STM32L031x4 STM32L031x6
Access line ultra-low-power 32-bit MCU Arm®-based
Cortex®-M0+, up to 32KB Flash, 8KB SRAM, 1KB EEPROM, ADC
Datasheet - production data
Features
•
•
•
•
•
•
•
•
Ultra-low-power platform
– 1.65 V to 3.6 V power supply
– -40 to 125 °C temperature range
– 0.23 µA Standby mode (2 wakeup pins)
– 0.35 µA Stop mode (16 wakeup lines)
– 0.6 µA Stop mode + RTC + 8 KB RAM retention
– Down to 76 µA/MHz in Run mode
– 5 µs wakeup time (from Flash memory)
– 41 µA 12-bit ADC conversion at 10 ksps
Core: Arm® 32-bit Cortex®-M0+
– From 32 kHz up to 32 MHz max.
– 0.95 DMIPS/MHz
Reset and supply management
– Ultra-safe, low-power BOR (brownout reset)
with 5 selectable thresholds
– Ultralow power POR/PDR
– Programmable voltage detector (PVD)
Clock sources
– 1 to 25 MHz crystal oscillator
– 32 kHz oscillator for RTC with calibration
– High speed internal 16 MHz factory-trimmed RC
(+/- 1%)
– Internal low-power 37 kHz RC
– Internal multispeed low-power 65 kHz to
4.2 MHz RC
– PLL for CPU clock
Pre-programmed bootloader
– USART, SPI supported
Development support
– Serial wire debug supported
Up to 38 fast I/Os (31 I/Os 5V tolerant)
Memories
– Up to 32-Kbyte Flash with ECC
– 8-Kbyte RAM
– 1-Kbyte of data EEPROM with ECC
– 20-byte backup register
– Sector protection against R/W operation
March 2018
This is information on a product in full production.
TSSOP20
169 mils
UFQFPN28 4x4 mm
UFQFPN32 5x5 mm
UFQFPN48 7x7 mm
LQFP32/48
7x7 mm
WLCSP25
2.097x2.493 mm
–
•
•
Rich Analog peripherals
– 12-bit ADC 1.14 Msps up to 10 channels (down
to 1.65 V)
– 2x ultra-low-power comparators (window mode
and wake up capability, down to 1.65 V)
7-channel DMA controller, supporting ADC, SPI,
I2C, USART, Timers
•
5x peripherals communication interface
•
1x USART (ISO 7816, IrDA), 1x UART (low power)
•
Up to 2 SPI interfaces, up to 16 Mbits/s
•
1x I2C (SMBus/PMBus)
•
8x timers: 1x 16-bit with up to 4 channels, 2x 16-bit
with up to 2 channels, 1x 16-bit ultra-low-power
timer, 1x SysTick, 1x RTC and 2x watchdogs
(independent/window)
•
CRC calculation unit, 96-bit unique ID
•
All packages are ECOPACK®2
Table 1. Device summary
Reference
Part number
STM32L031x4
STM32L031G4, STM32L031K4,
STM32L031C4, STM32L031E4,
STM32L031F4
STM32L031x6
STM32L031G6, STM32L031K6,
STM32L031C6, STM32L031E6,
STM32L031F6
DS10668 Rev 6
1/126
www.st.com
Contents
STM32L031x4/6
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
2.1
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.2
Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2
Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3
Arm® Cortex®-M0+ core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4
Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.1
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.4
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5
Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6
Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 25
3.7
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.8
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . 26
3.9
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.10
Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.11
Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.12
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.12.1
2/126
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.13
Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 28
3.14
System configuration controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.15
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.15.1
General-purpose timers (TIM2, TIM21 and TIM22) . . . . . . . . . . . . . . . . 29
3.15.2
Low-power timer (LPTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.15.3
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.15.4
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.15.5
Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
DS10668 Rev 6
STM32L031x4/6
3.16
Contents
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.16.1
I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.16.2
Universal synchronous/asynchronous receiver transmitter (USART) . . 31
3.16.3
Low-power universal asynchronous receiver transmitter (LPUART) . . . 32
3.16.4
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.17
Cyclic redundancy check (CRC) calculation unit . . . . . . . . . . . . . . . . . . . 33
3.18
Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3.2
Embedded reset and power control block characteristics . . . . . . . . . . . 53
6.3.3
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.4
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.5
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.6
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.7
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3.8
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.9
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.10
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.11
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.12
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.13
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.14
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
DS10668 Rev 6
3/126
4
Contents
7
STM32L031x4/6
6.3.15
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.16
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.17
Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.18
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.19
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.1
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.3
LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.4
UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.5
UFQFPN28 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.6
WLCSP25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
7.7
TSSOP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
7.8
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
7.8.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4/126
DS10668 Rev 6
STM32L031x4/6
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ultra-low-power STM32L031x4/x6 device features and peripheral counts. . . . . . . . . . . . . 11
Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 17
CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 17
