
-
-
16
30
ILOAD = 4 mA
-
-
32
50
dB
µs
mA
µA
1. Specified by design - Not tested in production, unless otherwise specified.
2. In degraded mode, the voltage reference buffer cannot accurately maintain the output voltage (VDDA−drop voltage).
3. Evaluated by characterization - Not tested in production.
4. To properly control VREFBUF IINRUSH current during the startup phase and the change of scaling, VDDA voltage must be in
the range of 2.1 V - 3.6 V, 2.4 V -3.6 V, and 2.8 V - 3.6 V, respectively, for VRS = 010, 001, and 000.
DS14258 Rev 5
217/270
238
Electrical characteristics
5.3.31
STM32H562xx and STM32H563xx
Timer characteristics
The parameters given in Table 109 are guaranteed by design.
Refer to Section 5.3.15 for details on the input/output alternate function characteristics
(output compare, input capture, external clock, PWM output).
Table 109. TIMx characteristics(1)(2)
Symbol
Conditions(3)
Parameter
tres(TIM)
Timer resolution time
Timer external clock
frequency on CH1 to CH4
fEXT
ResTIM
Min
Max
Unit
AHB/APBx prescaler = 1, 2, or 4,
fTIMxCLK = 250 MHz
1
-
tTIMxCLK
AHB/APBx prescaler > 4,
fTIMxCLK = 125 MHz
1
-
tTIMxCLK
0
fTIMxCLK / 2
MHz
-
16 / 32
bit
-
65536 × 65536
tTIMxCLK
fTIMxCLK = 250 MHz
Timer resolution
Maximum possible count
with 32-bit counter
tMAX_COUNT
-
1. TIMx is used as a general term to refer to the TIM1 to TIM17 timers.
2. Specified by design - Not tested in production.
3. The maximum timer frequency on APB1 or APB2 is up to 250 MHz, by setting the TIMPRE bit in the RCC_CFGR register,
if APBx prescaler is 1 or 2 or 4, then TIMxCLK = rcc_hclk1, otherwise TIMxCLK = 4 x Frcc_pclkx1 or
TIMxCLK = 4 x Frcc_pclkx2.
5.3.32
Low-power timer characteristics
Table 110. LPTIMx characteristics(1)(2)
Symbol
tres(TIM)
flptim_ker_ck
fEXT
ResTIM
tMAX_COUNT
Parameter
Min
Max
Unit
Timer resolution time
1
-
tlptim_ker_ck
Timer kernel clock
0
250
Timer external clock frequency on Input1 and Input2
0
flptim_ker_ck / 3
Timer resolution
-
16
bit
Maximum possible count
-
65535
tlptim_ker_ck
1. LPTIMx is used as a general term for LPTIM1 to LPTIM6 timers.
2. Specified by design - Not tested in production.
218/270
DS14258 Rev 5
MHz
STM32H562xx and STM32H563xx
5.3.33
Electrical characteristics
Communication interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual revision 03 for:
•
Standard-mode (Sm): with a bit rate up to 100 kbit/s
•
Fast-mode (Fm): with a bit rate up to 400 kbit/s
•
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.
The I2C timings requirements are specified by design, not tested in production, when the I2C
peripheral is properly configured (refer to the product reference manual)
The SDA and SCL I/O requirements are met with the following restrictions:
•
The SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain,
the PMOS connected between the I/O pin and VDD is disabled, but still present. Only
FT_f I/O pins support Fm+ low level output current maximum requirement. Refer to
Section 5.3.15 for the I2C I/Os characteristics
All I2C SDA and SCL I/Os embed an analog filter, refer to Table 111 for its characteristics.
Table 111. I2C analog filter characteristics(1)(2)
Symbol
tAF
Parameter
Maximum pulse width of spikes suppressed by analog filter
Min
Max
Unit
50(3)
160(4)
ns
1. Evaluated by characterization - Not tested in production.
2. Measurement points are done at 50% VDD.
3. Spikes with widths below tAF(min) are filtered.
4. Spikes with widths above tAF(max) are not filtered.
USART interface characteristics
Unless otherwise specified, the parameters given in Table 112 are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 20, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load CL = 30 pF
•
Measurement points are done at CMOS levels: 0.5 VDD
•
I/O compensation cell activated
•
VOS level set to VOS0
•
HSLV activated when VDD ≤ 2.7 V
Refer to Section 5.3.15 for more details on the input/output alternate function characteristics
(NSS, CK, TX, RX for USART).
DS14258 Rev 5
219/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 112. USART characteristics(1)
Symbol
fCK
Parameter
USART clock frequency
Conditions
Min
Typ
Max
Master receiver
1.71 V < VDD < 3.6 V
31
Master transmitter
1.71 V < VDD < 3.6 V
31/6(2)
Master transmitter
2.7 V < VDD < 3.6 V
31/6(2)
Slave receiver
1.71 V < VDD < 3.6 V
-
-
MHz
83
Slave transmitter
1.71 V < VDD < 3.6 V
32/6(2)
Slave transmitter
2.7 V < VDD < 3.6 V
35/6(2)
tsu(NSS)
NSS setup time
Slave mode
tker(3) + 3.5
-
-
th(NSS)
NSS hold time
Slave mode
2.5
-
-
tw(SCKH)
tw(SCKL)
CK high and low time
Master mode
1/fck/2 -1
1/fck/2
1/fck/2 +1
tsu(RX)
Data input setup time
Master mode
13
-
-
Slave mode
3.5
-
-
th(RX)
Data input hold time
Master mode
0.5
-
-
Slave mode
1.5
-
-
Slave mode,
1.71 V < VDD < 3.6 V
-
Slave mode,
2.7 V < VDD < 3.6 V
-
14/35(2)
Slave mode,
1.71 V < VDD < 3.6 V
-
3/52(2)
Slave mode,
2.7 V < VDD < 3.6 V
-
Slave mode
7.5
-
-
Master mode
0
-
-
tv(TX)
th(TX)
Data output valid time
Data output hold time
1. Evaluated by characterization - Not tested in production.
2. For PB14 with OSPEEDRy[1:0] = 01.
3. Tker is the usart_ker_ck_pres clock period.
220/270
DS14258 Rev 5
Unit
ns
15.5/71(2)
11.5
2.5
3/22(2)
ns
STM32H562xx and STM32H563xx
Electrical characteristics
Figure 61. USART timing diagram in Master mode
CK output
CK output
1/fCK
CPHA = 0
CPOL = 0
CPHA = 0
CPOL = 1
CPHA = 1
CPOL = 0
CPHA = 1
CPOL = 1
tw(CKH)
tw(CKL)
tsu(RX)
RX
INPUT
BIT6 IN
MSB IN
LSB IN
th(RX)
TX
OUTPUT
BIT1 OUT
MSB OUT
tv(TX)
LSB OUT
th(TX)
MSv65386V4
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
Figure 62. USART timing diagram in Slave mode
NSS
input
1/fCK
CK input
tsu(NSS)
th(NSS)
tw(CKH)
CPHA = 0
CPOL = 0
CPHA = 0
CPOL = 1
tw(CKL)
tv(TX)
First bit OUT
TX output
th(TX)
Next bits OUT
Last bit OUT
th(RX)
tsu(RX)
RX input
First bit IN
Next bits IN
Last bit IN
MSv65387V4
I3C interface characteristics
The I3C interface meets the timings requirements of the MIPI® I3C specification v1.1.
The I3C peripheral supports:
•
I3C SDR-only as controller
•
I3C SDR-only as target
•
I3C SCL bus clock frequency up to 12.5 MHz
DS14258 Rev 5
221/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
The parameters given in Table 113 are obtained with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
I/O compensation cell activated
•
HSLV activated when VDD ≤ 2.7 V
•
VOS level set to VOS0
The timings are in line with MIPI specification, except for the ones given in Table 113 and
Table 114. For tSU_OD and tSU_PP this can be mitigated by increasing the corresponding
SCL low duration in the I3C_TIMINGR0 register. For tSCO this can be mitigated by enabling
and adjusting the clock stall time both on the address ACK phase and on the data read Tbit
phase in the I3C_TIMINGR2 register. This can also be mitigated by increasing the SCL low
duration in the I3C_TIMINGR0 register. For further details refer to AN5879.
Table 113. I3C open-drain measured timing
Symbol
tSU_OD
Parameter
Conditions
SDA data setup time
during open drain mode
I3C open drain mode
(specification)
Controller
1.71 V < VDD < 3.6 V
Min
Max
3
-
Timing
measurements
Unit
16.5
ns
Timing
measurements
Unit
12
ns
Table 114. I3C push-pull measured timing
Symbol
tSU_PP
Parameter
SDA signal data setup in
push-pull mode
Conditions
I3C open drain mode
(specification)
Controller
1.71 V < VDD < 3.6 V
Min
Max
3
-
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 115 are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 20, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 11
•
Capacitive load CL = 30 pF
•
Measurement points are done at CMOS levels: 0.5 VDD
•
I/O compensation cell activated
•
HSLV activated when VDD ≤ 2.7 V
•
VOS level set to VOS0
Refer to Section 5.3.15 for more details on the input/output alternate function characteristics
(NSS, SCK, MOSI, MISO for SPI).
