0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32L100RBT6

STM32L100RBT6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP64_10X10MM

  • 描述:

    IC MCU 32BIT 128KB FLASH 64LQFP

  • 数据手册
  • 价格&库存
STM32L100RBT6 数据手册
STM32L100C6 STM32L100R8 STM32L100RB Ultra-low-power 32-bit MCU ARM®-based Cortex®-M3, 128KB Flash, 10KB SRAM, 2KB EEPROM, LCD, USB, ADC, DAC Datasheet −production data Features • Ultra-low-power platform – 1.8 V to 3.6 V power supply – -40°C to 85°C temperature range – 0.3 µA Standby mode (2 wakeup pins) – 0.9 µA Standby mode + RTC – 0.57 µA Stop mode (16 wakeup lines) – 1.2 µA Stop mode + RTC – 9 µA Low-power run mode – 214 µA/MHz Run mode – 10 nA ultra-low I/O leakage – < 8 µs wakeup time ® ® LQFP64 10 x 10 mm UFQFPN48 7 x 7 mm • Memories – Up to 128 Kbytes of Flash memory with ECC – Up to 10 Kbytes of RAM – Up to 2 Kbytes of true EEPROM with ECC – 20-byte backup register • LCD Driver for up to 8x28 segments • Core: 32-bit ARM Cortex -M3 CPU – From 32 kHz up to 32 MHz max – 1.25 DMIPS/MHz (Dhrystone 2.1) – Memory protection unit • Analog peripherals – 12-bit ADC 1 Msps up to 20 channels – 12-bit DAC 2 channels with output buffers – Two ultra-low-power comparators • Reset and supply management – Ultra-safe, low-power BOR (brownout reset) with 5 selectable thresholds – Ultra-low-power POR/PDR – Programmable voltage detector (PVD) • Seven DMA controller channels • Eight communication interface peripherals – One USB 2.0 – Three USARTs (ISO 7816, IrDA) – Two SPIs (16 Mbit/s) – Two I2Cs (SMBus/PMBus) • Clock sources – 1 to 24 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – High-speed internal 16 MHz – Internal low-power 37 kHz RC – Internal multispeed low-power 65 kHz to 4.2 MHz – PLL for CPU clock and USB (48 MHz) • Pre-programmed bootloader – USART supported • Ten timers: – Six 16-bit timers with up to 4 IC/OC/PWM channels – Two 16-bit basic timers – Two watchdog timers (independent and window) • CRC calculation unit • All packages ECOPACK®2 • Development support – Serial wire debug supported – JTAG supported • Up to 51 fast I/Os (42 I/Os 5V tolerant), all mappable on 16 external interrupt vectors August 2017 This is information on a product in full production. DocID024295 Rev 6 1/103 www.st.com Contents STM32L100C6 STM32L100R8/RB Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Shared peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 Common system strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.4 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 ARM® Cortex®-M3 core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.4 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 22 3.6 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.7 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.8 DMA (direct memory access) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.9 LCD (liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.10 ADC (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.10.1 2/103 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.11 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.12 Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 25 3.13 Routing interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.14 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.14.1 General-purpose timers (TIM2, TIM3, TIM4, TIM9, TIM10 and TIM11) . 26 3.14.2 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.14.3 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB 3.15 Contents 3.14.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.14.5 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.15.1 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.15.2 Universal synchronous/asynchronous receiver transmitter (USART) . . 27 3.15.3 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.15.4 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.16 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 28 3.17 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.1.7 Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.1.8 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 45 6.3.3 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.3.5 Wakeup time from Low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 DocID024295 Rev 6 3/103 4 Contents 7 STM32L100C6 STM32L100R8/RB 6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.3.15 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.16 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.17 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.18 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.3.19 Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.20 LCD controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.1 LQFP64 10 x 10 mm, 64-pin low-profile quad flat package information . . 91 7.2 UFQFPN48 7 x 7 mm, 0.5 mm pitch, package information . . . . . . . . . . . 94 7.3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.3.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4/103 DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Ultra-low-power STM32L100C6 and STM32L100R8/RB device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 14 CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 15 Working mode-dependent functionalities (from Run/active down to standby) . . . . . . . . . . 16 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 STM32L100C6 and STM32L100R8/RB pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Alternate function input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 45 Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Current consumption in Run mode, code with data processing running from Flash. . . . . . 49 Current consumption in Run mode, code with data processing running from RAM . . . . . . 50 Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Current consumption in Low power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Current consumption in Low power sleep mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 54 Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 55 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Flash memory, data EEPROM endurance and data retention . . . . . . . . . . . . . . . . . . . . . . 67 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 SCL frequency (fPCLK1= 32 MHz, VDD = VDD_I2C = 3.3 V). . . . . . . . . . . . . . . . . . . . . . . . 77 DocID024295 Rev 6 5/103 6 List of tables Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. 6/103 STM32L100C6 STM32L100R8/RB SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 USB: full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 ADC clock frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Maximum source impedance RAIN max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanical data. . . . . . . . . . . 91 UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . 95 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Ultra-low-power STM32L100C6 and STM32L100R8/RB block diagram . . . . . . . . . . . . . . 12 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 STM32L100C6 and STM32L100R8/RB LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . 29 STM32L100C6 and STM32L100R8/RB UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . 30 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Maximum dynamic current consumption on VDDA supply pin during ADC conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 LQFP64 10 x 10 mm, 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 91 LQFP64 10 x 10 mm, 64-pin low-profile quad flat package recommended footprint . . . . . 92 LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example . . . . . . . . . . 93 UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 UFQFPN48 7 x 7 mm, 0.5 mm pitch, package recommended footprint . . . . . . . . . . . . . . . 95 UFQFPN48 7 x 7 mm, 0.5 mm pitch, package top view example . . . . . . . . . . . . . . . . . . . 