STM32H735xG
Arm® Cortex®-M7 32-bit 550 MHz MCU, 1 MB Flash, 564 KB RAM,
Ethernet, USB, 3x FD-CAN, Graphics, 2x1 6-bit ADCs, crypto/hash
Datasheet - production data
Features
Includes ST state-of-the-art patented
technology
LQFP100 (14 x 14 mm)
LQFP144 (20 x 20 mm)
LQFP176 (24 x 24 mm)
Core
• 32-bit Arm® Cortex®-M7 CPU with DP-FPU, L1
cache: 32-Kbyte data cache and 32-Kbyte
instruction cache allowing 0-wait state
execution from embedded Flash memory and
external memories, frequency up to 550 MHz,
MPU, 1177 DMIPS/2.14 DMIPS/MHz
(Dhrystone 2.1), and DSP instructions
VFQFPN 68
(8x8 mm)
FBGA
FBGA
TFBGA100
(8x8 mm)
UFBGA 169 (7 x 7 mm)
UFBGA 176+25 (10 x 10 mm)
Memories
• 1 Mbyte of embedded Flash memory with ECC
• SRAM: total 564 Kbytes all with ECC, including
128 Kbytes of data TCM RAM for critical realtime data + 432 Kbytes of system RAM (up to
256 Kbytes can remap on instruction TCM
RAM for critical real time instructions) +
4 Kbytes of backup SRAM (available in the
lowest-power modes)
• Flexible external memory controller with up to
24-bit data bus: SRAM, PSRAM,
SDRAM/LPSDR SDRAM, NOR/NAND
memories
• 2 x Octo-SPI interface with XiP and on-the-fly
decryption support
WLCSP 115
0.35 mm pitch
Clock, reset and supply management
• 1.62 V to 3.6 V application supply and I/O
• POR, PDR, PVD and BOR
• Dedicated USB power
• Embedded DCDC and LDO regulator
(*)VFQFPN68 variant is DCDC only
• Internal oscillators: 64 MHz HSI, 48 MHz
HSI48, 4 MHz CSI, 32 kHz LSI
• 2 x SD/SDIO/MMC interface
• External oscillators: 4-50 MHz HSE,
32.768 kHz LSE
• Bootloader with security services support (SFI
and SB-SFU)
Low power
• Sleep, Stop and Standby modes
Graphics
• Chrom-ART Accelerator graphical hardware
accelerator enabling enhanced graphical user
interface to reduce CPU load
• LCD-TFT controller supporting up to XGA
resolution
December 2021
• VBAT supply for RTC, 32×32-bit backup
registers
Analog
• 2×16-bit ADC, up to 3.6 MSPS in 16-bit: up to
22 channels and 7.2 MSPS in doubleinterleaved mode
DS13312 Rev 3
1/284
www.st.com
STM32H735xG
• 1 x 12-bit ADC, up to 5 MSPS in 12-bit, up to 12
channels
• 2x SAI (serial audio interface)
• 2 x comparators
• 8- to 14-bit camera interface
• 2 x operational amplifier GBW = 8 MHz
• 1× FD/TT-CAN and 2x FD-CAN
• 16-bit parallel slave synchronous interface
• 2× 12-bit D/A converters
• SPDIF-IN interface
Digital filters for sigma delta modulator
(DFSDM)
• HDMI-CEC
• 8 channels/4 filters
• USB 2.0 high-speed/full-speed
device/host/OTG controller with dedicated
DMA, on-chip FS PHY and ULPI for external
HS PHY
4 DMA controllers to offload the CPU
• 1 × MDMA with linked list support
• Ethernet MAC interface with DMA controller
• SWPMI single-wire protocol master I/F
• 2 × dual-port DMAs with FIFO
• 1 × basic DMA with request router capabilities
• MDIO slave interface
Mathematical acceleration
24 timers
• Seventeen 16-bit (including 5 x low power
16-bit timer available in stop mode) and four
32-bit timers, each with up to 4 IC/OC/PWM or
pulse counter and quadrature (incremental)
encoder input
• CORDIC for trigonometric functions
acceleration
• FMAC: Filter mathematical accelerator
Digital temperature sensor
• 2x watchdogs, 1x SysTick timer
Cryptographic/HASH acceleration
Debug mode
• AES 128, 192, 256, TDES, HASH (MD5, SHA1, SHA-2), HMAC
• SWD and JTAG interfaces
• 2-Kbyte embedded trace buffer
• 2x OTFDEC AES-128 in CTR mode for OctoSPI memory encryption/decryption
Up to 128 I/O ports with interrupt
capability
True random number generator
CRC calculation unit
Up to 35 communication interfaces
RTC with sub-second accuracy and
hardware calendar
• Up to 5 × I2C FM+ interfaces
(SMBus/PMBus™)
• Up to 5 USARTs/5 UARTs (ISO7816 interface,
LIN, IrDA, modem control) and 1 x LPUART
• Up to 6 SPIs with 4 with muxed duplex I2S for
audio class accuracy via internal audio PLL or
external clock and up to 5 x SPI (from 5 x
USART when configured in synchronous
mode)
ROP, PC-ROP, tamper detection, secure
firmware upgrade support
96-bit unique ID
All packages are ECOPACK2 compliant
Table 1. Device summary
Reference
STM32H735xG
2/284
Part number
STM32H735AG, STM32H735IG, STM32H735RG,
STM32H735VG, STM32H735ZG
DS13312 Rev 3
STM32H735xG
Contents
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1
Arm® Cortex®-M7 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2
Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Error code correction (ECC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
3.4
Secure access mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6
CORDIC co-processor (CORDIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
CORDIC features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
3.7
Filter mathematical accelerator (FMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . 26
FMAC features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
3.8
Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8.1
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.8.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.9
Low-power strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.10
Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.10.1
Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.10.2
System reset sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.11
General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.12
Bus-interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.13
DMA controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.14
Chrom-ART Accelerator (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.15
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 34
3.16
Extended interrupt and event controller (EXTI) . . . . . . . . . . . . . . . . . . . . 34
3.17
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 34
3.18
Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
DS13312 Rev 3
3/284
8
Contents
4/284
STM32H735xG
3.19
Octo-SPI memory interface (OCTOSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.20
Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.21
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.22
Digital temperature sensor (DTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.23
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.24
Digital-to-analog converters (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.25
Ultra-low-power comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.26
Operational amplifiers (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.27
Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 39
3.28
Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.29
PSSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.30
LCD-TFT controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.31
True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.32
Cryptographic acceleration (CRYP and HASH) . . . . . . . . . . . . . . . . . . . . 42
3.33
On-the-fly decryption engine (OTFDEC) . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.34
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.34.1
Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.34.2
General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.34.3
Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.34.4
Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5) . . . . 47
3.34.5
Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.34.6
Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.34.7
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.35
Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 48
3.36
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.37
Universal synchronous/asynchronous receiver transmitter (USART) . . . 49
3.38
Low-power universal asynchronous receiver transmitter (LPUART) . . . . 50
3.39
Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) . 51
3.40
Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.41
SPDIFRX Receiver Interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.42
Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 52
3.43
Management data input/output (MDIO) slaves . . . . . . . . . . . . . . . . . . . . . 53
3.44
SD/SDIO/MMC card host interfaces (SDMMC) . . . . . . . . . . . . . . . . . . . . 53
3.45
Controller area network (FDCAN1, FDCAN2, FDCAN3) . . . . . . . . . . . . . 53
DS13312 Rev 3
STM32H735xG
Contents
3.46
Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 54
3.47
Ethernet MAC interface with dedicated DMA controller (ETH) . . . . . . . . . 54
3.48
High-definition multimedia interface (HDMI)
- consumer electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.49
Debug infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5
Pinouts, pin descriptions and alternate functions . . . . . . . . . . . . . . . . 57
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.2
VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3.3
SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3.4
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . 125
6.3.5
Embedded reset and power control block characteristics . . . . . . . . . . 126
6.3.6
Embedded reference voltage characteristics . . . . . . . . . . . . . . . . . . . . 127
6.3.7
Embedded USB regulator characteristics . . . . . . . . . . . . . . . . . . . . . . 128
6.3.8
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Typical and maximum current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
Typical SMPS efficiency versus load current and temperature . . . . . . . . . . . . .136
I/O system current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
On-chip peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
6.3.9
Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.3.10
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 147
High-speed external user clock generated from an external source . . . . . . . . .147
Low-speed external user clock generated from an external source . . . . . . . . . .148
High-speed external clock generated from a crystal/ceramic resonator. . . . . . .149
DS13312 Rev 3
5/284
8
Contents
STM32H735xG
Low-speed external clock generated from a crystal/ceramic resonator . . . . . . .150
6.3.11
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 151
48 MHz high-speed internal RC oscillator (HSI48) . . . . . . . . . . . . . . . . . . . . . . .151
64 MHz high-speed internal RC oscillator (HSI) . . . . . . . . . . . . . . . . . . . . . . . . .152
4 MHz low-power internal RC oscillator (CSI) . . . . . . . . . . . . . . . . . . . . . . . . . .153
Low-speed internal (LSI) RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
6.3.12
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.3.13
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
6.3.14
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Functional EMS (electromagnetic susceptibility) . . . . . . . . . . . . . . . . . . . . . . . .159
Designing hardened software to avoid noise problems . . . . . . . . . . . . . . . . . . .159
Electromagnetic Interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
6.3.15
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 160
Electrostatic discharge (ESD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
Static latchup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161
6.3.16
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Functional susceptibility to I/O current injection . . . . . . . . . . . . . . . . . . . . . . . . .161
6.3.17
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
General input/output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164
Output voltage levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
Output buffer timing characteristics (HSLV option disabled) . . . . . . . . . . . . . . .167
Output buffer timing characteristics (HSLV option enabled). . . . . . . . . . . . . . . .169
Analog switch between ports Pxy_C and Pxy . . . . . . . . . . . . . . . . . . . . . . . . . .170
6.3.18
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.3.19
FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Asynchronous waveforms and timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171
Synchronous waveforms and timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179
NAND controller waveforms and timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
SDRAM waveforms and timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190
6.3.20
Octo-SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.3.21
Delay block (DLYB) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.3.22
16-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
General PCB design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206
6/284
6.3.23
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
6.3.24
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.3.25
Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 218
6.3.26
Analog temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . 219
6.3.27
Digital temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . 220
DS13312 Rev 3
STM32H735xG
Contents
6.3.28
Temperature and VBAT monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
6.3.29
Voltage booster for analog switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
6.3.30
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
6.3.31
Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 222
6.3.32
Digital filter for Sigma-Delta Modulators (DFSDM) characteristics . . . 225
6.3.33
Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 227
6.3.34
Parallel synchronous slave interface (PSSI) characteristics . . . . . . . . 228
6.3.35
LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 229
6.3.36
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
6.3.37
Low-power timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
6.3.38
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
I2C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232
USART interface characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233
SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235
I2S Interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240
MDIO characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242
SD/SDIO MMC card host interface (SDMMC) characteristics . . . . . . . . . . . . . .243
USB OTG_FS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245
USB OTG_HS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246
Ethernet interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247
JTAG/SWD interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7.1
VFQFPN68 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Device marking for VFQFPN68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254
7.2
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Device marking for LQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258
7.3
TFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Device marking for TFBGA100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261
7.4
WLCSP115 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Device marking for WLSCP115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264
7.5
LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Device marking for LQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268
7.6
UFBGA169 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Device marking for UFBGA169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271
7.7
LQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Device marking for LQFP176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275
DS13312 Rev 3
7/284
8
Contents
STM32H735xG
7.8
UFBGA176+25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Device marking for UFBGA176+25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .278
7.9
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
7.9.1
Reference documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
8/284
DS13312 Rev 3
STM32H735xG
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
STM32H735xG features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
System versus domain low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
DFSDM implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
STM32H735xG pin and ball descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
STM32H735xG pin alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Supply voltage and maximum temperature configuration. . . . . . . . . . . . . . . . . . . . . . . . . 120
VCAP operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Characteristics of SMPS step-down converter external components . . . . . . . . . . . . . . . . 122
SMPS step-down converter characteristics for external usage . . . . . . . . . . . . . . . . . . . . 122
Inrush current and inrush electric charge characteristics for LDO and SMPS . . . . . . . . . 123
Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
USB regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Typical and maximum current consumption in Run mode,
code with data processing running from ITCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory, cache ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Typical and maximum current consumption in Run mode,
code with data processing running from Flash memory, cache OFF. . . . . . . . . . . . . . . . 132
Typical consumption in Run mode and corresponding performance
versus code position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Typical current consumption in Autonomous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . 133
Typical and maximum current consumption in System Stop mode . . . . . . . . . . . . . . . . . 134
Typical and maximum current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . 135
Typical and maximum current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . 135
Peripheral current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4-50 MHz HSE oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
CSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
PLL1 characteristics (wide VCO frequency range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
PLL1 characteristics (medium VCO frequency range) . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
DS13312 Rev 3
9/284
11
List of tables
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
10/284
STM32H735xG
PLL2 and PLL3 characteristics (wide VCO frequency range) . . . . . . . . . . . . . . . . . . . . . 156
PLL2 and PLL3 characteristics (medium VCO frequency range) . . . . . . . . . . . . . . . . . . . 157
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Output voltage characteristics for all I/Os except PC13, PC14 and PC15 . . . . . . . . . . . . 165
Output voltage characteristics for PC13, PC14 and PC15 . . . . . . . . . . . . . . . . . . . . . . . . 166
Output timing characteristics (HSLV OFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Output timing characteristics (HSLV ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Pxy_C and Pxy analog switch characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 173
Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . 173
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 175
Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 175
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 177
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 178
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 184
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 189
SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
SDRAM Write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
LPSDR SDRAM Write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
OCTOSPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
OCTOSPI characteristics in DTR mode (no DQS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
OCTOSPI characteristics in DTR mode (with DQS)/Octal and Hyperbus . . . . . . . . . . . . 196
Delay Block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
16-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Minimum sampling time vs RAIN (16-bit ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
16-bit ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Minimum sampling time vs RAIN (12-bit ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
12-bit ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Digital temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
DS13312 Rev 3
STM32H735xG
Table 97.
Table 98.
Table 99.
Table 100.
Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.
Table 107.
Table 108.
Table 109.
Table 110.
Table 111.
Table 112.
Table 113.
Table 114.
Table 115.
Table 116.
Table 117.
Table 118.
Table 119.
Table 120.
Table 121.
Table 122.
Table 123.
Table 124.
Table 125.
Table 126.
Table 127.
Table 128.
Table 129.
Table 130.
Table 131.
Table 132.
Table 133.
Table 134.
Table 135.
Table 136.
Table 137.
Table 138.
List of tables
VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Temperature monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Voltage booster for analog switch characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
DFSDM measured timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
PSSI transmit characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
PSSI receive characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
LPTIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Minimum i2c_ker_ck frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
MDIO Slave timing parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Dynamics characteristics: SD / MMC characteristics, VDD = 2.7 to 3.6 V . . . . . . . . . . . . 243
Dynamics characteristics: eMMC characteristics VDD = 1.71V to 1.9V . . . . . . . . . . . . . . 244
USB OTG_FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Dynamics characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Dynamics characteristics: Ethernet MAC signals for SMI . . . . . . . . . . . . . . . . . . . . . . . . 247
Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 248
Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 249
Dynamics JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Dynamics SWD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
VFQFPN68 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
LQFP100 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
TFBGA100 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
TFBGA100 - Recommended PCB design rules (0.8 mm pitch BGA) . . . . . . . . . . . . . . . . 261
WLCSP115 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
WLCSP115 - Recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
LQFP144 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
UFBGA169 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
UFBGA169 - Recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . 270
LQFP176 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
UFBGA176+25 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
UFBGA176+25 - Recommended PCB design rules (0.65 mm pitch BGA) . . . . . . . . . . . 277
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
DS13312 Rev 3
11/284
11
List of figures
STM32H735xG
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
12/284
STM32H735xG block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Power-up/power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
STM32H735xG bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
VFQFPN68 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
TFBGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
WLCSP115 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
UFBGA169 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
UFBGA176+25 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
External components for SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Typical SMPS efficiency (%) vs load current (A) in Run mode at TJ = 30 °C. . . . . . . . . . 136
Typical SMPS efficiency (%) vs load current (A) in Run mode at TJ = TJmax . . . . . . . . . 136
Typical SMPS efficiency (%) vs load current (A) in Stop and
DStop modes at TJ = 30 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Typical SMPS efficiency (%) vs load current (A) in low-power mode at TJ = TJmax . . . 137
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
VIL/VIH for all I/Os except BOOT0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 172
Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 174
Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 176
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 183
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 188
NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 189
SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
OCTOSPI SDR read/write timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
OCTOSPI DTR mode timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
OCTOSPI Hyperbus clock timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
OCTOSPI Hyperbus read timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
OCTOSPI Hyperbus write timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Typical connection diagram when using the ADC with FT/TT pins
DS13312 Rev 3
STM32H735xG
List of figures
featuring analog switch function205
Figure 48. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 206
Figure 49. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 206
Figure 50. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Figure 51. Channel transceiver timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Figure 52. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Figure 53. LCD-TFT horizontal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Figure 54. LCD-TFT vertical timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Figure 55. USART timing diagram in Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Figure 56. USART timing diagram in Slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Figure 57. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Figure 58. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Figure 59. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Figure 60. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Figure 61. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Figure 62. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Figure 63. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Figure 64. MDIO Slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Figure 65. SD high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Figure 66. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Figure 67. SDMMC DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Figure 68. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Figure 69. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Figure 70. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Figure 71. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Figure 72. JTAG timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Figure 73. SWD timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Figure 74. VFQFPN68 - Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Figure 75. VFQFPN68 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Figure 76. VFQFPN68 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Figure 77. LQFP100- Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
LQFP100 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Figure 78. LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Figure 79. TFBGA100 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Figure 80. TFBGA100 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Figure 81. TFBGA100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Figure 82. WLCSP115 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Figure 83. WLCSP115 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Figure 84. WLCSP115 marking example (package top view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Figure 85. LQFP144 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Figure 86. LQFP144 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Figure 87. LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Figure 88. UFBGA169 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Figure 89. UFBGA169 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Figure 90. UFBGA169 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Figure 91. LQFP176 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Figure 92. LQFP176 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Figure 93. LQFP176 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Figure 94. UFBGA176+25 - Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Figure 95. UFBGA176+25 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Figure 96. UFBGA176+25 marking example (package top view ) . . . . . . . . . . . . . . . . . . . . . . . . . . 278
DS13312 Rev 3
13/284
13
Introduction
1
STM32H735xG
Introduction
This document provides information on STM32H735xG microcontrollers, such as
description, functional overview, pin assignment and definition, packaging, and ordering
information.
This document should be read in conjunction with the STM32H735xG reference manual
(RM0468), available from the STMicroelectronics website www.st.com.
For information on the device errata with respect to the datasheet and reference manual,
refer to the STM32H735xG errata sheet (ES0491) available on the STMicroelectronics
website www.st.com.
For information on the Arm®(a) Cortex®-M7 core, refer to the Cortex®-M7 Technical
Reference Manual, available from the http://www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
14/284
DS13312 Rev 3
STM32H735xG
2
Description
Description
STM32H735xG devices are based on the high-performance Arm® Cortex®-M7 32-bit RISC
core operating at up to 550 MHz. The Cortex® -M7 core features a floating point unit (FPU)
which supports Arm® double-precision (IEEE 754 compliant) and single-precision dataprocessing instructions and data types. The Cortex -M7 core includes 32 Kbytes of
instruction cache and 32 Kbytes of data cache. STM32H735xG devices support a full set of
DSP instructions and a memory protection unit (MPU) to enhance application security.
STM32H735xG devices incorporate high-speed embedded memories with 1 Mbyte of Flash
memory, up to 564 Kbytes of RAM (including 192 Kbytes that can be shared between ITCM
and AXI, plus 64 Kbytes exclusively ITCM, plus 128 Kbytes exclusively AXI, 128 Kbyte
DTCM, 48 Kbytes AHB and 4 Kbytes of backup RAM), as well as an extensive range of
enhanced I/Os and peripherals connected to APB buses, AHB buses, 2x32-bit multi-AHB
bus matrix and a multi layer AXI interconnect supporting internal and external memory
access. To improve application robustness, all memories feature error code correction (one
error correction, two error detections).
The devices embed peripherals allowing mathematical/arithmetic function acceleration
(CORDIC coprocessor for trigonometric functions and FMAC unit for filter functions). All the
devices offer three ADCs, two DACs, two operational amplifiers, two ultra-low power
comparators, a low-power RTC, 4 general-purpose 32-bit timers, 12 general-purpose 16-bit
timers including two PWM timers for motor control, five low-power timers, a true random
number generator (RNG), and a cryptographic acceleration cell, and a HASH processor.
The devices support four digital filters for external sigma-delta modulators (DFSDM). They
also feature standard and advanced communication interfaces.
•
Standard peripherals
–
Five I2Cs
–
Five USARTs, five UARTs and one LPUART
–
Six SPIs, four I2Ss in Half-duplex mode. To achieve audio class accuracy, the I2S
peripherals can be clocked by a dedicated internal audio PLL or by an external
clock to allow synchronization (note that the five USARTs also provide SPI slave
capability).
–
Two SAI serial audio interfaces
–
One SPDIFRX interface with four inputs
–
One SWPMI (Single Wire Protocol Master Interface)
–
Management Data Input/Output (MDIO) slaves
–
Two SDMMC interfaces
–
A USB OTG high-speed interface with full-speed capability (with the ULPI)
–
Two FDCANs plus one TT-FDCAN interface
–
An Ethernet interface
–
Chrom-ART Accelerator
–
HDMI-CEC
DS13312 Rev 3
15/284
56
Description
STM32H735xG
•
Advanced peripherals including
–
A flexible memory control (FMC) interface
–
Two Octo-SPI memory interfaces with on-the-fly decryption (OTFDEC)
–
A camera interface for CMOS sensors
–
An LCD-TFT display controller
Refer to Table 2: STM32H735xG features and peripheral counts for the list of peripherals
available on each part number.
To reduce the power consumption the STM32H735xG include an optional step-down
converter that can be used either for internal or external supply, or both.
STM32H735xG devices operate in the –40 to +125 °C ambient temperature range from a
1.62 to 3.6 V power supply. The supply voltage can drop down to 1.62 V by using an
external power supervisor (see Section 3.8.2: Power supply supervisor) and connecting the
PDR_ON pin to VSS. Otherwise the supply voltage must stay above 1.71 V with the
embedded power voltage detector enabled.
Dedicated supply inputs for USB are available to allow a greater power supply choice.
A comprehensive set of power-saving modes allows the design of low-power applications.
STM32H735xG devices are offered in several packages ranging from 68 to 176 pins/balls.
The set of included peripherals changes with the device chosen.
These features make STM32H735xG microcontrollers suitable for a wide range of
applications:
•
Motor drive and application control
•
Medical equipment
•
Industrial applications: PLC, inverters, circuit breakers
•
Printers, and scanners
•
Alarm systems, video intercom, and HVAC
•
Home audio appliances
•
Mobile applications, Internet of Things
•
Wearable devices: smart watches.
Figure 1 shows the device block diagram.
16/284
DS13312 Rev 3
STM32H735xG
Description
Figure 1. STM32H735xG block diagram
MII / RMII
To APB1-2
peripherals
MDIO
as AF
AHB1
D-TCM
64KB
I-TCM 64KB
AHBP
LCD-TFT
FIFO
WWDG
PSSI
TIM4
CH[4;1], ETR as AF
32b
TIM5
CH[4;1], ETR as AF
32b
TIM23
CH[4;1], ETR as AF
32b
TIM24
CH[4;1], ETR as AF
16b
TIM12
CH[2;1] as AF
16b
TIM13
CH1 as AF
16b
TIM14
CH1 as AF
DAP
TIM8/PWM
16b
HSEM
16b
CRC
ADC3
AHB4 (275MHz)
TIM1/PWM
RX, TX, CK, CTS, RTS, DE as A
UART4
RX, TX, CTS, RTS, DE as AF
UART5
RX, TX, CTS, RTS, DE as AF
UART7
RX, TX, CTS, RTS, DE as AF
UART8
RX, TX, CTS, RTS, DE as AF
SPI2/I2S2
MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF
MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF
I2C2/SMBUS
I2C3/SMBUS
SCL, SDA, SMBA as AF
I2C5/SMBUS
SCL, SDA, SMBA as AF
MDIOS
MDC, MDIO as AF
TT-FDCAN1
FDCAN2
FDCAN3
16 KB SRAM
4 KB BKP
RAM
SPDIFRX1
HDMI-CEC
DAC
LPTIM5
16b
LPTIM4
16b
OUT as AF
LPTIM3
16b
I2C4
MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF
SPI6/I2S6
RX, TX, CK, CTS, RTS as AF
LPUART1
IN1, IN2, ETR, OUT as AF
LPTIM2
16b
AHB/APB
VREF
VINM, VINP, VOUT as AF
Voltage
regulator
3.3 to 1.2V
@VDD
HSI RC
HSI
HSI48
HSI48 RC
CSI RC
CSI
LSI
LSI RC
VDD
VSS
VCAP, VDDLDO
VDDSMPS, VSSSMPS,
VLXSMPS, VFBSMPS
VBAT
@VSW
IWDG
IN1, IN2, ETR, OUT as AF
OPAMP2
XTAL 32 kHz
Temperature
sensor
CEC as AF
OUT1, OUT2 as AF
VINM, VINP, VOUT as AF
VCORE BBgen + POWER MNGT
SYSCFG
EXTI WKUP
IN[1:4] as AF
OPAMP1
LS
OUT as AF
TX, RX, RXFD_MODE,
TXFD_MODE as AF
TX, RX, RXFD_MODE,
TXFD_MODE as AF
TX, RX, RXFD_MODE,
TXFD_MODE as AF
@VDD
PWRCTRL
SAI4
COMP1&2
OUT as AF
LPTIM1
16b
RCC
Reset &
control
RTC
Backup registers
LS
GPIO PORTJ,K
AHB4 (275MHz)
GPIO PORTA.. H
APB4
MHz
(max)
APB4
138138
MHz
(max)
PA..H[15:0]
PJ,PK[11:0]
SCL, SDA, SMBA as AF
SCL, SDA, SMBA as AF
USBCR
FIFO
USART1
RX, TX, CK, CTS, RTS, DE as A
USART3
SPI3/I2S3
RAM
I/F
32-bit AHB BUS-MATRIX
USART2
I2C1/SMBUS
APB1 138 MHz (max)
BDMA
AHB4
USART6
DMA
Mux2
10 KB SRAM
AHB4
AHB4
UART9
AHB4_MEMD3 (275MHz)
TIM15
AHB4
TIM16
USART10
SCL, SDA, SMBA as AF
16b
A P B 10 MHz
3
TIM17
RX, TX, CK, CTS, RTS, DE as AF
SD_[A;B], SCK_[A;B], FS_[A;B],
MCLK_[A;B], D[3:1], CK[2:1] as AF
COMPx_INP, COMPx_INM,
COMPx_OUT as AF
SWPMI
CH[4;1], ETR as AF
SPI5
RX, TX, CK, CTS, RTS, DE as AF
Up to 17 analog inputs
Some common to ADC1 and 2
16b
CH[4;1], ETR as AF
TIM3
FIFO
SAI1
SPI4
CH[1:4]N, CH[1:4], ETR, BKIN, BKIN2
as AF
TIM7
TIM2
16b
DFSDM
SPI1/I2S1
CH[1:4]N, CH[1:4], ETR, BKIN, BKIN2
as AF
16b
32b
AHB/APB
MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF
RX, TX, CK, CTS, RTS, DE as AF
TIM6
AHB4
DCMI
MOSI, MISO, SCK, NSS as AF
RX, TX, CTS, RTS, DE as AF
FMAC
AHB2 (275MHz)
Up to 20 analog inputs Most
are common to ADC1 & 2
ADC2
AHB/APB
Digital filter
2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF
ADC1
CORDIC
OCTOSPI2
signals
AXI/AHB34 (275MHz)
APB2 138 MHz (max)
1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF
1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF
3DES/AES
SRAM1 SRAM2
16 KB 16 KB
AHB4
MOSI, MISO, SCK, NSS as AF
HASH
AHB3
FIFO
SDMMC1
APB4 138MHz (max)
SD_[A;B], SCK_[A;B], FS_[A;B],
MCLK_[A;B], D[3:1], CK[2:1] as AF
RNG
DLYBOS1-2
AHB/APB
DLYBSD2
CKOUT, DATIN[7:0], CKIN[7:0]
AHB1 (275MHz)
OCTOSPI1
signals
DLYBSD1
HSYNC, VSYNC, PIXCLK, D[13:0]
PDCK, DE, RDY, D[15:0]
DMA
Mux1
FMC_signals
AHB2 (275MHz)
OTFDEC1
OTFDEC2
APB3 (138MHz)
FIFO
64-bit AXI BUS-MATRIX
16 Streams
FIFO
CHROM-ART
(DMA2D)
D[7:0], D123DIR, D0DIR,
CMD, CKas AF
DMA/
FIFO
FIFO
32-bit AHB BUS-MATRIX
FMC
AHBS
LCD_R[7:0], LCD_G[7:0],
LCD_B[7:0], LCD_HSYNC,
LCD_VSYNC, LCD_DE, LCD_CLK
DMA/
FIFO
8 Stream 8 Stream
FIFOs
FIFOs
1 MB FLASH
D-Cache
32KB
MDMA
PHY
ETHER
SDMMC2 OTG_HS
MAC
AXIM
ETM
I-Cache
32KB
DMA2
(275MHz)
AXI/AHB12 (275MHz)
OCTOSPIM
TRACECLK
TRACED[3:0]
128 KB AXI
SRAM
Arm CPU
JTAG/SW
Cortex-M7
550 MHz
OCTOSPI1
NJTRST, JTDI,
JTCK/SWCLK
JTDO/SWDIO, JTDO
DMA1
Shared AXI
I-TCM 192KB
OCTOSPI2
D-TCM
64KB
D[7:0],DP, DM, STP,
D123DIR, NXT,ULPI:CK
D0DIR, , D[7:0], DIR,
CMD, CKas AF ID, VBUS
AWU
OSC32_IN
OSC32_OUT
TS, TAMP1, TAMP3,
OUT, REFIN
@VDD
XTAL OSC
4- 48 MHz
PLL1+PLL2+PLL3
OSC_IN
OSC_OUT
@VDD
POR
reset
Int
SUPPLY SUPERVISION
POR/PDR/BOR
PVD
VDDA, VSSA
NRESET
WKUP[1;2;4;6]
MSv52542V3
DS13312 Rev 3
17/284
56
Description
STM32H735xG
Table 2. STM32H735xG features and peripheral counts
Peripherals
STM32H STM32H STM32H STM32H STM32H STM32H STM32H STM32H
735RGV 735VGT 735VGH 735ZGT 735VGY 735AGI 735IGK 735IGT
Flash memory (Kbytes)
SRAM
(Kbytes)
1024
SRAM
mapped onto
AXI bus
128
SRAM1
(D2 domain)
16
SRAM2
(D2 domain)
16
SRAM4
(D3 domain)
16
RAM shared between ITCM
and AXI (Kbytes)
TCM RAM
in Kbytes
192
ITCM RAM
(instruction)
64
DTCM RAM
(data)
128
Backup SRAM (Kbytes)
4
Interface
FMC
1
NOR Flash
memory/RAM
controller
-
-
-
-
-
yes
yes
yes
Multiplexed
I/O
NOR Flash
memory
-
yes
yes
yes
-
yes
yes
yes
16-bit NAND
Flash memory
-
yes
yes
yes
yes
yes
yes
yes
16-bit SDRAM
controller
-
-
-
-
-
yes
yes
yes
24-bit SDRAM
controller(1)
-
-
-
-
-
-
yes
-
46
67
74
97
67
121
128
119
1 QuadSPI
1 QuadSPI
1
1
2 QuadSPI
2
2
2
GPIO
Octo-SPI interface
OTFDEC
yes
Cordic
yes
FMAC
yes
18/284
DS13312 Rev 3
STM32H735xG
Description
Table 2. STM32H735xG features and peripheral counts (continued)
Peripherals
STM32H STM32H STM32H STM32H STM32H STM32H STM32H STM32H
735RGV 735VGT 735VGH 735ZGT 735VGY 735AGI 735IGK 735IGT
General
purpose 32
bits
4
4
4
4
4
4
4
4
General
purpose 16
bits
10
10
10
10
10
10
10
10
Advanced
control
(PWM)
2(2)
2
2(2)
2
2
2
2
2
Basic
2
2
2
2
2
2
2
2
Low-power
5
5
5
5
5
5
5
5
RTC
1
1
1
1
1
1
1
1
Window
watchdog /
independent
watchdog
2
2
2
2
2
2
2
2
Wakeup pins
3
4
4
4
4
4
4
4
Tamper pins
1
2
2
2
2
2
2
2
Timers
Random number generator
yes
Cryptographic accelerator
yes
4/4
5/4(2)
5/4
6/4
4/4
6/4
6/4
6/4
4
5
5
5
5
5
5
5
USART/UART
/LPUART
3/4/1
4/4/1
4/6/1
5/5/1
4/4/1
5/5/1
5/5/1
5/5/1
SAI/PDM
1/0(2)
2/1(2)
2/1(2)
2/1
1/1(2)
2/1
2/1
2/1
SPI / I2S
I2C
Communication
interfaces
SPDIFRX
1
HDMI-CEC
1
SWPMI
1
MDIO
1
SDMMC
2
FDCAN/
TT-FDCAN
1/1
2/1
2/1
2/1
2/1
2/1
2/1
2/1
USB
[OTG_HS
(ULPI)/FS
(PHY)]
1 [0/1]
1 [1/1]
1 [1/1]
1 [1/1]
1 [0/1]
1 [1/1]
1 [1/1]
1 [1/1]
Ethernet
[MII/RMII]
-
1 [1/1]
1 [1/1]
1 [1/1]
1 [0/1]
1 [1/1]
1 [1/1]
1 [1/1]
Camera interface/PSSI
yes
DS13312 Rev 3
19/284
56
Description
STM32H735xG
Table 2. STM32H735xG features and peripheral counts (continued)
Peripherals
STM32H STM32H STM32H STM32H STM32H STM32H STM32H STM32H
735RGV 735VGT 735VGH 735ZGT 735VGY 735AGI 735IGK 735IGT
yes(2)
LCD-TFT
yes(2)
yes
yes
Chrom-ART Accelerator
(DMA2D)
16-bit ADCs
yes
0
0
2/2
0
2/2
2/2
2/2
0
Number of
Fast channels
ADC1/ADC2
3/2
3/2
3/2
4/2
3/2
6/5
6/5
4/3
Number of
Slow channels
ADC1/ADC2
11/10
11/10
9/8
11/11
9/8
12/11
12/11
12/11
Number of
Direct
12-bit ADCs channels
1
0
2
2
2
2
2
2
2
Number of
Fast channels
0
2
6
4
6
6
6
6
Number of
Slow channels
2
0
9
3
9
9
9
4
Present in IC
yes
Number of
channels
2
Comparators
2
Operational amplifiers
2
DFSDM
yes
2
Number of
ADCs
12-bit DAC
yes
yes
Number of
ADCs
Number of
Direct
channels
ADC1/ADC2
yes
Present in IC
yes
Maximum CPU frequency
550 MHz
USB separate supply pad
-
yes
yes
yes
yes
yes
yes
yes
USB internal regulator
-
-
-
yes
yes
yes
yes
yes
LDO
-
yes
SMPS step-down converter
Operating voltage
Operating
temperature
20/284
yes
1.71 to 3.6 V
1.62 to 3.6 V
Ambient
temperature
-40°C to +85°C
Junction
temperature
-40°C to +125°C
DS13312 Rev 3
STM32H735xG
Description
Table 2. STM32H735xG features and peripheral counts (continued)
Peripherals
Extended
operating
temperature
(3)
Package
STM32H STM32H STM32H STM32H STM32H STM32H STM32H STM32H
735RGV 735VGT 735VGH 735ZGT 735VGY 735AGI 735IGK 735IGT
Ambient
temperature
-40°C to +125°C
Junction
temperature
-40°C to +140°C
VFQFPN
68
LQFP
100
TFBGA
100
LQFP
144
WLCSP
115
UFBGA
169
UFBGA
176+25
LQFP17
6
1. The 24-bit SDRAM controller is a 32-bit controller with only a 24-bit data bus and without NBL2-3. It can be used for
graphical purposes to access aligned 32-bit words ignoring upper 8 bits.
