0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32L031G6U6S

STM32L031G6U6S

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    UFQFPN28_4X4MM

  • 描述:

    STM32L031G6U6S

  • 数据手册
  • 价格&库存
STM32L031G6U6S 数据手册
STM32L031x4 STM32L031x6 Access line ultra-low-power 32-bit MCU Arm®-based Cortex®-M0+, up to 32KB Flash, 8KB SRAM, 1KB EEPROM, ADC Datasheet - production data Features • • • • • • • • Ultra-low-power platform – 1.65 V to 3.6 V power supply – -40 to 125 °C temperature range – 0.23 µA Standby mode (2 wakeup pins) – 0.35 µA Stop mode (16 wakeup lines) – 0.6 µA Stop mode + RTC + 8 KB RAM retention – Down to 76 µA/MHz in Run mode – 5 µs wakeup time (from Flash memory) – 41 µA 12-bit ADC conversion at 10 ksps Core: Arm® 32-bit Cortex®-M0+ – From 32 kHz up to 32 MHz max. – 0.95 DMIPS/MHz Reset and supply management – Ultra-safe, low-power BOR (brownout reset) with 5 selectable thresholds – Ultralow power POR/PDR – Programmable voltage detector (PVD) Clock sources – 1 to 25 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – High speed internal 16 MHz factory-trimmed RC (+/- 1%) – Internal low-power 37 kHz RC – Internal multispeed low-power 65 kHz to 4.2 MHz RC – PLL for CPU clock Pre-programmed bootloader – USART, SPI supported Development support – Serial wire debug supported Up to 38 fast I/Os (31 I/Os 5V tolerant) Memories – Up to 32-Kbyte Flash with ECC – 8-Kbyte RAM – 1-Kbyte of data EEPROM with ECC – 20-byte backup register – Sector protection against R/W operation March 2018 This is information on a product in full production. TSSOP20 169 mils UFQFPN28 4x4 mm UFQFPN32 5x5 mm UFQFPN48 7x7 mm LQFP32/48 7x7 mm WLCSP25 2.097x2.493 mm – • • Rich Analog peripherals – 12-bit ADC 1.14 Msps up to 10 channels (down to 1.65 V) – 2x ultra-low-power comparators (window mode and wake up capability, down to 1.65 V) 7-channel DMA controller, supporting ADC, SPI, I2C, USART, Timers • 5x peripherals communication interface • 1x USART (ISO 7816, IrDA), 1x UART (low power) • Up to 2 SPI interfaces, up to 16 Mbits/s • 1x I2C (SMBus/PMBus) • 8x timers: 1x 16-bit with up to 4 channels, 2x 16-bit with up to 2 channels, 1x 16-bit ultra-low-power timer, 1x SysTick, 1x RTC and 2x watchdogs (independent/window) • CRC calculation unit, 96-bit unique ID • All packages are ECOPACK®2 Table 1. Device summary Reference Part number STM32L031x4 STM32L031G4, STM32L031K4, STM32L031C4, STM32L031E4, STM32L031F4 STM32L031x6 STM32L031G6, STM32L031K6, STM32L031C6, STM32L031E6, STM32L031F6 DS10668 Rev 6 1/126 www.st.com Contents STM32L031x4/6 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2 Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Arm® Cortex®-M0+ core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4.4 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.6 Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 25 3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.8 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . 26 3.9 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.10 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.11 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.12 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.12.1 2/126 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.13 Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 28 3.14 System configuration controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.15 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.15.1 General-purpose timers (TIM2, TIM21 and TIM22) . . . . . . . . . . . . . . . . 29 3.15.2 Low-power timer (LPTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.15.3 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.15.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.15.5 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 DS10668 Rev 6 STM32L031x4/6 3.16 Contents Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.16.1 I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.16.2 Universal synchronous/asynchronous receiver transmitter (USART) . . 31 3.16.3 Low-power universal asynchronous receiver transmitter (LPUART) . . . 32 3.16.4 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.17 Cyclic redundancy check (CRC) calculation unit . . . . . . . . . . . . . . . . . . . 