96 Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 DocID024295 Rev 6 7/103 7 Introduction 1 STM32L100C6 STM32L100R8/RB Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32L100C6 and STM32L100R8/B ultra-low-power ARM® Cortex®-M3 based microcontrollers product line. The ultra-low-power STM32L100C6 and STM32L100R8/RB microcontroller family includes devices in 2 different package types: 48 or 64 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. These features make the ultra-low-power STM32L100C6 and STM32L100R8/RB microcontroller family suitable for a wide range of applications: • Medical and handheld equipment • Application control and user interface • PC peripherals, gaming, GPS and sport equipment • Alarm systems, Wired and wireless sensors, Video intercom • Utility metering This STM32L100C6 and STM32L100R8/B datasheet should be read in conjunction with the STM32L1xxxx reference manual (RM0038). The document "Getting started with STM32L1xxxx hardware development” AN3216 gives a hardware implementation overview. Both documents are available from the STMicroelectronics website www.st.com. For information on the ARM® Cortex®-M3 core please refer to the Cortex®-M3 Technical Reference Manual, available from the ARM website. Figure 1 shows the general block diagram of the device family. Caution: This datasheet does not apply to: – STM32L100C6-A – STM32L100R8-A – STM32L100RB-A covered by a separate datasheet. 8/103 DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB 2 Description Description The ultra-low-power STM32L100C6 and STM32L100R8/RB devices incorporate the connectivity power of the universal serial bus (USB) with the high-performance ARM® Cortex®-M3 32-bit RISC core operating at a frequency of 32 MHz (33.3 DMIPS), a memory protection unit (MPU), high-speed embedded memories (Flash memory up to 128 Kbytes and RAM up to 10 Kbytes) and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All the devices offer a 12-bit ADC, 2 DACs and 2 ultra-low-power comparators, six generalpurpose 16-bit timers and two basic timers, which can be used as time bases. Moreover, the STM32L100C6 and STM32L100R8/RB devices contain standard and advanced communication interfaces: up to two I2Cs and SPIs, three USARTs and a USB. They also include a real-time clock with sub-second counting and a set of backup registers that remain powered in Standby mode. Finally, the integrated LCD controller has a built-in LCD voltage generator that allows to drive up to 8 multiplexed LCDs with contrast independent of the supply voltage. The ultra-low-power STM32L100C6 and STM32L100R8/RB devices operate from a 1.8 to 3.6 V power supply. They are available in the -40 to +85 °C temperature range. A comprehensive set of power-saving modes allows the design of low-power applications. DocID024295 Rev 6 9/103 39 Description 2.1 STM32L100C6 STM32L100R8/RB Device overview Table 1. Ultra-low-power STM32L100C6 and STM32L100R8/RB device features and peripheral counts Peripheral Flash (Kbytes) STM32L100C6 32 Data EEPROM (Kbytes) RAM (Kbytes) Timers Communication interfaces Generalpurpose 6 Basic 2 SPI 2 I2C 2 USART 3 USB 1 12-bit synchronized ADC Number of channels 10 1 14 channels 1 20 channels 2 2 4x32 8x28 4x18 2 Max. CPU frequency 32 MHz Operating voltage 10/103 8 51 Comparator Operating temperatures 128 37 12-bit DAC Number of channels LCD COM x SEG 64 2 4 GPIOs Packages STM32L100R8/B 1.8 V to 3.6 V Ambient temperatures: –40 to +85 °C Junction temperature: -40 to +105°C UFQFPN48 DocID024295 Rev 6 LQFP64 STM32L100C6 STM32L100R8/RB 2.2 Description Ultra-low-power device continuum The ultra-low-power family offers a large choice of cores and features. From a proprietary 8bit core up to the Cortex-M3, including the Cortex-M0+, the STM8Lx and STM32Lx series offer the best range of choices to meet your requirements in terms of ultra-low-power features. The STM32 Ultra-low-power series is an ideal fit for applications like gas/water meters, keyboard/mouse, or wearable devices for fitness and healthcare. Numerous built-in features like LCD drivers, dual-bank memory, low-power Run mode, op-amp, AES-128bit, DAC, crystal-less USB and many others, allow to build highly cost-optimized applications by reducing the BOM. Note: STMicroelectronics as a reliable and long-term manufacturer ensures as much as possible the pin-to-pin compatibility between any STM8Lx and STM32Lx devices and between any of the STM32Lx and STM32Fx series. Thanks to this unprecedented scalability, your existing applications can be upgraded to respond to the latest market features and efficiency demand. 2.2.1 Performance All families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM Cortex-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios. This allows the ultra-Low-power performance to range from 5 up to 33.3 DMIPs. 2.2.2 Shared peripherals STM8L15xxx and STM32L1xxxx share identical peripherals which ensure a very easy migration from one family to another: 2.2.3 • Analog peripherals: ADC, DAC and comparators • Digital peripherals: RTC and some communication interfaces Common system strategy To offer flexibility and optimize performance, the STM8L15xxx and STM32L1xxxx families use a common architecture: 2.2.4 • Common power supply range from 1.8 V to 3.6 V • Architecture optimized to reach ultra-low consumption both in low-power modes and Run mode • Fast startup strategy from low-power modes • Flexible system clock • Ultra-safe reset: same reset strategy including power-on reset, power-down reset, brownout reset and programmable voltage detector. Features ST ultra-low-power continuum also lies in feature compatibility: • More than 10 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm • Memory density ranging from 4 to 512 Kbytes DocID024295 Rev 6 11/103 39 Functional overview 3 STM32L100C6 STM32L100R8/RB Functional overview Figure 1 shows the block diagram. Figure 1. Ultra-low-power STM32L100C6 and STM32L100R8/RB block diagram 6 $$ *4!'37 6#/2% PBUS 6$$6TO6 )ODVK REO ,QWHUIDFH &RUWH[0&38 )BUS &MAX-(Z $BUS -05 3YSTEM .6)# %XV0DWUL[ .*4234 *4$) *4#+37#,+ *4-337$!4 *4$/ AS!& !("0#,+ !0"0#,+ (#,+ &#,+ CHANNELS 62%&/54054 %2595(),17 6$$! 633! 06$ #OMP '0)/" )7$' 6$$! 3TANDBYINTERFACE 84! ,  K(Z 24# !75 "ACKUP REGISTER /3#?). /3#?/54 24#?!&). 24#?/54 24#?43 24#?4!-0 "ACKUPINTERFACE 9/&' '0)/! 0";= /3#?). /3#?/54 MANAGEMENT 2#,3 )N T 3RZHUXS 3RZHUGRZQ 0!;= 84!,/3#  -(Z 0,, CLOCK 2#-3 0OWERRESET #OMP #/-0?). ). 6$$! 2#(3 $+%)PD[ 0+] 6$$! 3UPPLY MONITORING 6 33 +"&LASH +"DATA%%02/- 5$0 .% '0$-! .234 0/7%2 6/,42%' /&'VWHSXS CONVERTER 6,#$6TO6 0#;= '0)/# 0$;= '0)/$ 4)- #HANNELS 0(;= '0)/( 4)- #HANNELS 4)- #HANNELS $+%" $3% -/3) -)3/ 3#+ .33AS!& 28 48 #43 243 3MART#ARDAS!& 30)  53!24 6$$! !& $3%)PD[ 0+] %84)4 7+50  BIT!$# 4EMPSENSOR )& $3%)PD[ 0+] !& $+% !("  $3% 86%5$0% 53!24 28 48 #43 243 3MART#ARDAS!& 53!24 28 48 #43 243 3MART#ARDAS!& 30) ,& ,& 86%)6GHYLFH 77$' ,#$XX 'ENERALPURPOSE TIMERS #HANNELS 4)- #HANNEL 4)- #HANNEL 4)- 53"?$0 53"?$3%'X #/-X  BIT $!# $!#?/54AS !&  BIT $!# $!#?/54AS !& )& )& 4)- 3#, 3$! AS!& 3#, 3$! 3-"US 0-"US AS!& 6$$! "!3)#4)-%23 4)- -/3) -)3/ 3#+ .33 !S!& 06Y9 1. AF = alternate function on I/O port pin. 12/103 DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB 3.1 Functional overview Low-power modes The ultra-low-power STM32L100C6 and STM32L100R8/RB devices support dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system’s maximum operating frequency and the external voltage supply: • In Range 1 (VDD range limited to 2.0-3.6 V), the CPU runs at up to 32 MHz (refer to Table 16 for consumption). • In Range 2 (full VDD range), the CPU runs at up to 16 MHz (refer to Table 16 for consumption) • In Range 3 (full VDD range), the CPU runs at up to 4 MHz (generated only with the multispeed internal RC oscillator clock source). Refer to Table 16 for consumption. Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Sleep mode power consumption: refer to Table 18. • Low-power Run mode This mode is achieved with the multispeed internal (MSI) RC oscillator set to the MSI range 0 or MSI range 1 clock range (maximum 131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In the low-power Run mode, the clock frequency and the number of enabled peripherals are both limited. Low-power Run mode consumption: refer to Table 19. • Low-power Sleep mode This mode is achieved by entering the Sleep mode with the internal voltage regulator in low-power mode to minimize the regulator’s operating current. In the low-power Sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz. When wakeup is triggered by an event or an interrupt, the system reverts to the run mode with the regulator on. Low-power Sleep mode consumption: refer to Table 20. • Stop mode with RTC Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the VCORE domain are stopped, the PLL, MSI RC, HSI RC and HSE crystal oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on), it can be the RTC alarm(s), the USB wakeup, the RTC tamper events, the RTC timestamp event or the RTC wakeup. • Stop mode without RTC Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, LSE and HSE crystal oscillators are disabled. The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI DocID024295 Rev 6 13/103 39 Functional overview STM32L100C6 STM32L100R8/RB line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB wakeup. Stop mode consumption: refer to Table 21. • Standby mode with RTC Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire VCORE domain is powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR). The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the two WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs. • Standby mode without RTC Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire VCORE domain is powered off. The PLL, MSI, RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR). The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising edge on one of the two WKUP pin occurs. Standby mode consumption: refer to Table 22. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering the Stop or Standby mode. Table 2. Functionalities depending on the operating power supply range Functionalities depending on the operating power supply range(1) Operating power supply range DAC and ADC operation USB Dynamic voltage scaling range VDD = 1.8 to 2.0 V Conversion time up to 500 Ksps Not functional Range 2 or Range 3 VDD = 2.0 to 2.4 V Conversion time up to 500 Ksps Functional(2) Range 1, Range 2 or Range 3 VDD = 2.4 to 3.6 V Conversion time up to 1 Msps Functional(2) Range 1, Range 2 or Range 3 1. The GPIO speed also depends from VDD voltage and the user has to refer to Table 43: I/O AC characteristics for more information about I/O speed. 2. Should be USB-compliant from I/O voltage standpoint, the minimum VDD is 3.0 V. 14/103 DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB Functional overview Table 3. CPU frequency range depending on dynamic voltage scaling CPU frequency range Dynamic voltage scaling range 16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws) Range 1 8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws) Range 2 2.1 MHz to 4.2 MHz (1ws) 32 kHz to 2.1 MHz (0ws) Range 3 DocID024295 Rev 6 15/103 39 Functional overview STM32L100C6 STM32L100R8/RB Table 4. Working mode-dependent functionalities (from Run/active down to standby) Standby Run/Active Sleep CPU Y - Y - - - - - Flash Y Y Y - - - - - RAM Y Y Y Y Y - - - Backup Registers Y Y Y Y Y - Y - EEPROM Y Y Y Y Y - - - Brown-out reset (BOR) Y Y Y Y Y Y Y - DMA Y Y Y Y - - - - Programmable Voltage Detector (PVD) Y Y Y Y Y Y Y - Power On Reset (POR) Y Y Y Y Y Y Y - Power Down Rest (PDR) Y Y Y Y Y - Y - High Speed Internal (HSI) Y Y - - - - - - High Speed External (HSE) Y Y - - - - - - Low Speed Internal (LSI) Y Y Y Y Y - Y - Low Speed External (LSE) Y Y Y Y Y - Y - Multi-Speed Internal (MSI) Y Y Y Y - - - - Inter-Connect Controller Y Y Y Y - - - - RTC Y Y Y Y Y Y Y - RTC Tamper Y Y Y Y Y Y Y Y Auto Wakeup (AWU) Y Y Y Y Y Y Y Y LCD Y Y Y Y Y - - - USB Y Y - - - Y - - - - Ips Lowpower Sleep Stop Lowpower Run Wakeup capability Wakeup capability USART Y Y Y Y Y (1) SPI Y Y Y Y - - - - I2C Y Y - - - (1) - - ADC Y Y - - - - - - 16/103 DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB Functional overview Table 4. Working mode-dependent functionalities (from Run/active down to standby) (continued) Standby Run/Active Sleep DAC Y Y Y Y Y - - - Comparators Y Y Y Y Y Y - - 16-bit Timers Y Y Y Y - - - - IWDG Y Y Y Y Y Y Y Y WWDG Y Y Y Y - - - - Systick Timer Y Y Y Y - - - - GPIOs Y Y Y Y Y Y - 2 pins 0 µs 0.4 µs 3 µs 46 µs Ips Wakeup time to Run mode Lowpower Sleep Stop Lowpower Run Wakeup capability < 8 µs Wakeup capability 58 µs 0.65 µA (No 0.3 µA (No RTC) RTC) VDD=1.8 V VDD=1.8 V Consumption VDD=1.8V to 3.6V (Typ) Down to 214 µA/MHz (from Flash) Down to 50 µA/MHz (from Flash) Down to 9 µA 1.4 µA (with 1 µA (with RTC) RTC) V =1.8 V VDD=1.8 V DD Down to 4.4 µA 0.3 µA (No RTC) 0.65 µA (No RTC) VDD=3.0 V VDD=3.0 V 1.3 µA (with 1.6 µA (with RTC) VDD=3.0 V RTC) VDD=3.0 V 1. The startup on communication line wakes the CPU which was made possible by an EXTI, this induces a delay before entering run mode. 3.2 ARM® Cortex®-M3 core with MPU The ARM® Cortex®-M3 processor is the industry leading processor for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The ARM® Cortex®-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The memory protection unit (MPU) improves system reliability by defining the memory attributes (such as read/write access permissions) for different memory regions. It provides up to eight different regions and an optional predefined background region. Owing to its embedded ARM core, the STM32L100C6 and STM32L100R8/RB devices are compatible with all ARM tools and software. DocID024295 Rev 6 17/103 39 Functional overview STM32L100C6 STM32L100R8/RB Nested vectored interrupt controller (NVIC) The ultra-low-power STM32L100C6 and STM32L100R8/RB devices embed a nested vectored interrupt controller able to handle up to 45 maskable interrupt channels (not including the 16 interrupt lines of Cortex-M3) and 16 priority levels. • Closely coupled NVIC gives low-latency interrupt processing • Interrupt entry vector table address passed directly to the core • Closely coupled NVIC core interface • Allows early processing of interrupts • Processing of late arriving, higher-priority interrupts • Support for tail-chaining • Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. 3.3 Reset and supply management 3.3.1 Power supply schemes 3.3.2 • VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through VDD pins. • VSSA, VDDA = 1.8 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively. Power supply supervisor The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry. BOR is activated at power-on and the device operates between 1.8 V and 3.6 V. After the VDD threshold is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently. BOR ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. 18/103 DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB Functional overview Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (VREFINT) in Stop mode. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external reset circuit. The device features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 3.3.3 Voltage regulator The regulator has three operation modes: main (MR), low-power (LPR) and power down. 3.3.4 • MR is used in Run mode (nominal regulation) • LPR is used in the Low-power run, Low-power sleep and Stop modes • Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32K osc, RCC_CSR). Boot modes At startup, boot pins are used to select one of three boot options: • Boot from Flash memory • Boot from System Memory • Boot from embedded RAM The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1 or USART2. See the application note “STM32 microcontroller system memory boot mode” (AN2606) for details. The HSI oscillator is to be calibrated to +/-1% before using of the bootloader. DocID024295 Rev 6 19/103 39 Functional overview 3.4 STM32L100C6 STM32L100R8/RB Clock management The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features: • Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler • Safe clock switching: clock sources can be changed safely on the fly in run mode through a configuration register. • Clock management: to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. • Master clock source: three different clock sources can be used to drive the master clock: • – 1-24 MHz high-speed external crystal (HSE), that can supply a PLL – 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLL – Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz) with a consumption proportional to speed, down to 750 nA typical. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy. Auxiliary clock source: two ultra-low-power clock sources that can be used to drive the LCD controller and the real-time clock: – 32.768 kHz low-speed external crystal (LSE) – 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision. • RTC and LCD clock sources: the LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever the system clock. • USB clock source: the embedded PLL has a dedicated 48 MHz clock output to supply the USB interface. • Startup clock: after reset, the microcontroller restarts by default with an internal 2.1 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. • Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled. • Clock-out capability (MCO: microcontroller clock output): it outputs one of the internal clocks for external use by the application. Several prescalers allow the configuration of the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See Figure 2 for details on the clock tree. 20/103 DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB Functional overview Figure 2. Clock tree -3)2# -3) !