Functionalities depending on the working mode
(from Run/active down to standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
STM32L0xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Internal voltage reference measured values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
STM32L031x4/6 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
SPI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 53
Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Current consumption in Run mode, code with data processing running
from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Current consumption in Run mode vs code type,
code with data processing running from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Current consumption in Run mode, code with data processing running from RAM . . . . . . 59
Current consumption in Run mode vs code type,
code with data processing running from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Current consumption in Low-power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Current consumption in Low-power sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 63
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 64
Average current consumption during wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Peripheral current consumption in Run or Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Peripheral current consumption in Stop and Standby mode . . . . . . . . . . . . . . . . . . . . . . . 66
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
16 MHz HSI16 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
DS10668 Rev 6
5/126
6
List of tables
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
6/126
STM32L031x4/6
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Flash memory and data EEPROM endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 76
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
RAIN max for fADC = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
SPI characteristics in voltage Range 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
SPI characteristics in voltage Range 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
SPI characteristics in voltage Range 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
LQFP48 - 48-pin low-profile quad flat package, 7 x 7 mm, package mechanical data . . . . 98
UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
LQFP32, 7 x 7 mm, 32-pin low-profile quad flat package mechanical data . . . . . . . . . . . 105
UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
UFQPN28 - 28-lead, 4 x 4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
WLCSP25 - 2.097 x 2.493 mm, 0.400 mm pitch wafer level chip scale
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
WLCSP25 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
STM32L031x4/6 ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
DS10668 Rev 6
STM32L031x4/6
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
STM32L031x4/6 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
STM32L031x4/6 UFQFPN48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
STM32L031x4/6 LQFP48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
STM32L031x4/6 LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
STM32L031x4/6 UFQFPN32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
STM32L031x4/6 UFQFPN28 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
STM32L031 UFQFPN28 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
STM32L031x4/6 TSSOP20 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
STM32L031x4/6 WLCSP25 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSE = 16 MHz, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSI16, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Low-power run mode, code running
from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Stop mode with RTC enabled
and running on LSE Low drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled,
all clocks off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
HSI16 minimum and maximum value versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . 73
VIH/VIL versus VDD (CMOS I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
VIH/VIL versus VDD (TTL I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . 97
LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Example of LQFP48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Example of UFQFPN48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
LQFP32, 7 x 7 mm, 32-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 104
LQFP32 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
DS10668 Rev 6
7/126
8
List of figures
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
8/126
STM32L031x4/6
Example of LQFP32 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Example of UFQFPN32 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
UFQPN28 - 28-lead, 4 x 4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
UFQFPN28 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Example of UFQFPN28 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
WLCSP25 - 2.097 x 2.493 mm, 0.400 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
WLCSP25 - 2.097 x 2.493 mm, 0.400 mm pitch wafer level chip scale
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Example of WLCSP25 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Example of TSSOP20 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
DS10668 Rev 6
STM32L031x4/6
1
Introduction
Introduction
The ultra-low-power STM32L031x4/6 family includes devices in 6 different packages from
20 to 48 pins. The description below gives an overview of the complete range of peripherals
proposed in this family.
These features make the ultra-low-power STM32L031x4/6 microcontrollers suitable for a
wide range of applications:
•
Gas/water meters and industrial sensors
•
Healthcare and fitness equipment
•
Remote control and user interface
•
PC peripherals, gaming, GPS equipment
•
Alarm system, wired and wireless sensors, video intercom
This STM32L031x4/6 datasheet must be read in conjunction with the STM32L0x1 reference
manual (RM0377).
For information on the Arm® Cortex®-M0+ core please refer to the Cortex®-M0+ Technical
Reference Manual, available from the http://www.arm.com website.