222/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Electrical characteristics
Table 115. SPI characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Master receiver mode
2.7 V < VDD < 3.6 V
-
-
135/3(2)
Master receiver mode
1.71 V < VDD < 2.7 V
-
-
120/3(2)
Master transmitter mode
2.7 V < VDD < 3.6 V
fSCK
1/tSCK
SPI clock frequency
Unit
135/3(2)
Master transmitter mode
1.71 V < VDD < 3.6 V
-
-
120/3(2)
Slave receiver mode
1.71 V < VDD < 3.6 V
-
-
120
Slave transmitter mode
2.7 V < VDD < 3.6 V
-
-
43/6(3)
Slave transmitter mode
1.71 V < VDD < 2.7 V
-
-
41/6(3)
MHz
tsu(NSS)
NSS setup time
Slave mode
3.5
-
-
ns
th(NSS)
NSS hold time
Slave mode
4.5
-
-
ns
SCK high and low time
Master mode
(tSCK/2) - 1
(tSCK/2)
(tSCK/2) + 1
ns
Master mode
3.5
-
-
Slave mode
2
-
-
Master mode
1
-
-
Slave mode
1.5
-
-
tw(SCKH)
tw(SCKL)
tsu(MI)
tsu(SI)
th(MI)
th(SI)
Data input setup time
Data input hold time
ns
ns
ta(SO)
Data output access time
Slave mode
6.5
-
15
ns
tdis(SO)
Data output disable time
Slave mode
7.5
-
18
ns
Slave mode,
2.7 V < VDD < 3.6 V
-
8.5/25(3)
11.5/33(3)
Slave mode,
1.71 V < VDD < 3.6 V
-
10/59(3)
12/76(3)
tv(MO)
Master mode
-
1.5
2
th(SO)
Slave mode,
1.71 V < VDD < 3.6 V
6.5/20.5(3)
-
-
Master mode
0
-
-
tv(SO)
Data output valid time
Data output hold time
th(MO)
ns
ns
1. Evaluated by characterization - Not tested in production.
2. When using PB13.
3. When using PB14.
DS14258 Rev 5
223/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Figure 63. SPI timing diagram - Master mode
High
SS input
(1)
tc(SCK)
SCK output
CPHA=0
CPOL=0
SCK output
tw(SCKH)
CPHA=1
CPOL=0
CPHA=0
CPOL=1
tw(SCKL)
CPHA=1
CPOL=1
tsu(MI)
MISO input
MOSI output
th(MI)
First bit IN
Next bits IN
First bit OUT
Next bits OUT
tv(MO)
Last bit IN
Last bit OUT
th(MO)
MSv69586V2
1. The SS input can be configured to active low or active high.
Figure 64. SPI timing diagram - Slave mode and CPHA = 0
NSS input
tc(SCK)
SCK input
tsu(NSS)
th(NSS)
tw(SCKH)
tr(SCK)
CPHA=0
CPOL=0
CPHA=0
CPOL=1
ta(SO)
tw(SCKL)
MISO output
tv(SO)
First bit OUT
th(SO)
Next bits OUT
tf(SCK)
tdis(SO)
Last bit OUT
th(SI)
tsu(SI)
MOSI input
First bit IN
Next bits IN
Last bit IN
MSv41658V1
224/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Electrical characteristics
Figure 65. SPI timing diagram - Slave mode and CPHA = 1
SS input(1)
th(SS)
tc(SCK)
SCK input
tsu(SS)
CPHA=1
CPOL=0
tw(SCKH)
CPHA=1
CPOL=1
ta(SO)
tw(SCKL)
tv(SO)
MISO output
Next bits OUT
First bit OUT
tsu(SI)
Last bit OUT
th(SI)
First bit IN
MOSI input
tdis(SO)
th(SO)
Next bits IN
Last bit IN
MSv69585V2
1. The SS input can be configured to active low or active high.
I2S interface characteristics
Unless otherwise specified, the parameters given in Table 116 are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 20, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 11
•
Capacitive load CL = 30 pF
•
Measurement points are done at CMOS levels: 0.5 VDD
•
I/O compensation cell activated
•
HSLV activated when VDD ≤ 2.7 V
•
VOS level set to VOS0
Refer to Section 5.3.15 for more details on the input/output alternate function characteristics
(CK,SD,WS).
Table 116. I2S dynamic characteristics(1)
Symbol
fMCK
fCK
Parameter
Conditions
Min
Max
-
-
50
Master transmitter
-
50
Slave transmitter (TX)
-
21
Slave receiver (RX)
-
50
I2S main clock output
I2S clock output
DS14258 Rev 5
Unit
MHz
225/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 116. I2S dynamic characteristics(1) (continued)
Symbol
Parameter
tv(WS)
WS valid time
th(WS)
WS hold time
tsu(WS)
WS setup time
th(WS)
WS hold time
tsu(SD_MR)
tsu(SD_SR)
th(SD_MR)
th(SD_SR)
tv(SD_ST)
tv(SD_MT)
th(SD_ST)
th(SD_MT)
Data input setup time
Data input hold time
Data output valid time
Data output hold time
Conditions
Min
Max
-
2
0.5
-
3
-
1.5
-
Master receiver
4
-
Slave receiver
2
-
Master receiver
1
-
Slave receiver
1.5
-
Slave transmitter (after enable edge)
-
14
Master transmitter (after enable edge)
-
1
Slave transmitter (after enable edge)
5.5
-
Master transmitter (after enable edge)
0
-
Master mode
Slave mode
1. Evaluated by characterization - Not tested in production.
Figure 66. I2S slave timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
226/270
DS14258 Rev 5
Unit
ns
STM32H562xx and STM32H563xx
Electrical characteristics
Figure 67. I2S master timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
USB full speed (FS) characteristics
The USB interface is fully compliant with the USB specification version 2.0.
Table 117. USB DC electrical characteristics
Symbol
Parameter
Conditions
Min(1)
Typ
Max(1) Unit
VDD
USB full speed transceiver operating voltage
-
3.0(2)
-
3.6
VDI(3)
Differential input sensitivity
Over VCM range
0.2
-
-
VCM(3)
Differential input common mode range
Includes VDI range
0.8
-
2.5
VSE(3)
Single ended receiver input threshold
0.8
-
2.0
-
-
0.3
2.8
-
3.6
14.25
-
24.8
0.9
1.25
1.575
1.425
2.25
3.09
-
VOL
Static output level low
RL of 1.5 kΩ to 3.6 V(4)
VOH
Static output level high
RL of 15 kΩ to VSS(4)
Pull down resistor on PA11, PA12
(USB_DP/DM)
VIN = VDD
Pull-up resistor on PA12 (USB_DP)
VIN = VSS, during idle
Pull-up resistor on PA12 (USB_DP)
VIN = VSS during reception
RPD(3)
RPU(3)
V
V
V
kΩ
1. All the voltages are measured from the local ground potential.
2. The USB full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed electrical
characteristics, which are degraded in the 2.7-to-3.0 V VDD voltage range.
3. Specified by design - Not tested in production.
DS14258 Rev 5
227/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
4. RL is the load connected on the USB full speed drivers.
Figure 68. USB timings - definition of data signal rise and fall time
Cross over
points
Differential
data lines
VCRS
VSS
tf
tr
ai14137b
Table 118. USB startup time
Symbol
Parameter
tSTARTUP(1)
Max
Unit
1
μs
USB transceiver startup time
1. Specified by design - Not tested in production.
Table 119. USB electrical characteristics(1)
Driver characteristics
Symbol
trLS
tfLS
trfmLS
trFS
tfFS
Parameter
Min
Max
Unit
CL = 200 to 600 pF
75
300
ns
CL = 200 to 600 pF
75
300
ns
Rise/fall time matching in LS
tr/tf
80
125
%
Rise time in FS(2)
CL = 50 pF
4
20
ns
CL = 50 pF
4
20
ns
tr/tf
90
111
%
1.3
2.0
V
28
44
Ω
Rise time in LS(2)
Fall time in
Fall time in
LS(2)
FS(2)
trfmFS
Rise/fall time matching in FS
VCRS
Output signal crossover voltage (LS/FS)
ZDRV
Output driver impedance(3)
Conditions
Driving high or low
1. Specified by design - Not tested in production.
2. Measured from 10% to 90% of the data signal. For more detailed information, refer to USB specification chapter 7 (version 2.0).
3. No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching
impedance is included in the embedded driver.
