0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32H757IIT6

STM32H757IIT6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP176

  • 描述:

    IC MCU 32BIT 2MB FLASH 176LQFP

  • 数据手册
  • 价格&库存
STM32H757IIT6 数据手册
STM32H757xI Dual 32-bit Arm® Cortex®-M7 up to 480MHz and -M4 MCUs, 2MB Flash, 1MB RAM, 46 com. and analog interfaces, SMPS, DSI, crypto Datasheet - production data Features FBGA Dual core • 32-bit Arm® Cortex®-M7 core with doubleprecision FPU and L1 cache: 16 Kbytes of data and 16 Kbytes of instruction cache; frequency up to 480 MHz, MPU, 1027 DMIPS/ 2.14 DMIPS/MHz (Dhrystone 2.1), and DSP instructions ® ® LQFP176 (24x24 mm) LQFP208 (28x28 mm) UFBGA169 (7 × 7 mm) TFBGA240+25 (14x14 mm) WLCSP156 (4.96x4.64 mm) Reset and power management • 32-bit Arm 32-bit Cortex -M4 core with FPU, Adaptive real-time accelerator (ART Accelerator™) for internal Flash memory and external memories, frequency up to 240 MHz, MPU, 300 DMIPS/1.25 DMIPS /MHz (Dhrystone 2.1), and DSP instructions • 3 separate power domains which can be independently clock-gated or switched off: – D1: high-performance capabilities – D2: communication peripherals and timers – D3: reset/clock control/power management Memories • POR, PDR, PVD and BOR • 2 Mbytes of Flash memory with read-whilewrite support • Dedicated USB power embedding a 3.3 V internal regulator to supply the internal PHYs • 1 Mbyte of RAM: 192 Kbytes of TCM RAM (inc. 64 Kbytes of ITCM RAM + 128 Kbytes of DTCM RAM for time critical routines), 864 Kbytes of user SRAM, and 4 Kbytes of SRAM in Backup domain • Embedded regulator (LDO) to supply the digital circuitry • Dual mode Quad-SPI memory interface running up to 133 MHz • Flexible external memory controller with up to 32-bit data bus: SRAM, PSRAM, SDRAM/LPSDR SDRAM, NOR/NAND Flash memory clocked up to 125 MHz in Synchronous mode • 1.62 to 3.6 V application supply and I/Os • High power-efficiency SMPS step-down converter regulator to directly supply VCORE and/or external circuitry • Voltage scaling in Run and Stop mode (6 configurable ranges) • Backup regulator (~0.9 V) • Voltage reference for analog peripheral/VREF+ • 1.2 to 3.6 V VBAT supply • CRC calculation unit • Low-power modes: Sleep, Stop, Standby and VBAT supporting battery charging Security Low-power consumption • ROP, PC-ROP, active tamper, secure firmware upgrade support, Secure access mode • VBAT battery operating mode with charging capability • CPU and domain power state monitoring pins General-purpose input/outputs • Up to 168 I/O ports with interrupt capability May 2019 This is information on a product in full production. • 2.95 µA in Standby mode (Backup SRAM OFF, RTC/LSE ON) DS12931 Rev 1 1/251 www.st.com STM32H757xI Clock management • 2× operational amplifiers (7.3 MHz bandwidth) • Internal oscillators: 64 MHz HSI, 48 MHz HSI48, 4 MHz CSI, 32 kHz LSI • 1× digital filters for sigma delta modulator (DFSDM) with 8 channels/4 filters • External oscillators: 4-48 MHz HSE, 32.768 kHz LSE Graphics • 3× PLLs (1 for the system clock, 2 for kernel clocks) with Fractional mode • LCD-TFT controller up to XGA resolution Interconnect matrix • MIPI DSI host including an MIPI D-PHY to interface with low-pin count large displays • 3 bus matrices (1 AXI and 2 AHB) • Chrom-ART graphical hardware Accelerator™ (DMA2D) to reduce CPU load • Bridges (5× AHB2-APB, 2× AXI2-AHB) • Hardware JPEG Codec 4 DMA controllers to unload the CPU Up to 22 timers and watchdogs • 1× high-speed master direct memory access controller (MDMA) with linked list support • 1× high-resolution timer (2.1 ns max resolution) • 2× dual-port DMAs with FIFO • 2× 32-bit timers with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input (up to 240 MHz) • 1× basic DMA with request router capabilities Up to 35 communication peripherals • 4× I2Cs FM+ interfaces (SMBus/PMBus) • 2× 16-bit advanced motor control timers (up to 240 MHz) • 4× USARTs/4x UARTs (ISO7816 interface, LIN, IrDA, up to 12.5 Mbit/s) and 1x LPUART • 10× 16-bit general-purpose timers (up to 240 MHz) • 6× SPIs, 3 with muxed duplex I2S audio class accuracy via internal audio PLL or external clock, 1x I2S in LP domain (up to 150 MHz) • 5× 16-bit low-power timers (up to 240 MHz) • 4x SAIs (serial audio interface) • RTC with sub-second accuracy and hardware calendar • SPDIFRX interface • SWPMI single-wire protocol master I/F • 4× watchdogs (independent and window) • 2× SysTick timers Cryptographic acceleration • MDIO Slave interface • 2× SD/SDIO/MMC interfaces (up to 125 MHz) • 2× CAN controllers: 2 with CAN FD, 1 with time-triggered CAN (TT-CAN) • 2× USB OTG interfaces (1FS, 1HS/FS) crystalless solution with LPM and BCD • Ethernet MAC interface with DMA controller • AES 128, 192, 256, TDES, • HASH (MD5, SHA-1, SHA-2), HMAC • True random number generators Debug mode • SWD & JTAG interfaces • HDMI-CEC • 4-Kbyte Embedded Trace Buffer • 8- to 14-bit camera interface (up to 80 MHz) 96-bit unique ID 11 analog peripherals All packages are ECOPACK®2 compliant • 3× ADCs with 16-bit max. resolution (up to 36 channels, up to 3.6 MSPS) • 1× temperature sensor • 2× 12-bit D/A converters (1 MHz) Table 1. Device summary Reference STM32H757xI • 2× ultra-low-power comparators 2/251 DS12931 Rev 1 Part number STM32H757AI, STM32H757BI, STM32H757II, STM32H757XI, STM32H757ZI STM32H757xI Contents Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1 Dual Arm® Cortex® cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 Arm® Cortex®-M7 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.2 Arm® Cortex®-M4 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.1 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.2 Secure access mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.3 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.4 ART™ accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.5 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5.1 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.5.3 Voltage regulator (SMPS step-down converter and LDO) . . . . . . . . . . . 27 3.5.4 SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.6 Low-power strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.7 Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.7.1 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.7.2 System reset sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.8 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.9 Bus-interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.10 DMA controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.11 Chrom-ART Accelerator™ (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.12 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 33 3.13 Extended interrupt and event controller (EXTI) . . . . . . . . . . . . . . . . . . . . 33 3.14 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 33 3.15 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.16 Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 34 DS12931 Rev 1 3/251 6 Contents 4/251 STM32H757xI 3.17 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.18 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.19 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.20 Digital-to-analog converters (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.21 Ultra-low-power comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.22 Operational amplifiers (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.23 Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 37 3.24 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.25 LCD-TFT controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.26 DSI Host (DSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.27 JPEG Codec (JPEG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.28 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.29 Cryptographic acceleration (CRYP and HASH) . . . . . . . . . . . . . . . . . . . . 41 3.30 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.30.1 High-resolution timer (HRTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.30.2 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.30.3 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.30.4 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.30.5 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5) . . . . 45 3.30.6 Independent watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.30.7 Window watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.30.8 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.31 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 46 3.32 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.33 Universal synchronous/asynchronous receiver transmitter (USART) . . . 47 3.34 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 48 3.35 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) . 49 3.36 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.37 SPDIFRX Receiver Interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.38 Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 50 3.39 Management Data Input/Output (MDIO) slaves . . . . . . . . . . . . . . . . . . . . 51 3.40 SD/SDIO/MMC card host interfaces (SDMMC) . . . . . . . . . . . . . . . . . . . . 51 3.41 Controller area network (FDCAN1, FDCAN2) . . . . . . . . . . . . . . . . . . . . . 51 3.42 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 52 DS12931 Rev 1 STM32H757xI Contents 3.43 Ethernet MAC interface with dedicated DMA controller (ETH) . . . . . . . . . 52 3.44 High-definition multimedia interface (HDMI) - consumer electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.45 Debug infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.3.2 VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.3.3 SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.3.4 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . 114 6.3.5 Embedded reset and power control block characteristics . . . . . . . . . . 115 6.3.6 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.3.7 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.3.8 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.3.9 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 138 6.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.3.12 MIPI D-PHY characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.3.13 MIPI D-PHY regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 149 6.3.14 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.3.15 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.3.16 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 153 6.3.17 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 DS12931 Rev 1 5/251 6 Contents 7 STM32H757xI 6.3.18 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.3.19 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.3.20 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.3.21 Quad-SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 6.3.22 Delay block (DLYB) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 6.3.23 16-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6.3.24 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 6.3.25 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 199 6.3.26 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 6.3.27 Temperature and VBAT monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 6.3.28 Voltage booster for analog switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 6.3.29 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 6.3.30 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 203 6.3.31 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics . . . 205 6.3.32 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 208 6.3.33 LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 209 6.3.34 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.3.35 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 7.1 WLCSP156 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 7.2 UFBGA169 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 7.3 LQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 7.4 LQFP208 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 7.5 TFBGA240+25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 7.6 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 7.6.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 6/251 DS12931 Rev 1 STM32H757xI List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 STM32H757xI features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 System vs domain low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 DFSDM implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 STM32H757xI pin/ball definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Port A alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Port B alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Port C alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Port D alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Port E alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Port F alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Port G alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Port H alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Port I alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Port J alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Port K alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Supply voltage and maximum frequency configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 112 VCAP operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Characteristics of SMPS step-down converter external components . . . . . . . . . . . . . . . . 113 SMPS step-down converter characteristics for external usage . . . . . . . . . . . . . . . . . . . . 114 Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . 114 Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Typical and maximum current consumption in Run mode, code with data processing running from ITCM for Cortex-M7 core, and Flash memory for Cortex-M4 (ART accelerator ON), LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Typical and maximum current consumption in Run mode, code with data processing running from ITCM for Arm Cortex-M7 and Flash memory for Arm Cortex-M4, ART accelerator ON, SMPS regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, both cores running, cache ON, ART accelerator ON, LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, both cores running, cache OFF, ART accelerator OFF, LDO regulator ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Typical and maximum current consumption in Run mode, code with data processing running from ITCM, only Arm Cortex-M7 running, LDO regulator ON . . . . . . . . . . . . . . . 120 Typical and maximum current consumption in Run mode, code with data processing running from ITCM, only Arm Cortex-M7 running, SMPS regulator. . . . . . . . . . . . . . . . . 121 Typical and maximum current consumption in Run mode, code with data processing DS12931 Rev 1 7/251 10 List of tables Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. 8/251 STM32H757xI running from Flash memory, only Arm Cortex-M7 running, cache ON, LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, only Arm Cortex-M7 running, cache OFF, LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Typical and maximum current consumption batch acquisition mode, LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory, only Arm Cortex-M4 running, ART accelerator ON, LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Typical and maximum current consumption in Run mode, code with data processing running from Flash bank 2, only Arm Cortex-M4 running, ART accelerator ON, SMPS regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Typical and maximum current consumption in Stop, LDO regulator ON . . . . . . . . . . . . . 124 Typical and maximum current consumption in Stop, SMPS regulator . . . . . . . . . . . . . . . 125 Typical and maximum current consumption in Sleep mode, LDO regulator . . . . . . . . . . 126 Typical and maximum current consumption in Sleep mode, SMPS regulator . . . . . . . . . 126 Typical and maximum current consumption in Standby . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Typical and maximum current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . 127 Peripheral current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4-48 MHz HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 CSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 PLL characteristics (wide VCO frequency range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 PLL characteristics (medium VCO frequency range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 MIPI D-PHY characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 MIPI D-PHY AC characteristics LP mode and HS/LP transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 DSI regulator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Flash memory programming (single bank configuration nDBANK=1) . . . . . . . . . . . . . . . 150 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Output voltage characteristics for all I/Os except PC13, PC14, PC15 and PI8 . . . . . . . . 157 Output voltage characteristics for PC13, PC14, PC15 and PI8 . . . . . . . . . . . . . . . . . . . . 158 Output timing characteristics (HSLV OFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Output timing characteristics (HSLV ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 164 Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . 164 Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 166 DS12931 Rev 1 STM32H757xI Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. Table 108. Table 109. Table 110. Table 111. Table 112. Table 113. Table 114. Table 115. Table 116. Table 117. Table 118. Table 119. Table 120. Table 121. Table 122. Table 123. Table 124. Table 125. Table 126. Table 127. Table 128. Table 129. Table 130. Table 131. Table 132. List of tables Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 166 Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 168 Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 169 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 175 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 180 SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 SDRAM Write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 LPSDR SDRAM Write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 QUADSPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Delay Block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Minimum sampling time vs RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Temperature monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Voltage booster for analog switch characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 DFSDM measured timing 1.62-3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Minimum i2c_ker_ck frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 MDIO Slave timing parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 Dynamics characteristics: SD / MMC characteristics, VDD=2.7 to 3.6 V . . . . . . . . . . . . . 223 Dynamics characteristics: eMMC characteristics VDD=1.71V to 1.9V . . . . . . . . . . . . . . . 224 Dynamics characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 Dynamics characteristics: Ethernet MAC signals for SMI . . . . . . . . . . . . . . . . . . . . . . . . 227 Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 228 Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 228 Dynamics JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Dynamics SWD characteristics: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 WLCSP156 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 DS12931 Rev 1 9/251 10 List of tables Table 133. Table 134. Table 135. Table 136. Table 137. Table 138. Table 139. Table 140. 10/251 STM32H757xI WLCSP156 bump recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 UFBGA169 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 LQFP176 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 LQFP208 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 TFBG240+25 ball package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 TFBGA240+25 recommended PCB design rules (0.8 mm pitch) . . . . . . . . . . . . . . . . . . . 246 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 DS12931 Rev 1 STM32H757xI List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. STM32H757xI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 TFBGA240+25 ball assignment differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 ART™ accelerator schematic and environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Power-up/power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 STM32H757xI bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 WLCSP156 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 UFBGA169 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 LQFP208 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 TFBGA240+25 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 External components for SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Typical SMPS efficiency (%) vs load current (A) in Run mode at TJ = 30 °C. . . . . . . . . . 