Figure 1 shows the general block diagram of the device family.
DS10668 Rev 6
9/126
33
Description
2
STM32L031x4/6
Description
The access line ultra-low-power STM32L031x4/6 family incorporates the high-performance
Arm® Cortex®-M0+ 32-bit RISC core operating at a 32 MHz frequency, high-speed
embedded memories (up to 32 Kbytes of Flash program memory, 1 Kbytes of data
EEPROM and 8 Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals.
The STM32L031x4/6 devices provide high power efficiency for a wide range of
performance. It is achieved with a large choice of internal and external clock sources, an
internal voltage adaptation and several low-power modes.
The STM32L031x4/6 devices offer several analog features, one 12-bit ADC with hardware
oversampling, two ultra-low-power comparators, several timers, one low-power timer
(LPTIM), three general-purpose 16-bit timers, one RTC and one SysTick which can be used
as timebases. They also feature two watchdogs, one watchdog with independent clock and
window capability and one window watchdog based on bus clock.
Moreover, the STM32L031x4/6 devices embed standard and advanced communication
interfaces: one I2C, one SPI, one USART, and a low-power UART (LPUART).
The STM32L031x4/6 also include a real-time clock and a set of backup registers that
remain powered in Standby mode.
The ultra-low-power STM32L031x4/6 devices operate from a 1.8 to 3.6 V power supply
(down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without
BOR option. They are available in the -40 to +125 °C temperature range. A comprehensive
set of power-saving modes allows the design of low-power applications.
10/126
DS10668 Rev 6
Device overview
Table 2. Ultra-low-power STM32L031x4/x6 device features and peripheral counts
Peripheral
STM32
L031F4
STM32
L031E4
Flash (Kbytes)
STM32
L031G4
STM32
L031K4
STM32
L031C4
STM32
L031F6
16
1
RAM (Kbytes)
8
Generalpurpose
3
LPTIMER
1
DS10668 Rev 6
RTC/SYSTICK/IWDG/
WWDG
Communicati
on interfaces
2(1)(1)
I2C
1
USART
1
LPUART
1
Clocks:
HSE(4)/LSE/HSI/MSI/LSI
15
20
21(23)(3)
27(2)
38
15
1
10
Comparators
2
20
21(23)(3)
27(2)
38
32 MHz
1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option
1.65 V to 3.6 V without BOR option
Description
11/126
Operating voltage
STM32
L031C6
1/1/1/1/1
12-bit synchronized ADC
Number of channels
Max. CPU frequency
STM32
L031K6
1/1/1/1
SPI
GPIOs
STM32
L031G6
32
Data EEPROM (Kbytes)
Timers
STM32
L031E6
STM32L031x4/6
2.1
Peripheral
STM32
L031F4
STM32
L031E4
STM32
L031G4
STM32
L031C4
STM32
L031F6
STM32
L031E6
STM32
L031G6
STM32
L031K6
STM32
L031C6
Ambient temperature: –40 to +125 °C
Junction temperature: –40 to +130 °C
Operating temperatures
Packages
STM32
L031K4
TSSOP
20
WLCSP
25
LQFP32, LQFP48/
UFQFPN
UFQFPN UFQFPN
28
32
48
TSSOP
20
WLCSP
25
Description
12/126
Table 2. Ultra-low-power STM32L031x4/x6 device features and peripheral counts (continued)
LQFP32, LQFP48/
UFQFPN
UFQFPN UFQFPN
28
32
48
1. 1 SPI interface is a USART operating in SPI master mode.
2. LQFP32 has two GPIOs, less than UFQFPN32 (27).
3. 23 GPIOs are available only on STM32L031GxUxS part number.
4. HSE external quartz connexion available only on LQFP48.
DS10668 Rev 6
STM32L031x4/6
STM32L031x4/6
Description
Figure 1. STM32L031x4/6 block diagram
7HPS
VHQVRU
6:'
6:'
)/$6+
((3520
%227
&257(;0&38
)PD[0+]
$'&
$,1[
63,
0,62026,
6&.166
5$0
'%*
'0$
19,&
(;7,
$
3
%
7,0
FK
7,0
FK
%5,'*(
&203
,13,10287
&203
,13,10287
/37,0
,1,1
(75287
&5&
%5,'*(
*3,23257$
3%>@
*3,23257%
3&>@
3&
*3,23257&
3+>@
26&B,1
26&B287
&.B,1
$+%)PD[0+]
3$>@
::'*
$
3
%
*3,23257+
+6(
,&
86$57
/38$57
6&/6'$
60%$
5;7;
576'(
&76&.