$##,+ TO!$# 0ERIPHERALCLOCK ENABLE -(Z (3)2# (3) -(Z 53"#,+ TO53"INTERFACE 0,,6#/ 0,,32# /3#?/54 /3#?).  -(Z 0,,-5, 0,,$)6 X X X X X X X X X    37 (3) 0,,#,+ 393#,+  -(Z MAX (3% (3%/3# #33 (#,+ TO!("BUS CORE MEMORYAND$-! -(ZMAX  !(" 0RESCALER   #LOCK %NABLE !0" 0RESCALER      TO#ORTEX3YSTEMTIMER &#,+#ORTEX FREERUNNINGCLOCK -(ZMAX 0#,+ TO!0" PERIPHERALS 0ERIPHERAL#LOCK %NABLE )F!0"PRESCALER X ELSEX TO4)-   AND 4)-X#,+ 0ERIPHERAL#LOCK %NABLE !0" 0RESCALER      -(ZMAX 0ERIPHERAL#LOCK %NABLE )F!0"PRESCALER X ELSEX TO 4IMER  %42     /3#?). /3#?/54 0#,+ PERIPHERALSTO!0" TO4)-  AND 4)-X#,+ 0ERIPHERAL#LOCK %NABLE TO24# ,3% ,3%/3# K(Z 24##,+ TO,#$ 24#3%,;= ,3)2# K(Z -#/ ,3) TO)NDEPENDENT7ATCHDOG)7$' )7$'#,+ 393#,+ (3) -3) (3% 0,,#,+ ,3) ,3%      ,EGEND (3%(IGH SPEEDEXTERNALCLOCKSIGNAL (3) (IGH SPEEDINTERNALCLOCKSIGNAL ,3),OW SPEEDINTERNALCLOCKSIGNAL ,3%,OW SPEEDEXTERNALCLOCKSIGNAL -3)-ULTISPEEDINTERNALCLOCKSIGNAL -#/3%, AIC DocID024295 Rev 6 21/103 39 Functional overview 3.5 STM32L100C6 STM32L100R8/RB Low-power real-time clock and backup registers The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the sub-second, second, minute, hour (12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are made automatically. The RTC provides two programmable alarms and programmable periodic interrupts with wakeup from Stop and Standby modes. The programmable wakeup time ranges from 120 µs to 36 hours. The RTC can be calibrated with an external 512 Hz output, and a digital compensation circuit helps reduce drift due to crystal deviation. The RTC can also be automatically corrected with a 50/60Hz stable power line. The RTC calendar can be updated on the fly down to sub second precision, which enables network system synchronization. A time stamp can record an external event occurrence, and generates an interrupt. There are five 32-bit backup registers provided to store 20 bytes of user application data. They are cleared in case of tamper detection. Three pins can be used to detect tamper events. A change on one of these pins can reset backup register and generate an interrupt. To prevent false tamper event, like ESD event, these three tamper inputs can be digitally filtered. 3.6 GPIOs (general-purpose inputs/outputs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated AFIO registers. All GPIOs are high current capable. The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to the AHB with a toggling speed of up to 16 MHz. External interrupt/event controller (EXTI) The external interrupt/event controller consists of 23 edge detector lines used to generate interrupt/event requests. Each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 51 GPIOs can be connected to the 16 external interrupt lines. The 7 other lines are connected to RTC, PVD, USB or Comparator events. 22/103 DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB 3.7 Functional overview Memories The STM32L100C6 and STM32L100R8/RB devices have the following features: • Up to 10 Kbytes of embedded RAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses). • The non-volatile memory is divided into three arrays: – 32, 64 or 128 Kbytes of embedded Flash program memory – 2 Kbytes of data EEPROM – Options bytes The options bytes are used to write-protect the memory (with 4 Kbytes granularity) and/or readout-protect the whole memory with the following options: – Level 0: no readout protection – Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected – Level 2: chip readout protection, debug features (Cortex-M3 JTAG and serial wire) and boot in RAM selection disabled (JTAG fuse) The whole non-volatile memory embeds the error correction code (ECC) feature. 3.8 DMA (direct memory access) The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose timers and ADC. 3.9 LCD (liquid crystal display) The LCD drives up to 8 common terminals and 32 segment terminals to drive up to 224 pixels. • Internal step-up converter to guarantee functionality and contrast control irrespective of VDD. This converter can be deactivated, in which case the VLCD pin is used to provide the voltage to the LCD • Supports static, 1/2, 1/3, 1/4 and 1/8 duty • Supports static, 1/2, 1/3 and 1/4 bias • Phase inversion to reduce power consumption and EMI • Up to 8 pixels can be programmed to blink • Unneeded segments and common pins can be used as general I/O pins • LCD RAM can be updated at any time owing to a double-buffer • The LCD controller can operate in Stop mode DocID024295 Rev 6 23/103 39 Functional overview 3.10 STM32L100C6 STM32L100R8/RB ADC (analog-to-digital converter) A 12-bit analog-to-digital converters is embedded into STM32L100C6 and STM32L100R8/RB devices with up to 20 external channels, performing conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start trigger and injection trigger, to allow the application to synchronize A/D conversions and timers. An injection mode allows high priority conversions to be done by interrupting a scan mode which runs in as a background task. The ADC includes a specific low-power mode. The converter is able to operate at maximum speed even if the CPU is operating at a very low frequency and has an auto-shutdown function. The ADC’s runtime and analog front-end current consumption are thus minimized whatever the MCU operating mode. 3.10.1 Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC_IN17 input channel. It enables accurate monitoring of the VDD value. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode see Table 15: Embedded internal reference voltage. 3.11 DAC (digital-to-analog converter) The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration. This dual digital Interface supports the following features: • two DAC converters: one for each output channel • left or right data alignment in 12-bit mode • synchronized update capability • noise-wave generation • triangular-wave generation • dual DAC channels’ independent or simultaneous conversions • DMA capability for each channel (including the underrun interrupt) • external triggers for conversion Eight DAC trigger inputs are used in the STM32L100C6 and STM32L100R8/RB devices. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels. 24/103 DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB 3.12 Functional overview Ultra-low-power comparators and reference voltage The STM32L100C6 and STM32L100R8/RB devices embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O). • one comparator with fixed threshold • one comparator with rail-to-rail inputs, fast or slow mode. The threshold can be one of the following: – DAC output – External I/O – Internal reference voltage (VREFINT) or VREFINT submultiple (1/4, 1/2, 3/4) Both comparators can wake up from Stop mode, and be combined into a window comparator. The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 µA typical). 3.13 Routing interface This interface controls the internal routing of I/Os to TIM2, TIM3, TIM4 and to the comparator and reference voltage output. 3.14 Timers and watchdogs The ultra-low-power STM32L100C6 and STM32L100R8/RB devices include six generalpurpose timers, two basic timers and two watchdog timers. Table 5 compares the features of the general-purpose and basic timers. Table 5. Timer feature comparison Timer Counter resolution Counter type Prescaler factor DMA request Capture/compare Complementary generation channels outputs TIM2, TIM3, TIM4 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 No TIM9 16-bit Up, down, up/down Any integer between 1 and 65536 No 2 No TIM10, TIM11 16-bit Up Any integer between 1 and 65536 No 1 No TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No DocID024295 Rev 6 25/103 39 Functional overview 3.14.1 STM32L100C6 STM32L100R8/RB General-purpose timers (TIM2, TIM3, TIM4, TIM9, TIM10 and TIM11) There are six synchronizable general-purpose timers embedded in the STM32L100C6 and STM32L100R8/RB devices (see Table 5 for differences). TIM2, TIM3, TIM4 These timers are based on a 16-bit auto-reload up/down-counter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or onepulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages. The TIM2, TIM3, TIM4 general-purpose timers can work together or with the TIM10, TIM11 and TIM9 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. TIM2, TIM3, TIM4 all have independent DMA request generation. These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. TIM10, TIM11 and TIM9 TIM10 and TIM11 are based on a 16-bit auto-reload upcounter. TIM9 is based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4 full-featured general-purpose timers. They can also be used as simple time bases and be clocked by the LSE clock source (32.768 kHz) to provide time bases independent from the main CPU clock. 