33 3.18 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 53 6.3.3 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3.5 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 DS10668 Rev 6 3/126 4 Contents 7 STM32L031x4/6 6.3.15 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3.16 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.17 Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.3.18 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.1 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.2 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.3 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.4 UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.5 UFQFPN28 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.6 WLCSP25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 7.7 TSSOP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 7.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 7.8.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4/126 DS10668 Rev 6 STM32L031x4/6 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Ultra-low-power STM32L031x4/x6 device features and peripheral counts. . . . . . . . . . . . . 11 Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 17 CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 17 Functionalities depending on the working mode (from Run/active down to standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 STM32L0xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Internal voltage reference measured values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 STM32L031x4/6 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 SPI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 53 Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Current consumption in Run mode, code with data processing running from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Current consumption in Run mode vs code type, code with data processing running from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Current consumption in Run mode, code with data processing running from RAM . . . . . . 59 Current consumption in Run mode vs code type, code with data processing running from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Current consumption in Low-power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Current consumption in Low-power sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 63 Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 64 Average current consumption during wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Peripheral current consumption in Run or Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Peripheral current consumption in Stop and Standby mode . . . . . . . . . . . . . . . . . . . . . . . 66 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 16 MHz HSI16 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 DS10668 Rev 6 5/126 6 List of tables Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. 6/126 STM32L031x4/6 RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Flash memory and data EEPROM endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 76 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 RAIN max for fADC = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 SPI characteristics in voltage Range 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 SPI characteristics in voltage Range 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 SPI characteristics in voltage Range 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 LQFP48 - 48-pin low-profile quad flat package, 7 x 7 mm, package mechanical data . . . . 98 UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 LQFP32, 7 x 7 mm, 32-pin low-profile quad flat package mechanical data . . . . . . . . . . . 105 UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 UFQPN28 - 28-lead, 4 x 4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 WLCSP25 - 2.097 x 2.493 mm, 0.400 mm pitch wafer level chip scale mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 WLCSP25 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 STM32L031x4/6 ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 DS10668 Rev 6 STM32L031x4/6 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. STM32L031x4/6 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 STM32L031x4/6 UFQFPN48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 STM32L031x4/6 LQFP48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 STM32L031x4/6 LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 STM32L031x4/6 UFQFPN32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 STM32L031x4/6 UFQFPN28 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 STM32L031 UFQFPN28 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 STM32L031x4/6 TSSOP20 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 STM32L031x4/6 WLCSP25 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSE = 16 MHz, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSI16, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Low-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Stop mode with RTC enabled and running on LSE Low drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled, all clocks off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 HSI16 minimum and maximum value versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . 73 VIH/VIL versus VDD (CMOS I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 VIH/VIL versus VDD (TTL I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . 97 LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Example of LQFP48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Example of UFQFPN48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 LQFP32, 7 x 7 mm, 32-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 104 LQFP32 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 DS10668 Rev 6 7/126 8 List of figures Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. 8/126 STM32L031x4/6 Example of LQFP32 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Example of UFQFPN32 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 UFQPN28 - 28-lead, 4 x 4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 UFQFPN28 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Example of UFQFPN28 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 WLCSP25 - 2.097 x 2.493 mm, 0.400 mm pitch wafer level chip scale package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 WLCSP25 - 2.097 x 2.493 mm, 0.400 mm pitch wafer level chip scale recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Example of WLCSP25 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Example of TSSOP20 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 DS10668 Rev 6 STM32L031x4/6 1 Introduction Introduction The ultra-low-power STM32L031x4/6 family includes devices in 6 different packages from 20 to 48 pins. The description below gives an overview of the complete range of peripherals proposed in this family. These features make the ultra-low-power STM32L031x4/6 microcontrollers suitable for a wide range of applications: • Gas/water meters and industrial sensors • Healthcare and fitness equipment • Remote control and user interface • PC peripherals, gaming, GPS equipment • Alarm system, wired and wireless sensors, video intercom This STM32L031x4/6 datasheet must be read in conjunction with the STM32L0x1 reference manual (RM0377). For information on the Arm® Cortex®-M0+ core please refer to the Cortex®-M0+ Technical Reference Manual, available from the http://www.arm.com website. Figure 1 shows the general block diagram of the device family. DS10668 Rev 6 9/126 33 Description 2 STM32L031x4/6 Description The access line ultra-low-power STM32L031x4/6 family incorporates the high-performance Arm® Cortex®-M0+ 32-bit RISC core operating at a 32 MHz frequency, high-speed embedded memories (up to 32 Kbytes of Flash program memory, 1 Kbytes of data EEPROM and 8 Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals. The STM32L031x4/6 devices provide high power efficiency for a wide range of performance. It is achieved with a large choice of internal and external clock sources, an internal voltage adaptation and several low-power modes. The STM32L031x4/6 devices offer several analog features, one 12-bit ADC with hardware oversampling, two ultra-low-power comparators, several timers, one low-power timer (LPTIM), three general-purpose 16-bit timers, one RTC and one SysTick which can be used as timebases. They also feature two watchdogs, one watchdog with independent clock and window capability and one window watchdog based on bus clock. Moreover, the STM32L031x4/6 devices embed standard and advanced communication interfaces: one I2C, one SPI, one USART, and a low-power UART (LPUART). The STM32L031x4/6 also include a real-time clock and a set of backup registers that remain powered in Standby mode. The ultra-low-power STM32L031x4/6 devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +125 °C temperature range. A comprehensive set of power-saving modes allows the design of low-power applications. 10/126 DS10668 Rev 6 Device overview Table 2. Ultra-low-power STM32L031x4/x6 device features and peripheral counts Peripheral STM32 L031F4 STM32 L031E4 Flash (Kbytes) STM32 L031G4 STM32 L031K4 STM32 L031C4 STM32 L031F6 16 1 RAM (Kbytes) 8 Generalpurpose 3 LPTIMER 1 DS10668 Rev 6 RTC/SYSTICK/IWDG/ WWDG Communicati on interfaces 2(1)(1) I2C 1 USART 1 LPUART 1 Clocks: HSE(4)/LSE/HSI/MSI/LSI 15 20 21(23)(3) 27(2) 38 15 1 10 Comparators 2 20 21(23)(3) 27(2) 38 32 MHz 1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 V to 3.6 V without BOR option Description 11/126 Operating voltage STM32 L031C6 1/1/1/1/1 12-bit synchronized ADC Number of channels Max. CPU frequency STM32 L031K6 1/1/1/1 SPI GPIOs STM32 L031G6 32 Data EEPROM (Kbytes) Timers STM32 L031E6 STM32L031x4/6 2.1 Peripheral STM32 L031F4 STM32 L031E4 STM32 L031G4 STM32 L031C4 STM32 L031F6 STM32 L031E6 STM32 L031G6 STM32 L031K6 STM32 L031C6 Ambient temperature: –40 to +125 °C Junction temperature: –40 to +130 °C Operating temperatures Packages STM32 L031K4 TSSOP 20 WLCSP 25 LQFP32, LQFP48/ UFQFPN UFQFPN UFQFPN 28 32 48 TSSOP 20 WLCSP 25 Description 12/126 Table 2. Ultra-low-power STM32L031x4/x6 device features and peripheral counts (continued) LQFP32, LQFP48/ UFQFPN UFQFPN UFQFPN 28 32 48 1. 