5;7;
576'(
&76
+6,0
/6,
,:'*
3//
06,
7,0
FK
57&
%&.35(*
5(6(7 &/.
:.83[
26&B,1
26&B287
/6(
39'B,1
95()B287
308
1567
9''$
9''
5(*8/$725
06Y9
DS10668 Rev 6
13/126
33
Description
2.2
STM32L031x4/6
Ultra-low-power device continuum
The ultra-low-power family offers a large choice of core and features, from 8-bit proprietary
core up to Arm® Cortex®-M4, including Arm® Cortex®-M3 and Arm® Cortex®-M0+. The
STM32Lx series are the best choice to answer your needs in terms of ultra-low-power
features. The STM32 Ultra-low-power series are the best solution for applications such as
gas/water meter, keyboard/mouse or fitness and healthcare application. Several built-in
features like LCD drivers, dual-bank memory, low-power run mode, operational amplifiers,
128-bit AES, DAC, crystal-less USB and many other definitely help you building a highly
cost optimized application by reducing BOM cost. STMicroelectronics, as a reliable and
long-term manufacturer, ensures as much as possible pin-to-pin compatibility between all
STM8Lx and STM32Lx on one hand, and between all STM32Lx and STM32Fx on the other
hand. Thanks to this unprecedented scalability, your legacy application can be upgraded to
respond to the latest market feature and efficiency requirements.
14/126
DS10668 Rev 6
STM32L031x4/6
Functional overview
3
Functional overview
3.1
Low-power modes
The ultra-low-power STM32L031x4/6 supports dynamic voltage scaling to optimize its
power consumption in Run mode. The voltage from the internal low-drop regulator that
supplies the logic can be adjusted according to the system’s maximum operating frequency
and the external voltage supply.
There are three power consumption ranges:
•
Range 1 (VDD range limited to 1.71-3.6 V), with the CPU running at up to 32 MHz
•
Range 2 (full VDD range), with a maximum CPU frequency of 16 MHz
•
Range 3 (full VDD range), with a maximum CPU frequency limited to 4.2 MHz
Seven low-power modes are provided to achieve the best compromise between low-power
consumption, short startup time and available wakeup sources:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at
16 MHz is about 1 mA with all peripherals off.
•
Low-power run mode
This mode is achieved with the multispeed internal (MSI) RC oscillator set to the lowspeed clock (max 131 kHz), execution from SRAM or Flash memory, and internal
regulator in low-power mode to minimize the regulator's operating current. In Lowpower run mode, the clock frequency and the number of enabled peripherals are both
limited.
•
Low-power sleep mode
This mode is achieved by entering Sleep mode with the internal voltage regulator in
low-power mode to minimize the regulator’s operating current. In Low-power sleep
mode, both the clock frequency and the number of enabled peripherals are limited; a
typical example would be to have a timer running at 32 kHz.
When wakeup is triggered by an event or an interrupt, the system reverts to the Run
mode with the regulator on.
•
Stop mode with RTC
The Stop mode achieves the lowest power consumption while retaining the RAM and
register contents and real time clock. All clocks in the VCORE domain are stopped, the
PLL, MSI RC, HSE and HSI RC oscillators are disabled. The LSE or LSI is still running.
The voltage regulator is in the low-power mode.
Some peripherals featuring wakeup capability can enable the HSI RC during Stop
mode to detect their wakeup condition.
The device can be woken up from Stop mode by any of the EXTI line, in 3.5 µs, the
processor can serve the interrupt or resume the code. The EXTI line source can be any
GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event
DS10668 Rev 6
15/126
33
Functional overview
STM32L031x4/6
(if internal reference voltage is on), it can be the RTC alarm/tamper/timestamp/wakeup
events, the USART/I2C/LPUART/LPTIMER wakeup events.
•
Stop mode without RTC
The Stop mode achieves the lowest power consumption while retaining the RAM and
register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, HSE and
LSE crystal oscillators are disabled.