3.14.2 Basic timers (TIM6 and TIM7) These timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit time bases. 3.14.3 SysTick timer This timer is dedicated to the OS, but could also be used as a standard downcounter. It is based on a 24-bit down-counter with autoreload capability and a programmable clock source. It features a maskable system interrupt generation when the counter reaches 0. 3.14.4 Independent watchdog (IWDG) The independent watchdog is based on a 12-bit down-counter and 8-bit prescaler. It is clocked from an independent 37 kHz internal RC and, as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode. 26/103 DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB 3.14.5 Functional overview Window watchdog (WWDG) The window watchdog is based on a 7-bit down-counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.15 Communication interfaces 3.15.1 I²C bus Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes. They support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master mode. A hardware CRC generation/verification is embedded. They can be served by DMA and they support SM Bus 2.0/PM Bus. 3.15.2 Universal synchronous/asynchronous receiver transmitter (USART) All USART interfaces are able to communicate at speeds of up to 4 Mbit/s. They provide hardware management of the CTS and RTS signals and are ISO 7816 compliant. They support IrDA SIR ENDEC and have LIN Master/Slave capability. All USART interfaces can be served by the DMA controller. 3.15.3 Serial peripheral interface (SPI) Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. Both SPIs can be served by the DMA controller. 3.15.4 Universal serial bus (USB) The STM32L100C6 and STM32L100R8/RB devices embed a USB device peripheral compatible with the USB full speed 12 Mbit/s. The USB interface implements a full speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and supports suspend/resume. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator). DocID024295 Rev 6 27/103 39 Functional overview 3.16 STM32L100C6 STM32L100R8/RB CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 3.17 Development support Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG JTMS and JTCK pins are shared with SWDAT and SWCLK, respectively, and a specific sequence on the JTMS pin is used to switch between JTAG-DP and SW-DP. The JTAG port can be permanently disabled with a JTAG fuse. 28/103 DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB Pin descriptions 3$ 3$ 3& 3& 3& 3' 3% 3% 3% 3% 3% %227 3% 3% 966B 9''B Figure 3. STM32L100C6 and STM32L100R8/RB LQFP64 pinout                           9''B 3&:.83   966B 3&26&B,1   3$ 3&26&B287   3$ 3+26&B,1   3$ 3+26&B287   3$ 1567   3$ 3&   3$ 3&   3& 3&   3& 3&    3& 966$    3& 9''$   3% 3$:.83   3% 3$   3% 3$                           3% 966B 3% 3% 3% 3% 3% 3& 3& 3$ 3$ 3$ 3$ 9''B 3$ /4)3 9''B 9/&' 966B 4 Pin descriptions DLG 1. This figure shows the package top view. DocID024295 Rev 6 29/103 39 Pin descriptions STM32L100C6 STM32L100R8/RB 0!    6$$? 0# 7+50   633? 0# /3#?).   0! 0# /3#?/54   0! 0( /3#?).   0! 0( /3#?/54   0! .234   0! 633!   0! 6$$!   0" 0! 7+50   0" 0!   0!             0" 0" 633? 0! 0" 0" 0" 0"  0"  0"  0"  0"  0!  0" "//4 0"  0! 0"  0! 633?   0!  6,#$ 0! 6$$? Figure 4. STM32L100C6 and STM32L100R8/RB UFQFPN48 pinout   6$$? 0" 5&1&0. AID 1. This figure shows the package top view. 30/103 DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB Pin descriptions Table 6. Legend/abbreviations used in the pinout table Name Pin name Pin type I/O structure Notes Abbreviation Definition Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O TC Standard 3.3 V I/O B Dedicated BOOT0 pin RST Bidirectional reset pin with embedded weak pull-up resistor Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset Alternate Functions selected through GPIOx_AFR registers functions Pin functions Additional Functions directly selected/enabled through peripheral registers functions DocID024295 Rev 6 31/103 39 Pin descriptions STM32L100C6 STM32L100R8/RB Table 7. STM32L100C6 and STM32L100R8/RB pin definitions Pins LQFP64 UFQFPN48 Pin type(1) I/O structure Pin functions Main function(2) (after reset) 1 1 VLCD S - VLCD - - 2 2 PC13-WKUP2 I/O FT PC13 - RTC_TAMP1/ RTC_TS/ RTC_OUT/WKUP2 3 3 PC14OSC32_IN(3) I/O TC PC14 - OSC32_IN 4 4 I/O TC PC15 - OSC32_OUT 5 5 PH0-OSC_IN(4) I/O TC PH0 - OSC_IN 6 6 PH1OSC_OUT TC PH1 - OSC_OUT 7 7 NRST NRST - - 8 - PC0 I/O FT PC0 LCD_SEG18 ADC_IN10/ COMP1_INP 9 - PC1 I/O FT PC1 LCD_SEG19 ADC_IN11/ COMP1_INP 10 - PC2 I/O FT PC2 LCD_SEG20 ADC_IN12/ COMP1_INP 11 - PC3 I/O TC PC3 LCD_SEG21 ADC_IN13/ COMP1_INP 12 8 VSSA S - VSSA - - 13 9 VDDA S - VDDA - - 14 10 PA0-WKUP1 I/O FT PA0 USART2_CTS/TIM2_CH1_ETR WKUP1/ADC_IN0/ COMP1_INP 15 11 PA1 I/O FT PA1 USART2_RTS/TIM2_CH2/ LCD_SEG0 ADC_IN1/ COMP1_INP 16 12 PA2 I/O FT PA2 USART2_TX/TIM2_CH3/TIM9_CH1 /LCD_SEG1 ADC_IN2/ COMP1_INP 17 13 PA3 I/O TC PA3 USART2_RX/TIM2_CH4/ TIM9_CH2/LCD_SEG2 ADC_IN3/ COMP1_INP 18 - VSS_4 S - VSS_4 - - 19 - VDD_4 S - VDD_4 - - 32/103 Pin name PC15OSC32_OUT (4) I/O I/O RST Alternate functions Additional functions DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB Pin descriptions Table 7. STM32L100C6 and STM32L100R8/RB pin definitions (continued) Pins LQFP64 UFQFPN48 Pin type(1) I/O structure Pin functions Main function(2) (after reset) 20 14 PA4 I/O TC PA4 SPI1_NSS/USART2_CK ADC_IN4/ DAC_OUT1/ COMP1_INP 21 15 PA5 I/O TC PA5 SPI1_SCK/TIM2_CH1_ETR ADC_IN5/ DAC_OUT2/ COMP1_INP 22 16 PA6 I/O FT PA6 SPI1_MISO/TIM3_CH1/ LCD_SEG3/TIM10_CH1 ADC_IN6/ COMP1_INP 23 17 PA7 I/O FT PA7 SPI1_MOSI/TIM3_CH2/ LCD_SEG4/TIM11_CH1 ADC_IN7/ COMP1_INP 24 - PC4 I/O FT PC4 LCD_SEG22 ADC_IN14/ COMP1_INP 25 - PC5 I/O FT PC5 LCD_SEG23 ADC_IN15/ COMP1_INP 26 18 PB0 I/O TC PB0 TIM3_CH3/LCD_SEG5 ADC_IN8/ COMP1_INP/ VREF_OUT 27 19 PB1 I/O FT PB1 TIM3_CH4/LCD_SEG6 ADC_IN9/ COMP1_INP/ VREF_OUT 28 20 PB2 I/O FT PB2/BOOT1 BOOT1 - 29 21 PB10 I/O FT PB10 I2C2_SCL/USART3_TX/TIM2_CH3/ LCD_SEG10 - 30 22 PB11 I/O FT PB11 I2C2_SDA/USART3_RX/ TIM2_CH4/LCD_SEG11 - 31 23 VSS_1 S - VSS_1 - - 32 24 VDD_1 S - VDD_1 - - 33 25 PB12 I/O FT PB12 SPI2_NSS/I2C2_SMBA/ USART3_CK/LCD_SEG12/ TIM10_CH1 ADC_IN18/ COMP1_INP 34 26 PB13 I/O FT PB13 SPI2_SCK/USART3_CTS/ LCD_SEG13/TIM9_CH1 ADC_IN19/ COMP1_INP 35 27 PB14 I/O FT PB14 SPI2_MISO/USART3_RTS/ LCD_SEG14/TIM9_CH2 ADC_IN20/ COMP1_INP Pin name Alternate functions DocID024295 Rev 6 Additional functions 33/103 39 Pin descriptions STM32L100C6 STM32L100R8/RB Table 7. STM32L100C6 and STM32L100R8/RB pin definitions (continued) Pins LQFP64 UFQFPN48 Pin type(1) I/O structure Pin functions Main function(2) (after reset) 36 28 PB15 I/O FT PB15 SPI2_MOSI/LCD_SEG15/ TIM11_CH1 ADC_IN21/ COMP1_INP/ RTC_REFIN 37 - PC6 I/O FT PC6 TIM3_CH1/LCD_SEG24 - 38 - PC7 I/O FT PC7 TIM3_CH2/LCD_SEG25 - 39 - PC8 I/O FT PC8 TIM3_CH3/LCD_SEG26 - 40 - PC9 I/O FT PC9 TIM3_CH4/LCD_SEG27 - 41 29 PA8 I/O FT PA8 USART1_CK/MCO/LCD_COM0 - 42 30 PA9 I/O FT PA9 USART1_TX/LCD_COM1 - 43 31 PA10 I/O FT PA10 USART1_RX/LCD_COM2 - 44 32 PA11 I/O FT PA11 USART1_CTS/SPI1_MISO USB_DM 45 33 PA12 I/O FT PA12 USART1_RTS/SPI1_MOSI USB_DP 46 34 PA13 I/O FT JTMS-SWDIO JTMS-SWDIO - 47 35 VSS_2 S - VSS_2 - - 48 36 VDD_2 S - VDD_2 - - 49 37 PA14 I/O FT JTCK-SWCLK JTCK-SWCLK - 50 38 PA15 I/O FT JTDI TIM2_CH1_ETR/PA15/ SPI1_NSS/LCD_SEG17 - 51 - PC10 I/O FT PC10 USART3_TX/LCD_SEG28/ LCD_SEG40/LCD_COM4 - 52 - PC11 I/O FT PC11 USART3_RX/LCD_SEG29/ LCD_SEG41/LCD_COM5 - 53 - PC12 I/O FT PC12 USART3_CK/LCD_SEG30/ LCD_SEG42/LCD_COM6 - 54 - PD2 I/O FT PD2 TIM3_ETR/LCD_SEG30/ LCD_SEG43/LCD_COM7 - 55 39 PB3 I/O FT JTDO TIM2_CH2/PB3/SPI1_SCK/ LCD_SEG7/JTDO COMP2_INM 56 40 PB4 I/O FT NJTRST TIM3_CH1/PB4/ SPI1_MISO/LCD_SEG8/NJTRST COMP2_INP 57 41 PB5 I/O FT PB5 I2C1_SMBA/TIM3_CH2/ SPI1_MOSI/LCD_SEG9 COMP2_INP 34/103 Pin name Alternate functions DocID024295 Rev 6 Additional functions STM32L100C6 STM32L100R8/RB Pin descriptions Table 7. STM32L100C6 and STM32L100R8/RB pin definitions (continued) Pins LQFP64 UFQFPN48 Pin type(1) I/O structure Pin functions Main function(2) (after reset) 58 42 PB6 I/O FT PB6 I2C1_SCL/TIM4_CH1/USART1_TX - 59 43 PB7 I/O FT PB7 I2C1_SDA/TIM4_CH2/ USART1_RX PVD_IN 60 44 BOOT0 I B BOOT0 - - 61 45 PB8 I/O FT PB8 TIM4_CH3/I2C1_SCL/ LCD_SEG16/TIM10_CH1 - 62 46 PB9 I/O FT PB9 TIM4_CH4/I2C1_SDA/ LCD_COM3/TIM11_CH1 - 63 47 VSS_3 S VSS_3 - - 64 48 VDD_3 S VDD_3 - - Pin name Alternate functions Additional functions 1. I = input, O = output, S = supply. 2. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1 and USART1 & USART2, respectively. Refer to Table 1 on page 10. 3. The PC14 and PC15 I/Os are only configured as OSC32_IN/OSC32_OUT when the LSE oscillator is on (by setting the LSEON bit in the RCC_CSR register). The LSE oscillator pins OSC32_IN/OSC32_OUT can be used as general-purpose PC14/PC15 I/Os, respectively, when the LSE oscillator is off ( after reset, the LSE oscillator is off ). The LSE has priority over the GPIO function. For more details, refer to Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins section in the STM32Lxx reference manual (RM0038). 4. The PH0 and PH1 I/Os are only configured as OSC_IN/OSC_OUT when the HSE oscillator is on ( by setting the HSEON bit in the RCC_CR register). The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os, respectively, when the HSE oscillator is off (after reset, the HSE oscillator is off ). The HSE has priority over the GPIO function. DocID024295 Rev 6 35/103 39 Digital alternate function number AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFOI6 AFIO7 AFI O8 AFI O9 AFIO11 AFIO 12 AFIO 13 AFIO14 AFIO15 Port name Alternate function SYSTEM BOOT0 BOOT0 NRST NRST TIM2 TIM3/4 TIM9/10/11 I2C1/2 SPI1/2 N/A USART 1/2/3 N/A N/A LCD N/A N/A RI SYSTEM - - - - - - - - - - - - - - DocID024295 Rev 6 - - - - - - - - - - - - - - PA0-WKUP1 - TIM2_CH1_ETR - - - - - USART2_CTS - - - - - TIMx_IC1 EVENTOUT PA1 - TIM2_CH2 - - - - - USART2_RTS - - [SEG0] - - TIMx_IC2 EVENTOUT PA2 - TIM2_CH3 - TIM9_CH1 - - - USART2_TX - - [SEG1] - - TIMx_IC3 EVENTOUT PA3 - TIM2_CH4 - TIM9_CH2 - - USART2_RX - - [SEG2] - - TIMx_IC4 EVENTOUT PA4 - - - - - SPI1_NSS - USART2_CK - - - - - TIMx_IC1 EVENTOUT PA5 - TIM2_CH1_ETR - - - SPI1_SCK - - - - - - - TIMx_IC2 EVENTOUT PA6 - - TIM3_CH1 TIM10_CH1 - SPI1_MISO - - - - [SEG3] - - TIMx_IC3 EVENTOUT - TIM3_CH2 TIM11_CH1 - PA7 PA8 MCO - - SPI1_MOSI - - - [SEG4] - - TIMx_IC4 EVENTOUT - - - - - - USART1_CK - - [COM0] - - TIMx_IC1 EVENTOUT - - - - - - - USART1_TX - - [COM1] - - TIMx_IC2 EVENTOUT PA10 - - - - - - - USART1_RX - - [COM2] - - TIMx_IC3 EVENTOUT PA11 - - - - - SPI1_MISO - USART1_CTS - - - - - TIMx_IC4 EVENTOUT PA12 - - - - - SPI1_MOSI - USART1_RTS - - - - - TIMx_IC1 EVENTOUT PA13 JTMSSWDIO - - - - - - - - - - - - TIMx_IC2 EVENTOUT PA14 JTCKSWCLK - - - - - - - - - - - - TIMx_IC3 EVENTOUT PA15 JTDI TIM2_CH1_ETR - - - - - - - SEG17 - - TIMx_IC4 EVENTOUT PB0 - - TIM3_CH3 - - - - - - - [SEG5] - - - EVENTOUT PB1 - - TIM3_CH4 - - - - - - - [SEG6] - - - EVENTOUT PB2 BOOT1 - - - - - - - - - - - - EVENTOUT PB3 JTDO - - - - - - - - - - EVENTOUT TIM2_CH2 SPI1_NSS SPI1_SCK [SEG7] STM32L100C6 STM32L100R8/RB PA9 Pin descriptions 36/103 Table 8. Alternate function input/output Digital alternate function number AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFOI6 AFIO7 AFI O8 AFI O9 AFIO11 AFIO 12 AFIO 13 AFIO14 AFIO15 LCD N/A N/A RI SYSTEM Port name Alternate function SYSTEM PB4 NJTRST TIM2 TIM3/4 TIM9/10/11 I2C1/2 SPI1/2 N/A USART 1/2/3 N/A N/A - TIM3_CH1 - - SPI1_MISO - - - - [SEG8] - - - EVENTOUT SPI1_MOSI - - - - [SEG9] - - - EVENTOUT - - - - - EVENTOUT PB5 - - TIM3_CH2 - I2C1_ SMBA PB6 - - TIM4_CH1 - I2C1_SCL - - USART1_TX - USART1_RX - DocID024295 Rev 6 PB7 - - TIM4_CH2 I2C1_SDA - - - - - - - EVENTOUT PB8 - - TIM4_CH3 TIM10_CH1* I2C1_SCL - - - - - SEG16 - - - - EVENTOUT PB9 - - TIM4_CH4 TIM11_CH1* I2C1_SDA - - - - - [COM3] - - - EVENTOUT PB10 - TIM2_CH3 - - I2C2_SCL - - USART3_TX - - SEG10 - - - EVENTOUT PB11 - TIM2_CH4 - - I2C2_SDA - - USART3_RX - - SEG11 - - - EVENTOUT I2C2_ SMBA SPI2_NSS - USART3_CK - - SEG12 - - - EVENTOUT - - - TIM10_CH1 PB13 - - - TIM9_CH1 - SPI2_SCK - USART3_CTS - - SEG13 - - - EVENTOUT PB14 - - - TIM9_CH2 - SPI2_MISO - USART3_RTS - - SEG14 - - - EVENTOUT PB15 - - - TIM11_CH1 - SPI2_MOSI - - - - SEG15 - - - EVENTOUT PC0 - - - - - - - - - - SEG18 - - TIMx_IC1 EVENTOUT PC1 - - - - - - - - - - SEG19 - - TIMx_IC2 EVENTOUT PC2 - - - - - - - - - - SEG20 - - TIMx_IC3 EVENTOUT PC3 - - - - - - - - - - SEG21 - - TIMx_IC4 EVENTOUT PC4 - - - - - - - - - - SEG22 - - TIMx_IC1 EVENTOUT PC5 - - - - - - - - - - SEG23 - - TIMx_IC2 EVENTOUT PC6 - - TIM3_CH1 - - - - - - - SEG24 - - TIMx_IC3 EVENTOUT PC7 - - TIM3_CH2 - - - - - - - SEG25 - - TIMx_IC4 EVENTOUT PC8 - - TIM3_CH3 - - - - - - - SEG26 - - TIMx_IC1 EVENTOUT PC9 - - TIM3_CH4 - - - - - - - SEG27 - - TIMx_IC2 EVENTOUT Pin descriptions 37/103 PB12 STM32L100C6 STM32L100R8/RB Table 8. Alternate function input/output (continued) Digital alternate function number AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFOI6 AFIO7 AFI O8 AFI O9 AFIO11 AFIO 12 AFIO 13 AFIO14 AFIO15 USART 1/2/3 N/A N/A LCD N/A N/A RI SYSTEM Port name Alternate function DocID024295 Rev 6 TIM2 TIM3/4 TIM9/10/11 I2C1/2 SPI1/2 N/A PC10 - - - - - - - USART3_TX - - COM4 / SEG28 / SEG40 - - TIMx_IC3 EVENTOUT PC11 - - - - - - - USART3_RX - - COM5 / SEG29 / SEG41 - - TIMx_IC4 EVENTOUT PC12 - - - - - - - USART3_CK - - COM6 / SEG30 / SEG42 - - TIMx_IC1 EVENTOUT PC13WKUP2 - - - - - - - - - - - - - TIMx_IC2 EVENTOUT PC14OSC32_IN - - - - - - - - - - - - - TIMx_IC3 EVENTOUT PC15OSC32_OUT - - - - - - - - - - - - - TIMx_IC4 EVENTOUT PD2 - - TIM3_ETR - - - - - - - - - TIMx_IC3 EVENTOUT PH0OSC_IN - - - - - - - - - - - - - - - PH1OSC_OUT - - - - - - - - - - - - - - - COM7 / SEG31 / SEG43 STM32L100C6 STM32L100R8/RB SYSTEM Pin descriptions 38/103 Table 8. Alternate function input/output (continued) STM32L100C6 STM32L100R8/RB 5 Memory mapping Memory mapping The memory map is shown in the following figure. Figure 5. Memory map $3%PHPRU\VSDFH [)))))))) UHVHUYHG [( UHVHUYHG [ UHVHUYHG [ '0$ [ UHVHUYHG [ )ODVK,QWHUI DFH [& 5&& [ UHVHUYHG [ &5& [ [))))))))  [( [( #RUWH[ 0,QWHUQDO  3HULSKHUDOV [ [ [  [& [& UHVHUYHG 3RUW+ UHVHUYHG 3RUW' [ 3RUW& [ 3RUW% [ 3RUW$ UHVHUYHG [&  [ [ [$  [ [ [ [ [ [& [  [ [))) [)) $'& 2SWLRQ%\WHV [ UHVH UYH G 7,0 7,0 7,0 (;7, 6/6%,'($/    (*    ([DPSOHRIDQDFWX DOWUDQVIH UFXUYH  7KHLGHDOWUDQVIHUFX UYH  (QGSRLQWFRUUHODWLRQOLQH  (7 7RWDOXQDGMXVWHG(UURUPD[LPXPGHYLDWLRQ EHWZHHQWKHDFWXDODQGWKHLGHDOWUDQVIHUFXUYHV (2 2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO WUDQVLWLRQDQGWKHODVWDFWXDORQH (* *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVWLGHDO WUDQVLWLRQDQGWKHODVWDFWXDORQH (' 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ EHWZHHQDFWXDOVWHSVDQGWKHLGHDORQH (/ ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW FRUUHODWLRQOLQH  (7      (2  (/  ('  /6%,'($/   966$            9''$ DLH Figure 23. Typical connection diagram using the ADC 9''$ 670/[[ 6DPSOHDQGKROG $'&FRQYHUWHU 5$,1  9$,1 $,1[ &SDUDVLWLF ,/“Q$ ELW FRQYHUWHU &$'&  DLH 1. Refer to Table 55: Maximum source impedance RAIN max for the value of RAIN and Table 53: ADC characteristics for the value of CADC 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. 84/103 DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB Electrical characteristics Figure 24. Maximum dynamic current consumption on VDDA supply pin during ADC conversion Sampling (n cycles) Conversion (12 cycles) ADC clock IDDA 1700 µA 1300 µA MS36686V1 Table 55. Maximum source impedance RAIN max(1) RAIN max (kOhm) Ts (µs) Multiplexed channels Ts (cycles) Direct channels fADC= 16 MHz(2) 2.4 V < VDDA< 3.6 V 1.8 V < VDDA < 2.4 V 2.4 V < VDDA< 3.3 V 1.8 V < VDDA < 2.4 V 0.25 Not allowed Not allowed 0.7 Not allowed 4 0.5625 0.8 Not allowed 2.0 1.0 9 1 2.0 0.8 4.0 3.0 16 1.5 3.0 1.8 6.0 4.5 24 3 6.8 4.0 15.0 10.0 48 6 15.0 10.0 30.0 20.0 96 12 32.0 25.0 50.0 40.0 192 24 50.0 50.0 50.0 50.0 384 1. Guaranteed by design. 