1 SPI interface is a USART operating in SPI master mode. 2. LQFP32 has two GPIOs, less than UFQFPN32 (27). 3. 23 GPIOs are available only on STM32L031GxUxS part number. 4. HSE external quartz connexion available only on LQFP48. DS10668 Rev 6 STM32L031x4/6 STM32L031x4/6 Description Figure 1. STM32L031x4/6 block diagram 7HPS VHQVRU 6:' 6:' )/$6+ ((3520 %227 &257(;0&38 )PD[0+] $'& $,1[ 63, 0,62026, 6&.166 5$0 '%* '0$ 19,& (;7, $ 3 %  7,0 FK 7,0 FK %5,'*( &203 ,13,10287 &203 ,13,10287 /37,0 ,1,1 (75287 &5& %5,'*( *3,23257$ 3%>@ *3,23257% 3&>@ 3& *3,23257& 3+>@ 26&B,1 26&B287 &.B,1 $+%)PD[0+] 3$>@ ::'* $ 3 %  *3,23257+ +6( ,& 86$57 /38$57 6&/6'$ 60%$ 5;7; 576'( &76&. 5;7; 576'( &76 +6,0 /6, ,:'* 3// 06, 7,0 FK 57& %&.35(* 5(6(7 &/. :.83[ 26&B,1 26&B287 /6( 39'B,1 95()B287 308 1567 9''$ 9'' 5(*8/$725 06Y9 DS10668 Rev 6 13/126 33 Description 2.2 STM32L031x4/6 Ultra-low-power device continuum The ultra-low-power family offers a large choice of core and features, from 8-bit proprietary core up to Arm® Cortex®-M4, including Arm® Cortex®-M3 and Arm® Cortex®-M0+. The STM32Lx series are the best choice to answer your needs in terms of ultra-low-power features. The STM32 Ultra-low-power series are the best solution for applications such as gas/water meter, keyboard/mouse or fitness and healthcare application. Several built-in features like LCD drivers, dual-bank memory, low-power run mode, operational amplifiers, 128-bit AES, DAC, crystal-less USB and many other definitely help you building a highly cost optimized application by reducing BOM cost. STMicroelectronics, as a reliable and long-term manufacturer, ensures as much as possible pin-to-pin compatibility between all STM8Lx and STM32Lx on one hand, and between all STM32Lx and STM32Fx on the other hand. Thanks to this unprecedented scalability, your legacy application can be upgraded to respond to the latest market feature and efficiency requirements. 14/126 DS10668 Rev 6 STM32L031x4/6 Functional overview 3 Functional overview 3.1 Low-power modes The ultra-low-power STM32L031x4/6 supports dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system’s maximum operating frequency and the external voltage supply. There are three power consumption ranges: • Range 1 (VDD range limited to 1.71-3.6 V), with the CPU running at up to 32 MHz • Range 2 (full VDD range), with a maximum CPU frequency of 16 MHz • Range 3 (full VDD range), with a maximum CPU frequency limited to 4.2 MHz Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at 16 MHz is about 1 mA with all peripherals off. • Low-power run mode This mode is achieved with the multispeed internal (MSI) RC oscillator set to the lowspeed clock (max 131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In Lowpower run mode, the clock frequency and the number of enabled peripherals are both limited. • Low-power sleep mode This mode is achieved by entering Sleep mode with the internal voltage regulator in low-power mode to minimize the regulator’s operating current. In Low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz. When wakeup is triggered by an event or an interrupt, the system reverts to the Run mode with the regulator on. • Stop mode with RTC The Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the VCORE domain are stopped, the PLL, MSI RC, HSE and HSI RC oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode. Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition. The device can be woken up from Stop mode by any of the EXTI line, in 3.5 µs, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event DS10668 Rev 6 15/126 33 Functional overview STM32L031x4/6 (if internal reference voltage is on), it can be the RTC alarm/tamper/timestamp/wakeup events, the USART/I2C/LPUART/LPTIMER wakeup events. • Stop mode without RTC The Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are disabled. Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition. The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 3.5 µs, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on). It can also be wakened by the USART/I2C/LPUART/LPTIMER wakeup events. • Standby mode with RTC The Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire VCORE domain is powered off. The PLL, MSI RC, HSE and HSI RC oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register). The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs. • Standby mode without RTC The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire VCORE domain is powered off. The PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register). The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs. Note: 16/126 The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by entering Stop or Standby mode. DS10668 Rev 6 STM32L031x4/6 Functional overview Table 3. Functionalities depending on the operating power supply range Operating power supply range(1) Functionalities depending on the operating power supply range ADC operation Dynamic voltage scaling range VDD = 1.65 to 1.71 V Conversion time up to 570 ksps Range 2 or range 3 VDD = 1.71 to 2.0 V(2) Conversion time up to 1.14 Msps Range 1, range 2 or range 3 VDD = 2.0 to 2.4 V Conversion time up to 1.14 Msps Range 1, range 2 or range 3 VDD = 2.4 to 3.6 V Conversion time up to 1.14 Msps Range 1, range 2 or range 3 1. GPIO speed depends on VDD voltage range. Refer to Table 55: I/O AC characteristics for more information about I/O speed. 2. CPU frequency changes from initial to final must respect the condition: fCPU initial 1.65 V VDD > 1.65 V and and TA > −10 °C TA > 25 °C VDD > 2.7 V VDD > 2.4 V VDD > 2.0 V VDD > 1.8 V VDD > 1.75 V 0.5 < 0.1 NA NA NA NA NA NA 0.22 1 0.2 < 0.1 NA NA NA NA NA 7.5 0.47 2.5 1.7 1.5 < 0.1 NA NA NA NA 12.5 0.78 4 3.2 3 1 NA NA NA NA 19.5 1.22 6.5 5.7 5.5 3.5 NA NA NA < 0.1 39.5 2.47 13 12.2 12 10 NA NA NA 5 79.5 4.97 27 26.2 26 24 < 0.1 NA NA 19 160.5 10.03 50 49.2 49 47 32 < 0.1 < 0.1 42 1. Guaranteed by design. Table 59. ADC accuracy(1)(2)(3) Symbol Parameter Conditions Min Typ Max ET Total unadjusted error - 2 4 EO Offset error - 1 2.5 EG Gain error - 1 2 EL Integral linearity error - 1.5 2.5 ED Differential linearity error - 1 1.5 10.2 11 11.3 12.1 - Signal-to-noise distortion 63 69 - Effective number of bits ENOB SINAD Effective number of bits (16-bit mode oversampling with ratio =256)(4) 1.65 V < VDDA < 3.6 V, range 1/2/3 Signal-to-noise ratio 63 69 - SNR Signal-to-noise ratio (16-bit mode oversampling with ratio =256)(4) 70 76 - THD Total harmonic distortion - –85 –73 Unit LSB bits dB 1. ADC DC accuracy values are measured after internal calibration. 2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins must be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.12 does not affect the ADC accuracy. 3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges. 4. This number is obtained by the test board without additional noise, resulting in non-optimized value for oversampling mode. DS10668 Rev 6 87/126 96 Electrical characteristics STM32L031x4/6 Figure 29. ADC accuracy characteristics 966$ (*  ([DPSOHRIDQDFWXDOWUDQVIHUFXUYH  7KHLGHDOWUDQVIHUFXUYH  (QGSRLQWFRUUHODWLRQOLQH    (7 WRWDOXQDMXVWHGHUURUPD[LPXPGHYLDWLRQ EHWZHHQWKHDFWXDODQGLGHDOWUDQVIHUFXUYHV (2 RIIVHWHUURUPD[LPXPGHYLDWLRQ EHWZHHQWKHILUVWDFWXDOWUDQVLWLRQDQG WKHILUVWLGHDORQH (* JDLQHUURUGHYLDWLRQEHWZHHQWKHODVW LGHDOWUDQVLWLRQDQGWKHODVWDFWXDORQH (' GLIIHUHQWLDOOLQHDULW\HUURUPD[LPXP GHYLDWLRQEHWZHHQDFWXDOVWHSVDQGWKHLGHDORQHV (/ LQWHJUDOOLQHDULW\HUURUPD[LPXPGHYLDWLRQ EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW FRUUHODWLRQOLQH  (7      (2 (/   ('  /6%,'($/              9''$ 069 Figure 30. Typical connection diagram using the ADC 9''$ 97 5$,1  9$,1 $,1[ &SDUDVLWLF 97 6DPSOHDQGKROG$'& FRQYHUWHU 5$'& ELW FRQYHUWHU ,/“Q$ &$'& 06Y9 1. Refer to Table 57: ADC characteristics for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC must be reduced. 6.3.16 Temperature sensor characteristics Table 60. Temperature sensor calibration values Calibration value name 88/126 Description Memory address TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3 V 0x1FF8 007A - 0x1FF8 007B TS_CAL2 TS ADC raw data acquired at temperature of 130 °C VDDA= 3 V 0x1FF8 007E - 0x1FF8 007F DS10668 Rev 6 STM32L031x4/6 Electrical characteristics Table 61. Temperature sensor characteristics Symbol Parameter TL(1) VSENSE linearity with temperature Avg_Slope (1) Average slope (2) Min Typ Max Unit - ±1 ±2 °C 1.48 1.61 1.75 mV/°C 640 670 700 mV µA V130 Voltage at 130°C ±5°C IDDA(TEMP)(3) Current consumption - 3.4 6 tSTART(3) Startup time - - 10 TS_temp(4)(3) ADC sampling time when reading the temperature 10 - - µs 1. Guaranteed by characterization results. 2. Measured at VDD = 3 V ±10 mV. V130 ADC conversion result is stored in the TS_CAL2 byte. 3. Guaranteed by design. 