2. For limitations on peripheral features depending on packages, check the available pins/balls in Table 8: STM32H735xG pin
and ball descriptions.
3. The extended temperature range is not available on WLCSP115 package.
DS13312 Rev 3
21/284
56
Functional overview
STM32H735xG
3
Functional overview
3.1
Arm® Cortex®-M7 with FPU
The Arm® Cortex®-M7 with double-precision FPU processor is the latest generation of Arm
processors for embedded systems. It was developed to provide a low-cost platform that
meets the needs of MCU implementation, with a reduced pin count and optimized power
consumption, while delivering outstanding computational performance and low interrupt
latency.
The Cortex®-M7 processor is a highly efficient high-performance featuring:
•
Six-stage dual-issue pipeline
•
Dynamic branch prediction
•
Harvard architecture with L1 caches (32 Kbytes of I-cache and 32 Kbytes of D-cache)
•
64-bit AXI interface
•
64-bit ITCM interface
•
2x32-bit DTCM interfaces
The following memory interfaces are supported:
•
Separate Instruction and Data buses (Harvard Architecture) to optimize CPU latency
•
Tightly Coupled Memory (TCM) interface designed for fast and deterministic SRAM
accesses
•
AXI Bus interface to optimize Burst transfers
•
Dedicated low-latency AHB-Lite peripheral bus (AHBP) to connect to peripherals.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
It also supports single and double precision FPU (floating point unit) speeds up software
development by using metalanguage development tools, while avoiding saturation.
Figure 1 shows the general block diagram of the STM32H735xG family.
3.2
Memory protection unit (MPU)
The memory protection unit (MPU) manages the CPU access rights and the attributes of the
system resources. It has to be programmed and enabled before use. Its main purposes are
to prevent an untrusted user program to accidentally corrupt data used by the OS and/or by
a privileged task, but also to protect data processes or read-protect memory regions.
The MPU defines access rules for privileged accesses and user program accesses. It
allows defining up to 16 protected regions that can in turn be divided into up to 8
independent subregions, where region address, size, and attributes can be configured. The
protection area ranges from 32 bytes to 4 Gbytes of addressable memory.
When an unauthorized access is performed, a memory management exception is
generated.
22/284
DS13312 Rev 3
STM32H735xG
Functional overview
3.3
Memories
3.3.1
Embedded Flash memory
The STM32H735xG devices embed 1 Mbyte of Flash memory that can be used for storing
programs and data.
The Flash memory is organized as 266-bit Flash words memory that can be used for storing
both code and data constants. Each word consists of:
•
one Flash word (8 words, 32 bytes or 256 bits)
•
10 ECC bits (single-error correction and double-error detection).
The Flash memory is organized as follows:
3.3.2
•
1 Mbyte of user Flash memory block containing eight user sectors of 128 Kbytes
(4 K Flash memory words)
•
128 Kbytes of system Flash memory from which the device can boot
•
2 Kbytes (64 Flash words) of user option bytes for user configuration
Embedded SRAM
All devices feature:
•
from 128 to 320 Kbytes of AXI-SRAM mapped onto the AXI bus on D1 domain
•
SRAM1 mapped on D2 domain: 16 Kbytes
•
SRAM2 mapped on D2 domain: 16 Kbytes
•
SRAM4 mapped on D3 domain: 16 Kbytes
•
4 Kbytes of backup SRAM
The content of this area is protected against possible unwanted write accesses, and
can be retained in Standby or VBAT mode.
•
RAM mapped to TCM interface (ITCM and DTCM):
Both ITCM and DTCM RAMs are 0 wait state memories. They can be accessed either
from the CPU or the MDMA (even in Sleep mode) through a specific AHB slave of the
Cortex®-M7CPU(AHBSAHBP):
–
64 to 256 Kbytes of ITCM-RAM (instruction RAM)
This RAM is connected to ITCM 64-bit interface designed for execution of critical
real-times routines by the CPU.
–
128 Kbytes of DTCM-RAM (2x 64-Kbyte DTCM-RAMs on 2x32-bit DTCM ports)
The DTCM-RAM could be used for critical real-time data, such as interrupt service
routines or stack/heap memory. Both DTCM-RAMs can be used in parallel (for
load/store operations) thanks to the Cortex®-M7 dual issue capability.
The MDMA can be used to load code or data in ITCM or DTCM RAMs. As reflected
above, 192 Kbyte of RAM can be used either for AXI SRAM or ITCM, with a 64Kbyte
granularity.
DS13312 Rev 3
23/284
56
Functional overview
STM32H735xG
Error code correction (ECC)
Over the product lifetime, and/or due to external events such as radiations, invalid bits in
memories may occur. They can be detected and corrected by ECC. This is an expected
behavior that has to be managed at final-application software level in order to ensure data
integrity through ECC algorithms implementation.
SRAM data are protected by ECC:
•
7 ECC bits are added per 32-bit word.
•
8 ECC bits are added per 64-bit word for AXI-SRAM and ITCM-RAM.
The ECC mechanism is based on the SECDED algorithm. It supports single-error correction
and double-error detection.
3.4
Secure access mode
In addition to other typical memory protection mechanism (RDP, PCROP), STM32H735xG
devices introduce the Secure access mode, a new enhanced security feature. This mode
allows developing user-defined secure services by ensuring, on the one hand code and
data protection and on the other hand code safe execution.
Two types of secure services are available:
•
STMicroelectronics Root Secure Services:
These services are embedded in System memory. They provide a secure solution for
firmware and third-party modules installation. These services rely on cryptographic
algorithms based on a device unique private key.
•
User-defined secure services:
These services are embedded in user Flash memory. Examples of user secure
services are proprietary user firmware update solution, secure Flash integrity check or
any other sensitive applications that require a high level of protection.
The secure firmware is embedded in specific user Flash memory areas configured
through option bytes.
Secure services are executed just after a reset and preempt all other applications to
guarantee protected and safe execution. Once executed, the corresponding code and data
are no more accessible.
The above secure services is activated for the next reset exits through an option bit.
24/284
DS13312 Rev 3
STM32H735xG
3.5
Functional overview
Boot modes
At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option
bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF
which includes:
•
All Flash address space
•
All RAM address space: ITCM, DTCM RAMs and SRAMs
•
The System memory bootloader
The boot loader is located in non-user System memory. It is used to reprogram the Flash
memory through a serial interface (USART, I2C, SPI, FDCAN, USB-DFU). Refer to
application note AN2606 “STM32 microcontroller System memory Boot mode” for details.
3.6
CORDIC co-processor (CORDIC)
The CORDIC co-processor provides hardware acceleration of certain mathematical
functions, notably trigonometric, commonly used in motor control, metering, signal
processing and many other applications.
It speeds up the calculation of these functions compared to a software implementation,
allowing a lower operating frequency, or freeing up processor cycles in order to perform
other tasks.
The filter mathematical accelerator unit performs arithmetic operations on vectors. It
comprises a multiplier/accumulator (MAC) unit, together with address generation logic,
which allows it to index vector elements held in local memory.
The unit includes support for circular buffers on input and output, which allows digital filters
to be implemented. Both finite and infinite impulse response filters can be realized.
The unit allows frequent or lengthy filtering operations to be offloaded from the CPU, freeing
up the processor for other tasks. In many cases it can accelerate such calculations
compared to a software implementation, resulting in a speed-up of time critical tasks.
CORDIC features
•
24-bit CORDIC rotation engine
•
Circular and Hyperbolic modes
•
Rotation and Vectoring modes
•
Functions: Sine, Cosine, Sinh, Cosh, Atan, Atan2, Atanh, Modulus, Square root,
Natural logarithm
•
Programmable precision up to 20-bit
•
Fast convergence: 4 bits per clock cycle
•
Supports 16-bit and 32-bit fixed point input and output formats
•
Low latency AHB slave interface
•
Results can be read as soon as ready without polling or interrupt
•
DMA read and write channels
DS13312 Rev 3
25/284
56
Functional overview
3.7
STM32H735xG
Filter mathematical accelerator (FMAC)
The filter mathematical accelerator unit performs arithmetic operations on vectors. It
comprises a multiplier/accumulator (MAC) unit, together with address generation logic,
which allows it to index vector elements held in local memory.
The unit includes support for circular buffers on input and output, which allows digital filters
to be implemented. Both finite and infinite impulse response filters can be realized.
The unit allows frequent or lengthy filtering operations to be offloaded from the CPU, freeing
up the processor for other tasks. In many cases it can accelerate such calculations
compared to a software implementation, resulting in a speed-up of time critical tasks.
FMAC features
•
16 x 16-bit multiplier
•
24+2-bit accumulator with addition and subtraction
•
16-bit input and output data
•
256 x 16-bit local memory
•
Up to three areas can be defined in memory for data buffers (two input, one output),
defined by programmable base address pointers and associated size registers
•
Input and output sample buffers can be circular
•
Buffer “watermark” feature reduces overhead in interrupt mode
•
Filter functions: FIR, IIR (direct form 1)
•
AHB slave interface
•
DMA read and write data channels
3.8
Power supply management
3.8.1
Power supply scheme
STM32H735xG power supply voltages are the following:
•
VDD = 1.62 to 3.6 V: external power supply for I/Os, provided externally through VDD
pins.
•
VDDLDO = 1.62 to 3.6 V: supply voltage for the internal regulator supplying VCORE
•
VDDA = 1.62 to 3.6 V: external analog power supplies for ADC, DAC, COMP and
OPAMP.
•
VDD33USB: allows the support of a VDD supply different from 3.3 V while powering the
USB transceiver with 3.3V on VDD33USB.
•
VDD50USB can be supplied through the USB cable to generate the VDD33USB via the
USB internal regulator. This allows support of a VDD supply different to 3.3 V.
The USB regulator can be bypassed to supply directly VDD33USB if VDD = 3.3 V.
26/284
•
VBAT = 1.2 to 3.6 V: power supply for the VSW domain when VDD is not present.
•
VCAP: VCORE supply voltage, which values depend on voltage scaling (1.0 V, 1.1 V,
1.2 V or 1.35 V). They are configured through VOS bits in PWR_D3CR register. The
DS13312 Rev 3
STM32H735xG
Functional overview
VCORE domain is split into the following power domains that can be independently
switch off.
–
D1 domain containing some peripherals and the Cortex®-M7 core
–
D2 domain containing a large part of the peripherals
–
D3 domain containing some peripherals and the system control
•
VDDSMPS= 1.62 V to 3.6 V: SMPS step-down converter power supply VDDSMPS
must be kept at the same voltage level as VDD
•
VLXSMPS = SMPS step-down converter output coupled to an inductor
•
VFBSMPS = VCORE or 1.8 V or 2.5 V external SMPS step-down converter feedback
voltage sense input.
During power-up and power-down phases, the following power sequence requirements
must be respected (see Figure 2):
•
When VDD is below VDDmin, other power supplies (VDDA, VDD33USB, VDD50USB) must
remain below VDD + 300 mV.
•
When VDD is above VDDmin, all power supplies are independent.
During the power-down phase, VDD can temporarily become lower than other supplies only
if the energy provided to the microcontroller remains below 1 mJ. This allows external
decoupling capacitors to be discharged with different time constants during the power-down
transient phase.
Figure 2. Power-up/power-down sequence
V
3.6
VDDX(1)
VDD
VBOR0
1
0.3
Power-on
Invalid supply area
Operating mode
VDDX < VDD + 300 mV
Power-down
time
VDDX independent from VDD
MSv47490V1
1. VDDx refers to any power supply among VDDA, VDD33USB, VDD50USB.
DS13312 Rev 3
27/284
56
Functional overview
3.8.2
STM32H735xG
Power supply supervisor
The devices have an integrated power-on reset (POR)/ power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry:
•
Power-on reset (POR)
The POR supervisor monitors VDD power supply and compares it to a fixed threshold.
The devices remain in Reset mode when VDD is below this threshold,
•
Power-down reset (PDR)
The PDR supervisor monitors VDD power supply. A reset is generated when VDD drops
below a fixed threshold.
The PDR supervisor can be enabled/disabled through PDR_ON pin.
•
Brownout reset (BOR)
The BOR supervisor monitors VDD power supply. Three BOR thresholds (from 2.1 to
2.7 V) can be configured through option bytes. A reset is generated when VDD drops
below this threshold.
28/284
DS13312 Rev 3
STM32H735xG
3.8.3
Functional overview
Voltage regulator
The same voltage regulator supplies the 3 power domains (D1, D2 and D3). D1 and D2 can
be independently switched off.
Voltage regulator output can be adjusted according to application needs through 6 power
supply levels:
•
•
3.9
Run mode (VOS0 to VOS3)
–
Scale 0: boosted performance
–
Scale 1: high performance
–
Scale 2: medium performance and consumption
–
Scale 3: optimized performance and low-power consumption
Stop mode (SVOS3 to SVOS5)
–
Scale 3: peripheral with wakeup from Stop mode capabilities (UART, SPI, I2C,
LPTIM) are operational
–
Scale 4 and 5 where the peripheral with wakeup from Stop mode is disabled. The
peripheral functionality is disabled but wakeup from Stop mode is possible through
GPIO or asynchronous interrupt.
Low-power strategy
There are several ways to reduce power consumption on STM32H735xG:
•
Decrease the dynamic power consumption by slowing down the system clocks even in
Run mode and by individually clock gating the peripherals that are not used.
•
Save power when the CPU is idle, by selecting among the available low-power modes
according to the user application needs. This allows the best compromise between
short startup time and low power consumption to be achieved, according to the
available wakeup sources.
The devices feature several low-power modes:
•
CSleep (CPU clock stopped)
•
CStop (CPU sub-system clock stopped)
•
DStop (Domain bus matrix clock stopped)
•
Stop (System clock stopped)
•
DStandby (Domain powered down)
•
Standby (System powered down)
CSleep and CStop low-power modes are entered by the MCU when executing the WFI
(Wait for Interrupt) or WFE (Wait for Event) instructions, or when the SLEEPONEXIT bit of
the Cortex®-Mx core is set after returning from an interrupt service routine.
A domain can enter low-power mode (DStop or DStandby) when the processor, its
subsystem and the peripherals allocated in the domain enter low-power mode.
If part of the domain is not in low-power mode, the domain remains in the current mode.
Finally the system can enter Stop or Standby when all EXTI wakeup sources are cleared
and the power domains are in DStop or DStandby mode.
DS13312 Rev 3
29/284
56
Functional overview
STM32H735xG
Table 3. System versus domain low-power mode
System power mode
D1 domain power mode
D2 domain power mode
D3 domain power mode
Run
DRun/DStop/DStandby
DRun/DStop/DStandby
DRun
Stop
DStop/DStandby
DStop/DStandby
DStop
Standby
DStandby
DStandby
DStandby
3.10
Reset and clock controller (RCC)
The clock and reset controller is located in D3 domain. The RCC manages the generation of
all the clocks, as well as the clock gating and the control of the system and peripheral
resets. It provides a high flexibility in the choice of clock sources and allows to apply clock
ratios to improve the power consumption. In addition, on some communication peripherals
that are capable to work with two different clock domains (either a bus interface clock or a
kernel peripheral clock), thus the system frequency can be changed without modifying the
baudrate.
3.10.1
Clock management
The devices embed four internal oscillators, two oscillators with external crystal or
resonator, two internal oscillators with fast startup time and three PLLs.
The RCC receives the following clock source inputs:
•
•
Internal oscillators:
–
64 MHz HSI clock
–
48 MHz RC oscillator
–
4 MHz CSI clock
–
32 kHz LSI clock
External oscillators:
–
HSE clock: 4-50 MHz (generated from an external source) or 4-48 MHz(generated
from a crystal/ceramic resonator)
–
LSE clock: 32.768 kHz
The RCC provides three PLLs: one for system clock, two for kernel clocks.
The system starts on the HSI clock. The user application can then select the clock
configuration.
30/284
DS13312 Rev 3
STM32H735xG
3.10.2
Functional overview
System reset sources
Power-on reset initializes all registers while system reset reinitializes the system except for
the debug, part of the RCC and power controller status registers, as well as the backup
power domain.
A system reset is generated in the following cases:
3.11
•
Power-on reset (pwr_por_rst)
•
Brownout reset
•
Low level on NRST pin (external reset)
•
Window watchdog
•
Independent watchdog
•
Software reset
•
Low-power mode security reset
•
Exit from Standby
General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
After reset, all GPIOs (except debug pins) are in Analog mode to reduce power
consumption (refer to GPIOs register reset values in the device reference manual).
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
3.12
Bus-interconnect matrix
The devices feature an AXI bus matrix, two AHB bus matrices and bus bridges that allow
the interconnection of bus masters with bus slaves (see Figure 3).
DS13312 Rev 3
31/284
56
Functional overview
AHBS
OR
MDMA
DMA2D
DMA1_MEM
SDMMC1
LTDC
D1-to-D2 AHB
DMA2
DMA2_MEM
DMA1
AHBP
AXIM
I$
D$
32KB 32KB
ITCM
64 Kbyte
ITCM
192 Kbyte
DTCM
128 Kbyte
Ethernet SDMMC2 USBHS1
MAC
DMA2_PERIPH
CPU
Cortex-M7
DMA1_PERIPH
32/284
Figure 3. STM32H735xG bus matrix
AXI SRAM
192K byte
SRAM1 16
Kbyte
SRAM2 16
Kbyte
Flash A
Up to 1 Mbyte
AHB1
DS13312 Rev 3
AXI SRAM
128 Kbyte
OTFDEC1
OCTOSPI1
OTFDEC2
OCTOSPI2
AHB2
APB1
FMC
AHB3
APB2
APB3
64-bit AXI bus matrix
D1 domain
32-bit AHB bus matrix
D2 domain
D2-to-D1 AHB
D2-to-D3 AHB
D1-to-D3 AHB
BDMA
32-bit AHB bus matrix
D3 domain
32-bit bus
AHB4
TCM AHB
AXI
APB
64-bit bus
Master interface
Bus multiplexer
Slave interface
APB4
SRAM4
16 Kbyte
Backup
SRAM
4 Kbyte
MSv46613V3
STM32H735xG
Legend
STM32H735xG
3.13
Functional overview
DMA controllers
The devices feature four DMA instances and a DMA request router to unload CPU activity:
•
A master direct memory access (MDMA)
The MDMA is a high-speed DMA controller, which is in charge of all types of memory
transfers (peripheral to memory, memory to memory, memory to peripheral), without
any CPU action. It features a master AXI interface and a dedicated AHB interface to
access Cortex®-M7 TCM memories.
The MDMA is located in D1 domain. It is able to interface with the other DMA
controllers located in D2 domain to extend the standard DMA capabilities, or can
manage peripheral DMA requests directly.
Each of the 16 channels can perform single block transfers, repeated block transfers
and linked list transfers.
•
Two dual-port DMAs (DMA1, DMA2) located in D2 domain, with FIFO and request
router capabilities.
•
One basic DMA (BDMA) located in D3 domain, with request router capabilities.
•
A DMA request multiplexer (DMAMUX)
The DMA request router could be considered as an extension of the DMA controller. It
routes the DMA peripheral requests to the DMA controller itself. This allowing
managing the DMA requests with a high flexibility, maximizing the number of DMA
requests that run concurrently, as well as generating DMA requests from peripheral
output trigger or DMA event.
3.14
Chrom-ART Accelerator (DMA2D)
The Chrom-Art Accelerator (DMA2D) is a specialized DMA dedicated to image manipulation.
It can perform the following operations:
•
Filling a part or the whole of a destination image with a specific color
•
Copying a part or the whole of a source image into a part or the whole of a destination
•
image
•
Copying a part or the whole of a source image into a part or the whole of a destination
•
image with a pixel format conversion
•
Blending a part and/or two complete source images with different pixel format and copy
•
the result into a part or the whole of a destination image with a different color format.
•
All the classical color coding schemes are supported from 4-bit up to 32-bit per pixel
with indexed or direct color mode, including block based YCbCr to handle JPEG
decoder output.
•
The DMA2D has its own dedicated memories for CLUTs (color look-up tables).
An interrupt can be generated when an operation is complete or at a programmed
watermark.
All the operations are fully automated and are running independently from the CPU or the
DMAs.
DS13312 Rev 3
33/284
56
Functional overview
3.15
STM32H735xG
Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller which is able to manage 16
priority levels, and handle up to 140 maskable interrupt channels plus the 16 interrupt lines
of the Cortex®-M7 with FPU core.
•
Closely coupled NVIC gives low-latency interrupt processing
•
Interrupt entry vector table address passed directly to the core
•
Allows early processing of interrupts
•
Processing of late arriving, higher-priority interrupts
•
Support tail chaining
•
Processor context automatically saved on interrupt entry, and restored on interrupt exit
with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
3.16
Extended interrupt and event controller (EXTI)
The EXTI controller performs interrupt and event management. In addition, it can wake up
the processor, power domains and/or D3 domain from Stop mode.
The EXTI handles up to 80 independent event/interrupt lines split as 26 configurable events
and 54 direct events.
Configurable events have dedicated pending flags, active edge selection, and software
trigger capable.
Direct events provide interrupts or events from peripherals having a status flag.
3.17
Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
programmable polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.
34/284
DS13312 Rev 3
STM32H735xG
3.18
Functional overview
Flexible memory controller (FMC)
The FMC controller main features are the following:
•
Interface with static-memory mapped devices including:
3.19
–
Static random access memory (SRAM)
–
NOR Flash memory/OneNAND Flash memory
–
PSRAM (4 memory banks)
–
NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
•
Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
•
8-,16-, 24-bit data bus width
•
Independent Chip Select control for each memory bank
•
Independent configuration for each memory bank
•
Write FIFO
•
Read FIFO for SDRAM controller
•
The maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is the
FMC kernel clock divided by 2.
Octo-SPI memory interface (OCTOSPI)
The OCTOSPI is a specialized communication interface targeting single, dual, quad or octal
SPI memories. The STM32H735xG embeds two separate Octo-SPI interfaces.
Each OCTOSPI instance supports single/dual/quad/octal SPI formats. multiplexing of
single/dual/quad/octal SPI over the same bus can be achieved using the integrated OctoSPI I/O manager (OCTOSPIM).
The OCTOSPI can operate in any of the three following modes:
•
Indirect mode: all the operations are performed using the OCTOSPI registers
•
Status-polling mode: the external memory status register is periodically read and an
interrupt can be generated in case of flag setting
•
Memory-mapped mode: the external memory is memory mapped and it is seen by the
system as if it was an internal memory supporting both read and write operations.
The OCTOSPI supports two frame formats supported by most external serial memories
such as serial PSRAMs, serial NAND and serial NOR Flash memories, Hyper RAMs and
Hyper Flash memories.
Multi chip package (MCP) combining any of the above mentioned memory types can also
be supported.
•
The classical frame format with the command, address, alternate byte, dummy cycles
and data phase
•
The HyperBus™ frame format.
DS13312 Rev 3
35/284
56
Functional overview
3.20
STM32H735xG
Analog-to-digital converters (ADCs)
STM32H735xG devices embed three analog-to-digital converters, two of 16-bit resolution,
and the third of 12-bit resolution. The 16-bit resolution ADCs can be configured as 16, 14,
12, 10 or 8 bits. The 12-bit resolution ADC can be configured to 12, 10 or 8 bits.
Each ADC shares up to 20 external channels, performing conversions in Single-shot or
Scan mode. In Scan mode, automatic conversion is performed on a selected group of
analog inputs.
Additional logic functions embedded in the ADC interface allow:
•
simultaneous sample and hold
•
Interleaved sample and hold
The ADC can be served by the DMA controller, thus allowing automatic transfer of ADC
converted values to a destination location without any software action.
In addition, an analog watchdog feature can accurately monitor the converted voltage of
one, some, or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
To synchronize A/D conversion and timers, the ADCs can be triggered by any of the TIM1,
TIM2, TIM3, TIM4, TIM6, TIM8, TIM15, TIM23, TIM24, and LPTIM1 timers.
3.21
Temperature sensor
STM32H735xG devices embed a temperature sensor that generates a voltage (VTS) that
varies linearly with the temperature. This temperature sensor is internally connected to
ADC3_IN17. The conversion range is between 1.7 V and 3.6 V. It can measure the device
junction temperature ranging from − 40 to +125°C.
The temperature sensor have a good linearity, but it has to be calibrated to obtain a good
overall accuracy of the temperature measurement. As the temperature sensor offset varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only. To improve the accuracy of
the temperature sensor measurement, each device is individually factory-calibrated by ST.
The temperature sensor factory calibration data are stored by ST in the System memory
area, which is accessible in Read-only mode.
3.22
Digital temperature sensor (DTS)
STM32H735xG devices embed a sensor that converts the temperature into a square wave
the frequency of which is proportional to the temperature. The PCLK or the LSE clock can
be used as the reference clock for the measurements. A formula given in the product
reference manual allows calculation of the temperature according to the measured
frequency stored in the DTS_DR register.
36/284
DS13312 Rev 3
STM32H735xG
3.23
Functional overview
VBAT operation
The VBAT power domain contains the RTC, the backup registers and the backup SRAM.
To optimize battery duration, this power domain is supplied by VDD when available or by the
voltage applied on VBAT pin (when VDD supply is not present). VBAT power is switched
when the PDR detects that VDD dropped below the PDR level.
The voltage on the VBAT pin could be provided by an external battery, a supercapacitor or
directly by VDD, in which case, the VBAT mode is not functional.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC, the backup registers and the backup SRAM.
Note:
When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
When PDR_ON pin is connected to VSS (Internal Reset OFF), the VBAT functionality is no
more available and VBAT pin should be connected to VDD.
3.24
Digital-to-analog converters (DAC)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs.
This dual digital Interface supports the following features:
•
two DAC converters: one for each output channel
•
8-bit or 12-bit monotonic output
•
left or right data alignment in 12-bit mode
•
synchronized update capability
•
noise-wave generation
•
triangular-wave generation
•
dual DAC channel independent or simultaneous conversions
•
DMA capability for each channel including DMA underrun error detection
•
external triggers for conversion
•
input voltage reference VREF+ or internal VREFBUF reference.
The DAC channels are triggered through the timer update outputs that are also connected
to different DMA streams.
DS13312 Rev 3
37/284
56
Functional overview
3.25
STM32H735xG
Ultra-low-power comparators (COMP)
STM32H735xG devices embed two rail-to-rail comparators (COMP1 and COMP2). They
feature programmable reference voltage (internal or external), hysteresis and speed (low
speed for low-power) as well as selectable output polarity.
The reference voltage can be one of the following:
•
An external I/O
•
A DAC output channel
•
An internal reference voltage or submultiple (1/4, 1/2, 3/4).
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers,
and be combined into a window comparator.
3.26
Operational amplifiers (OPAMP)
STM32H735xG devices embed two rail-to-rail operational amplifiers (OPAMP1 and
OPAMP2) with external or internal follower routing and PGA capability.