Table 120. USB BCD DC electrical characteristics(1)
Symbol
Conditions
Min
Typ
Max
Primary detection mode consumption
-
-
-
300
Secondary detection mode consumption
-
-
-
300
RDAT_LKG
Data line leakage resistance
-
300
-
-
kΩ
VDAT_LKG
Data line leakage voltage
-
0.0
-
3.6
V
IDD(USBBCD)
228/270
Parameter
DS14258 Rev 5
Unit
μA
STM32H562xx and STM32H563xx
Electrical characteristics
Table 120. USB BCD DC electrical characteristics(1) (continued)
Symbol
Conditions
Min
Typ
Max
Unit
Dedicated charging port resistance
across D+/D-
-
-
-
200
Ω
VLGC_HI
Logic high
-
2.0
-
3.6
VLGC_LOW
Logic low
-
-
-
0.8
Logic threshold
-
0.8
-
2.0
VDAT_REF
Data detect voltage
-
0.25
-
0.4
VDP_SRC
D+ source voltage
-
0.5
-
0.7
VDM_SRC
D- source voltage
-
0.5
-
0.7
IDP_SINK
D+ sink current
-
25
-
175
IDM_SINK
D- sink current
-
25
-
175
RDCP_DAT
VLGC
Parameter
V
μA
1. Specified by design - Not tested in production.
SAI characteristics
Unless otherwise specified, the parameters given in Table 121 are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 20, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load CL = 30 pF
•
I/O compensation cell activated
•
Measurement points are done at CMOS levels: 0.5 VDD
•
VOS level set to VOS0
Refer to Section 5.3.15 for more details on the input/output alternate function characteristics
(SCK, SD, WS).
Table 121. SAI characteristics(1)
Symbol
fMCK
fCK
Parameter
SAI main clock output
SAI clock frequency
Conditions
Min
Max
-
-
50
Master transmitter, 2.7 V ≤ VDD ≤ 3.6 V
-
38
Master transmitter, 1.71 V ≤ VDD ≤ 3.6 V
-
38
Master receiver, 1.71 V ≤ VDD ≤ 3.6 V
-
38
Slave transmitter, 2.7 V ≤ VDD ≤ 3.6 V
-
34
Slave transmitter, 1.71 V ≤ VDD ≤ 3.6 V
-
33
Slave receiver, 1.71 V ≤ VDD ≤ 3.6 V
-
50
DS14258 Rev 5
Unit
MHz
229/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 121. SAI characteristics(1) (continued)
Symbol
Parameter
tv(FS)
FS valid time
tsu(FS)
FS setup time
th(FS)
FS hold time
tsu(SD_A_MR)
tsu(SD_B_SR)
th(SD_A_MR)
th(SD_B_SR)
tv(SD_B_ST)
th(SD_B_ST)
tv(SD_A_MT)
th(SD_A_MT)
Conditions
Min
Max
Master mode, 2.7 V ≤ VDD ≤ 3.6 V
-
13
Master mode, 1.71 V ≤ VDD ≤ 3.6 V
-
13
Slave mode
3
-
Master mode
5
-
Slave mode
2
-
Master receiver
4
-
Slave receiver
3.5
-
Master receiver
1.5
-
Slave receiver
0.5
-
Slave transmitter (after enable edge),
2.7 V ≤ VDD ≤ 3.6 V
-
14.5
Slave transmitter (after enable edge),
1.71 V ≤ VDD ≤ 3.6 V
-
15
Slave transmitter (after enable edge)
7
-
Master transmitter (after enable edge),
2.7 V ≤ VDD ≤ 3.6 V
-
13
Master transmitter (after enable edge),
1.71 V ≤ VDD ≤ 3.6 V
-
13
Master transmitter (after enable edge)
5.5
-
Data input setup time
Data input hold time
Data output valid time
Data output hold time
Data output valid time
Data output hold time
Unit
ns
1. Evaluated by characterization - Not tested in production.
Figure 69. SAI master timing waveforms
1/fSCK
SAI_SCK_X
(CKSTR = 0)
SAI_SCK_X
(CKSTR = 1)
th(FS)
SAI_FS_X
(output)
tv(FS)
tv(SD_MT)
SAI_SD_X
(transmit)
Slot n
tsu(SD_MR)
SAI_SD_X
(receive)
th(SD_MT)
Slot n+2
th(SD_MR)
Slot n
MS32771V2
230/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Electrical characteristics
Figure 70. SAI slave timing waveforms
1/fSCK
SAI_SCK_X
(CKSTR = 0)
SAI_SCK_X
(CKSTR = 1)
tw(CKH_X)
tw(CKL_X)
th(FS)
SAI_FS_X
(input)
tv(SD_ST)
tsu(FS)
SAI_SD_X
(transmit)
th(SD_ST)
Slot n
Slot n+2
tsu(SD_SR)
SAI_SD_X
(receive)
th(SD_SR)
Slot n
MS32772V2
SD/SDIO MMC card host interface (SDMMC) characteristics
Unless otherwise specified, the parameters given in Table 122 and Table 123 are derived
from tests performed under the ambient temperature, fPCLKx frequency and VDD supply
voltage summarized in Table 20, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 11
•
Capacitive load CL= 30 pF
•
Measurement points are done at CMOS levels: 0.5 VDD
•
I/O compensation cell activated
•
HSLV activated when VDD ≤ 2.7 V
Refer to Section 5.3.15 for more details on the input/output characteristics.
Table 122. Dynamic characteristics: SD/MMC, VDD = 2.7 to 3.6 V(1)
Symbol
Parameter
Conditions
Min
Typ
fPP
Clock frequency in data transfer mode
-
0
-
8.5
9.5
-
8.5
9.5
-
tW(CKL)
Clock low time
fPP = 52 MHz
tW(CKH) Clock high time
Max
Unit
130(2)/6(3) MHz
ns
CMD, D inputs (referenced to CK) in eMMC legacy/SDR/DDR and SD HS/SDR(4)/DDR(4) mode
tISU
Input setup time HS
-
3
-
-
tIH
Input hold time HS
-
1
-
-
Input valid window (variable window)
-
4.5
-
-
tIDW(5)
ns
CMD, D outputs (referenced to CK) in eMMC legacy/SDR/DDR and SD HS/SDR(4)/DDR(4) mode
tOV
Output valid time HS
-
-
5
5.5/38(3)
tOH
Output hold time HS
-
3
-
-
DS14258 Rev 5
ns
231/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Table 122. Dynamic characteristics: SD/MMC, VDD = 2.7 to 3.6 V(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
CMD, D inputs (referenced to CK) in SD default mode
tISUD
Input setup time SD
-
2.5
-
tIHD
Input hold time SD
-
1.5
-
ns
CMD, D outputs (referenced to CK) in SD default mode
tOVD
Output valid default time SD
-
-
0.5
1/33(3)
tOHD
Output hold default time SD
-
0
-
-
ns
1. Evaluated by characterization - Not tested in production.
2. CL applied is 20 pF.
3. When using PB13 and PB14.
4. For SD 1.8 V support, an external voltage converter is needed.
5. The minimum window of time where the data needs to be stable for proper sampling in tuning mode.
Table 123. Dynamic characteristics: eMMC, VDD = 1.71 to 1.9 V(1)
Symbol
Parameter
Conditions
Min
Typ
fPP
Clock frequency in data transfer mode
-
0
-
8.5
9.5
-
8.5
9.5
-
tW(CKL)
Clock low time
tW(CKH)
Clock high time
fPP =52 MHz
Max
Unit
110(2)/6(3) MHz
ns
CMD, D inputs (referenced to CK) in eMMC mode
tISU
Input setup time HS
-
1.5
-
-
tIH
Input hold time HS
-
1.5
-
-
Input valid window (variable window)
-
4
-
-
tIDW(4)
ns
CMD, D outputs (referenced to CK) in eMMC mode
tOV
Output valid time HS
-
-
5.5
6/75(3)
tOH
Output hold time HS
-
3
-
-
1. Evaluated by characterization - Not tested in production.
2. CL = 20 pF.
3. When using PB13 and PB14.
4. The minimum window of time where the data needs to be stable for proper sampling in tuning mode.
232/270
DS14258 Rev 5
ns
STM32H562xx and STM32H563xx
Electrical characteristics
Figure 71. SDIO high-speed/eMMC timing
MSv72345V1
Figure 72. SD default speed timings
CK
tOV
tOH
D, CMD output
MSv69710V1
Figure 73. DDR mode timings
Valid data
D input
tISU
Valid data
tIH
tISU
tIH
tW(CKH)
CK
tW(CKL)
tOV
tOV
tOH
tOH
D output
Valid data
Valid data
MSv69158V1
DS14258 Rev 5
233/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Ethernet interface characteristics
Unless otherwise specified, the parameters given in Table 124, Table 125, and Table 126
are derived from tests performed under the ambient temperature, frcc_c_ck frequency and
VDD supply voltage conditions summarized in Table 20, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 10
•
Capacitive load CL= 20 pF
•
Measurement points are done at CMOS levels: 0.5 VDD
•
I/O compensation cell activated
•
HSLV activated when VDD ≤ 2.5 V
Refer to Section 5.3.15 for more details on the input/output characteristics.