128 Typical SMPS efficiency (%) vs load current (A) in Run mode at TJ = TJmax . . . . . . . . 128 Typical SMPS efficiency (%) vs load current (A) in low-power mode at TJ = 30 °C . . . . . 129 Typical SMPS efficiency (%) vs load current (A) in low-power mode at TJ = TJmax . . . 130 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 MIPI D-PHY HS/LP clock lane transition timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . 149 MIPI D-PHY HS/LP data lane transition timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 149 VIL/VIH for all I/Os except BOOT0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 163 Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 165 Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 167 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 174 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 179 NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 180 SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Quad-SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 Quad-SPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 ADC accuracy characteristics (12-bit resolution) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 194 Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 194 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 DS12931 Rev 1 11/251 12 List of figures Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. Figure 78. Figure 79. Figure 80. Figure 81. Figure 82. Figure 83. Figure 84. Figure 85. 12/251 STM32H757xI Channel transceiver timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 LCD-TFT horizontal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 LCD-TFT vertical timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 USART timing diagram in Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 USART timing diagram in Slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 MDIO Slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 JTAG timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 SWD timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 WLCSP156 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 WLCSP156 bump recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 WLCSP156 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 UFBGA169 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 UFBGA169 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 LQFP176 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 LQFP176 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 LQFP176 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 LQFP208 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 LQFP208 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 LQFP208 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 TFBGA240+25 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 TFBGA240+25 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 TFBGA240+25 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 DS12931 Rev 1 STM32H757xI 1 Introduction Introduction This document provides information on STM32H757xI microcontrollers, such as description, functional overview, pin assignment and definition, electrical characteristics, packaging, and ordering information. This document should be read in conjunction with the STM32H757xI reference manual (RM0399), available from the STMicroelectronics website www.st.com. For information on the Arm®(a) Cortex®-M7 core and Arm® Cortex®-M4 core, please refer to the Cortex®-M7 Technical Reference Manual, available from the http://www.arm.com website. a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. DS12931 Rev 1 13/251 55 Description 2 STM32H757xI Description STM32H757xI devices are based on the high-performance Arm® Cortex®-M7 and Cortex®M4 32-bit RISC cores. The Cortex®-M7 core operates at up to 480 MHz and the Cortex®M4 core at up to 240 MHz. Both cores feature a floating point unit (FPU) which supports Arm® single- and double-precision (Cortex®-M7 core) operations and conversions (IEEE 754 compliant), including a full set of DSP instructions and a memory protection unit (MPU) to enhance application security. STM32H757xI devices incorporate high-speed embedded memories with a dual-bank Flash memory of 2 Mbytes, up to 1 Mbyte of RAM (including 192 Kbytes of TCM RAM, up to 864 Kbytes of user SRAM and 4 Kbytes of backup SRAM), as well as an extensive range of enhanced I/Os and peripherals connected to APB buses, AHB buses, 2x32-bit multi-AHB bus matrix and a multi layer AXI interconnect supporting internal and external memory access. All the devices offer three ADCs, two DACs, two ultra-low power comparators, a low-power RTC, a high-resolution timer, 12 general-purpose 16-bit timers, two PWM timers for motor control, five low-power timers, a true random number generator (RNG), and a cryptographic acceleration cell. The devices support four digital filters for external sigma-delta modulators (DFSDM). They also feature standard and advanced communication interfaces. • • 14/251 Standard peripherals – Four I2Cs – Four USARTs, four UARTs and one LPUART – Six SPIs, three I2Ss in Half-duplex mode. To achieve audio class accuracy, the I2S peripherals can be clocked by a dedicated internal audio PLL or by an external clock to allow synchronization. – Four SAI serial audio interfaces – One SPDIFRX interface – One SWPMI (Single Wire Protocol Master Interface) – Management Data Input/Output (MDIO) slaves – Two SDMMC interfaces – A USB OTG full-speed and a USB OTG high-speed interface with full-speed capability (with the ULPI) – One FDCAN plus one TT-FDCAN interface – An Ethernet interface – Chrom-ART Accelerator™ – HDMI-CEC Advanced peripherals including – A flexible memory control (FMC) interface – A Quad-SPI Flash memory interface – A camera interface for CMOS sensors – An LCD-TFT display controller – A JPEG hardware compressor/decompressor – A DSI Host interface. DS12931 Rev 1 STM32H757xI Description Refer to Table 2: STM32H757xI features and peripheral counts for the list of peripherals available on each part number. STM32H757xI devices operate in the –40 to +85 °C temperature range from a 1.62 to 3.6 V power supply. The supply voltage can drop down to 1.62 V by using an external power supervisor (see Section 3.5.2: Power supply supervisor) and connecting the PDR_ON pin to VSS. Otherwise the supply voltage must stay above 1.71 V with the embedded power voltage detector enabled. Dedicated supply inputs for USB (OTG_FS and OTG_HS) are available on all packages to allow a greater power supply choice. A comprehensive set of power-saving modes allows the design of low-power applications. STM32H757xI devices are offered in 5 packages ranging from 156 pins to 240 pins/balls. The set of included peripherals changes with the device chosen. These features make STM32H757xI microcontrollers suitable for a wide range of applications: • Motor drive and application control • Medical equipment • Industrial applications: PLC, inverters, circuit breakers • Printers, and scanners • Alarm systems, video intercom, and HVAC • Home audio appliances • Mobile applications, Internet of Things • Wearable devices: smart watches. Figure 1 shows the device block diagram. Table 2. STM32H757xI features and peripheral counts Peripherals STM32H757 STM32H757 STM32H75 STM32H75 STM32H757 ZI AI 7II 7BI XI Flash memory in Kbytes 2 x 1 Mbyte SRAM in Kbytes TCM RAM in Kbytes SRAM mapped onto AXI bus 512 SRAM1 (D2 domain) 128 SRAM2 (D2 domain) 64 SRAM3 (D2 domain) 32 SRAM4 (D3 domain) 64 ITCM RAM (instruction) 64 DTCM RAM (data) 128 Backup SRAM (Kbytes) 4 FMC Yes General-purpose input/outputs 99 Quad-SPI 112 119 148 168 Yes DS12931 Rev 1 15/251 55 Description STM32H757xI Table 2. STM32H757xI features and peripheral counts (continued) Peripherals STM32H757 STM32H757 STM32H75 STM32H75 STM32H757 ZI AI 7II 7BI XI Ethernet Yes Timers High-resolution 1 General-purpose 10 Advanced-control (PWM) 2 Basic 2 Low-power 5 Wakeup pins Tamper pins 4 2 6 3 Random number generator Yes Cryptographic accelerator Yes SPI / I2S 6/3(1) I2C 4 USART/ UART/ LPUART 4/4/ 1 SAI 4 SPDIFRX 4 inputs SWPMI Yes MDIO Yes SDMMC 2 FDCAN/TT-FDCAN 1/1 USB OTG_FS Yes USB OTG_HS Yes Communication interfaces Ethernet and camera interface Yes LCD-TFT Yes MIPI-DSI Host Yes JPEG Codec Yes Chrom-ART Accelerator™ (DMA2D) Yes 16-bit ADCs Number of Direct channels Number of Fast channels Number of Slow channels 3 16/251 2 7 14 2 9 17 2 9 21 12-bit DAC Number of channels Yes 2 Comparators 2 Operational amplifiers 2 DS12931 Rev 1 4 9 23 STM32H757xI Description Table 2. STM32H757xI features and peripheral counts (continued) Peripherals STM32H757 STM32H757 STM32H75 STM32H75 STM32H757 ZI AI 7II 7BI XI DFSDM Yes Maximum CPU frequency 480 MHz Operating voltage 1.62 to 3.6 V(2) Ambient temperatures: –40 up to +85 °C(3) Operating temperatures Package Junction temperature: –40 to + 125 °C WLCSP156 UFBGA169 LQFP176 LQFP208 TFBGA240+ 25 1. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode. 2. VDD/VDDA can drop down to 1.62 V by using an external power supervisor (see Section 3.5.2: Power supply supervisor) and connecting PDR_ON pin to VSS. Otherwise the supply voltage must stay above 1.71 V with the embedded power voltage detector enabled. 3. The product junction temperature must be kept within the –40 to +125 °C range. DS12931 Rev 1 17/251 55 Description STM32H757xI Figure 1. STM32H757xI block diagram MII / RMII To APB1-2 peripherals MDIO as AF AHB1 1 MB FLASH 1 MB FLASH 16 Streams FIFO CHROM-ART (DMA2D) PHY D S I FIFO LCD-TFT FIFO WWDG1 JPEG PHY PHY ETHER SDMMC2 OTG_HS OTG_FS MAC DMA FMC FMC_signals Quad-SPI RNG HASH CLK, CS,D[7:0] AXI/AHB34 (200MHz) SRAM1 SRAM2 SRAM3 128 KB 128 KB 32 KB ADC1 Up to 20 analog inputs common to ADC1 & 2 ADC2 32b TIM6 16b 16b TIM7 16b 16b SWPMI FIFO 32b 16b ART (instruction cache) 16b AHB ART (200MHz) TIM2 4 channels, ETR as AF TIM3 4 channels, ETR as AF TIM4 4 channels, ETR as AF TIM5 4 channels TIM12 2 channels as AF TIM13 1 channel as AF TIM14 16b 1 channel as AF smcard AHB2 (200MHz) Delay block DMA/ FIFO AHB/APB 3DES/AES AHB/APB SDMMC1 DMA/ FIFO FIFO 32-bit AHB BUS-MATRIX DMA Mux1 512 KB AXI SRAM AHBS (200MHz) AHB1 (200MHz) D-Cache 16KB DMA2 8 Stream 8 Stream FIFOs FIFOs D- SIBus Bus Bus AHB2 (200MHz) I-Cache 16KB LCD_R[7:0], LCD_G[7:0], LCD_B[7:0], LCD_HSYNC, LCD_VSYNC, LCD_DE, LCD_CLK SDMMC_D[7:0],SDMMC_D[7:3,1]Dir SDMMC_D0dir, SDMMC_D2dir CMD, CMDdir, CK, Ckin, CKio as AF AXIM ETM MDMA DSI_D0_P, DSI_D0_N DSI_D1_P, DSI_D1_N DSI_CK_P, DSI_CK_N AXI/AHB12 (200MHz) AHB4 (200MHz) Arm Cortex M7 AHBP AHB3 TRACECK TRACED[3:0] JTAG/SW DMA1 ARM Cortex M4 64-bit AXI BUS-MATRIX JTDO/SWD, JTDO JTRST, JTDI, JTCK/SWCLK DTCM 64KB AHB ART(200MHz) DTCM 64KB ITCM 4KB DP, DM, STP, SDMMC_ NXT,ULPI:CK DP, DM, ID, D[7:0], VBUS , D[7:0], DIR, CMD, CK as AF ID, VBUS USART2 irDA smcard RX, TX, SCK, CTS, RTS as AF 4 compl. chan. (TIM1_CH1[1:4]N), 4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF 4 compl. chan.(TIM8_CH1[1:4]N), 4 chan. (TIM8_CH1[1:4], ETR, BKIN as AF A P B 10 MHz 3 TIM15 SPI4 AHB4 IWDG1 smcard irDA USART6 smcard irDA USART1 TIM8/PWM DAP RX, TX as AF UART7 RX, TX as AF UART8 RX, TX as AF 16b 16b SPI2/I2S2 MOSI, MISO, SCK, NSS/SDO, SDI, CK, WS, MCK, as AF SPI3/I2S3 MOSI, MISO, SCK, NSS/SDO, SDI, CK, WS, MCK, as AF I2C1/SMBUS I2C2/SMBUS I2C3/SMBUS MDIOS RAM I/F 32-bit AHB BUS-MATRIX IWDG2 SPI/I2S1 TIM1/PWM BDMA APB1 100 MHz (max) APB2 100 MHz (max) TIM16 DMA Mux2 AHB4 (200MHz) RX, TX, SCK, CTS, RTS as AF RX, TX as AF SCL, SDA, SMBAL as AF SCL, SDA, SMBAL as AF SCL, SDA, SMBAL as AF MDC, MDIO FDCAN1 FIFO SDO, SDI, CK, WS, MCK, as AF RX, TX, SCK CTS, RTS as AF UART5 Digital filter MOSI, MISO, SCK, NSS/ SPI5 TIM17 10 KB SRAM SAI1 AHB4 SD, SCK, FS, MCLK, D[3:1], CK[2:1] as AF AHB4 SAI2 MOSI, MISO, SCK, NSS as AF UART4 AHB4 SD, SCK, FS, MCLK as AF 2 compl. chan.(TIM15_CH1[1:2]N), 2 chan. (TIM_CH15[1:2], BKIN as AF irDA DFSDM1 SAI3 MOSI, MISO, SCK, NSS as AF AHB/APB HRTIM1 SD, SCK, FS, MCLK as AF 1 compl. chan.(TIM17_CH1N), 1 chan. (TIM17_CH1, BKIN as AF 1 compl. chan.(TIM16_CH1N), 1 chan. (TIM16_CH1, BKIN as AF USART3 DCMI AHB4 HRTIM1_CH[A..E]x HRTIM1_FLT[5:1], HRTIM1_FLT[5:1]_in, SYSFLT DFSDM1_CKOUT, DFSDM1_DATAIN[0:7], DFSDM1_CKIN[0:7] FIFO FIFO FIFO HSYNC, VSYNC, PUIXCLK, D[13:0] RX, TX, SCK, CTS, RTS as AF FDCAN2 TX, RX TX, RX CRS 64 KB SRAM 4 KB BKP RAM SPDIFRX1 IN[1:4] as AF HDMI-CEC HSEM DAC1&2 CRC LPTIM1 CEC as AF DAC1_OUT, DAC2_OUT as AF 16b LPTIM1_IN1, LPTIM1_IN2, LPTIM1_OUT as AF LPTIM4_OUT as AF LPTIM4 MISO, MOSI, SCK, NSS as AF RX, TX, CK, CTS, RTS as AF PWRCTRL SMPS step-down converter SAI4 XTAL 32 kHz COMP1&2 LPTIM5 LPTIM3_OUT as AF AHB/APB Voltage regulator 3.3 to 1.2V @VSW LPTIM5_OUT as AF SCL, SDA, SMBAL as AF AHB4 GPIO PORTK VDD12 LS SD, SCK, FS, MCLK, PDM_DI/CK[4:1] as AF COMPx_INP, COMPx_INM, COMPx_OUT as AF RCC Reset & control @VDD33 LPTIM3 I2C4 SPI6 RTC Backup registers @VDD VREF SYSCFG EXTI WKUP CSI RC48 4 MHz CSI 48 MHz HSI48 RC HSI 64 MHz HSI RC LSI 32 KHz LSI RC PLL1+PLL2+PLL3 LS PK[7:0] Tem. sensor GPIO PORTA.. J OPAMP1&2 APB4 100 MHz (max) PA..J[15:0] APB4 100 MHz (max) VDDREF_ADC ADC3 AHB4 (200MHz) WWDG2 Up to 17 analog inputs common to ADC1 and 2 AWU OPAMPx_VINM OPAMPx_VINP OPAMPx_VOUT as AF VDD = 1.62 to 3.6V VDDUSB33 = 3.0 to 3.6V VDDDSI = 1.8 to 3.6V VSS VCAP VDDMMC33 = 1.8 to 3.6 V VDDSMPS, VSSSMPS VLXSMPS, VFBSMPS OSC32_IN OSC32_OUT RTC_TS RTC_TAMP[1:3] RTC_OUT RTC_REFIN VBAT = 1.2 to 3.6 V @VDD XTAL OSC 4- 48 MHz OSC_IN OSC_OUT IWDG1 LPUART1 IWDG2 LPTIM2_OUT as AF LPTIM2 @VDD POR reset Int SUPPLY SUPERVISION POR/PDR/BOR PVD VDDA, VSSA NRESET WKUP[5:0] MSv43738V13 18/251 DS12931 Rev 1 STM32H757xI Description Compatibility throughout the family STM32H757xI devices are not pin-to-pin compatible with STM32H7x3 devices (single core line): • The TFBGA240+25 ballout is compatible with STM32H7x3 devices, except for a few I/O balls as shown in Figure 2. • LQFP208 and LQFP176 pinouts, as well as UFBGA176+25 ballout are not compatible with STM32H7x3 devices. Figure 2. TFBGA240+25 ball assignment differences 1 2 3 4 5 6 7 8 9 10 11 12 PI6 PI5 13 PI4 PB5 VDDLDO VCAP PK5 PG10 PG9 PD5 PD4 PC10 14 15 16 17 PA15 PI1 PI0 VSS A VSS B VBAT VSS PI7 PE1 PB6 VSS PB4 PK4 PG11 PJ15 PD6 PD3 PC11 PA14 PI2 PH15 PH14 C PC15OSC32_ OUT PC14OSC32_ IN PE2 PE0 PB7 PB3 PK6 PK3 PG12 VSS PD7 PC12 VSS PI3 PA13 VSS VDDLDO D PE5 PE4 PE3 PB9 PB8 PG15 PK7 PG14 PG13 PJ14 PJ12 PD2 PD0 PA10 PA9 PH13 VCAP PI9 PC13 PI8 PE6 VDD PDR _ON BOOT0 VDD PJ13 VDD PD1 PC8 PC9 PA8 PA12 PA11 PI10 PI11 VDD PC7 PC6 PG8 PG7 VDD33 USB PF1 PF0 VDD VSS VSS VSS VSS VSS VDD PG5 PG6 VSS VDD5 USB E F G PF2 H PI12 PI13 PI14 PF3 VDD VSS VSS VSS VSS VSS VDD PG4 PG3 PG2 PK2 J PH1OSC_ OUT PH0OSC_ IN VSS PF5 PF4 VSS VSS VSS VSS VSS VDD PK0 PK1 VSS DSI VSSDSI K NRST PF6 PF7 PF8 VDD VSS VSS VSS VSS VSS VDD PJ11 L VDDA PC0 PF10 PF9 VDD VSS VSS VSS VSS VSS VDD PJ10 M VREF+ PC1 PC2 PC3 VDD VDD PJ9 N VREF- PH2 PA2 PA1 PA0 PJ0 VDD VDD PE10 VDD VDD VDD PJ8 PJ7 PJ6 VSS P VSSA PH3 PH4 PH5 PI15 PJ1 PF13 PF14 PE9 PE11 PB10 PB11 PH10 PH11 PD15 PD14 R PC2_C PC3_C PA6 VSS PA7 PB2 PF12 VSS PF15 PE12 PE15 PJ5 PH9 PH12 PD11 PD12 PD13 T PA0_C PA1_C PA5 PC4 PB1 PJ2 PF11 PG0 PE8 PE13 PH6 VSS PH8 PB12 PB15 PD10 PD9 U VSS PA3 PA4 PC5 PB0 PJ3 PJ4 PG1 PE7 PE14 VCAP VDDLDO PH7 PB13 PB14 PD8 VSS STM32H7x7 VLX SMPS PI9 VDD VSS SMPS SMPS STM32H7x3 PI9 DSI_D1N VSSDSI DSI_D1P NC PI9 VSS PI9 NC NC VSSDSI DSI_CKP DSI_CKN NC NC VSS NC NC NC VSS PF2 NC NC PJ6 VSS NC PD15 PD14 VDD VFB PF2 SMPS VSSDSI PF2 DSI_D0P DSI_D0N PF2 VDDCAP PJ6 VSS PD15 PD14 DSI VDDDSI MSv48802V2 1. The balls highlighted in gray correspond to different signals on STM32H757xI and STM32H7x3 devices. DS12931 Rev 1 19/251 55 Functional overview STM32H757xI 3 Functional overview 3.1 Dual Arm® Cortex® cores The dual-core MIPI-DSI STM32H757xI devices embed two Arm® cores, a Cortex®-M7 and a Cortex®-M4. The Cortex®-M4 offers optimal performance for real-time applications while the Cortex®-M7 core can execute high-performance tasks in parallel. The two cores belong to separate power domains. This allows designing gradual highpower efficiency solutions in combination with the low-power modes already available on all STM32 microcontrollers. 3.1.1 Arm® Cortex®-M7 with FPU The Arm® Cortex®-M7 with double-precision FPU processor is the latest generation of Arm processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and optimized power consumption, while delivering outstanding computational performance and low interrupt latency. The Cortex®-M7 processor is a highly efficient high-performance featuring: • Six-stage dual-issue pipeline • Dynamic branch prediction • Harvard architecture with L1 caches (16 Kbytes of I-cache and 16 Kbytes of D-cache) • 64-bit AXI interface • 64-bit ITCM interface • 2x32-bit DTCM interfaces The following memory interfaces are supported: • Separate Instruction and Data buses (Harvard Architecture) to optimize CPU latency • Tightly Coupled Memory (TCM) interface designed for fast and deterministic SRAM accesses • AXI Bus interface to optimize Burst transfers • Dedicated low-latency AHB-Lite peripheral bus (AHBP) to connect to peripherals. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. It also supports single and double precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation. Figure 1 shows the general block diagram of the STM32H757xI family. Note: 20/251 Cortex®-M7 with FPU core is binary compatible with the Cortex®-M4 core. DS12931 Rev 1 STM32H757xI 3.1.2 Functional overview Arm® Cortex®-M4 with FPU The Arm® Cortex®-M4 processor is a high-performance embedded processor which supports DSP instructions. It was developed to provide an optimized power consumption MCU, while delivering outstanding computational performance and low interrupt latency. The Arm® Cortex®-M4 processor is a highly efficient MCU featuring: • 3-stage pipeline with branch prediction • Harvard architecture • 32-bit System (S-BUS) interface • 32-bit I-BUS interface • 32-bit D-BUS interface The Arm® Cortex®-M4 processor also features a dedicated hardware adaptive real-time accelerator (ART Accelerator™). This is an instruction cache memory composed of sixtyfour 256-bit lines, a 256-bit cache buffer connected to the 64-bit AXI interface and a 32-bit interface for non-cacheable accesses. 3.2 Memory protection unit (MPU) The devices feature two memory protection units. Each MPU manages the CPU access rights and the attributes of the system resources. It has to be programmed and enabled before use. Its main purposes are to prevent an untrusted user program to accidentally corrupt data used by the OS and/or by a privileged task, but also to protect data processes or read-protect memory regions. The MPU defines access rules for privileged accesses and user program accesses. It allows defining up to 16 protected regions that can in turn be divided into up to 8 independent subregions, where region address, size, and attributes can be configured. The protection area ranges from 32 bytes to 4 Gbytes of addressable memory. When an unauthorized access is performed, a memory management exception is generated. DS12931 Rev 1 21/251 55 Functional overview STM32H757xI 3.3 Memories 3.3.1 Embedded Flash memory The STM32H757xI devices embed 2 Mbytes of Flash memory that can be used for storing programs and data. The Flash memory is organized as 266-bit Flash words memory that can be used for storing both code and data constants. Each word consists of: • One Flash word (8 words, 32 bytes or 256 bits) • 10 ECC bits. The Flash memory is divided into two independent banks. Each bank is organized as follows: 3.3.2 • 1 Mbyte of user Flash memory block containing eight user sectors of 128 Kbytes (4 K Flash memory words) • 128 Kbytes of System Flash memory from which the device can boot • 2 Kbytes (64 Flash words) of user option bytes for user configuration Secure access mode In addition to other typical memory protection mechanism (RDP, PCROP), STM32H757xI devices introduce the Secure access mode, a new enhanced security feature. This mode allows developing user-defined secure services by ensuring, on the one hand code and data protection and on the other hand code safe execution. Two types of secure services are available: • STMicroelectronics Root Secure Services: These services are embedded in System memory. They provide a secure solution for firmware and third-party modules installation. These services rely on cryptographic algorithms based on a device unique private key. • User-defined secure services: These services are embedded in user Flash memory. Examples of user secure services are proprietary user firmware update solution, secure Flash integrity check or any other sensitive applications that require a high level of protection. The secure firmware is embedded in specific user Flash memory areas configured through option bytes. Secure services are executed just after a reset and preempt all other applications to guarantee protected and safe execution. Once executed, the corresponding code and data are no more accessible. The above secure services are available only for Cortex®-M7 core operating in Secure access mode. The other masters cannot access the option bytes involved in Secure access mode settings or the Flash secured areas. 