The operational amplifier main features are:
•
PGA with a non-inverting gain ranging of 2, 4, 8 or 16 or inverting gain ranging of -1, -3,
-7 or -15
•
One positive input connected to DAC
•
Output connected to internal ADC
•
Low input bias current down to 1 nA
•
Low input offset voltage down to 1.5 mV
•
Gain bandwidth up to 7.3 MHz
The devices embeds two operational amplifiers (OPAMP1 and OPAMP2) with two inputs
and one output each. These three I/Os can be connected to the external pins, thus enabling
any type of external interconnections. The operational amplifiers can be configured
internally as a follower, as an amplifier with a non-inverting gain ranging from 2 to 16 or with
inverting gain ranging from -1 to -15.
38/284
DS13312 Rev 3
STM32H735xG
3.27
Functional overview
Digital filter for sigma-delta modulators (DFSDM)
The devices embed one DFSDM with 4 digital filters modules and 8 external input serial
channels (transceivers) or alternately 8 internal parallel inputs support.
The DFSDM peripheral is dedicated to interface the external Σ∆ modulators to
microcontroller and then to perform digital filtering of the received data streams (which
represent analog value on Σ∆ modulators inputs). DFSDM can also interface PDM (Pulse
Density Modulation) microphones and perform PDM to PCM conversion and filtering in
hardware. DFSDM features optional parallel data stream inputs from internal ADC
peripherals or microcontroller memory (through DMA/CPU transfers into DFSDM).
DFSDM transceivers support several serial interface formats (to support various Σ∆
modulators). DFSDM digital filter modules perform digital processing according user
selected filter parameters with up to 24-bit final ADC resolution.
The DFSDM peripheral supports:
•
•
8 multiplexed input digital serial channels:
–
configurable SPI interface to connect various SD modulator(s)
–
configurable Manchester coded 1 wire interface support
–
PDM (Pulse Density Modulation) microphone input support
–
maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
–
clock output for SD modulator(s): 0..20 MHz
alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution):
–
•
internal sources: ADC data or memory data streams (DMA)
4 digital filter modules with adjustable digital signal processing:
–
Sincx filter: filter order/type (1..5), oversampling ratio (up to 1..1024)
–
integrator: oversampling ratio (1..256)
•
up to 24-bit output data resolution, signed output data format
•
automatic data offset correction (offset stored in register by user)
•
continuous or single conversion
•
start-of-conversion triggered by:
•
•
•
–
software trigger
–
internal timers
–
external events
–
start-of-conversion synchronously with first digital filter module (DFSDM0)
analog watchdog feature:
–
low value and high value data threshold registers
–
dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
–
input from final output data or from selected input digital serial channels
–
continuous monitoring independently from standard conversion
short circuit detector to detect saturated analog input values (bottom and top range):
–
up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on serial data stream
–
monitoring continuously each input serial channel
break signal generation on analog watchdog event or on short circuit detector event
DS13312 Rev 3
39/284
56
Functional overview
•
STM32H735xG
extremes detector:
–
storage of minimum and maximum values of final conversion data
–
refreshed by software
•
DMA capability to read the final conversion data
•
interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial
channel clock absence
•
“regular” or “injected” conversions:
•
–
“regular” conversions can be requested at any time or even in Continuous mode
without having any impact on the timing of “injected” conversions
–
“injected” conversions for precise timing and with high conversion priority
Pulse skipper feature to support beamforming applications (delay-line like behavior).
Table 4. DFSDM implementation
DFSDM features
40/284
DFSDM1
Number of filters
4
Number of input
transceivers/channels
8
Internal ADC parallel input
X
Number of external triggers
16
Regular channel information in
identification register
X
DS13312 Rev 3
STM32H735xG
3.28
Functional overview
Digital camera interface (DCMI)
The devices embed a camera interface that can connect with camera modules and CMOS
sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera
interface can achieve a data transfer rate up to 140 Mbyte/s using a 80 MHz pixel clock. It
features:
3.29
•
Programmable polarity for the input pixel clock and synchronization signals
•
Parallel data communication can be 8-, 10-, 12- or 14-bit
•
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2
progressive video, RGB 565 progressive video or compressed data (like JPEG)
•
Supports Continuous mode or Snapshot (a single frame) mode
•
Capability to automatically crop the image
PSSI
The PSSI is a generic synchronous 8-/16-bit parallel data input/output slave interface. It
allows the transmitter to send a data valid signal to indicate when the data is valid, and the
receiver to output a flow control signal to indicate when it is ready to sample the data.
The main PSSI features are:
•
Slave mode operation
•
8- or 16-bit parallel data input or output
•
8-word (32-byte) FIFO
•
Data enable (DE) alternate function input and Ready (RDY) alternate function output.
When enabled, these signals can either allow the transmitter to indicate when the data is
valid or, the receiver to indicate when it is ready to sample the data, or both.
The PSSI shares most of its circuitry with the digital camera interface (DCMI). It therefore
cannot be used simultaneously with the DCMI.
3.30
LCD-TFT controller
The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue)
and delivers all signals to interface directly to a broad range of LCD and TFT panels up to
XGA (1024 x 768) resolution with the following features:
•
2 display layers with dedicated FIFO (64x64-bit)
•
Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
•
Up to 8 input color formats selectable per layer
•
Flexible blending between two layers using alpha value (per pixel or constant)
•
Flexible programmable parameters for each layer
•
Color keying (transparency color)
•
Up to 4 programmable interrupt events
•
AXI master interface with burst of 16 words
DS13312 Rev 3
41/284
56
Functional overview
3.31
STM32H735xG
True random number generator (RNG)
The RNG is a true random number generator that provides full entropy outputs to the
application as 32-bit samples. It is composed of a live entropy source (analog) and an
internal conditioning component.
The RNG can be used to construct a Non-deterministic Random Bit Generator (NDRBG), as
a NIST SP 800-90B compliant entropy source.
The RNG true random number generator has been tested using German BSI statistical tests
of AIS-31 (T0 to T8), and NIST SP800-90B statistical test suite.
3.32
Cryptographic acceleration (CRYP and HASH)
The devices embed a cryptographic processor that supports the advanced cryptographic
algorithms usually required to ensure confidentiality, authentication, data integrity and nonrepudiation when exchanging messages
with a peer:
•
•
Encryption/Decryption
–
DES/TDES (data encryption standard/triple data encryption standard): ECB
(electronic codebook) and CBC (cipher block chaining) chaining algorithms, 64-,
128- or 192-bit key
–
AES (advanced encryption standard): ECB, CBC, GCM, CCM, and CTR (counter
mode) chaining algorithms, 128, 192 or 256-bit key
Universal HASH
–
– SHA-1 and SHA-2 (secure HASH algorithms)
–
– MD5
–
– HMAC
The cryptographic accelerator supports DMA request generation.
3.33
On-the-fly decryption engine (OTFDEC)
The embedded OTFDEC decrypts in real-time the encrypted content stored in the external
Octo-SPI memories used in Memory-mapped mode.
The OTFDEC uses the AES-128 algorithm in counter mode (CTR).
Code execution on external Octo-SPI memories can be protected against fault injection
thanks to
STMicroelectronics enhanced encryption mode (refer to RM0468 for details).
42/284
DS13312 Rev 3
STM32H735xG
Functional overview
The OTFDEC main features are as follow:
•
•
On-the-fly 128-bit decryption during STM32 Octo-SPI read operations (single or
multiple).
–
AES-CTR algorithm with keystream FIFO (depth= 4)
–
Support for any read size
Up to four independent encrypted regions
–
Region definition granularity: 4096 bytes
–
Region configuration write locking mechanism
–
Two optional decryption modes: execute-only and execute-never
•
128-bit key for each region, two-byte firmware version, and eight-byte applicationdefined nonce
•
Encryption keys confidentiality and integrity protection
•
–
Write only registers with software locking mechanism
–
Availability of 8-bit CRC as public key information
Support for STM32 Octo-SPI prefetching mechanism.
DS13312 Rev 3
43/284
56
Functional overview
3.34
STM32H735xG
Timers and watchdogs
The devices include two advanced-control timers, twelve general-purpose timers, two basic
timers, five low-power timers, two watchdogs and a SysTick timer.
All timer counters can be frozen in Debug mode.
Table 5 compares the features of the advanced-control, general-purpose and basic timers.
Table 5. Timer feature comparison
Timer
type
Advanced
-control
Timer
TIM1,
TIM8
TIM2,
TIM5,
TIM23,
TIM24
TIM3,
TIM4
TIM12
DMA
Capture/
Counter Counter Prescaler
request
compare
resolution
type
factor
generation channels
TIM15
TIM16,
TIM17
44/284
Max
interface
clock
(MHz)
Max
timer
clock
(MHz)
(1)
16-bit
Any
Up,
integer
Down, between 1
Up/down
and
65536
Yes
4
Yes
137.5
275
32-bit
Any
Up,
integer
Down, between 1
Up/down
and
65536
Yes
4
No
137.5
275
16-bit
Any
Up,
integer
Down, between 1
Up/down
and
65536
Yes
4
No
137.5
275
16-bit
Up
Any
integer
between 1
and
65536
No
2
No
137.5
275
Up
Any
integer
between 1
and
65536
No
1
No
137.5
275
Up
Any
integer
between 1
and
65536
Yes
2
1
137.5
275
Up
Any
integer
between 1
and
65536
Yes
1
1
137.5
275
General
purpose
TIM13,
TIM14
Complementary
output
16-bit
16-bit
16-bit
DS13312 Rev 3
STM32H735xG
Functional overview
Table 5. Timer feature comparison (continued)
Timer
type
Timer
DMA
Capture/
Counter Counter Prescaler
request
compare
resolution
type
factor
generation channels
Basic
TIM6,
TIM7
16-bit
Up
Any
integer
between 1
and
65536
Lowpower
timer
LPTIM1,
LPTIM2,
LPTIM3,
LPTIM4,
LPTIM5
16-bit
Up
1, 2, 4, 8,
16, 32,
64, 128
Complementary
output
Max
interface
clock
(MHz)
Max
timer
clock
(MHz)
(1)
Yes
0
No
137.5
275
No
0
No
137.5
275
1. The maximum timer clock is up to 550 MHz depending on theTIMPRE bit in the RCC_CFGR register and D2PRE1/2 bits in
RCC_D2CFGR register.
DS13312 Rev 3
45/284
56
Functional overview
3.34.1
STM32H735xG
Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators
multiplexed on 6 channels. They have complementary PWM outputs with programmable
inserted dead times. They can also be considered as complete general-purpose timers.
Their 4 independent channels can be used for:
•
Input capture
•
Output compare
•
PWM generation (Edge- or Center-aligned modes)
•
One-pulse mode output
If configured as standard 16-bit timers, they have the same features as the general-purpose
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0100%).
The advanced-control timer can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 and TIM8 support independent DMA request generation.
3.34.2
General-purpose timers (TIMx)
There are ten synchronizable general-purpose timers embedded in the STM32H735xG
devices (see Table 5: Timer feature comparison for differences).
•
TIM2, TIM3, TIM4, TIM5, TIM23, TIM24
The devices include 4 full-featured general-purpose timers: TIM2, TIM3, TIM4, TIM5,
TIM23 and TIM24. TIM2, TIM5, TIM23 and TIM24 are based on a 32-bit auto-reload
up/downcounter and a 16-bit prescaler while TIM3 and TIM4 are based on a 16-bit
auto-reload up/downcounter and a 16-bit prescaler. All timers feature 4 independent
channels for input capture/output compare, PWM or One-pulse mode output. This
gives up to 24 input capture/output compare/PWMs on the largest packages.
TIM2, TIM3, TIM4, TIM5, TIM23 and TIM24 general-purpose timers can work together,
or with the other general-purpose timers and the advanced-control timers TIM1 and
TIM8 via the Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5, TIM23, and TIM24 all have independent DMA request
generation. They are capable of handling quadrature (incremental) encoder signals
and the digital outputs from 1 to 4 hall-effect sensors.
•
TIM12, TIM13, TIM14, TIM15, TIM16, TIM17
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM13, TIM14, TIM16 and TIM17 feature one independent channel, whereas TIM12
and TIM15 have two independent channels for input capture/output compare, PWM or
One-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5,
TIM23, and TIM24 full-featured general-purpose timers or used as simple time bases.
46/284
DS13312 Rev 3
STM32H735xG
3.34.3
Functional overview
Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger and waveform generation. They can also be
used as a generic 16-bit time base.
TIM6 and TIM7 support independent DMA request generation.
3.34.4
Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5)
The low-power timers have an independent clock and is running also in Stop mode if it is
clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.
This low-power timer supports the following features:
3.34.5
•
16-bit up counter with 16-bit autoreload register
•
16-bit compare register
•
Configurable output: pulse, PWM
•
Continuous / One-shot mode
•
Selectable software / hardware input trigger
•
Selectable clock source:
•
Internal clock source: LSE, LSI, HSI or APB clock
•
External clock source over LPTIM input (working even with no internal clock source
running, used by the Pulse Counter Application)
•
Programmable digital glitch filter
•
Encoder mode
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
A window option allows the device to be reset when a reload operation is made too early
after the previous reload.
3.34.6
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
Debug mode.
3.34.7
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
•
A 24-bit down counter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0
•
Programmable clock source.
DS13312 Rev 3
47/284
56
Functional overview
3.35
STM32H735xG
Real-time clock (RTC), backup SRAM and backup registers
The RTC is an independent BCD timer/counter. It supports the following features:
•
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
•
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
•
Two programmable alarms.
•
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
•
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
•
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy.
•
Three anti-tamper detection pins with programmable filter.
•
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to
VBAT mode.
•
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable
resolution and period.
The RTC and the 32 backup registers are supplied through a switch that takes power either
from the VDD supply when present or from the VBAT pin.
The backup registers are 32-bit registers used to store 128 bytes of user application data
when VDD power is not present. They are not reset by a system or power reset, or when the
device wakes up from Standby mode.
The RTC clock sources can be:
•
A 32.768 kHz external crystal (LSE)
•
An external resonator or oscillator (LSE)
•
The internal low-power RC oscillator (LSI, with typical frequency of 32 kHz)
•
The high-speed external clock (HSE) divided by 32.
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the
LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in
all low-power modes.
All RTC events (Alarm, Wakeup Timer, Timestamp or Tamper) can generate an interrupt and
wakeup the device from the low-power modes.
48/284
DS13312 Rev 3
STM32H735xG
3.36
Functional overview
Inter-integrated circuit interface (I2C)
STM32H735xG devices embed five I2C interfaces.
The I2C bus interface handles communications between the microcontroller and the serial
I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
•
•
3.37
I2C-bus specification and user manual rev. 5 compatibility:
–
Slave and Master modes, multimaster capability
–
Standard-mode (Sm), with a bitrate up to 100 kbit/s
–
Fast-mode (Fm), with a bitrate up to 400 kbit/s
–
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
–
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
–
Programmable setup and hold times
–
Optional clock stretching
System Management Bus (SMBus) specification rev 2.0 compatibility:
–
Hardware PEC (Packet Error Checking) generation and verification with ACK
control
–
Address resolution protocol (ARP) support
–
SMBus alert
•
Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
•
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming.
•
Wakeup from Stop mode on address match
•
Programmable analog and digital noise filters
•
1-byte buffer with DMA capability
Universal synchronous/asynchronous receiver transmitter
(USART)
STM32H735xG devices have five embedded universal synchronous receiver transmitters
(USART1, USART2, USART3, USART6, and USART10) and five universal asynchronous
receiver transmitters (UART4, UART5, UART7, UART8, and UART9). Refer to Table 6:
USART features for a summary of USARTx and UARTx features.
These interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire Half-duplex communication mode and
have LIN Master/Slave capability. They provide hardware management of the CTS and RTS
signals, and RS485 Driver Enable. They are able to communicate at speeds of up to
17 Mbit/s.
USART1, USART2, USART3, USART6, and USART10 also provide Smartcard mode (ISO
7816 compliant) and SPI-like communication capability.
The USARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode
is enabled by software and is disabled by default.
DS13312 Rev 3
49/284
56
Functional overview
STM32H735xG
All USART have a clock domain independent from the CPU clock, allowing the USARTx to
wake up the MCU from Stop mode.The wakeup from Stop mode is programmable and can
be done on:
•
Start bit detection
•
Any received data frame
•
A specific programmed data frame
•
Specific TXFIFO/RXFIFO status when FIFO mode is enabled.
All USART interfaces can be served by the DMA controller.
Table 6. USART features
USART modes/features(1)
USART1/2/3/6/10
UART4/5/7/8/9
Hardware flow control for modem
X
X
Continuous communication using DMA
X
X
Multiprocessor communication
X
X
Synchronous mode (Master/Slave)
X
-
Smartcard mode
X
-
Single-wire Half-duplex communication
X
X
IrDA SIR ENDEC block
X
X
LIN mode
X
X
Dual clock domain and wakeup from low power mode
X
X
Receiver timeout interrupt
X
X
Modbus communication
X
X
Auto baud rate detection
X
X
Driver Enable
X
X
USART data length
7, 8 and 9 bits
Tx/Rx FIFO
X
Tx/Rx FIFO size
X
16
1. X = supported.
3.38
Low-power universal asynchronous receiver transmitter
(LPUART)
The device embeds one Low-Power UART (LPUART1). The LPUART supports
asynchronous serial communication with minimum power consumption. It supports half
duplex single wire communication and modem operations (CTS/RTS). It allows
multiprocessor communication.
The LPUARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO
mode is enabled by software and is disabled by default.
50/284
DS13312 Rev 3
STM32H735xG
Functional overview
The LPUART has a clock domain independent from the CPU clock, and can wakeup the
system from Stop mode. The wakeup from Stop mode are programmable and can be done
on:
•
Start bit detection
•
Any received data frame
•
A specific programmed data frame
•
Specific TXFIFO/RXFIFO status when FIFO mode is enabled.
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to
9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame
while having an extremely low energy consumption. Higher speed clock can be used to
reach higher baudrates.
LPUART interface can be served by the DMA controller.
3.39
Serial peripheral interface (SPI)/inter- integrated sound
interfaces (I2S)
The devices feature up to six SPIs (SPI2S1, SPI2S2, SPI2S3, SPI4, SPI5 and SPI2S6) that
allow communicating up to 150 Mbits/s in Master and Slave modes, in Half-duplex, Fullduplex and Simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the
frame is configurable from 4 to 16 bits. All SPI interfaces support NSS pulse mode, TI mode,
Hardware CRC calculation and 8x 8-bit embedded Rx and Tx FIFOs with DMA capability.
Four standard I2S interfaces (multiplexed with SPI1, SPI2, SPI3 and SPI6) are available.
They can be operated in Master or Slave mode, in Simplex communication modes, and can
be configured to operate as a 16-/32-bit resolution input or output channel (except SPI2S6
which is limited to 16 bits). Audio sampling frequencies from 8 kHz up to 192 kHz are
supported. When either or both of the I2S interfaces is/are configured in Master mode, the
master clock can be output to the external DAC/CODEC at 256 times the sampling
frequency. All I2S interfaces support 16x 8-bit embedded Rx and Tx FIFOs with DMA
capability.
3.40
Serial audio interfaces (SAI)
The devices embed 2 SAIs (SAI1, and SAI4) that allow designing many stereo or mono
audio protocols such as I2S, LSB or MSB-justified, PCM/DSP, TDM or AC’97. An SPDIF
output is available when the audio block is configured as a transmitter. To bring this level of
flexibility and reconfigurability, the SAI contains two independent audio sub-blocks. Each
block has it own clock generator and I/O line controller.
Audio sampling frequencies up to 192 kHz are supported.
In addition, up to 8 microphones can be supported thanks to an embedded PDM interface.
The SAI can work in master or slave configuration. The audio sub-blocks can be either
receiver or transmitter and can work synchronously or asynchronously (with respect to the
other one). The SAI can be connected with other SAIs to work synchronously.
DS13312 Rev 3
51/284
56
Functional overview
3.41
STM32H735xG
SPDIFRX Receiver Interface (SPDIFRX)
The SPDIFRX peripheral is designed to receive an S/PDIF flow compliant with IEC-60958
and IEC-61937. These standards support simple stereo streams up to high sample rate,
and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up
to 5.1).
The main SPDIFRX features are the following:
•
Up to 4 inputs available
•
Automatic symbol rate detection
•
Maximum symbol rate: 12.288 MHz
•
Stereo stream from 32 to 192 kHz supported
•
Supports Audio IEC-60958 and IEC-61937, consumer applications
•
Parity bit management
•
Communication using DMA for audio samples
•
Communication using DMA for control and user channel information
•
Interrupt capabilities
The SPDIFRX receiver provides all the necessary features to detect the symbol rate, and
decode the incoming data stream. The user can select the wanted SPDIF input, and when a
valid signal will be available, the SPDIFRX will re-sample the incoming signal, decode the
Manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the
CPU decoded data, and associated status flags.
The SPDIFRX also offers a signal named spdif_frame_sync, which toggles at the S/PDIF
sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms.
3.42
Single wire protocol master interface (SWPMI)
The Single wire protocol master interface (SWPMI) is the master interface corresponding to
the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The
main features are:
•
Full-duplex communication mode
•
automatic SWP bus state management (active, suspend, resume)
•
configurable bitrate up to 2 Mbit/s
•
automatic SOF, EOF and CRC handling
SWPMI can be served by the DMA controller.
52/284
DS13312 Rev 3
STM32H735xG
3.43
Functional overview
Management data input/output (MDIO) slaves
The devices embed an MDIO slave interface it includes the following features:
•
–
32 x 16-bit firmware read/write, MDIO read-only output data registers
–
32 x 16-bit firmware read-only, MDIO write-only input data registers
•
Configurable slave (port) address
•
Independently maskable interrupts/events:
•
3.44
32 MDIO Registers addresses, each of which is managed using separate input and
output data registers:
–
MDIO Register write
–
MDIO Register read
–
MDIO protocol error
Able to operate in and wake up from Stop mode
SD/SDIO/MMC card host interfaces (SDMMC)
Two SDMMC host interfaces are available. They support MultiMediaCard System
Specification Version 4.51 in three different databus modes: 1 bit (default), 4 bits and 8 bits.
Both interfaces support the SD memory card specifications version 4.1. and the SDIO card
specification version 4.0. in two different databus modes: 1 bit (default) and 4 bits.
Each SDMMC host interface supports only one SD/SDIO/MMC card at any one time and a
stack of MMC Version 4.51 or previous.
The SDMMC host interface embeds a dedicated DMA controller allowing high-speed
transfers between the interface and the SRAM.
3.45
Controller area network (FDCAN1, FDCAN2, FDCAN3)
The controller area network (CAN) subsystem consists of two CAN modules, a shared
message RAM memory and a clock calibration unit.
All CAN modules (FDCAN1, FDCAN2, and FDCAN3) are compliant with ISO 11898-1 (CAN
protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0.
FDCAN1 supports time triggered CAN (TT-FDCAN) specified in ISO 11898-4, including
event synchronized time-triggered communication, global system time, and clock drift
compensation. The FDCAN1 contains additional registers, specific to the time triggered
feature. The CAN FD option can be used together with event-triggered and time-triggered
CAN communication.
A 10-Kbyte message RAM memory implements filters, receive FIFOs, receive buffers,
transmit event FIFOs, transmit buffers (and triggers for TT-FDCAN). This message RAM is
shared between the three modules - FDCAN1 FDCAN2 and FDCAN3.
The common clock calibration unit is optional. It can be used to generate a calibrated clock
for FDCAN1, FDCAN2 and FDCAN3 from the HSI internal RC oscillator and the PLL, by
evaluating CAN messages received by the FDCAN1.
DS13312 Rev 3
53/284
56
Functional overview
3.46
STM32H735xG
Universal serial bus on-the-go high-speed (OTG_HS)
The devices embed an USB OTG high-speed (up to 480 Mbit/s) device/host/OTG peripheral
that supports both full-speed and high-speed operations. It integrates the transceivers for
full-speed operation (12 Mbit/s) and a UTMI low-pin interface (ULPI) for high-speed
operation (480 Mbit/s). When using the USB OTG_HS interface in HS mode, an external
PHY device connected to the ULPI is required.
The USB OTG_HS peripheral is compliant with the USB 2.0 specification and with the OTG
2.0 specification. It features software-configurable endpoint setting and supports
suspend/resume. The USB OTG_HS controller requires a dedicated 48 MHz clock that is
generated by a PLL connected to the HSE oscillator.
The main features are:
3.47
•
Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing
•
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
•
8 bidirectional endpoints
•
16 host channels with periodic OUT support
•
Software configurable to OTG1.3 and OTG2.0 modes of operation
•
USB 2.0 LPM (Link Power Management) support
•
Battery Charging Specification Revision 1.2 support
•
Internal FS OTG PHY support
•
External HS or HS OTG operation supporting ULPI in SDR mode The OTG PHY is
connected to the microcontroller ULPI port through 12 signals. It can be clocked using
the 60 MHz output.
•
Internal USB DMA
•
HNP/SNP/IP inside (no need for any external resistor)
•
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
Ethernet MAC interface with dedicated DMA controller (ETH)
The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for
ethernet LAN communications through an industry-standard medium-independent interface
(MII) or a reduced medium-independent interface (RMII). The microcontroller requires an
external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair,
fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals
for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.
54/284
DS13312 Rev 3
STM32H735xG
Functional overview
The devices include the following features:
3.48
•
Supports 10 and 100 Mbit/s rates
•
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors
•
Tagged MAC frame support (VLAN support)
•
Half-duplex (CSMA/CD) and full-duplex operation
•
MAC control sublayer (control frames) support
•
32-bit CRC generation and removal
•
Several address filtering modes for physical and multicast address (multicast and
group addresses)
•
32-bit status code for each transmitted or received frame
•
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the
receive FIFO are both 2 Kbytes.
•
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008
(PTP V2) with the time stamp comparator connected to the TIM2 input
•
Triggers interrupt when system time becomes greater than target time
High-definition multimedia interface (HDMI)
- consumer electronics control (CEC)
The devices embed a HDMI-CEC controller that provides hardware support for the
Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).
This protocol provides high-level control functions between all audiovisual products in an
environment. It is specified to operate at low speeds with minimum processing and memory
overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC
controller to wakeup the MCU from Stop mode on data reception.
3.49
Debug infrastructure
The devices offer a comprehensive set of debug and trace features to support software
development and system integration.
•
Breakpoint debugging
•
Code execution tracing
•
Software instrumentation
•
JTAG debug port
•
Serial-wire debug port
•
Trigger input and output
•
Serial-wire trace port
•
Trace port
•
Arm® CoreSight™ debug and trace components
The debug can be controlled via a JTAG/Serial-wire debug access port, using industry
standard debugging tools. The trace port performs data capture for logging and analysis.
DS13312 Rev 3
55/284
56
Memory mapping
4
STM32H735xG
Memory mapping
Refer to the product line reference manual for details on the memory mapping as well as the
boundary addresses for all peripherals.
56/284
DS13312 Rev 3
STM32H735xG
Pinouts, pin descriptions and alternate functions
VDD
VSS
VCAP
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
Figure 4. VFQFPN68 pinout
VBAT
1
51
VDD
PC14-OSC32_IN
2
50
VSS
PC15-OSC32_OUT
3
49
VCAP
VSSSMPS
4
48
PA13
VLXSMPS
5
47
PA12
VDDSMPS
6
46
PA11
VFBSMPS
7
45
PA10
VSS
8
44
PA9
VDD
9
43
PA8
VFQFPN48
PH0-OSC_IN
10
42
PC9
PH1-OSC_OUT
11
41
PC7
NRST
12
40
PC6
PC0
13
39
PB15
PC1
14
38
PB14
VSSA
15
37
PB13
VDDA
16
36
PB12
PA0
17
35
VDD
34
VSS
VSS
33
VCAP
32
PB10
31
PB2
30
PB1
29
PB0
28
PC5
27
PC4
26
PA7
25
PA6
24
PA5
23
PA4
22
VDD
21
VSS
20
PA3
19
PA2
18
Exposed pad
PA1
5
Pinouts, pin descriptions and alternate functions
MSv52556V2
1. The above figure shows the package top view.
2. VSS pads are connected to the exposed pad.
Figure 5. TFBGA100 pinout
1
2
3
4
5
6
7
8
9
10
A
PE6
PE5
PE2
PB8
BOOT0
PB5
PD6
PD3
PD2
PC12
B
PC14OSC32_IN
PC15OSC32_OUT
PE3
PE0
PB7
PB3
PD4
PD1
PC11
PC10
C
VSS
VBAT
PE4
PE1
PB4
PD7
PD0
PA15
PA14
PA13
D
VSSSMPS
VLXSMPS
PDR_ON
PB6
VSS
VDD
PD5
VCAP
PA12
PA11
E
VDDSMPS
VFBSMPS
PB9
PC13
VDD
VDDLDO
VSS
VDD33USB
PA9
PA10
F
PC1
NRST
PC0
PC2_C
VSS
VDD
VDDLDO
PC6
PC9
PA8
G
PH0-OSC_IN
PH1OSC_OUT
PA0
PC3_C
PA3
VCAP
PD14
PD15
PC7
PC8
H
VDDA
VSSA
PA2
PC4
PE7
PE10
PD11
PD9
PD12
PD13
J
VREF+
PA1
PA6
PC5
PB2
PE8
PB11
PB13
PD8
PD10
K
PA4
PA5
PA7
PB0
PB1
PE9
PB10
PB12
PB14
PB15
MSv65396V2
1. The above figure shows the package top view.
DS13312 Rev 3
57/284
113
Pinouts, pin descriptions and alternate functions
STM32H735xG
VDDLDO
VSS
VCAP
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
VDD
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
VDD33USB
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
VDD
100
99
Figure 6. LQFP100 pinout
PE2
1
75
VDD
PE4
2
74
VDDLDO
PE5
3
73
VSS
VDD
4
72
VCAP
VBAT
5
71
PA13
PC13
6
70
PA12
PC14-OSC32_IN
7
69
PA11
PC15-OSC32_OUT
8
68
PA10
VSSSMPS
9
67
PA9
VLXSMPS
10
66
PA8
VDDSMPS
11
65
PC9
VFBSMPS
12
64
PC8
PH0-OSC_IN
13
63
PC7
PH1-OSC_OUT
14
62
PC6
NRST
15
61
PD15
PC0
16
60
PD14
PC1
17
59
VDD
PC2_C
18
58
VSS
PC3_C
19
57
PD13
VDD
20
56
PD12
VSS
21
55
PD11
VSSA
22
54
PD10
VREF+
23
53
PD9
VDDA
24
52
PD8
PA0
25
51
PB15
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PA1
PA2
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PB10
PB11
VCAP
VSS
VDDLDO
VDD
PB12
PB13
PB14
LQFP100
MSv52555V1.