Table 124. Dynamic characteristics: Ethernet MAC signals for SMI (1)
Symbol
tMDC
Parameter
MDC cycle time (2.5 MHz)
Min
Typ
Max
400
400
403
Td(MDIO)
Write data valid time
0
0.5
1
tsu(MDIO)
Read data setup time
12.5
-
-
th(MDIO)
Read data hold time
0
-
-
Unit
ns
1. Evaluated by characterization - Not tested in production.
Table 125. Dynamic characteristics: Ethernet MAC signals for RMII (1)
Symbol
Parameter
Typ
Max
tsu(RXD)
Receive data setup time
3
-
-
tih(RXD)
Receive data hold time
1
-
-
tsu(CRS)
Carrier sense setup time
2
-
-
tih(CRS)
Carrier sense hold time
1
-
-
td(TXEN)
Transmit enable valid delay time
7.5
9.5
15
td(TXD)
Transmit data valid delay time
7.5
10
15.5
1. Evaluated by characterization - Not tested in production.
234/270
Min
DS14258 Rev 5
Unit
ns
STM32H562xx and STM32H563xx
Electrical characteristics
Table 126. Dynamic characteristics: Ethernet MAC signals for MII (1)
Symbol
Parameter
Min
Typ
Max
tsu(RXD)
Receive data setup time
3
-
-
tih(RXD)
Receive data hold time
1.5
-
-
tsu(DV)
Data valid setup time
2
-
-
tih(DV)
Data valid hold time
1
-
-
tsu(ER)
Error setup time
3
-
-
tih(ER)
Error hold time
1
-
-
7.5
10
16
8
10.5
16.5
td(TXEN)
Transmit enable valid delay time
td(TXD)
Transmit data valid delay time
Unit
ns
1. Evaluated by characterization - Not tested in production.
Figure 74. Ethernet RMII timing diagram
RMII_REF_CLK
td(TXEN)
td(TXD)
RMII_TX_EN
RMII_TXD[1:0]
tsu(RXD)
tsu(CRS)
tih(RXD)
tih(CRS)
RMII_RXD[1:0]
RMII_CRS_DV
ai15667b
DS14258 Rev 5
235/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Figure 75. Ethernet MII timing diagram
MII_RX_CLK
tsu(RXD)
tsu(ER)
tsu(DV)
tih(RXD)
tih(ER)
tih(DV)
MII_RXD[3:0]
MII_RX_DV
MII_RX_ER
MII_TX_CLK
td(TXEN)
td(TXD)
MII_TX_EN
MII_TXD[3:0]
ai15668b
Figure 76. Ethernet SMI timing diagram
tMDC
ETH_MDC
td(MDIO)
ETH_MDIO(O)
tsu(MDIO)
th(MDIO)
ETH_MDIO(I)
MS31384V1
JTAG/SWD interface characteristics
Unless otherwise specified, the parameters given in Table 127 and Table 128 for
JTAG/SWD are derived from tests performed under the ambient temperature, frcc_c_ck
frequency and VDD supply voltage summarized in Table 20, with the following configuration:
•
Output speed is set to OSPEEDRy[1:0] = 11
•
Capacitive load CL= 30 pF
•
HSLV activated when VDD ≤ 2.7 V
•
Measurement points are done at CMOS levels: 0.5 VDD
Refer to Section 5.3.15 for more details on the input/output characteristics:
236/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Electrical characteristics
Table 127. Dynamic JTAG characteristics
Symbol
FTCK
1/tc(TCK)
Parameter
TCK clock frequency
Conditions
Min
Typ
Max
2.7 V < VDD < 3.6 V
-
-
50
1.71 V < VDD < 3.6 V
-
-
45
tisu(TMS)
TMS input setup time
-
2
-
-
tih(TMS)
TMS input hold time
-
1.5
-
-
tisu(TDI)
TDI input setup time
-
1.5
-
-
tih(TDI)
TDI input hold time
-
1.5
-
-
2.7V < VDD < 3.6 V
-
8
10
1.71 < VDD < 3.6 V
-
8
11
-
6.5
-
-
tov(TDO)
TDO output valid time
toh(TDO)
TDO output hold time
Unit
MHz
ns
Table 128. Dynamic SWD characteristics
Symbol
FSWCLK
1/tc(SWCLK)
Parameter
SWCLK clock frequency
Conditions
Min
Typ
Max
2.7 V < VDD < 3.6 V
-
-
80
1.71 V < VDD < 3.6 V
-
-
71
tisu(SWDIO)
SWDIO input setup time
-
1.5
-
-
tih(SWDIO)
SWDIO input hold time
-
1.5
-
-
tov(SWDIO)
SWDIO output valid time
2.7 V < VDD < 3.6 V
-
10.5
12.5
1.71 V < VDD < 3.6 V
-
10.5
14.0
toh(SWDIO)
SWDIO output hold time
-
8.5
-
-
Unit
MHz
ns
Figure 77. JTAG timing diagram
tc(TCK)
TCK
tsu(TMS/TDI)
th(TMS/TDI)
tw(TCKL) tw(TCKH)
TDI/TMS
tov(TDO)
toh(TDO)
TDO
MSv40458V1
DS14258 Rev 5
237/270
238
Electrical characteristics
STM32H562xx and STM32H563xx
Figure 78. SWD timing diagram
tc(SWCLK)
SWCLK
tsu(SWDIO)
th(SWDIO)
twSWCLKL) tw(SWCLKH)
SWDIO
(receive)
tov(SWDIO)
toh(SWDIO)
SWDIO
(transmit)
MSv40459V1
238/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
6
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
6.1
Device marking
Refer to “Reference device marking schematics for STM32 microcontrollers and
microprocessors” (TN1433), available on www.st.com, for the location of pin 1 / ball A1 as
well as the location and orientation of the marking areas versus pin 1 / ball A1.
Parts marked as “ES”, “E” or accompanied by an engineering sample notification letter, are
not yet qualified and therefore not approved for use in production. ST is not responsible for
any consequences resulting from such use. In no event will ST be liable for the customer
using any of these engineering samples in production. ST’s Quality department must be
contacted prior to any decision to use these engineering samples to run a qualification
activity.
A WLCSP simplified marking example (if any) is provided in the corresponding package
information subsection.
DS14258 Rev 5
239/270
265
Package information
6.2
STM32H562xx and STM32H563xx
LQFP64 package information (5W)
This LQFP is 64-pin, 10 x 10 mm low-profile quad flat package.
Note:
See list of notes in the notes section.
Figure 79. LQFP64 - Outline(15)
BOTTOM VIEW
2
1
(2)
R1
R2
GAUGE PLANE
0.25
B
D 1/4
SE
C
TI
O
N
B-
B
H
(6)
S
B
3
E 1/4
4x N/4 TIPS
aaa C A-B D
L
(L1)
(1) (11)
bbb H A-B D 4x
SECTION A-A
(13) (N – 4)x e
C
A
0.05
A2 A1
(12)
b
ddd
C A-B D
ccc C
D
(9) (11)
D (3)
(10)
E 1/4
WITH PLATING
(11)
(11)
c
D 1/4
B (3)
(6)
A
(Section A-A)
c1
(5)
(2)
E1
A
E
b1
(11)
BASE METAL
SECTION B-B
5W_LQFP64_ME_V1
TOP VIEW
240/270
b
(4)
N
1
2
3
(3) A
(4)
D1
(5) (2)
DS14258 Rev 5
STM32H562xx and STM32H563xx
Package information
Table 129. LQFP64 - Mechanical data
Symbol
inches(14)
millimeters
Min
Typ
Max
Min
Typ
Max
A
-
-
1.60
-
-
0.0630
A1(12)
0.05
-
0.15
0.0020
-
0.0059
A2
1.35
1.40
1.45
0.0531
0.0551
0.0570
(9)(11)
0.17
0.22
0.27
0.0067
0.0087
0.0106
(11)
b
0.17
0.20
0.23
0.0067
0.0079
0.0091
c(11)
0.09
-
0.20
0.0035
-
0.0079
c1(11)
0.09
-
0.16
0.0035
-
0.0063
b1
(4)
12.00 BSC
0.4724 BSC
(2)(5)
10.00 BSC
0.3937 BSC
12.00 BSC
0.4724 BSC
10.00 BSC
0.3937 BSC
0.50 BSC
0.1970 BSC
D
D1
E(4)
(2)(5)
E1
e
L
0.45
L1
0.60
0.75
0.0177
1.00 REF
0.0236
0.0295
0.0394 REF
N(13)
64
θ
0°
3.5°
7°
0°
3.5°
7°
θ1
0°
-
-
0°
-
-
θ2
10°
12°
14°
10°
12°
14°
θ3
10°
12°
14°
10°
12°
14°
R1
0.08
-
-
0.0031
-
-
R2
0.08
-
0.20
0.0031
-
0.0079
S
0.20
-
-
0.0079
-
-
(1)
0.20
0.0079
(1)
0.20
0.0079
ccc
(1)
0.08
0.0031
ddd(1)
0.08
0.0031
aaa
bbb
DS14258 Rev 5
241/270
265
Package information
STM32H562xx and STM32H563xx
Notes:
1.
Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
2.
The Top package body size may be smaller than the bottom package size by as much
as 0.15 mm.
3.
Datums A-B and D to be determined at datum plane H.
4.
To be determined at seating datum plane C.
5.
Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash
or protrusions is “0.25 mm” per side. D1 and E1 are Maximum plastic body size
dimensions including mold mismatch.
6.
Details of pin 1 identifier are optional but must be located within the zone indicated.
7.
All Dimensions are in millimeters.
8.
No intrusion allowed inwards the leads.
9.
Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall
not cause the lead width to exceed the maximum “b” dimension by more than 0.08 mm.
Dambar cannot be located on the lower radius or the foot. Minimum space between
protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
10. Exact shape of each corner is optional.
11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm
from the lead tip.
12. A1 is defined as the distance from the seating plane to the lowest point on the package
body.
13. “N” is the number of terminal positions for the specified body size.
14. Values in inches are converted from mm and rounded to 4 decimal digits.
15. Drawing is not to scale.
Figure 80. LQFP64 - Footprint example
48
33
0.30
0.5
49
32
12.70
10.30
10.30
17
64
1.20
16
1
7.80
12.70
1. Dimensions are expressed in millimeters.
242/270
DS14258 Rev 5
5W_LQFP64_FP_V2
STM32H562xx and STM32H563xx
6.3
Package information
VFQFPN68 package information (B029)
This VFQFPN is a 68 pins, 8 x 8 mm, 0.4 mm pitch, very thin fine pitch quad flat package.
Figure 81. VFQFPN68 - Outline
PIN 1 IDENTIFIER
LASER MARKING
ddd C
D
A
A1
A2
68 67
1
2
E
(2X)
E
0.10 C
C
TOP VIEW
L
SEATING
PLANE
SIDE VIEW
D2
E2
2
1
PIN 1 ID
C 0.30 X 45'
68 67
e
b
EXPOSED PAD AREA
BOTTOM VIEW
B029_VFQFPN68_ME_V1
1. VFQFPN stands for Thermally Enhanced Very thin Fine pitch Quad Flat Packages No lead. Sawed
version. Very thin profile: 0.80 < A ≤ 1.00mm.
2. The pin #1 identifier must be existed on the top surface of the package by using indentation mark or other
feature of package body. Exact shape and size of this feature is optional.
DS14258 Rev 5
243/270
265
Package information
STM32H562xx and STM32H563xx
Table 130. VFQFPN68 - Mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.80
0.90
1.00
0.0315
0.0354
0.0394
A1
0
0.02
0.05
0
0.0008
0.0020
A3
-
0.20
-
-
0.0008
-
b
0.15
0.20
0.25
0.0059
0.0079
0.0098
D
7.85
8.00
8.15
0.3091
0.3150
0.3209
D2
6.30
6.40
6.50
0.2480
0.2520
0.2559
E
7.85
8.00
8.15
0.3091
0.3150
0.3209
E2
6.30
6.40
6.50
0.2480
0.2520
0.2559
e
-
0.40
-
-
0.0157
-
L
0.40
0.50
0.60
0.0157
0.0197
0.0236
ddd
-
-
0.08
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 82. VFQFPN68 - Footprint example
8.30
7.00
6.65
6.40
0.15
8.30
7.00
6.65
6.40
0.25
0.82
0.65
0.40
B029_VFQFPN68_FP_V2
1. Dimensions are expressed in millimeters.
244/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
WLCSP80 package information (B0D4)
This WLCSP is a 80 ball, 3.50 x 3.27 mm, 0.35 mm pitch, wafer level chip scale package.
Figure 83. WLCSP80 - Outline
G
F
e1
(DETAIL A)
(DETAIL B)
K
e
e
e
e2
DETAIL B
BOTTOM VIEW
A3
A
bbb C
BACKSIDE CODE
6.4
Package information
SIDE VIEW
A2
SIDE VIEW
DETAIL A
BUMP
D
A1
eee Z
E
b (80x)
ccc Z X Y
ddd Z
4x
A1 Orientation
ref
aaa C
DETAIL A
ROTATED 90
SEATING
PLANE
TOP VIEW
B0D4_WLCSP80_ME_V1
1. Drawing is not to scale.
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
3. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
4. Bump position designation per JESD 95-1, SPP-010. The tolerance of position that controls the location of
the pattern of balls with respect to datums X and Y. For each ball there is a cylindrical tolerance zone ccc
perpendicular to datum Z and located on true position with respect to datums X and Y as defined by e. The
axis perpendicular to datum Z of each ball must lie within this tolerance zone.
DS14258 Rev 5
245/270
265
Package information
STM32H562xx and STM32H563xx
Table 131. WLCSP80 - Mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A(2)
-
-
0.58
-
-
0.228
A1
-
0.17
-
-
0.0067
-
A2
-
0.38
-
-
0.0150
-
-
0.025
-
-
0.0098
-
b
0.22
0.24
0.27
0.0087
0.0094
0.0106
D
3.47
3.50
3.52
0.1366
0.1378
0.1386
E
3.25
3.27
3.30
0.1279
0.1287
0.1299
e
-
0.35
-
-
0.138
-
e1
-
2.73
-
-
0.1075
-
e2
-
2.45
-
-
0.0964
-
F(4)
-
0.384
-
-
0.0151
-
G(4)
-
0.484
-
-
0.0190
-
H
-
0.1025
-
-
0.0040
-
aaa
-
-
0.10
-
-
0.0039
bbb
(3)
A3
-
-
0.10
-
-
0.0039
(5)
-
-
0.10
-
-
0.0039
(6)
-
-
0.05
-
-
0.0020
-
-
0.05
-
-
0.0020
ccc
ddd
eee
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. The maximum total package height is calculated by the RSS method (Root Sum Square) using nominal
and tolerances values of A1 and A2.
3. Back side coating. Nominal dimension is rounded to the 3rd decimal place resulting from process
capability.
4. Calculated dimensions are rounded to the 3rd decimal place
5. Bump position designation per JESD 95-1, SPP-010. The tolerance of position that controls the location of
the pattern of balls with respect to datums X and Y. For each ball there is a cylindrical tolerance zone ccc
perpendicular to datum Z and located on true position with respect to datums X and Y as defined by e. The
axis perpendicular to datum Z of each ball must lie within this tolerance zone.
6. The tolerance of position that controls the location of the balls within the matrix with respect to each other.
For each ball there is a cylindrical tolerance zone ddd perpendicular to datum Z and located on true
position as defined by e. The axis perpendicular to datum Z of each ball must lie within this tolerance zone.
Each tolerance zone ddd in the array is contained entirely in the respective zone ccc above. The axis of
each ball must lie simultaneously in both tolerance zones.
246/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Package information
Figure 84. WLCSP80 - Footprint example
Dpad
Dsm
BGA_WLCSP_FT_V1
Table 132. WLCSP80 - Example of PCB design rules
Dimension
Values
Pitch
0.35 mm
Dpad
0.225 mm
Dsm
0.290 mm typ. (depends on soldermask registration tolerance)
Stencil opening
0.235 mm
Stencil thickness
0.080 mm
Example of device marking for WLCSP80
The following figure gives an example of the locations and orientation of the marking areas
versus ball A1, and allows engineering samples to be identified.
With the device text markings oriented as in the figure, ball A1 is always located at top left.
Figure 85. WLCSP80 marking example (package top view)
Ball 1 identifier
Product
identification
Date code
Y ww
Revision
code
MS56506V1
DS14258 Rev 5
247/270
265
Package information
6.5
STM32H562xx and STM32H563xx
LQFP100 package information (1L)
This LQFP is 100 lead, 14 x 14 mm low-profile quad flat package.
Note:
See list of notes in the notes section.