Some peripherals featuring wakeup capability can enable the HSI RC during Stop
mode to detect their wakeup condition.
The voltage regulator is in the low-power mode. The device can be woken up from Stop
mode by any of the EXTI line, in 3.5 µs, the processor can serve the interrupt or
resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the
comparator 1 event or comparator 2 event (if internal reference voltage is on). It can
also be wakened by the USART/I2C/LPUART/LPTIMER wakeup events.
•
Standby mode with RTC
The Standby mode is used to achieve the lowest power consumption and real time
clock. The internal voltage regulator is switched off so that the entire VCORE domain is
powered off. The PLL, MSI RC, HSE and HSI RC oscillators are also switched off. The
LSE or LSI is still running. After entering Standby mode, the RAM and register contents
are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI,
LSE Crystal 32 KHz oscillator, RCC_CSR register).
The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG
reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B),
RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.
•
Standby mode without RTC
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire VCORE domain is powered off. The
PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off.
After entering Standby mode, the RAM and register contents are lost except for
registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz
oscillator, RCC_CSR register).
The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising
edge on one of the three WKUP pin occurs.
Note:
16/126
The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by
entering Stop or Standby mode.
DS10668 Rev 6
STM32L031x4/6
Functional overview
Table 3. Functionalities depending on the operating power supply range
Operating power supply range(1)
Functionalities depending on the operating power
supply range
ADC operation
Dynamic voltage scaling
range
VDD = 1.65 to 1.71 V
Conversion time up to
570 ksps
Range 2 or
range 3
VDD = 1.71 to 2.0 V(2)
Conversion time up to
1.14 Msps
Range 1, range 2 or range 3
VDD = 2.0 to 2.4 V
Conversion time up to 1.14
Msps
Range 1, range 2 or range 3
VDD = 2.4 to 3.6 V
Conversion time up to 1.14
Msps
Range 1, range 2 or range 3
1. GPIO speed depends on VDD voltage range. Refer to Table 55: I/O AC characteristics for more information
about I/O speed.
2. CPU frequency changes from initial to final must respect the condition: fCPU initial 1.65 V VDD > 1.65 V
and
and
TA > −10 °C
TA > 25 °C
VDD >
2.7 V
VDD >
2.4 V
VDD >
2.0 V
VDD >
1.8 V
VDD >
1.75 V
0.5
< 0.1
NA
NA
NA
NA
NA
NA
0.22
1
0.2
< 0.1
NA
NA
NA
NA
NA
7.5
0.47
2.5
1.7
1.5
< 0.1
NA
NA
NA
NA
12.5
0.78
4
3.2
3
1
NA
NA
NA
NA
19.5
1.22
6.5
5.7
5.5
3.5
NA
NA
NA
< 0.1
39.5
2.47
13
12.2
12
10
NA
NA
NA
5
79.5
4.97
27
26.2
26
24
< 0.1
NA
NA
19
160.5
10.03
50
49.2
49
47
32
< 0.1
< 0.1
42
1. Guaranteed by design.
Table 59. ADC accuracy(1)(2)(3)
Symbol
Parameter
Conditions
Min
Typ
Max
ET
Total unadjusted error
-
2
4
EO
Offset error
-
1
2.5
EG
Gain error
-
1
2
EL
Integral linearity error
-
1.5
2.5
ED
Differential linearity error
-
1
1.5
10.2
11
11.3
12.1
-
Signal-to-noise distortion
63
69
-
Effective number of bits
ENOB
SINAD
Effective number of bits (16-bit mode
oversampling with ratio =256)(4)
1.65 V < VDDA < 3.6 V, range
1/2/3
Signal-to-noise ratio
63
69
-
SNR
Signal-to-noise ratio (16-bit mode
oversampling with ratio =256)(4)
70
76
-
THD
Total harmonic distortion
-
–85
–73
Unit
LSB
bits
dB
1. ADC DC accuracy values are measured after internal calibration.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input
pins must be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input.
It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative
current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.12 does not affect the ADC
accuracy.
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.
4. This number is obtained by the test board without additional noise, resulting in non-optimized value for oversampling mode.