1. The above figure shows the package top view.
58/284
DS13312 Rev 3
STM32H735xG
Pinouts, pin descriptions and alternate functions
Figure 7. WLCSP115 ballout
1
A
B
VCAP
H
PC6
J
K
VDD50USB
M
VDD
N
P
VSS
PD12
Y
PD8
VDD
PB15
VDDLDO
VDD
VCAP
VSS
VSS
PA2
PC4
VDD
PB2
PH1OSC_OUT
VSSA
VSS
VSS
PH0-OSC_IN
NRST
PA5
PB1
VDD
PC1
PA6
PE8
VSS
VDD
PA1
PB0
PB11
PC0
PA3
PB10
VDDSMPS
VFBSMPS
PA0
PA7
PB12
VBAT
PB7
PB13
PB14
VSS
W
AA
PD10
VSSSMPS
VLXSMPS
PDR_ON
PE7
VSS
VDD
PC13
PB6
PC9
PD9
PD11
U
V
PD13
PE4
PE0
PC11
PC14OSC32_IN
PC15OSC32_OUT
PB9
PB3
PA10
PE2
VDD
VDDLDO
PB4
VDD
VREF+
PA4
PC5
11
VSS
PB8
PD0
PC8
PD15
R
T
PC7
PD14
PB5
PA15
10
VCAP
BOOT0
PD4
PA9
9
VDD
PD5
PC12
PA8
VDD33USB
L
PD1
PA13
8
VSS
VSS
PC10
PA12
7
VDD
VSS
VSS
6
PD3
PA14
VDD
5
PD2
PA11
G
4
VDD
VDDLDO
E
F
3
VDD
VSS
C
D
2
VDDA
VDD
MSv52557V1
1. The above figure shows the package top view.
DS13312 Rev 3
59/284
113
Pinouts, pin descriptions and alternate functions
STM32H735xG
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
VDD
VDDLDO
PDR_ON
VSS
VCAP
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
VDD
VSS
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
VDD
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
Figure 8. LQFP144 pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
LQFP144
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
PA15
PA14
VDD
VDDLDO
VSS
VCAP
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
VDD
VDD33USB
VDD50USB
VSS
PG8
PG7
PG6
PD15
PD14
PD13
PD12
PD11
VSS
VDD
PD10
PD9
PD8
PB15
PB14
PB13
PA0
PA1
PA2
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF14
PF15
VSS
VDD
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VCAP
VSS
VDDLDO
VDD
PB12
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
PE2
PE3
PE4
PE5
PE6
VSS
VDD
VBAT
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
VSS
VDD
VSSSMPS
VLXSMPS
VDDSMPS
VFBSMPS
VSS
VDD
PF6
PF7
PF8
PF9
PF10
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2_C
PC3_C
VDD
VSS
VSSA
VREF+
VDDA
MSv52554V1.
1. The above figure shows the package top view.
60/284
DS13312 Rev 3
STM32H735xG
Pinouts, pin descriptions and alternate functions
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
VDD
VDDLDO
PDR_ON
VSS
VCAP
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
VDD
VSS
PG14
PG13
PG12
PG11
PG10
PG9
VDD
VSS
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
VSS
VDD
VDDLDO
VSS
VCAP
Figure 9. LQFP176 pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
LQFP176
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
PA13
PA12
PA11
PA10
PA9
PA8
VDD
PC9
PC8
PC7
PC6
VDD33USB
VDD50USB
VSS
PG8
PG7
PG6
PG5
PG4
VDD
VSS
PG3
PG2
PK2
PK1
PK0
VSS
VDD
PJ11
PJ10
PJ9
PJ8
VSS
VDD
PD15
PD14
PD13
PD12
PD11
VSS
VDD
PD10
PD9
PD8
VSS
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
PF13
PF14
PF15
PG0
VSS
VDD
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VCAP
VSS
VDDLDO
VSS
VDD
PB12
PB13
PB14
PB15
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
PE2
PE3
PE4
PE5
PE6
VSS
VDD
VBAT
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
VSS
VDD
VSSSMPS
VLXSMPS
VDDSMPS
VFBSMPS
PF0
PF1
PF2
PF3
PF4
PF5
VSS
VDD
PF6
PF7
PF8
PF9
PF10
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2_C
PC3_C
VSSA
VREF+
VDDA
PA0
PA1
PA2
VDD
MSv52553V1.
1. The above figure shows the package top view.
DS13312 Rev 3
61/284
113
Pinouts, pin descriptions and alternate functions
STM32H735xG
Figure 10. UFBGA169 ballout
1
2
3
4
5
6
7
8
9
10
11
12
13
A
PE4
PE2
VDD
VCAP
PB6
VDD
VDD
PG10
PD5
VDD
PC12
PC10
PH14
B
PC15OSC32_OUT
PE3
VSS
VDDLDO
PB8
PB4
VSS
PG11
PD6
VSS
PC11
PA14
PH13
C
PC14OSC32_IN
PE6
PE5
PDR_ON
PB9
PB5
PG14
PG9
PD4
PD1
PA15
VSS
VDD
D
VDD
VSS
PC13
PE1
PE0
PB7
PG13
PD7
PD3
PD0
PA13
VDDLDO
VCAP
E
VLXSMPS
VSSSMPS
VBAT
PF1
PF3
BOOT0
PG15
PG12
PD2
PA10
PA9
PA8
PA12
F
VDDSMPS
VFBSMPS
PF0
PF2
PF5
PF7
PB3
PG4
PC6
PC7
PC9
PC8
PA11
G
VDD
VSS
PF4
PF6
PF9
NRST
PF13
PE7
PG6
PG7
PG8
VDD50USB
VDD33USB
H
PH0-OSC_IN
PH1OSC_OUT
PF10
PF8
PC2
PA4
PF14
PE8
PG2
PG3
PG5
VSS
VDD
J
PC0
PC1
VSSA
PC3
PA0
PA7
PF15
PE9
PE14
PD11
PD13
PD15
PD14
K
PC3_C
PC2_C
PA0_C
PA1
PA6
PC4
PG0
PE13
PH10
PH12
PD9
PD10
PD12
L
VDDA
VREF+
PA1_C
PA5
PB1
PB2
PG1
PE12
PB10
PH11
PB13
VSS
VDD
M
VDD
VSS
PH3
VSS
PB0
PF11
VSS
PE10
PB11
VDDLDO
VSS
PD8
PB15
N
PA2
PH2
PA3
VDD
PC5
PF12
VDD
PE11
PE15
VCAP
VDD
PB12
PB14
MSv52551V1.
1. The above figure shows the package top view.
Figure 11. UFBGA176+25 ballout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
A
VSS
PB8
VDDLDO
VCAP
PB6
PB3
PG11
PG9
PD3
PD1
PA15
PA14
VDDLDO
VCAP
VSS
B
PE4
PE3
PB9
PE0
PB7
PB4
PG13
PD7
PD5
PD2
PC12
PH14
PA13
PA8
PA12
C
PC13
VSS
PE2
PE1
BOOT0
PB5
PG14
PG10
PD4
PD0
PC11
PC10
PH13
PA10
PA11
D
PC15OSC32_OUT
PC14OSC32_IN
PE5
PDR_ON
VDD
VSS
PG15
PG12
PD6
VSS
VDD
PH15
PA9
PC8
PC7
E
VSS
VBAT
PE6
VDD
VDD
PC9
PC6
VDD50USB
F
VLXSMPS
VSSSMPS
PF1
PF0
VSS
VSS
VSS
VSS
VSS
VSS
VDD33USB
PG6
PG5
G
VDDSMPS
VFBSMPS
PF2
VDD
VSS
VSS
VSS
VSS
VSS
PG8
PG7
PG4
PG2
H
PF6
PF4
PF5
PF3
VSS
VSS
VSS
VSS
VSS
VDD
PG3
PD14
PD13
J
PH0-OSC_IN
PF8
PF7
PF9
VSS
VSS
VSS
VSS
VSS
PD15
PD11
VSS
PD12
K
PH1OSC_OUT
VSS
PF10
VDD
VSS
VSS
VSS
VSS
VSS
VSS
PD9
PB15
PB14
L
NRST
PC0
PC1
VREF-
VDD
PD10
PD8
PB13
M
PC2
PC3
VREF+
VDDA
VDD
VSS
PC5
PH11
PH9
PB12
N
PC2_C
PC3_C
VSSA
PH2
PA3
PA7
P
PA0
PA1
PA1_C
PH4
PA4
PA5
R
VSS
PA2
PA0_C
PH3
PH5
PC4
PB1
VDD
VSS
PH7
PE14
PF11
PE8
PB2
PG0
PG1
PF15
PF13
PB10
PH8
PH10
PH12
PE7
PB11
PF12
PE12
PE13
PE15
PH6
PA6
PB0
PE10
PF14
PE9
PE11
VCAP
VDDLDO
VSS
MSv52552V1.
1. The above figure shows the package top view.
62/284
DS13312 Rev 3
STM32H735xG
Pinouts, pin descriptions and alternate functions
Table 7. Legend/abbreviations used in the pinout table
Name
Pin name
Pin type
Abbreviation
Unless otherwise specified in brackets below the pin name, the pin function during
and after reset is the same as the actual pin name
S
Supply pin
I
Input only pin
I/O
Input / output pin
ANA
Analog-only Input
FT
5 V tolerant I/O
TT
3.3 V tolerant I/O
B
Dedicated BOOT0 pin
RST
I/O structure
Notes
Pin functions
Definition
Bidirectional reset pin with embedded weak pull-up resistor
Option for TT and FT I/Os
_f
I2C FM+ option
_a
analog option (supplied by VDDA)
_u
USB option (supplied by VDD33USB)
_h
High-speed low-voltage I/O
Unless otherwise specified by a note, all I/Os are set as floating inputs during and
after reset.
Alternate
functions
Functions selected through GPIOx_AFR registers
Additional
functions
Functions directly selected/enabled through peripheral registers
DS13312 Rev 3
63/284
113
Pinouts, pin descriptions and alternate functions
STM32H735xG
Table 8. STM32H735xG pin and ball descriptions
-
64/284
2
3
B3
C3
A2
2
3
4
B11
-
F9
-
A2
B2
A1
C3
C3
B2
B1
D3
1
2
3
4
PE2
PE3
PE4
PE5
I/O structure
Pin type
Pin name (function after reset)
LQFP176 SMPS
UFBGA176+25 SMPS
UFBGA169 SMPS
WLCSP115 SMPS
LQFP144 SMPS
1
I/O
I/O
I/O
I/O
FT_h
FT_h
FT_h
FT_h
DS13312 Rev 3
Additional functions
-
-
A3
Alternate functions
-
1
Notes
-
TFBGA100 SMPS
LQFP100 SMPS
VFQFPN68 SMPS
Pin number
-
TRACECLK,
SAI1_CK1,
USART10_RX,
SPI4_SCK,
SAI1_MCLK_A,
SAI4_MCLK_A,
OCTOSPIM_P1_IO2,
SAI4_CK1,
ETH_MII_TXD3,
FMC_A23,
EVENTOUT
-
-
TRACED0,
TIM15_BKIN,
SAI1_SD_B,
SAI4_SD_B,
USART10_TX,
FMC_A19,
EVENTOUT
-
-
TRACED1, SAI1_D2,
DFSDM1_DATIN3,
TIM15_CH1N,
SPI4_NSS,
SAI1_FS_A,
SAI4_FS_A, SAI4_D2,
FMC_A20,
DCMI_D4/PSSI_D4,
LCD_B0, EVENTOUT
-
-
TRACED2, SAI1_CK2,
DFSDM1_CKIN3,
TIM15_CH1,
SPI4_MISO,
SAI1_SCK_A,
SAI4_SCK_A,
SAI4_CK2, FMC_A21,
DCMI_D6/PSSI_D6,
LCD_G0, EVENTOUT
-
STM32H735xG
Pinouts, pin descriptions and alternate functions
Table 8. STM32H735xG pin and ball descriptions (continued)
Alternate functions
Additional functions
PE6
I/O
FT_h
-
-
-
-
-
6
-
-
-
6
VSS
S
-
-
-
-
-
4
-
7
-
-
-
7
VDD
S
-
-
-
-
1
5
C2
8
K9
E3
E2
8
VBAT
S
-
-
-
-
-
6
E4
9
H9
D3
C1
9
PC13
I/O
FT
-
EVENTOUT
RTC_TAMP1/
RTC_TS,
WKUP4
-
-
-
-
F11
-
-
-
VSS
S
-
-
-
-
2
7
B1
10
D11
C1
D2
10
PC14OSC32_IN
I/O
FT
-
EVENTOUT
OSC32_IN
3
8
B2
11
E10
B1
D1
11
PC15OSC32_
OUT
I/O
FT
-
EVENTOUT
OSC32_OUT
-
-
-
12
F11
-
-
12
VSS
S
-
-
-
-
-
-
-
13
G10
-
-
13
VDD
S
-
-
-
-
4
9
D1
14
H11
E2
F2
14
VSSSMPS
S
-
-
-
-
5
10
D2
15
J10
E1
F1
15
VLXSMPS
S
-
-
-
-
6
11
E1
16
K11
F1
G1
16
VDDSMPS
S
-
-
-
-
7
12
E2
17
L10
F2
G2
17
VFBSMPS
S
-
-
-
-
-
I2C2_SDA(boot),
I2C5_SDA,
OCTOSPIM_P2_IO0,
FMC_A0, TIM23_CH1,
EVENTOUT
-
-
-
-
-
-
F3
F4
18
PF0
Pin type
I/O structure
5
LQFP176 SMPS
E3
UFBGA176+25 SMPS
C2
UFBGA169 SMPS
-
WLCSP115 SMPS
5
LQFP144 SMPS
A1
TFBGA100 SMPS
-
LQFP100 SMPS
-
TRACED3,
TIM1_BKIN2,
SAI1_D1, TIM15_CH2,
SPI4_MOSI,
SAI1_SD_A,
SAI4_SD_A, SAI4_D1,
SAI4_MCLK_B,
TIM1_BKIN2_COMP1
2, FMC_A22,
DCMI_D7/PSSI_D7,
LCD_G1, EVENTOUT
VFQFPN68 SMPS
Notes
Pin name (function after reset)
Pin number
I/O
FT_fh
DS13312 Rev 3
65/284
113
Pinouts, pin descriptions and alternate functions
STM32H735xG
Table 8. STM32H735xG pin and ball descriptions (continued)
-
E4
F3
19
PF1
I/O structure
Pin type
Pin name (function after reset)
LQFP176 SMPS
UFBGA176+25 SMPS
UFBGA169 SMPS
WLCSP115 SMPS
LQFP144 SMPS
-
I/O
FT_fh
Additional functions
-
Alternate functions
-
Notes
-
TFBGA100 SMPS
LQFP100 SMPS
VFQFPN68 SMPS
Pin number
-
I2C2_SCL(boot),
I2C5_SCL,
OCTOSPIM_P2_IO1,
FMC_A1, TIM23_CH2,
EVENTOUT
-
-
-
-
-
-
-
F4
G3
20
PF2
I/O
FT_h
-
I2C2_SMBA,
I2C5_SMBA,
OCTOSPIM_P2_IO2,
FMC_A2, TIM23_CH3,
EVENTOUT
-
-
-
-
-
E5
H4
21
PF3
I/O
FT_ha
-
OCTOSPIM_P2_IO3,
FMC_A3, TIM23_CH4,
EVENTOUT
ADC3_INP5
-
-
-
-
-
G3
H2
22
PF4
I/O
FT_ha
-
OCTOSPIM_P2_CLK,
FMC_A4, EVENTOUT
ADC3_INN5,
ADC3_INP9
-
-
-
-
-
F5
H3
23
PF5
I/O
FT_ha
-
OCTOSPIM_P2_NCL
K, FMC_A5,
EVENTOUT
ADC3_INP4
8
-
-
18
M11
-
-
24
VSS
S
-
-
-
-
9
-
-
19
N10
-
-
25
VDD
S
-
-
-
-
-
TIM16_CH1,
FDCAN3_RX,
SPI5_NSS,
SAI1_SD_B,
UART7_RX,
SAI4_SD_B,
OCTOSPIM_P1_IO3,
TIM23_CH1,
EVENTOUT
ADC3_INN4,
ADC3_INP8
-
TIM17_CH1,
FDCAN3_TX,
SPI5_SCK,
SAI1_MCLK_B,
UART7_TX,
SAI4_MCLK_B,
OCTOSPIM_P1_IO2,
TIM23_CH2,
EVENTOUT
ADC3_INP3
-
-
66/284
-
-
-
-
20
21
-
-
G4
F6
H1
J3
26
27
PF6
PF7
I/O
I/O
FT_ha
FT_ha
DS13312 Rev 3
STM32H735xG
Pinouts, pin descriptions and alternate functions
Table 8. STM32H735xG pin and ball descriptions (continued)
23
-
-
H4
G5
J2
J4
28
29
PF8
PF9
I/O structure
Pin type
Pin name (function after reset)
LQFP176 SMPS
UFBGA176+25 SMPS
UFBGA169 SMPS
WLCSP115 SMPS
LQFP144 SMPS
TFBGA100 SMPS
-
22
I/O
I/O
FT_ha
FT_ha
Additional functions
-
-
Alternate functions
-
-
Notes
-
LQFP100 SMPS
VFQFPN68 SMPS
Pin number
-
TIM16_CH1N,
SPI5_MISO,
SAI1_SCK_B,
UART7_RTS/UART7_
DE, SAI4_SCK_B,
TIM13_CH1,
OCTOSPIM_P1_IO0,
TIM23_CH3,
EVENTOUT
ADC3_INN3,
ADC3_INP7
-
TIM17_CH1N,
SPI5_MOSI,
SAI1_FS_B,
UART7_CTS,
SAI4_FS_B,
TIM14_CH1,
OCTOSPIM_P1_IO1,
TIM23_CH4,
EVENTOUT
ADC3_INP2
ADC3_INN2,
ADC3_INP6
-
-
-
24
-
H3
K3
30
PF10
I/O
FT_ha
-
TIM16_BKIN,
SAI1_D3, PSSI_D15,
OCTOSPIM_P1_CLK,
SAI4_D3,
DCMI_D11/PSSI_D11,
LCD_DE, EVENTOUT
10
13
G1
25
P11
H1
J1
31
PH0OSC_IN
I/O
FT
-
EVENTOUT
OSC_IN
11
14
G2
26
T11
H2
K1
32
PH1OSC_OUT
I/O
FT
-
EVENTOUT
OSC_OUT
12
15
F2
27
R10
G6
L1
33
NRST
I/O
RST
-
-
-
13
16
F3
28
M9
J1
L2
34
PC0
I/O
FT_ha
DS13312 Rev 3
-
FMC_D12/FMC_AD12
, DFSDM1_CKIN0,
DFSDM1_DATIN4,
SAI4_FS_B,
ADC123_INP10
FMC_A25,
OTG_HS_ULPI_STP,
LCD_G2,
FMC_SDNWE,
LCD_R5, EVENTOUT
67/284
113
Pinouts, pin descriptions and alternate functions
STM32H735xG
Table 8. STM32H735xG pin and ball descriptions (continued)
14
17
-
-
F1
29
-
-
-
18
F4
30
(2)
-
(2)
(2)
P9
-
-
M1
(1)
-
K2
N1
36
(1)
(1)
(1)
(2)
-
21
-
15
22
H2
Additional functions
Alternate functions
Notes
I/O structure
Pin type
-
PC2_C
ANA
TT_a
-
-
ADC3_INN1,
ADC3_INP0
ADC12_INN12,
ADC12_INP13
TT_a
-
-
ADC3_INP1
-
-
VDD
S
-
-
-
-
-
-
-
VSS
S
-
-
-
-
J3
N3
38
VSSA
S
-
-
-
-
T9
32
FT_a
ANA
34
-
I/O
PC3_C
U10
20
PC2
(2)
33
-
PWR_DEEPSLEEP,
DFSDM1_CKIN1,
OCTOSPIM_P1_IO5,
SPI2_MISO/I2S2_SDI,
ADC123_INN11
DFSDM1_CKOUT,
,
OCTOSPIM_P1_IO2,
ADC123_INP12
OTG_HS_ULPI_DIR,
ETH_MII_TXD2,
FMC_SDNE0,
EVENTOUT
-
-
-
-
FT_a
V11
(2)
FT_ha
I/O
37
31
I/O
PC3
N2
G4
PC1
TRACED0, SAI4_D1,
SAI1_D1,
DFSDM1_DATIN0,
DFSDM1_CKIN4,
ADC123_INN10
SPI2_MOSI/I2S2_SD
,
O, SAI1_SD_A,
ADC123_INP11
SAI4_SD_A,
, RTC_TAMP3,
SDMMC2_CK,
WKUP6
OCTOSPIM_P1_IO4,
ETH_MDC,
MDIOS_MDC,
LCD_G5, EVENTOUT
PWR_SLEEP,
DFSDM1_DATIN1,
OCTOSPIM_P1_IO6,
SPI2_MOSI/
I2S2_SDO,
OCTOSPIM_P1_IO0,
OTG_HS_ULPI_NXT,
ETH_MII_TX_CLK,
FMC_SDCKE0,
EVENTOUT
K1
-
Pin name (function after reset)
LQFP176 SMPS
UFBGA176+25 SMPS
H5
-
19
68/284
35
(1)
-
(2)
L3
M2
-
(2)
J2
J4
-
-
UFBGA169 SMPS
WLCSP115 SMPS
LQFP144 SMPS
TFBGA100 SMPS
LQFP100 SMPS
VFQFPN68 SMPS
Pin number
(1)
(1)
(1)
DS13312 Rev 3
STM32H735xG
Pinouts, pin descriptions and alternate functions
Table 8. STM32H735xG pin and ball descriptions (continued)
VFQFPN68 SMPS
LQFP100 SMPS
TFBGA100 SMPS
LQFP144 SMPS
WLCSP115 SMPS
UFBGA169 SMPS
UFBGA176+25 SMPS
LQFP176 SMPS
Pin name (function after reset)
Pin type
I/O structure
Notes
Alternate functions
Additional functions
Pin number
-
-
-
-
-
-
L4
-
VREF-
S
-
-
-
-
-
23
J1
35
W10
L2
M3
39
VREF+
S
-
-
-
-
16
24
H1
36
Y11
L1
M4
40
VDDA
S
-
-
-
-
ADC1_INP16,
WKUP1
17
25
G3
37
N8
-
-
-
-
-
18
26
J2
38
R8
-
-
-
-
-
J5
P1
K3
R3
(1)
(1)
(1)
(1)
K4
P2
L3
P3
(1)
(1)
(1)
(1)
41
PA0
I/O
FT_ha
-
TIM2_CH1/TIM2_ETR,
TIM5_CH1,
TIM8_ETR,
TIM15_BKIN,
SPI6_NSS/I2S6_WS,
USART2_CTS/USART
2_NSS, UART4_TX,
SDMMC2_CMD,
SAI4_SD_B,
ETH_MII_CRS,
FMC_A19,
EVENTOUT
-
PA0_C
ANA
TT_a
-
-
ADC12_INN1,
ADC12_INP0
ADC1_INN16,
ADC1_INP17
ADC12_INP1
42
PA1
I/O
FT_ha
-
TIM2_CH2,
TIM5_CH2,
LPTIM3_OUT,
TIM15_CH1N,
USART2_RTS/USART
2_DE, UART4_RX,
OCTOSPIM_P1_IO3,
SAI4_MCLK_B,
ETH_MII_RX_CLK/ET
H_RMII_REF_CLK,
OCTOSPIM_P1_DQS,
LCD_R2, EVENTOUT
-
PA1_C
ANA
TT_a
-
-
DS13312 Rev 3
69/284
113
Pinouts, pin descriptions and alternate functions
STM32H735xG
Table 8. STM32H735xG pin and ball descriptions (continued)
V9
R2
43
PA2
I/O structure
Pin type
Pin name (function after reset)
LQFP176 SMPS
UFBGA176+25 SMPS
UFBGA169 SMPS
N1
I/O
FT_ha
Additional functions
39
WLCSP115 SMPS
LQFP144 SMPS
TFBGA100 SMPS
H3
Alternate functions
27
Notes
19
LQFP100 SMPS
VFQFPN68 SMPS
Pin number
-
TIM2_CH3,
TIM5_CH3,
LPTIM4_OUT,
TIM15_CH1,
OCTOSPIM_P1_IO0,
USART2_TX(boot),
SAI4_SCK_B,
ETH_MDIO,
MDIOS_MDIO,
LCD_R1, EVENTOUT
ADC12_INP14,
WKUP2
ADC3_INP13
-
-
-
-
-
N2
N4
-
PH2
I/O
FT_ha
-
LPTIM1_IN2,
OCTOSPIM_P1_IO4,
SAI4_SCK_B,
ETH_MII_CRS,
FMC_SDCKE0,
LCD_R0, EVENTOUT
-
-
-
-
AA10
-
-
44
VDD
S
-
-
-
-
-
-
-
-
-
-
-
45
VSS
S
-
-
-
-
ADC3_INN13,
ADC3_INP14
-
-
-
-
-
M3
R4
-
PH3
I/O
FT_ha
-
OCTOSPIM_P1_IO5,
SAI4_MCLK_B,
ETH_MII_COL,
FMC_SDNE0,
LCD_R1, EVENTOUT
-
-
-
-
-
-
P4
-
PH4
I/O
FT_fa
-
I2C2_SCL, LCD_G5,
OTG_HS_ULPI_NXT,
PSSI_D14, LCD_G4,
EVENTOUT
ADC3_INN14,
ADC3_INP15
I/O
FT_fh
a
-
I2C2_SDA,
SPI5_NSS,
FMC_SDNWE,
EVENTOUT
ADC3_INN15,
ADC3_INP16
-
70/284
-
-
-
-
-
R5
-
PH5
DS13312 Rev 3
STM32H735xG
Pinouts, pin descriptions and alternate functions
Table 8. STM32H735xG pin and ball descriptions (continued)
Alternate functions
Additional functions
PA3
I/O
FT_ha
-
ADC12_INP15
21
29
-
41
-
-
-
47
VSS
S
-
-
-
-
22
30
-
42
-
-
-
48
VDD
S
-
-
-
-
-
D1PWREN,
TIM5_ETR,
SPI1_NSS(boot)/I2S1
_WS,
SPI3_NSS/I2S3_WS,
USART2_CK,
SPI6_NSS/I2S6_WS,
FMC_D8/FMC_AD8,
DCMI_HSYNC/PSSI_
DE, LCD_VSYNC,
EVENTOUT
ADC12_INP18,
DAC1_OUT1
-
D2PWREN,
TIM2_CH1/TIM2_ETR,
TIM8_CH1N,
SPI1_SCK(boot)/I2S1
ADC12_INN18,
_CK,
ADC12_INP19,
SPI6_SCK/I2S6_CK,
DAC1_OUT2
OTG_HS_ULPI_CK,
FMC_D9/FMC_AD9,
PSSI_D14, LCD_R4,
EVENTOUT
23
24
31
32
K1
K2
43
44
Y9
U8
H6
L4
P5
P6
49
50
PA4
PA5
Pin type
I/O structure
46
LQFP176 SMPS
N5
UFBGA176+25 SMPS
N3
UFBGA169 SMPS
P7
WLCSP115 SMPS
40
LQFP144 SMPS
G5
TFBGA100 SMPS
28
LQFP100 SMPS
20
TIM2_CH4,
TIM5_CH4,
LPTIM5_OUT,
TIM15_CH2,
I2S6_MCK,
OCTOSPIM_P1_IO2,
USART2_RX(boot),
LCD_B2,
OTG_HS_ULPI_D0,
ETH_MII_COL,
OCTOSPIM_P1_CLK,
LCD_B5, EVENTOUT
VFQFPN68 SMPS
Notes
Pin name (function after reset)
Pin number
I/O
I/O
TT_ha
TT_ha
DS13312 Rev 3
71/284
113
Pinouts, pin descriptions and alternate functions
STM32H735xG
Table 8. STM32H735xG pin and ball descriptions (continued)
35
72/284
H4
46
47
T7
R6
W8
K5
J6
K6
R7
N6
R6
51
52
53
PA6
PA7
PC4
I/O structure
Pin type
Pin name (function after reset)
LQFP176 SMPS
UFBGA176+25 SMPS
UFBGA169 SMPS
WLCSP115 SMPS
LQFP144 SMPS
TFBGA100 SMPS
K3
45
I/O
I/O
I/O
FT_ha
TT_ha
TT_ha
DS13312 Rev 3
Additional functions
27
34
J3
Alternate functions
26
33
Notes
25
LQFP100 SMPS
VFQFPN68 SMPS
Pin number
-
TIM1_BKIN,
TIM3_CH1,
TIM8_BKIN,
SPI1_MISO(boot)/I2S1
_SDI,
OCTOSPIM_P1_IO3,
SPI6_MISO/I2S6_SDI,
TIM13_CH1,
TIM8_BKIN_COMP12,
MDIOS_MDC,
TIM1_BKIN_COMP12,
DCMI_PIXCLK/PSSI_
PDCK, LCD_G2,
EVENTOUT
ADC12_INP3
-
TIM1_CH1N,
TIM3_CH2,
TIM8_CH1N,
SPI1_MOSI(boot)/I2S1
_SDO,
ADC12_INN3,