22/251 DS12931 Rev 1 STM32H757xI 3.3.3 Functional overview Embedded SRAM All devices feature around 1 Mbyte of RAM with hardware ECC. The RAM is divided as follows: • 512 Kbytes of AXI-SRAM mapped onto AXI bus on D1 domain. • SRAM1 mapped on D2 domain: 128 Kbytes • SRAM2 mapped on D2 domain: 128 Kbytes • SRAM3 mapped on D2 domain: 32 Kbytes • SRAM4 mapped on D3 domain: 64 Kbytes • 4 Kbytes of backup SRAM The content of this area is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode. • RAM mapped to TCM interface (ITCM and DTCM): Both ITCM and DTCM RAMs are 0 wait state memories. They can be accessed either from the Arm® Cortex®-M7 CPU or the MDMA (even in Sleep mode) through a specific AHB slave of the Cortex®-M7(AHBS): – 64 Kbytes of ITCM-RAM (instruction RAM) This RAM is connected to ITCM 64-bit interface designed for execution of critical real-times routines by the Cortex®-M7. – 128 Kbytes of DTCM-RAM (2x 64-Kbyte DTCM-RAMs on 2x32-bit DTCM ports) The DTCM-RAM could be used for critical real-time data, such as interrupt service routines or stack/heap memory. Both DTCM-RAMs can be used in parallel (for load/store operations) thanks to the Cortex®-M7 dual issue capability. The MDMA can be used to load code or data in ITCM or DTCM RAMs. Error code correction (ECC) Over the product lifetime, and/or due to external events such as radiations, invalid bits in memories may occur. They can be detected and corrected by ECC. This is an expected behavior that has to be managed at final-application software level in order to ensure data integrity through ECC algorithms implementation. SRAM data are protected by ECC: • 7 ECC bits are added per 32-bit word. • 8 ECC bits are added per 64-bit word for AXI-SRAM and ITCM-RAM. The ECC mechanism is based on the SECDED algorithm. It supports single-error correction and double-error detection. 3.3.4 ART™ accelerator The ART™ (adaptive real-time) accelerator block speeds up instruction fetch accesses of the Cortex®-M4 core from D1-domain internal memories (Flash memory bank 1, Flash memory bank 2, AXI SRAM) and from D1-domain external memories attached via QuadSPI controller and Flexible memory controller (FMC). The ART™ accelerator is a 256-bit cache line using 64-bit WRAP4 accesses from the 64-bit AXI D1 domain. The acceleration is achieved by loading selected code into an embedded cache and making it instantly available to Cortex®-M4 core, thus avoiding latency due to memory wait states. DS12931 Rev 1 23/251 55 Functional overview STM32H757xI Figure 3. shows the block schematic and the environment of the ART accelerator. Figure 3. ART™ accelerator schematic and environment AHB from D2 domain D1 domain ART accelerator Non-cacheable access path AHB switch Cacheable access path control Detect of write to cacheable page Cache Cache buffer noncacheable access instruction fetch cache cache hit miss 1 x 256-bit Cache memory 64 x 256-bit Cache memory Cache manager 64 x 256-bit cache refill AHB access AXI access Flash bank 1 Legend Flash bank 2 Control 32-bit bus AXI SRAM 64-bit bus QSPI Bus multiplexer AXI AHB Master interface FMC Slave interface 64-bit AXI bus matrix MSv39757V2 3.4 Boot modes By default, the boot codes are executed simultaneously by both cores. However, by programming the appropriate Flash user option byte, it is possible to boot from one core while clock-gating the other core. At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF which includes: 24/251 • All Flash address space • Flash memory and SRAMs (except for ITCM /DTCM RAMs which cannot be accessed by the Cortex®-M4 core) DS12931 Rev 1 STM32H757xI Functional overview The bootloader is located in non-user System memory. It is used to reprogram the Flash memory through a serial interface (USART, I2C, SPI, USB-DFU). Refer to STM32 microcontroller System memory Boot mode application note (AN2606) for details. 3.5 Power supply management 3.5.1 Power supply scheme STM32H757xI power supply voltages are the following: • VDD = 1.62 to 3.6 V: external power supply for I/Os, provided externally through VDD pins. • VDDLDO = 1.62 to 3.6 V: supply voltage for the internal regulator supplying VCORE • VDDA = 1.62 to 3.6 V: external analog power supplies for ADC, DAC, COMP and OPAMP. • VDD33USB and VDD50USB: VDD50USB can be supplied through the USB cable to generate the VDD33USB via the USB internal regulator. This allows supporting a VDD supply different from 3.3 V. The USB regulator can be bypassed to supply directly VDD33USB if VDD = 3.3 V. • VBAT = 1.2 to 3.6 V: power supply for the VSW domain when VDD is not present. • VCAP: VCORE supply voltage, which values depend on voltage scaling (1.0 V, 1.1 V, 1.2 V or 1.35 V). They are configured through VOS bits in PWR_D3CR register and ODEN bit in the SYSCFG_PWRCR register. The VCORE domain is split into the following power domains that can be independently switch off. • – D1 domain containing some peripherals and the Cortex®-M7 core. – D2 domain containing a large part of the peripherals and the Cortex®-M4 core. – D3 domain containing some peripherals and the system control. VDDSMPS= 1.62 V to 3.6 V: SMPS step-down converter power supply VDDSMPS must be kept at the same voltage level as VDD. • VLXSMPS = SMPS step-down converter output coupled to an inductor. • VFBSMPS = VCORE, 1.8 V or 2.5 V external SMPS step-down converter feedback voltage sense input. • VDDDSI = 1.62 to 3.6 V: supply voltage for the DSI internal regulator • • VDD12DSI = 1.15 to 1.3 V: optional supply voltage for the DSI PHY (DSI regulator off) VCAPDSI: DSI regulator supply output During power-up and power-down phases, the following power sequence requirements must be respected (see Figure 4): • When VDD is below 1 V, other power supplies (VDDA, VDD33USB, VDD50USB, VDDDSI) must remain below VDD + 300 mV. • When VDD is above 1 V, all power supplies are independent (except for VDDSMPS, which must remain at the same level as VDD). During the power-down phase, VDD can temporarily become lower than other supplies only if the energy provided to the microcontroller remains below 1 mJ. This allows external decoupling capacitors to be discharged with different time constants during the power-down transient phase. DS12931 Rev 1 25/251 55 Functional overview STM32H757xI Figure 4. Power-up/power-down sequence V 3.6 VDDX(1) VDD VBOR0 1 0.3 Power-on Invalid supply area Operating mode VDDX < VDD + 300 mV Power-down VDDX independent from VDD time MSv47490V1 1. VDDx refers to any power supply among VDDA, VDD33USB, VDD50USB and VDDDSI. 2. VDD and VDDSMPS must be wired together into order to follow the same voltage sequence. 3.5.2 Power supply supervisor The devices have an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry: • Power-on reset (POR) The POR supervisor monitors VDD power supply and compares it to a fixed threshold. The devices remain in Reset mode when VDD is below this threshold, • Power-down reset (PDR) The PDR supervisor monitors VDD power supply. A reset is generated when VDD drops below a fixed threshold. The PDR supervisor can be enabled/disabled through PDR_ON pin. • Brownout reset (BOR) The BOR supervisor monitors VDD power supply. Three BOR thresholds (from 2.1 to 2.7 V) can be configured through option bytes. A reset is generated when VDD drops below this threshold. 26/251 DS12931 Rev 1 STM32H757xI 3.5.3 Functional overview Voltage regulator (SMPS step-down converter and LDO) The same voltage regulator supplies the 3 power domains (D1, D2 and D3). D1 and D2 can be independently switched off. Voltage regulator output can be adjusted according to application needs through 6 power supply levels: • Note: Run mode (VOS0 to VOS3) – Scale 0: boosted performance (available only with LDO regulator) – Scale 1: high performance – Scale 2: medium performance and consumption – Scale 3: optimized performance and low-power consumption For STM32H7x7xIT3 sales types (industrial temperature range) the voltage regulator output can be set only to VOS2 or VOS3 in Run mode (VOS1 is not available for industrial temperature range). • Stop mode (SVOS3 to SVOS5) – Scale 3: peripheral with wakeup from Stop mode capabilities (UART, SPI, I2C, LPTIM) are operational – Scale 4 and 5 where the peripheral with wakeup from Stop mode is disabled The peripheral functionality is disabled but wakeup from Stop mode is possible through GPIO or asynchronous interrupt. 3.5.4 SMPS step-down converter The built-in SMPS step-down converter is a highly power-efficient DC/DC non-linear switching regulator that provides lower power consumption than a conventional voltage regulator (LDO). DS12931 Rev 1 27/251 55 Functional overview STM32H757xI The SMPS step-down converter can be used for the following purposes: • • Direct supply of the VCORE domain – the SMPS step-down converter operating modes follow the device system operating modes (Run, Stop, Standby). – the SMPS step-down converter output voltage are set according to the selected VOS and SVOS bits (voltage scaling) Delivery of an intermediate voltage level to supply the internal voltage regulator (LDO) – SMPS step-down converter operating modes When the SDEXTHP bit is equal to 0 in the PWR_CR3 register, the SMPS stepdown converter follows the device system operating modes (Run, Stop and Standby). When the SDEXTHP bit is equal to 1 in PWR_CR3, the SMPS step-down converter is forced to High-performance mode and does not follow the device system operating modes (Run, Stop and Standby). – • 3.6 The SMPS step-down converter output equals 1.8 V or 2.5 V according to the selected SD level Delivery of an external supply – The SMPS step-down converter is forced to High-performance mode (provided SDEXTHP bit is equal to 1 in PWR_CR3) – The SMPS step-down converter output equals 1.8 V or 2.5 V according to the selected SD level Low-power strategy There are several ways to reduce power consumption on STM32H757xI: • Select the SMPS step-down converter as VCORE supply voltage source, as it allows to enhance power efficiency. • Select the adequate voltage scaling • Decrease the dynamic power consumption by slowing down the system clocks even in Run mode, and by individually clock gating the peripherals that are not used. • Save power consumption when one or both CPUs are idle, by selecting among the available low-power mode according to the user application needs. This allows achieving the best compromise between short startup time, low-power consumption, as well as available wakeup sources. The devices feature several low-power modes: • CSleep (CPU clock stopped) • CStop (CPU sub-system clock stopped) • DStop (Domain bus matrix clock stopped) • Stop (System clock stopped) • DStandby (Domain powered down) • Standby (System powered down) CSleep and CStop low-power modes are entered by the MCU when executing the WFI (Wait for Interrupt) or WFE (Wait for Event) instructions, or when the SLEEPONEXIT bit of the Cortex®-Mx core is set after returning from an interrupt service routine. 28/251 DS12931 Rev 1 STM32H757xI Functional overview A domain can enter low-power mode (DStop or DStandby) when the processor, its subsystem and the peripherals allocated in the domain enter low-power mode. For instance D1 or D2 domain enters DStop/DStandby mode when the CPU of the domain is in CStop mode AND the other CPU has no peripheral allocated in that domain, or if it is in CStop mode too. D3 domain can enter DStop/DStandby mode if both core subsystems do not have active peripherals in D3 domain, and D3 is not forced in Run mode. If part of the domain is not in low-power mode, the domain remains in the current mode. Finally the system can enter Stop or Standby when all EXTI wakeup sources are cleared and the power domains are in DStop or DStandby mode. The clock system can be re-initialize by a master CPU (either the Cortex®-M4 or -M7) after exiting Stop mode while the slave CPU is held in low-power mode. Once the master CPU has re-initialized the system, the slave CPU can receive a wakeup interrupt and proceed with the interrupt service routine. Table 3. System vs domain low-power mode D1 domain power mode System power mode Run 3.7 D2 domain power mode DRun/DStop/DStandby DRun/DStop/DStandby D3 domain power mode DRun Stop DStop/DStandby DStop/DStandby DStop Standby DStandby DStandby DStandby Reset and clock controller (RCC) The clock and reset controller is located in D3 domain. The RCC manages the generation of all the clocks, as well as the clock gating and the control of the system and peripheral resets. It provides a high flexibility in the choice of clock sources and allows to apply clock ratios to improve the power consumption. In addition, on some communication peripherals that are capable to work with two different clock domains (either a bus interface clock or a kernel peripheral clock), the system frequency can be changed without modifying the baudrate. 3.7.1 Clock management The devices embed four internal oscillators, two oscillators with external crystal or resonator, two internal oscillators with fast startup time and three PLLs. The RCC receives the following clock source inputs: • • Internal oscillators: – 64 MHz HSI clock – 48 MHz RC oscillator – 4 MHz CSI clock – 32 kHz LSI clock External oscillators: – HSE clock: 4-50 MHz (generated from an external source) or 4-48 MHz(generated from a crystal/ceramic resonator) – LSE clock: 32.768 kHz DS12931 Rev 1 29/251 55 Functional overview STM32H757xI The RCC provides three PLLs: one for system clock, two for kernel clocks. The system starts on the HSI clock. The user application can then select the clock configuration. 3.7.2 System reset sources Power-on reset initializes all registers while system reset reinitializes the system except for the debug, part of the RCC and power controller status registers, as well as the backup power domain. A system reset is generated in the following cases: 3.8 • Power-on reset (pwr_por_rst) • Brownout reset • Low level on NRST pin (external reset) • Independent watchdog 1 (from D1 domain) • Independent watchdog 2 (from D2 domain) • Window watchdog 1 (from D1 domain) • Window watchdog 2 (from D2 domain) • Software reset • Low-power mode security reset • Exit from Standby General-purpose input/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission. After reset, all GPIOs (except debug pins) are in Analog mode to reduce power consumption (refer to GPIOs register reset values in the device reference manual). The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers. 3.9 Bus-interconnect matrix The devices feature an AXI bus matrix, two AHB bus matrices and bus bridges that allow interconnecting bus masters with bus slaves (see Figure 5). 30/251 DS12931 Rev 1 AHBS 7 ITCM 64 Kbyte LTDC D1-to-D2 AHB USBHS2 I-bus DMA2D Ethernet SDMMC2 USBHS1 MAC S-bus MDMA DMA1_MEM SDMMC1 DMA2 DMA2_MEM DMA1 DMA2_PERIPH DTCM 128 Kbyte AHBP AXIM I$ D$ 16KB 16KB CPU Cortex-M4 DMA1_PERIPH Cortex-M7 D-bus CPU ART STM32H757xI Figure 5. STM32H757xI bus matrix SRAM1 128 Kbyte APB3 4 AHB3 SRAM2 128 Kbyte SRAM3 32 Kbyte Flash A Up to 1 Mbyte 5 DS12931 Rev 1 AHB1 Flash B Up to 1 Mbyte AHB2 AXI SRAM 512 Kbyte APB1 QSPI APB2 FMC 1 64-bit AXI bus matrix D1 domain 32-bit AHB bus matrix D2 domain 2 D2-to-D1 AHB D2-to-D3 AHB BDMA Legend 3 32-bit bus TCM AHB AXI APB 31/251 64-bit bus Master interface Bus multiplexer Slave interface 6 AHB4 APB4 SRAM4 64 Kbyte 32-bit AHB bus matrix D3 domain Backup SRAM 4 Kbyte MSv39740V3 Functional overview D1-to-D3 AHB Functional overview 3.10 STM32H757xI DMA controllers The devices feature four DMA instances to unload CPU activity: • A master direct memory access (MDMA) The MDMA is a high-speed DMA controller, which is in charge of all types of memory transfers (peripheral to memory, memory to memory, memory to peripheral), without any CPU action. It features a master AXI interface and a dedicated AHB interface to access Cortex®-M7 TCM memories. The MDMA is located in D1 domain. It is able to interface with the other DMA controllers located in D2 domain to extend the standard DMA capabilities, or can manage peripheral DMA requests directly. Each of the 16 channels can perform single block transfers, repeated block transfers and linked list transfers. • Two dual-port DMAs (DMA1, DMA2) located in D2 domain, with FIFO and request router capabilities. • One basic DMA (BDMA) located in D3 domain, with request router capabilities. The DMA request router could be considered as an extension of the DMA controller. It routes the DMA peripheral requests to the DMA controller itself. This allowing managing the DMA requests with a high flexibility, maximizing the number of DMA requests that run concurrently, as well as generating DMA requests from peripheral output trigger or DMA event. 3.11 Chrom-ART Accelerator™ (DMA2D) The Chrom-Art Accelerator™ (DMA2D) is a graphical accelerator which offers advanced bit blitting, row data copy and pixel format conversion. It supports the following functions: • Rectangle filling with a fixed color • Rectangle copy • Rectangle copy with pixel format conversion • Rectangle composition with blending and pixel format conversion Various image format coding are supported, from indirect 4bpp color mode up to 32bpp direct color. It embeds dedicated memory to store color lookup tables. The DMA2D also supports block based YCbCr to handle JPEG decoder output. An interrupt can be generated when an operation is complete or at a programmed watermark. All the operations are fully automatized and are running independently from the CPU or the DMAs. 32/251 DS12931 Rev 1 STM32H757xI 3.12 Functional overview Nested vectored interrupt controller (NVIC) Both Cortex®-M7 (CPU1) and Cortex®-M4 (CPU2) cores have their own nested vector interrupt controller (respectively NVIC1 and NVIC2). Each NVIC instance is able to manage 16 priority levels, and handle up to 150 maskable interrupt channels plus the 16 interrupt lines of the Cortex®-M7 with FPU core. • Closely coupled NVIC gives low-latency interrupt processing • Interrupt entry vector table address passed directly to the core • Allows early processing of interrupts • Processing of late arriving, higher-priority interrupts • Support tail chaining • Processor context automatically saved on interrupt entry, and restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimum interrupt latency. 3.13 Extended interrupt and event controller (EXTI) The EXTI controller performs interrupt and event management. In addition, it can wake up the processors, power domains and/or D3 domain from Stop mode. The EXTI handles up to 89 independent event/interrupt lines split as 28 configurable events and 61 direct events (including two interrupt lines for inter-core management). Configurable events have dedicated pending flags, active edge selection, and software trigger capable. Direct events provide interrupts or events from peripherals having a status flag. 3.14 Cyclic redundancy check calculation unit (CRC) The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a programmable polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. DS12931 Rev 1 33/251 55 Functional overview 3.15 STM32H757xI Flexible memory controller (FMC) The FMC controller main features are the following: • Interface with static-memory mapped devices including: 3.16 – Static random access memory (SRAM) – NOR Flash memory/OneNAND Flash memory – PSRAM (4 memory banks) – NAND Flash memory with ECC hardware to check up to 8 Kbytes of data • Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories • 8-,16-,32-bit data bus width • Independent Chip Select control for each memory bank • Independent configuration for each memory bank • Write FIFO • Read FIFO for SDRAM controller • The maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is the FMC kernel clock divided by 2. Quad-SPI memory interface (QUADSPI) All devices embed a Quad-SPI memory interface, which is a specialized communication interface targeting Single, Dual or Quad-SPI Flash memories. It supports both single and double datarate operations. It can operate in any of the following modes: • Direct mode through registers • External Flash status register polling mode • Memory mapped mode. Up to 256 Mbytes of external Flash memory can be mapped, and 8-, 16- and 32-bit data accesses are supported as well as code execution. The opcode and the frame format are fully programmable. 