Figure 86. LQFP100 - Outline(15)
ș
ș2
(2)
R1
R2
O
N
BB
H
B
SE
C
TI
(6)
D1/4
GAUGE PLANE
S
ș
4x N/4 TIPS
L
4x
aaa C A-B D
(L1)
bbb H A-B D
(1) (11)
SECTION A-A
BOTTOM VIEW
(N-4) x e
(13)
C
A
0.05
ș
B
E1/4
(9) (11)
b
A2 A1
(12)
aaa
b
ccc C
C A-BD
WITH PLATING
SIDE VIEW
D
D1
(2) (5)
(4)
(11)
D (3)
(10)
c
c1
(11)
(4)
N
b1
BASE METAL
(11)
1
2
3
E1/4
D1/4
SECTION B-B
(2)
(6)
B
A
(5)
E1
E
SECTION A-A
A
A
TOP VIEW
248/270
1L_LQFP100_ME_V3
DS14258 Rev 5
STM32H562xx and STM32H563xx
Package information
Table 133. LQFP100 - Mechanical data
inches(14)
millimeters
Symbol
A
(12)
A1
A2
Min
Typ
Max
Min
Typ
Max
-
1.50
1.60
-
0.0590
0.0630
0.05
-
0.15
0.0019
-
0.0059
1.35
1.40
1.45
0.0531
0.0551
0.0570
(9)(11)
0.17
0.22
0.27
0.0067
0.0087
0.0106
(11)
0.17
0.20
0.23
0.0067
0.0079
0.0090
0.09
-
0.20
0.0035
-
0.0079
0.09
-
0.16
0.0035
-
0.0063
b
b1
(11)
c
c1(11)
(4)
16.00 BSC
0.6299 BSC
(2)(5)
D
14.00 BSC
0.5512 BSC
E(4)
16.00 BSC
0.6299 BSC
E1(2)(5)
14.00 BSC
0.5512 BSC
e
0.50 BSC
0.0197 BSC
D1
L
L1
0.45
(1)(11)
0.60
0.75
1.00
N(13)
0.177
0.0236
0.0295
-
0.0394
-
100
θ
0°
3.5°
7°
0°
3.5°
7°
θ1
0°
-
-
0°
-
-
θ2
10°
12°
14°
10°
12°
14°
θ3
10°
12°
14°
10°
12°
14°
R1
0.08
-
-
0.0031
-
-
R2
0.08
-
0.20
0.0031
-
0.0079
S
0.20
-
-
0.0079
-
-
aaa(1)
0.20
0.0079
(1)
bbb
0.20
0.0079
ccc(1)
0.08
0.0031
(1)
0.08
0.0031
ddd
DS14258 Rev 5
249/270
265
Package information
STM32H562xx and STM32H563xx
Notes:
1.
Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
2.
The Top package body size may be smaller than the bottom package size by as much
as 0.15 mm.
3.
Datums A-B and D to be determined at datum plane H.
4.
To be determined at seating datum plane C.
5.
Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash
or protrusions is “0.25 mm” per side. D1 and E1 are Maximum plastic body size
dimensions including mold mismatch.
6.
Details of pin 1 identifier are optional but must be located within the zone indicated.
7.
All Dimensions are in millimeters.
8.
No intrusion allowed inwards the leads.
9.
Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall
not cause the lead width to exceed the maximum “b” dimension by more than 0.08 mm.
Dambar cannot be located on the lower radius or the foot. Minimum space between
protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
10. Exact shape of each corner is optional.
11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm
from the lead tip.
12. A1 is defined as the distance from the seating plane to the lowest point on the package
body.
13. “N” is the number of terminal positions for the specified body size.
14. Values in inches are converted from mm and rounded to 4 decimal digits.
15. Drawing is not to scale.
Figure 87. LQFP100 - Footprint example
75
76
51
50
0.5
0.3
16.7
14.3
100
26
1.2
1
25
12.3
16.7
1L_LQFP100_FP_V1
1. Dimensions are expressed in millimeters.
250/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
6.6
Package information
LQFP144 package information (1A)
This LQFP is a 144-pin, 20 x 20 mm low-profile quad flat package.
Note:
See list of notes in the notes section.
Figure 88. LQFP144 - Outline(15)
BOTTOM VIEW
2
1
(2)
R1
R2
B
GAUGE PLANE
0.25
(6)
SE
C
TI
O
N
B-
B
H
D 1/4
S
B
3
E 1/4
L
(L1)
(1) (11)
4x N/4 TIPS
aaa C A-B D
SECTION A-A
bbb H A-B D 4x
(N-4)x e
C
A
0.05
A2 A1
(12)
b
ddd
C A-B D
D
D1
(3)
(10)
ccc C
(4)
(2) (5)
D
1
2
3
(9) (11)
(4)
N
b
WITH PLATING
E 1/4
(11)
D 1/4
(6)
c1
(11)
(2)
(5)
B (3)
(3) A
c
E1
E
b1
(11)
BASE METAL
SECTION B-B
A
(Section A-A)
A
TOP VIEW
1A_LQFP144_ME_V2
DS14258 Rev 5
251/270
265
Package information
STM32H562xx and STM32H563xx
Table 134. LQFP144 - Mechanical data
inches(14)
millimeters
Symbol
A
(12)
A1
A2
b
Min
Typ
Max
Min
Typ
Max
-
-
1.60
-
-
0.0630
0.05
-
0.15
0.0020
-
0.0059
1.35
1.40
1.45
0.0531
0.0551
0.0571
(9)(11)
0.17
0.22
0.27
0.0067
0.0087
0.0106
(11)
0.17
0.20
0.23
0.0067
0.0079
0.0090
0.09
-
0.20
0.0035
-
0.0079
0.09
-
0.16
0.0035
-
0.0063
b1
c
(11)
c1(11)
(4)
22.00 BSC
0.8661 BSC
(2)(5)
D
20.00 BSC
0.7874 BSC
E(4)
22.00 BSC
0.8661 BSC
E1(2)(5)
20.00 BSC
0.7874 BSC
e
0.50 BSC
0.0197 BSC
D1
L
0.45
L1
0.60
0.75
1.00 REF
0.0236
0.0295
0.0394 REF
N(13)
252/270
0.0177
144
θ
0°
3.5°
7°
0°
3.5°
7°
θ1
0°
-
-
0°
-
-
θ2
10°
12°
14°
10°
12°
14°
θ3
10°
12°
14°
10°
12°
14°
R1
0.08
-
-
0.0031
-
-
R2
0.08
-
0.20
0.0031
-
0.0079
S
0.20
-
-
0.0079
-
-
aaa
0.20
0.0079
bbb
0.20
0.0079
ccc
0.08
0.0031
ddd
0.08
0.0031
DS14258 Rev 5
STM32H562xx and STM32H563xx
Package information
Notes:
1.
Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
2.
The Top package body size may be smaller than the bottom package size by as much
as 0.15 mm.
3.
Datums A-B and D to be determined at datum plane H.
4.
To be determined at seating datum plane C.
5.
Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash
or protrusions is “0.25 mm” per side. D1 and E1 are Maximum plastic body size
dimensions including mold mismatch.
6.
Details of pin 1 identifier are optional but must be located within the zone indicated.
7.
All Dimensions are in millimeters.
8.
No intrusion allowed inwards the leads.
9.
Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall
not cause the lead width to exceed the maximum “b” dimension by more than 0.08 mm.
Dambar cannot be located on the lower radius or the foot. Minimum space between
protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
10. Exact shape of each corner is optional.
11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm
from the lead tip.
12. A1 is defined as the distance from the seating plane to the lowest point on the package
body.
13. “N” is the number of terminal positions for the specified body size.
14. Values in inches are converted from mm and rounded to 4 decimal digits.
15. Drawing is not to scale.
DS14258 Rev 5
253/270
265
Package information
STM32H562xx and STM32H563xx
Figure 89. LQFP144 - Footprint example
108
109
73
1.35
72
0.35
0.50
19.90
17.85
22.60
144
37
1
36
19.90
22.60
1A_LQFP144_FP
1. Dimensions are expressed in millimeters.
254/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
6.7
Package information
UFBGA169 package information (A0YV)
This UFBGA is a 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package.
Figure 90. UFBGA169 - Outline
E1
SE
e
N
M
L
K
J
H
G
F
E
D
C
B
A
SD
e
D1
1 2 3 4 5 6 7 8 9 10 11 12 13
Øb (169 balls)
Ø eee M C A B
Ø fff M C
A1 ball pad
corner
BOTTOM VIEW
Detail A
A3
A
ccc C
Mold resin
A2
Seating plane
C
SIDE VIEW
2
C
ddd C
Substrate
Solder balls
A1 A5
DETAIL A
E
B
A
3
A1 ball pad
corner
(DATUM A)
D
(DATUM B)
aaa C
(4x)
TOP VIEW
A0YV_UFBGA169_ME_V2
1. Drawing is not to scale.
2. Primary datum C is defined by the plane established by the contact points of three or more solder balls that
support the device when it is placed on top of a planar surface.
3. The terminal (ball) A1 corner must be identified on the top surface of the package by using a corner
chamfer, ink or metallized markings, or other feature of package body or integral heat slug. A distinguish
feature is allowable on the bottom surface of the package to identify the terminal A1 corner. Exact shape of
each corner is optional.
DS14258 Rev 5
255/270
265
Package information
STM32H562xx and STM32H563xx
Table 135. UFBGA169 - Mechanical data
inches(1)
millimeters
Symbol
A(2)
(3)
A1
A2
b
(4)
(5)
D
D1
(5)
E(5)
Min.
Typ.
Max.
Min.
Typ.
Max.