SPI6_MOSI/I2S6_SD
ADC12_INP7,
O, TIM14_CH1,
OCTOSPIM_P1_IO2, OPAMP1_VINM
ETH_MII_RX_DV/ETH
_RMII_CRS_DV,
FMC_SDNWE,
LCD_VSYNC,
EVENTOUT
-
PWR_DEEPSLEEP,
FMC_A22,
DFSDM1_CKIN2,
I2S1_MCK,
SPDIFRX1_IN3,
SDMMC2_CKIN,
ETH_MII_RXD0/ETH_
RMII_RXD0,
FMC_SDNE0,
LCD_R7, EVENTOUT
ADC12_INP4,
OPAMP1_
VOUT,
COMP1_INM
STM32H735xG
Pinouts, pin descriptions and alternate functions
Table 8. STM32H735xG pin and ball descriptions (continued)
Additional functions
Alternate functions
Notes
I/O structure
Pin type
Pin name (function after reset)
LQFP176 SMPS
UFBGA176+25 SMPS
UFBGA169 SMPS
WLCSP115 SMPS
LQFP144 SMPS
TFBGA100 SMPS
LQFP100 SMPS
VFQFPN68 SMPS
Pin number
PWR_SLEEP,
SAI4_D3, SAI1_D3,
DFSDM1_DATIN2,
PSSI_D15,
ADC12_INN4,
SPDIFRX1_IN4,
OCTOSPIM_P1_DQS, ADC12_INP8,
ETH_MII_RXD1/ETH_ OPAMP1_VINM
RMII_RXD1,
FMC_SDCKE0,
COMP1_OUT,
LCD_DE, EVENTOUT
28
36
J4
48
AA8
N5
M7
54
PC5
I/O
TT_ha
-
-
-
-
-
V7
-
-
-
VSS
S
-
-
-
-
-
-
-
-
Y7
-
-
-
VDD
S
-
-
-
-
-
TIM1_CH2N,
TIM3_CH3,
TIM8_CH2N,
OCTOSPIM_P1_IO1,
DFSDM1_CKOUT,
UART4_CTS,
LCD_R3,
OTG_HS_ULPI_D1,
ETH_MII_RXD2,
LCD_G1, EVENTOUT
ADC12_INN5,
ADC12_INP9,
OPAMP1_VINP,
COMP1_INP
-
TIM1_CH3N,
TIM3_CH4,
TIM8_CH3N,
OCTOSPIM_P1_IO0,
DFSDM1_DATIN1,
LCD_R6,
OTG_HS_ULPI_D2,
ETH_MII_RXD3,
LCD_G0, EVENTOUT
ADC12_INP5,
COMP1_INM
29
30
37
38
K4
K5
49
50
U6
W6
M5
L5
R8
M8
55
56
PB0
PB1
I/O
I/O
TT_ha
FT_ha
DS13312 Rev 3
73/284
113
Pinouts, pin descriptions and alternate functions
STM32H735xG
Table 8. STM32H735xG pin and ball descriptions (continued)
AA6
P7
57
PB2
I/O structure
Pin type
Pin name (function after reset)
LQFP176 SMPS
UFBGA176+25 SMPS
UFBGA169 SMPS
L6
I/O
FT_ha
Additional functions
51
WLCSP115 SMPS
LQFP144 SMPS
TFBGA100 SMPS
J5
Alternate functions
39
Notes
31
LQFP100 SMPS
VFQFPN68 SMPS
Pin number
-
RTC_OUT, SAI4_D1,
SAI1_D1,
DFSDM1_CKIN1,
SAI1_SD_A,
SPI3_MOSI/I2S3_SD
O, SAI4_SD_A,
OCTOSPIM_P1_CLK,
OCTOSPIM_P1_DQS,
ETH_TX_ER,
TIM23_ETR,
EVENTOUT
COMP1_INP
ADC1_INP2
-
-
-
52
-
M6
N7
58
PF11
I/O
FT_ha
-
SPI5_MOSI,
OCTOSPIM_P1_NCL
K, SAI4_SD_B,
FMC_NRAS,
DCMI_D12/PSSI_D12,
TIM24_CH1,
EVENTOUT
-
-
-
-
-
N6
P11
59
PF12
I/O
FT_ha
-
OCTOSPIM_P2_DQS,
FMC_A6, TIM24_CH2,
EVENTOUT
ADC1_INN2,
ADC1_INP6
-
-
-
-
-
G7
N11
60
PF13
I/O
FT_ha
-
DFSDM1_DATIN6,
I2C4_SMBA, FMC_A7,
TIM24_CH3,
EVENTOUT
ADC2_INP2
-
DFSDM1_CKIN6,
I2C4_SCL, FMC_A8,
TIM24_CH4,
EVENTOUT
ADC2_INN2,
ADC2_INP6
-
I2C4_SDA, FMC_A9,
EVENTOUT
-
-
-
-
-
53
-
H7
R10
61
PF14
I/O
FT_fh
a
-
-
-
54
-
J7
N10
62
PF15
I/O
FT_fh
-
-
-
-
-
K7
P8
63
PG0
I/O
FT_h
-
OCTOSPIM_P2_IO4,
UART9_RX,
FMC_A10,
EVENTOUT
-
-
-
55
-
-
-
64
VSS
S
-
-
-
-
-
-
-
56
-
-
-
65
VDD
S
-
-
-
-
74/284
DS13312 Rev 3
STM32H735xG
Pinouts, pin descriptions and alternate functions
Table 8. STM32H735xG pin and ball descriptions (continued)
UFBGA176+25 SMPS
LQFP176 SMPS
L7
N9
66
-
-
40
41
H5
J6
57
58
N6
V5
G8
H8
P9
N8
67
68
Additional functions
UFBGA169 SMPS
-
Alternate functions
WLCSP115 SMPS
-
Notes
LQFP144 SMPS
-
I/O structure
TFBGA100 SMPS
-
Pin type
LQFP100 SMPS
-
Pin name (function after reset)
VFQFPN68 SMPS
Pin number
PG1
I/O
TT_h
-
OCTOSPIM_P2_IO5,
UART9_TX,
FMC_A11,
EVENTOUT
OPAMP2_VINM
PE7
PE8
I/O
I/O
TT_ha
TT_ha
-
TIM1_ETR,
DFSDM1_DATIN2,
UART7_RX,
OCTOSPIM_P1_IO4,
FMC_D4/FMC_AD4,
EVENTOUT
OPAMP2_
VOUT,
COMP2_INM
-
TIM1_CH1N,
DFSDM1_CKIN2,
UART7_TX,
OCTOSPIM_P1_IO5,
FMC_D5/FMC_AD5,
COMP2_OUT,
EVENTOUT
OPAMP2_VINM
TIM1_CH1,
DFSDM1_CKOUT,
UART7_RTS/UART7_
OPAMP2_VINP,
DE,
COMP2_INP
OCTOSPIM_P1_IO6,
FMC_D6/FMC_AD6,
EVENTOUT
-
-
K6
59
-
J8
R11
69
PE9
I/O
TT_ha
-
-
-
-
-
Y5
-
-
70
VSS
S
-
-
-
-
-
-
-
-
AA4
-
-
71
VDD
S
-
-
-
-
-
TIM1_CH2N,
DFSDM1_DATIN4,
UART7_CTS,
OCTOSPIM_P1_IO7,
FMC_D7/FMC_AD7,
EVENTOUT
COMP2_INM
-
TIM1_CH2,
DFSDM1_CKIN4,
SPI4_NSS(boot),
SAI4_SD_B,
OCTOSPIM_P1_NCS,
FMC_D8/FMC_AD8,
LCD_G3, EVENTOUT
COMP2_INP
-
-
-
-
H6
-
60
61
-
-
M8
N8
R9
R12
72
73
PE10
PE11
I/O
I/O
FT_ha
FT_ha
DS13312 Rev 3
75/284
113
Pinouts, pin descriptions and alternate functions
STM32H735xG
Table 8. STM32H735xG pin and ball descriptions (continued)
-
-
-
-
32
-
42
76/284
-
-
-
K7
63
64
65
66
-
-
-
-
T5
L8
K8
J9
N9
L9
P12
P13
M12
P14
N12
74
75
76
77
78
PE12
PE13
PE14
PE15
PB10
I/O structure
Pin type
Pin name (function after reset)
LQFP176 SMPS
UFBGA176+25 SMPS
UFBGA169 SMPS
WLCSP115 SMPS
LQFP144 SMPS
62
I/O
I/O
I/O
I/O
I/O
FT_h
FT_h
FT_h
FT_h
FT_fh
DS13312 Rev 3
Additional functions
-
-
Alternate functions
-
Notes
-
TFBGA100 SMPS
LQFP100 SMPS
VFQFPN68 SMPS
Pin number
-
TIM1_CH3N,
DFSDM1_DATIN5,
SPI4_SCK(boot),
SAI4_SCK_B,
FMC_D9/FMC_AD9,
COMP1_OUT,
LCD_B4, EVENTOUT
-
-
TIM1_CH3,
DFSDM1_CKIN5,
SPI4_MISO(boot),
SAI4_FS_B,
FMC_D10/FMC_AD10
, COMP2_OUT,
LCD_DE, EVENTOUT
-
-
TIM1_CH4,
SPI4_MOSI(boot),
SAI4_MCLK_B,
FMC_D11/FMC_AD11,
LCD_CLK,
EVENTOUT
-
-
TIM1_BKIN,
USART10_CK,
FMC_D12/FMC_AD12
,
TIM1_BKIN_COMP12,
LCD_R7, EVENTOUT
-
-
TIM2_CH3,
LPTIM2_IN1,
I2C2_SCL,
SPI2_SCK/I2S2_CK,
DFSDM1_DATIN7,
USART3_TX(boot),
OCTOSPIM_P1_NCS,
OTG_HS_ULPI_D3,
ETH_MII_RX_ER,
LCD_G4, EVENTOUT
-
STM32H735xG
Pinouts, pin descriptions and alternate functions
Table 8. STM32H735xG pin and ball descriptions (continued)
Alternate functions
Additional functions
PB11
I/O
FT_f
-
-
33
44
G6
68
Y3
N10
R13
80
VCAP
S
-
-
-
-
34
45
-
69
AA2
-
-
81
VSS
S
-
-
-
-
-
46
F7
70
W2
M10
R14
82
VDDLDO
S
-
-
-
-
35
47
-
71
Y1
-
-
-
VDD
S
-
-
-
-
-
TIM12_CH1,
I2C2_SMBA,
SPI5_SCK,
ETH_MII_RXD2,
FMC_SDNE1,
DCMI_D8/PSSI_D8,
EVENTOUT
-
-
I2C3_SCL,
SPI5_MISO,
ETH_MII_RXD3,
FMC_SDCKE1,
DCMI_D9/PSSI_D9,
EVENTOUT
-
-
TIM5_ETR,
I2C3_SDA, FMC_D16,
DCMI_HSYNC/PSSI_
DE, LCD_R2,
EVENTOUT
-
-
TIM12_CH2,
I2C3_SMBA,
FMC_D17,
DCMI_D0/PSSI_D0,
LCD_R3, EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
P15
M11
N13
M14
-
-
-
-
PH6
PH7
PH8
PH9
Pin type
I/O structure
79
LQFP176 SMPS
P10
UFBGA176+25 SMPS
M9
UFBGA169 SMPS
W4
WLCSP115 SMPS
67
LQFP144 SMPS
J7
TFBGA100 SMPS
43
LQFP100 SMPS
-
TIM2_CH4,
LPTIM2_ETR,
I2C2_SDA,
DFSDM1_CKIN7,
USART3_RX(boot),
OTG_HS_ULPI_D4,
ETH_MII_TX_EN/ETH
_RMII_TX_EN,
LCD_G5, EVENTOUT
VFQFPN68 SMPS
Notes
Pin name (function after reset)
Pin number
I/O
I/O
I/O
I/O
FT_h
FT_fh
FT_fh
FT_h
DS13312 Rev 3
77/284
113
Pinouts, pin descriptions and alternate functions
STM32H735xG
Table 8. STM32H735xG pin and ball descriptions (continued)
Alternate functions
Additional functions
PH10
I/O
FT_h
-
-
-
-
-
-
-
L10
M13
-
PH11
I/O
FT_fh
-
TIM5_CH2, I2C4_SCL,
FMC_D19,
DCMI_D2/PSSI_D2,
LCD_R5, EVENTOUT
-
-
-
-
-
-
-
-
83
VSS
S
-
-
-
-
-
-
-
-
Y1
-
-
84
VDD
S
-
-
-
-
-
TIM5_CH3,
I2C4_SDA, FMC_D20,
DCMI_D3/PSSI_D3,
LCD_R6, EVENTOUT
-
-
TIM1_BKIN,
OCTOSPIM_P1_NCL
K, I2C2_SMBA,
SPI2_NSS/I2S2_WS,
DFSDM1_DATIN1,
USART3_CK,
FDCAN2_RX,
OTG_HS_ULPI_D5,
ETH_MII_TXD0/ETH_
RMII_TXD0,
OCTOSPIM_P1_IO0,
TIM1_BKIN_COMP12,
UART5_RX,
EVENTOUT
-
-
36
-
48
78/284
-
K8
-
72
-
U4
K10
N15
N12 M15
-
85
PH12
PB12
Pin type
I/O structure
-
LQFP176 SMPS
N14
UFBGA176+25 SMPS
K9
UFBGA169 SMPS
-
WLCSP115 SMPS
-
LQFP144 SMPS
-
TFBGA100 SMPS
-
LQFP100 SMPS
-
TIM5_CH1,
I2C4_SMBA,
FMC_D18,
DCMI_D1/PSSI_D1,
LCD_R4, EVENTOUT
VFQFPN68 SMPS
Notes
Pin name (function after reset)
Pin number
I/O
I/O
FT_fh
FT_h
DS13312 Rev 3
STM32H735xG
Pinouts, pin descriptions and alternate functions
Table 8. STM32H735xG pin and ball descriptions (continued)
51
K10
74
75
P5
R4
V3
L11
N13
M13
L15
K15
K14
86
87
88
PB13
PB14
PB15
I/O structure
Pin type
Pin name (function after reset)
LQFP176 SMPS
UFBGA176+25 SMPS
UFBGA169 SMPS
WLCSP115 SMPS
LQFP144 SMPS
TFBGA100 SMPS
K9
73
I/O
I/O
I/O
FT_h
FT_h
FT_h
DS13312 Rev 3
Additional functions
39
50
J8
Alternate functions
38
49
Notes
37
LQFP100 SMPS
VFQFPN68 SMPS
Pin number
-
TIM1_CH1N,
LPTIM2_OUT,
OCTOSPIM_P1_IO2,
SPI2_SCK/I2S2_CK,
DFSDM1_CKIN1,
USART3_CTS/USART
3_NSS, FDCAN2_TX,
OTG_HS_ULPI_D6,
ETH_MII_TXD1/ETH_
RMII_TXD1,
SDMMC1_D0,
DCMI_D2/PSSI_D2,
UART5_TX,
EVENTOUT
-
-
TIM1_CH2N,
TIM12_CH1,
TIM8_CH2N,
USART1_TX,
SPI2_MISO/I2S2_SDI,
DFSDM1_DATIN2,
USART3_RTS/USART
3_DE,
UART4_RTS/UART4_
DE, SDMMC2_D0,
FMC_D10/FMC_AD10
, LCD_CLK,
EVENTOUT
-
-
RTC_REFIN,
TIM1_CH3N,
TIM12_CH2,
TIM8_CH3N,
USART1_RX,
SPI2_MOSI/I2S2_SD
O, DFSDM1_CKIN2,
UART4_CTS,
SDMMC2_D1,
FMC_D11/FMC_AD11,
LCD_G7, EVENTOUT
-
79/284
113
Pinouts, pin descriptions and alternate functions
STM32H735xG
Table 8. STM32H735xG pin and ball descriptions (continued)
Alternate functions
Additional functions
PD8
I/O
FT_h
-
-
-
53
H8
77
N4
K11
K13
90
PD9
I/O
FT_h
-
DFSDM1_DATIN3,
USART3_RX(boot),
FMC_D14/FMC_AD14
, EVENTOUT
-
-
Pin type
I/O structure
89
LQFP176 SMPS
L14
UFBGA176+25 SMPS
M12
UFBGA169 SMPS
T3
WLCSP115 SMPS
76
LQFP144 SMPS
J9
TFBGA100 SMPS
52
LQFP100 SMPS
-
DFSDM1_CKIN3,
USART3_TX(boot),
SPDIFRX1_IN2,
FMC_D13/FMC_AD13
, EVENTOUT
VFQFPN68 SMPS
Notes
Pin name (function after reset)
Pin number
-
54
J10
78
P3
K12
L13
91
PD10
I/O
FT_h
-
DFSDM1_CKOUT,
USART3_CK,
FMC_D15/FMC_AD15
, LCD_B3, EVENTOUT
-
-
-
79
V1
-
-
92
VDD
S
-
-
-
-
-
-
-
80
U2
-
-
93
VSS
S
-
-
-
-
-
LPTIM2_IN2,
I2C4_SMBA,
USART3_CTS/USART
3_NSS,
OCTOSPIM_P1_IO0,
SAI4_SD_A,
FMC_A16/FMC_CLE,
EVENTOUT
-
-
LPTIM1_IN1,
TIM4_CH1,
LPTIM2_IN1,
I2C4_SCL,
FDCAN3_RX,
USART3_RTS/USART
3_DE,
OCTOSPIM_P1_IO1,
SAI4_FS_A,
FMC_A17/FMC_ALE,
DCMI_D12/PSSI_D12,
EVENTOUT
-
-
-
55
56
80/284
H7
H9
81
82
R2
T1
J10
K13
J13
J15
94
95
PD11
PD12
I/O
I/O
FT_h
FT_fh
DS13312 Rev 3
STM32H735xG
Pinouts, pin descriptions and alternate functions
Table 8. STM32H735xG pin and ball descriptions (continued)
Alternate functions
Additional functions
PD13
I/O
FT_fh
-
-
-
58
-
-
-
-
-
-
VSS
S
-
-
-
-
-
59
-
-
-
-
-
-
VDD
S
-
-
-
-
-
TIM4_CH3,
UART8_CTS,
UART9_RX,
FMC_D0/FMC_AD0,
EVENTOUT
-
-
-
60
G7
84
L2
J13
H14
97
PD14
Pin type
I/O structure
96
LQFP176 SMPS
H15
UFBGA176+25 SMPS
J11
UFBGA169 SMPS
M3
WLCSP115 SMPS
83
LQFP144 SMPS
H10
TFBGA100 SMPS
57
LQFP100 SMPS
-
LPTIM1_OUT,
TIM4_CH2,
I2C4_SDA,
FDCAN3_TX,
OCTOSPIM_P1_IO3,
SAI4_SCK_A,
UART9_RTS/UART9_
DE, FMC_A18,
DCMI_D13/PSSI_D13,
EVENTOUT
VFQFPN68 SMPS
Notes
Pin name (function after reset)
Pin number
I/O
FT_h
-
61
G8
85
N2
J12
J12
98
PD15
I/O
FT_h
-
TIM4_CH4,
UART8_RTS/UART8_
DE, UART9_TX,
FMC_D1/FMC_AD1,
EVENTOUT
-
-
-
-
-
-
-
99
VDD
S
-
-
-
-
-
-
-
-
P1
-
-
100
VSS
S
-
-
-
-
-
-
-
-
-
-
-
-
101
PJ8
I/O
FT
-
TIM1_CH3N,
TIM8_CH1,
UART8_TX, LCD_G1,
EVENTOUT
-
-
-
-
-
-
-
102
PJ9
I/O
FT
-
TIM1_CH3,
TIM8_CH1N,
UART8_RX, LCD_G2,
EVENTOUT
-
-
TIM1_CH2N,
TIM8_CH2,
SPI5_MOSI, LCD_G3,
EVENTOUT
-
-
-
-
-
-
-
-
103
PJ10
I/O
DS13312 Rev 3
FT
81/284
113
Pinouts, pin descriptions and alternate functions
STM32H735xG
Table 8. STM32H735xG pin and ball descriptions (continued)
VFQFPN68 SMPS
LQFP100 SMPS
TFBGA100 SMPS
LQFP144 SMPS
WLCSP115 SMPS
UFBGA169 SMPS
UFBGA176+25 SMPS
LQFP176 SMPS
Pin name (function after reset)
Pin type
I/O structure
Notes
Alternate functions
Additional functions
Pin number
-
-
-
-
-
-
-
104
PJ11
I/O
FT
-
TIM1_CH2,
TIM8_CH2N,
SPI5_MISO, LCD_G4,
EVENTOUT
-
-
-
-
-
M1
-
-
105
VDD
S
-
-
-
-
-
-
-
-
-
-
-
106
VSS
S
-
-
-
-
-
-
-
-
-
-
-
-
107
PK0
I/O
FT
-
TIM1_CH1N,
TIM8_CH3,
SPI5_SCK, LCD_G5,
EVENTOUT
-
-
-
-
-
-
-
108
PK1
I/O
FT
-
TIM1_CH1,
TIM8_CH3N,
SPI5_NSS, LCD_G6,
EVENTOUT
-
-
TIM1_BKIN,
TIM8_BKIN,
TIM8_BKIN_COMP12,
TIM1_BKIN_COMP12,
LCD_G7, EVENTOUT
-
-
TIM8_BKIN,
TIM8_BKIN_COMP12,
FMC_A12,
TIM24_ETR,
EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
-
-
H9
-
G15
109
110
PK2
PG2
I/O
I/O
FT
FT_h
-
-
-
-
-
H10
H13
111
PG3
I/O
FT_h
-
TIM8_BKIN2,
TIM8_BKIN2_COMP1
2, FMC_A13,
TIM23_ETR,
EVENTOUT
-
-
-
-
-
-
-
112
VSS
S
-
-
-
-
-
-
-
-
M1
-
-
113
VDD
S
-
-
-
-
-
TIM1_BKIN2,
TIM1_BKIN2_COMP1
2,
FMC_A14/FMC_BA0,
EVENTOUT
-
-
82/284
-
-
-
-
F8
G14
114
PG4
I/O
FT_h
DS13312 Rev 3
STM32H735xG
Pinouts, pin descriptions and alternate functions
Table 8. STM32H735xG pin and ball descriptions (continued)
UFBGA176+25 SMPS
LQFP176 SMPS
H11
F15
115
-
-
-
-
-
-
86
87
-
-
G9
G10
F14
G13
116
117
Additional functions
UFBGA169 SMPS
-
Alternate functions
WLCSP115 SMPS
-
Notes
LQFP144 SMPS
-
I/O structure
TFBGA100 SMPS
-
Pin type
LQFP100 SMPS
-
Pin name (function after reset)
VFQFPN68 SMPS
Pin number
PG5
I/O
FT_h
-
TIM1_ETR,
FMC_A15/FMC_BA1,
EVENTOUT
-
PG6
PG7
I/O
I/O
FT_h
FT_h
-
TIM17_BKIN,
OCTOSPIM_P1_NCS,
FMC_NE3,
DCMI_D12/PSSI_D12,
LCD_R7, EVENTOUT
-
-
SAI1_MCLK_A,
USART6_CK,
OCTOSPIM_P2_DQS,
FMC_INT,
DCMI_D13/PSSI_D13,
LCD_CLK,
EVENTOUT
-
-
-
-
-
88
-
G11
G12
118
PG8
I/O
FT_h
-
TIM8_ETR,
SPI6_NSS/I2S6_WS,
USART6_RTS/USART
6_DE,
SPDIFRX1_IN3,
ETH_PPS_OUT,
FMC_SDCLK,
LCD_G7, EVENTOUT
-
-
-
89
P1
-
-
119
VSS
S
-
-
-
-
-
-
-
90
K1
G12
E15
120
VDD50
USB
S
-
-
-
-
-
-
E8
91
J2
G13
F13
121
VDD33
USB
S
-
-
-
-
-
-
-
92
-
-
-
-
VDD
S
-
-
-
-
DS13312 Rev 3
83/284
113
Pinouts, pin descriptions and alternate functions
STM32H735xG
Table 8. STM32H735xG pin and ball descriptions (continued)
64
84/284
G10
94
95
H1
K3
L4
F9
F10
F12
E14
D15
D14
122
123
124
PC6
PC7
PC8
I/O structure
Pin type
Pin name (function after reset)
LQFP176 SMPS
UFBGA176+25 SMPS
UFBGA169 SMPS
WLCSP115 SMPS
LQFP144 SMPS
TFBGA100 SMPS
G9
93
I/O
I/O
I/O
FT_h
FT_h
FT_h
DS13312 Rev 3
Additional functions
-
63
F8
Alternate functions
41
62
Notes
40
LQFP100 SMPS
VFQFPN68 SMPS
Pin number
-
TIM3_CH1,
TIM8_CH1,
DFSDM1_CKIN3,
I2S2_MCK,
USART6_TX,
SDMMC1_D0DIR,
FMC_NWAIT,
SDMMC2_D6,
SDMMC1_D6,
DCMI_D0/PSSI_D0,
LCD_HSYNC,
EVENTOUT
SWPMI_IO
-
DBTRGIO, TIM3_CH2,
TIM8_CH2,
DFSDM1_DATIN3,
I2S3_MCK,
USART6_RX,
SDMMC1_D123DIR,
FMC_NE1,
SDMMC2_D7,
SWPMI_TX,
SDMMC1_D7,
DCMI_D1/PSSI_D1,
LCD_G6, EVENTOUT
-
-
TRACED1,
TIM3_CH3,
TIM8_CH3,
USART6_CK,
UART5_RTS/UART5_
DE,
FMC_NE2/FMC_NCE,
FMC_INT,
SWPMI_RX,
SDMMC1_D0,
DCMI_D2/PSSI_D2,
EVENTOUT
-
STM32H735xG
Pinouts, pin descriptions and alternate functions
Table 8. STM32H735xG pin and ball descriptions (continued)
Alternate functions
Additional functions
PC9
I/O
FT_fh
-
-
-
-
-
-
G2
-
-
-
VSS
S
-
-
-
-
-
-
-
-
F1
-
-
126
VDD
S
-
-
-
-
-
MCO1, TIM1_CH1,
TIM8_BKIN2,
I2C3_SCL(boot),
I2C5_SCL,
USART1_CK,
OTG_HS_SOF,
UART7_RX,
TIM8_BKIN2_COMP1
2, LCD_B3, LCD_R6,
EVENTOUT
-
-
TIM1_CH2,
LPUART1_TX,
I2C3_SMBA,
SPI2_SCK/I2S2_CK,
I2C5_SMBA,
USART1_TX(boot),
ETH_TX_ER,
DCMI_D0/PSSI_D0,
LCD_R5, EVENTOUT
OTG_HS_
VBUS
-
TIM1_CH3,
LPUART1_RX,
USART1_RX(boot),
OTG_HS_ID,
MDIOS_MDIO,
LCD_B4,
DCMI_D1/PSSI_D1,
LCD_B1, EVENTOUT
-
43
44
45
66
67
68
F10
E9
E10
97
98
99
H3
J4
K5
E12
E11
E10
B14
D13
C14
127
128
129
PA8
PA9
PA10
Pin type
I/O structure
125
LQFP176 SMPS
E13
UFBGA176+25 SMPS
F11
UFBGA169 SMPS
M5
WLCSP115 SMPS
96
LQFP144 SMPS
F9
TFBGA100 SMPS
65
LQFP100 SMPS
42
MCO2, TIM3_CH4,
TIM8_CH4,
I2C3_SDA(boot),
I2S_CKIN, I2C5_SDA,
UART5_CTS,
OCTOSPIM_P1_IO0,
LCD_G3,
SWPMI_SUSPEND,
SDMMC1_D1,
DCMI_D3/PSSI_D3,
LCD_B2, EVENTOUT
VFQFPN68 SMPS
Notes
Pin name (function after reset)
Pin number
I/O
I/O
I/O
FT_fh
FT_u
FT_u
DS13312 Rev 3
85/284
113
Pinouts, pin descriptions and alternate functions
STM32H735xG
Table 8. STM32H735xG pin and ball descriptions (continued)
E2
C15
130
PA11
I/O structure
Pin type
Pin name (function after reset)
LQFP176 SMPS
UFBGA176+25 SMPS
UFBGA169 SMPS
F13
I/O
FT_u
Additional functions
100
WLCSP115 SMPS
LQFP144 SMPS
TFBGA100 SMPS
D10
Alternate functions
69
Notes
46
LQFP100 SMPS
VFQFPN68 SMPS
Pin number
-
TIM1_CH4,
LPUART1_CTS,
SPI2_NSS/I2S2_WS,
UART4_RX,
USART1_CTS/USART
1_NSS, FDCAN1_RX,
LCD_R4, EVENTOUT
OTG_HS_DM
(boot)
OTG_HS_DP
(boot)
47
70
D9
101
F3
E13
B15
131
PA12
I/O
FT_u
-
TIM1_ETR,
LPUART1_RTS/LPUA
RT1_DE,
SPI2_SCK/I2S2_CK,
UART4_TX,
USART1_RTS/USART
1_DE, SAI4_FS_B,
FDCAN1_TX,
TIM1_BKIN2,
LCD_R5, EVENTOUT
48
71
C10
102
G4
D11
B13
132
PA13
(JTMS/
SWDIO)
I/O
FT
-
JTMS/SWDIO,
EVENTOUT
-
49
72
D8
103
D1
D13
A14
133
VCAP
S
-
-
-
-
50
73
-
104
B1
-
-
134
VSS
S
-
-
-
-
-
74
E6
105
C2
D12
A13
135
VDDLDO
S
-
-
-
-
51
75
-
106
A2
-
-
136
VDD
S
-
-
-
-
-
76
-
-
-
-
-
-
VDD33
USB
S
-
-
-
-
-
TIM8_CH1N,
UART4_TX,
FDCAN1_TX(boot),
FMC_D21, LCD_G2,
EVENTOUT
-
-
TIM8_CH2N,
UART4_RX,
FDCAN1_RX(boot),
FMC_D22,
DCMI_D4/PSSI_D4,
LCD_G3, EVENTOUT
-
-
-
86/284
-
-
-
-
-
-
-
-
B13
A13
C13
B12
-
-
PH13
PH14
I/O
I/O
FT_h
FT_h
DS13312 Rev 3
STM32H735xG
Pinouts, pin descriptions and alternate functions
Table 8. STM32H735xG pin and ball descriptions (continued)
VFQFPN68 SMPS
LQFP100 SMPS
TFBGA100 SMPS
LQFP144 SMPS
WLCSP115 SMPS
UFBGA169 SMPS
UFBGA176+25 SMPS
LQFP176 SMPS
Pin name (function after reset)
Pin type
I/O structure
Notes
Alternate functions
Additional functions
Pin number
-
-
-
-
-
-
D12
-
PH15
I/O
FT_h
-
TIM8_CH3N,
FMC_D23,
DCMI_D11/PSSI_D11,
LCD_G4, EVENTOUT
-
-
-
-
-
-
-
-
137
VSS
S
-
-
-
-
-
-
-
-
A2
-
-
-
VDD
S
-
-
-
-
52
77
C9
107
D3
B12
A12
I/O
FT
-
JTCK/SWCLK,
EVENTOUT
-
-
JTDI,
TIM2_CH1/TIM2_ETR,
CEC,
SPI1_NSS/I2S1_WS,
SPI3_NSS(boot)/I2S3
_WS,
SPI6_NSS/I2S6_WS,