3.17 Analog-to-digital converters (ADCs) The STM32H757xI devices embed three analog-to-digital converters, which resolution can be configured to 16, 14, 12, 10 or 8 bits. Each ADC shares up to 20 external channels, performing conversions in the Single-shot or Scan mode. In Scan mode, automatic conversion is performed on a selected group of analog inputs. Additional logic functions embedded in the ADC interface allow: • Simultaneous sample and hold • Interleaved sample and hold The ADC can be served by the DMA controller, thus allowing to automatically transfer ADC converted values to a destination location without any software action. 34/251 DS12931 Rev 1 STM32H757xI Functional overview In addition, an analog watchdog feature can accurately monitor the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM6, TIM8, TIM15, HRTIM1 and LPTIM1 timer. 3.18 Temperature sensor STM32H757xI devices embed a temperature sensor that generates a voltage (VTS) that varies linearly with the temperature. This temperature sensor is internally connected to ADC3_IN18. The conversion range is between 1.7 V and 3.6 V. It can measure the device junction temperature ranging from − 40 up to +125 °C. The temperature sensor have a good linearity, but it has to be calibrated to obtain a good overall accuracy of the temperature measurement. As the temperature sensor offset varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the System memory area, which is accessible in Read-only mode. 3.19 VBAT operation The VBAT power domain contains the RTC, the backup registers and the backup SRAM. To optimize battery duration, this power domain is supplied by VDD when available or by the voltage applied on VBAT pin (when VDD supply is not present). VBAT power is switched when the PDR detects that VDD dropped below the PDR level. The voltage on the VBAT pin could be provided by an external battery, a supercapacitor or directly by VDD, in which case, the VBAT mode is not functional. VBAT operation is activated when VDD is not present. The VBAT pin supplies the RTC, the backup registers and the backup SRAM. Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from VBAT operation. When PDR_ON pin is connected to VSS (Internal Reset OFF), the VBAT functionality is no more available and VBAT pin should be connected to VDD. DS12931 Rev 1 35/251 55 Functional overview 3.20 STM32H757xI Digital-to-analog converters (DAC) The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. This dual digital Interface supports the following features: • two DAC converters: one for each output channel • 8-bit or 12-bit monotonic output • left or right data alignment in 12-bit mode • synchronized update capability • noise-wave generation • triangular-wave generation • dual DAC channel independent or simultaneous conversions • DMA capability for each channel including DMA underrun error detection • external triggers for conversion • input voltage reference VREF+ or internal VREFBUF reference. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams. 3.21 Ultra-low-power comparators (COMP) STM32H757xI devices embed two rail-to-rail comparators (COMP1 and COMP2). They feature programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) as well as selectable output polarity. The reference voltage can be one of the following: • An external I/O • A DAC output channel • An internal reference voltage or submultiple (1/4, 1/2, 3/4). All comparators can wake up from Stop mode, generate interrupts and breaks for the timers, and be combined into a window comparator. 3.22 Operational amplifiers (OPAMP) STM32H757xI devices embed two rail-to-rail operational amplifiers (OPAMP1 and OPAMP2) with external or internal follower routing and PGA capability. The operational amplifier main features are: 36/251 • PGA with a non-inverting gain ranging of 2, 4, 8 or 16 or inverting gain ranging of -1, -3, -7 or -15 • One positive input connected to DAC • Output connected to internal ADC • Low input bias current down to 1 nA • Low input offset voltage down to 1.5 mV • Gain bandwidth up to 7.3 MHz DS12931 Rev 1 STM32H757xI Functional overview The devices embeds two operational amplifiers (OPAMP1 and OPAMP2) with two inputs and one output each. These three I/Os can be connected to the external pins, thus enabling any type of external interconnections. The operational amplifiers can be configured internally as a follower, as an amplifier with a non-inverting gain ranging from 2 to 16 or with inverting gain ranging from -1 to -15. 3.23 Digital filter for sigma-delta modulators (DFSDM) The devices embed one DFSDM with 4 digital filters modules and 8 external input serial channels (transceivers) or alternately 8 internal parallel inputs support. The DFSDM peripheral is dedicated to interface the external Σ∆ modulators to microcontroller and then to perform digital filtering of the received data streams (which represent analog value on Σ∆ modulators inputs). DFSDM can also interface PDM (Pulse Density Modulation) microphones and perform PDM to PCM conversion and filtering in hardware. DFSDM features optional parallel data stream inputs from internal ADC peripherals or microcontroller memory (through DMA/CPU transfers into DFSDM). DFSDM transceivers support several serial interface formats (to support various Σ∆ modulators). DFSDM digital filter modules perform digital processing according user selected filter parameters with up to 24-bit final ADC resolution. The DFSDM peripheral supports: • • 8 multiplexed input digital serial channels: – configurable SPI interface to connect various SD modulator(s) – configurable Manchester coded 1 wire interface support – PDM (Pulse Density Modulation) microphone input support – maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding) – clock output for SD modulator(s): 0..20 MHz alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution): – • internal sources: ADC data or memory data streams (DMA) 4 digital filter modules with adjustable digital signal processing: – Sincx filter: filter order/type (1..5), oversampling ratio (up to 1..1024) – integrator: oversampling ratio (1..256) • up to 24-bit output data resolution, signed output data format • automatic data offset correction (offset stored in register by user) • continuous or single conversion • start-of-conversion triggered by: • – software trigger – internal timers – external events – start-of-conversion synchronously with first digital filter module (DFSDM0) analog watchdog feature: – low value and high value data threshold registers – dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32) – input from final output data or from selected input digital serial channels – continuous monitoring independently from standard conversion DS12931 Rev 1 37/251 55 Functional overview • STM32H757xI short circuit detector to detect saturated analog input values (bottom and top range): – up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on serial data stream – monitoring continuously each input serial channel • break signal generation on analog watchdog event or on short circuit detector event • extremes detector: – storage of minimum and maximum values of final conversion data – refreshed by software • DMA capability to read the final conversion data • interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial channel clock absence • “regular” or “injected” conversions: – “regular” conversions can be requested at any time or even in Continuous mode without having any impact on the timing of “injected” conversions – “injected” conversions for precise timing and with high conversion priority Table 4. DFSDM implementation DFSDM features 3.24 DFSDM1 Number of filters 4 Number of input transceivers/channels 8 Internal ADC parallel input X Number of external triggers 16 Regular channel information in identification register X Digital camera interface (DCMI) The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can achieve a data transfer rate up to 140 Mbyte/s using a 80 MHz pixel clock. It features: 38/251 • Programmable polarity for the input pixel clock and synchronization signals • Parallel data communication can be 8-, 10-, 12- or 14-bit • Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG) • Supports Continuous mode or Snapshot (a single frame) mode • Capability to automatically crop the image DS12931 Rev 1 STM32H757xI 3.25 Functional overview LCD-TFT controller The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue) and delivers all signals to interface directly to a broad range of LCD and TFT panels up to XGA (1024x768) resolution with the following features: 3.26 • 2 display layers with dedicated FIFO (64x64-bit) • Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer • Up to 8 input color formats selectable per layer • Flexible blending between two layers using alpha value (per pixel or constant) • Flexible programmable parameters for each layer • Color keying (transparency color) • Up to 4 programmable interrupt events • AXI master interface with burst of 16 words DSI Host (DSI) The DSI Host is a dedicated peripheral for interfacing with MIPI® DSI compliant displays. It includes a dedicated video interface internally connected to the LTDC, a generic APB interface that can be used to transmit information to the display, and Video mode pattern generator: • LTDC interface It is used to transmit information in Video mode, in which the transfers from the host processor to the peripheral take the form of a real-time pixel stream (DPI). This interface can also be used to transmit information in full bandwidth in the Adapted Command mode (DBI). • APB slave interface The APB slave interface allows transmitting generic information in Command mode though a proprietary register interface. It can operate concurrently with the LTDC interface either in Video or Adapted Command mode. • The Video mode pattern generator allows transmitting horizontal/vertical color bar and D-PHY BER testing pattern without any kind of stimuli. The DSI Host main features are the following: • Compliance with MIPI® Alliance standards • • Interface with MIPI® D-PHY Support for all commands defined in the MIPI® Alliance specification for DCS: – Transmission of all Command mode packets through the APB interface – Transmission of commands in low-power and high-speed during Video mode • Support for up to two D-PHY data lanes • Bidirectional communication and Escape mode support through data lane 0 • Support for non-continuous clock in D-PHY clock lane for additional power saving • Support for Ultra Low-Power mode with PLL disabled • ECC and Checksum capabilities • Support for End of Transmission Packet (EoTp) • Fault recovery schemes DS12931 Rev 1 39/251 55 Functional overview STM32H757xI • 3D transmission support • Configurable selection of system interfaces • – AMBA APB for control and optional support for Generic and DCS commands – Video mode interface through LTDC – Adapted Command mode interface through LTDC – Independently programmable Virtual Channel ID in Video, Adapted Command or APB Slave mode Video mode interfaces features – LTDC interface color coding mappings into 24-bit interface: 16-bit RGB, configurations 1, 2, and 3 18-bit RGB, configurations 1 and 2 24-bit RGB – Programmable polarity of all LTDC interface signals – Extended resolutions beyond the DPI standard maximum resolution of 800x480 pixels; the maximum resolution is limited by the available DSI physical link bandwidth: Number of lanes: 2 Maximum speed per lane: 1 Gbps • Adapted interface features – Support for sending large amounts of data through the memory_write_start (WMS) and memory_write_continue (WMC) DCS commands – LTDC interface color coding mappings into 24-bit interface: 16-bit RGB, configurations 1, 2, and 3 18-bit RGB, configurations 1 and 2 24-bit RGB • 3.27 Video mode pattern generator – Vertical and horizontal color bar generation without LTDC stimuli – BER pattern without LTDC stimuli JPEG Codec (JPEG) The JPEG Codec can encode and decode a JPEG stream as defined in the ISO/IEC 109181 specification. It provides an fast and simple hardware compressor and decompressor of JPEG images with full management of JPEG headers. 40/251 DS12931 Rev 1 STM32H757xI Functional overview The JPEG codec main features are as follows: 3.28 • 8-bit/channel pixel depths • Single clock per pixel encoding and decoding • Support for JPEG header generation and parsing • Up to four programmable quantization tables • Fully programmable Huffman tables (two AC and two DC) • Fully programmable minimum coded unit (MCU) • Encode/decode support (non simultaneous) • Single clock Huffman coding and decoding • Two-channel interface: Pixel/Compress In, Pixel/Compressed Out • Support for single greyscale component • Ability to enable/disable header processing • Fully synchronous design • Configuration for High-speed decode mode Random number generator (RNG) All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit. 3.29 Cryptographic acceleration (CRYP and HASH) The devices embed a cryptographic processor that supports the advanced cryptographic algorithms usually required to ensure confidentiality, authentication, data integrity and nonrepudiation when exchanging messages with a peer: • • Encryption/Decryption – DES/TDES (data encryption standard/triple data encryption standard): ECB (electronic codebook) and CBC (cipher block chaining) chaining algorithms, 64-, 128- or 192-bit key – AES (advanced encryption standard): ECB, CBC, GCM, CCM, and CTR (Counter mode) chaining algorithms, 128, 192 or 256-bit key Universal HASH – SHA-1 and SHA-2 (secure HASH algorithms) – MD5 – HMAC The cryptographic accelerator supports DMA request generation. 3.30 Timers and watchdogs The devices include one high-resolution timer, two advanced-control timers, ten generalpurpose timers, two basic timers, five low-power timers, two watchdogs and a SysTick timer. All timer counters can be frozen in Debug mode. Table 5 compares the features of the advanced-control, general-purpose and basic timers. DS12931 Rev 1 41/251 55 Functional overview STM32H757xI Table 5. Timer feature comparison Timer type Timer Highresolution HRTIM1 timer Advanced -control TIM1, TIM8 TIM2, TIM5 TIM3, TIM4 TIM12 DMA Capture/ Counter Counter Prescaler request compare resolution type factor generation channels TIM15 TIM16, TIM17 42/251 Max interface clock (MHz) Max timer clock (MHz) (1) /1 /2 /4 (x2 x4 x8 x16 x32, with DLL) Yes 10 Yes 480 480 16-bit Any Up, integer Down, between 1 Up/down and 65536 Yes 4 Yes 120 240 32-bit Any Up, integer Down, between 1 Up/down and 65536 Yes 4 No 120 240 16-bit Any Up, integer Down, between 1 Up/down and 65536 Yes 4 No 120 240 16-bit Up Any integer between 1 and 65536 No 2 No 120 240 Up Any integer between 1 and 65536 No 1 No 120 240 Up Any integer between 1 and 65536 Yes 2 1 120 240 Up Any integer between 1 and 65536 Yes 1 1 120 240 16-bit Up General purpose TIM13, TIM14 Complementary output 16-bit 16-bit 16-bit DS12931 Rev 1 STM32H757xI Functional overview Table 5. Timer feature comparison (continued) Timer type Timer DMA Capture/ Counter Counter Prescaler request compare resolution type factor generation channels Basic TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Lowpower timer LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5 16-bit Up 1, 2, 4, 8, 16, 32, 64, 128 Complementary output Max interface clock (MHz) Max timer clock (MHz) (1) Yes 0 No 120 240 No 0 No 120 240 1. The maximum timer clock is up to 480 MHz depending on TIMPRE bit in the RCC_CFGR register and D2PRE1/2 bits in RCC_D2CFGR register. 3.30.1 High-resolution timer (HRTIM1) The high-resolution timer (HRTIM1) allows generating digital signals with high-accuracy timings, such as PWM or phase-shifted pulses. It consists of 6 timers, 1 master and 5 slaves, totaling 10 high-resolution outputs, which can be coupled by pairs for deadtime insertion. It also features 5 fault inputs for protection purposes and 10 inputs to handle external events such as current limitation, zero voltage or zero current switching. The HRTIM1 timer is made of a digital kernel clocked at 480 MHz The high-resolution is available on the 10 outputs in all operating modes: variable duty cycle, variable frequency, and constant ON time. The slave timers can be combined to control multiswitch complex converters or operate independently to manage multiple independent converters. The waveforms are defined by a combination of user-defined timings and external events such as analog or digital feedbacks signals. HRTIM1 timer includes options for blanking and filtering out spurious events or faults. It also offers specific modes and features to offload the CPU: DMA requests, Burst mode controller, Push-pull and Resonant mode. It supports many topologies including LLC, Full bridge phase shifted, buck or boost converters, either in voltage or current mode, as well as lighting application (fluorescent or LED). It can also be used as a general purpose timer, for instance to achieve high-resolution PWM-emulated DAC. DS12931 Rev 1 43/251 55 Functional overview 3.30.2 STM32H757xI Advanced-control timers (TIM1, TIM8) The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for: • Input capture • Output compare • PWM generation (Edge- or Center-aligned modes) • One-pulse mode output If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0100%). The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining. TIM1 and TIM8 support independent DMA request generation. 3.30.3 General-purpose timers (TIMx) There are ten synchronizable general-purpose timers embedded in the STM32H757xI devices (see Table 5 for differences). • TIM2, TIM3, TIM4, TIM5 The devices include 4 full-featured general-purpose timers: TIM2, TIM3, TIM4 and TIM5. TIM2 and TIM5 are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler while TIM3 and TIM4 are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. All timers feature 4 independent channels for input capture/output compare, PWM or One-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages. TIM2, TIM3, TIM4 and TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining. Any of these general-purpose timers can be used to generate PWM outputs. TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors. • TIM12, TIM13, TIM14, TIM15, TIM16, TIM17 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13, TIM14, TIM16 and TIM17 feature one independent channel, whereas TIM12 and TIM15 have two independent channels for input capture/output compare, PWM or One-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers or used as simple timebases. 44/251 DS12931 Rev 1 STM32H757xI 3.30.4 Functional overview Basic timers TIM6 and TIM7 These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base. TIM6 and TIM7 support independent DMA request generation. 3.30.5 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5) The low-power timers have an independent clock and is running also in Stop mode if it is clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode. This low-power timer supports the following features: 3.30.6 • 16-bit up counter with 16-bit autoreload register • 16-bit compare register • Configurable output: pulse, PWM • Continuous / One-shot mode • Selectable software / hardware input trigger • Selectable clock source: • Internal clock source: LSE, LSI, HSI or APB clock • External clock source over LPTIM input (working even with no internal clock source running, used by the Pulse Counter Application) • Programmable digital glitch filter • Encoder mode Independent watchdogs There are two independent watchdogs, one per domain. Each independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. 