2. Number of samples calculated for fADC = 16 MHz. For fADC = 8 and 4 MHz the number of sampling cycles can be reduced with respect to the minimum sampling time Ts (us). General PCB design guidelines Power supply decoupling should be performed as shown in Figure 8, depending on whether VREF+ is connected to VDDA or not. The 100 nF capacitors should be ceramic (good quality). They should be placed as close as possible to the chip. DocID024295 Rev 6 85/103 90 Electrical characteristics 6.3.18 STM32L100C6 STM32L100R8/RB DAC electrical specifications Data guaranteed by design, unless otherwise specified. Table 56. DAC characteristics Symbol Parameter Conditions Min Typ Max Unit - 1.8 - 3.6 V No load, middle code (0x800) - 350 540 µA No load, worst code (0xF1C) - 540 870 µA 5 - - 25 - - VDDA Analog supply voltage IDDA(1) Current consumption on VDDA supply VDDA = 3.3 V RL Resistive load DAC output Connected to VSSA buffer ON Connected to VDDA CL Capacitive load DAC output buffer ON - - 50 pF RO Output impedance DAC output buffer OFF 12 16 20 kΩ DAC output buffer ON 0.2 - VDDA – 0.2 V DAC output buffer OFF 0.5 - VDDA– 1LSB mV CL ≤ 50 pF, RL ≥ 5 kΩ DAC output buffer ON - 1.5 3 No RL, CL ≤ 50 pF DAC output buffer OFF - 1.5 3 CL ≤ 50 pF, RL ≥ 5 kΩ DAC output buffer ON - 2 4 No RL, CL ≤ 50 pF DAC output buffer OFF - 2 4 - ±10 ±25 - ±5 ±8 - ±1.5 ±5 VDDA = 3.3V,TA = 0 to 50 ° C DAC output buffer OFF -20 -10 0 VDDA = 3.3V, TA = 0 to 50 ° C DAC output buffer ON 0 20 50 CL ≤ 50 pF, RL ≥ 5 kΩ DAC output buffer ON - +0.1 / -0.2% +0.2 / 0.5% No RL, CL ≤ 50 pF DAC output buffer OFF - +0 / 0.2% +0 / 0.4% Voltage on DAC_OUT output VDAC_OUT DNL(1) INL Differential non linearity(2) (1) Integral non Offset1(1) Gain(1) 86/103 linearity(3) CL ≤ 50 pF, RL ≥ 5 kΩ DAC output buffer ON Offset error at code 0x800 (4) No RL, CL ≤ 50 pF DAC output buffer OFF Offset(1) dOffset/dT kΩ Offset error at code 0x001(5) (1) Offset error temperature coefficient (code 0x800) Gain error(6) No RL, CL ≤ 50 pF DAC output buffer OFF DocID024295 Rev 6 LSB µV/°C % STM32L100C6 STM32L100R8/RB Electrical characteristics Table 56. DAC characteristics (continued) Symbol Min Typ Max VDDA = 3.3V, TA = 0 to 50 ° C DAC output buffer OFF -10 -2 0 VDDA = 3.3V, TA = 0 to 50 ° C DAC output buffer ON -40 -8 0 CL ≤ 50 pF, RL ≥ 5 kΩ DAC output buffer ON - 12 30 No RL, CL ≤ 50 pF DAC output buffer OFF - 8 12 tSETTLING Settling time (full scale: for a 12-bit code transition between the lowest and the CL ≤ 50 pF, RL ≥ 5 kΩ highest input codes till DAC_OUT reaches final value ±1LSB - 7 12 µs Update rate Max frequency for a correct DAC_OUT change (95% of final value) with 1 LSB variation in the input code CL ≤ 50 pF, RL ≥ 5 kΩ - - 1 Msps tWAKEUP Wakeup time from off state (setting the ENx bit in the DAC Control register)(7) CL ≤ 50 pF, RL ≥ 5 kΩ - 9 15 µs PSRR+ VDDA supply rejection ratio (static DC measurement) CL ≤ 50 pF, RL ≥ 5 kΩ - -60 -35 dB dGain/dT(1) (1) TUE Parameter Gain error temperature coefficient Total unadjusted error Conditions Unit µV/°C LSB 1. Guaranteed by characterization results. 2. Difference between two consecutive codes - 1 LSB. 3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095. 4. Difference between the value measured at Code (0x800) and the ideal value = VDDA/2. 5. Difference between the value measured at Code (0x001) and the ideal value. 6. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is OFF, and from code giving 0.2 V and (VDDA – 0.2) V when buffer is ON. 7. In buffered mode, the output can overshoot above the final value for low input code (starting from min value). DocID024295 Rev 6 87/103 90 Electrical characteristics STM32L100C6 STM32L100R8/RB Figure 25. 12-bit buffered /non-buffered DAC %XIIHUHG1RQEXIIHUHG'$& %XIIHU  5/ '$&B287[ ELW GLJLWDOWR DQDORJ FRQYHUWHU &/ AI6 1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. 6.3.19 Comparator Table 57. Comparator 1 characteristics Symbol Parameter Conditions Min(1) Typ Max(1) Unit 3.6 V VDDA Analog supply voltage - 1.8 R400K R400K value - - 400 - R10K R10K value - - 10 - Comparator 1 input voltage range - 0.6 - VDDA Comparator startup time - - 7 10 - - 3 10 - - ±3 ±10 mV 0 1.5 10 mV/1000 h - 160 260 nA VIN tSTART td Propagation delay Voffset Comparator offset dVoffset/dt ICOMP1 (2) Comparator offset variation in worst voltage stress conditions Current consumption(3) VDDA = 3.6 V VIN+ = 0 V VIN- = VREFINT TA = 25 ° C - kΩ V µs 1. Guaranteed by characterization results. 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference. 3. Comparator consumption only. Internal reference voltage not included. 88/103 DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB Electrical characteristics Table 58. Comparator 2 characteristics Symbol VDDA VIN Parameter Min Typ Max(1) Unit Analog supply voltage - 1.8 - 3.6 V Comparator 2 input voltage range - 0 - VDDA V Fast mode - 15 20 Slow mode - 20 25 1.8 V ≤VDDA ≤2.7 V - 1.8 3.5 2.7 V ≤VDDA ≤3.6 V - 2.5 6 1.8 V ≤VDDA ≤2.7 V - 0.8 2 2.7 V ≤VDDA ≤3.6 V - 1.2 4 - ±4 ±20 mV VDDA = 3.3V TA = 0 to 50 ° C V- = VREFINT, 3/4 VREFINT, 1/2 VREFINT, 1/4 VREFINT - 15 100 ppm /°C Fast mode - 3.5 5 Slow mode - 0.5 2 tSTART Comparator startup time td slow Propagation delay(2) in slow mode td fast Propagation delay(2) in fast mode Voffset Comparator offset error dThreshold/ Threshold voltage temperature dt coefficient ICOMP2 Conditions Current consumption(3) - µs µA 1. Guaranteed by characterization results. 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference. 3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not included. DocID024295 Rev 6 89/103 90 Electrical characteristics 6.3.20 STM32L100C6 STM32L100R8/RB LCD controller The STM32L100C6 and STM32L100R8/RB devices embed a built-in step-up converter to provide a constant LCD reference voltage independently from the VDD voltage. An external capacitor Cext must be connected to the VLCD pin to decouple this converter. Table 59. LCD controller characteristics Symbol Parameter Min Typ Max Unit VLCD LCD external voltage - - 3.6 VLCD0 LCD internal reference voltage 0 - 2.6 - VLCD1 LCD internal reference voltage 1 - 2.73 - VLCD2 LCD internal reference voltage 2 - 2.86 - VLCD3 LCD internal reference voltage 3 - 2.98 - VLCD4 LCD internal reference voltage 4 - 3.12 - VLCD5 LCD internal reference voltage 5 - 3.26 - VLCD6 LCD internal reference voltage 6 - 3.4 - VLCD7 LCD internal reference voltage 7 - 3.55 - 0.1 - 2 Supply current at VDD = 2.2 V - 3.3 - Supply current at VDD = 3.0 V - 3.1 - Low drive resistive network overall value 5.28 6.6 7.92 MΩ High drive resistive network total value 192 240 288 kΩ V Cext ILCD(1) RHtot(2) RL (2) VLCD external capacitance V44 Segment/Common highest level voltage - - VLCD V34 Segment/Common 3/4 level voltage - 3/4 VLCD - V23 Segment/Common 2/3 level voltage - 2/3 VLCD - V12 Segment/Common 1/2 level voltage - 1/2 VLCD - V13 Segment/Common 1/3 level voltage - 1/3 VLCD - V14 Segment/Common 1/4 level voltage - 1/4 VLCD - V0 Segment/Common lowest level voltage 0 - - Segment/Common level voltage error TA = -40 to 85 ° C - - ± 50 ΔVxx(2) V µF µA V mV 1. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD connected 2. Guaranteed by characterization results. 90/103 DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB 7 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package information Figure 26. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package outline PP *$8*(3/$1( F $ $ 6($7,1*3/$1( & $ $ FFF & ' ' ' . / /      3,1 ,'(17,),&$7,21 ( ( E ( 7.1    H :B0(B9 1. Drawing is not to scale. Table 60. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Typ Min Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 DocID024295 Rev 6 91/103 102 Package information STM32L100C6 STM32L100R8/RB Table 60. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Typ Min Max b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D - 12.000 - - 0.4724 - D1 - 10.000 - - 0.3937 - D3 - 7.500 - - 0.2953 - E - 12.000 - - 0.4724 - E1 - 10.000 - - 0.3937 - E3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - K 0° 3.5° 7° 0° 3.5° 7° L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 27. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package recommended footprint                 AIC 1. Dimensions are in millimeters. 92/103 DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB Package information LQFP64 device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 28. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example 5HYLVLRQFRGH 3URGXFWLGHQWLILFDWLRQ  5 670/ 5%7 'DWHFRGH < :: 3LQ LQGHQWLILHU 06Y9 1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DocID024295 Rev 6 93/103 102 Package information 7.2 STM32L100C6 STM32L100R8/RB UFQFPN48 7 x 7 mm, 0.5 mm pitch, package information Figure 29. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline 3LQLGHQWLILHU ODVHUPDUNLQJDUHD ' $ ( ( 7 GGG $ 6HDWLQJ SODQH E H 'HWDLO< ' ([SRVHGSDG DUHD < '  /  &[ƒ SLQFRUQHU ( 5W\S 'HWDLO=  =  $%B0(B9 1. Drawing is not to scale. 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life. 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground. 94/103 DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB Package information Table 61. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 D 6.900 7.000 7.100 0.2717 0.2756 0.2795 E 6.900 7.000 7.100 0.2717 0.2756 0.2795 D2 5.500 5.600 5.700 0.2165 0.2205 0.2244 E2 5.500 5.600 5.700 0.2165 0.2205 0.2244 L 0.300 0.400 0.500 0.0118 0.0157 0.0197 T - 0.152 - - 0.0060 - b 0.200 0.250 0.300 0.0079 0.0098 0.0118 e - 0.500 - - 0.0197 - ddd - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 30. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package recommended footprint                      !"?&0?6 1. Dimensions are in millimeters. DocID024295 Rev 6 95/103 102 Package information STM32L100C6 STM32L100R8/RB UFQFPN48 device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 31. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package top view example 3URGXFW LGHQWLILFDWLRQ  45.$6 'DWHFRGH : 88 3LQ LGHQWLILFDWLRQ 5HYLVLRQFRGH 3 069 1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 96/103 DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB 7.3 Package information Thermal characteristics The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max × ΘJA) Where: • TA max is the maximum ambient temperature in ° C, • ΘJA is the package junction-to-ambient thermal resistance, in ° C/W, • PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), • PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 62. Thermal characteristics Symbol Parameter ΘJA Value Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch 45 Thermal resistance junction-ambient UFQFPN48 - 7 x 7 mm / 0.5 mm pitch 33 Unit °C/W Figure 32. Thermal resistance   )RUELGGHQDUHD 7- !7-PD[  3' P: /4)3  8)4)31          7HPSHUDWXUH ƒ& 069 DocID024295 Rev 6 97/103 102 Package information 7.3.1 STM32L100C6 STM32L100R8/RB Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. 98/103 DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB 8 Ordering information Ordering information Table 63. Ordering information scheme Example: STM32 L 100 C 8 T 6 TR Device family STM32 = ARM-based 32-bit microcontroller Product type L = Low power Device subfamily 100 Pin count C = 48 pins R = 64 pins Flash memory size 6 = 32 Kbytes of Flash memory 8 = 64 Kbytes of Flash memory B = 128 Kbytes of Flash memory Package T = LQFP U = UFQFPN Temperature range 6 = Industrial temperature range, –40 to 85 °C Packing TR = tape and reel No character = tray or tube For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office. DocID024295 Rev 6 99/103 102 Revision history 9 STM32L100C6 STM32L100R8/RB Revision history Table 64. Document revision history Date Revision 21-Feb-2013 1 Initial release. 2 Updated max. RAM size from 10 to 16 Kbytes Changed number of wakeup pins from 3 to 2 throughout the document. Added Section 6.1.7: Optional LCD power supply scheme. Removed first sentence in I2C interface characteristics Moved Table 14: Embedded internal reference voltage calibration values (previously in Section 3.10.1: Internal voltage reference (VREFINT) with title “Internal voltage reference measured values”). Replaced “Σ” with “σ” in Section 6.1.1 and 6.1.2. Updated LCD and ADC features in Table 1: Ultra-low-power STM32L100C6 and STM32L100R8/RB device features and peripheral counts. Updated fHSE conditions in Table 16: Current consumption in Run mode, code with data processing running from Flash and Table 17: Current consumption in Run mode, code with data processing running from RAM. Fixed IDD unit in Table 22: Typical and maximum current consumptions in Standby mode. Modified title of Table 27: HSE oscillator characteristics. Modified title of Table 24: Low-power mode wakeup timings. Section 6.3.5: Wakeup time from Low-power mode was previously a paragraph in Section 6.3.4: Supply current characteristics. Modified introduction of Section 6.3.4: Supply current characteristics. Added paragraph below title High-speed external user clock generated from an external source. Added 2 bullets on page 50. Moved Figure 11: High-speed external clock source AC timing diagram (was previously after Figure 12: Low-speed external clock source AC timing diagram). Updated Figure 29 footnote numbering. 31-Mar-2014 100/103 Changes DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB Revision history Table 64. Document revision history (continued) Date Revision Changes 31-Mar-2014 (continued) 2 Deleted second footnote in Figure 30. Updated Section 6.3.11: Electrical sensitivity characteristics title. Updated section link in second paragraph of Section 6.3.15: TIM timer characteristics. Removed all occurrences of “when 8 pins are sourced at same time” in Table 42: Output voltage characteristics. Modified first sentence in Section 6.3.14: NRST pin characteristics. Updated text and removed figure Power supply and reference decoupling in General PCB design guidelines. Updated sub-section TIM10, TIM11 and TIM9. In Table 58: Comparator 2 characteristics, parameter dThreshold/dt, replaced all occurrences of “VREF+” with “VREFINT”. Updated: – Table 4: Working mode-dependent functionalities (from Run/active down to standby) – Table 5: Timer feature comparison – Table 7: STM32L100C6 and STM32L100R8/RB pin definitions – Table 9: Voltage characteristics – Table 12: General operating conditions – Table 15: Embedded internal reference voltage – Table 25: High-speed external user clock characteristics – Table 28: LSE oscillator characteristics (fLSE = 32.768 kHz) – Table 29: HSI oscillator characteristics – Table 38: ESD absolute maximum ratings – Table 40: I/O current injection susceptibility – Table 41: I/O static characteristics – Table 42: Output voltage characteristics – Table 44: NRST pin characteristics – Table 61: UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data – Table 62: Thermal characteristics, Table 53: ADC characteristics Updated: – Figure 6: Pin loading conditions – Figure 7: Pin input voltage – Figure 8: Power supply scheme – Figure 10: Current consumption measurement scheme – Figure 17: I2C bus AC waveforms and measurement circuit – Figure 23: Typical connection diagram using the ADC – Figure 32: Thermal resistance Added: – Figure 28: LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example – Figure 31: UFQFPN48 7 x 7 mm, 0.5 mm pitch, package top view example – Table 6: Legend/abbreviations used in the pinout table 10-Apr-2014 3 Updated 10 KB RAM in Cover & description. DocID024295 Rev 6 101/103 102 Revision history STM32L100C6 STM32L100R8/RB Table 64. Document revision history (continued) Date 30-Jan-2015 28-Apr-2016 28-Aug-2017 102/103 Revision Changes 4 Updated DMIPS features in cover page and Section 2: Description. Updated Table 23: Peripheral current consumption with new measured values. Updated Table 55: Maximum source impedance RAIN max adding note 2. Updated Section 7: Package information with new package device marking. Updated Figure 5: Memory map. Updated Table 63: Ordering information scheme. 5 Updated Section 7: Package information structure: Paragraph titles and paragraph heading level. Updated Table 60: LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanical data. Updated Section 7: Package information for LQFP64 and UFQFPN48 package device markings, adding text for device orientation versus pin 1 identifier. Updated Table 15: Embedded internal reference voltage temperature coefficient at 100ppm/°C and table note 3: ‘guaranteed by design’ changed by ‘guaranteed by characterization results’. Updated Table 58: Comparator 2 characteristics new maximum threshold voltage temperature coefficient at 100ppm/°C. Updated Table 38: ESD absolute maximum ratings CDM class. Updated all the notes, removing ‘not tested in production’. Updated Table 9: Voltage characteristics adding note about VREFpin. Updated Table 2: Functionalities depending on the operating power supply range LSI and LSE functionalities putting “Y” in Standby mode. Removed note 1 below Figure 2: Clock tree. Updated Table 56: DAC characteristics resistive load. 6 Updated Section 7: Package information adding information about other optional marking or inset/upset marks. Updated note 1 below all the package device marking figures. Updated Nested vectored interrupt controller (NVIC) in Section 3.2: ARM® Cortex®-M3 core with MPU about process state automatically saved. Updated Table 2: Functionalities depending on the operating power supply range removing I/O operation column and adding note about GPIO speed. Updated Table 40: I/O current injection susceptibility note by ‘injection is not possible’. Updated Figure 16: Recommended NRST pin protection note about the 0.1uF capacitor. Updated Section 3.1: Low-power modes Low-power run mode (MSI) RC oscillator clock. Updated Table 4: Working mode-dependent functionalities (from Run/active down to standby) disabling I2C functionality in Lowpower Run and Low-power Sleep modes. DocID024295 Rev 6 STM32L100C6 STM32L100R8/RB IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2017 STMicroelectronics – All rights reserved DocID024295 Rev 6 103/103 103
STM32L100RBT6 价格&库存

很抱歉,暂时无法提供与“STM32L100RBT6”相匹配的价格&库存,您可以联系我们找货

免费人工找货