-
-
0.60
-
-
0.0236
0.05
-
-
0.0020
-
-
-
0.43
-
-
0.0169
-
0.23
0.28
0.33
0.0091
0.0110
0.0130
7.00 BSC
0.2756 BSC
6.00 BSC
0.2362 BSC
7.00 BSC
0.2756 BSC
(5)
6.00 BSC
0.2362 BSC
(5)(6)
0.50 BSC
0.0197 BSC
E1
e
N(7)
169
SD(5)(8)
0.50 BSC
0.0197 BSC
SE(5)(8)
0.50 BSC
0.0197 BSC
(9)
0.15
0.0059
(9)
0.20
0.0079
ddd(9)
0.08
0.0031
(9)
0.15
0.0059
0.05
0.0020
aaa
ccc
eee
fff
(9)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. The profile height, A, is the distance from the seating plane to the highest point on the package. It is
measured perpendicular to the seating plane.
3. A1 is defined as the distance from the seating plane to the lowest point on the package body.
4. Dimension b is measured at the maximum diameter of the terminal (ball) in a plane parallel to primary
datum C.
5. BSC stands for BASIC dimensions. It corresponds to the nominal value and has no tolerance. For
tolerances refer to form and position table.
6. e represents the solder ball grid pitch.
7. N represents the total number of balls on the BGA.
8. Basic dimensions SD and SE are defined with respect to datums A and B. It defines the position of the
centre ball(s) in the outer row or column of a fully populated matrix.
9. Tolerance of form and position drawing
256/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Package information
Figure 91. UFBGA169 - Footprint example
Dpad
Dsm
BGA_WLCSP_FT_V1
Table 136. UFBGA169 - Example of PCB design rules (0.5 mm pitch BGA)
Dimension
Values
Pitch
0.5 mm
Dpad
0.27 mm
Dsm
0.35 mm typ. (depends on the soldermask
registration tolerance)
Solder paste
0.27 mm aperture diameter.
Note:
Non-solder mask defined (NSMD) pads are recommended.
Note:
4 to 6 mils solder paste screen printing process.
DS14258 Rev 5
257/270
265
Package information
6.8
STM32H562xx and STM32H563xx
LQFP176 package information (1T)
This LQFP is a 176-pin, 24 x 24 mm, 0.5 mm pitch, low profile quad flat package.
Note:
See list of notes in the notes section.
Figure 92. LQFP176 - Outline(15)
ș1
ș2
R1
(2)
R2
H
B(See SECTION B-B)
GAUGE PLANE
(6)
0.25
D1/4
S
(L1)
4x
bbb H A-B D
aaa C A-B D
(1) (11)
SECTION A-A
BOTTOM VIEW
A2
0.05
L
ș
E1/4
4x N/4 TIPS
ș
B
(N-4) x e
C
A
A1 (12)
ddd
b
ccc C
C A-BD
SIDE VIEW
D
N
(10)
(4)
D
D1
(2) (5)
(9) (11)
b
(4)
WITH PLATING
E1/4
D1/4
(6)
A
B
(5)
(2)
E1 E
(11) c
c1 (11)
b1
(11)
BASE METAL
SECTION A-A
A
A
TOP VIEW
258/270
SECTION B-B
1T_LQFP176_ME_V2
DS14258 Rev 5
STM32H562xx and STM32H563xx
Package information
Table 137. LQFP176 - Mechanical data
Symbol
inches(14)
millimeters
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1(12)
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
(9)(11)
0.170
0.220
0.270
0.0067
0.0087
0.0106
(11)
0.170
0.200
0.230
0.0067
0.0079
0.0091
0.090
-
0.200
0.0035
-
0.0079
0.090
-
0.160
0.0035
-
0.063
b
b1
c(11)
(11)
c1
(4)
26.000
1.0236
(2)(5)
24.000
0.9449
26.000
0.0197
24.000
0.9449
0.500
0.1970
D
D1
E(4)
(2)(5)
E1
e
L
0.450
L1(1)(11)
0.600
0.750
0.0177
1
0.0236
0.0295
0.0394 REF
N(13)
176
θ
0°
3.5°
7°
0°
3.5°
7°
θ1
0°
-
-
0°
-
-
θ2
10°
12°
14°
10°
12°
14°
θ3
10°
12°
14°
10°
12°
14°
R1
0.080
-
-
0.0031
-
-
R2
0.080
-
0.200
0.0031
-
0.0079
S
0.200
-
-
0.0079
-
-
(1)
0.200
0.0079
(1)
0.200
0.0079
(1)
0.080
0.0031
ddd(1)
0.080
0.0031
aaa
bbb
ccc
DS14258 Rev 5
259/270
265
Package information
STM32H562xx and STM32H563xx
Notes:
1.
Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
2.
The Top package body size may be smaller than the bottom package size by as much
as 0.15 mm.
3.
Datums A-B and D to be determined at datum plane H.
4.
To be determined at seating datum plane C.
5.
Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash
or protrusions is “0.25 mm” per side. D1 and E1 are Maximum plastic body size
dimensions including mold mismatch.
6.
Details of pin 1 identifier are optional but must be located within the zone indicated.
7.
All Dimensions are in millimeters.
8.
No intrusion allowed inwards the leads.
9.
Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall
not cause the lead width to exceed the maximum “b” dimension by more than 0.08 mm.
Dambar cannot be located on the lower radius or the foot. Minimum space between
protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
10. Exact shape of each corner is optional.
11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm
from the lead tip.
12. A1 is defined as the distance from the seating plane to the lowest point on the package
body.
13. “N” is the number of terminal positions for the specified body size.
14. Values in inches are converted from mm and rounded to 4 decimal digits.
15. Drawing is not to scale.
260/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
Package information
Figure 93. LQFP176 - Footprint example
1.2
1
176
133
132
0.5
21.8
26.7
0.3
44
45
89
88
1.2
21.8
26.7
1T_FP_V1
1. Dimensions are expressed in millimeters.
DS14258 Rev 5
261/270
265
Package information
6.9
STM32H562xx and STM32H563xx
UFBGA(176+25) package information (A0E7)
This UFBGA is a 176+25-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array
package.
Figure 94. UFBGA(176+25) - Outline
Seating plane
C
A4
ddd C
A2
A3
A1
b
e
A
A1 ball
identifier
E1
A1 ball
index
area
A
E
F
A
F
D
D1
e
B
R
15
1
BOTTOM VIEW
Øb (176 + 25 balls)
TOP VIEW
Ø eee M C A B
Ø fff M C
A0E7_ME_V10
1. Drawing is not to scale.
Table 138. UFBGA(176+25) - Mechanical data
inches(1)
millimeters
Symbol
262/270
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
0.600
-
-
0.0236
A1
0.050
0.080
0.110
0.0020
0.0031
0.0043
A2
-
0.450
-
-
0.0177
-
A3
-
0.130
-
-
0.0051
-
A4
-
0.320
-
-
0.0126
-
b
0.240
0.290
0.340
0.0094
0.0114
0.0134
D
9.850
10.000
10.150
0.3878
0.3937
0.3996
D1
-
9.100
-
-
0.3583
-
E
9.850
10.000
10.150
0.3878
0.3937
0.3996
E1
-
9.100
-
-
0.3583
-
e
-
0.650
-
-
0.0256
-
F
-
0.450
-
-
0.0177
-
ddd
-
-
0.080
-
-
0.0031
DS14258 Rev 5
STM32H562xx and STM32H563xx
Package information
Table 138. UFBGA(176+25) - Mechanical data (continued)
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
eee
-
-
0.150
-
-
0.0059
fff
-
-
0.050
-
-
0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 95. UFBGA(176+25) - Footprint example
Dpad
Dsm
BGA_WLCSP_FT_V1
Table 139. UFBGA(176+25) - Example of PCB design rules (0.65 mm pitch BGA)
Dimension
Values
Pitch
0.65 mm
Dpad
0.300 mm
Dsm
0.400 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening
0.300 mm
Stencil thickness
Between 0.100 mm and 0.125 mm
Pad trace width
0.100 mm
DS14258 Rev 5
263/270
265
Package information
6.10
STM32H562xx and STM32H563xx
Package thermal characteristics
The maximum chip-junction temperature, TJmax in degrees Celsius, can be calculated using
the following equation:
TJmax = TAmax + (PDmax × ΘJA)
Where:
•
TAmax is the maximum ambient temperature in °C,
•
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
•
PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax),
•
PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/Omax represents the maximum power dissipation on output pins:
PI/Omax = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 140. Package thermal characteristics
Symbol
ΘJA
ΘJB
264/270
Definition
Thermal resistance
junction-ambient
Thermal resistance
junction-board
Parameter
Value
LQFP64 (10 x 10 mm)
48.1
VFQFPN68 (8 x 8 mm)
24.2
WLCSP80 (3.50 x 3.27 mm)
47.3
LQFP100 (14 x 14 mm)
35.9
LQFP144 (20 x 20 mm)
37.5
LQFP176 (24 x 24 mm)
38.3
UFBGA169 (7 x 7 mm)
40.6
UFBGA176 (10 x 10 mm)
39.1
LQFP64 (10 x 10 mm)
24.1
VFQFPN68 (8 x 8 mm)
9.4
WLCSP80 (3.50 x 3.27 mm)
23.0
LQFP100 (14 x 14 mm)
21.9
LQFP144 (20 x 20 mm)
26.3
LQFP176 (24 x 24 mm)
28.3
UFBGA169 (7 x 7 mm)
26.4
UFBGA176 (10 x 10 mm)
27.0
DS14258 Rev 5
Unit
°C/W
°C/W
STM32H562xx and STM32H563xx
Package information
Table 140. Package thermal characteristics (continued)
Symbol
ΘJC
6.10.1
Definition
Thermal resistance
junction-case
Parameter
Value
LQFP64 (10 x 10 mm)
10.3
VFQFPN68 (8 x 8 mm)
10.8
WLCSP80 (3.50 x 3.27 mm)
2.3
LQFP100 (14 x 14 mm)
8.5
LQFP144 (20 x 20 mm)
8.6
LQFP176 (24 x 24 mm)
9.1
UFBGA169 (7 x 7 mm)
11.2
UFBGA176 (10 x 10 mm)
10.9
Unit
°C/W
Reference documents
•
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
•
For information on thermal management, refer to AN5036 “Guidelines for thermal
management on STM32 applications”, available from www.st.com.