3.30.7 Window watchdogs There are two window watchdogs, one per domain. Each window watchdog is based on a 7bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device or each respective domain (configurable in the RCC register), when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in Debug mode. 3.30.8 SysTick timer The devices feature two SysTick timers, one per CPU. These timers are dedicated to realtime operating systems, but could also be used as a standard downcounter. It features: • A 24-bit downcounter • Autoreload capability • Maskable system interrupt generation when the counter reaches 0 • Programmable clock source. DS12931 Rev 1 45/251 55 Functional overview 3.31 STM32H757xI Real-time clock (RTC), backup SRAM and backup registers The RTC is an independent BCD timer/counter. It supports the following features: • Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format. • Automatic correction for 28, 29 (leap year), 30, and 31 days of the month. • Two programmable alarms. • On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock. • Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. • Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy. • Three anti-tamper detection pins with programmable filter. • Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to VBAT mode. • 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period. The RTC and the 32 backup registers are supplied through a switch that takes power either from the VDD supply when present or from the VBAT pin. The backup registers are 32-bit registers used to store 128 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby mode. The RTC clock sources can be: • A 32.768 kHz external crystal (LSE) • An external resonator or oscillator (LSE) • The internal low-power RC oscillator (LSI, with typical frequency of 32 kHz) • The high-speed external clock (HSE) divided by 32. The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes. All RTC events (Alarm, Wakeup Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes. 46/251 DS12931 Rev 1 STM32H757xI 3.32 Functional overview Inter-integrated circuit interface (I2C) STM32H757xI devices embed four I2C interfaces. The I2C bus interface handles communications between the microcontroller and the serial I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing. The I2C peripheral supports: • • 3.33 I2C-bus specification and user manual rev. 5 compatibility: – Slave and Master modes, multimaster capability – Standard-mode (Sm), with a bitrate up to 100 kbit/s – Fast-mode (Fm), with a bitrate up to 400 kbit/s – Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os – 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses – Programmable setup and hold times – Optional clock stretching System Management Bus (SMBus) specification rev 2.0 compatibility: – Hardware PEC (Packet Error Checking) generation and verification with ACK control – Address resolution protocol (ARP) support – SMBus alert • Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility • Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming. • Wakeup from Stop mode on address match • Programmable analog and digital noise filters • 1-byte buffer with DMA capability Universal synchronous/asynchronous receiver transmitter (USART) STM32H757xI devices have four embedded universal synchronous receiver transmitters (USART1, USART2, USART3 and USART6) and four universal asynchronous receiver transmitters (UART4, UART5, UART7 and UART8). Refer to Table 6 for a summary of USARTx and UARTx features. These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire Half-duplex communication mode and have LIN Master/Slave capability. They provide hardware management of the CTS and RTS signals, and RS485 Driver Enable. They are able to communicate at speeds of up to 12.5 Mbit/s. USART1, USART2, USART3 and USART6 also provide Smartcard mode (ISO 7816 compliant) and SPI-like communication capability. The USARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode is enabled by software and is disabled by default. DS12931 Rev 1 47/251 55 Functional overview STM32H757xI All USART have a clock domain independent from the CPU clock, allowing the USARTx to wake up the MCU from Stop mode.The wakeup from Stop mode is programmable and can be done on: • Start bit detection • Any received data frame • A specific programmed data frame • Specific TXFIFO/RXFIFO status when FIFO mode is enabled. All USART interfaces can be served by the DMA controller. Table 6. USART features USART modes/features(1) USART1/2/3/6 UART4/5/7/8 Hardware flow control for modem X X Continuous communication using DMA X X Multiprocessor communication X X Synchronous mode (Master/Slave) X - Smartcard mode X - Single-wire Half-duplex communication X X IrDA SIR ENDEC block X X LIN mode X X Dual clock domain and wakeup from low power mode X X Receiver timeout interrupt X X Modbus communication X X Auto baud rate detection X X Driver Enable X X USART data length 7, 8 and 9 bits Tx/Rx FIFO X Tx/Rx FIFO size X 16 1. X = supported. 3.34 Low-power universal asynchronous receiver transmitter (LPUART) The device embeds one Low-Power UART (LPUART1). The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication. The LPUARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode is enabled by software and is disabled by default. 48/251 DS12931 Rev 1 STM32H757xI Functional overview The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode. The wakeup from Stop mode are programmable and can be done on: • Start bit detection • Any received data frame • A specific programmed data frame • Specific TXFIFO/RXFIFO status when FIFO mode is enabled. Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates. LPUART interface can be served by the DMA controller. 3.35 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) The devices feature up to six SPIs (SPI2S1, SPI2S2, SPI2S3, SPI4, SPI5 and SPI6) that allow communicating up to 150 Mbits/s in Master and Slave modes, in Half-duplex, Fullduplex and Simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable from 4 to 16 bits. All SPI interfaces support NSS pulse mode, TI mode, Hardware CRC calculation and 8x 8-bit embedded Rx and Tx FIFOs with DMA capability. Three standard I2S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They can be operated in Master or Slave mode, in Simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in Master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. All I2S interfaces support 16x 8bit embedded Rx and Tx FIFOs with DMA capability. 3.36 Serial audio interfaces (SAI) The devices embed 4 SAIs (SAI1, SAI2, SAI3 and SAI4) that allow designing many stereo or mono audio protocols such as I2S, LSB or MSB-justified, PCM/DSP, TDM or AC’97. An SPDIF output is available when the audio block is configured as a transmitter. To bring this level of flexibility and reconfigurability, the SAI contains two independent audio sub-blocks. Each block has it own clock generator and I/O line controller. Audio sampling frequencies up to 192 kHz are supported. In addition, up to 8 microphones can be supported thanks to an embedded PDM interface. The SAI can work in master or slave configuration. The audio sub-blocks can be either receiver or transmitter and can work synchronously or asynchronously (with respect to the other one). The SAI can be connected with other SAIs to work synchronously. DS12931 Rev 1 49/251 55 Functional overview 3.37 STM32H757xI SPDIFRX Receiver Interface (SPDIFRX) The SPDIFRX peripheral is designed to receive an S/PDIF flow compliant with IEC-60958 and IEC-61937. These standards support simple stereo streams up to high sample rate, and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up to 5.1). The main SPDIFRX features are the following: • Up to 4 inputs available • Automatic symbol rate detection • Maximum symbol rate: 12.288 MHz • Stereo stream from 32 to 192 kHz supported • Supports Audio IEC-60958 and IEC-61937, consumer applications • Parity bit management • Communication using DMA for audio samples • Communication using DMA for control and user channel information • Interrupt capabilities The SPDIFRX receiver provides all the necessary features to detect the symbol rate, and decode the incoming data stream. The user can select the wanted SPDIF input, and when a valid signal will be available, the SPDIFRX will re-sample the incoming signal, decode the Manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the CPU decoded data, and associated status flags. The SPDIFRX also offers a signal named spdif_frame_sync, which toggles at the S/PDIF sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms. 3.38 Single wire protocol master interface (SWPMI) The Single wire protocol master interface (SWPMI) is the master interface corresponding to the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The main features are: • Full-duplex communication mode • automatic SWP bus state management (active, suspend, resume) • configurable bitrate up to 2 Mbit/s • automatic SOF, EOF and CRC handling SWPMI can be served by the DMA controller. 50/251 DS12931 Rev 1 STM32H757xI 3.39 Functional overview Management Data Input/Output (MDIO) slaves The devices embed an MDIO slave interface it includes the following features: • – 32 x 16-bit firmware read/write, MDIO read-only output data registers – 32 x 16-bit firmware read-only, MDIO write-only input data registers • Configurable slave (port) address • Independently maskable interrupts/events: • 3.40 32 MDIO Registers addresses, each of which is managed using separate input and output data registers: – MDIO Register write – MDIO Register read – MDIO protocol error Able to operate in and wake up from Stop mode SD/SDIO/MMC card host interfaces (SDMMC) Two SDMMC host interfaces are available. They support MultiMediaCard System Specification Version 4.51 in three different databus modes: 1 bit (default), 4 bits and 8 bits. Both interfaces support the SD memory card specifications version 4.1. and the SDIO card specification version 4.0. in two different databus modes: 1 bit (default) and 4 bits. Each SDMMC host interface supports only one SD/SDIO/MMC card at any one time and a stack of MMC Version 4.51 or previous. The SDMMC host interface embeds a dedicated DMA controller allowing high-speed transfers between the interface and the SRAM. 3.41 Controller area network (FDCAN1, FDCAN2) The controller area network (CAN) subsystem consists of two CAN modules, a shared message RAM memory and a clock calibration unit. Both CAN modules (FDCAN1 and FDCAN2) are compliant with ISO 11898-1 (CAN protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0. FDCAN1 supports time triggered CAN (TT-FDCAN) specified in ISO 11898-4, including event synchronized time-triggered communication, global system time, and clock drift compensation. The FDCAN1 contains additional registers, specific to the time triggered feature. The CAN FD option can be used together with event-triggered and time-triggered CAN communication. A 10-Kbyte message RAM memory implements filters, receive FIFOs, receive buffers, transmit event FIFOs, transmit buffers (and triggers for TT-FDCAN). This message RAM is shared between the two FDCAN1 and FDCAN2 modules. The common clock calibration unit is optional. It can be used to generate a calibrated clock for both FDCAN1 and FDCAN2 from the HSI internal RC oscillator and the PLL, by evaluating CAN messages received by the FDCAN1. DS12931 Rev 1 51/251 55 Functional overview 3.42 STM32H757xI Universal serial bus on-the-go high-speed (OTG_HS) The devices embed two USB OTG high-speed (up to 480 Mbit/s) device/host/OTG peripheral. OTG-HS1 supports both full-speed and high-speed operations, while OTG-HS2 supports only full-speed operations. They both integrate the transceivers for full-speed operation (12 Mbit/s) and are able to operate from the internal HSI48 oscillator. OTG-HS1 features a UTMI low-pin interface (ULPI) for high-speed operation (480 Mbit/s). When using the USB OTG-HS1 in HS mode, an external PHY device connected to the ULPI is required. The USB OTG HS peripherals are compliant with the USB 2.0 specification and with the OTG 2.0 specification. They have software-configurable endpoint setting and supports suspend/resume. The USB OTG controllers require a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The main features are: • Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing • Supports the session request protocol (SRP) and host negotiation protocol (HNP) • 9 bidirectional endpoints (including EP0) • 16 host channels with periodic OUT support • Software configurable to OTG1.3 and OTG2.0 modes of operation • USB 2.0 LPM (Link Power Management) support • Battery Charging Specification Revision 1.2 support • Internal FS OTG PHY support • External HS or HS OTG operation supporting ULPI in SDR mode (OTG_HS1 only) The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output. 3.43 • Internal USB DMA • HNP/SNP/IP inside (no need for any external resistor) • For OTG/Host modes, a power switch is needed in case bus-powered devices are connected Ethernet MAC interface with dedicated DMA controller (ETH) The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard medium-independent interface (MII) or a reduced medium-independent interface (RMII). The microcontroller requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller. 52/251 DS12931 Rev 1 STM32H757xI Functional overview The devices include the following features: 3.44 • Supports 10 and 100 Mbit/s rates • Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors • Tagged MAC frame support (VLAN support) • Half-duplex (CSMA/CD) and full-duplex operation • MAC control sublayer (control frames) support • 32-bit CRC generation and removal • Several address filtering modes for physical and multicast address (multicast and group addresses) • 32-bit status code for each transmitted or received frame • Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes. • Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input • Triggers interrupt when system time becomes greater than target time High-definition multimedia interface (HDMI) - consumer electronics control (CEC) The devices embed a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard). This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC controller to wakeup the MCU from Stop mode on data reception. 3.45 Debug infrastructure The devices offer a comprehensive set of debug and trace features on both cores to support software development and system integration. • Breakpoint debugging • Code execution tracing • Software instrumentation • JTAG debug port • Serial-wire debug port • Trigger input and output • Serial-wire trace port • Trace port • Arm® CoreSight™ debug and trace components The debug can be controlled via a JTAG/Serial-wire debug access port, using industry standard debugging tools. The debug infrastructure allows debugging one core at a time, or both cores in parallel. The trace port performs data capture for logging and analysis. DS12931 Rev 1 53/251 55 Functional overview STM32H757xI A 4-Kbyte embedded trace FIFO (ETF) allows recording data and sending them to any com port. In Trace mode, the trace is transferred by DMA to system RAM or to a high-speed interface (such as SPI or USB). It can even be monitored by a software running on one of the cores. Unlike hardware FIFO mode, this mode is invasive since it uses system resources which are shared by the processors. 54/251 DS12931 Rev 1 STM32H757xI 4 Memory mapping Memory mapping Refer to the product line reference manual for details on the memory mapping as well as the boundary addresses for all peripherals. DS12931 Rev 1 55/251 55 Pin descriptions 5 STM32H757xI Pin descriptions Figure 6. WLCSP156 ballout 13 A B C D E 12 DNC(1) VDDLDO VBAT PE4 PC14PC15OSC32_IN OSC32_OUT VSS VDD SMPS VDD VLX SMPS SMPS F PF3 G VDD H PH1OSC_OUT J K PF2 VSS 11 10 9 8 7 6 5 4 3 2 1 VCAP PB8 VDD PB4 PG15 VDD PD4 PD0 PA15 VDDLDO VSS VDD PE0 VSS PB5 PB3 VSS PD3 PC12 VDD VCAP PA12 PE5 VSS PB9 PB7 PB6 PD6 PC11 VSS PA13 PA10 PA11 VSS PE3 PE2 PE1 BOOT0 PD7 PC10 PA9 PA8 PC9 PC8 VDD VDD33 USB PG8 PG5 DSI_ D1P DSI_ CKP DSI_ D0P DSI_ D1N DSI_ CKN DSI_ D0N VCAP DSI VFB SMPS PF0 PC13 PE6 PDR_ON PD2 PA14 PC7 VDD50 USB PF4 PF5 PF1 PF11 PD5 PD1 PC6 PG4 VSS PC0 PC1 PA6 PF12 PE10 PE11 PD8 PG3 PG2 PH0OSC_IN NRST PA5 PB1 PF13 PE7 PB10 PB13 PD14 VSSDSI VSSA VREF+ VDDA PA3 PA7 PF15 PE8 PE12 PB12 PD11 PD15 PC2_C PC3_C PA2 PA4 PB0 PF14 PE9 PE13 PB11 PD9 PD13 VDD L PA0 PA1 VSS PC5 VSS PG0 VSS PE15 VSS VDDLDO PD10 PD12 VSS M VSS VDD PC4 PB2 VDD PG1 VDD PE14 VCAP VDD PB14 PB15 VSS MSv43741V5 1. The DNC ball must neither be connected to GND nor to VDD. 2. The above figure shows the package top view. 56/251 DS12931 Rev 1 STM32H757xI Pin descriptions Figure 7. UFBGA169 ballout 1 2 3 A VSS PE2 VDDLDO B VBAT VDD C PC14_ OSC32_ IN D 4 5 6 7 8 9 VCAP PB5 PB3 VSS PD7 VDD PDR_ ON VSS BOOT0 PB4 VDD PD6 PE6 PE3 PE1 PB7 PG15 PG9 VSS PC15_ OSC32_ OUT PE4 PE0 PB8 PB9 E VLX SMPS VDD PC13 PE5 PB6 F VDD SMPS VSS SMPS VFB SMPS PF0 G PF4 PF3 PF5 H VDD VSS J PH1_ OSCOUT K 10 11 12 PD3 PA14 VSS PA10 VSS PA15 PA13 VDD VDDLDO PD5 PD1 PD0 PC10 VSS VCAP PG10 PD4 PC12 PA8 PA9 PA11 PA12 PG14 PG11 PD2 PC11 PC7 PC9 VDD VSS PF1 PF2 PG13 PG7 PG8 PC8 PC6 VDD50_ USB VDD33_ USB PF6 PF7 PF8 PG12 PG3 PG5 PG4 PG6 VSSDSI VSSDSI PF9 PF10 NRST PB1 PG2 PE13 PD14 PD15 VSS DSI PH0_ OSCIN PC1 PC0 PA5 PF12 PG1 PE12 PD13 PD12 VSS DSI DSI_ CKP DSI_ CKN PC2_C PC3_C PA0 PA7 PC5 PF11 PE7 PE15 PB10 PD11 VSS DSI DSI_ D0P DSI_ D0N L VSSA_ VREF- VDDA M VREF+ VDD N VSS PA3 DSI_ D1P 13 DSI_ D1N PC4 PB2 PG0 PE10 PE8 VDD PB12 VDD VCAP DSI VSS PA2 PA6 PF13 VSS PF15 PE14 VSS PB13 PB15 PD9 VDD DSI PA4 PB0 PF14 PE9 PE11 PB11 VCAP VDDLDO PB14 PD8 PD10 PA1 MSv43740V4 1. The above figure shows the package top view. DS12931 Rev 1 57/251 104 Pin descriptions STM32H757xI 134 133 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 159 158 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 176-pins PA13 PA12 PA11 PA10 PA9 PA8 VDD PC9 PC8 PC7 PC6 VDD33USB VDD50USB VSS PG8 PG7 PG6 PG5 PG4 VDD VSS PG3 PG2 VSSDSI VDD12DSI DSI_CKN DSI_CKP VSSDSI DSI_D0N DSI_D0P VDD12DSI VCAPDSI VSS VDD PD15 PD14 PD13 PD12 PD11 VSS VDD PD10 PD9 PD8 VSS PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PF11 PF12 PF13 PF14 PF15 PG0 VSS VDD PG1 PE7 PE8 PE9 VSS VDD PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VCAP VSS VDDLDO VSS VDD PB12 PB13 PB14 PB15 PE2 PE3 PE4 PE5 PE6 VSS VDD VBAT PC13 PC14-OSC32_IN PC15-OSC32_OUT VSS VDD VSSSMPS VLXSMPS VDDSMPS VFBSMPs PF0 PF1 PF2 PF3 PF4 PF5 VSS VDD PF6 PF7 PF8 PF9 PF10 PH0-OSC_IN PH1-OSC_OUT NRST PC0 PC1 PC2_C PC3_C VSSA VREF+ VDDA PA0 PA1 PA2 VDD 176 VDD VDDLDO PDR_ON VSS VCAP PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 VDD VSS PG14 PG13 PG12 PG11 PG10 PG9 VDD VSS PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 VSS VDD VDDLDO VSS VCAP Figure 8. LQFP176 pinout MSv43745V4 1. The above figure shows the package top view. 58/251 DS12931 Rev 1 STM32H757xI Pin descriptions 208-pins 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 PH13 VDD VDDLDO VSS VCAP PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 VDD33USB VDD50USB VSS PG8 PG7 PG6 PG5 PG4 VDD VSS PG3 PG2 VSSDSI DSI_D1N DSI_D1P VDD12DSI DSI_CKN DSI_CKP VSSDSI DSI_D0N DSI_D0P VDD12DSI VCAPDSI VSS VDD PD15 PD14 VDD VSS PD13 PD12 PD11 VSS VDD PD10 PD9 PD8 PH5 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PI15 PF11 PF12 PF13 PF14 PF15 PG0 VSS VDD PG1 PE7 PE8 PE9 VSS VDD PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VCAP VSS VDDLDO PH6 PH7 PH8 PH9 PH10 PH11 PH12 VSS VDD PB12 PB13 PB14 PB15 PE2 PE3 PE4 PE5 PE6 VSS VDD VBAT PI8 PC13 PC14-OSC32_IN PC15-OSC32_OUT PI9 PI10 PI11 VSS VDD VSSSMPS VLXSMPS VDDSMPS VFBSMPS PF0 PF1 PF2 PF3 PF4 PF5 VSS VDD PF6 PF7 PF8 PF9 PF10 PH0-OSC_IN PH1-OSC_OUT NRST PC0 PC1 PC2_C PC3_C VSSA VREF+ VDDA PA0 PA1 PA2 PH2 VDD VSS PH3 PH4 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 VDD VSS PI7 PI6 PI5 PI4 VDDLDO PDR_ON VSS VCAP PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 VDD VSS PG14 PG13 PG12 PG11 PG10 PG9 VDD VSS PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 PI3 PI2 PI1 VDD VSS PI0 PH15 PH14 Figure 9. LQFP208 pinout MSv43749V4 1. The above figure shows the package top view. DS12931 Rev 1 59/251 104 Pin descriptions STM32H757xI Figure 10. TFBGA240+25 ballout A B C 1 2 3 4 VSS PI6 PI5 VBAT VSS PC15PC14OSC32_ OSC32 OUT _IN 5 6 7 8 9 10 11 12 13 PI4 PB5 VDD LDO VCAP PK5 PG10 PG9 PD5 PD4 PC10 PI7 PE1 PB6 VSS PB4 PK4 PG11 PJ15 PD6 PD3 PE2 PE0 PB7 PB3 PK6 PK3 PG12 VSS PD7 14 15 16 17 PA15 PI1 PI0 VSS PC11 PA14 PI2 PH15 PH14 PC12 VSS PI3 PA13 VSS VDD LDO D PE5 PE4 PE3 PB9 PB8 PG15 PK7 PG14 PG13 PJ14 PJ12 PD2 PD0 PA10 PA9 PH13 VCAP E VLX SMPS PI9 PC13 PI8 PE6 VDD PDR _ON BOOT0 VDD PJ13 VDD PD1 PC8 PC9 PA8 PA12 PA11 PC7 PC6 PG8 PG7 VDD 33USB F VDD SMPS VSS SMPS PI10 PI11 VDD G PF2 VFB SMPS PF1 PF0 VDD VSS VSS VSS VSS VSS VDD PG5 PG6 VSS VDD50 USB H PI12 PI13 PI14 PF3 VDD VSS VSS VSS VSS VSS VDD PG4 PG3 PG2 PK2 J PH1OSC_ OUT PH0OSC _IN VSS PF5 PF4 VSS VSS VSS VSS VSS VDD PK0 PK1 VSS DSI VSSDSI K NRST PF6 PF7 PF8 VDD VSS VSS VSS VSS VSS VDD PJ11 VSSDSI DSI_ D1P DSI_ D1N L VDDA PC0 PF10 PF9 VDD VSS VSS VSS VSS VSS VDD PJ10 VSSDSI DSI_ CKP DSI_ CKN M VREF+ PC1 PC2 PC3 VDD VDD PJ9 VSSDSI DSI_ D0P DSI_ D0N N VREF- PH2 PA2 PA1 PA0 PJ0 VDD VDD PE10 VDD VDD VDD PJ8 PJ7 PJ6 VSS VCAP DSI P VSSA PH3 PH4 PH5 PI15 PJ1 PF13 PF14 PE9 PE11 PB10 PB11 PH10 PH11 PD15 PD14 VDD DSI R PC2_C PC3_C PA6 VSS PA7 PB2 PF12 VSS PF15 PE12 PE15 PJ5 PH9 PH12 PD11 PD12 PD13 T PA0_C PA1_C PA5 PC4 PB1 PJ2 PF11 PG0 PE8 PE13 PH6 VSS PH8 PB12 PB15 PD10 PD9 U VSS PA3 PA4 PC5 PB0 PJ3 PJ4 PG1 PE7 PE14 VCAP VDD LDO PH7 PB13 PB14 PD8 VSS MSv43743V4 1. The above figure shows the package top view. 60/251 DS12931 Rev 1 STM32H757xI Pin descriptions Table 7. Legend/abbreviations used in the pinout table Name Pin name Pin type Abbreviation Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin ANA Analog-only Input FT 5 V tolerant I/O TT 3.3 V tolerant I/O B Dedicated BOOT0 pin RST I/O structure Notes Pin functions Definition Bidirectional reset pin with embedded weak pull-up resistor Option for TT and FT I/Os _f I2C FM+ option _a analog option (supplied by VDDA) _u USB option (supplied by VDD33USB) _h High-speed low-voltage I/O Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset. Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers DS12931 Rev 1 61/251 104 Pin descriptions STM32H757xI Table 8. STM32H757xI pin/ball definition D10 B12 C11 A2 C3 D3 E4 2 3 4 1 2 3 4 C3 D3 D2 D1 PE2 PE3 PE4 PE5 I/O I/O I/O I/O I/O structure Pin type TFBGA240+25 LQFP208 LQFP176 1 Pin name (function after reset) FT_ h FT_ h FT_ h FT_ h Notes D9 UFBGA169 WLCSP156 Pin/ball name Alternate functions Additional functions - TRACECLK, SAI1_CK1, SPI4_SCK, SAI1_MCLK_A, SAI4_MCLK_A, QUADSPI_BK1_IO2, SAI4_CK1, ETH_MII_TXD3, FMC_A23, EVENTOUT - - TRACED0, TIM15_BKIN, SAI1_SD_B, SAI4_SD_B, FMC_A19, EVENTOUT - - TRACED1, SAI1_D2, DFSDM1_DATIN3, TIM15_CH1N, SPI4_NSS, SAI1_FS_A, SAI4_FS_A, SAI4_D2, FMC_A20, DCMI_D4, LCD_B0, EVENTOUT - - TRACED2, SAI1_CK2, DFSDM1_CKIN3, TIM15_CH1, SPI4_MISO, SAI1_SCK_A, SAI4_SCK_A, SAI4_CK2, FMC_A21, DCMI_D6, LCD_G0, EVENTOUT - - E8 C2 5 5 E5 PE6 I/O FT_ h - TRACED3, TIM1_BKIN2, SAI1_D1, TIM15_CH2, SPI4_MOSI, SAI1_SD_A, SAI4_SD_A, SAI4_D1, SAI2_MCLK_B, TIM1_BKIN2_COMP12, FMC_A22, DCMI_D7, LCD_G1, EVENTOUT - A1 6 6 A1 VSS S - - - - - A9 7 7 - VDD S - - - - B13 B1 8 8 B1 VBAT S - - - - 62/251 DS12931 Rev 1 STM32H757xI Pin descriptions Table 8. STM32H757xI pin/ball definition (continued) WLCSP156 UFBGA169 LQFP176 LQFP208 TFBGA240+25 Pin name (function after reset) Pin type I/O structure Notes Pin/ball name Alternate functions D11 - - - B2 VSS S - - - - - - - 9 E4 PI8 I/O FT - EVENTOUT RTC_TAMP2/ WKUP3 E9 E3 9 10 E3 PC13 I/O FT - EVENTOUT RTC_TAMP1/ RTC_TS/WKUP2 C13 C1 10 11 C2 PC14OSC32_IN I/O (OSC32_IN)(1) FT - EVENTOUT OSC32_IN FT - EVENTOUT OSC32_OUT - UART4_RX, FDCAN1_RX, FMC_D30, LCD_VSYNC, EVENTOUT - - C12 D2 11 12 C1 PC15OSC32_OUT( OSC32_OUT) I/O Additional functions (1) - - - 13 E2 PI9 I/O FT_ h - - - 14 F3 PI10 I/O FT_ h - FDCAN1_RXFD_MODE, ETH_MII_RX_ER, FMC_D31, LCD_HSYNC, EVENTOUT - - - 15 F4 PI11 I/O FT - LCD_G6, OTG_HS_ULPI_DIR, EVENTOUT WKUP4 - B4 12 16 A17 VSS S - - - - D13 E2 13 17 E6 VDD S - - - - D12 F2 14 18 F2 VSSSMPS S - - - - E12 E1 15 19 E1 VLXSMPS S - - - - E13 F1 16 20 F1 VDDSMPS S - - - - E11 F3 17 21 G2 VFBSMPS S - - - - E10 F4 18 22 G4 PF0 I/O FT_f - I2C2_SDA, FMC_A0, EVENTOUT - F9 F5 19 23 G3 PF1 I/O FT_f - I2C2_SCL, FMC_A1, EVENTOUT - F12 F6 20 24 G1 PF2 I/O FT - I2C2_SMBA, FMC_A2, EVENTOUT - DS12931 Rev 1 63/251 104 Pin descriptions STM32H757xI Table 8. STM32H757xI pin/ball definition (continued) WLCSP156 UFBGA169 LQFP176 LQFP208 TFBGA240+25 Pin name (function after reset) Pin type I/O structure Notes Pin/ball name Alternate functions - - - - H1 PI12 I/O FT - LCD_HSYNC, EVENTOUT - - - - - H2 PI13 I/O FT - LCD_VSYNC, EVENTOUT - - - - - H3 PI14 I/O FT_ h - LCD_CLK, EVENTOUT - F13 G2 21 25 H4 PF3 I/O FT_ ha - FMC_A3, EVENTOUT ADC3_INP5 F11 G1 22 26 J5 PF4 I/O FT_ ha - FMC_A4, EVENTOUT ADC3_INN5, ADC3_INP9 F10 G3 23 27 J4 PF5 I/O FT_ ha - FMC_A5, EVENTOUT ADC3_INP4 G12 - 24 28 C10 VSS S - - - G13 H1 25 29 E9 VDD S - - - - TIM16_CH1, SPI5_NSS, SAI1_SD_B, UART7_RX, SAI4_SD_B, QUADSPI_BK1_IO3, EVENTOUT ADC3_INN4, ADC3_INP8 - TIM17_CH1, SPI5_SCK, SAI1_MCLK_B, UART7_TX, SAI4_MCLK_B, QUADSPI_BK1_IO2, EVENTOUT ADC3_INP3 - TIM16_CH1N, SPI5_MISO, SAI1_SCK_B, UART7_RTS/UART7_ DE, SAI4_SCK_B, TIM13_CH1, QUADSPI_BK1_IO0, EVENTOUT ADC3_INN3, ADC3_INP7 - - - 64/251 G4 G5 G6 26 27 28 30 31 32 K2 K3 K4 PF6 PF7 PF8 I/O I/O I/O FT_ ha FT_ ha FT_ ha DS12931 Rev 1 Additional functions STM32H757xI Pin descriptions Table 8. STM32H757xI pin/ball definition (continued) H3 33 L4 PF9 I/O structure Pin type TFBGA240+25 LQFP208 LQFP176 29 Pin name (function after reset) Notes - UFBGA169 WLCSP156 Pin/ball name Alternate functions Additional functions - TIM17_CH1N, SPI5_MOSI, SAI1_FS_B, UART7_CTS, SAI4_FS_B, TIM14_CH1, QUADSPI_BK1_IO1, EVENTOUT ADC3_INP2 ADC3_INN2, ADC3_INP6 I/O FT_ ha - TIM16_BKIN, SAI1_D3, QUADSPI_CLK, SAI4_D3, DCMI_D11, LCD_DE, EVENTOUT - H4 30 34 L3 PF10 I/O FT_ ha H12 J2 31 35 J2 PH0OSC_IN(PH0) I/O FT - EVENTOUT OSC_IN H13 J1 32 36 J1 PH1OSC_OUT(P H1) I/O FT - EVENTOUT OSC_OUT H11 H5 33 37 K1 NRST I/O RST - - - - DFSDM1_CKIN0, DFSDM1_DATIN4, SAI2_FS_B, OTG_HS_ULPI_STP, FMC_SDNWE, LCD_R5, EVENTOUT ADC123_INP10 - TRACED0, SAI1_D1, DFSDM1_DATIN0, DFSDM1_CKIN4, SPI2_MOSI/I2S2_SDO, SAI1_SD_A, SAI4_SD_A, SDMMC2_CK, SAI4_D1, ETH_MDC, MDIOS_MDC, EVENTOUT ADC123_INN10, ADC123_INP11, RTC_TAMP3/ WKUP5 G11 J4 34 38 L2 PC0 I/O FT_ a G10 J3 35 39 M2 PC1 I/O FT_ ha - - - - M3(2) PC2 I/O FT_ a - 36(3) 40(3) R1(1) PC2_C AN A TT_ a - K13(3) K1(3) DS12931 Rev 1 C1DSLEEP, DFSDM1_CKIN1, SPI2_MISO/I2S2_SDI, DFSDM1_CKOUT, OTG_HS_ULPI_DIR, ETH_MII_TXD2, FMC_SDNE0, EVENTOUT ADC123_INN11, ADC123_INP12 ADC3_INN1, ADC3_INP0 65/251 104 Pin descriptions STM32H757xI Table 8. STM32H757xI pin/ball definition (continued) I/O structure Notes 41(3) R2(1) PC3_C AN A TT_ a - TFBGA240+25 37(3) LQFP208 - LQFP176 FT_ a UFBGA169 I/O WLCSP156 Pin type Pin/ball name Pin name (function after reset) - - - - M4(1) PC3 K12(3) K2(3) Alternate functions Additional functions C1SLEEP, DFSDM1_DATIN1, SPI2_MOSI/I2S2_SDO, OTG_HS_ULPI_NXT, ETH_MII_TX_CLK, FMC_SDCKE0, EVENTOUT ADC12_INN12, ADC12_INP13 ADC3_INP1 - M2 - - E11 VDD S - - - - - C12 - - C13 VSS S - - - - J13 - 38 42 P1 VSSA S - - - - - L1 - - N1 VREF- S - - - - J12 M1 39 43 M1 VREF+ S - - - - J11 L2 40 44 L1 VDDA S - - - - L13 K3 41 45 N5(1) PA0 I/O FT_ a - ADC1_INP16, WKUP0 - - - - T1(1) PA0_C AN A TT_ a - TIM2_CH1/TIM2_ETR, TIM5_CH1, TIM8_ETR, TIM15_BKIN, USART2_CTS/USART2 _NSS, UART4_TX, SDMMC2_CMD, SAI2_SD_B, ETH_MII_CRS, EVENTOUT L12 L3 42 46 N4(1) PA1 I/O FT_ ha - - - - - T2(1) PA1_C AN A TT_ a - K11 66/251 M3 43 47 N3 PA2 I/O FT_ a DS12931 Rev 1 - TIM2_CH2, TIM5_CH2, LPTIM3_OUT, TIM15_CH1N, USART2_RTS/USART2 _DE, UART4_RX, QUADSPI_BK1_IO3, SAI2_MCLK_B, ETH_MII_RX_CLK/ETH _RMII_REF_CLK, LCD_R2, EVENTOUT TIM2_CH3, TIM5_CH3, LPTIM4_OUT, TIM15_CH1, USART2_TX, SAI2_SCK_B, ETH_MDIO, MDIOS_MDIO, LCD_R1, EVENTOUT ADC12_INN1, ADC12_INP0 ADC1_INN16, ADC1_INP17 ADC12_INP1 ADC12_INP14, WKUP1 STM32H757xI Pin descriptions Table 8. STM32H757xI pin/ball definition (continued) - - - 48 N2 PH2 I/O FT_ ha - LPTIM1_IN2, QUADSPI_BK2_IO0, SAI2_SCK_B, ETH_MII_CRS, FMC_SDCKE0, LCD_R0, EVENTOUT - - 44 49 F5 VDD S - - - - - N1 45 50 C16 VSS S - - - - ADC3_INN13, ADC3_INP14 LQFP208 Alternate functions LQFP176 Notes I/O structure Pin name (function after reset) Pin type TFBGA240+25 UFBGA169 WLCSP156 Pin/ball name Additional functions ADC3_INP13 - - - 51 P2 PH3 I/O FT_ ha - QUADSPI_BK2_IO1, SAI2_MCLK_B, ETH_MII_COL, FMC_SDNE0, LCD_R1, EVENTOUT - - - 52 P3 PH4 I/O FT_f a - I2C2_SCL, LCD_G5, OTG_HS_ULPI_NXT, LCD_G4, EVENTOUT ADC3_INN14, ADC3_INP15 - - - 53 P4 PH5 I/O FT_f a - I2C2_SDA, SPI5_NSS, FMC_SDNWE, EVENTOUT ADC3_INN15, ADC3_INP16 ADC12_INP15 J10 N2 46 54 U2 PA3 I/O FT_ ha - TIM2_CH4, TIM5_CH4, LPTIM5_OUT, TIM15_CH2, USART2_RX, LCD_B2, OTG_HS_ULPI_D0, ETH_MII_COL, LCD_B5, EVENTOUT L11 - 47 55 - VSS S - - - - M12 - 48 56 G5 VDD S - - - - - D1PWREN, TIM5_ETR, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART2_CK, SPI6_NSS, OTG_HS_SOF, DCMI_HSYNC, LCD_VSYNC, EVENTOUT ADC12_INP18, DAC1_OUT1 K10 N3 49 57 U3 PA4 I/O TT_ a DS12931 Rev 1 67/251 104 Pin descriptions STM32H757xI Table 8. STM32H757xI pin/ball definition (continued) G9 J9 M11 68/251 J5 M4 K4 L4 51 52 53 58 59 60 61 T3 R3 R5 T4 PA5 PA6 PA7 PC4 I/O I/O I/O I/O I/O structure Pin type TFBGA240+25 LQFP208 LQFP176 50 Pin name (function after reset) TT_ ha FT_ a TT_ a TT_ a DS12931 Rev 1 Notes H10 UFBGA169 WLCSP156 Pin/ball name Alternate functions Additional functions - D2PWREN, TIM2_CH1/TIM2_ETR, TIM8_CH1N, SPI1_SCK/I2S1_CK, SPI6_SCK, OTG_HS_ULPI_CK, LCD_R4, EVENTOUT ADC12_INN18, ADC12_INP19, DAC1_OUT2 - TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO/I2S1_SDI, SPI6_MISO, TIM13_CH1, TIM8_BKIN_COMP12, MDIOS_MDC, TIM1_BKIN_COMP12, DCMI_PIXCLK, LCD_G2, EVENTOUT ADC12_INP3 - TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SPI1_MOSI/I2S1_SDO, SPI6_MOSI, TIM14_CH1, ETH_MII_RX_DV/ETH_ RMII_CRS_DV, FMC_SDNWE, EVENTOUT ADC12_INN3, ADC12_INP7, OPAMP1_VINM - C2DSLEEP, DFSDM1_CKIN2, I2S1_MCK, SPDIFRX1_IN3, ETH_MII_RXD0/ETH_R MII_RXD0, FMC_SDNE0, EVENTOUT ADC12_INP4, OPAMP1_VOUT, COMP1_INM STM32H757xI Pin descriptions Table 8. STM32H757xI pin/ball definition (continued) L10 K5 54 62 U4 PC5 I/O TT_ a - C2SLEEP, SAI1_D3, DFSDM1_DATIN2, SPDIFRX1_IN4, SAI4_D3, ETH_MII_RXD1/ETH_R MII_RXD1, FMC_SDCKE0, COMP1_OUT, EVENTOUT - - - - G13 VDD S - - - - - H2 - - R4 VSS S - - - - - TIM1_CH2N, TIM3_CH3, TIM8_CH2N, DFSDM1_CKOUT, UART4_CTS, LCD_R3, OTG_HS_ULPI_D1, ETH_MII_RXD2, LCD_G1, EVENTOUT ADC12_INN5, ADC12_INP9, OPAMP1_VINP, COMP1_INP - TIM1_CH3N, TIM3_CH4, TIM8_CH3N, DFSDM1_DATIN1, LCD_R6, OTG_HS_ULPI_D2, ETH_MII_RXD3, LCD_G0, EVENTOUT ADC12_INP5, COMP1_INM COMP1_INP K9 H9 N4 H6 55 56 LQFP208 Alternate functions LQFP176 Notes I/O structure Pin name (function after reset) Pin type TFBGA240+25 UFBGA169 WLCSP156 Pin/ball name 63 64 U5 T5 PB0 PB1 I/O I/O FT_ a TT_ u Additional functions ADC12_INN4, ADC12_INP8, OPAMP1_VINM M10 L5 57 65 R6 PB2 I/O FT_ ha - RTC_OUT, SAI1_D1, DFSDM1_CKIN1, SAI1_SD_A, SPI3_MOSI/I2S3_SDO, SAI4_SD_A, QUADSPI_CLK, SAI4_D1, EVENTOUT - - - 66 P5 PI15 I/O FT - LCD_G2, LCD_R0, EVENTOUT - - - - - N6 PJ0 I/O FT - LCD_R7, LCD_R1, EVENTOUT - - - - - P6 PJ1 I/O FT - LCD_R2, EVENTOUT - - - - - T6 PJ2 I/O FT - DSI_TE, LCD_R3, EVENTOUT - DS12931 Rev 1 69/251 104 Pin descriptions STM32H757xI Table 8. STM32H757xI pin/ball definition (continued) WLCSP156 UFBGA169 LQFP176 LQFP208 TFBGA240+25 Pin name (function after reset) Pin type I/O structure Notes Pin/ball name Alternate functions - - - - U6 PJ3 I/O FT - LCD_R4, EVENTOUT - - - - - U7 PJ4 I/O FT - LCD_R5, EVENTOUT - - SPI5_MOSI, SAI2_SD_B, FMC_SDNRAS, DCMI_D12, EVENTOUT ADC1_INP2 - FMC_A6, EVENTOUT ADC1_INN2, ADC1_INP6 Additional functions F8 K6 58 67 T7 PF11 I/O FT_ a G8 J6 59 68 R7 PF12 I/O FT_ ha L9 - - - J3 VSS S - - - M9 - - - H5 VDD S - - - H8 M5 60 69 P7 PF13 I/O FT_ ha - DFSDM1_DATIN6, I2C4_SMBA, FMC_A7, EVENTOUT ADC2_INP2 K8 N5 61 70 P8 PF14 I/O FT_f ha - DFSDM1_CKIN6, I2C4_SCL, FMC_A8, EVENTOUT ADC2_INN2, ADC2_INP6 J8 M7 62 71 R9 PF15 I/O FT_f h - I2C4_SDA, FMC_A9, EVENTOUT - L8 L6 63 72 T8 PG0 I/O FT_ h - FMC_A10, EVENTOUT - - M9 64 73 J16 VSS S - - - - - 65 74 H13 VDD S - - - M8 J7 66 75 U8 PG1 I/O - FMC_A11, EVENTOUT OPAMP2_VINM - TIM1_ETR, DFSDM1_DATIN2, UART7_RX, QUADSPI_BK2_IO0, FMC_D4/FMC_DA4, EVENTOUT OPAMP2_VOUT, COMP2_INM - TIM1_CH1N, DFSDM1_CKIN2, UART7_TX, QUADSPI_BK2_IO1, FMC_D5/FMC_DA5, COMP2_OUT, EVENTOUT OPAMP2_VINM H7 J7 70/251 K7 L8 67 68 76 77 U9 T9 PE7 PE8 I/O I/O TT_ h TT_ ha TT_ ha DS12931 Rev 1 STM32H757xI Pin descriptions Table 8. STM32H757xI pin/ball definition (continued) K7 N6 69 78 P9 PE9 I/O TT_ ha - TIM1_CH1, DFSDM1_CKOUT, UART7_RTS/UART7_ DE, QUADSPI_BK2_IO2, FMC_D6/FMC_DA6, EVENTOUT L7 M6 70 79 J17 VSS S - - - - M7 - 71 80 J13 VDD S - - - - - TIM1_CH2N, DFSDM1_DATIN4, UART7_CTS, QUADSPI_BK2_IO3, FMC_D7/FMC_DA7, EVENTOUT COMP2_INM - TIM1_CH2, DFSDM1_CKIN4, SPI4_NSS, SAI2_SD_B, FMC_D8/FMC_DA8, LCD_G3, EVENTOUT COMP2_INP - TIM1_CH3N, DFSDM1_DATIN5, SPI4_SCK, SAI2_SCK_B, FMC_D9/FMC_DA9, COMP1_OUT, LCD_B4, EVENTOUT - - G7 G6 J6 L7 N7 J8 72 73 74 LQFP208 Alternate functions LQFP176 Notes I/O structure Pin name (function after reset) Pin type TFBGA240+25 UFBGA169 WLCSP156 Pin/ball name 81 82 83 N9 P10 R10 PE10 PE11 PE12 I/O I/O I/O FT_ ha FT_ ha FT_ h Additional functions OPAMP2_VINP, COMP2_INP K6 H8 75 84 T10 PE13 I/O FT_ h - TIM1_CH3, DFSDM1_CKIN5, SPI4_MISO, SAI2_FS_B, FMC_D10/FMC_DA10, COMP2_OUT, LCD_DE, EVENTOUT - H2 - - T12 VSS S - - - - - - - - K13 VDD S - - - - TIM1_CH4, SPI4_MOSI, SAI2_MCLK_B, FMC_D11/FMC_DA11, LCD_CLK, EVENTOUT - M6 M8 76 85 U10 PE14 I/O FT_ h DS12931 Rev 1 71/251 104 Pin descriptions STM32H757xI Table 8. STM32H757xI pin/ball definition (continued) H6 K8 K9 78 86 87 R11 P11 PE15 PB10 I/O I/O I/O structure Pin type TFBGA240+25 LQFP208 LQFP176 77 Pin name (function after reset) FT_ h FT_f Notes L6 UFBGA169 WLCSP156 Pin/ball name Alternate functions Additional functions - TIM1_BKIN, COMP_TIM1_BKIN, FMC_D12/FMC_DA12, TIM1_BKIN_COMP12, LCD_R7, EVENTOUT - - TIM2_CH3, HRTIM_SCOUT, LPTIM2_IN1, I2C2_SCL, SPI2_SCK/I2S2_CK, DFSDM1_DATIN7, USART3_TX, QUADSPI_BK1_NCS, OTG_HS_ULPI_D3, ETH_MII_RX_ER, LCD_G4, EVENTOUT - - K5 N8 79 88 P12 PB11 I/O FT_f - TIM2_CH4, HRTIM_SCIN, LPTIM2_ETR, I2C2_SDA, DFSDM1_CKIN7, USART3_RX, OTG_HS_ULPI_D4, ETH_MII_TX_EN/ETH_ RMII_TX_EN, DSI_TE, LCD_G5, EVENTOUT M5 N9 80 89 U11 VCAP S - - - - L5 - 81 90 - VSS S - - - - L4 N10 82 91 U12 VDDLDO S - - - - M4 - - - L13 VDD S - - - - - - - - R12 PJ5 I/O FT - LCD_R6, EVENTOUT - - TIM12_CH1, I2C2_SMBA, SPI5_SCK, ETH_MII_RXD2, FMC_SDNE1, DCMI_D8, EVENTOUT - - I2C3_SCL, SPI5_MISO, ETH_MII_RXD3, FMC_SDCKE1, DCMI_D9, EVENTOUT - - - 72/251 - - - - 92 93 T11 U13 PH6 PH7 I/O FT I/O FT_f a DS12931 Rev 1 STM32H757xI Pin descriptions Table 8. STM32H757xI pin/ball definition (continued) PH8 I/O - E13 - - - VSS S - - - - M4 L9 - - M13 VDD S - - - - I/O FT_ h - TIM12_CH2, I2C3_SMBA, FMC_D17, DCMI_D0, LCD_R3, EVENTOUT - - TIM5_CH1, I2C4_SMBA, FMC_D18, DCMI_D1, LCD_R4, EVENTOUT - - - - 95 R13 Pin name (function after reset) PH9 Notes I/O structure T13 TFBGA240+25 94 LQFP208 - LQFP176 - UFBGA169 - FT_f ha WLCSP156 Pin type Pin/ball name Alternate functions - TIM5_ETR, I2C3_SDA, FMC_D16, DCMI_HSYNC, LCD_R2, EVENTOUT Additional functions - - - - 96 P13 PH10 I/O FT_ h - - - 97 P14 PH11 I/O FT_f h - TIM5_CH2, I2C4_SCL, FMC_D19, DCMI_D2, LCD_R5, EVENTOUT - - - - 98 R14 PH12 I/O FT_f h - TIM5_CH3, I2C4_SDA, FMC_D20, DCMI_D3, LCD_R6, EVENTOUT - - D1 83 99 N16 VSS S - - - - M4 - 84 100 - VDD S - - - - - TIM1_BKIN, I2C2_SMBA, SPI2_NSS/I2S2_WS, DFSDM1_DATIN1, USART3_CK, FDCAN2_RX, OTG_HS_ULPI_D5, ETH_MII_TXD0/ETH_R MII_TXD0, OTG_HS_ID, TIM1_BKIN_COMP12, UART5_RX, EVENTOUT - J5 L10 85 101 T14 PB12 I/O FT_ u DS12931 Rev 1 73/251 104 Pin descriptions STM32H757xI Table 8. STM32H757xI pin/ball definition (continued) M3 M2 G5 74/251 M10 N11 M11 N12 87 88 89 102 103 104 105 U14 U15 T15 U16 PB13 PB14 PB15 PD8 I/O I/O I/O I/O I/O structure Pin type TFBGA240+25 LQFP208 LQFP176 86 Pin name (function after reset) FT_ u FT_ u FT_ u FT_ h DS12931 Rev 1 Notes H5 UFBGA169 WLCSP156 Pin/ball name Alternate functions Additional functions - TIM1_CH1N, LPTIM2_OUT, SPI2_SCK/I2S2_CK, DFSDM1_CKIN1, USART3_CTS/USART3 _NSS, FDCAN2_TX, OTG_HS_ULPI_D6, ETH_MII_TXD1/ETH_R MII_TXD1, UART5_TX, EVENTOUT OTG_HS_VBUS - TIM1_CH2N, TIM12_CH1, TIM8_CH2N, USART1_TX, SPI2_MISO/I2S2_SDI, DFSDM1_DATIN2, USART3_RTS/USART3 _DE, UART4_RTS/ UART4_DE, SDMMC2_D0, OTG_HS_DM, EVENTOUT - - RTC_REFIN, TIM1_CH3N, TIM12_CH2, TIM8_CH3N, USART1_RX, SPI2_MOSI/I2S2_SDO, DFSDM1_CKIN2, UART4_CTS, SDMMC2_D1, OTG_HS_DP, EVENTOUT - - DFSDM1_CKIN3, SAI3_SCK_B, USART3_TX, SPDIFRX1_IN2, FMC_D13/FMC_DA13, EVENTOUT - STM32H757xI Pin descriptions Table 8. STM32H757xI pin/ball definition (continued) M12 106 T17 PD9 I/O I/O structure Pin type TFBGA240+25 LQFP208 LQFP176 90 Pin name (function after reset) FT_ h Notes K4 UFBGA169 WLCSP156 Pin/ball name Alternate functions Additional functions - DFSDM1_DATIN3, SAI3_SD_B, USART3_RX, FDCAN2_RXFD_MODE, FMC_D14/FMC_DA14, EVENTOUT - L3 N13 91 107 T16 PD10 I/O FT_ h - DFSDM1_CKOUT, SAI3_FS_B, USART3_CK, FDCAN2_TXFD_MODE, FMC_D15/FMC_DA15, LCD_B3, EVENTOUT - L11 92 108 N12 VDD S - - - - M1 L13 93 109 U17 VSS S - - - - - LPTIM2_IN2, I2C4_SMBA, USART3_CTS/USART3 _NSS, QUADSPI_BK1_IO0, SAI2_SD_A, FMC_A16, EVENTOUT - - LPTIM1_IN1, TIM4_CH1, LPTIM2_IN1, I2C4_SCL, USART3_RTS/ USART3_DE, QUADSPI_BK1_IO1, SAI2_FS_A, FMC_A17, EVENTOUT - - J4 L2 K10 J10 94 95 110 111 R15 R16 PD11 PD12 I/O I/O FT_ h FT_f h K3 J9 96 112 R17 PD13 I/O FT_f h - LPTIM1_OUT, TIM4_CH2, I2C4_SDA, QUADSPI_BK1_IO3, SAI2_SCK_A, FMC_A18, EVENTOUT L1 - - 113 - VSS S - - - - - - - 114 N11 VDD S - - - - - TIM4_CH3, SAI3_MCLK_B, UART8_CTS, FMC_D0/FMC_DA0, EVENTOUT - H4 H9 97 115 P16 PD14 I/O FT_ h DS12931 Rev 1 75/251 104 Pin descriptions STM32H757xI Table 8. STM32H757xI pin/ball definition (continued) J3 H10 98 116 P15 PD15 I/O FT_ h - TIM4_CH4, SAI3_MCLK_A, UART8_RTS/ UART8_DE, FMC_D1/FMC_DA1, EVENTOUT - - - - N15 PJ6 I/O FT - TIM8_CH2, LCD_R7, EVENTOUT - - - - - N14 PJ7 I/O FT - TRGIN, TIM8_CH2N, LCD_G0, EVENTOUT - K2 - - - N10 VDD S - - - - - C12 - - R8 VSS S - - - - - - - - N13 PJ8 I/O FT - TIM1_CH3N, TIM8_CH1, UART8_TX, LCD_G1, EVENTOUT - - LQFP208 Alternate functions LQFP176 Notes I/O structure Pin name (function after reset) Pin type TFBGA240+25 UFBGA169 WLCSP156 Pin/ball name Additional functions - - - - - M14 PJ9 I/O FT - TIM1_CH3, TIM8_CH1N, UART8_RX, LCD_G2, EVENTOUT - - - - L14 PJ10 I/O FT - TIM1_CH2N, TIM8_CH2, SPI5_MOSI, LCD_G3, EVENTOUT - - TIM1_CH2, TIM8_CH2N, SPI5_MISO, LCD_G4, EVENTOUT - - - - - K14 PJ11 I/O - - 99 117 N8 VDD S - - - - M13 - - P17 VDDDSI S - - - - - 100 118 U1 VSS S - - - K1 L12 101 119 N17 VCAPDSI S - - - - - 102 120 - VDD12DSI S - - - J2 K12 103 121 M16 DSI_D0P I/O TT - - - J1 K13 104 122 M17 DSI_D0N I/O TT - - - H3 G12 105 123 K15 VSSDSI S - - - H2 J12 106 124 L16 DSI_CKP I/O TT - - - H1 J13 107 125 L17 DSI_CKN I/O TT - - - 76/251 FT DS12931 Rev 1 STM32H757xI Pin descriptions Table 8. STM32H757xI pin/ball definition (continued) WLCSP156 UFBGA169 LQFP176 LQFP208 TFBGA240+25 Pin name (function after reset) Pin type I/O structure Notes Pin/ball name Alternate functions - - 108 126 - VDD12DSI S - - - - G2 H12 - 127 K16 DSI_D1P I/O TT - - - G1 H13 - 128 K17 DSI_D1N I/O TT - - - - G13 109 129 L15 VSSDSI S - - - - - - - - J14 PK0 I/O FT - TIM1_CH1N, TIM8_CH3, SPI5_SCK, LCD_G5, EVENTOUT - - TIM1_CH1, TIM8_CH3N, SPI5_NSS, LCD_G6, EVENTOUT - - - - - - J15 PK1 I/O FT Additional functions - - - - H17 PK2 I/O FT - TIM1_BKIN, TIM8_BKIN, TIM8_BKIN_COMP12, TIM1_BKIN_COMP12, LCD_G7, EVENTOUT G3 H7 110 130 H16 PG2 I/O FT_ h - TIM8_BKIN, TIM8_BKIN_COMP12, FMC_A12, EVENTOUT - G4 G8 111 131 H15 PG3 I/O FT_ h - TIM8_BKIN2, TIM8_BKIN2_COMP12, FMC_A13, EVENTOUT - - - 112 132 - VSS S - - - - - E12 113 133 N7 VDD S - - - - - TIM1_BKIN2, TIM1_BKIN2_COMP12, FMC_A14/FMC_BA0, EVENTOUT - - TIM1_ETR, FMC_A15/FMC_BA1, EVENTOUT - - TIM17_BKIN, HRTIM_CHE1, QUADSPI_BK1_NCS, FMC_NE3, DCMI_D12, LCD_R7, EVENTOUT - F4 G10 114 134 H14 PG4 I/O FT_ h F1 G9 115 135 G14 PG5 I/O FT_ h - G11 116 136 G15 PG6 I/O FT_ h DS12931 Rev 1 77/251 104 Pin descriptions STM32H757xI Table 8. STM32H757xI pin/ball definition (continued) F8 137 F16 PG7 I/O I/O structure Pin type TFBGA240+25 LQFP208 LQFP176 117 Pin name (function after reset) FT_ h Notes - UFBGA169 WLCSP156 Pin/ball name Alternate functions Additional functions - HRTIM_CHE2, SAI1_MCLK_A, USART6_CK, FMC_INT, DCMI_D13, LCD_CLK, EVENTOUT - - F2 F9 118 138 F15 PG8 I/O FT_ h - TIM8_ETR, SPI6_NSS, USART6_RTS/USART6 _DE, SPDIFRX1_IN3, ETH_PPS_OUT, FMC_SDCLK, LCD_G7, EVENTOUT F3 - 119 139 G16 VSS S - - - - E3 F12 120 140 G17 VDD50USB S - - - - E1 F13 121 141 F17 VDD33USB S - - - - E2 - - - M5 VDD S - - - - - HRTIM_CHA1, TIM3_CH1, TIM8_CH1, DFSDM1_CKIN3, I2S2_MCK, USART6_TX, SDMMC1_D0DIR, FMC_NWAIT, SDMMC2_D6, SDMMC1_D6, DCMI_D0, LCD_HSYNC, EVENTOUT SWPMI_IO - TRGIO, HRTIM_CHA2, TIM3_CH2, TIM8_CH2, DFSDM1_DATIN3, I2S3_MCK, USART6_RX, SDMMC1_D123DIR, FMC_NE1, SDMMC2_D7, SWPMI_TX, SDMMC1_D7, DCMI_D1, LCD_G6, EVENTOUT - F5 E4 78/251 F11 E10 122 123 142 143 F14 F13 PC6 PC7 I/O I/O FT_ h FT_ h DS12931 Rev 1 STM32H757xI Pin descriptions Table 8. STM32H757xI pin/ball definition (continued) F10 144 E13 PC8 I/O I/O structure Pin type TFBGA240+25 LQFP208 LQFP176 124 Pin name (function after reset) FT_ h Notes D1 UFBGA169 WLCSP156 Pin/ball name Alternate functions Additional functions - TRACED1, HRTIM_CHB1, TIM3_CH3, TIM8_CH3, USART6_CK, UART5_RTS/ UART5_DE, FMC_NE2/FMC_NCE, SWPMI_RX, SDMMC1_D0, DCMI_D2, EVENTOUT - - D2 E11 125 145 E14 PC9 I/O FT_f h - MCO2, TIM3_CH4, TIM8_CH4, I2C3_SDA, I2S_CKIN, UART5_CTS, QUADSPI_BK1_IO0, LCD_G3, SWPMI_SUSPEND, SDMMC1_D1, DCMI_D3, LCD_B2, EVENTOUT - - 126 - L5 VDD S - - - - - MCO1, TIM1_CH1, HRTIM_CHB2, TIM8_BKIN2, I2C3_SCL, USART1_CK, OTG_FS_SOF, UART7_RX, TIM8_BKIN2_COMP12, LCD_B3, LCD_R6, EVENTOUT - - TIM1_CH2, HRTIM_CHC1, LPUART1_TX, I2C3_SMBA, SPI2_SCK/I2S2_CK, USART1_TX, FDCAN1_RXFD_MODE, DCMI_D0, LCD_R5, EVENTOUT OTG_FS_VBUS D3 D4 D10 D11 127 128 146 147 E15 D15 PA8 PA9 I/O I/O FT_f ha FT_ u DS12931 Rev 1 79/251 104 Pin descriptions STM32H757xI Table 8. STM32H757xI pin/ball definition (continued) C1 A13 D12 130 148 149 D14 E17 PA10 I/O PA11 I/O I/O structure Pin type TFBGA240+25 LQFP208 LQFP176 129 Pin name (function after reset) FT_ u FT_ u Notes C2 UFBGA169 WLCSP156 Pin/ball name Alternate functions Additional functions - TIM1_CH3, HRTIM_CHC2, LPUART1_RX, USART1_RX, FDCAN1_TXFD_MODE, OTG_FS_ID, MDIOS_MDIO, LCD_B4, DCMI_D1, LCD_B1, EVENTOUT - - TIM1_CH4, HRTIM_CHD1, LPUART1_CTS, SPI2_NSS/I2S2_WS, UART4_RX, USART1_CTS/USART1 _NSS, FDCAN1_RX, OTG_FS_DM, LCD_R4, EVENTOUT - - B1 D13 131 150 E16 PA12 I/O FT_ u - TIM1_ETR, HRTIM_CHD2, LPUART1_RTS/ LPUART1_DE, SPI2_SCK/I2S2_CK, UART4_TX, USART1_RTS/ USART1_DE, SAI2_FS_B, FDCAN1_TX, OTG_FS_DP, LCD_R5, EVENTOUT C3 B11 132 151 C15 PA13(JTMS/ SWDIO) I/O FT - JTMS-SWDIO, EVENTOUT - B2 C13 133 152 D17 VCAP S - - - - A1 - 134 153 - VSS S - - - - A2 B13 135 154 C17 VDDLDO - - - - B3 - 136 155 K5 VDD - - - - - TIM8_CH1N, UART4_TX, FDCAN1_TX, FMC_D21, LCD_G2, EVENTOUT - - 80/251 - - 156 D16 PH13 S I/O FT_ h DS12931 Rev 1 STM32H757xI Pin descriptions Table 8. STM32H757xI pin/ball definition (continued) - - - - 157 158 B17 B16 PH14 PH15 I/O structure Pin type TFBGA240+25 LQFP208 LQFP176 - Pin name (function after reset) I/O FT_ h I/O FT_ h FT_ h Notes - UFBGA169 WLCSP156 Pin/ball name Alternate functions Additional functions - TIM8_CH2N, UART4_RX, FDCAN1_RX, FMC_D22, DCMI_D4, LCD_G3, EVENTOUT - - TIM8_CH3N, FDCAN1_TXFD_MODE, FMC_D23, DCMI_D11, LCD_G4, EVENTOUT - - TIM5_CH4, SPI2_NSS/I2S2_WS, FDCAN1_RXFD_MODE, FMC_D24, DCMI_D13, LCD_G5, EVENTOUT - - - - 159 A16 PI0 I/O - - - 160 - VSS S - - - - B12 - 161 VDD VDD S - - - - TIM8_BKIN2, SPI2_SCK/I2S2_CK, TIM8_BKIN2_COMP12, FMC_D25, DCMI_D8, LCD_G6, EVENTOUT - - TIM8_CH4, SPI2_MISO/I2S2_SDI, FMC_D26, DCMI_D9, LCD_G7, EVENTOUT - - - - - - - - 162 163 A15 B15 PI1 PI2 I/O FT_ h I/O FT_ h - TIM8_ETR, SPI2_MOSI/I2S2_SDO, FMC_D27, DCMI_D10, EVENTOUT - - - 164 C14 PI3 I/O FT_ h C4 - 137 - - VSS S - - - - B3 - - - VDD VDD S - - - - E5 A11 138 165 B14 PA14(JTCK/ SWCLK) I/O FT - JTCK-SWCLK, EVENTOUT - DS12931 Rev 1 81/251 104 Pin descriptions STM32H757xI Table 8. STM32H757xI pin/ball definition (continued) D5 C5 B10 C11 E9 140 141 166 167 168 A14 A13 B13 PA15(JTDI) PC10 PC11 I/O I/O I/O I/O structure Pin type TFBGA240+25 LQFP208 LQFP176 139 Pin name (function after reset) FT FT_ ha FT_ h Notes A3 UFBGA169 WLCSP156 Pin/ball name Alternate functions Additional functions - JTDI, TIM2_CH1/TIM2_ETR, HRTIM_FLT1, CEC, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, SPI6_NSS, UART4_RTS/UART4_D E, UART7_TX, DSI_TE, EVENTOUT - - HRTIM_EEV1, DFSDM1_CKIN5, SPI3_SCK/I2S3_CK, USART3_TX, UART4_TX, QUADSPI_BK1_IO1, SDMMC1_D2, DCMI_D8, LCD_R2, EVENTOUT - - HRTIM_FLT2, DFSDM1_DATIN5, SPI3_MISO/I2S3_SDI, USART3_RX, UART4_RX, QUADSPI_BK2_NCS, SDMMC1_D3, DCMI_D4, EVENTOUT - - B4 D9 142 169 C12 PC12 I/O FT_ h - TRACED3, HRTIM_EEV2, SPI3_MOSI/I2S3_SDO, USART3_CK, UART5_TX, SDMMC1_CK, DCMI_D9, EVENTOUT - A7 - - - VSS S - - - - - - - - VDD VDD S - - - - - DFSDM1_CKIN6, SAI3_SCK_A, UART4_RX, FDCAN1_RX, FMC_D2/FMC_DA2, EVENTOUT - A4 82/251 C10 143 170 D13 PD0 I/O FT_ h DS12931 Rev 1 STM32H757xI Pin descriptions Table 8. STM32H757xI pin/ball definition (continued) E6 B5 A5 C9 E8 A10 D8 145 146 147 171 172 173 174 E12 D12 B12 A12 PD1 PD2 PD3 PD4 I/O structure Pin type TFBGA240+25 LQFP208 LQFP176 144 Pin name (function after reset) I/O FT_ h I/O FT_ h I/O FT_ h Notes F6 UFBGA169 WLCSP156 Pin/ball name Alternate functions Additional functions - DFSDM1_DATIN6, SAI3_SD_A, UART4_TX, FDCAN1_TX, FMC_D3/FMC_DA3, EVENTOUT - - TRACED2, TIM3_ETR, UART5_RX, SDMMC1_CMD, DCMI_D11, EVENTOUT - - DFSDM1_CKOUT, SPI2_SCK/I2S2_CK, USART2_CTS/USART2 _NSS, FMC_CLK, DCMI_D5, LCD_G7, EVENTOUT - - HRTIM_FLT3, SAI3_FS_A, USART2_RTS/USART2 _DE, FDCAN1_RXFD_MODE, FMC_NOE, EVENTOUT - - I/O FT_ h - HRTIM_EEV3, USART2_TX, FDCAN1_TXFD_MODE, FMC_NWE, EVENTOUT F7 C8 148 175 A11 PD5 I/O FT_ h B6 - - - - VSS S - - - - A6 B2 - - VDD VDD S - - - - - SAI1_D1, DFSDM1_CKIN4, DFSDM1_DATIN1, SPI3_MOSI/I2S3_SDO, SAI1_SD_A, USART2_RX, SAI4_SD_A, FDCAN2_RXFD_MODE, SAI4_D1, SDMMC2_CK, FMC_NWAIT, DCMI_D10, LCD_B2, EVENTOUT - C6 B8 149 176 B11 PD6 I/O FT_ h DS12931 Rev 1 83/251 104 Pin descriptions STM32H757xI Table 8. STM32H757xI pin/ball definition (continued) D6 A8 150 177 C11 PD7 I/O FT_ h - DFSDM1_DATIN4, SPI1_MOSI/I2S1_SDO, DFSDM1_CKIN1, USART2_CK, SPDIFRX1_IN0, SDMMC2_CMD, FMC_NE1, EVENTOUT - - - - D11 PJ12 I/O FT - TRGOUT, LCD_G3, LCD_B0, EVENTOUT - - - - - E10 PJ13 I/O FT - LCD_B4, LCD_B1, EVENTOUT - - - - - D10 PJ14 I/O FT - LCD_B2, EVENTOUT - - - - - B10 PJ15 I/O FT - LCD_B3, EVENTOUT - B9 B9 151 178 - VSS S - - - - - - 152 179 VDD VDD S - - - - - SPI1_MISO/I2S1_SDI, USART6_RX, SPDIFRX1_IN4, QUADSPI_BK2_IO2, SAI2_FS_B, FMC_NE2/FMC_NCE, DCMI_VSYNC, EVENTOUT - - HRTIM_FLT5, SPI1_NSS/I2S1_WS, LCD_G3, SAI2_SD_B, FMC_NE3, DCMI_D2, LCD_B2, EVENTOUT - - LPTIM1_IN2, HRTIM_EEV4, SPI1_SCK/I2S1_CK, SPDIFRX1_IN1, SDMMC2_D2, ETH_MII_TX_EN/ETH_ RMII_TX_EN, DCMI_D3, LCD_B3, EVENTOUT - - - - 84/251 C7 D7 E7 153 154 155 LQFP208 Alternate functions LQFP176 Notes I/O structure Pin name (function after reset) Pin type TFBGA240+25 UFBGA169 WLCSP156 Pin/ball name 180 181 182 A10 A9 B9 PG9 PG10 PG11 I/O I/O I/O FT_ h FT_ h FT_ h DS12931 Rev 1 Additional functions - STM32H757xI Pin descriptions Table 8. STM32H757xI pin/ball definition (continued) - G7 F7 157 183 184 C9 D9 PG12 PG13 I/O I/O I/O structure Pin type TFBGA240+25 LQFP208 LQFP176 156 Pin name (function after reset) FT_ h FT_ h Notes - UFBGA169 WLCSP156 Pin/ball name Alternate functions Additional functions - LPTIM1_IN1, HRTIM_EEV5, SPI6_MISO, USART6_RTS/USART6 _DE, SPDIFRX1_IN2, LCD_B4, ETH_MII_TXD1/ETH_R MII_TXD1, FMC_NE4, LCD_B1, EVENTOUT - - TRACED0, LPTIM1_OUT, HRTIM_EEV10, SPI6_SCK, USART6_CTS/USART6 _NSS, ETH_MII_TXD0/ETH_R MII_TXD0, FMC_A24, LCD_R0, EVENTOUT - - - E6 158 185 D8 PG14 I/O FT_ h - TRACED1, LPTIM1_ETR, SPI6_MOSI, USART6_TX, QUADSPI_BK2_IO3, ETH_MII_TXD1/ETH_R MII_TXD1, FMC_A25, LCD_B0, EVENTOUT - - 159 186 - VSS S - - - - - - 160 187 VDD VDD S - - - - - - - - C8 PK3 I/O FT - LCD_B4, EVENTOUT - - - - - B8 PK4 I/O FT - LCD_B5, EVENTOUT - - - - - A8 PK5 I/O FT - LCD_B6, EVENTOUT - - - - - C7 PK6 I/O FT - LCD_B7, EVENTOUT - - - - - D7 PK7 I/O FT - LCD_DE, EVENTOUT - - B7 - - VDD VDD S - - - A7 C6 161 188 D6 PG15 I/O - USART6_CTS/USART6 _NSS, FMC_SDNCAS, DCMI_D13, EVENTOUT - FT_ h DS12931 Rev 1 85/251 104 Pin descriptions STM32H757xI Table 8. STM32H757xI pin/ball definition (continued) A8 A6 B6 163 189 190 C6 B7 PB3(JTDO/TR I/O ACESWO) PB4(NJTRST) I/O I/O structure Pin type TFBGA240+25 LQFP208 LQFP176 162 Pin name (function after reset) FT FT Notes B7 UFBGA169 WLCSP156 Pin/ball name Alternate functions Additional functions - JTDO/TRACESWO, TIM2_CH2, HRTIM_FLT4, SPI1_SCK/I2S1_CK, SPI3_SCK/I2S3_CK, SPI6_SCK, SDMMC2_D2, CRS_SYNC, UART7_RX, EVENTOUT - - NJTRST, TIM16_BKIN, TIM3_CH1, HRTIM_EEV6, SPI1_MISO/I2S1_SDI, SPI3_MISO/I2S3_SDI, SPI2_NSS/I2S2_WS, SPI6_MISO, SDMMC2_D3, UART7_TX, EVENTOUT - - - B8 A5 164 191 A5 PB5 I/O FT - TIM17_BKIN, TIM3_CH2, HRTIM_EEV7, I2C1_SMBA, SPI1_MOSI/I2S1_SDO, I2C4_SMBA, SPI3_MOSI/I2S3_SDO, SPI6_MOSI, FDCAN2_RX, OTG_HS_ULPI_D7, ETH_PPS_OUT, FMC_SDCKE1, DCMI_D10, UART5_RX, EVENTOUT A9 - - - VDD VDD S - - - 86/251 DS12931 Rev 1 STM32H757xI Pin descriptions Table 8. STM32H757xI pin/ball definition (continued) E5 192 B5 PB6 I/O I/O structure Pin type TFBGA240+25 LQFP208 LQFP176 165 Pin name (function after reset) FT_f Notes C7 UFBGA169 WLCSP156 Pin/ball name Alternate functions Additional functions - TIM16_CH1N, TIM4_CH1, HRTIM_EEV8, I2C1_SCL, CEC, I2C4_SCL, USART1_TX, LPUART1_TX, FDCAN2_TX, QUADSPI_BK1_NCS, DFSDM1_DATIN5, FMC_SDNE1, DCMI_D5, UART5_TX, EVENTOUT - PVD_IN C8 C5 166 193 C5 PB7 I/O FT_f a - TIM17_CH1N, TIM4_CH2, HRTIM_EEV9, I2C1_SDA, I2C4_SDA, USART1_RX, LPUART1_RX, FDCAN2_TXFD_MODE, DFSDM1_CKIN5, FMC_NL, DCMI_VSYNC, EVENTOUT D7 B5 167 194 E8 BOOT0 I B - - VPP - TIM16_CH1, TIM4_CH3, DFSDM1_CKIN7, I2C1_SCL, I2C4_SCL, SDMMC1_CKIN, UART4_RX, FDCAN1_RX, SDMMC2_D4, ETH_MII_TXD3, SDMMC1_D4, DCMI_D6, LCD_B6, EVENTOUT - A10 D5 168 195 D5 PB8 I/O FT_f h DS12931 Rev 1 87/251 104 Pin descriptions STM32H757xI Table 8. STM32H757xI pin/ball definition (continued) B10 D6 D4 170 196 197 D4 C4 PB9 PE0 I/O I/O I/O structure Pin type TFBGA240+25 LQFP208 LQFP176 169 Pin name (function after reset) FT_f h FT_ h Notes C9 UFBGA169 WLCSP156 Pin/ball name Alternate functions Additional functions - TIM17_CH1, TIM4_CH4, DFSDM1_DATIN7, I2C1_SDA, SPI2_NSS/I2S2_WS, I2C4_SDA, SDMMC1_CDIR, UART4_TX, FDCAN1_TX, SDMMC2_D5, I2C4_SMBA, SDMMC1_D5, DCMI_D7, LCD_B7, EVENTOUT - - LPTIM1_ETR, TIM4_ETR, HRTIM_SCIN, LPTIM2_ETR, UART8_RX, FDCAN1_RXFD_MODE, SAI2_MCLK_A, FMC_NBL0, DCMI_D2, EVENTOUT - - D8 C4 171 198 B4 PE1 I/O FT_ h - LPTIM1_IN2, HRTIM_SCOUT, UART8_TX, FDCAN1_TXFD_MODE, FMC_NBL1, DCMI_D3, EVENTOUT A11 A4 172 199 A7 VCAP S - - - - C10 - 173 200 B6 VSS S - - - - E7 B3 174 201 E7 PDR_ON I FT - - - A12 A3 175 202 A6 VDDLDO S - - - - B11 - - - VDD VDD S - - - - - TIM8_BKIN, SAI2_MCLK_A, TIM8_BKIN_COMP12, FMC_NBL2, DCMI_D5, LCD_B4, EVENTOUT - - 88/251 - - 203 A4 PI4 I/O FT_ h DS12931 Rev 1 STM32H757xI Pin descriptions Table 8. STM32H757xI pin/ball definition (continued) - - - 204 A3 PI5 I/O FT_ h - TIM8_CH1, SAI2_SCK_A, FMC_NBL3, DCMI_VSYNC, LCD_B5, EVENTOUT - - - 205 A2 PI6 I/O FT_ h - TIM8_CH2, SAI2_SD_A, FMC_D28, DCMI_D6, LCD_B6, EVENTOUT - - - - 206 B3 PI7 I/O FT_ h - TIM8_CH3, SAI2_FS_A, FMC_D29, DCMI_D7, LCD_B7, EVENTOUT - - - - 207 - VSS S - - - - B11 - 176 208 VDD VDD S - - - - M13 - - - - VSS S - - - - A13 - - - - DNC - - - - - - - - M15 VSSDSI - - - - LQFP208 Alternate functions LQFP176 Notes I/O structure Pin name (function after reset) Pin type TFBGA240+25 UFBGA169 WLCSP156 Pin/ball name S Additional functions - 1. When this pin/ball was previously configured as an oscillator, the oscillator function is kept during and after a reset. This is valid for all resets except for power-on reset. 2. Pxy_C and Pxy pins/balls are two separate pads (analog switch open). The analog switch is configured through a SYSCFG register. Refer to the product reference manual for a detailed description of the switch configuration bits. 3. There is a direct path between Pxy_C and Pxy pins/balls, through an analog switch. Pxy alternate functions are available on Pxy_C when the analog switch is closed. The analog switch is configured through a SYSCFG register. Refer to the product reference manual for a detailed description of the switch configuration bits. DS12931 Rev 1 89/251 104 AF0 AF2 AF3 AF4 SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/HRTIM 1 LPUART/ TIM8/LPTIM 2/3/4/5/ HRTIM1/ DFSDM1 PA0 - TIM2_CH1/ TIM2_ETR TIM5_CH1 PA1 - TIM2_CH2 PA2 PA3 DS12931 Rev 1 Port A Port AF1 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 I2C1/2/3/4/U SART1/ TIM15/ LPTIM2/ DFSDM1/CE C SPI1/2/3/4/ 5/6/CEC SPI2/3/SAI1 /3/I2C4/ UART4/ DFSDM1 SPI2/3/6/ USART1/2/ 3/6/UART7/ SDMMC1 SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX1 SAI4/FDCA N1/FDACN 2/TIM13/14 /QUADSPI/ FMC/SDM MC2/LCD/ SPDIFRX1 SAI2/4/TIM 8/QUADSPI /SDMMC2/ OTG1_HS/ OTG2_FS/ LCD I2C4/UART 7/SWPMI1/ TIM1/8/ DFSDM1/ SDMMC2/ MDIOS/ ETH TIM1/8/FMC /SDMMC1/ MDIOS/ OTG1_FS/ LCD TIM1/DCMI/ LCD/DSI/ COMP UART5/ LCD SYS TIM8_ETR TIM15_BKIN - - USART2_ CTS/USAR T2_NSS UART4_TX SDMMC2_ CMD SAI2_SD_B ETH_MII_ CRS - - - EVENT OUT TIM5_CH2 LPTIM3_ OUT TIM15_ CH1N - - USART2_ RTS/ USART2_ DE UART4_RX QUADSPI_ BK1_IO3 SAI2_MCLK _B ETH_MII_ RX_CLK/ ETH_RMII_ REF_CLK - - LCD_R2 EVENT OUT TIM2_CH3 TIM5_CH3 LPTIM4_ OUT TIM15_CH1 - - USART2_ TX SAI2_SCK _B - - ETH_MDIO MDIOS_ MDIO - LCD_R1 EVENT OUT TIM2_CH4 TIM5_CH4 LPTIM5_ OUT TIM15_CH2 - - USART2_ RX - LCD_B2 OTG_HS_ ULPI_D0 ETH_MII_ COL - - LCD_B5 EVENT OUT D1PWR E - TIM5_ETR - - SPI1_NSS/ I2S1_WS SPI3_NSS/ I2S3_WS USART2_C K SPI6_NSS - - - OTG_HS_ SOF DCMI_HSY NC LCD_VSY NC EVENT OUT PA5 D2PWR E TIM2_CH1/ TIM2_ETR - TIM8_CH1N - SPI1_SCK/ I2S1_CK - - SPI6_SCK - OTG_HS_ ULPI_CK - - - LCD_R4 EVENT OUT PA6 - TIM1_BKIN TIM3_CH1 TIM8_BKIN - SPI1_MISO /I2S1_SDI - - SPI6_MISO TIM13_CH 1 TIM8_BKIN _COMP12 MDIOS_ MDC TIM1_BKIN _COMP12 DCMI_PIXC LK LCD_G2 EVENT OUT PA7 - TIM1_CH1N TIM3_CH2 TIM8_CH1N - SPI1_MOSI /I2S1_SDO - - SPI6_MOSI TIM14_ CH1 ETH_MII_R X_DV/ETH_ RMII_CRS_ DV FMC_ SDNWE - - EVENT OUT PA8 MCO1 TIM1_CH1 HRTIM_ CHB2 TIM8_BKIN2 I2C3_SCL - - USART1_ CK - - OTG_FS_ SOF UART7_RX TIM8_BKIN 2_COMP12 LCD_B3 LCD_R6 EVENT OUT PA9 - TIM1_CH2 HRTIM_ CHC1 LPUART1_ TX I2C3_SMBA SPI2_SCK/ I2S2_CK - USART1_ TX - FDCAN1_ RXFD_ MODE - ETH_TX_ ER - DCMI_D0 LCD_R5 EVENT OUT PA10 - TIM1_CH3 HRTIM_ CHC2 LPUART1_ RX - - - USART1_ RX - FDCAN1_ TXFD_ MODE OTG_FS_ ID MDIOS_ MDIO LCD_B4 DCMI_D1 LCD_B1 EVENT OUT PA11 - TIM1_CH4 HRTIM_ CHD1 LPUART1_ CTS - SPI2_NSS/ I2S2_WS UART4_RX USART1_ CTS/ USART1_ NSS - FDCAN1_ RX OTG_FS_ DM - - - LCD_R4 EVENT OUT PA12 - TIM1_ETR HRTIM_ CHD2 LPUART1_ RTS/ LPUART1_ DE - SPI2_SCK/ I2S2_CK UART4_TX USART1_ RTS/ USART1_ DE SAI2_FS_B FDCAN1_ TX OTG_FS_ DP - - - LCD_R5 EVENT OUT Pin descriptions 90/251 PA4 STM32H757xI Table 9. Port A alternate functions AF0 AF1 AF2 AF3 AF4 SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/HRTIM 1 LPUART/ TIM8/LPTIM 2/3/4/5/ HRTIM1/ DFSDM1 PA13 JTMS/ SWDIO - - PA14 JTCK/ SWCLK - PA15 JTDI TIM2_CH1/ TIM2_ETR Port A Port AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 I2C1/2/3/4/U SART1/ TIM15/ LPTIM2/ DFSDM1/CE C SPI1/2/3/4/ 5/6/CEC SPI2/3/SAI1 /3/I2C4/ UART4/ DFSDM1 SPI2/3/6/ USART1/2/ 3/6/UART7/ SDMMC1 SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX1 SAI4/FDCA N1/FDACN 2/TIM13/14 /QUADSPI/ FMC/SDM MC2/LCD/ SPDIFRX1 SAI2/4/TIM 8/QUADSPI /SDMMC2/ OTG1_HS/ OTG2_FS/ LCD I2C4/UART 7/SWPMI1/ TIM1/8/ DFSDM1/ SDMMC2/ MDIOS/ ETH TIM1/8/FMC /SDMMC1/ MDIOS/ OTG1_FS/ LCD TIM1/DCMI/ LCD/DSI/ COMP UART5/ LCD SYS - - - - - - - - - - - - EVENT OUT - - - - - - - - - - - - - EVENT OUT HRTIM_FL T1 - CEC SPI1_NSS/ I2S1_WS SPI3_NSS/ I2S3_WS SPI6_NSS UART4_ RTS/UART 4_DE - - UART7_TX - DSI_TE - EVENT OUT Pin descriptions 91/251 Table 9. Port A alternate functions (continued) DS12931 Rev 1 STM32H757xI AF0 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/HRTIM 1 LPUART/ TIM8/LPTIM 2/3/4/5/ HRTIM1/ DFSDM1 I2C1/2/3/4/U SART1/ TIM15/ LPTIM2/ DFSDM1/ CEC SPI1/2/3/4/ 5/6/CEC SPI2/3/SAI1 /3/I2C4/ UART4/ DFSDM1 SPI2/3/6/ USART1/2/ 3/6/UART7/ SDMMC1 SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX1 SAI4/FDCA N1/FDACN 2/TIM13/14 /QUADSPI/ FMC/SDM MC2/LCD/ SPDIFRX1 SAI2/4/TIM 8/QUADSPI /SDMMC2/ OTG1_HS/ OTG2_FS/ LCD/CRS I2C4/UART 7/SWPMI1/ TIM1/8/ DFSDM1/ SDMMC2/ MDIOS/ ETH TIM1/8/FMC /SDMMC1/ MDIOS/ OTG1_FS/ LCD TIM1/DCMI/ LCD/DSI/ COMP UART5/ LCD SYS PB0 - TIM1_CH2N TIM3_CH3 TIM8_CH2N - - DFSDM1_C KOUT - UART4_ CTS LCD_R3 OTG_HS_ ULPI_D1 ETH_MII_ RXD2 - - LCD_G1 EVENT OUT PB1 - TIM1_CH3N TIM3_CH4 TIM8_CH3N - - DFSDM1_ DATIN1 - - LCD_R6 OTG_HS_ ULPI_D2 ETH_MII_ RXD3 - - LCD_G0 EVENT OUT PB2 RTC_ OUT - SAI1_D1 - DFSDM1_ CKIN1 - SAI1_SD_A SPI3_MOSI /I2S3_SDO SAI4_SD_ A QUADSPI_ CLK SAI4_D1 - - - - EVENT OUT PB3 JTDO/ TRACES WO TIM2_CH2 HRTIM_ FLT4 - - SPI1_SCK/ I2S1_CK SPI3_SCK/I 2S3_CK - SPI6_SCK SDMMC2_ D2 CRS_SYNC UART7_RX - - - EVENT OUT PB4 NJTRST TIM16_BKIN TIM3_CH1 HRTIM_EEV 6 - SPI1_MISO /I2S1_SDI SPI3_MISO/ I2S3_SDI SPI2_NSS/ I2S2_WS SPI6_MISO SDMMC2_ D3 - UART7_TX - - - EVENT OUT PB5 - TIM17_BKIN TIM3_CH2 HRTIM_EEV 7 I2C1_SMBA SPI1_MOSI /I2S1_SDO I2C4_SMBA SPI3_MOSI /I2S3_SDO SPI6_MOSI FDCAN2_ RX OTG_HS_U LPI_D7 ETH_PPS_ OUT FMC_SDCK E1 DCMI_D10 UART5_R X EVENT OUT PB6 - TIM16_CH1 N TIM4_CH1 HRTIM_EEV 8 I2C1_SCL CEC I2C4_SCL USART1_ TX LPUART1_ TX FDCAN2_ TX QUADSPI_ BK1_NCS DFSDM1_D ATIN5 FMC_SDNE 1 DCMI_D5 UART5_T X EVENT OUT PB7 - TIM17_CH1 N TIM4_CH2 HRTIM_EEV 9 I2C1_SDA - I2C4_SDA USART1_ RX LPUART1_ RX FDCAN2_ TXFD_ MODE - DFSDM1_C KIN5 FMC_NL DCMI_VSY NC - EVENT OUT PB8 - TIM16_CH1 TIM4_CH3 DFSDM1_C KIN7 I2C1_SCL - I2C4_SCL SDMMC1_ CKIN UART4_RX FDCAN1_ RX SDMMC2_ D4 ETH_MII_ TXD3 SDMMC1_ D4 DCMI_D6 LCD_B6 EVENT OUT Port B Port AF1 STM32H757xI Table 10. Port B alternate functions DS12931 Rev 1 Pin descriptions 92/251 AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/HRTIM 1 LPUART/ TIM8/LPTIM 2/3/4/5/ HRTIM1/ DFSDM1 I2C1/2/3/4/U SART1/ TIM15/ LPTIM2/ DFSDM1/ CEC SPI1/2/3/4/ 5/6/CEC SPI2/3/SAI1 /3/I2C4/ UART4/ DFSDM1 SPI2/3/6/ USART1/2/ 3/6/UART7/ SDMMC1 SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX1 SAI4/FDCA N1/FDACN 2/TIM13/14 /QUADSPI/ FMC/SDM MC2/LCD/ SPDIFRX1 SAI2/4/TIM 8/QUADSPI /SDMMC2/ OTG1_HS/ OTG2_FS/ LCD/CRS I2C4/UART 7/SWPMI1/ TIM1/8/ DFSDM1/ SDMMC2/ MDIOS/ ETH TIM1/8/FMC /SDMMC1/ MDIOS/ OTG1_FS/ LCD TIM1/DCMI/ LCD/DSI/ COMP UART5/ LCD SYS PB9 - TIM17_CH1 TIM4_CH4 DFSDM1_ DATIN7 I2C1_SDA SPI2_NSS/ I2S2_WS I2C4_SDA SDMMC1_ CDIR UART4_TX FDCAN1_ TX SDMMC2_ D5 I2C4_SMBA SDMMC1_ D5 DCMI_D7 LCD_B7 EVENT OUT PB10 - TIM2_CH3 HRTIM_SC OUT LPTIM2_IN1 I2C2_SCL SPI2_SCK/ I2S2_CK DFSDM1_ DATIN7 USART3_ TX - QUADSPI_ BK1_NCS OTG_HS_ ULPI_D3 ETH_MII_ RX_ER - - LCD_G4 EVENT OUT PB11 - TIM2_CH4 HRTIM_ SCIN LPTIM2_ ETR I2C2_SDA - DFSDM1_ CKIN7 USART3_ RX - - OTG_HS_ ULPI_D4 ETH_MII_ TX_EN/ETH _RMII_TX_ EN - DSI_TE LCD_G5 EVENT OUT PB12 - TIM1_BKIN - - I2C2_SMBA SPI2_NSS/ I2S2_WS DFSDM1_ DATIN1 USART3_ CK - FDCAN2_ RX OTG_HS_U LPI_D5 ETH_MII_ TXD0/ETH_ RMII_TXD0 OTG_HS_ ID TIM1_BKIN _COMP12 UART5_ RX EVENT OUT PB13 - TIM1_CH1N - LPTIM2_ OUT - SPI2_SCK/ I2S2_CK DFSDM1_ CKIN1 USART3_ CTS/ USART3_N SS - FDCAN2_ TX OTG_HS_ ULPI_D6 ETH_MII_ TXD1/ETH_ RMII_TXD1 - - UART5_T X EVENT OUT PB14 - TIM1_CH2N - TIM8_CH2N USART1_TX SPI2_MISO /I2S2_SDI DFSDM1_ DATIN2 USART3_ RTS/ USART3_ DE UART4_ RTS/ UART4_DE SDMMC2_ D0 - - OTG_HS_ DM - EVENT OUT PB15 RTC_RE FIN TIM1_CH3N - TIM8_CH3N USART1_RX SPI2_MOSI /I2S2_SDO DFSDM1_ CKIN2 - UART4_ CTS SDMMC2_ D1 - - OTG_HS_ DP - EVENT OUT Port B Port Pin descriptions 93/251 Table 10. Port B alternate functions (continued) DS12931 Rev 1 STM32H757xI AF0 AF2 AF3 AF4 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/HRTIM 1 LPUART/ TIM8/LPTIM 2/3/4/5/ HRTIM1/ DFSDM1 I2C1/2/3/4/U SART1/ TIM15/ LPTIM2/ DFSDM1/ CEC SPI1/2/3/4/ 5/6/CEC SPI2/3/SAI1 /3/I2C4/ UART4/ DFSDM1 SPI2/3/6/ USART1/2/ 3/6/UART7/ SDMMC1 SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX1 SAI4/FDCA N1/FDACN 2/TIM13/14 /QUADSPI/ FMC/SDM MC2/LCD/ SPDIFRX1 SAI2/4/TIM 8/QUADSPI /SDMMC2/ OTG1_HS/ OTG2_FS/ LCD I2C4/UART 7/SWPMI1/ TIM1/8/ DFSDM1/ SDMMC2/ MDIOS/ ETH TIM1/8/FMC /SDMMC1/ MDIOS/ OTG1_FS/ LCD TIM1/DCMI/ LCD/DSI/ COMP UART5/ LCD SYS PC0 - - - DFSDM1_C KIN0 - - DFSDM1_ DATIN4 - SAI2_FS_B - OTG_HS_ ULPI_STP - FMC_SDN WE - LCD_R5 EVENT OUT PC1 TRACED 0 - SAI1_D1 DFSDM1_ DATIN0 DFSDM1_ CKIN4 SPI2_MOSI /I2S2_SDO SAI1_SD_A - SAI4_SD_ A SDMMC2_ CK SAI4_D1 ETH_MDC MDIOS_ MDC - - EVENT OUT PC2 C1 DSLEEP - - DFSDM1_ CKIN1 - SPI2_MISO /I2S2_SDI DFSDM1_ CKOUT - - - OTG_HS_ ULPI_DIR ETH_MII_ TXD2 FMC_SDNE 0 - - EVENT OUT PC3 C1 SLEEP - - DFSDM1_ DATIN1 - SPI2_MOSI /I2S2_SDO - - - - OTG_HS_U LPI_NXT ETH_MII_ TX_CLK FMC_SDCK E0 - - EVENT OUT PC4 C2 DSLEEP - - DFSDM1_ CKIN2 - I2S1_MCK - - SPDIFRX1 _IN3 - ETH_MII_ RXD0/ETH_ RMII_RXD0 FMC_SDNE 0 - - EVENT OUT PC5 C2 SLEEP - SAI1_D3 DFSDM1_ DATIN2 - - - - - SPDIFRX1 _IN4 SAI4_D3 ETH_MII_ RXD1/ETH_ RMII_RXD1 FMC_ SDCKE0 COMP1_ OUT - EVENT OUT PC6 - HRTIM_CH A1 TIM3_CH1 TIM8_CH1 DFSDM1_ CKIN3 I2S2_MCK - USART6_ TX SDMMC1_ D0DIR FMC_ NWAIT SDMMC2_ D6 - SDMMC1_ D6 DCMI_D0 LCD_ HSYNC EVENT OUT PC7 TRGIO HRTIM_CH A2 TIM3_CH2 TIM8_CH2 DFSDM1_ DATIN3 - I2S3_MCK USART6_ RX SDMMC1_ D123DIR FMC_NE1 SDMMC2_ D7 SWPMI_TX SDMMC1_ D7 DCMI_D1 LCD_G6 EVENT OUT PC8 TRACED 1 HRTIM_CH B1 TIM3_CH3 TIM8_CH3 - - - USART6_ CK UART5_ RTS/ UART5_DE FMC_NE2/ FMC_NCE - SWPMI_RX SDMMC1_ D0 DCMI_D2 - EVENT OUT PC9 MCO2 - TIM3_CH4 TIM8_CH4 I2C3_SDA I2S_CKIN - - UART5_ CTS QUADSPI_ BK1_IO0 LCD_G3 SWPMI_ SUSPEND SDMMC1_ D1 DCMI_D3 LCD_B2 EVENT OUT PC10 - - HRTIM_EE V1 DFSDM1_ CKIN5 - - SPI3_SCK/ I2S3_CK USART3_ TX UART4_TX QUADSPI_ BK1_IO1 - - SDMMC1_ D2 DCMI_D8 LCD_R2 EVENT OUT PC11 - - HRTIM_FL T2 DFSDM1_ DATIN5 - - SPI3_MISO/ I2S3_SDI USART3_ RX UART4_RX QUADSPI_ BK2_NCS - - SDMMC1_ D3 DCMI_D4 - EVENT OUT PC12 TRACED 3 - HRTIM_EE V2 - - - SPI3_MOSI/ I2S3_SDO USART3_ CK UART5_TX - - - SDMMC1_ CK DCMI_D9 - EVENT OUT PC13 - - - - - - - - - - - - - - - EVENT OUT PC14 - - - - - - - - - - - - - - - EVENT OUT PC15 - - - - - - - - - - - - - - - EVENT OUT Port C DS12931 Rev 1 94/251 Pin descriptions AF5 Port AF1 STM32H757xI Table 11. Port C alternate functions AF0 AF1 AF2 AF3 AF4 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2/16/ 17/LPTIM1 / HRTIM1 SAI1/TIM3/ 4/5/HRTIM 1 LPUART/ TIM8/LPTI M2/3/4/5/ HRTIM1/ DFSDM1 I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM1/ CEC SPI1/2/3/4/ 5/6/CEC SPI2/3/SAI1 /3/I2C4/ UART4/ DFSDM1 SPI2/3/6/ USART1/2/3/6/ UART7/ SDMMC1 SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX1 SAI4/FDCA N1/FDACN 2/TIM13/14 /QUADSPI/ FMC/SDM MC2/LCD/ SPDIFRX1 SAI2/4/TIM 8/QUADSPI /SDMMC2/ OTG1_HS/ OTG2_FS/ LCD I2C4/UART 7/SWPMI1/ TIM1/8/ DFSDM1/ SDMMC2/ MDIOS/ ETH TIM1/8/FMC /SDMMC1/ MDIOS/ OTG1_FS/ LCD TIM1/DCMI/ LCD/DSI/ COMP UART5/ LCD SYS PD0 - - - DFSDM1_ CKIN6 - - SAI3_SCK_ A - UART4_RX FDCAN1_ RX - - FMC_D2/ FMC_DA2 - - EVENT OUT PD1 - - - DFSDM1_ DATIN6 - - SAI3_SD_A - UART4_TX FDCAN1_ TX - - FMC_D3/ FMC_DA3 - - EVENT OUT PD2 TRACE D2 - TIM3_ETR - - - - - UART5_RX - - - SDMMC1_ CMD DCMI_D11 - EVENT OUT PD3 - - - DFSDM1_ CKOUT - SPI2_SCK/ I2S2_CK - USART2_CTS/ USART2_NSS - - - - FMC_CLK DCMI_D5 LCD_G7 EVENT OUT PD4 - - HRTIM_ FLT3 - - - SAI3_FS_A USART2_RTS/ USART2_DE - FDCAN1_ RXFD_ MODE - - FMC_NOE - - EVENT OUT PD5 - - HRTIM_EE V3 - - - USART2_ TX - FDCAN1_ TXFD_ MODE - - FMC_NWE - - EVENT OUT PD6 - - SAI1_D1 DFSDM1_ CKIN4 DFSDM1_ DATIN1 SPI3_MOSI /I2S3_SDO SAI1_SD_A USART2_ RX SAI4_SD_ A FDCAN2_ RXFD_ MODE SAI4_D1 SDMMC2_ CK FMC_ NWAIT DCMI_D10 LCD_B2 EVENT OUT PD7 - - - DFSDM1_ DATIN4 - SPI1_MOSI /I2S1_SDO DFSDM1_ CKIN1 USART2_ CK - SPDIFRX1 _IN1 - SDMMC2_ CMD FMC_NE1 - - EVENT OUT PD8 - - - DFSDM1_ CKIN3 - - SAI3_SCK_ B USART3_ TX - SPDIFRX1 _IN2 - - FMC_D13/ FMC_DA13 - - EVENT OUT PD9 - - - DFSDM1_ DATIN3 - - SAI3_SD_B USART3_ RX - FDCAN2_ RXFD_ MODE - - FMC_D14/F MC_DA14 - - EVENT OUT PD10 - - - DFSDM1_ CKOUT - - SAI3_FS_B USART3_ CK - FDCAN2_ TXFD_ MODE - - FMC_D15/ FMC_DA15 - LCD_B3 EVENT OUT PD11 - - - LPTIM2_IN 2 I2C4_SMB A - - USART3_CTS/ USART3_NSS - QUADSPI_ BK1_IO0 SAI2_SD_A - FMC_A16 - - EVENT OUT PD12 - LPTIM1_IN 1 TIM4_CH1 LPTIM2_IN 1 I2C4_SCL - - USART3_RTS/ USART3_DE - QUADSPI_ BK1_IO1 SAI2_FS_A - FMC_A17 - - EVENT OUT PD13 - LPTIM1_ OUT TIM4_CH2 I2C4_SDA - - QUADSPI_ BK1_IO3 SAI2_SCK_ A - FMC_A18 - - EVENT OUT DS12931 Rev 1 Port D Port STM32H757xI AF5 Pin descriptions 95/251 Table 12. Port D alternate functions AF0 AF1 AF2 AF3 AF4 SYS TIM1/2/16/ 17/LPTIM1 / HRTIM1 SAI1/TIM3/ 4/5/HRTIM 1 LPUART/ TIM8/LPTI M2/3/4/5/ HRTIM1/ DFSDM1 Port D Port AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 I2C1/2/3/4/ USART1/ TIM15/ LPTIM2/ DFSDM1/ CEC SPI1/2/3/4/ 5/6/CEC SPI2/3/SAI1 /3/I2C4/ UART4/ DFSDM1 SPI2/3/6/ USART1/2/3/6/ UART7/ SDMMC1 SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX1 SAI4/FDCA N1/FDACN 2/TIM13/14 /QUADSPI/ FMC/SDM MC2/LCD/ SPDIFRX1 SAI2/4/TIM 8/QUADSPI /SDMMC2/ OTG1_HS/ OTG2_FS/ LCD I2C4/UART 7/SWPMI1/ TIM1/8/ DFSDM1/ SDMMC2/ MDIOS/ ETH TIM1/8/FMC /SDMMC1/ MDIOS/ OTG1_FS/ LCD TIM1/DCMI/ LCD/DSI/ COMP UART5/ LCD SYS PD14 - TIM4_CH3 - - - SAI3_MCLK _B - UART8_ CTS - - - FMC_D0/ FMC_DA0 - - EVENT OUT PD15 - TIM4_CH4 - - - SAI3_MCLK _A - UART8_ RTS/UART 8_DE - - - FMC_D1/ FMC_DA1 - - EVENT OUT STM32H757xI Table 12. Port D alternate functions (continued) DS12931 Rev 1 Pin descriptions 96/251 AF0 AF2 AF3 AF4 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2/16/ 17/LPTIM1 /HRTIM1 SAI1/TIM3/ 4/5/HRTIM 1 LPUART/ TIM8/LPTIM 2/3/4/5/ HRTIM1/ DFSDM1 I2C1/2/3/4/U SART1/ TIM15/ LPTIM2/ DFSDM1/ CEC SPI1/2/3/4/ 5/6/CEC SPI2/3/SAI1 /3/I2C4/ UART4/ DFSDM1 SPI2/3/6/ USART1/2/ 3/6/UART7/ SDMMC1 SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX1 SAI4/FDCA N1/FDACN 2/TIM13/14 /QUADSPI/ FMC/SDM MC2/LCD/ SPDIFRX1 SAI2/4/TIM 8/QUADSPI /SDMMC2/ OTG1_HS/ OTG2_FS/ LCD I2C4/UART 7/SWPMI1/ TIM1/8/ DFSDM1/ SDMMC2/ MDIOS/ ETH TIM1/8/FMC /SDMMC1/ MDIOS/ OTG1_FS/ LCD TIM1/DCMI/ LCD/DSI/ COMP UART5/ LCD SYS PE0 - LPTIM1_ ETR TIM4_ETR HRTIM_ SCIN LPTIM2_ ETR - - - UART8_RX FDCAN1_ RXFD_ MODE SAI2_MCLK _A - FMC_NBL0 DCMI_D2 - EVENT OUT PE1 - LPTIM1_ IN2 - HRTIM_SC OUT - - - - UART8_TX FDCAN1_ TXFD_ MODE - - FMC_NBL1 DCMI_D3 - EVENT OUT PE2 TRACE CLK - SAI1_CK1 - - SPI4_SCK SAI1_MCLK _A - SAI4_MCL K_A QUADSPI_ BK1_IO2 SAI4_CK1 ETH_MII_ TXD3 FMC_A23 - - EVENT OUT PE3 TRACE D0 - - - TIM15_BKIN - SAI1_SD_B - SAI4_SD_ B - - - FMC_A19 - - EVENT OUT PE4 TRACE D1 - SAI1_D2 DFSDM1_ DATIN3 TIM15_CH1 N SPI4_NSS SAI1_FS_A - SAI4_FS_A - SAI4_D2 - FMC_A20 DCMI_D4 LCD_B0 EVENT OUT PE5 TRACE D2 - SAI1_CK2 DFSDM1_C KIN3 TIM15_CH1 SPI4_MISO SAI1_SCK_ A - SAI4_SCK _A - SAI4_CK2 - FMC_A21 DCMI_D6 LCD_G0 EVENT OUT PE6 TRACE D3 TIM1_ BKIN2 SAI1_D1 - TIM15_CH2 SPI4_MOSI SAI1_SD_A - SAI4_SD_ A SAI4_D1 SAI2_MCLK _B TIM1_BKIN 2_COMP12 FMC_A22 DCMI_D7 LCD_G1 EVENT OUT PE7 - TIM1_ETR - DFSDM1_D ATIN2 - - - UART7_RX - - QUADSPI_ BK2_IO0 - FMC_D4/ FMC_DA4 - - EVENT OUT PE8 - TIM1_CH1 N - DFSDM1_C KIN2 - - - UART7_TX - - QUADSPI_ BK2_IO1 - FMC_D5/ FMC_DA5 COMP2_ OUT - EVENT OUT PE9 - TIM1_CH1 - DFSDM1_C KOUT - - - UART7_ RTS/UART 7_DE - - QUADSPI_ BK2_IO2 - FMC_D6/ FMC_DA6 - - EVENT OUT PE10 - TIM1_CH2 N - DFSDM1_ DATIN4 - - - UART7_ CTS - - QUADSPI_ BK2_IO3 - FMC_D7/ FMC_DA7 - - EVENT OUT PE11 - TIM1_CH2 - DFSDM1_C KIN4 - SPI4_NSS - - - - SAI2_SD_B - FMC_D8/ FMC_DA8 - LCD_G3 EVENT OUT PE12 - TIM1_CH3 N - DFSDM1_ DATIN5 - SPI4_SCK - - - - SAI2_SCK_ B - FMC_D9/F MC_DA9 COMP1_ OUT LCD_B4 EVENT OUT PE13 - TIM1_CH3 - DFSDM1_C KIN5 - SPI4_MISO - - - - SAI2_FS_B - FMC_D10/ FMC_DA10 COMP2_ OUT LCD_DE EVENT OUT PE14 - TIM1_CH4 - - - SPI4_MOSI - - - - SAI2_MCLK _B - FMC_D11/ FMC_DA11 - LCD_CLK EVENT OUT PE15 - TIM1_ BKIN - - - TIM1_BKIN - - - - - - FMC_D12/ FMC_DA12 TIM1_BKIN _COMP12/ COMP_TIM 1_BKIN LCD_R7 EVENT OUT Port E DS12931 Rev 1 STM32H757xI AF5 Port AF1 Pin descriptions 97/251 Table 13. Port E alternate functions AF0 AF2 AF3 AF4 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2/16/ 17/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/HRTIM 1 LPUART/ TIM8/LPTIM 2/3/4/5/ HRTIM1/ DFSDM1 I2C1/2/3/4/U SART1/ TIM15/ LPTIM2/ DFSDM1/ CEC SPI1/2/3/4/ 5/6/CEC SPI2/3/SAI1 /3/I2C4/ UART4/ DFSDM1 SPI2/3/6/ USART1/2/ 3/6/UART7/ SDMMC1 SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX1 SAI4/FDCA N1/FDACN 2/TIM13/14 /QUADSPI/ FMC/SDM MC2/LCD/ SPDIFRX1 SAI2/4/TIM 8/QUADSPI /SDMMC2/ OTG1_HS/ OTG2_FS/ LCD I2C4/UART 7/SWPMI1/ TIM1/8/ DFSDM1/ SDMMC2/ MDIOS/ ETH TIM1/8/FMC /SDMMC1/ MDIOS/ OTG1_FS/ LCD TIM1/DCMI/ LCD/DSI/ COMP UART5/ LCD SYS PF0 - - - - I2C2_SDA - - - - - - - FMC_A0 - - EVENT OUT PF1 - - - - I2C2_SCL - - - - - - - FMC_A1 - - EVENT OUT PF2 - - - - I2C2_SMBA - - - - - - - FMC_A2 - - EVENT OUT PF3 - - - - - - - - - - - - FMC_A3 - - EVENT OUT PF4 - - - - - - - - - - - - FMC_A4 - - EVENT OUT PF5 - - - - - - - - - - - - FMC_A5 - - EVENT OUT PF6 - TIM16_CH 1 - - - SPI5_NSS SAI1_SD_B UART7_RX SAI4_SD_ B QUADSPI_ BK1_IO3 - - - - - EVENT OUT PF7 - TIM17_CH 1 - - - SPI5_SCK SAI1_MCLK _B UART7_TX SAI4_MCL K_B QUADSPI_ BK1_IO2 - - - - - EVENT OUT PF8 - TIM16_ CH1N - - - SPI5_MISO SAI1_SCK_ B UART7_ RTS/UART 7_DE SAI4_SCK _B TIM13_CH 1 QUADSPI_ BK1_IO0 - - - - EVENT OUT PF9 - TIM17_ CH1N - - - SPI5_MOSI SAI1_FS_B UART7_ CTS SAI4_FS_B TIM14_CH 1 QUADSPI_ BK1_IO1 - - - - EVENT OUT PF10 - TIM16_ BKIN SAI1_D3 - - - - - - QUADSPI_ CLK SAI4_D3 - - DCMI_D11 LCD_DE EVENT OUT PF11 - - - - - SPI5_MOSI - - - - SAI2_SD_B FMC_SDNR AS DCMI_D12 - EVENT OUT PF12 - - - - - - - - - - - - FMC_A6 - - EVENT OUT PF13 - - - DFSDM1_D ATIN6 I2C4_SMBA - - - - - - - FMC_A7 - - EVENT OUT PF14 - - - DFSDM1_C KIN6 I2C4_SCL - - - - - - - FMC_A8 - - EVENT OUT PF15 - - - - I2C4_SDA - - - - - - - FMC_A9 - - EVENT OUT Port F DS12931 Rev 1 98/251 Pin descriptions AF5 Port AF1 STM32H757xI Table 14. Port F alternate functions AF0 AF2 AF3 AF4 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/HRTIM 1 LPUART/ TIM8/LPTIM 2/3/4/5/ HRTIM1/ DFSDM1 I2C1/2/3/4/U SART1/ TIM15/ LPTIM2/ DFSDM1/ CEC SPI1/2/3/4/ 5/6/CEC SPI2/3/SAI1 /3/I2C4/ UART4/ DFSDM1 SPI2/3/6/ USART1/2/ 3/6/UART7/ SDMMC1 SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX1 SAI4/FDCA N1/FDACN 2/TIM13/14 /QUADSPI/ FMC/SDM MC2/LCD/ SPDIFRX1 SAI2/4/TIM 8/QUADSPI /SDMMC2/ OTG1_HS/ OTG2_FS/ LCD I2C4/UART 7/SWPMI1/ TIM1/8/ DFSDM1/ SDMMC2/ MDIOS/ ETH TIM1/8/FMC /SDMMC1/ MDIOS/ OTG1_FS/ LCD TIM1/DCMI/ LCD/DSI/ COMP UART5/ LCD SYS PG0 - - - - - - - - - - - - FMC_A10 - - EVENT OUT PG1 - - - - - - - - - - - - FMC_A11 - - EVENT OUT PG2 - - - TIM8_BKIN - - - - - - - TIM8_BKIN _COMP12 FMC_A12 - - EVENT OUT PG3 - - - TIM8_BKIN2 - - - - - - - TIM8_BKIN 2_COMP12 FMC_A13 - - EVENT OUT PG4 - TIM1_BKIN 2 - - - - - - - - - TIM1_BKIN 2_COMP12 FMC_A14/ FMC_BA0 - - EVENT OUT PG5 - TIM1_ETR - - - - - - - - - - FMC_A15/ FMC_BA1 - - EVENT OUT PG6 - TIM17_ BKIN HRTIM_CH E1 - - - - - - - QUADSPI_ BK1_NCS - FMC_NE3 DCMI_D12 LCD_R7 EVENT OUT PG7 - SAI1_MCLK _A USART6_ CK - - - - FMC_INT DCMI_D13 LCD_CLK EVENT OUT PG8 - - - TIM8_ETR - SPI6_NSS - USART6_ RTS/USAR T6_DE SPDIFRX1 _IN3 - - ETH_PPS_ OUT FMC_SDCL K - LCD_G7 EVENT OUT PG9 - - - - - SPI1_MISO /I2S1_SDI - USART6_ RX SPDIFRX1 _IN4 QUADSPI_ BK2_IO2 SAI2_FS_B - FMC_NE2/F MC_NCE DCMI_ VSYNC - EVENT OUT PG10 - HRTIM_ FLT5 - - SPI1_NSS/ I2S1_WS - - - LCD_G3 SAI2_SD_B - FMC_NE3 DCMI_D2 LCD_B2 EVENT OUT PG11 - LPTIM1_IN 2 HRTIM_ EEV4 - - SPI1_SCK/ I2S1_CK - - SPDIFRX1 _IN1 - SDMMC2_ D2 ETH_MII_ TX_EN/ ETH_RMII_ TX_EN - DCMI_D3 LCD_B3 EVENT OUT LPTIM1_IN 1 HRTIM_ EEV5 - - SPI6_MISO - USART6_ RTS/ USART6_ DE SPDIFRX1 _IN2 LCD_B4 - ETH_MII_T XD1/ETH_R MII_TXD1 FMC_NE4 - LCD_B1 EVENT OUT LPTIM1_ OUT HRTIM_ EEV10 - - SPI6_SCK - USART6_ CTS/ USART6_ NSS - - - ETH_MII_T XD0/ETH_R MII_TXD0 FMC_A24 - LCD_R0 EVENT OUT Port G DS12931 Rev 1 PG12 PG13 TRACE D0 HRTIM_CH E2 STM32H757xI AF5 Port AF1 Pin descriptions 99/251 Table 15. Port G alternate functions AF0 AF1 AF2 AF3 AF4 SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/HRTIM 1 LPUART/ TIM8/LPTIM 2/3/4/5/ HRTIM1/ DFSDM1 PG14 TRACE D1 LPTIM1_ ETR - PG15 - - - AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 I2C1/2/3/4/U SART1/ TIM15/ LPTIM2/ DFSDM1/ CEC SPI1/2/3/4/ 5/6/CEC SPI2/3/SAI1 /3/I2C4/ UART4/ DFSDM1 SPI2/3/6/ USART1/2/ 3/6/UART7/ SDMMC1 SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX1 SAI4/FDCA N1/FDACN 2/TIM13/14 /QUADSPI/ FMC/SDM MC2/LCD/ SPDIFRX1 SAI2/4/TIM 8/QUADSPI /SDMMC2/ OTG1_HS/ OTG2_FS/ LCD I2C4/UART 7/SWPMI1/ TIM1/8/ DFSDM1/ SDMMC2/ MDIOS/ ETH TIM1/8/FMC /SDMMC1/ MDIOS/ OTG1_FS/ LCD TIM1/DCMI/ LCD/DSI/ COMP UART5/ LCD SYS - - SPI6_MOSI - USART6_ TX - QUADSPI_ BK2_IO3 - ETH_MII_ TXD1/ETH_ RMII_TXD1 FMC_A25 - LCD_B0 EVENT OUT - - - - USART6_ CTS/ USART6_ NSS - - - - FMC_SDNC AS - EVENT OUT Port G Port AF5 DCMI_D13 STM32H757xI Table 15. Port G alternate functions (continued) DS12931 Rev 1 Pin descriptions 100/251 AF0 AF2 AF3 AF4 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/HRTIM 1 LPUART/ TIM8/LPTIM 2/3/4/5/ HRTIM1/ DFSDM1 I2C1/2/3/4/U SART1/ TIM15/ LPTIM2/ DFSDM1/ CEC SPI1/2/3/4/ 5/6/CEC SPI2/3/SAI1 /3/I2C4/ UART4/ DFSDM1 SPI2/3/6/ USART1/2/ 3/6/UART7/ SDMMC1 SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX1 SAI4/FDCA N1/FDACN 2/TIM13/14 /QUADSPI/ FMC/SDM MC2/LCD/ SPDIFRX1 SAI2/4/TIM 8/QUADSPI /SDMMC2/ OTG1_HS/ OTG2_FS/ LCD I2C4/UART 7/SWPMI1/ TIM1/8/ DFSDM1/ SDMMC2/ MDIOS/ ETH TIM1/8/FMC /SDMMC1/ MDIOS/ OTG1_FS/ LCD TIM1/DCMI/ LCD/DSI/ COMP UART5/ LCD SYS PH0 - - - - - - - - - - - - - - - EVENT OUT PH1 - - - - - - - - - - - - - - - EVENT OUT PH2 - LPTIM1_IN2 - - - - - - - QUADSPI_ BK2_IO0 SAI2_SCK_ B ETH_MII_ CRS FMC_SDCK E0 - LCD_R0 EVENT OUT PH3 - - - - - - - - - QUADSPI_ BK2_IO1 SAI2_MCLK _B ETH_MII_ COL FMC_SDNE 0 - LCD_R1 EVENT OUT PH4 - - - - I2C2_SCL - - - - LCD_G5 OTG_HS_ ULPI_NXT - - LCD_G4 EVENT OUT PH5 - - - - I2C2_SDA SPI5_NSS - - - - - - FMC_ SDNWE - - EVENT OUT PH6 - - - - I2C2_SMBA SPI5_SCK - - - - - ETH_MII_R XD2 FMC_SDNE 1 DCMI_D8 - EVENT OUT PH7 - - - - I2C3_SCL SPI5_MISO - - - - - ETH_MII_R XD3 FMC_SDCK E1 DCMI_D9 - EVENT OUT PH8 - - TIM5_ETR - I2C3_SDA - - - - - - - FMC_D16 DCMI_ HSYNC LCD_R2 EVENT OUT PH9 - - - - I2C3_SMBA - - - - - - - FMC_D17 DCMI_D0 LCD_R3 EVENT OUT PH10 - - TIM5_CH1 - I2C4_SMBA - - - - - - - FMC_D18 DCMI_D1 LCD_R4 EVENT OUT PH11 - - TIM5_CH2 - I2C4_SCL - - - - - - - FMC_D19 DCMI_D2 LCD_R5 EVENT OUT PH12 - - TIM5_CH3 - I2C4_SDA - - - - - - - FMC_D20 DCMI_D3 LCD_R6 EVENT OUT PH13 - - - TIM8_CH1N - - - - UART4_TX FDCAN1_ TX - - FMC_D21 - LCD_G2 EVENT OUT PH14 - - - TIM8_CH2N - - - - UART4_RX FDCAN1_ RX - - FMC_D22 DCMI_D4 LCD_G3 EVENT OUT PH15 - - - TIM8_CH3N - - - - - FDCAN1_ TXFD_ MODE - - FMC_D23 LCD_G4 EVENT OUT Port H DS12931 Rev 1 DCMI_D11 STM32H757xI AF5 Port AF1 Pin descriptions 101/251 Table 16. Port H alternate functions AF0 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/HRTIM 1 LPUART/ TIM8/LPTIM 2/3/4/5/ HRTIM1/ DFSDM1 I2C1/2/3/4/U SART1/ TIM15/ LPTIM2/ DFSDM1/ CEC SPI1/2/3/4/ 5/6/CEC SPI2/3/SAI1 /3/I2C4/ UART4/ DFSDM1 SPI2/3/6/ USART1/2/ 3/6/UART7/ SDMMC1 SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX1 SAI4/FDCA N1/FDACN 2/TIM13/14 /QUADSPI/ FMC/SDM MC2/LCD/ SPDIFRX1 SAI2/4/TIM 8/QUADSPI /SDMMC2/ OTG1_HS/ OTG2_FS/ LCD I2C4/UART 7/SWPMI1/ TIM1/8/ DFSDM1/ SDMMC2/ MDIOS/ ETH TIM1/8/FMC /SDMMC1/ MDIOS/ OTG1_FS/ LCD TIM1/DCMI/ LCD/DSI/ COMP UART5/ LCD SYS PI0 - - TIM5_CH4 - - SPI2_NSS/ I2S2_WS - - - FDCAN1_ RXFD_ MODE - - FMC_D24 LCD_G5 EVENT OUT PI1 - - - TIM8_BKIN2 - SPI2_SCK/ I2S2_CK - - - - - TIM8_BKIN 2_COMP12 FMC_D25 DCMI_D8 LCD_G6 EVENT OUT PI2 - - - TIM8_CH4 - SPI2_MISO /I2S2_SDI - - - - - - FMC_D26 DCMI_D9 LCD_G7 EVENT OUT PI3 - - - TIM8_ETR - SPI2_MOSI /I2S2_SDO - - - - - - FMC_D27 DCMI_D10 - EVENT OUT PI4 - - - TIM8_BKIN - - - - - - SAI2_MCLK _A TIM8_BKIN _COMP12 FMC_NBL2 DCMI_D5 LCD_B4 EVENT OUT PI5 - - - TIM8_CH1 - - - - - - SAI2_SCK_ A - FMC_NBL3 DCMI_VSY NC LCD_B5 EVENT OUT PI6 - - - TIM8_CH2 - - - - - - SAI2_SD_A - FMC_D28 DCMI_D6 LCD_B6 EVENT OUT PI7 - - - TIM8_CH3 - - - - - - SAI2_FS_A - FMC_D29 DCMI_D7 LCD_B7 EVENT OUT PI8 - - - - - - - - - - - - - - - EVENT OUT PI9 - - - - - - - - UART4_RX FDCAN1_ RX - - FMC_D30 - LCD_ VSYNC EVENT OUT PI10 - - - - - - - - - FDCAN1_ RXFD_ MODE - ETH_MII_ RX_ER FMC_D31 - LCD_ HSYNC EVENT OUT PI11 - - - - - - - - - LCD_G6 OTG_HS_U LPI_DIR - - - PI12 - - - - - - - - - - - - - - LCD_HSY NC PI13 - - - - - - - - - - - - - - LCD_VSY NC PI14 - - - - - - - - - - - - - - LCD_CLK EVENT OUT PI15 - - - - - - - - - LCD_G2 - - - - LCD_R0 EVENT OUT Port DS12931 Rev 1 Port I AF1 DCMI_D13 STM32H757xI Table 17. Port I alternate functions EVENT OUT EVENT OUT 102/251 Pin descriptions EVENT OUT AF0 AF2 AF3 AF4 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/HRTIM 1 LPUART/ TIM8/LPTIM 2/3/4/5/ HRTIM1/ DFSDM1 I2C1/2/3/4/U SART1/ TIM15/ LPTIM2/ DFSDM1/ CEC SPI1/2/3/4/ 5/6/CEC SPI2/3/SAI1 /3/I2C4/ UART4/ DFSDM1 SPI2/3/6/ USART1/2/ 3/6/UART7/ SDMMC1 SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX1 SAI4/FDCA N1/FDACN 2/TIM13/14 /QUADSPI/ FMC/SDM MC2/LCD/ SPDIFRX1 SAI2/4/TIM 8/QUADSPI /SDMMC2/ OTG1_HS/ OTG2_FS/ LCD I2C4/UART 7/SWPMI1/ TIM1/8/ DFSDM1/ SDMMC2/ MDIOS/ ETH TIM1/8/FMC /SDMMC1/ MDIOS/ OTG1_FS/ LCD TIM1/DCMI/ LCD/DSI/ COMP UART5/ LCD SYS PJ0 - - - - - - - - - LCD_R7 - - - - LCD_R1 EVENT OUT PJ1 - - - - - - - - - - - - - - LCD_R2 EVENT OUT PJ2 - - - - - - - - - - - - - DSI_TE LCD_R3 EVENT OUT PJ3 - - - - - - - - - - - - - - LCD_R4 EVENT OUT PJ4 - - - - - - - - - - - - - - LCD_R5 EVENT OUT PJ5 - - - - - - - - - - - - - - LCD_R6 EVENT OUT PJ6 - - - TIM8_CH2 - - - - - - - - - - LCD_R7 EVENT OUT PJ7 TRGIN - - TIM8_CH2N - - - - - - - - - - LCD_G0 EVENT OUT PJ8 - TIM1_CH3N - TIM8_CH1 - - - - UART8_TX - - - - - LCD_G1 EVENT OUT PJ9 - TIM1_CH3 - TIM8_CH1N - - - - UART8_RX - - - - - LCD_G2 EVENT OUT PJ10 - TIM1_CH2N - TIM8_CH2 - SPI5_MOSI - - - - - - - - LCD_G3 EVENT OUT PJ11 - TIM1_CH2 - TIM8_CH2N - SPI5_MISO - - - - - - - - LCD_G4 EVENT OUT PJ12 TRGOU T - - - - - - - - LCD_G3 - - - - LCD_B0 EVENT OUT PJ13 - - - - - - - - - LCD_B4 - - - - LCD_B1 EVENT OUT PJ14 - - - - - - - - - - - - - - LCD_B2 EVENT OUT PJ15 - - - - - - - - - - - - - - LCD_B3 EVENT OUT Port J DS12931 Rev 1 STM32H757xI AF5 Port AF1 Pin descriptions 103/251 Table 18. Port J alternate functions AF0 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2/16/1 7/LPTIM1/ HRTIM1 SAI1/TIM3/ 4/5/HRTIM 1 LPUART/ TIM8/LPTIM 2/3/4/5/ HRTIM1/ DFSDM1 I2C1/2/3/4/U SART1/ TIM15/ LPTIM2/ DFSDM1/ CEC SPI1/2/3/4/ 5/6/CEC SPI2/3/SAI1 /3/I2C4/ UART4/ DFSDM1 SPI2/3/6/ USART1/2/ 3/6/UART7/ SDMMC1 SPI6/SAI2/ 4/UART4/5/ 8/LPUART/ SDMMC1/ SPDIFRX1 SAI4/FDCA N1/FDACN 2/TIM13/14 /QUADSPI/ FMC/SDM MC2/LCD/ SPDIFRX1 SAI2/4/TIM 8/QUADSPI /SDMMC2/ OTG1_HS/ OTG2_FS/ LCD I2C4/UART 7/SWPMI1/ TIM1/8/ DFSDM1/ SDMMC2/ MDIOS/ ETH TIM1/8/FMC /SDMMC1/ MDIOS/ OTG1_FS/ LCD TIM1/DCMI/ LCD/DSI/ COMP UART5/ LCD SYS PK0 - TIM1_CH1N - TIM8_CH3 - SPI5_SCK - - - - - - - - LCD_G5 EVENT OUT PK1 - TIM1_CH1 - TIM8_CH3N - SPI5_NSS - - - - - - - - LCD_G6 EVENT OUT PK2 - TIM1_BKIN - TIM8_BKIN - - - - - - TIM8_BKIN _COMP12 TIM1_BKIN _COMP12 - - LCD_G7 EVENT OUT PK3 - - - - - - - - - - - - - - LCD_B4 EVENT OUT PK4 - - - - - - - - - - - - - - LCD_B5 EVENT OUT PK5 - - - - - - - - - - - - - - LCD_B6 EVENT OUT PK6 - - - - - - - - - - - - - - LCD_B7 EVENT OUT PK7 - - - - - - - - - - - - - - LCD_DE EVENT OUT Port K Port AF1 STM32H757xI Table 19. Port K alternate functions DS12931 Rev 1 Pin descriptions 104/251 STM32H757xI 6 6.1 Electrical characteristics Electrical characteristics Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of junction temperature, supply voltage and frequencies by tests in production on 100% of the devices with an junction temperature at TJ = 25 °C and TJ = TJmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TJ = 25 °C, VDD = 3.3 V (for the 1.7 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2σ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 11. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 12. Figure 11. Pin loading conditions Figure 12. Pin input voltage MCU pin MCU pin C = 50 pF VIN MS19011V2 DS12931 Rev 1 MS19010V2 105/251 230 Electrical characteristics 6.1.6 STM32H757xI Power supply scheme 2.2 μF VDDDSI VCAPDSI(1) VDD12DSI USB IOs VSS Step Down Coverter (SMPS) VFBSMPS VSSSMPS VDD50USB VSSDSI VDD33USB VDDSMPS VLXSMPS VDD50USB 100 nF VDD33USB 100 nF Figure 13. Power supply scheme VSS DSI PHY USB regulator DSI regulator VDDLDO VCAP Level shifter VSS IOs N(1) x 100 nF + 1 x 4.7 μF VDD D2 domain (peripherals, RAM) D1 domain (CPU, peripherals, RAM) VDD domain VBAT charging HSI, CSI, HSI48, HSE, PLLs Backup domain Backup VBKP regulator VSW VBAT Power switch Power switch LSI, LSE, RTC, Wakeup logic, backup IO registers, logic Reset BKUP IOs VREF 100 nF + 1 x 1 μF 100 nF + 1 x 1 μF VDDA VDDA Flash VSS VDD VBAT 1.2 to 3.6V D3 domain (System logic, EXTI, IO logic Peripherals, RAM) Power switch Power switch VDDLDO 4..7μF 2 x 2.2 μF Core domain (VCORE) Voltage regulator VSS Analog domain REF_BUF VREF+ ADC, DAC VREF+ VREF- VREF- Backup RAM VSS OPAMP, Comparator VSSA MSv62410V2 1. N corresponds to the number of VDD pins available on the package. 2. A tolerance of +/- 20% is acceptable on decoupling capacitors. 3. VCAPDSI pin must be externally connected to VDD12DSI pin. Caution: 106/251 Each power supply pair (VDD/VSS, VDDA/VSSA ...) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or DS12931 Rev 1 STM32H757xI Electrical characteristics below, the appropriate pins on the underside of the PCB to ensure good operation of the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect operation of the device. 6.1.7 Current consumption measurement Figure 14. Current consumption measurement scheme IDD_VBAT VBAT IDD VDD VDDA ai14126 6.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 20: Voltage characteristics, Table 21: Current characteristics, and Table 22: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and the functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 20. Voltage characteristics (1) Symbols VDDX - VSS VIN(2) Ratings Min Max Unit −0.3 4.0 V Input voltage on FT_xxx pins VSS−0.3 Min(VDD, VDDA, VDD33USB, VBAT) +4.0(3)(4) V Input voltage on TT_xx pins VSS-0.3 4.0 V Input voltage on BOOT0 pin VSS 9.0 V VSS-0.3 4.0 V - 50 mV - 50 mV External main supply voltage (including VDD, VDDLDO, VDDSMPS, VDDA, VDD33USB, VBAT) Input voltage on any other pins |∆VDDX| Variations between different VDDX power pins of the same domain |VSSx-VSS| Variations between all the different ground pins 1. All main power (VDD, VDDA, VDD33USB, VDDSMPS, VBAT) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 71: I/O current injection susceptibility for the maximum allowed injected current values. 3. This formula has to be applied on power supplies related to the IO structure described by the pin definition table. DS12931 Rev 1 107/251 230 Electrical characteristics STM32H757xI 4. To sustain a voltage higher than 4V the internal pull-up/pull-down resistors must be disabled. Table 21. Current characteristics Symbols Ratings Max ΣIVDD (1) Total current into sum of all VDD power lines (source) 620 ΣIVSS Total current out of sum of all VSS ground lines (sink)(1) 620 IVDD Maximum current into each VDD power pin 100 (1) 100 Maximum current out of each VSS ground pin (sink) IVSS IIO ΣI(PIN) IINJ(PIN) (source)(1) (3)(4) ΣIINJ(PIN) Output current sunk by any I/O and control pin 20 Total output current sunk by sum of all I/Os and control pins(2) 140 Total output current sourced by sum of all I/Os and control pins(2) 140 Injected current on FT_xxx, TT_xx, RST and B pins except PA4, PA5 −5/+0 Injected current on PA4, PA5 −0/0 Total injected current (sum of all I/Os and control pins)(5) Unit mA ±25 1. All main power (VDD, VDDA, VDD33USB) and ground (VSS, VSSA) pins must always be connected to the external power supplies, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages. 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN
STM32H757IIT6 价格&库存

很抱歉,暂时无法提供与“STM32H757IIT6”相匹配的价格&库存,您可以联系我们找货

免费人工找货