DS10668 Rev 6
87/126
96
Electrical characteristics
STM32L031x4/6
Figure 29. ADC accuracy characteristics
966$
(*
([DPSOHRIDQDFWXDOWUDQVIHUFXUYH
7KHLGHDOWUDQVIHUFXUYH
(QGSRLQWFRUUHODWLRQOLQH
(7 WRWDOXQDMXVWHGHUURUPD[LPXPGHYLDWLRQ
EHWZHHQWKHDFWXDODQGLGHDOWUDQVIHUFXUYHV
(2 RIIVHWHUURUPD[LPXPGHYLDWLRQ
EHWZHHQWKHILUVWDFWXDOWUDQVLWLRQDQG
WKHILUVWLGHDORQH
(* JDLQHUURUGHYLDWLRQEHWZHHQWKHODVW
LGHDOWUDQVLWLRQDQGWKHODVWDFWXDORQH
(' GLIIHUHQWLDOOLQHDULW\HUURUPD[LPXP
GHYLDWLRQEHWZHHQDFWXDOVWHSVDQGWKHLGHDORQHV
(/ LQWHJUDOOLQHDULW\HUURUPD[LPXPGHYLDWLRQ
EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW
FRUUHODWLRQOLQH
(7
(2
(/
('
/6%,'($/
9''$
069
Figure 30. Typical connection diagram using the ADC
9''$
97
5$,1
9$,1
$,1[
&SDUDVLWLF
97
6DPSOHDQGKROG$'&
FRQYHUWHU
5$'&
ELW
FRQYHUWHU
,/Q$
&$'&
06Y9
1. Refer to Table 57: ADC characteristics for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC must be reduced.
6.3.16
Temperature sensor characteristics
Table 60. Temperature sensor calibration values
Calibration value name
88/126
Description
Memory address
TS_CAL1
TS ADC raw data acquired at
temperature of 30 °C,
VDDA= 3 V
0x1FF8 007A - 0x1FF8 007B
TS_CAL2
TS ADC raw data acquired at
temperature of 130 °C
VDDA= 3 V
0x1FF8 007E - 0x1FF8 007F
DS10668 Rev 6
STM32L031x4/6
Electrical characteristics
Table 61. Temperature sensor characteristics
Symbol
Parameter
TL(1)
VSENSE linearity with temperature
Avg_Slope
(1)
Average slope
(2)
Min
Typ
Max
Unit
-
±1
±2
°C
1.48
1.61
1.75
mV/°C
640
670
700
mV
µA
V130
Voltage at 130°C ±5°C
IDDA(TEMP)(3)
Current consumption
-
3.4
6
tSTART(3)
Startup time
-
-
10
TS_temp(4)(3)
ADC sampling time when reading the
temperature
10
-
-
µs
1. Guaranteed by characterization results.
2. Measured at VDD = 3 V ±10 mV. V130 ADC conversion result is stored in the TS_CAL2 byte.
3. Guaranteed by design.
4. Shortest sampling time can be determined in the application by multiple iterations.
6.3.17
Comparators
Table 62. Comparator 1 characteristics
Symbol
Parameter
Conditions
Min(1)
Typ
Max(1)
Unit
3.6
V
VDDA
Analog supply voltage
-
1.65
R400K
R400K value
-
-
400
-
R10K
R10K value
-
-
10
-
Comparator 1 input
voltage range
-
0.6
-
VDDA
Comparator startup time
-
-
7
10
VIN
tSTART
(2)
kΩ
V
µs
td
Propagation delay
-
-
3
10
Voffset
Comparator offset
-
-
±3
±10
mV
VDDA = 3.6 V
Comparator offset
VIN+ = 0 V
variation in worst voltage
VIN- = VREFINT
stress conditions
TA = 25 ° C
0
1.5
10
mV/1000 h
Current consumption(3)
-
160
260
nA
dVoffset/dt
ICOMP1
-
1. Guaranteed by characterization.
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference.