DS14258 Rev 5
265/270
265
Ordering information
7
STM32H562xx and STM32H563xx
Ordering information
Example:
STM32
H
563
V
I
T
6 Q TR
Device family
STM32 = Arm based 32-bit microcontroller
Product type
H = high performance
Device subfamily
562 = STM32H562xx devices without Ethernet
563 = STM32H563xx devices
Pin count
R = 64 pins / 68 pins
M = 80 pins
V = 100 pins
Z = 144 pins
A = 169 balls
I = 176 pins
Flash memory size
G = 1 Mbyte
I = 2 Mbytes
Package
V = VFQFPN
T = LQFP
I = UFBGA (7 x 7 mm)
K = UFBGA (10 x 10)
Y = WLCSP
Temperature range
6 = Industrial, -40 to 85 °C (130 °C junction), available only in LDO option
7 = Industrial, -40 to 105 °C (130 °C junction), available only in LDO option
3 = Industrial, -40 to 125 °C (130 °C junction), available only in SMPS option
Dedicated pinout
Q = Dedicated pinout supporting SMPS step-down converter
Packing
TR = tape and reel
xxx = programmed parts
For a list of available options (such as speed or package) or for further information on any
aspect of this device, contact the nearest ST sales office.
266/270
DS14258 Rev 5
STM32H562xx and STM32H563xx
8
Important security notice
Important security notice
The STMicroelectronics group of companies (ST) places a high value on product security,
which is why the ST product(s) identified in this documentation may be certified by various
security certification bodies and/or may implement our own security measures as set forth
herein. However, no level of security certification and/or built-in security measures can
guarantee that ST products are resistant to all forms of attacks. As such, it is the
responsibility of each of ST's customers to determine if the level of security provided in an
ST product meets the customer needs both in relation to the ST product alone, as well as
when combined with other components and/or software for the customer end product or
application. In particular, take note that:
•
ST products may have been certified by one or more security certification bodies, such
as Platform Security Architecture (www.psacertified.org) and/or Security Evaluation
standard for IoT Platforms (www.trustcb.com). For details concerning whether the ST
product(s) referenced herein have received security certification along with the level
and current status of such certification, either visit the relevant certification standards
website or go to the relevant product page on www.st.com for the most up to date
information. As the status and/or level of security certification for an ST product can
change from time to time, customers should re-check security certification status/level
as needed. If an ST product is not shown to be certified under a particular security
standard, customers should not assume it is certified.
•
Certification bodies have the right to evaluate, grant and revoke security certification in
relation to ST products. These certification bodies are therefore independently
responsible for granting or revoking security certification for an ST product, and ST
does not take any responsibility for mistakes, evaluations, assessments, testing, or
other activity carried out by the certification body with respect to any ST product.
•
Industry-based cryptographic algorithms (such as AES, DES, or MD5) and other open
standard technologies which may be used in conjunction with an ST product are based
on standards which were not developed by ST. ST does not take responsibility for any
flaws in such cryptographic algorithms or open technologies or for any methods which
have been or may be developed to bypass, decrypt or crack such algorithms or
technologies.
•
While robust security testing may be done, no level of certification can absolutely
guarantee protections against all attacks, including, for example, against advanced
attacks which have not been tested for, against new or unidentified forms of attack, or
against any form of attack when using an ST product outside of its specification or
intended use, or in conjunction with other components or software which are used by
customer to create their end product or application. ST is not responsible for resistance
against such attacks. As such, regardless of the incorporated security features and/or
any information or support that may be provided by ST, each customer is solely
responsible for determining if the level of attacks tested for meets their needs, both in
relation to the ST product alone and when incorporated into a customer end product or
application.
•
All security features of ST products (inclusive of any hardware, software,
documentation, and the like), including but not limited to any enhanced security
features added by ST, are provided on an "AS IS" BASIS. AS SUCH, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, ST DISCLAIMS ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, unless the
applicable written and signed contract terms specifically provide otherwise.
DS14258 Rev 5
267/270
267
Revision history
9
STM32H562xx and STM32H563xx
Revision history
Table 141. Document revision history
Date
Revision
06-Mar-2023
1
Initial release.
2
Updated Features and Section 3.10.1: Power supply schemes.
Updated Table 2: STM32H56xxx features and peripheral counts,
Table 18: Current characteristics, Table 20: General operating
conditions, tables 30 to 32, tables 34 to 35, Table 58: I/O static
characteristics, and Table 64: Output timing characteristics (HSLV ON).
Updated Figure 7: WLCSP80 SMPS ballout, Figure 41: NAND
controller waveforms for read access, Figure 42: NAND controller
waveforms for write access, Figure 63: SPI timing diagram - Master
mode, Figure 65: SPI timing diagram - Slave mode and CPHA = 1,
Figure 69: SAI master timing waveforms, and Figure 70: SAI slave
timing waveforms.
Added Section 3.32: Public key accelerator (PKA), Section 6.1: Device
marking, and Example of device marking for WLCSP80.
Minor text edits across the whole document.
3
Updated Figure 1: STM32H562xx and STM32H563xx block diagram,
Figure 6: VFQFPN68 pinout, Figure 17: UFBGA176+25 SMPS ballout,
Figure 31: VIL/VIH for all I/Os except BOOT0, and Figure 63: SPI
timing diagram - Master mode.
Updated Table 14: STM32H562xx and STM32H563xx pin/ball
definition, Table 15: Alternate functions AF0 to AF7, Table 21:
Maximum allowed clock frequencies, Table 23: Characteristics of
SMPS step-down converter external components, Table 30: Typical
and maximum current consumption in Run mode, code with data
processing running from SRAM with cache 1-way, Table 45: HSI
oscillator characteristics, tables 53 to 55, Table 122: Dynamic
characteristics: SD/MMC, VDD = 2.7 to 3.6 V, and Table 123: Dynamic
characteristics: eMMC, VDD = 1.71 to 1.9 V.
Updated Section 3.24.1: Analog temperature sensor.
Added Section 3.25: Digital temperature sensor (DTS), Section 5.3.14:
I/O current injection characteristics, and USB full speed (FS)
characteristics.
Added Table 60: Output voltage characteristics for FT_c I/Os and
Table 67: Output timing characteristics for FT_c I/Os (PB13/PB14).
Added Figure 36: Asynchronous multiplexed PSRAM/NOR write
waveforms.
Minor text edits across the whole document.
20-Oct-2023
28-May-2024
268/270
Changes
DS14258 Rev 5
STM32H562xx and STM32H563xx
Revision history
Table 141. Document revision history
Date
Revision
Changes
13-Dec-2024
4
Updated Features, Section 3.28: Digital camera interface (DCMI),
Wake-up time from low-power modes, and Section 7: Ordering
information.
Updated Table 2: STM32H56xxx features and peripheral counts,
Table 10: SPI features, Table 20: General operating conditions,
Table 21: Maximum allowed clock frequencies, Table 36: Typical and
maximum current consumption in Standby mode, Table 37: Typical and
maximum current consumption in VBAT mode, Table 40: High-speed
external user clock characteristics, Table 51: Flash memory
programming, Table 89: OCTOSPI characteristics in DTR mode (no
DQS), Table 90: OCTOSPI characteristics in DTR mode (with DQS) /
HyperBus, Table 95: 12-bit ADC characteristics, Table 110: LPTIMx
characteristics, and Table 135: UFBGA169 - Mechanical data.
Updated Figure 5: LQFP64 pinout and Figure 90: UFBGA169 - Outline.
Minor text edits across the whole document.
02-Jan-2025
5
Updated Table 36: Typical and maximum current consumption in
Standby mode.
DS14258 Rev 5
269/270
269
STM32H562xx and STM32H563xx
IMPORTANT NOTICE – READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgment.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product
or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2025 STMicroelectronics – All rights reserved
270/270
DS14258 Rev 5