4. Shortest sampling time can be determined in the application by multiple iterations. 6.3.17 Comparators Table 62. Comparator 1 characteristics Symbol Parameter Conditions Min(1) Typ Max(1) Unit 3.6 V VDDA Analog supply voltage - 1.65 R400K R400K value - - 400 - R10K R10K value - - 10 - Comparator 1 input voltage range - 0.6 - VDDA Comparator startup time - - 7 10 VIN tSTART (2) kΩ V µs td Propagation delay - - 3 10 Voffset Comparator offset - - ±3 ±10 mV VDDA = 3.6 V Comparator offset VIN+ = 0 V variation in worst voltage VIN- = VREFINT stress conditions TA = 25 ° C 0 1.5 10 mV/1000 h Current consumption(3) - 160 260 nA dVoffset/dt ICOMP1 - 1. Guaranteed by characterization. 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference. 3. Comparator consumption only. Internal reference voltage not included. DS10668 Rev 6 89/126 96 Electrical characteristics STM32L031x4/6 Table 63. Comparator 2 characteristics Symbol VDDA VIN Parameter Typ Max(1) Unit Conditions Min Analog supply voltage - 1.65 - 3.6 V Comparator 2 input voltage range - 0 - VDDA V Fast mode - 15 20 Slow mode - 20 25 tSTART Comparator startup time td slow Propagation delay(2) in slow mode 1.65 V ≤ VDDA ≤ 2.7 V - 1.8 3.5 2.7 V ≤ VDDA ≤ 3.6 V - 2.5 6 td fast Propagation delay(2) in fast mode 1.65 V ≤ VDDA ≤ 2.7 V - 0.8 2 2.7 V ≤ VDDA ≤ 3.6 V - 1.2 4 Voffset Comparator offset error - - ±4 ±20 mV VDDA = 3.3V TA = 0 to 50 ° C V- =VREFINT, 3/4 VREFINT, 1/2 VREFINT, 1/4 VREFINT. - 15 30 ppm /°C Fast mode - 3.5 5 Slow mode - 0.5 2 dThreshold/dt ICOMP2 Threshold voltage temperature coefficient Current consumption(3) µs µA 1. Guaranteed by characterization results. 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference. 3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not included. 6.3.18 Timer characteristics TIM timer characteristics The parameters given in the Table 64 are guaranteed by design. Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 64. TIMx(1) characteristics Symbol tres(TIM) fEXT ResTIM 90/126 Parameter Conditions Min Max Unit - 1 - tTIMxCLK fTIMxCLK = 32 MHz 31.25 - ns Timer external clock frequency on CH1 to CH4 f TIMxCLK = 32 MHz 0 fTIMxCLK/2 MHz 0 16 MHz Timer resolution - 16 bit Timer resolution time - DS10668 Rev 6 STM32L031x4/6 Electrical characteristics Table 64. TIMx(1) characteristics (continued) Symbol Parameter Conditions Min Max Unit - 1 65536 tTIMxCLK tCOUNTER 16-bit counter clock period when internal clock is selected (timer’s prescaler disabled) 2048 µs tMAX_COUNT Maximum possible count fTIMxCLK = 32 MHz 0.0312 - - 65536 × 65536 tTIMxCLK fTIMxCLK = 32 MHz - 134.2 s 1. TIMx is used as a general term to refer to the TIM2, TIM21, and TIM22 timers. 6.3.19 Communications interfaces I2C interface characteristics The I2C interface meets the timings requirements of the I2C-bus specification and user manual rev. 03 for: • Standard-mode (Sm) : with a bit rate up to 100 kbit/s • Fast-mode (Fm) : with a bit rate up to 400 kbit/s • Fast-mode Plus (Fm+) : with a bit rate up to 1 Mbit/s. The I2C timing requirements are guaranteed by design when the I2C peripheral is properly configured (refer to the reference manual for details). The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement (refer to Section 6.3.13: I/O port characteristics for the I2C I/Os characteristics). All I2C SDA and SCL I/Os embed an analog filter (see Table 65 for the analog filter characteristics). The analog spike filter is compliant with I2C timings requirements only for the following voltage ranges: • Fast mode Plus: 2.7 V ≤VDD ≤3.6 V and voltage scaling Range 1 • Fast mode: – 2 V ≤VDD ≤3.6 V and voltage scaling Range 1 or Range 2. – VDD < 2 V, voltage scaling Range 1 or Range 2, Cload < 200 pF. In other ranges, the analog filter must be disabled. The digital filter can be used instead. Note: In Standard mode, no spike filter is required. Table 65. I2C analog filter characteristics(1) Symbol Parameter Conditions Min Maximum pulse width of spikes that are suppressed by the analog filter Range 2 Range 3 Unit 100(3) Range 1 tAF Max 50(2) - ns - 1. Guaranteed by characterization results. 2. Spikes with widths below tAF(min) are filtered. DS10668 Rev 6 91/126 96 Electrical characteristics STM32L031x4/6 3. Spikes with widths above tAF(max) are not filtered SPI characteristics Unless otherwise specified, the parameters given in the following tables are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 20. Refer to Section 6.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 66. SPI characteristics in voltage Range 1 (1) Symbol Parameter Conditions Min Typ - - Slave mode Transmitter 1.71
STM32L031G6U6S 价格&库存

很抱歉,暂时无法提供与“STM32L031G6U6S”相匹配的价格&库存,您可以联系我们找货

免费人工找货