3. Comparator consumption only. Internal reference voltage not included.
DS10668 Rev 6
89/126
96
Electrical characteristics
STM32L031x4/6
Table 63. Comparator 2 characteristics
Symbol
VDDA
VIN
Parameter
Typ Max(1) Unit
Conditions
Min
Analog supply voltage
-
1.65
-
3.6
V
Comparator 2 input voltage
range
-
0
-
VDDA
V
Fast mode
-
15
20
Slow mode
-
20
25
tSTART
Comparator startup time
td slow
Propagation delay(2) in slow
mode
1.65 V ≤ VDDA ≤ 2.7 V
-
1.8
3.5
2.7 V ≤ VDDA ≤ 3.6 V
-
2.5
6
td fast
Propagation delay(2) in fast
mode
1.65 V ≤ VDDA ≤ 2.7 V
-
0.8
2
2.7 V ≤ VDDA ≤ 3.6 V
-
1.2
4
Voffset
Comparator offset error
-
-
±4
±20
mV
VDDA = 3.3V
TA = 0 to 50 ° C
V- =VREFINT,
3/4 VREFINT,
1/2 VREFINT,
1/4 VREFINT.
-
15
30
ppm
/°C
Fast mode
-
3.5
5
Slow mode
-
0.5
2
dThreshold/dt
ICOMP2
Threshold voltage temperature
coefficient
Current consumption(3)
µs
µA
1. Guaranteed by characterization results.
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference.
3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not
included.
6.3.18
Timer characteristics
TIM timer characteristics
The parameters given in the Table 64 are guaranteed by design.
Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 64. TIMx(1) characteristics
Symbol
tres(TIM)
fEXT
ResTIM
90/126
Parameter
Conditions
Min
Max
Unit
-
1
-
tTIMxCLK
fTIMxCLK = 32 MHz
31.25
-
ns
Timer external clock
frequency on CH1 to CH4 f
TIMxCLK = 32 MHz
0
fTIMxCLK/2
MHz
0
16
MHz
Timer resolution
-
16
bit
Timer resolution time
-
DS10668 Rev 6
STM32L031x4/6
Electrical characteristics
Table 64. TIMx(1) characteristics (continued)
Symbol
Parameter
Conditions
Min
Max
Unit
-
1
65536
tTIMxCLK
tCOUNTER
16-bit counter clock
period when internal clock
is selected (timer’s
prescaler disabled)
2048
µs
tMAX_COUNT Maximum possible count
fTIMxCLK = 32 MHz 0.0312
-
-
65536 × 65536
tTIMxCLK
fTIMxCLK = 32 MHz
-
134.2
s
1. TIMx is used as a general term to refer to the TIM2, TIM21, and TIM22 timers.
6.3.19
Communications interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
•
Standard-mode (Sm) : with a bit rate up to 100 kbit/s
•
Fast-mode (Fm) : with a bit rate up to 400 kbit/s
•
Fast-mode Plus (Fm+) : with a bit rate up to 1 Mbit/s.
The I2C timing requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to the reference manual for details). The SDA and SCL I/O requirements
are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain.
When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is
disabled, but is still present. Only FTf I/O pins support Fm+ low level output current
maximum requirement (refer to Section 6.3.13: I/O port characteristics for the I2C I/Os
characteristics).
All I2C SDA and SCL I/Os embed an analog filter (see Table 65 for the analog filter
characteristics).
The analog spike filter is compliant with I2C timings requirements only for the following
voltage ranges:
•
Fast mode Plus: 2.7 V ≤VDD ≤3.6 V and voltage scaling Range 1
•
Fast mode:
–
2 V ≤VDD ≤3.6 V and voltage scaling Range 1 or Range 2.
–
VDD < 2 V, voltage scaling Range 1 or Range 2, Cload < 200 pF.
In other ranges, the analog filter must be disabled. The digital filter can be used instead.
Note:
In Standard mode, no spike filter is required.
Table 65. I2C analog filter characteristics(1)
Symbol
Parameter
Conditions
Min
Maximum pulse width of spikes that
are suppressed by the analog filter
Range 2
Range 3
Unit
100(3)
Range 1
tAF
Max
50(2)
-
ns
-
1. Guaranteed by characterization results.
2. Spikes with widths below tAF(min) are filtered.
DS10668 Rev 6
91/126
96
Electrical characteristics
STM32L031x4/6
3. Spikes with widths above tAF(max) are not filtered
SPI characteristics
Unless otherwise specified, the parameters given in the following tables are derived from
tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 20.
Refer to Section 6.3.12: I/O current injection characteristics for more details on the
input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 66. SPI characteristics in voltage Range 1 (1)
Symbol
Parameter
Conditions
Min
Typ
-
-
Slave mode Transmitter
1.71