UART4_RTS/UART4_
DE, LCD_R3,
UART7_TX, LCD_B6,
EVENTOUT
-
-
DFSDM1_CKIN5,
I2C5_SDA,
SPI3_SCK(boot)/I2S3
_CK, USART3_TX,
UART4_TX,
OCTOSPIM_P1_IO1,
LCD_B1, SWPMI_RX,
SDMMC1_D2,
DCMI_D8/PSSI_D8,
LCD_R2, EVENTOUT
-
-
DFSDM1_DATIN5,
I2C5_SCL,
SPI3_MISO(boot)/I2S3
_SDI, USART3_RX,
UART4_RX,
OCTOSPIM_P1_NCS,
SDMMC1_D3,
DCMI_D4/PSSI_D4,
LCD_B4, EVENTOUT
-
53
54
55
78
79
80
C8
B10
B9
108
109
110
H5
E4
L6
C11
A12
B11
A11
C12
C11
PA14
138 (JTCK/SW
CLK)
139 PA15(JTDI)
140
141
PC10
PC11
I/O
I/O
I/O
FT
FT_fh
FT_fh
DS13312 Rev 3
87/284
113
Pinouts, pin descriptions and alternate functions
STM32H735xG
Table 8. STM32H735xG pin and ball descriptions (continued)
Alternate functions
Additional functions
PC12
I/O
FT_h
-
-
-
-
-
-
B3
-
-
-
VDD
S
-
-
-
-
-
-
-
-
C4
-
-
-
VSS
S
-
-
-
-
-
DFSDM1_CKIN6,
UART4_RX,
FDCAN1_RX(boot),
UART9_CTS,
FMC_D2/FMC_AD2,
LCD_B1, EVENTOUT
-
-
DFSDM1_DATIN6,
UART4_TX,
FDCAN1_TX(boot),
FMC_D3/FMC_AD3,
EVENTOUT
-
-
TRACED2,
FMC_D7/FMC_AD7,
TIM3_ETR,
TIM15_BKIN,
UART5_RX, LCD_B7,
SDMMC1_CMD,
DCMI_D11/PSSI_D11,
LCD_B2, EVENTOUT
-
-
DFSDM1_CKOUT,
SPI2_SCK/I2S2_CK,
USART2_CTS/USART
2_NSS, FMC_CLK,
DCMI_D5/PSSI_D5,
LCD_G7, EVENTOUT
-
-
-
57
-
82
83
84
85
88/284
C7
B8
A9
A8
112
113
114
115
J6
D5
A4
B5
D10
C10
E9
D9
C10
A10
B10
A9
143
144
145
146
PD0
PD1
PD2
PD3
Pin type
I/O structure
142
LQFP176 SMPS
B11
UFBGA176+25 SMPS
A11
UFBGA169 SMPS
F5
WLCSP115 SMPS
111
LQFP144 SMPS
A10
TFBGA100 SMPS
81
LQFP100 SMPS
56
TRACED3,
FMC_D6/FMC_AD6,
TIM15_CH1,
I2C5_SMBA,
SPI6_SCK/I2S6_CK,
SPI3_MOSI(boot)/I2S3
_SDO, USART3_CK,
UART5_TX,
SDMMC1_CK,
DCMI_D9/PSSI_D9,
LCD_R6, EVENTOUT
VFQFPN68 SMPS
Notes
Pin name (function after reset)
Pin number
I/O
I/O
I/O
I/O
FT_h
FT_h
FT_h
FT_h
DS13312 Rev 3
STM32H735xG
Pinouts, pin descriptions and alternate functions
Table 8. STM32H735xG pin and ball descriptions (continued)
Alternate functions
Additional functions
PD4
I/O
FT_h
-
-
-
87
D7
117
E6
A9
B9
148
PD5
I/O
FT_h
-
USART2_TX,
OCTOSPIM_P1_IO5,
FMC_NWE,
EVENTOUT
-
-
-
-
118
-
-
-
-
VSS
S
-
-
-
-
-
88
-
119
-
-
-
-
VDD
S
-
-
-
-
-
SAI4_D1, SAI1_D1,
DFSDM1_CKIN4,
DFSDM1_DATIN1,
SPI3_MOSI/I2S3_SD
O, SAI1_SD_A,
USART2_RX,
SAI4_SD_A,
OCTOSPIM_P1_IO6,
SDMMC2_CK,
FMC_NWAIT,
DCMI_D10/PSSI_D10,
LCD_B2, EVENTOUT
-
-
-
-
A7
120
-
B9
D9
149
PD6
Pin type
I/O structure
147
LQFP176 SMPS
C9
UFBGA176+25 SMPS
C9
UFBGA169 SMPS
G6
WLCSP115 SMPS
116
LQFP144 SMPS
B7
TFBGA100 SMPS
86
LQFP100 SMPS
-
USART2_RTS/USART
2_DE,
OCTOSPIM_P1_IO4,
FMC_NOE,
EVENTOUT
VFQFPN68 SMPS
Notes
Pin name (function after reset)
Pin number
I/O
FT_h
-
-
C6
121
-
D8
B8
150
PD7
I/O
FT_h
-
DFSDM1_DATIN4,
SPI1_MOSI/I2S1_SD
O, DFSDM1_CKIN1,
USART2_CK,
SPDIFRX1_IN1,
OCTOSPIM_P1_IO7,
SDMMC2_CMD,
FMC_NE1,
EVENTOUT
-
-
-
-
C6
-
-
151
VSS
S
-
-
-
-
-
-
-
-
A6
-
-
152
VDD
S
-
-
-
-
DS13312 Rev 3
89/284
113
Pinouts, pin descriptions and alternate functions
STM32H735xG
Table 8. STM32H735xG pin and ball descriptions (continued)
90/284
-
-
-
123
124
-
-
-
C8
A8
B8
A8
C8
A7
153
154
155
PG9
PG10
PG11
I/O structure
Pin type
Pin name (function after reset)
LQFP176 SMPS
UFBGA176+25 SMPS
UFBGA169 SMPS
WLCSP115 SMPS
LQFP144 SMPS
122
I/O
I/O
I/O
FT_h
FT_h
FT_h
DS13312 Rev 3
Additional functions
-
-
-
Alternate functions
-
-
Notes
-
TFBGA100 SMPS
LQFP100 SMPS
VFQFPN68 SMPS
Pin number
-
FDCAN3_TX,
SPI1_MISO/I2S1_SDI,
USART6_RX,
SPDIFRX1_IN4,
OCTOSPIM_P1_IO6,
SAI4_FS_B,
SDMMC2_D0,
FMC_NE2/FMC_NCE,
DCMI_VSYNC/PSSI_
RDY, EVENTOUT
-
-
FDCAN3_RX,
OCTOSPIM_P2_IO6,
SPI1_NSS/I2S1_WS,
LCD_G3, SAI4_SD_B,
SDMMC2_D1,
FMC_NE3,
DCMI_D2/PSSI_D2,
LCD_B2, EVENTOUT
-
-
LPTIM1_IN2,
USART10_RX,
SPI1_SCK/I2S1_CK,
SPDIFRX1_IN1,
OCTOSPIM_P2_IO7,
SDMMC2_D2,
ETH_MII_TX_EN/ETH
_RMII_TX_EN,
DCMI_D3/PSSI_D3,
LCD_B3, EVENTOUT
-
STM32H735xG
Pinouts, pin descriptions and alternate functions
Table 8. STM32H735xG pin and ball descriptions (continued)
126
-
-
E8
D7
D8
B7
156
157
PG12
PG13
I/O structure
Pin type
Pin name (function after reset)
LQFP176 SMPS
UFBGA176+25 SMPS
UFBGA169 SMPS
WLCSP115 SMPS
LQFP144 SMPS
TFBGA100 SMPS
-
125
I/O
I/O
FT_h
FT_h
Additional functions
-
-
Alternate functions
-
-
Notes
-
LQFP100 SMPS
VFQFPN68 SMPS
Pin number
-
LPTIM1_IN1,
OCTOSPIM_P2_NCS,
USART10_TX,
SPI6_MISO/I2S6_SDI,
USART6_RTS/USART
6_DE,
SPDIFRX1_IN2,
LCD_B4,
SDMMC2_D3,
ETH_MII_TXD1/ETH_
RMII_TXD1,
FMC_NE4,
TIM23_CH1, LCD_B1,
EVENTOUT
-
-
TRACED0,
LPTIM1_OUT,
USART10_CTS/USAR
T10_NSS,
SPI6_SCK/I2S6_CK,
USART6_CTS/USART
6_NSS, SDMMC2_D6,
ETH_MII_TXD0/ETH_
RMII_TXD0,
FMC_A24,
TIM23_CH2, LCD_R0,
EVENTOUT
-
-
-
-
-
127
-
C7
C7
158
PG14
I/O
FT_h
-
TRACED1,
LPTIM1_ETR,
USART10_RTS/USAR
T10_DE,
SPI6_MOSI/I2S6_SD
O, USART6_TX,
OCTOSPIM_P1_IO7,
SDMMC2_D7,
ETH_MII_TXD1/ETH_
RMII_TXD1,
FMC_A25,
TIM23_CH3, LCD_B0,
EVENTOUT
-
-
-
128
-
-
-
159
VSS
S
-
-
-
-
-
-
-
129
A6
-
-
160
VDD
S
-
-
-
-
DS13312 Rev 3
91/284
113
Pinouts, pin descriptions and alternate functions
STM32H735xG
Table 8. STM32H735xG pin and ball descriptions (continued)
60
90
91
92/284
B6
C5
A6
130
131
132
-
H7
F7
D7
E7
F7
B6
C6
D7
A6
B6
C6
161
162
163
164
PG15
PB3(JTDO/
TRACES
WO)
PB4
(NJTRST)
PB5
I/O structure
Pin type
Pin name (function after reset)
LQFP176 SMPS
UFBGA176+25 SMPS
UFBGA169 SMPS
WLCSP115 SMPS
LQFP144 SMPS
-
I/O
I/O
I/O
I/O
FT_h
FT_h
FT_h
FT_h
DS13312 Rev 3
Additional functions
59
89
-
Alternate functions
58
-
Notes
-
TFBGA100 SMPS
LQFP100 SMPS
VFQFPN68 SMPS
Pin number
-
USART6_CTS/USART
6_NSS,
OCTOSPIM_P2_DQS,
USART10_CK,
FMC_NCAS,
DCMI_D13/PSSI_D13,
EVENTOUT
-
-
JTDO/TRACESWO,
TIM2_CH2,
SPI1_SCK/I2S1_CK,
SPI3_SCK/I2S3_CK,
SPI6_SCK/I2S6_CK,
SDMMC2_D2,
CRS_SYNC,
UART7_RX,
TIM24_ETR,
EVENTOUT
-
-
NJTRST, TIM16_BKIN,
TIM3_CH1,
SPI1_MISO/I2S1_SDI,
SPI3_MISO/I2S3_SDI,
SPI2_NSS/I2S2_WS,
SPI6_MISO/I2S6_SDI,
SDMMC2_D3,
UART7_TX,
EVENTOUT
-
-
TIM17_BKIN,
TIM3_CH2, LCD_B5,
I2C1_SMBA,
SPI1_MOSI/I2S1_SD
O, I2C4_SMBA,
SPI3_MOSI/I2S3_SD
O,
SPI6_MOSI/I2S6_SD
O, FDCAN2_RX,
OTG_HS_ULPI_D7,
ETH_PPS_OUT,
FMC_SDCKE1,
DCMI_D10/PSSI_D10,
UART5_RX,
EVENTOUT
-
STM32H735xG
Pinouts, pin descriptions and alternate functions
Table 8. STM32H735xG pin and ball descriptions (continued)
Alternate functions
Additional functions
PB6
I/O
FT_fh
-
-
-
-
-
-
B7
-
-
-
VSS
S
-
-
-
-
-
-
-
-
A8
-
-
-
VDD
S
-
-
-
-
PVD_IN
Pin type
I/O structure
165
LQFP176 SMPS
A5
UFBGA176+25 SMPS
A5
UFBGA169 SMPS
K7
WLCSP115 SMPS
133
LQFP144 SMPS
D4
TFBGA100 SMPS
92
LQFP100 SMPS
61
TIM16_CH1N,
TIM4_CH1,
I2C1_SCL(boot), CEC,
I2C4_SCL,
USART1_TX,
LPUART1_TX,
FDCAN2_TX,
OCTOSPIM_P1_NCS,
DFSDM1_DATIN5,
FMC_SDNE1,
DCMI_D5/PSSI_D5,
UART5_TX,
EVENTOUT
VFQFPN68 SMPS
Notes
Pin name (function after reset)
Pin number
62
93
B5
134
M7
D6
B5
166
PB7
I/O
FT_fa
-
TIM17_CH1N,
TIM4_CH2,
I2C1_SDA, I2C4_SDA,
USART1_RX,
LPUART1_RX,
DFSDM1_CKIN5,
FMC_NL,
DCMI_VSYNC/PSSI_
RDY, EVENTOUT
63
94
A5
135
C8
E6
C5
167
BOOT0
I
B
-
-
VPP
-
TIM16_CH1,
TIM4_CH3,
DFSDM1_CKIN7,
I2C1_SCL, I2C4_SCL,
SDMMC1_CKIN,
UART4_RX,
FDCAN1_RX,
SDMMC2_D4,
ETH_MII_TXD3,
SDMMC1_D4,
DCMI_D6/PSSI_D6,
LCD_B6, EVENTOUT
-
64
95
A4
136
E8
B5
A2
168
PB8
I/O
FT_fh
DS13312 Rev 3
93/284
113
Pinouts, pin descriptions and alternate functions
STM32H735xG
Table 8. STM32H735xG pin and ball descriptions (continued)
-
138
G8
J8
C5
D5
B3
B4
169
170
PB9
PE0
I/O structure
Pin type
Pin name (function after reset)
LQFP176 SMPS
UFBGA176+25 SMPS
UFBGA169 SMPS
WLCSP115 SMPS
LQFP144 SMPS
TFBGA100 SMPS
B4
137
I/O
I/O
FT_fh
FT_h
Additional functions
-
E3
Alternate functions
96
Notes
65
LQFP100 SMPS
VFQFPN68 SMPS
Pin number
-
TIM17_CH1,
TIM4_CH4,
DFSDM1_DATIN7,
I2C1_SDA(boot),
SPI2_NSS/I2S2_WS,
I2C4_SDA,
SDMMC1_CDIR,
UART4_TX,
FDCAN1_TX,
SDMMC2_D5,
I2C4_SMBA,
SDMMC1_D5,
DCMI_D7/PSSI_D7,
LCD_B7, EVENTOUT
-
-
LPTIM1_ETR,
TIM4_ETR,
LPTIM2_ETR,
UART8_RX,
SAI4_MCLK_A,
FMC_NBL0,
DCMI_D2/PSSI_D2,
LCD_R0, EVENTOUT
-
-
-
-
C4
139
-
D4
C4
171
PE1
I/O
FT_h
-
LPTIM1_IN2,
UART8_TX,
FMC_NBL1,
DCMI_D3/PSSI_D3,
LCD_R6, EVENTOUT
66
97
D8
140
B9
A4
A4
172
VCAP
S
-
-
-
-
67
98
-
141
A10
-
-
173
VSS
S
-
-
-
-
-
-
D3
142
L8
C4
D4
174
PDR_ON
S
-
-
-
-
-
99
E6
143
D9
B4
A3
175
VDDLDO
S
-
-
-
-
68
100
-
-
C10
-
-
-
VDD
S
-
-
-
-
-
-
-
144
C10
-
-
176
VDD
S
-
-
-
-
-
-
C1
-
-
B3
A1
-
VSS
S
-
-
-
-
-
-
D5
-
-
B7
A15
-
VSS
S
-
-
-
-
-
-
E7
-
-
B10
C2
-
VSS
S
-
-
-
-
94/284
DS13312 Rev 3
STM32H735xG
Pinouts, pin descriptions and alternate functions
Table 8. STM32H735xG pin and ball descriptions (continued)
VFQFPN68 SMPS
LQFP100 SMPS
TFBGA100 SMPS
LQFP144 SMPS
WLCSP115 SMPS
UFBGA169 SMPS
UFBGA176+25 SMPS
LQFP176 SMPS
Pin name (function after reset)
Pin type
I/O structure
Notes
Alternate functions
Additional functions
Pin number
-
-
F5
-
-
C12
D10
-
VSS
S
-
-
-
-
-
-
-
-
-
D2
D6
-
VSS
S
-
-
-
-
-
-
-
-
-
G2
E1
-
VSS
S
-
-
-
-
-
-
-
-
-
H12
F10
-
VSS
S
-
-
-
-
-
-
-
-
-
L12
F12
-
VSS
S
-
-
-
-
-
-
-
-
-
M2
F6
-
VSS
S
-
-
-
-
-
-
-
-
-
M4
F7
-
VSS
S
-
-
-
-
-
-
-
-
-
M7
F8
-
VSS
S
-
-
-
-
-
-
-
-
-
M11
F9
-
VSS
S
-
-
-
-
-
-
-
-
-
-
G10
-
VSS
S
-
-
-
-
-
-
-
-
-
-
G6
-
VSS
S
-
-
-
-
-
-
-
-
-
-
G7
-
VSS
S
-
-
-
-
-
-
-
-
-
-
G8
-
VSS
S
-
-
-
-
-
-
-
-
-
-
G9
-
VSS
S
-
-
-
-
-
-
-
-
-
-
H10
-
VSS
S
-
-
-
-
-
-
-
-
-
-
H6
-
VSS
S
-
-
-
-
-
-
-
-
-
-
H7
-
VSS
S
-
-
-
-
-
-
-
-
-
-
H8
-
VSS
S
-
-
-
-
-
-
-
-
-
-
H9
-
VSS
S
-
-
-
-
-
-
-
-
-
-
J10
-
VSS
S
-
-
-
-
-
-
-
-
-
-
J14
-
VSS
S
-
-
-
-
-
-
-
-
-
-
J6
-
VSS
S
-
-
-
-
-
-
-
-
-
-
J7
-
VSS
S
-
-
-
-
-
-
-
-
-
-
J8
-
VSS
S
-
-
-
-
-
-
-
-
-
-
J9
-
VSS
S
-
-
-
-
-
-
-
-
-
-
K10
-
VSS
S
-
-
-
-
-
-
-
-
-
-
K12
-
VSS
S
-
-
-
-
DS13312 Rev 3
95/284
113
Pinouts, pin descriptions and alternate functions
STM32H735xG
Table 8. STM32H735xG pin and ball descriptions (continued)
VFQFPN68 SMPS
LQFP100 SMPS
TFBGA100 SMPS
LQFP144 SMPS
WLCSP115 SMPS
UFBGA169 SMPS
UFBGA176+25 SMPS
LQFP176 SMPS
Pin name (function after reset)
Pin type
I/O structure
Notes
Alternate functions
Additional functions
Pin number
-
-
-
-
-
-
K2
-
VSS
S
-
-
-
-
-
-
-
-
-
-
K6
-
VSS
S
-
-
-
-
-
-
-
-
-
-
K7
-
VSS
S
-
-
-
-
-
-
-
-
-
-
K8
-
VSS
S
-
-
-
-
-
-
-
-
-
-
K9
-
VSS
S
-
-
-
-
-
-
-
-
-
-
M10
-
VSS
S
-
-
-
-
-
-
-
-
-
-
M6
-
VSS
S
-
-
-
-
-
-
-
-
-
-
R1
-
VSS
S
-
-
-
-
-
-
-
-
-
-
R15
-
VSS
S
-
-
-
-
-
-
D6
-
-
A3
D5
-
VDD
S
-
-
-
-
-
-
E5
-
-
A6
D11
-
VDD
S
-
-
-
-
-
-
F6
-
-
A7
E4
-
VDD
S
-
-
-
-
-
-
-
-
-
A10
E12
-
VDD
S
-
-
-
-
-
-
-
-
-
C13
G4
-
VDD
S
-
-
-
-
-
-
-
-
-
D1
H12
-
VDD
S
-
-
-
-
-
-
-
-
-
G1
K4
-
VDD
S
-
-
-
-
-
-
-
-
-
H13
L12
-
VDD
S
-
-
-
-
-
-
-
-
-
L13
M5
-
VDD
S
-
-
-
-
-
-
-
-
-
M1
M9
-
VDD
S
-
-
-
-
-
-
-
-
-
N4
-
-
VDD
S
-
-
-
-
-
-
-
-
-
N7
-
-
VDD
S
-
-
-
-
-
-
-
-
-
N11
-
-
VDD
S
-
-
-
-
1. Pxy_C and Pxy pins/balls are two separate pads (analog switch open). The analog switch is configured through a SYSCFG
register. Refer to the product reference manual for a detailed description of the switch configuration bits.
2. There is a direct path between Pxy_C and Pxy pins/balls, through an analog switch. Pxy alternate functions are available
on Pxy_C when the analog switch is closed. The analog switch is configured through a SYSCFG register. Refer to the
product reference manual for a detailed description of the switch configuration bits.
96/284
DS13312 Rev 3
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
FDCAN1
/2/FMC/
CEC/FD DFSDM1 SDMMC LPUART
LCD/OC
CAN3/S /I2C4/5/ 1/SPI2/I2 1/SAI4/S
TOSPIM
PI1/I2S1/ OCTOS S2/SPI3/ DMMC1/
_P1/2/S
SPI2/I2S PIM_P1/ I2S3/SPI SPDIFR
AI4/SDM
2/SPI3/I2 SAI1/SPI 6/UART X1/SPI6/
MC2/SP
S3/SPI4/ 3/I2S3/U 7/USAR UART4/
DIFRX1/
5/6
ART4
T1/2/3/6
5/8
TIM13/1
4
-
TIM2_C
H1/TIM2
_ETR
TIM5_C
H1
TIM8_ET TIM15_B
R
KIN
SPI6_NS
S/I2S6_
WS
PA1
-
TIM2_C
H2
TIM5_C
H2
LPTIM3_ TIM15_C
OUT
H1N
-
PA2
-
TIM2_C
H3
TIM5_C
H3
LPTIM4_ TIM15_C
OUT
H1
PA3
-
TIM2_C
H4
TIM5_C
H4
LPTIM5_ TIM15_C
OUT
H2
PA4
D1PWREN
-
TIM5_ET
R
-
-
PA5
D2PWREN
TIM2_C
H1/TIM2
_ETR
-
TIM8_C
H1N
PA6
-
TIM1_B
KIN
TIM3_C
H1
TIM8_B
KIN
Port
SYS
PA0
DS13312 Rev 3
Port A
AF11
AF12
AF13
AF14
CRS/FM
C/LCD/O
CTOSPI
M_P1/O
TG1_FS/
OTG1_H
S/SAI4/S
DMMC2/
TIM8
DFSDM1
/ETH/I2C
4/LCD/M
DIOS/O
CTOSPI
M_P1/S
DMMC2/
SWPMI1
/TIM1x/T
IM8/UAR
T7/9/US
ART10
FMC/LC
D/MDIO
S/OCTO
SPIM_P
1/SDMM
C1/TIM1
x/TIM8
FMC_A1
9
-
-
EVENTO
UT
ETH_MII
_RX_CL OCTOS
K/ETH_ PIM_P1_
RMII_RE
DQS
F_CLK
-
LCD_R2
EVENTO
UT
ETH_MD
IO
MDIOS_
MDIO
-
LCD_R1
EVENTO
UT
OTG_HS
OCTOS
ETH_MII
_ULPI_D
PIM_P1_
_COL
0
CLK
-
LCD_B5
EVENTO
UT
COMP/D
CMI/PSS LCD/TIM
I/LCD/TI 24/UAR
M1x/TIM
T5
23
AF15
SYS
-
USART2
_CTS/U
SART2_
NSS
UART4_
TX
SDMMC
2_CMD
SAI4_SD ETH_MII
_B
_CRS
-
USART2
_RTS/U
SART2_
DE
UART4_
RX
OCTOS
PIM_P1_
IO3
SAI4_M
CLK_B
-
OCTOS
USART2
PIM_P1_
_TX
IO0
SAI4_SC
K_B
-
-
I2S6_M
CK
OCTOS
USART2
PIM_P1_
_RX
IO2
-
LCD_B2
SPI1_NS SPI3_NS
USART2
S/I2S1_ S/I2S3_
_CK
WS
WS
SPI6_NS
S/I2S6_
WS
-
-
-
FMC_D8
/FMC_A
D8
DCMI_H
SYNC/P
SSI_DE
LCD_VS
YNC
EVENTO
UT
-
SPI1_SC
K/I2S1_
CK
-
-
SPI6_SC
K/I2S6_
CK
-
OTG_HS
_ULPI_C
K
-
FMC_D9
PSSI_D1
/FMC_A
4
D9
LCD_R4
EVENTO
UT
-
SPI1_MI
SO/I2S1
_SDI
OCTOS
PIM_P1_
IO3
-
SPI6_MI
SO/I2S6
_SDI
TIM13_C
H1
TIM8_B
KIN_CO
MP12
MDIOS_
MDC
DCMI_PI
XCLK/P
SSI_PD
CK
LCD_G2
EVENTO
UT
TIM1_B
KIN_CO
MP12
97/284
Pinouts, pin descriptions and alternate functions
CEC/DC
DFSDM1 MI/PSSI/
/LCD/LP DFSDM1
FMC/LP FDCAN3
TIM2/3/4 /I2C1/2/3
TIM1/SA /PDM_S
/5/LPUA /4/5/LPTI
I4/TIM16 AI1/TIM3
RT1/OC M2/OCT
/17/TIM1 /4/5/12/1
TOSPIM OSPIM_
x/TIM2x
5
_P1/2/TI P1/TIM1
M8
5/USAR
T1/10
AF10
STM32H735xG
Table 9. STM32H735xG pin alternate functions
AF0
Port
SYS
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
CEC/DC
DFSDM1 MI/PSSI/
/LCD/LP DFSDM1
FMC/LP FDCAN3
TIM2/3/4 /I2C1/2/3
TIM1/SA /PDM_S
/5/LPUA /4/5/LPTI
I4/TIM16 AI1/TIM3
RT1/OC M2/OCT
/17/TIM1 /4/5/12/1
TOSPIM OSPIM_
x/TIM2x
5
_P1/2/TI P1/TIM1
M8
5/USAR
T1/10
FDCAN1
/2/FMC/
CEC/FD DFSDM1 SDMMC LPUART
LCD/OC
CAN3/S /I2C4/5/ 1/SPI2/I2 1/SAI4/S
TOSPIM
PI1/I2S1/ OCTOS S2/SPI3/ DMMC1/
_P1/2/S
SPI2/I2S PIM_P1/ I2S3/SPI SPDIFR
AI4/SDM
2/SPI3/I2 SAI1/SPI 6/UART X1/SPI6/
MC2/SP
S3/SPI4/ 3/I2S3/U 7/USAR UART4/
DIFRX1/
5/6
ART4
T1/2/3/6
5/8
TIM13/1
4
TIM3_C
H2
TIM8_C
H1N
-
SPI1_M
OSI/I2S1
_SDO
-
-
AF10
AF11
AF12
CRS/FM
C/LCD/O
CTOSPI
M_P1/O
TG1_FS/
OTG1_H
S/SAI4/S
DMMC2/
TIM8
DFSDM1
/ETH/I2C
4/LCD/M
DIOS/O
CTOSPI
M_P1/S
DMMC2/
SWPMI1
/TIM1x/T
IM8/UAR
T7/9/US
ART10
FMC/LC
D/MDIO
S/OCTO
SPIM_P
1/SDMM
C1/TIM1
x/TIM8
ETH_MII
SPI6_M
OCTOS _RX_DV
TIM14_C
FMC_SD
OSI/I2S6
PIM_P1_ /ETH_R
H1
NWE
_SDO
IO2
MII_CRS
_DV
DS13312 Rev 3
-
PA8
MCO1
TIM1_C
H1
-
TIM8_B
KIN2
I2C3_SC
L
-
I2C5_SC
L
USART1
_CK
-
-
OTG_HS
_SOF
UART7_
RX
PA9
-
TIM1_C
H2
-
LPUART
1_TX
I2C3_S
MBA
SPI2_SC
K/I2S2_
CK
I2C5_S
MBA
USART1
_TX
-
-
-
PA10
-
TIM1_C
H3
-
LPUART
1_RX
-
-
-
USART1
_RX
-
-
PA11
-
TIM1_C
H4
-
LPUART
1_CTS
-
SPI2_NS
S/I2S2_
WS
UART4_
RX
USART1
_CTS/U
SART1_
NSS
-
PA12
-
TIM1_ET
R
-
LPUART
1_RTS/L
PUART1
_DE
-
SPI2_SC
K/I2S2_
CK
UART4_
TX
USART1
_RTS/U
SART1_
DE
PA13
JTMS/SWDIO
-
-
-
-
-
-
PA14
JTCK/SWCLK
-
-
-
-
-
-
PA15
JTDI
TIM2_C
H1/TIM2
_ETR
-
-
CEC
Port A
AF14
COMP/D
CMI/PSS LCD/TIM
I/LCD/TI 24/UAR
T5
M1x/TIM
23
AF15
SYS
-
LCD_VS
YNC
EVENTO
UT
TIM8_B
KIN2_C
OMP12
LCD_B3
LCD_R6
EVENTO
UT
ETH_TX
_ER
-
DCMI_D
0/PSSI_
D0
LCD_R5
EVENTO
UT
OTG_HS
_ID
MDIOS_
MDIO
LCD_B4
DCMI_D
1/PSSI_
D1
LCD_B1
EVENTO
UT
FDCAN1
_RX
-
-
-
-
LCD_R4
EVENTO
UT
SAI4_FS
_B
FDCAN1
_TX
-
-
TIM1_B
KIN2
-
LCD_R5
EVENTO
UT
-
-
-
-
-
-
-
-
EVENTO
UT
-
-
-
-
-
-
-
-
EVENTO
UT
UART4_
RTS/UA
RT4_DE
LCD_R3
-
UART7_
TX
-
-
LCD_B6
EVENTO
UT
SPI1_NS SPI3_NS SPI6_NS
S/I2S1_ S/I2S3_ S/I2S6_
WS
WS
WS
STM32H735xG
PA7
TIM1_C
H1N
AF13
Pinouts, pin descriptions and alternate functions
98/284
Table 9. STM32H735xG pin alternate functions (continued)
AF0
Port
SYS
AF1
AF2
AF3
AF4
CEC/DC
DFSDM1 MI/PSSI/
/LCD/LP DFSDM1
FMC/LP FDCAN3
TIM2/3/4 /I2C1/2/3
TIM1/SA /PDM_S
/5/LPUA /4/5/LPTI
I4/TIM16 AI1/TIM3
RT1/OC M2/OCT
/17/TIM1 /4/5/12/1
TOSPIM OSPIM_
x/TIM2x
5
_P1/2/TI P1/TIM1
M8
5/USAR
T1/10
AF5
AF6
AF7
AF8
AF9
FDCAN1
/2/FMC/
CEC/FD DFSDM1 SDMMC LPUART
LCD/OC
CAN3/S /I2C4/5/ 1/SPI2/I2 1/SAI4/S
TOSPIM
PI1/I2S1/ OCTOS S2/SPI3/ DMMC1/
_P1/2/S
SPI2/I2S PIM_P1/ I2S3/SPI SPDIFR
AI4/SDM
2/SPI3/I2 SAI1/SPI 6/UART X1/SPI6/
MC2/SP
S3/SPI4/ 3/I2S3/U 7/USAR UART4/
DIFRX1/
5/6
ART4
T1/2/3/6
5/8
TIM13/1
4
AF10
AF11
AF12
CRS/FM
C/LCD/O
CTOSPI
M_P1/O
TG1_FS/
OTG1_H
S/SAI4/S
DMMC2/
TIM8
DFSDM1
/ETH/I2C
4/LCD/M
DIOS/O
CTOSPI
M_P1/S
DMMC2/
SWPMI1
/TIM1x/T
IM8/UAR
T7/9/US
ART10
FMC/LC
D/MDIO
S/OCTO
SPIM_P
1/SDMM
C1/TIM1
x/TIM8
AF13
AF14
COMP/D
CMI/PSS LCD/TIM
I/LCD/TI 24/UAR
T5
M1x/TIM
23
AF15
SYS
-
TIM1_C
H2N
TIM3_C
H3
TIM8_C
H2N
OCTOS
PIM_P1_
IO1
-
DFSDM1
_CKOUT
-
UART4_
CTS
LCD_R3
OTG_HS
ETH_MII
_ULPI_D
_RXD2
1
-
-
LCD_G1
EVENTO
UT
PB1
-
TIM1_C
H3N
TIM3_C
H4
TIM8_C
H3N
OCTOS
PIM_P1_
IO0
-
DFSDM1
_DATIN1
-
-
LCD_R6
OTG_HS
ETH_MII
_ULPI_D
_RXD3
2
-
-
LCD_G0
EVENTO
UT
PB2
RTC_OUT
SAI4_D1
SAI1_D1
-
DFSDM1
_CKIN1
-
SPI3_M
OCTOS OCTOS
SAI1_SD
SAI4_SD
OSI/I2S3
PIM_P1_ PIM_P1_
_A
_A
_SDO
CLK
DQS
ETH_TX
_ER
-
TIM23_E
TR
-
EVENTO
UT
PB3
JTDO/TRACE
SWO
TIM2_C
H2
-
-
-
SPI1_SC SPI3_SC
K/I2S1_ K/I2S3_
CK
CK
PB4
NJTRST
TIM16_B
KIN
TIM3_C
H1
-
-
SPI1_MI
SO/I2S1
_SDI
PB5
-
TIM17_B
KIN
TIM3_C
H2
LCD_B5
I2C1_S
MBA
PB6
-
TIM16_C
H1N
TIM4_C
H1
-
PB7
-
TIM17_C
H1N
TIM4_C
H2
-
PB8
-
TIM16_C
H1
PB9
-
TIM17_C
H1
99/284
-
SPI6_SC
K/I2S6_
CK
SDMMC
2_D2
CRS_SY
NC
UART7_
RX
-
-
SPI3_MI
SO/I2S3
_SDI
SPI2_NS
S/I2S2_
WS
SPI6_MI
SO/I2S6
_SDI
SDMMC
2_D3
-
UART7_
TX
-
-
-
EVENTO
UT
SPI1_M
OSI/I2S1
_SDO
I2C4_S
MBA
SPI3_M SPI6_M
OTG_HS
FDCAN2
OSI/I2S3 OSI/I2S6
_ULPI_D
_RX
_SDO
_SDO
7
ETH_PP
S_OUT
FMC_SD
CKE1
DCMI_D
10/PSSI
_D10
UART5_
RX
EVENTO
UT
I2C1_SC
L
CEC
I2C4_SC
L
USART1
_TX
LPUART
1_TX
OCTOS
FDCAN2
DFSDM1 FMC_SD
PIM_P1_
_TX
_DATIN5
NE1
NCS
DCMI_D
5/PSSI_
D5
UART5_
TX
EVENTO
UT
I2C1_SD
A
-
I2C4_SD
A
USART1
_RX
LPUART
1_RX
-
-
DFSDM1
FMC_NL
_CKIN5
DCMI_V
SYNC/P
SSI_RD
Y
-
EVENTO
UT
TIM4_C
H3
DFSDM1 I2C1_SC
_CKIN7
L
-
I2C4_SC
L
SDMMC
1_CKIN
UART4_
RX
FDCAN1
_RX
SDMMC
2_D4
ETH_MII
_TXD3
SDMMC
1_D4
DCMI_D
6/PSSI_
D6
LCD_B6
EVENTO
UT
TIM4_C
H4
DFSDM1 I2C1_SD
_DATIN7
A
SPI2_NS
I2C4_SD
S/I2S2_
A
WS
SDMMC
1_CDIR
UART4_
TX
FDCAN1
_TX
SDMMC
2_D5
I2C4_S
MBA
SDMMC
1_D5
DCMI_D
7/PSSI_
D7
LCD_B7
EVENTO
UT
TIM24_E EVENTO
TR
UT
Pinouts, pin descriptions and alternate functions
DS13312 Rev 3
PB0
Port B
STM32H735xG
Table 9. STM32H735xG pin alternate functions (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
CEC/DC
DFSDM1 MI/PSSI/
/LCD/LP DFSDM1
FMC/LP FDCAN3
TIM2/3/4 /I2C1/2/3
TIM1/SA /PDM_S
/5/LPUA /4/5/LPTI
I4/TIM16 AI1/TIM3
RT1/OC M2/OCT
/17/TIM1 /4/5/12/1
TOSPIM OSPIM_
x/TIM2x
5
_P1/2/TI P1/TIM1
M8
5/USAR
T1/10
FDCAN1
/2/FMC/
CEC/FD DFSDM1 SDMMC LPUART
LCD/OC
CAN3/S /I2C4/5/ 1/SPI2/I2 1/SAI4/S
TOSPIM
PI1/I2S1/ OCTOS S2/SPI3/ DMMC1/
_P1/2/S
SPI2/I2S PIM_P1/ I2S3/SPI SPDIFR
AI4/SDM
2/SPI3/I2 SAI1/SPI 6/UART X1/SPI6/
MC2/SP
S3/SPI4/ 3/I2S3/U 7/USAR UART4/
DIFRX1/
5/6
ART4
T1/2/3/6
5/8
TIM13/1
4
-
TIM2_C
H3
PB11
Port
SYS
-
LPTIM2_ I2C2_SC
IN1
L
SPI2_SC
DFSDM1 USART3
K/I2S2_
_DATIN7
_TX
CK
-
TIM2_C
H4
-
LPTIM2_ I2C2_SD
ETR
A
PB12
-
TIM1_B
KIN
-
OCTOS
PIM_P1_
NCLK
PB13
-
TIM1_C
H1N
-
OCTOS SPI2_SC
DFSDM1
LPTIM2_
PIM_P1_ K/I2S2_
_CKIN1
OUT
IO2
CK
PB14
-
TIM1_C
H2N
TIM12_C
H1
TIM8_C
H2N
USART1
_TX
SPI2_MI
SO/I2S2
_SDI
PB15
RTC_REFIN
TIM1_C
H3N
TIM12_C
H2
TIM8_C
H3N
USART1
_RX
SPI2_M
DFSDM1
OSI/I2S2
_CKIN2
_SDO
PB10
DS13312 Rev 3
Port B
I2C2_S
MBA
AF10
AF11
AF12
CRS/FM
C/LCD/O
CTOSPI
M_P1/O
TG1_FS/
OTG1_H
S/SAI4/S
DMMC2/
TIM8
DFSDM1
/ETH/I2C
4/LCD/M
DIOS/O
CTOSPI
M_P1/S
DMMC2/
SWPMI1
/TIM1x/T
IM8/UAR
T7/9/US
ART10
FMC/LC
D/MDIO
S/OCTO
SPIM_P
1/SDMM
C1/TIM1
x/TIM8
AF13
AF14
COMP/D
CMI/PSS LCD/TIM
I/LCD/TI 24/UAR
T5
M1x/TIM
23
AF15
SYS
-
OCTOS OTG_HS
ETH_MII
PIM_P1_ _ULPI_D
_RX_ER
NCS
3
-
-
LCD_G4
EVENTO
UT
DFSDM1 USART3
_CKIN7
_RX
-
ETH_MII
OTG_HS _TX_EN/
_ULPI_D ETH_RM
4
II_TX_E
N
-
-
LCD_G5
EVENTO
UT
SPI2_NS
DFSDM1 USART3
S/I2S2_
_DATIN1
_CK
WS
-
ETH_MII
OTG_HS
OCTOS
FDCAN2
_TXD0/E
_ULPI_D
PIM_P1_
_RX
TH_RMII
5
IO0
_TXD0
TIM1_B
KIN_CO
MP12
UART5_
RX
EVENTO
UT
USART3
_CTS/U
SART3_
NSS
-
ETH_MII
OTG_HS
FDCAN2
_TXD1/E
_ULPI_D
_TX
TH_RMII
6
_TXD1
SDMMC
1_D0
DCMI_D
2/PSSI_
D2
UART5_
TX
EVENTO
UT
USART3
_RTS/U
SART3_
DE
UART4_
RTS/UA
RT4_DE
SDMMC
2_D0
-
-
FMC_D1
0/FMC_
AD10
-
LCD_CL
K
EVENTO
UT
-
UART4_
CTS
SDMMC
2_D1
-
-
FMC_D1
1/FMC_
AD11
-
LCD_G7
EVENTO
UT
-
DFSDM1
_DATIN2
-
Pinouts, pin descriptions and alternate functions
100/284
Table 9. STM32H735xG pin alternate functions (continued)
STM32H735xG
AF0
Port
SYS
AF2
AF3
AF4
CEC/DC
DFSDM1 MI/PSSI/
/LCD/LP DFSDM1
FMC/LP FDCAN3
TIM2/3/4 /I2C1/2/3
TIM1/SA /PDM_S
/5/LPUA /4/5/LPTI
I4/TIM16 AI1/TIM3
RT1/OC M2/OCT
/17/TIM1 /4/5/12/1
TOSPIM OSPIM_
x/TIM2x
5
_P1/2/TI P1/TIM1
M8
5/USAR
T1/10
PC0
-
FMC_D1
2/FMC_
AD12
-
PC1
TRACED0
SAI4_D1
SAI1_D1
PC2
PWR_DEEPS
LEEP
-
PC3
PWR_SLEEP
PC4
AF5
AF6
AF7
AF8
AF9
FDCAN1
/2/FMC/
CEC/FD DFSDM1 SDMMC LPUART
LCD/OC
CAN3/S /I2C4/5/ 1/SPI2/I2 1/SAI4/S
TOSPIM
PI1/I2S1/ OCTOS S2/SPI3/ DMMC1/
_P1/2/S
SPI2/I2S PIM_P1/ I2S3/SPI SPDIFR
AI4/SDM
2/SPI3/I2 SAI1/SPI 6/UART X1/SPI6/
MC2/SP
S3/SPI4/ 3/I2S3/U 7/USAR UART4/
DIFRX1/
5/6
ART4
T1/2/3/6
5/8
TIM13/1
4
AF10
AF11
AF12
CRS/FM
C/LCD/O
CTOSPI
M_P1/O
TG1_FS/
OTG1_H
S/SAI4/S
DMMC2/
TIM8
DFSDM1
/ETH/I2C
4/LCD/M
DIOS/O
CTOSPI
M_P1/S
DMMC2/
SWPMI1
/TIM1x/T
IM8/UAR
T7/9/US
ART10
FMC/LC
D/MDIO
S/OCTO
SPIM_P
1/SDMM
C1/TIM1
x/TIM8
AF13
AF14
COMP/D
CMI/PSS LCD/TIM
I/LCD/TI 24/UAR
T5
M1x/TIM
23
AF15
SYS
101/284
DFSDM1
_DATIN4
-
SAI4_FS
_B
FMC_A2
5
OTG_HS
_ULPI_S
TP
LCD_G2
FMC_SD
NWE
-
LCD_R5
EVENTO
UT
SPI2_M
DFSDM1 DFSDM1
SAI1_SD
OSI/I2S2
_DATIN0 _CKIN4
_A
_SDO
-
SAI4_SD
_A
SDMMC
2_CK
OCTOS
ETH_MD
PIM_P1_
C
IO4
MDIOS_
MDC
-
LCD_G5
EVENTO
UT
-
OCTOS
DFSDM1
PIM_P1_
_CKIN1
IO5
DFSDM1
_CKOUT
-
-
OCTOS OTG_HS
ETH_MII FMC_SD
PIM_P1_ _ULPI_D
_TXD2
NE0
IO2
IR
-
-
EVENTO
UT
-
-
OCTOS SPI2_M
DFSDM1
PIM_P1_ OSI/I2S2
_DATIN1
IO6
_SDO
-
-
-
OCTOS OTG_HS ETH_MII
FMC_SD
PIM_P1_ _ULPI_N _TX_CL
CKE0
IO0
XT
K
-
-
EVENTO
UT
PWR_DEEPS
LEEP
FMC_A2
2
-
DFSDM1
_CKIN2
I2S1_M
CK
-
-
-
SPDIFR
X1_IN3
SDMMC
2_CKIN
ETH_MII
_RXD0/ FMC_SD
ETH_RM
NE0
II_RXD0
-
LCD_R7
EVENTO
UT
PC5
PWR_SLEEP
SAI4_D3
SAI1_D3
DFSDM1 PSSI_D1
_DATIN2
5
-
-
-
-
SPDIFR
X1_IN4
ETH_MII
OCTOS
_RXD1/ FMC_SD COMP1_
LCD_DE
PIM_P1_
ETH_RM
CKE0
OUT
DQS
II_RXD1
EVENTO
UT
PC6
-
-
TIM3_C
H1
TIM8_C
H1
DFSDM1
_CKIN3
I2S2_M
CK
-
USART6
_TX
SDMMC
1_D0DIR
FMC_N
WAIT
SDMMC
2_D6
-
SDMMC
1_D6
DCMI_D
0/PSSI_
D0
LCD_HS
YNC
EVENTO
UT
PC7
DBTRGIO
-
TIM3_C
H2
TIM8_C
H2
DFSDM1
_DATIN3
-
I2S3_M
CK
USART6
_RX
SDMMC
1_D123
DIR
FMC_NE
1
SDMMC
2_D7
SWPMI_
TX
SDMMC
1_D7
DCMI_D
1/PSSI_
D1
LCD_G6
EVENTO
UT
PC8
TRACED1
-
TIM3_C
H3
TIM8_C
H3
-
-
-
USART6
_CK
UART5_
RTS/UA
RT5_DE
FMC_NE
2/FMC_
NCE
FMC_IN
T
SWPMI_
RX
SDMMC
1_D0
DCMI_D
2/PSSI_
D2
-
EVENTO
UT
DFSDM1
_CKIN0
-
-
-
SPI2_MI
SO/I2S2
_SDI
Pinouts, pin descriptions and alternate functions
DS13312 Rev 3
Port C
AF1
STM32H735xG
Table 9. STM32H735xG pin alternate functions (continued)
AF0
Port
SYS
AF1
AF2
AF3
AF4
CEC/DC
DFSDM1 MI/PSSI/
/LCD/LP DFSDM1
FMC/LP FDCAN3
TIM2/3/4 /I2C1/2/3
TIM1/SA /PDM_S
/5/LPUA /4/5/LPTI
I4/TIM16 AI1/TIM3
RT1/OC M2/OCT
/17/TIM1 /4/5/12/1
TOSPIM OSPIM_
x/TIM2x
5
_P1/2/TI P1/TIM1
M8
5/USAR
T1/10
AF10
AF11
AF12
FDCAN1
/2/FMC/
CEC/FD DFSDM1 SDMMC LPUART
LCD/OC
CAN3/S /I2C4/5/ 1/SPI2/I2 1/SAI4/S
TOSPIM
PI1/I2S1/ OCTOS S2/SPI3/ DMMC1/
_P1/2/S
SPI2/I2S PIM_P1/ I2S3/SPI SPDIFR
AI4/SDM
2/SPI3/I2 SAI1/SPI 6/UART X1/SPI6/
MC2/SP
S3/SPI4/ 3/I2S3/U 7/USAR UART4/
DIFRX1/
5/6
ART4
T1/2/3/6
5/8
TIM13/1
4
CRS/FM
C/LCD/O
CTOSPI
M_P1/O
TG1_FS/
OTG1_H
S/SAI4/S
DMMC2/
TIM8
DFSDM1
/ETH/I2C
4/LCD/M
DIOS/O
CTOSPI
M_P1/S
DMMC2/
SWPMI1
/TIM1x/T
IM8/UAR
T7/9/US
ART10
FMC/LC
D/MDIO
S/OCTO
SPIM_P
1/SDMM
C1/TIM1
x/TIM8
COMP/D
CMI/PSS LCD/TIM
I/LCD/TI 24/UAR
T5
M1x/TIM
23
UART5_
CTS
OCTOS
PIM_P1_
IO0
LCD_G3
SWPMI_
SUSPEN
D
SDMMC
1_D1
DCMI_D
3/PSSI_
D3
LCD_B2
EVENTO
UT
I2S_CKI
N
I2C5_SD
A
AF7
AF8
AF9
AF13
AF14
AF15
SYS
DS13312 Rev 3
MCO2
-
TIM3_C
H4
PC10
-
-
-
DFSDM1 I2C5_SD
_CKIN5
A
-
SPI3_SC
USART3
K/I2S3_
_TX
CK
UART4_
TX
OCTOS
PIM_P1_
IO1
LCD_B1
SWPMI_
RX
SDMMC
1_D2
DCMI_D
8/PSSI_
D8
LCD_R2
EVENTO
UT
PC11
-
-
-
DFSDM1 I2C5_SC
_DATIN5
L
-
SPI3_MI
SO/I2S3
_SDI
USART3
_RX
UART4_
RX
OCTOS
PIM_P1_
NCS
-
-
SDMMC
1_D3
DCMI_D
4/PSSI_
D4
LCD_B4
EVENTO
UT
PC12
TRACED3
SPI6_SC SPI3_M
K/I2S6_ OSI/I2S3
CK
_SDO
USART3
_CK
UART5_
TX
-
-
-
SDMMC
1_CK
DCMI_D
9/PSSI_
D9
LCD_R6
EVENTO
UT
PC13
-
-
PC14
-
PC15
-
FMC_D6
TIM15_C
/FMC_A
H1
D6
I2C3_SD
A
AF6
PC9
Port C
TIM8_C
H4
AF5
-
-
I2C5_S
MBA
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTO
UT
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTO
UT
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTO
UT
Pinouts, pin descriptions and alternate functions
102/284
Table 9. STM32H735xG pin alternate functions (continued)
STM32H735xG
AF0
Port
SYS
AF2
AF3
AF4
CEC/DC
DFSDM1 MI/PSSI/
/LCD/LP DFSDM1
FMC/LP FDCAN3
TIM2/3/4 /I2C1/2/3
TIM1/SA /PDM_S
/5/LPUA /4/5/LPTI
I4/TIM16 AI1/TIM3
RT1/OC M2/OCT
/17/TIM1 /4/5/12/1
TOSPIM OSPIM_
x/TIM2x
5
_P1/2/TI P1/TIM1
M8
5/USAR
T1/10
AF5
AF6
AF7
AF8
AF9
FDCAN1
/2/FMC/
CEC/FD DFSDM1 SDMMC LPUART
LCD/OC
CAN3/S /I2C4/5/ 1/SPI2/I2 1/SAI4/S
TOSPIM
PI1/I2S1/ OCTOS S2/SPI3/ DMMC1/
_P1/2/S
SPI2/I2S PIM_P1/ I2S3/SPI SPDIFR
AI4/SDM
2/SPI3/I2 SAI1/SPI 6/UART X1/SPI6/
MC2/SP
S3/SPI4/ 3/I2S3/U 7/USAR UART4/
DIFRX1/
5/6
ART4
T1/2/3/6
5/8
TIM13/1
4
AF10
AF11
AF12
CRS/FM
C/LCD/O
CTOSPI
M_P1/O
TG1_FS/
OTG1_H
S/SAI4/S
DMMC2/
TIM8
DFSDM1
/ETH/I2C
4/LCD/M
DIOS/O
CTOSPI
M_P1/S
DMMC2/
SWPMI1
/TIM1x/T
IM8/UAR
T7/9/US
ART10
FMC/LC
D/MDIO
S/OCTO
SPIM_P
1/SDMM
C1/TIM1
x/TIM8
AF13
AF14
COMP/D
CMI/PSS LCD/TIM
I/LCD/TI 24/UAR
T5
M1x/TIM
23
AF15
SYS
103/284
PD0
-
-
-
DFSDM1
_CKIN6
-
-
-
-
UART4_
RX
FDCAN1
_RX
-
UART9_
CTS
FMC_D2
/FMC_A
D2
-
LCD_B1
EVENTO
UT
PD1
-
-
-
DFSDM1
_DATIN6
-
-
-
-
UART4_
TX
FDCAN1
_TX
-
-
FMC_D3
/FMC_A
D3
-
-
EVENTO
UT
PD2
TRACED2
-
TIM15_B
KIN
-
-
-
UART5_
RX
LCD_B7
-
-
SDMMC
1_CMD
DCMI_D
11/PSSI_
D11
LCD_B2
EVENTO
UT
PD3
-
-
-
DFSDM1
_CKOUT
-
SPI2_SC
K/I2S2_
CK
-
USART2
_CTS/U
SART2_
NSS
-
-
-
-
FMC_CL
K
DCMI_D
5/PSSI_
D5
LCD_G7
EVENTO
UT
PD4
-
-
-
-
-
-
-
USART2
_RTS/U
SART2_
DE
-
-
OCTOS
PIM_P1_
IO4
-
FMC_N
OE
-
-
EVENTO
UT
PD5
-
-
-
-
-
-
-
USART2
_TX
-
-
OCTOS
PIM_P1_
IO5
-
FMC_N
WE
-
-
EVENTO
UT
PD6
-
SAI4_D1
SAI1_D1
SAI4_SD
_A
-
OCTOS
PIM_P1_
IO6
SDMMC
2_CK
FMC_N
WAIT
DCMI_D
10/PSSI
_D10
LCD_B2
EVENTO
UT
PD7
-
-
-
DFSDM1
_DATIN4
-
SPI1_M
DFSDM1 USART2
OSI/I2S1
_CKIN1
_CK
_SDO
-
SPDIFR
X1_IN1
OCTOS
PIM_P1_
IO7
SDMMC
2_CMD
FMC_NE
1
-
-
EVENTO
UT
PD8
-
-
-
DFSDM1
_CKIN3
-
USART3
_TX
-
SPDIFR
X1_IN2
-
-
FMC_D1
3/FMC_
AD13
-
-
EVENTO
UT
FMC_D7
TIM3_ET
/FMC_A
R
D7
SPI3_M
DFSDM1 DFSDM1
SAI1_SD USART2
OSI/I2S3
_CKIN4 _DATIN1
_A
_RX
_SDO
-
-
Pinouts, pin descriptions and alternate functions
DS13312 Rev 3
Port D
AF1
STM32H735xG
Table 9. STM32H735xG pin alternate functions (continued)
AF0
Port
SYS
DS13312 Rev 3
Port D
AF1
AF2
AF3
AF4
CEC/DC
DFSDM1 MI/PSSI/
/LCD/LP DFSDM1
FMC/LP FDCAN3
TIM2/3/4 /I2C1/2/3
TIM1/SA /PDM_S
/5/LPUA /4/5/LPTI
I4/TIM16 AI1/TIM3
RT1/OC M2/OCT
/17/TIM1 /4/5/12/1
TOSPIM OSPIM_
x/TIM2x
5
_P1/2/TI P1/TIM1
M8
5/USAR
T1/10
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
FDCAN1
/2/FMC/
CEC/FD DFSDM1 SDMMC LPUART
LCD/OC
CAN3/S /I2C4/5/ 1/SPI2/I2 1/SAI4/S
TOSPIM
PI1/I2S1/ OCTOS S2/SPI3/ DMMC1/
_P1/2/S
SPI2/I2S PIM_P1/ I2S3/SPI SPDIFR
AI4/SDM
2/SPI3/I2 SAI1/SPI 6/UART X1/SPI6/
MC2/SP
S3/SPI4/ 3/I2S3/U 7/USAR UART4/
DIFRX1/
5/6
ART4
T1/2/3/6
5/8
TIM13/1
4
CRS/FM
C/LCD/O
CTOSPI
M_P1/O
TG1_FS/
OTG1_H
S/SAI4/S
DMMC2/
TIM8
DFSDM1
/ETH/I2C
4/LCD/M
DIOS/O
CTOSPI
M_P1/S
DMMC2/
SWPMI1
/TIM1x/T
IM8/UAR
T7/9/US
ART10
FMC/LC
D/MDIO
S/OCTO
SPIM_P
1/SDMM
C1/TIM1
x/TIM8
AF13
AF14
COMP/D
CMI/PSS LCD/TIM
I/LCD/TI 24/UAR
T5
M1x/TIM
23
AF15
SYS
PD9
-
-
-
DFSDM1
_DATIN3
-
-
-
USART3
_RX
-
-
-
-
FMC_D1
4/FMC_
AD14
-
-
EVENTO
UT
PD10
-
-
-
DFSDM1
_CKOUT
-
-
-
USART3
_CK
-
-
-
-
FMC_D1
5/FMC_
AD15
-
LCD_B3
EVENTO
UT
PD11
-
-
-
LPTIM2_
IN2
I2C4_S
MBA
-
-
USART3
_CTS/U
SART3_
NSS
-
OCTOS
SAI4_SD
PIM_P1_
_A
IO0
-
FMC_A1
6/FMC_
CLE
-
-
EVENTO
UT
PD12
-
LPTIM1_
IN1
TIM4_C
H1
LPTIM2_ I2C4_SC FDCAN3
IN1
L
_RX
-
USART3
_RTS/U
SART3_
DE
-
OCTOS
SAI4_FS
PIM_P1_
_A
IO1
-
FMC_A1
7/FMC_
ALE
DCMI_D
12/PSSI
_D12
-
EVENTO
UT
PD13
-
LPTIM1_
OUT
TIM4_C
H2
-
I2C4_SD FDCAN3
A
_TX
-
-
-
OCTOS
SAI4_SC
PIM_P1_
K_A
IO3
UART9_
RTS/UA
RT9_DE
FMC_A1
8
DCMI_D
13/PSSI
_D13
-
EVENTO
UT
PD14
-
-
TIM4_C
H3
-
-
-
-
-
UART8_
CTS
-
-
UART9_
RX
FMC_D0
/FMC_A
D0
-
-
EVENTO
UT
PD15
-
-
TIM4_C
H4
-
-
-
-
-
UART8_
RTS/UA
RT8_DE
-
-
UART9_
TX
FMC_D1
/FMC_A
D1
-
-
EVENTO
UT
Pinouts, pin descriptions and alternate functions
104/284
Table 9. STM32H735xG pin alternate functions (continued)
STM32H735xG
AF0
Port
SYS
AF1
AF2
AF3
AF4
CEC/DC
DFSDM1 MI/PSSI/
/LCD/LP DFSDM1
FMC/LP FDCAN3
TIM2/3/4 /I2C1/2/3
TIM1/SA /PDM_S
/5/LPUA /4/5/LPTI
I4/TIM16 AI1/TIM3
RT1/OC M2/OCT
/17/TIM1 /4/5/12/1
TOSPIM OSPIM_
x/TIM2x
5
_P1/2/TI P1/TIM1
M8
5/USAR
T1/10
AF5
AF6
AF7
AF8
AF9
FDCAN1
/2/FMC/
CEC/FD DFSDM1 SDMMC LPUART
LCD/OC
CAN3/S /I2C4/5/ 1/SPI2/I2 1/SAI4/S
TOSPIM
PI1/I2S1/ OCTOS S2/SPI3/ DMMC1/
_P1/2/S
SPI2/I2S PIM_P1/ I2S3/SPI SPDIFR
AI4/SDM
2/SPI3/I2 SAI1/SPI 6/UART X1/SPI6/
MC2/SP
S3/SPI4/ 3/I2S3/U 7/USAR UART4/
DIFRX1/
5/6
ART4
T1/2/3/6
5/8
TIM13/1
4
AF10
AF11
AF12
AF13
AF14
CRS/FM
C/LCD/O
CTOSPI
M_P1/O
TG1_FS/
OTG1_H
S/SAI4/S
DMMC2/
TIM8
DFSDM1
/ETH/I2C
4/LCD/M
DIOS/O
CTOSPI
M_P1/S
DMMC2/
SWPMI1
/TIM1x/T
IM8/UAR
T7/9/US
ART10
FMC/LC
D/MDIO
S/OCTO
SPIM_P
1/SDMM
C1/TIM1
x/TIM8
COMP/D
CMI/PSS LCD/TIM
I/LCD/TI 24/UAR
T5
M1x/TIM
23
AF15
SYS
-
LPTIM1_ TIM4_ET
ETR
R
-
LPTIM2_
ETR
-
-
-
UART8_
RX
-
SAI4_M
CLK_A
-
FMC_NB
L0
DCMI_D
2/PSSI_
D2
LCD_R0
EVENTO
UT
PE1
-
LPTIM1_
IN2
-
-
-
-
-
-
UART8_
TX
-
-
-
FMC_NB
L1
DCMI_D
3/PSSI_
D3
LCD_R6
EVENTO
UT
PE2
TRACECLK
-
SAI1_CK
1
-
USART1 SPI4_SC
0_RX
K
SAI1_M
CLK_A
-
SAI4_M
CLK_A
OCTOS
SAI4_CK ETH_MII
PIM_P1_
1
_TXD3
IO2
FMC_A2
3
-
-
EVENTO
UT
PE3
TRACED0
-
-
-
TIM15_B
KIN
SAI1_SD
_B
-
SAI4_SD
_B
-
-
USART1
0_TX
FMC_A1
9
-
-
EVENTO
UT
PE4
TRACED1
-
SAI1_D2
DFSDM1 TIM15_C SPI4_NS SAI1_FS
_DATIN3
H1N
S
_A
-
SAI4_FS
_A
-
SAI4_D2
-
FMC_A2
0
DCMI_D
4/PSSI_
D4
LCD_B0
EVENTO
UT
PE5
TRACED2
-
SAI1_CK DFSDM1 TIM15_C
2
_CKIN3
H1
SPI4_MI
SO
SAI1_SC
K_A
-
SAI4_SC
K_A
-
SAI4_CK
2
-
FMC_A2
1
DCMI_D
6/PSSI_
D6
LCD_G0
EVENTO
UT
PE6
TRACED3
TIM1_B
KIN2
SAI1_D1
-
TIM15_C
H2
SPI4_M
OSI
SAI1_SD
_A
-
SAI4_SD
SAI4_D1
_A
SAI4_M
CLK_B
TIM1_B
KIN2_C
OMP12
FMC_A2
2
DCMI_D
7/PSSI_
D7
LCD_G1
EVENTO
UT
PE7
-
TIM1_ET
R
-
DFSDM1
_DATIN2
-
-
-
UART7_
RX
-
-
OCTOS
PIM_P1_
IO4
-
FMC_D4
/FMC_A
D4
-
-
EVENTO
UT
PE8
-
TIM1_C
H1N
-
DFSDM1
_CKIN2
-
-
-
UART7_
TX
-
-
OCTOS
PIM_P1_
IO5
-
FMC_D5
COMP2_
/FMC_A
OUT
D5
-
EVENTO
UT
PE9
-
TIM1_C
H1
-
DFSDM1
_CKOUT
-
-
-
UART7_
RTS/UA
RT7_DE
-
-
OCTOS
PIM_P1_
IO6
-
FMC_D6
/FMC_A
D6
-
EVENTO
UT
Port E
-
105/284
Pinouts, pin descriptions and alternate functions
DS13312 Rev 3
PE0
-
STM32H735xG
Table 9. STM32H735xG pin alternate functions (continued)
AF0
Port
SYS
AF1
AF2
AF3
AF4
CEC/DC
DFSDM1 MI/PSSI/
/LCD/LP DFSDM1
FMC/LP FDCAN3
TIM2/3/4 /I2C1/2/3
TIM1/SA /PDM_S
/5/LPUA /4/5/LPTI
I4/TIM16 AI1/TIM3
RT1/OC M2/OCT
/17/TIM1 /4/5/12/1
TOSPIM OSPIM_
x/TIM2x
5
_P1/2/TI P1/TIM1
M8
5/USAR
T1/10
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
FDCAN1
/2/FMC/
CEC/FD DFSDM1 SDMMC LPUART
LCD/OC
CAN3/S /I2C4/5/ 1/SPI2/I2 1/SAI4/S
TOSPIM
PI1/I2S1/ OCTOS S2/SPI3/ DMMC1/
_P1/2/S
SPI2/I2S PIM_P1/ I2S3/SPI SPDIFR
AI4/SDM
2/SPI3/I2 SAI1/SPI 6/UART X1/SPI6/
MC2/SP
S3/SPI4/ 3/I2S3/U 7/USAR UART4/
DIFRX1/
5/6
ART4
T1/2/3/6
5/8
TIM13/1
4
CRS/FM
C/LCD/O
CTOSPI
M_P1/O
TG1_FS/
OTG1_H
S/SAI4/S
DMMC2/
TIM8
DFSDM1
/ETH/I2C
4/LCD/M
DIOS/O
CTOSPI
M_P1/S
DMMC2/
SWPMI1
/TIM1x/T
IM8/UAR
T7/9/US
ART10
FMC/LC
D/MDIO
S/OCTO
SPIM_P
1/SDMM
C1/TIM1
x/TIM8
-
AF13
AF14
COMP/D
CMI/PSS LCD/TIM
I/LCD/TI 24/UAR
T5
M1x/TIM
23
AF15
SYS
DS13312 Rev 3
PE10
-
TIM1_C
H2N
-
DFSDM1
_DATIN4
-
-
-
UART7_
CTS
-
-
OCTOS
PIM_P1_
IO7
FMC_D7
/FMC_A
D7
-
-
EVENTO
UT
PE11
-
TIM1_C
H2
-
DFSDM1
_CKIN4
-
SPI4_NS
S
-
-
-
-
OCTOS FMC_D8
SAI4_SD
PIM_P1_ /FMC_A
_B
NCS
D8
-
LCD_G3
EVENTO
UT
PE12
-
TIM1_C
H3N
-
DFSDM1
_DATIN5
-
SPI4_SC
K
-
-
-
-
SAI4_SC
K_B
-
FMC_D9
COMP1_
/FMC_A
OUT
D9
LCD_B4
EVENTO
UT
PE13
-
TIM1_C
H3
-
DFSDM1
_CKIN5
-
SPI4_MI
SO
-
-
-
-
SAI4_FS
_B
-
FMC_D1
COMP2_
0/FMC_
LCD_DE
OUT
AD10
EVENTO
UT
PE14
-
TIM1_C
H4
-
-
-
SPI4_M
OSI
-
-
-
-
SAI4_M
CLK_B
-
FMC_D1
1/FMC_
AD11
-
LCD_CL
K
EVENTO
UT
PE15
-
TIM1_B
KIN
-
-
-
-
-
-
-
-
-
USART1
0_CK
FMC_D1
2/FMC_
AD12
TIM1_B
KIN_CO
MP12
LCD_R7
EVENTO
UT
Port E
Pinouts, pin descriptions and alternate functions
106/284
Table 9. STM32H735xG pin alternate functions (continued)
STM32H735xG
AF0
Port
SYS
AF1
AF2
AF3
AF4
CEC/DC
DFSDM1 MI/PSSI/
/LCD/LP DFSDM1
FMC/LP FDCAN3
TIM2/3/4 /I2C1/2/3
TIM1/SA /PDM_S
/5/LPUA /4/5/LPTI
I4/TIM16 AI1/TIM3
RT1/OC M2/OCT
/17/TIM1 /4/5/12/1
TOSPIM OSPIM_
x/TIM2x
5
_P1/2/TI P1/TIM1
M8
5/USAR
T1/10
AF5
AF6
AF7
AF8
AF9
FDCAN1
/2/FMC/
CEC/FD DFSDM1 SDMMC LPUART
LCD/OC
CAN3/S /I2C4/5/ 1/SPI2/I2 1/SAI4/S
TOSPIM
PI1/I2S1/ OCTOS S2/SPI3/ DMMC1/
_P1/2/S
SPI2/I2S PIM_P1/ I2S3/SPI SPDIFR
AI4/SDM
2/SPI3/I2 SAI1/SPI 6/UART X1/SPI6/
MC2/SP
S3/SPI4/ 3/I2S3/U 7/USAR UART4/
DIFRX1/
5/6
ART4
T1/2/3/6
5/8
TIM13/1
4
AF10
AF11
AF12
AF13
AF14
CRS/FM
C/LCD/O
CTOSPI
M_P1/O
TG1_FS/
OTG1_H
S/SAI4/S
DMMC2/
TIM8
DFSDM1
/ETH/I2C
4/LCD/M
DIOS/O
CTOSPI
M_P1/S
DMMC2/
SWPMI1
/TIM1x/T
IM8/UAR
T7/9/US
ART10
FMC/LC
D/MDIO
S/OCTO
SPIM_P
1/SDMM
C1/TIM1
x/TIM8
COMP/D
CMI/PSS LCD/TIM
I/LCD/TI 24/UAR
T5
M1x/TIM
23
AF15
SYS
-
-
-
-
I2C2_SD
A
-
I2C5_SD
A
-
-
OCTOS
PIM_P2_
IO0
-
-
FMC_A0
TIM23_C
H1
-
EVENTO
UT
PF1
-
-
-
-
I2C2_SC
L
-
I2C5_SC
L
-
-
OCTOS
PIM_P2_
IO1
-
-
FMC_A1
TIM23_C
H2
-
EVENTO
UT
PF2
-
-
-
-
I2C2_S
MBA
-
I2C5_S
MBA
-
-
OCTOS
PIM_P2_
IO2
-
-
FMC_A2
TIM23_C
H3
-
EVENTO
UT
PF3
-
-
-
-
-
-
-
-
-
OCTOS
PIM_P2_
IO3
-
-
FMC_A3
TIM23_C
H4
-
EVENTO
UT
PF4
-
-
-
-
-
-
-
-
-
OCTOS
PIM_P2_
CLK
-
-
FMC_A4
-
-
EVENTO
UT
PF5
-
-
-
-
-
-
-
-
-
OCTOS
PIM_P2_
NCLK
-
-
FMC_A5
-
-
EVENTO
UT
PF6
-
TIM16_C FDCAN3
H1
_RX
-
-
SPI5_NS SAI1_SD
S
_B
UART7_
RX
SAI4_SD
_B
-
OCTOS
PIM_P1_
IO3
-
-
TIM23_C
H1
-
EVENTO
UT
PF7
-
TIM17_C FDCAN3
_TX
H1
-
-
SPI5_SC
K
SAI1_M
CLK_B
UART7_
TX
SAI4_M
CLK_B
-
OCTOS
PIM_P1_
IO2
-
-
TIM23_C
H2
-
EVENTO
UT
PF8
-
TIM16_C
H1N
-
-
-
SPI5_MI
SO
SAI1_SC
K_B
UART7_
RTS/UA
RT7_DE
OCTOS
SAI4_SC TIM13_C
PIM_P1_
K_B
H1
IO0
-
-
TIM23_C
H3
-
EVENTO
UT
PF9
-
TIM17_C
H1N
-
-
-
SPI5_M
OSI
SAI1_FS
_B
UART7_
CTS
OCTOS
SAI4_FS TIM14_C
PIM_P1_
_B
H1
IO1
-
-
TIM23_C
H4
-
EVENTO
UT
107/284
Pinouts, pin descriptions and alternate functions
DS13312 Rev 3
PF0
Port F
STM32H735xG
Table 9. STM32H735xG pin alternate functions (continued)
AF0
Port
SYS
DS13312 Rev 3
Port F
AF1
AF2
AF3
AF4
CEC/DC
DFSDM1 MI/PSSI/
/LCD/LP DFSDM1
FMC/LP FDCAN3
TIM2/3/4 /I2C1/2/3
TIM1/SA /PDM_S
/5/LPUA /4/5/LPTI
I4/TIM16 AI1/TIM3
RT1/OC M2/OCT
/17/TIM1 /4/5/12/1
TOSPIM OSPIM_
x/TIM2x
5
_P1/2/TI P1/TIM1
M8
5/USAR
T1/10
AF5
AF6
AF7
AF8
AF9
FDCAN1
/2/FMC/
CEC/FD DFSDM1 SDMMC LPUART
LCD/OC
CAN3/S /I2C4/5/ 1/SPI2/I2 1/SAI4/S
TOSPIM
PI1/I2S1/ OCTOS S2/SPI3/ DMMC1/
_P1/2/S
SPI2/I2S PIM_P1/ I2S3/SPI SPDIFR
AI4/SDM
2/SPI3/I2 SAI1/SPI 6/UART X1/SPI6/
MC2/SP
S3/SPI4/ 3/I2S3/U 7/USAR UART4/
DIFRX1/
5/6
ART4
T1/2/3/6
5/8
TIM13/1
4
AF10
AF11
AF12
AF13
AF14
AF15
CRS/FM
C/LCD/O
CTOSPI
M_P1/O
TG1_FS/
OTG1_H
S/SAI4/S
DMMC2/
TIM8
DFSDM1
/ETH/I2C
4/LCD/M
DIOS/O
CTOSPI
M_P1/S
DMMC2/
SWPMI1
/TIM1x/T
IM8/UAR
T7/9/US
ART10
FMC/LC
D/MDIO
S/OCTO
SPIM_P
1/SDMM
C1/TIM1
x/TIM8
COMP/D
CMI/PSS LCD/TIM
I/LCD/TI 24/UAR
T5
M1x/TIM
23
SYS
DCMI_D
11/PSSI_ LCD_DE
D11
EVENTO
UT
-
PSSI_D1
5
-
-
-
-
OCTOS
PIM_P1_ SAI4_D3
CLK
-
-
-
-
-
SPI5_M
OSI
-
-
-
OCTOS
SAI4_SD
PIM_P1_
_B
NCLK
-
FMC_N
RAS
DCMI_D
12/PSSI
_D12
TIM24_C EVENTO
H1
UT
-
-
-
-
-
-
-
-
OCTOS
PIM_P2_
DQS
-
-
FMC_A6
-
TIM24_C EVENTO
H2
UT
-
-
-
DFSDM1
_DATIN6
I2C4_S
MBA
-
-
-
-
-
-
-
FMC_A7
-
TIM24_C EVENTO
H3
UT
PF14
-
-
-
DFSDM1 I2C4_SC
_CKIN6
L
-
-
-
-
-
-
-
FMC_A8
-
TIM24_C EVENTO
H4
UT
PF15
-
-
-
I2C4_SD
A
-
-
-
-
-
-
-
FMC_A9
-
TIM16_B
SAI1_D3
KIN
PF10
-
PF11
-
-
PF12
-
PF13
-
-
Pinouts, pin descriptions and alternate functions
108/284
Table 9. STM32H735xG pin alternate functions (continued)
EVENTO
UT
STM32H735xG
AF0
Port
SYS
AF2
AF3
AF4
CEC/DC
DFSDM1 MI/PSSI/
/LCD/LP DFSDM1
FMC/LP FDCAN3
TIM2/3/4 /I2C1/2/3
TIM1/SA /PDM_S
/5/LPUA /4/5/LPTI
I4/TIM16 AI1/TIM3
RT1/OC M2/OCT
/17/TIM1 /4/5/12/1
TOSPIM OSPIM_
x/TIM2x
5
_P1/2/TI P1/TIM1
M8
5/USAR
T1/10
AF5
AF6
AF7
AF8
AF9
FDCAN1
/2/FMC/
CEC/FD DFSDM1 SDMMC LPUART
LCD/OC
CAN3/S /I2C4/5/ 1/SPI2/I2 1/SAI4/S
TOSPIM
PI1/I2S1/ OCTOS S2/SPI3/ DMMC1/
_P1/2/S
SPI2/I2S PIM_P1/ I2S3/SPI SPDIFR
AI4/SDM
2/SPI3/I2 SAI1/SPI 6/UART X1/SPI6/
MC2/SP
S3/SPI4/ 3/I2S3/U 7/USAR UART4/
DIFRX1/
5/6
ART4
T1/2/3/6
5/8
TIM13/1
4
AF10
AF11
AF12
CRS/FM
C/LCD/O
CTOSPI
M_P1/O
TG1_FS/
OTG1_H
S/SAI4/S
DMMC2/
TIM8
DFSDM1
/ETH/I2C
4/LCD/M
DIOS/O
CTOSPI
M_P1/S
DMMC2/
SWPMI1
/TIM1x/T
IM8/UAR
T7/9/US
ART10
FMC/LC
D/MDIO
S/OCTO
SPIM_P
1/SDMM
C1/TIM1
x/TIM8
AF13
AF14
COMP/D
CMI/PSS LCD/TIM
I/LCD/TI 24/UAR
T5
M1x/TIM
23
AF15
SYS
PG0
-
-
-
-
-
-
-
-
-
OCTOS
PIM_P2_
IO4
-
UART9_
RX
FMC_A1
0
-
-
EVENTO
UT
PG1
-
-
-
-
-
-
-
-
-
OCTOS
PIM_P2_
IO5
-
UART9_
TX
FMC_A1
1
-
-
EVENTO
UT
PG2
-
-
-
TIM8_B
KIN
-
-
-
-
-
-
-
TIM8_B
KIN_CO
MP12
FMC_A1
2
-
PG3
-
-
-
TIM8_B
KIN2
-
-
-
-
-
-
-
TIM8_B
KIN2_C
OMP12
FMC_A1
3
TIM23_E
TR
-
EVENTO
UT
PG4
-
TIM1_B
KIN2
-
-
-
-
-
-
-
-
-
TIM1_B
KIN2_C
OMP12
FMC_A1
4/FMC_
BA0
-
-
EVENTO
UT
PG5
-
TIM1_ET
R
-
-
-
-
-
-
-
-
-
-
FMC_A1
5/FMC_
BA1
-
-
EVENTO
UT
PG6
-
TIM17_B
KIN
-
-
-
-
-
-
-
-
OCTOS
PIM_P1_
NCS
-
FMC_NE
3
DCMI_D
12/PSSI
_D12
LCD_R7
EVENTO
UT
PG7
-
-
-
-
-
-
SAI1_M
CLK_A
USART6
_CK
-
OCTOS
PIM_P2_
DQS
-
-
FMC_IN
T
DCMI_D
13/PSSI
_D13
LCD_CL
K
EVENTO
UT
PG8
-
-
-
TIM8_ET
R
-
SPI6_NS
S/I2S6_
WS
-
USART6
_RTS/U
SART6_
DE
SPDIFR
X1_IN3
-
-
ETH_PP
S_OUT
FMC_SD
CLK
-
LCD_G7
EVENTO
UT
TIM24_E EVENTO
TR
UT
109/284
Pinouts, pin descriptions and alternate functions
DS13312 Rev 3
Port G
AF1
STM32H735xG
Table 9. STM32H735xG pin alternate functions (continued)
AF0
Port
SYS
DS13312 Rev 3
Port G
AF1
AF2
AF3
AF4
CEC/DC
DFSDM1 MI/PSSI/
/LCD/LP DFSDM1
FMC/LP FDCAN3
TIM2/3/4 /I2C1/2/3
TIM1/SA /PDM_S
/5/LPUA /4/5/LPTI
I4/TIM16 AI1/TIM3
RT1/OC M2/OCT
/17/TIM1 /4/5/12/1
TOSPIM OSPIM_
x/TIM2x
5
_P1/2/TI P1/TIM1
M8
5/USAR
T1/10
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
CRS/FM
C/LCD/O
CTOSPI
M_P1/O
TG1_FS/
OTG1_H
S/SAI4/S
DMMC2/
TIM8
DFSDM1
/ETH/I2C
4/LCD/M
DIOS/O
CTOSPI
M_P1/S
DMMC2/
SWPMI1
/TIM1x/T
IM8/UAR
T7/9/US
ART10
FMC/LC
D/MDIO
S/OCTO
SPIM_P
1/SDMM
C1/TIM1
x/TIM8
COMP/D
CMI/PSS LCD/TIM
I/LCD/TI 24/UAR
T5
M1x/TIM
23
OCTOS
SAI4_FS
PIM_P1_
_B
IO6
SDMMC
2_D0
FMC_NE
2/FMC_
NCE
DCMI_V
SYNC/P
SSI_RD
Y
-
EVENTO
UT
FDCAN1
/2/FMC/
CEC/FD DFSDM1 SDMMC LPUART
LCD/OC
CAN3/S /I2C4/5/ 1/SPI2/I2 1/SAI4/S
TOSPIM
PI1/I2S1/ OCTOS S2/SPI3/ DMMC1/
_P1/2/S
SPI2/I2S PIM_P1/ I2S3/SPI SPDIFR
AI4/SDM
2/SPI3/I2 SAI1/SPI 6/UART X1/SPI6/
MC2/SP
S3/SPI4/ 3/I2S3/U 7/USAR UART4/
DIFRX1/
5/6
ART4
T1/2/3/6
5/8
TIM13/1
4
AF13
AF14
AF15
SYS
SPI1_MI
SO/I2S1
_SDI
-
USART6
_RX
SPDIFR
X1_IN4
-
SPI1_NS
S/I2S1_
WS
-
-
-
LCD_G3
SAI4_SD
_B
SDMMC
2_D1
FMC_NE
3
DCMI_D
2/PSSI_
D2
LCD_B2
EVENTO
UT
-
USART1
0_RX
SPI1_SC
K/I2S1_
CK
-
-
SPDIFR
X1_IN1
OCTOS
PIM_P2_
IO7
SDMMC
2_D2
ETH_MII
_TX_EN/
ETH_RM
II_TX_E
N
-
DCMI_D
3/PSSI_
D3
LCD_B3
EVENTO
UT
-
OCTOS
PIM_P2_
NCS
USART1
0_TX
SPI6_MI
SO/I2S6
_SDI
-
USART6
_RTS/U
SART6_
DE
SPDIFR
X1_IN2
LCD_B4
SDMMC
2_D3
ETH_MII
_TXD1/E FMC_NE TIM23_C
TH_RMII
4
H1
_TXD1
LCD_B1
EVENTO
UT
LPTIM1_
OUT
-
-
USART1
SPI6_SC
0_CTS/U
K/I2S6_
SART10
CK
_NSS
-
USART6
_CTS/U
SART6_
NSS
-
-
SDMMC
2_D6
ETH_MII
_TXD0/E
TH_RMII
_TXD0
FMC_A2 TIM23_C
4
H2
LCD_R0
EVENTO
UT
TRACED1
LPTIM1_
ETR
-
-
USART1
SPI6_M
0_RTS/U
OSI/I2S6
SART10
_SDO
_DE
-
USART6
_TX
-
OCTOS
PIM_P1_
IO7
SDMMC
2_D7
ETH_MII
_TXD1/E
TH_RMII
_TXD1
FMC_A2 TIM23_C
5
H3
LCD_B0
EVENTO
UT
-
-
-
-
-
USART6
_CTS/U
SART6_
NSS
-
OCTOS
PIM_P2_
DQS
-
USART1
0_CK
FMC_N
CAS
-
EVENTO
UT
-
-
FDCAN3
_TX
PG10
-
-
OCTOS
FDCAN3
PIM_P2_
_RX
IO6
PG11
-
LPTIM1_
IN2
-
PG12
-
LPTIM1_
IN1
PG13
TRACED0
PG14
PG15
-
-
-
DCMI_D
13/PSSI
_D13
STM32H735xG
-
PG9
Pinouts, pin descriptions and alternate functions
110/284
Table 9. STM32H735xG pin alternate functions (continued)
AF0
Port
SYS
AF1
AF2
AF3
AF4
CEC/DC
DFSDM1 MI/PSSI/
/LCD/LP DFSDM1
FMC/LP FDCAN3
TIM2/3/4 /I2C1/2/3
TIM1/SA /PDM_S
/5/LPUA /4/5/LPTI
I4/TIM16 AI1/TIM3
RT1/OC M2/OCT
/17/TIM1 /4/5/12/1
TOSPIM OSPIM_
x/TIM2x
5
_P1/2/TI P1/TIM1
M8
5/USAR
T1/10
AF5
AF6
AF7
AF8
AF9
FDCAN1
/2/FMC/
CEC/FD DFSDM1 SDMMC LPUART
LCD/OC
CAN3/S /I2C4/5/ 1/SPI2/I2 1/SAI4/S
TOSPIM
PI1/I2S1/ OCTOS S2/SPI3/ DMMC1/
_P1/2/S
SPI2/I2S PIM_P1/ I2S3/SPI SPDIFR
AI4/SDM
2/SPI3/I2 SAI1/SPI 6/UART X1/SPI6/
MC2/SP
S3/SPI4/ 3/I2S3/U 7/USAR UART4/
DIFRX1/
5/6
ART4
T1/2/3/6
5/8
TIM13/1
4
AF10
AF11
AF12
CRS/FM
C/LCD/O
CTOSPI
M_P1/O
TG1_FS/
OTG1_H
S/SAI4/S
DMMC2/
TIM8
DFSDM1
/ETH/I2C
4/LCD/M
DIOS/O
CTOSPI
M_P1/S
DMMC2/
SWPMI1
/TIM1x/T
IM8/UAR
T7/9/US
ART10
FMC/LC
D/MDIO
S/OCTO
SPIM_P
1/SDMM
C1/TIM1
x/TIM8
AF13
AF14
COMP/D
CMI/PSS LCD/TIM
I/LCD/TI 24/UAR
T5
M1x/TIM
23
AF15
SYS
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTO
UT
PH1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTO
UT
PH2
-
LPTIM1_
IN2
-
-
-
-
-
-
-
OCTOS
SAI4_SC ETH_MII FMC_SD
PIM_P1_
K_B
_CRS
CKE0
IO4
-
LCD_R0
EVENTO
UT
PH3
-
-
-
-
-
-
-
-
-
OCTOS
PIM_P1_
IO5
SAI4_M
CLK_B
-
LCD_R1
EVENTO
UT
PH4
-
-
-
-
I2C2_SC
L
-
-
-
-
LCD_G5
OTG_HS
_ULPI_N
XT
-
-
PSSI_D1
4
LCD_G4
EVENTO
UT
PH5
-
-
-
-
I2C2_SD SPI5_NS
A
S
-
-
-
-
-
-
FMC_SD
NWE
-
-
EVENTO
UT
PH6
-
-
TIM12_C
H1
-
I2C2_S
MBA
SPI5_SC
K
-
-
-
-
-
ETH_MII FMC_SD
_RXD2
NE1
DCMI_D
8/PSSI_
D8
-
EVENTO
UT
PH7
-
-
-
-
I2C3_SC
L
SPI5_MI
SO
-
-
-
-
-
ETH_MII FMC_SD
_RXD3
CKE1
DCMI_D
9/PSSI_
D9
-
EVENTO
UT
PH8
-
-
TIM5_ET
R
-
I2C3_SD
A
-
-
-
-
-
-
-
FMC_D1
6
DCMI_H
SYNC/P
SSI_DE
LCD_R2
EVENTO
UT
PH9
-
-
TIM12_C
H2
-
I2C3_S
MBA
-
-
-
-
-
-
-
FMC_D1
7
DCMI_D
0/PSSI_
D0
LCD_R3
EVENTO
UT
PH10
-
-
TIM5_C
H1
-
I2C4_S
MBA
-
-
-
-
-
-
-
FMC_D1
8
DCMI_D
1/PSSI_
D1
LCD_R4
EVENTO
UT
Port H
111/284
Pinouts, pin descriptions and alternate functions
DS13312 Rev 3
PH0
ETH_MII FMC_SD
_COL
NE0
STM32H735xG
Table 9. STM32H735xG pin alternate functions (continued)
AF0
Port
SYS
DS13312 Rev 3
Port H
AF1
AF2
AF3
AF4
CEC/DC
DFSDM1 MI/PSSI/
/LCD/LP DFSDM1
FMC/LP FDCAN3
TIM2/3/4 /I2C1/2/3
TIM1/SA /PDM_S
/5/LPUA /4/5/LPTI
I4/TIM16 AI1/TIM3
RT1/OC M2/OCT
/17/TIM1 /4/5/12/1
TOSPIM OSPIM_
x/TIM2x
5
_P1/2/TI P1/TIM1
M8
5/USAR
T1/10
AF5
AF6
AF7
AF8
AF9
FDCAN1
/2/FMC/
CEC/FD DFSDM1 SDMMC LPUART
LCD/OC
CAN3/S /I2C4/5/ 1/SPI2/I2 1/SAI4/S
TOSPIM
PI1/I2S1/ OCTOS S2/SPI3/ DMMC1/
_P1/2/S
SPI2/I2S PIM_P1/ I2S3/SPI SPDIFR
AI4/SDM
2/SPI3/I2 SAI1/SPI 6/UART X1/SPI6/
MC2/SP
S3/SPI4/ 3/I2S3/U 7/USAR UART4/
DIFRX1/
5/6
ART4
T1/2/3/6
5/8
TIM13/1
4
AF10
AF11
AF12
AF13
AF14
CRS/FM
C/LCD/O
CTOSPI
M_P1/O
TG1_FS/
OTG1_H
S/SAI4/S
DMMC2/
TIM8
DFSDM1
/ETH/I2C
4/LCD/M
DIOS/O
CTOSPI
M_P1/S
DMMC2/
SWPMI1
/TIM1x/T
IM8/UAR
T7/9/US
ART10
FMC/LC
D/MDIO
S/OCTO
SPIM_P
1/SDMM
C1/TIM1
x/TIM8
COMP/D
CMI/PSS LCD/TIM
I/LCD/TI 24/UAR
T5
M1x/TIM
23
AF15
SYS
PH11
-
-
TIM5_C
H2
-
I2C4_SC
L
-
-
-
-
-
-
-
FMC_D1
9
DCMI_D
2/PSSI_
D2
LCD_R5
EVENTO
UT
PH12
-
-
TIM5_C
H3
-
I2C4_SD
A
-
-
-
-
-
-
-
FMC_D2
0
DCMI_D
3/PSSI_
D3
LCD_R6
EVENTO
UT
PH13
-
-
-
TIM8_C
H1N
-
-
-
-
UART4_
TX
FDCAN1
_TX
-
-
FMC_D2
1
-
LCD_G2
EVENTO
UT
PH14
-
-
-
TIM8_C
H2N
-
-
-
-
UART4_
RX
FDCAN1
_RX
-
-
FMC_D2
2
DCMI_D
4/PSSI_
D4
LCD_G3
EVENTO
UT
PH15
-
-
-
TIM8_C
H3N
-
-
-
-
-
-
-
-
DCMI_D
FMC_D2
11/PSSI_ LCD_G4
3
D11
EVENTO
UT
PJ8
-
TIM1_C
H3N
-
TIM8_C
H1
-
-
-
-
UART8_
TX
-
-
-
-
-
LCD_G1
EVENTO
UT
PJ9
-
TIM1_C
H3
-
TIM8_C
H1N
-
-
-
-
UART8_
RX
-
-
-
-
-
LCD_G2
EVENTO
UT
PJ10
-
TIM1_C
H2N
-
TIM8_C
H2
-
SPI5_M
OSI
-
-
-
-
-
-
-
-
LCD_G3
EVENTO
UT
PJ11
-
TIM1_C
H2
-
TIM8_C
H2N
-
SPI5_MI
SO
-
-
-
-
-
-
-
-
LCD_G4
EVENTO
UT
Port J
Pinouts, pin descriptions and alternate functions
112/284
Table 9. STM32H735xG pin alternate functions (continued)
STM32H735xG
AF0
Port
SYS
Port K
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
CEC/DC
DFSDM1 MI/PSSI/
/LCD/LP DFSDM1
FMC/LP FDCAN3
TIM2/3/4 /I2C1/2/3
TIM1/SA /PDM_S
/5/LPUA /4/5/LPTI
I4/TIM16 AI1/TIM3
RT1/OC M2/OCT
/17/TIM1 /4/5/12/1
TOSPIM OSPIM_
x/TIM2x
5
_P1/2/TI P1/TIM1
M8
5/USAR
T1/10
FDCAN1
/2/FMC/
CEC/FD DFSDM1 SDMMC LPUART
LCD/OC
CAN3/S /I2C4/5/ 1/SPI2/I2 1/SAI4/S
TOSPIM
PI1/I2S1/ OCTOS S2/SPI3/ DMMC1/
_P1/2/S
SPI2/I2S PIM_P1/ I2S3/SPI SPDIFR
AI4/SDM
2/SPI3/I2 SAI1/SPI 6/UART X1/SPI6/
MC2/SP
S3/SPI4/ 3/I2S3/U 7/USAR UART4/
DIFRX1/
5/6
ART4
T1/2/3/6
5/8
TIM13/1
4
AF10
AF11
AF12
CRS/FM
C/LCD/O
CTOSPI
M_P1/O
TG1_FS/
OTG1_H
S/SAI4/S
DMMC2/
TIM8
DFSDM1
/ETH/I2C
4/LCD/M
DIOS/O
CTOSPI
M_P1/S
DMMC2/
SWPMI1
/TIM1x/T
IM8/UAR
T7/9/US
ART10
FMC/LC
D/MDIO
S/OCTO
SPIM_P
1/SDMM
C1/TIM1
x/TIM8
AF13
AF14
COMP/D
CMI/PSS LCD/TIM
I/LCD/TI 24/UAR
T5
M1x/TIM
23
AF15
STM32H735xG
Table 9. STM32H735xG pin alternate functions (continued)
SYS
-
TIM1_C
H1N
-
TIM8_C
H3
-
SPI5_SC
K
-
-
-
-
-
-
-
-
LCD_G5
EVENTO
UT
PK1
-
TIM1_C
H1
-
TIM8_C
H3N
-
SPI5_NS
S
-
-
-
-
-
-
-
-
LCD_G6
EVENTO
UT
PK2
-
TIM1_B
KIN
-
TIM8_B
KIN
-
-
-
-
-
-
TIM8_B
KIN_CO
MP12
TIM1_B
KIN_CO
MP12
-
-
LCD_G7
EVENTO
UT
113/284
Pinouts, pin descriptions and alternate functions
DS13312 Rev 3
PK0
Electrical characteristics
6
STM32H735xG
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of junction temperature, supply voltage and frequencies by tests in production on
100% of the devices with an junction temperature at TJ = 25 °C and TJ = TJmax (given by the
selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes. Based on characterization, the minimum and maximum
values refer to sample tests and represent the mean value plus or minus three times the
standard deviation (mean±3σ).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TJ = 25 °C, VDD = 3.3 V (for the
1.7 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2σ).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 12.
6.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 13.
Figure 12. Pin loading conditions
Figure 13. Pin input voltage
MCU pin
MCU pin
C = 50 pF
VIN
MS19011V2
114/284
DS13312 Rev 3
MS19010V2
STM32H735xG
Power supply scheme
Figure 14. Power supply scheme
VDDSMPS
VLXSMPS
Step
Down
Converter
VFBSMPS
VSSSMPS
VCAP
IOs
D3 domain
(System
logic,
EXTI,
IO
logic Peripherals,
RAM)
Power
switch
VSS
Power
switch
Core domain (VCORE)
LDO
voltage
regulator
VDDLDO
Level shifter
6.1.6
Electrical characteristics
D2 domain
(peripherals,
RAM)
D1 domain
(CPU, peripherals,
RAM)
Flash
VSS
VDD domain
LSI, HSI,
CSI, HSI48,
HSE, PLLs
VDD
VBAT
charging
Backup domain
Backup VBKP
regulator
VSW
VBAT
Power
switch
Power switch
LSE, RTC,
Wakeup logic,
backup
IO
logic registers, Reset
BKUP
IOs
VSS
VDD50USB
Backup
RAM
VSS
USB regulator
VSS
VDD33USB
USB
FS IOs
VDDA
Analog domain
REF_BUF
VREF+
ADC, DAC
VREF+
VREF-
VREF-
OPAMP,
Comparator
VSSA
MSv63814V5
1. Refer to application note AN5419 “Getting started with STM32H723/733, STM32H725/735 and
STM32H730 Value Line hardware development“ for the possible power scheme and connected capacitors.
DS13312 Rev 3
115/284
252
Electrical characteristics
6.1.7
STM32H735xG
Current consumption measurement
Figure 15. Current consumption measurement scheme
SMPS ON
LDO ON
IDD_VBAT
IDD_VBAT
VBAT
VBAT
IDD
IDD
VDD
VDD
VDDSMPS
VDDLDO
VDDA
VDDA
6.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 10: Voltage characteristics,
Table 11: Current characteristics, and Table 12: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and the functional operation
of the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability. Device mission profile (application conditions)
is compliant with JEDEC JESD47 Qualification Standard, extended mission profiles are
available on demand.
Table 10. Voltage characteristics
Symbols
Ratings
Min
Max
Unit
VDDX - VSS(1)
External main supply voltage (including VDD,
VDDLDO, VDDSMPS, VDDA, VDD33USB, VBAT)
−0.3
4.0
V
Input voltage on FT_xxx pins
VSS−0.3
Min(VDD, VDDA,
VDD33USB, VBAT)
+4.0(3)(4)
V
Input voltage on TT_xx pins
VSS−0.3
4.0
V
Input voltage on BOOT0 pin
VSS
9.0
V
VSS-0.3
4.0
V
Variations between different VDDX power
pins of the same domain
-
50
mV
Variations between all the different ground
pins
-
50
mV
VIN(2)
Input voltage on any other pins
|∆VDDX|
|VSSx-VSS|
1. All main power (VDD, VDDA, VDD33USB, VDDSMPS, VBAT) and ground (VSS, VSSA) pins must always be
connected to the external power supply, in the permitted range.
2. VIN maximum must always be respected.
3. This formula has to be applied on power supplies related to the IO structure described by the pin definition
table.
116/284
DS13312 Rev 3
STM32H735xG
Electrical characteristics
4. To sustain a voltage higher than 4V the internal pull-up/pull-down resistors must be disabled.
Table 11. Current characteristics
Symbols
Ratings
Max
ΣIVDD
(1)
Total current into sum of all VDD power lines (source)
620
ΣIVSS
Total current out of sum of all VSS ground lines (sink)(1)
620
IVDD
IVSS
IIO
ΣI(PIN)
IINJ(PIN)
(3)(4)
ΣIINJ(PIN)
Maximum current into each VDD power pin
(source)(1)
100
(1)
100
Maximum current out of each VSS ground pin (sink)
Output current sunk by any I/O and control pin, except Px_C
20
Output current sunk by Px_C pins
1
Total output current sunk by sum of all I/Os and control
pins(2)
Unit
mA
140
Total output current sourced by sum of all I/Os and control pins(2)
140
Injected current on FT_xxx, TT_xx, RST and B pins except PA4,
PA5
−5/+0
Injected current on PA4, PA5
−0/0
Total injected current (sum of all I/Os and control pins)(5)
±25
1. All main power (VDD, VDDA, VDD33USB) and ground (VSS, VSSA) pins must always be connected to the
external power supplies, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output
current must not be sunk/sourced between two consecutive power supply pins referring to high pin count
QFP packages.
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the
specified maximum value.
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN