0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32L151VDY6XTR

STM32L151VDY6XTR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    UFBGA104

  • 描述:

  • 数据手册
  • 价格&库存
STM32L151VDY6XTR 数据手册
STM32L151VD-X STM32L152VD-X Ultra-low-power 32-bit MCU ARM®-based Cortex®-M3 with 384KB Flash, 80KB SRAM, 16KB EEPROM, LCD, USB, ADC, DAC Datasheet - production data Features • Ultra-low-power platform – 1.65 V to 3.6 V power supply – -40 °C to 105 °C temperature range – 290 nA Standby mode (3 wakeup pins) – 1.11 µA Standby mode + RTC – 560 nA Stop mode (16 wakeup lines) – 1.4 µA Stop mode + RTC – 11 µA Low-power run mode down to 4.6 µA in Low-power sleep mode – 195 µA/MHz Run mode – 10 nA ultra-low I/O leakage – 8 µs wakeup time • Core: ARM® Cortex®-M3 32-bit CPU – From 32 kHz up to 32 MHz max – 1.25 DMIPS/MHz (Dhrystone 2.1) – Memory protection unit LQFP100 (14 × 14 mm) WLCSP104 (0.4 mm pitch) • Up to 116 fast I/Os (102 I/Os 5V tolerant), all mappable on 16 external interrupt vectors • Memories – 384 Kbytes of Flash memory with ECC (with 2 banks of 192 Kbytes enabling RWW capability) – 80 Kbytes of RAM – 16 Kbytes of true EEPROM with ECC – 128-byte backup register • LCD driver (except STM32L151VD-X) up to 8x40 segments, contrast adjustment, blinking mode, step-up converter • Up to 23 capacitive sensing channels • CRC calculation unit, 96-bit unique ID • Reset and supply management – Low-power, ultrasafe BOR (brownout reset) with 5 selectable thresholds – Ultra-low-power POR/PDR – Programmable voltage detector (PVD) • Clock sources – 1 to 24 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – Internal 16 MHz oscillator factory trimmed RC(+/-1%) with PLL option – Internal low-power 37 kHz oscillator – Internal multispeed low-power 65 kHz to 4.2 MHz oscillator – PLL for CPU clock and USB (48 MHz) • Rich analog peripherals (down to 1.8 V) – 2x operational amplifiers – 12-bit ADC 1 Msps up to 40 channels – 12-bit DAC 2 ch with output buffers – 2x ultra-low-power comparators (window mode and wakeup capability) • DMA controller 12x channels • 11x peripheral communication interfaces – 1x USB 2.0 (internal 48 MHz PLL) – 5x USARTs – Up to 8x SPIs (2x I2S, 3x 16 Mbit/s) – 2x I2Cs (SMBus/PMBus) • 11x timers: 1x 32-bit, 6x 16-bit with up to 4 IC/OC/PWM channels, 2x 16-bit basic timers, 2x watchdog timers (independent and window) • Development support: serial wire debug, JTAG and trace • Pre-programmed bootloader – USB and USART supported August 2017 This is information on a product in full production. DocID027267 Rev 4 1/119 www.st.com Contents STM32L151VD-X STM32L152VD-X Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 2/119 2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Shared peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 Common system strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.4 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 ARM® Cortex®-M3 core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.4 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 22 3.6 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.7 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.8 DMA (direct memory access) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.9 LCD (liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.10 ADC (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.10.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.11 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.12 Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.13 Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 26 3.14 System configuration controller and routing interface . . . . . . . . . . . . . . . 26 3.15 Touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X 3.16 3.17 Contents Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.16.1 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and TIM11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.16.2 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.16.3 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.16.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.16.5 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.17.1 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.17.2 Universal synchronous/asynchronous receiver transmitter (USART) . . 28 3.17.3 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.17.4 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.17.5 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.18 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 29 3.19 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.19.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.19.2 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.1.7 Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.8 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 55 6.3.3 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 57 DocID027267 Rev 4 3/119 4 Contents 7 STM32L151VD-X STM32L152VD-X 6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.3.5 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.3.15 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.3.16 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.17 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.3.18 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3.19 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.3.20 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.3.21 Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.3.22 LCD controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.1 LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.2 WLCSP104, 0.4 mm pitch wafer level chip scale package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 7.3.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 9 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Ultra-low-power STM32L151VD-X and STM32L152VD-X device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 14 CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 15 Functionalities depending on the working mode (from Run/active down to standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 STM32L151VD-X and STM32L152VD-X pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Alternate function input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 55 Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Current consumption in Run mode, code with data processing running from Flash. . . . . . 59 Current consumption in Run mode, code with data processing running from RAM . . . . . . 60 Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Current consumption in Low-power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Current consumption in Low-power sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 64 Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 66 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Flash memory and data EEPROM endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 79 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 DocID027267 Rev 4 5/119 6 List of tables Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. 6/119 STM32L151VD-X STM32L152VD-X SCL frequency (fPCLK1= 32 MHz, VDD = VDD_I2C = 3.3 V). . . . . . . . . . . . . . . . . . . . . . . . 89 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 USB: full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 ADC clock frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Maximum source impedance RAIN max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data . . . . . . . 108 WLCSP104, 0.4 mm pitch wafer level chip scale package mechanical data . . . . . . . . . . 112 WLCSP104, 0.4 mm pitch recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . 113 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 STM32L151VD-X and STM32L152VD-X Ordering information scheme . . . . . . . . . . . . . 116 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Ultra-low-power STM32L151VD-X and STM32L152VD-X block diagram . . . . . . . . . . . . . 12 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 STM32L152VD-X LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 STM32L151VD-X WLCSP104 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Maximum dynamic current consumption on VREF+ supply pin during ADC conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 108 LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package top view example . . . . . . 110 WLCSP104, 0.4 mm pitch wafer level chip scale package outline . . . . . . . . . . . . . . . . . . 111 WLCSP104, 0.4 mm pitch wafer level chip scale package recommended footprint. . . . . 112 WLCSP104, 0.4 mm pitch wafer level chip scale package top view example . . . . . . . . . 113 Thermal resistance suffix 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Thermal resistance suffix 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 DocID027267 Rev 4 7/119 7 Introduction 1 STM32L151VD-X STM32L152VD-X Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32L151VD-X and STM32L152VD-X ultra-low-power ARM® Cortex®-M3 based microcontroller product line. The STM32L151VD-X and STM32L152VD-X devices are microcontrollers with a Flash memory density of 384 Kbytes. The ultra-low-power STM32L151VD-X and STM32L152VD-X family includes devices in 2 different package types: from 100 pins to 104 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. These features make the ultra-low-power STM32L151VD-X and STM32L152VD-X microcontroller family suitable for a wide range of applications: • Medical and handheld equipment • Application control and user interface • PC peripherals, gaming, GPS and sport equipment • Alarm systems, wired and wireless sensors, video intercom • Utility metering This STM32L151VD-X and STM32L152VD-X datasheet should be read in conjunction with the STM32L1xxxx reference manual (RM0038). The application note “Getting started with STM32L1xxxx hardware development” (AN3216) gives a hardware implementation overview. Both documents are available from the STMicroelectronics website www.st.com. For information on the ARM® Cortex®-M3 core please refer to the ARM® Cortex®-M3 technical reference manual, available from the www.arm.com website. Figure 1 shows the general block diagram of the device family. 8/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X 2 Description Description The ultra-low-power STM32L151VD-X and STM32L152VD-X devices incorporate the connectivity power of the universal serial bus (USB) with the high-performance ARM® Cortex®-M3 32-bit RISC core operating at a frequency of 32 MHz (33.3 DMIPS), a memory protection unit (MPU), high-speed embedded memories (Flash memory up to 384 Kbytes and RAM up to 80 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. The STM32L151VD-X and STM32L152VD-X devices offer two operational amplifiers, one 12-bit ADC, two DACs, two ultra-low-power comparators, one general-purpose 32-bit timer, six general-purpose 16-bit timers and two basic timers, which can be used as time bases. Moreover, the STM32L151VD-X and STM32L152VD-X devices contain standard and advanced communication interfaces: up to two I2Cs, three SPIs, two I2S, three USARTs, two UARTs and an USB. The STM32L151VD-X and STM32L152VD-X devices offer up to 23 capacitive sensing channels to simply add a touch sensing functionality to any application. They also include a real-time clock and a set of backup registers that remain powered in Standby mode. Finally, the integrated LCD controller (except STM32L151VD-X) has a built-in LCD voltage generator that allows to drive up to 8 multiplexed LCDs with the contrast independent of the supply voltage. The ultra-low-power STM32L151VD-X and STM32L152VD-X devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +85 °C and -40 to +105 °C temperature ranges. A comprehensive set of power-saving modes allows the design of low-power applications. DocID027267 Rev 4 9/119 49 Description 2.1 STM32L151VD-X STM32L152VD-X Device overview Table 1. Ultra-low-power STM32L151VD-X and STM32L152VD-X device features and peripheral counts Peripheral STM32L151VD-X STM32L152VD-X Flash (Kbytes) 384 Data EEPROM (Kbytes) 16 RAM (Kbytes) 80 Timers 32 bit 1 Generalpurpose 6 Basic 2 SPI 8(3)(1) I2S 2 Communication 2 I C interfaces 2 USART 5 USB 1 GPIOs 83 Operational amplifiers 2 12-bit synchronized ADC Number of channels 1 25 12-bit DAC Number of channels 2 2 LCD (2) COM x SEG 1 4x44 or 8x40 Comparators 2 Capacitive sensing channels 23 Max. CPU frequency Operating voltage Operating temperatures 32 MHz 1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 V to 3.6 V without BOR option Ambient operating temperature: -40 °C to 85 °C / -40 °C to 105 °C Junction temperature: –40 to + 110 °C LQFP100, WLCSP104 Packages 1. 5 SPIs are USART configured in synchronous mode emulating SPI master. 2. STM32L152VD-X device only. 10/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X Description Note: There is no FSMC and SDIO peripheral. 2.2 Ultra-low-power device continuum The ultra-low-power family offers a large choice of cores and features. From proprietary 8bit to up to Cortex-M3, including the Cortex-M0+, the STM32Lx series are the best choice to answer the user needs, in terms of ultra-low-power features. The STM32 ultra-low-power series are the best fit, for instance, for gas/water meter, keyboard/mouse or fitness and healthcare, wearable applications. Several built-in features like LCD drivers, dual-bank memory, Low-power run mode, op-amp, AES 128-bit, DAC, USB crystal-less and many others will clearly allow to build very cost-optimized applications by reducing BOM. Note: STMicroelectronics as a reliable and long-term manufacturer ensures as much as possible the pin-to-pin compatibility between any STM8Lxxxxx and STM32Lxxxxx devices and between any of the STM32Lx and STM32Fx series. Thanks to this unprecedented scalability, the old applications can be upgraded to respond to the latest market features and efficiency demand. 2.2.1 Performance All the families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM Cortex-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios. This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs. 2.2.2 Shared peripherals STM8L15xxx, STM32L15xxx and STM32L162xx share identical peripherals which ensure a very easy migration from one family to another: 2.2.3 • Analog peripherals: ADC, DAC and comparators • Digital peripherals: RTC and some communication interfaces Common system strategy. To offer flexibility and optimize performance, the STM8L15xxx, STM32L15xxx and STM32L162xx family uses a common architecture: 2.2.4 • Same power supply range from 1.65 V to 3.6 V • Architecture optimized to reach ultra-low consumption both in low-power modes and Run mode • Fast startup strategy from low-power modes • Flexible system clock • Ultrasafe reset: same reset strategy including power-on reset, power-down reset, brownout reset and programmable voltage detector Features ST ultra-low-power continuum also lies in feature compatibility: • More than 15 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm • Memory density ranging from 2 to 512 Kbytes DocID027267 Rev 4 11/119 49 Functional overview 3 STM32L151VD-X STM32L152VD-X Functional overview Figure 1. Ultra-low-power STM32L151VD-X and STM32L152VD-X block diagram 75$&(&.75$&('75$&('75$&('75$&(' )PD[0+] 038 'EXV 6\VWHP 19,& *3'0$FKDQQHOV .%352*5$0 .%'$7$ .%%227 '8$/%$1. 65$0. %25 3$>@ *3,23257$ 3%>@ *3,23257% 3&>@ *3,23257& 3'>@ *3,23257' 3(>@ *3,23257( 3+>@ *3,23257+ 3)>@ *3,23257) 026,0,62 6&.166DV$) 5;7;&76576 6PDUW&DUGDV$) $+%$3% 86$57 $) 9''5()B$'& ELW$'& 9665()B$'& 7HPSVHQVRU ,) 86%65$0% :LQ:$7&+'2* 7,0(5 7,0(5 7,0(5 FKDQQHO 7,0(5 FKDQQHO 7,0(5 9/&' 9WR9 7,0(5 FKDQQHOV 7,0(5 FKDQQHOV 7,0(5 FKDQQHOV 7,0(56 ELWV FKDQQHOV 86$57 5;7;&76576 6PDUW&DUGDV$) 86$57 5;7;&76576 6PDUW&DUGDV$) 86$57 5;7;DV$) 86$57 5;7;DV$) 63,,6 [ [ELW 026,0,626&.166:6&. 0&.6'DV$) 63,,6 [ [ELW 026,0,626&.166:6&. 0&.6'DV$) ,& 6&/6'$ $V$) ,& 6&/6'$60%XV30%XV $V$) 86%)6GHYLFH /&'[ 23$03 86%B'3 86%B'0 3[ 6(*[ &20[ #9''$ 23$03 ELW'$& '$&B287DV$) ELW'$& '$&B287DV$) ,) ,,) ) 9,13 9,10 9287 12/119 /&'%RRVWHU &DSVHQVLQJ *HQHUDOSXUSRVH WLPHUV FKDQQHOV 7$03(5 #9'' $+%$3% 63, #9''$ %DFNXS 5HJ %DFNXSLQWHUIDFH *3,23257* (;7,7 :.83 26&B,1 26&B287 57&B287 57&9 $:8 $3%)PD[ 0+] $) #9''$ $3%)PD[ 0+] 3*>@ 26&B287 ;7$/N+] 9/&' *3&RPS 383' 26&B,1 ;7$/26& 0+] 5&/6,$ #9'' &DSVHQV &203[B,1[ #9'' 6WDQGE\ LQWHUIDFH 5&06, ,QW 1567 :'*. 5&+6, $+%)PD[ 0+] 39' 3'5 3// &ORFN 0JPW )&/. %25%JDS 9UHI 3'5 $+%3&/. $3%3&/. +&/. 9''$ 966$ 9VV 6XSSO\PRQLWRULQJ #9''$ *3'0$FKDQQHOV 6XSSO\ PRQLWRULQJ 9'' 9WR9 ((3520ELW ,QWHUIDFH 0&38 92/75(* LEXV %XV0DWUL[06 1-7567 -7', -7&.6:&/. -7066:'$7 -7'2 DV$) #9'' 32:(5 9''&25( 7UDFH&RQWUROOHU(70 SEXV ((3520 RE O -7$* 6: 9,13 9,10 9287 DocID027267 Rev 4 06Y9 STM32L151VD-X STM32L152VD-X 3.1 Functional overview Low-power modes The ultra-low-power STM32L151VD-X and STM32L152VD-X devices support dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system’s maximum operating frequency and the external voltage supply. There are three power consumption ranges: • Range 1 (VDD range limited to 1.71 V - 3.6 V), with the CPU running at up to 32 MHz • Range 2 (full VDD range), with a maximum CPU frequency of 16 MHz • Range 3 (full VDD range), with a maximum CPU frequency limited to 4 MHz (generated only with the multispeed internal RC oscillator clock source) Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at 16 MHz is about 1 mA with all peripherals off. • Low-power run mode This mode is achieved with the multispeed internal (MSI) RC oscillator set to the MSI range 0 or MSI range 1 clock range (maximum 131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In low-power run mode, the clock frequency and the number of enabled peripherals are both limited. • Low-power sleep mode This mode is achieved by entering Sleep mode with the internal voltage regulator in Low-power mode to minimize the regulator’s operating current. In Low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz. When wakeup is triggered by an event or an interrupt, the system reverts to the run mode with the regulator on. • Stop mode with RTC Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the VCORE domain are stopped, the PLL, MSI RC, HSI RC and HSE crystal oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on), it can be the RTC alarm(s), the USB wakeup, the RTC tamper events, the RTC timestamp event or the RTC wakeup. DocID027267 Rev 4 13/119 49 Functional overview • STM32L151VD-X STM32L152VD-X Stop mode without RTC Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, LSE and HSE crystal oscillators are disabled. The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB wakeup. • Standby mode with RTC Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire VCORE domain is powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR). The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs. • Standby mode without RTC Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire VCORE domain is powered off. The PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR). The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by entering Stop or Standby mode. Table 2. Functionalities depending on the operating power supply range Functionalities depending on the operating power supply range(1) Operating power supply range DAC and ADC operation USB Dynamic voltage scaling range VDD= VDDA = 1.65 to 1.71 V Not functional Not functional Range 2 or Range 3 Not functional Not functional Range 1, Range 2 or Range 3 Conversion time up to 500 Ksps Not functional Range 1, Range 2 or Range 3 VDD=VDDA= 1.71 to 1.8 V(2) VDD=VDDA= 1.8 to 2.0 V 14/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X Functional overview Table 2. Functionalities depending on the operating power supply range (continued) Functionalities depending on the operating power supply range(1) Operating power supply range DAC and ADC operation USB Dynamic voltage scaling range VDD=VDDA = 2.0 to 2.4 V Conversion time up to 500 Ksps Functional(3) Range 1, Range 2 or Range 3 VDD=VDDA = 2.4 to 3.6 V Conversion time up to 1 Msps Functional(3) Range 1, Range 2 or Range 3 1. The GPIO speed also depends from VDD voltage and the user has to refer to Table 43: I/O AC characteristics for more information about I/O speed. 2. CPU frequency changes from initial to final must respect “FCPU initial < 4*FCPU final” to limit VCORE drop due to current consumption peak when frequency increases. It must also respect 5 µs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, the user can switch from 4.2 MHz to 16 MHz, wait 5 µs, then switch from 16 MHz to 32 MHz. 3. Should be USB compliant from I/O voltage standpoint, the minimum VDD is 3.0 V. Table 3. CPU frequency range depending on dynamic voltage scaling CPU frequency range Dynamic voltage scaling range 16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws) Range 1 8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws) Range 2 2.1MHz to 4.2 MHz (1ws) 32 kHz to 2.1 MHz (0ws) Range 3 DocID027267 Rev 4 15/119 49 Functional overview STM32L151VD-X STM32L152VD-X Table 4. Functionalities depending on the working mode (from Run/active down to standby) Standby Run/Active Sleep CPU Y -- Y -- -- -- -- -- Flash Y Y Y Y -- -- -- -- RAM Y Y Y Y Y -- -- -- Backup Registers Y Y Y Y Y -- Y -- EEPROM Y Y Y Y Y -- -- -- Brown-out rest (BOR) Y Y Y Y Y Y Y -- DMA Y Y Y Y -- -- -- -- Programmable Voltage Detector (PVD) Y Y Y Y Y Y Y -- Power On Reset (POR) Y Y Y Y Y Y Y -- Power Down Rest (PDR) Y Y Y Y Y -- Y -- High Speed Internal (HSI) Y Y -- -- -- -- -- -- High Speed External (HSE) Y Y -- -- -- -- -- -- Low Speed Internal (LSI) Y Y Y Y Y -- Y -- Low Speed External (LSE) Y Y Y Y Y -- Y -- Multi-Speed Internal (MSI) Y Y Y Y -- -- -- -- Inter-Connect Controller Y Y Y Y -- -- -- -- RTC Y Y Y Y Y Y Y -- RTC Tamper Y Y Y Y Y Y Y Y Auto WakeUp (AWU) Y Y Y Y Y Y Y Y LCD Y Y Y Y Y -- -- -- USB Y Y -- -- -- Y -- -- -- -- Ips Lowpower Sleep Stop Lowpower Run Wakeup capability Wakeup capability USART Y Y Y Y Y (1) SPI Y Y Y Y -- -- -- -- I2C Y Y -- -- -- (1) -- -- 16/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X Functional overview Table 4. Functionalities depending on the working mode (from Run/active down to standby) (continued) Standby Run/Active Sleep ADC Y Y -- -- -- -- -- -- DAC Y Y Y Y Y -- -- -- Tempsensor Y Y Y Y Y -- -- -- OP amp Y Y Y Y Y -- -- -- Comparators Y Y Y Y Y Y -- -- 16-bit and 32-bit Timers Y Y Y Y -- -- -- -- IWDG Y Y Y Y Y Y Y Y WWDG Y Y Y Y -- -- -- -- Touch sensing Y Y -- -- -- -- -- -- Systic Timer Y Y Y Y -- -- -- GPIOs Y Y Y Y Y -- 3 pins 0 µs 0.4 µs 3 µs 46 µs Ips Wakeup time to Run mode Consumption VDD=1.8 to 3.6 V (Typ) Down to 195 µA/MHz (from Flash) Down to 38 µA/MHz (from Flash) Down to 11 µA Lowpower Sleep Stop Lowpower Run Down to 4.6 µA Wakeup capability Y Wakeup capability < 8 µs 58 µs 0.53 µA (no RTC) VDD=1.8V 0.285 µA (no RTC) VDD=1.8V 1.2 µA (with RTC) VDD=1.8V 0.97 µA (with RTC) VDD=1.8V 0.56 µA (no RTC) VDD=3.0V 0.29 µA (no RTC) VDD=3.0V 1.4 µA (with RTC) VDD=3.0V 1.11 µA (with RTC) VDD=3.0V 1. The startup on communication line wakes the CPU which was made possible by an EXTI, this induces a delay before entering run mode. 3.2 ARM® Cortex®-M3 core with MPU The ARM® Cortex®-M3 processor is the industry leading processor for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The ARM® Cortex®-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. DocID027267 Rev 4 17/119 49 Functional overview STM32L151VD-X STM32L152VD-X The memory protection unit (MPU) improves system reliability by defining the memory attributes (such as read/write access permissions) for different memory regions. It provides up to eight different regions and an optional predefined background region. Owing to its embedded ARM core, the STM32L151VD-X and STM32L152VD-X devices are compatible with all ARM tools and software. Nested vectored interrupt controller (NVIC) The ultra-low-power STM32L151VD-X and STM32L152VD-X devices embed a nested vectored interrupt controller able to handle up to 56 maskable interrupt channels (not including the 16 interrupt lines of ARM® Cortex®-M3) and 16 priority levels. • Closely coupled NVIC gives low-latency interrupt processing • Interrupt entry vector table address passed directly to the core • Closely coupled NVIC core interface • Allows early processing of interrupts • Processing of late arriving, higher-priority interrupts • Support for tail-chaining • Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. 3.3 Reset and supply management 3.3.1 Power supply schemes 3.3.2 • VDD = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through VDD pins. • VSSA, VDDA = 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs and PLL (minimum voltage to be applied to VDDA is 1.8 V when the ADC is used). VDDA and VSSA must be connected to VDD and VSS, respectively. Power supply supervisor The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry. The device exists in two versions: • The version with BOR activated at power-on operates between 1.8 V and 3.6 V. • The other version without BOR operates between 1.65 V and 3.6 V. After the VDD threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes 1.65 V (whatever the version, BOR active or not, at power-on). When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on VDD at least 1 ms after it exits the POR area. 18/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X Functional overview Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (VREFINT) in Stop mode. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external reset circuit. Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up. The device features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 3.3.3 Voltage regulator The regulator has three operation modes: main (MR), low-power (LPR) and power down. 3.3.4 • MR is used in Run mode (nominal regulation) • LPR is used in the Low-power run, Low-power sleep and Stop modes • Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32K osc, RCC_CSR). Boot modes At startup, boot pins are used to select one of three boot options: • Boot from Flash memory • Boot from System memory • Boot from embedded RAM The boot from Flash usually boots at the beginning of the Flash (bank 1). An additional boot mechanism is available through user option byte, to allow booting from bank 2 when bank 2 contains valid code. This dual boot capability can be used to easily implement a secure field software update mechanism. The boot loader is located in System memory. It is used to reprogram the Flash memory by using USART1, USART2 or USB. See Application note “STM32 microcontroller system memory boot mode” (AN2606) for details. DocID027267 Rev 4 19/119 49 Functional overview 3.4 STM32L151VD-X STM32L152VD-X Clock management The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features: • Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler. • Safe clock switching: clock sources can be changed safely on the fly in run mode through a configuration register. • Clock management: to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. • System clock source: three different clock sources can be used to drive the master clock SYSCLK: • – 1-24 MHz high-speed external crystal (HSE), that can supply a PLL – 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLL – Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz). When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy. Auxiliary clock source: two ultra-low-power clock sources that can be used to drive the LCD controller and the real-time clock: – 32.768 kHz low-speed external crystal (LSE) – 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision. • RTC and LCD clock sources: the LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever the system clock. • USB clock source: the embedded PLL has a dedicated 48 MHz clock output to supply the USB interface. • Startup clock: after reset, the microcontroller restarts by default with an internal 2 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. • Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled. • Clock-out capability (MCO: microcontroller clock output): it outputs one of the internal clocks for external use by the application. Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See Figure 2 for details on the clock tree. 20/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X Functional overview Figure 2. Clock tree 3TANDBYSUPPLIEDVOLTAGEDOMAIN ENABLE 7ATCHDOG ,3)2# ,3)TEMPO ,3%/3# ,3%TEMPO 7ATCHDOG ,3 24#ENABLE 24# 2ADIO3LEEP4IMER 2ADIO3LEEP4IMERENABLE ,3 ,3 ,3 ,3 6$$#/2% -(Z ,#$ENABLE 6 -3)2# LEVELSHIFTERS 6$$#/2% #+?!$# !$#ENABLE CK?LSI CK?LSE      #+?,#$ -#/ NOTDEEPSLEEP     #+?072 6 NOTDEEPSLEEP (3)2# NOTSLEEPOR DEEPSLEEP LEVELSHIFTERS 6$$#/2% 3YSTEM CLOCK 6 (3% /3# CK?MSI CK?HSI CK?HSE LEVELSHIFTERS 6$$#/2% !(" PRESCALER    6 CK?PLL 0,, CK?PLLIN 8         ,3 6 -(ZCLOCK DETECTOR NOTSLEEPOR DEEPSLEEP  #+?&#,+ #+?#05 #+?4)-393 !0" !0" PRESCALER PRESCALER              (3%PRESENTORNOT ,3 #+?53" LEVELSHIFTERS 6$$#/2% #LOCK SOURCE CONTROL USBENANDNOTDEEPSLEEP CK?USB6CO6COMUSTBEAT-( Z #+?4)-4'/ #+?!0" #+?!0" TIMERENANDNOTDEEPSLEEP APBPERIPHENANDNOTDEEPSLEEP IF!0"PRESC X X ELSE APBPERIPHENANDNOTDEEPSLEEP -36 DocID027267 Rev 4 21/119 49 Functional overview 3.5 STM32L151VD-X STM32L152VD-X Low-power real-time clock and backup registers The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the sub-second, second, minute, hour (12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are made automatically. The RTC provides two programmable alarms and programmable periodic interrupts with wakeup from Stop and Standby modes. The programmable wakeup time ranges from 120 µs to 36 hours. The RTC can be calibrated with an external 512 Hz output, and a digital compensation circuit helps reduce drift due to crystal deviation. The RTC can also be automatically corrected with a 50/60Hz stable powerline. The RTC calendar can be updated on the fly down to sub second precision, which enables network system synchronization. A time stamp can record an external event occurrence, and generates an interrupt. There are thirty-two 32-bit backup registers provided to store 128 bytes of user application data. They are cleared in case of tamper detection. Three pins can be used to detect tamper events. A change on one of these pins can reset backup register and generate an interrupt. To prevent false tamper event, like ESD event, these three tamper inputs can be digitally filtered. 3.6 GPIOs (general-purpose inputs/outputs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated AFIO registers. All GPIOs are high current capable. The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to the AHB with a toggling speed of up to 16 MHz. External interrupt/event controller (EXTI) The external interrupt/event controller consists of 24 edge detector lines used to generate interrupt/event requests. Each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 115 GPIOs can be connected to the 16 external interrupt lines. The 8 other lines are connected to RTC, PVD, USB, comparator events or capacitive sensing acquisition. 22/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X 3.7 Functional overview Memories The STM32L151VD-X and STM32L152VD-X devices have the following features: • 80 Kbytes of embedded RAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses). • The non-volatile memory is divided into three arrays: – 384 Kbytes of embedded Flash program memory – 16 Kbytes of data EEPROM – Options bytes Flash program and data EEPROM are divided into two banks, this enables writing in one bank while running code or reading data in the other bank. The options bytes are used to write-protect or read-out protect the memory (with 4 Kbytes granularity) and/or readout-protect the whole memory with the following options: – Level 0: no readout protection – Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected – Level 2: chip readout protection, debug features (ARM Cortex-M3 JTAG and serial wire) and boot in RAM selection disabled (JTAG fuse) The whole non-volatile memory embeds the error correction code (ECC) feature. 3.8 DMA (direct memory access) The flexible 12-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose timers, DAC and ADC. DocID027267 Rev 4 23/119 49 Functional overview 3.9 STM32L151VD-X STM32L152VD-X LCD (liquid crystal display) The LCD drives up to 8 common terminals and 44 segment terminals to drive up to 320 pixels. 3.10 • Internal step-up converter to guarantee functionality and contrast control irrespective of VDD. This converter can be deactivated, in which case the VLCD pin is used to provide the voltage to the LCD • Supports static, 1/2, 1/3, 1/4 and 1/8 duty • Supports static, 1/2, 1/3 and 1/4 bias • Phase inversion to reduce power consumption and EMI • Up to 8 pixels can be programmed to blink • Unneeded segments and common pins can be used as general I/O pins • LCD RAM can be updated at any time owing to a double-buffer • The LCD controller can operate in Stop mode ADC (analog-to-digital converter) A 12-bit analog-to-digital converters is embedded into STM32L151VD-X and STM32L152VD-X devices with up to 40 external channels, performing conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs with up to 28 external channels in a group. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all scanned channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start triggers, to allow the application to synchronize A/D conversions and timers. An injection mode allows high priority conversions to be done by interrupting a scan mode which runs in as a background task. The ADC includes a specific low-power mode. The converter is able to operate at maximum speed even if the CPU is operating at a very low frequency and has an auto-shutdown function. The ADC’s runtime and analog front-end current consumption are thus minimized whatever the MCU operating mode. 3.10.1 Temperature sensor The temperature sensor (TS) generates a voltage VSENSE that varies linearly with temperature. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are 24/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X Functional overview stored by ST in the system memory area, accessible in read-only mode. See Table 59: Temperature sensor calibration values. 3.10.2 Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC_IN17 input channel. It enables accurate monitoring of the VDD value (when no external voltage, VREF+, is available for ADC). The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in readonly mode. See Table 14: Embedded internal reference voltage calibration values. 3.11 DAC (digital-to-analog converter) The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration. This dual digital Interface supports the following features: • Two DAC converters: one for each output channel • 8-bit or 12-bit monotonic output • Left or right data alignment in 12-bit mode • Synchronized update capability • Noise-wave generation • Triangular-wave generation • Dual DAC channels, independent or simultaneous conversions • DMA capability for each channel (including the underrun interrupt) • External triggers for conversion • Input reference voltage VREF+ Eight DAC trigger inputs are used in the STM32L151VD-X and STM32L152VD-X devices. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels. 3.12 Operational amplifier The STM32L151VD-X and STM32L152VD-X devices embed two operational amplifiers with external or internal follower routing capability (or even amplifier and filter capability with external components). When one operational amplifier is selected, one external ADC channel is used to enable output measurement. The operational amplifiers feature: • Low input bias current • Low offset voltage • Low-power mode • Rail-to-rail input DocID027267 Rev 4 25/119 49 Functional overview 3.13 STM32L151VD-X STM32L152VD-X Ultra-low-power comparators and reference voltage The STM32L151VD-X and STM32L152VD-X devices embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O). • One comparator with fixed threshold • One comparator with rail-to-rail inputs, fast or slow mode. The threshold can be one of the following: – DAC output – External I/O – Internal reference voltage (VREFINT) or a sub-multiple (1/4, 1/2, 3/4) Both comparators can wake up from Stop mode, and be combined into a window comparator. The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 µA typical). 3.14 System configuration controller and routing interface The system configuration controller provides the capability to remap some alternate functions on different I/O ports. The highly flexible routing interface allows the application firmware to control the routing of different I/Os to the TIM2, TIM3 and TIM4 timer input captures. It also controls the routing of internal analog signals to ADC1, COMP1 and COMP2 and the internal reference voltage VREFINT. 3.15 Touch sensing The STM32L151VD-X and STM32L152VD-X devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 23 capacitive sensing channels distributed over 11 analog I/O groups. Both software and timer capacitive sensing acquisition modes are supported. Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. The capacitive sensing acquisition only requires few external components to operate. This acquisition is managed directly by the GPIOs, timers and analog I/O groups (see Section 3.14: System configuration controller and routing interface). Reliable touch sensing functionality can be quickly and easily implemented using the free STM32L1xx STMTouch touch sensing firmware library. 26/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X 3.16 Functional overview Timers and watchdogs The ultra-low-power STM32L151VD-X and STM32L152VD-X devices include seven general-purpose timers, two basic timers, and two watchdog timers. Table 5 compares the features of the general-purpose and basic timers. Table 5. Timer feature comparison DMA Capture/compare Complementary request channels outputs generation Timer Counter resolution Counter type Prescaler factor TIM2, TIM3, TIM4 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 No TIM5 32-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 No TIM9 16-bit Up, down, up/down Any integer between 1 and 65536 No 2 No TIM10, TIM11 16-bit Up Any integer between 1 and 65536 No 1 No TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No 3.16.1 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and TIM11) There are seven synchronizable general-purpose timers embedded in the STM32L151VD-X and STM32L152VD-X devices (see Table 5 for differences). TIM2, TIM3, TIM4, TIM5 TIM2, TIM3, TIM4 are based on 16-bit auto-reload up/down counter. TIM5 is based on a 32bit auto-reload up/down counter. They include a 16-bit prescaler. They feature four independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input captures/output compares/PWMs on the largest packages. TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together or with the TIM10, TIM11 and TIM9 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. TIM10, TIM11 and TIM9 TIM10 and TIM11 are based on a 16-bit auto-reload upcounter. TIM9 is based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. DocID027267 Rev 4 27/119 49 Functional overview STM32L151VD-X STM32L152VD-X They can also be used as simple time bases and be clocked by the LSE clock source (32.768 kHz) to provide time bases independent from the main CPU clock. 3.16.2 Basic timers (TIM6 and TIM7) These timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit time bases. 3.16.3 SysTick timer This timer is dedicated to the OS, but could also be used as a standard downcounter. It is based on a 24-bit downcounter with autoreload capability and a programmable clock source. It features a maskable system interrupt generation when the counter reaches 0. 3.16.4 Independent watchdog (IWDG) The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 37 kHz internal RC and, as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode. 3.16.5 Window watchdog (WWDG) The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.17 Communication interfaces 3.17.1 I²C bus Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes. They support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master mode. A hardware CRC generation/verification is embedded. They can be served by DMA and they support SM Bus 2.0/PM Bus. 3.17.2 Universal synchronous/asynchronous receiver transmitter (USART) The three USART and two UART interfaces are able to communicate at speeds of up to 4 Mbit/s. They support IrDA SIR ENDEC and have LIN Master/Slave capability. The three USARTs provide hardware management of the CTS and RTS signals and are ISO 7816 compliant. All USART/UART interfaces can be served by the DMA controller. 28/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X 3.17.3 Functional overview Serial peripheral interface (SPI) Up to three SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. The SPIs can be served by the DMA controller. 3.17.4 Inter-integrated sound (I2S) Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can operate in master or slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. The I2Ss can be served by the DMA controller. 3.17.5 Universal serial bus (USB) The STM32L151VD-X and STM32L152VD-X devices embed a USB device peripheral compatible with the USB full-speed 12 Mbit/s. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and supports suspend/resume. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator). 3.18 CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. DocID027267 Rev 4 29/119 49 Functional overview STM32L151VD-X STM32L152VD-X 3.19 Development support 3.19.1 Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG JTMS and JTCK pins are shared with SWDAT and SWCLK, respectively, and a specific sequence on the JTMS pin is used to switch between JTAG-DP and SW-DP. The JTAG port can be permanently disabled with a JTAG fuse. 3.19.2 Embedded Trace Macrocell™ The ARM® Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32L151VD-X and STM32L152VD-X device through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools. 30/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X Pin descriptions                          6$$? 633? 0% 0% 0" 0" "//4 0" 0" 0" 0" 0" 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0# 0# 0# 0! 0! Figure 3. STM32L152VD-X LQFP100 pinout                          ,1&0                          6$$? 633? 0( 0! 0! 0! 0! 0! 0! 0# 0# 0# 0# 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0" 0" 0" 0"                          0% 0% 0% 0% 0% 7+50 6,#$ 0# 7+50 0# /3#?). 0# /3#?/54 633? 6$$? 0( /3#?). 0( /3#?/54 .234 0# 0# 0# 0# 633! 62%& 62%& 6$$! 0! 7+50 0! 0! 0! 633? 6$$? 0! 0! 0! 0! 0# 0# 0" 0" 0" 0% 0% 0% 0% 0% 0% 0% 0% 0% 0" 0" 633? 6$$? 4 Pin descriptions AIC 1. This figure shows the package top view. DocID027267 Rev 4 31/119 49 Pin descriptions STM32L151VD-X STM32L152VD-X Figure 4. STM32L151VD-X WLCSP104 ballout ϭ Ϯ ϯ ϰ ϱ ϲ ϳ ϴ ϵ  s^^ͺϮ WϬ Wϰ Wϳ Wϰ Wϱ KKdϬ Wϭ sͺϯ  Wϭϱ WϭϮ Wϱ Wϲ Wϯ Wϳ WϬ sͺϯ Wϱ  sͺϮ Wϭϭ WϮ Wϯ Wϲ Wϵ s^^ͺϯ Wϰ  W,Ϯ s^^ͺϮ Wϭϰ Wϭ Wϴ WϮ Wϯ Wϭϰ K^ϯϮ/E  Wϭϭ WϭϮ Wϭϯ WϭϬ Wϲ t s^^ͺϱ & Wϵ WϭϬ Wϴ Wϵ WϬ EZ^d W,Ϭ K^/E W,ϭ K^Khd ' Wϳ Wϴ Wϭϱ Wϭϭ s sZ&н Wϯ WϮ , Wϲ Wϭϯ WϭϮ Wϴ Wϲ Wϯ sZ&Ͳ Wϭ : Wϭϰ Wϵ Wϭϯ WϭϮ WϭϬ WϬ Wϰ WϮ s^^ < WϭϬ Wϭϱ sͺϭ Wϭϱ Wϭϯ Wϭ Wϳ s^^ͺϰ WϬ t Wϭϰ s^^ͺϭ Wϭϭ Wϭϰ Wϭϭ Wϳ Wϰ sͺϰ Wϭ D s^^ͺϭ WϭϬ WϭϮ Wϵ Wϴ WϮ Wϱ Wϱ sͺϰ Wϭϯ t VDDA - Electrostatic discharge voltage (human body model) see Section 6.3.11 VESD(HBM) Unit V mV V 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 10 for maximum allowed injected current values. 3. Include VREF- pin. Table 10. Current characteristics Symbol IVDD(Σ) IVSS(Σ) (2) Ratings Max. Total current into sum of all VDD_x power lines (source)(1) 100 (sink)(1) 100 Total current out of sum of all VSS_x ground lines IVDD(PIN) Maximum current into each VDD_x power pin (source)(1) 70 IVSS(PIN) (sink)(1) -70 IIO ΣIIO(PIN) IINJ(PIN) (3) ΣIINJ(PIN) Maximum current out of each VSS_x ground pin Output current sunk by any I/O and control pin 25 Output current sourced by any I/O and control pin - 25 Total output current sunk by sum of all IOs and control pins(2) Total output current sourced by sum of all IOs and control pins Injected current on five-volt tolerant Injected current on any other pin mA 60 (2) I/O(4), Unit RST and B pins (5) Total injected current (sum of all I/O and control pins)(6) -60 -5/+0 ±5 ± 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages. 3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.17. DocID027267 Rev 4 53/119 107 Electrical characteristics STM32L151VD-X STM32L152VD-X 4. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN VDD while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer to Table 9: Voltage characteristics for the maximum allowed input voltage values. 6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 11. Thermal characteristics Symbol TSTG TJ Ratings Storage temperature range Maximum junction temperature 6.3 Operating conditions 6.3.1 General operating conditions Value Unit –65 to +150 °C 150 °C Table 12. General operating conditions Symbol Parameter Conditions Min Max fHCLK Internal AHB clock frequency - 0 32 fPCLK1 Internal APB1 clock frequency - 0 32 fPCLK2 Internal APB2 clock frequency - 0 32 BOR detector disabled 1.65 3.6 BOR detector enabled, at power on 1.8 3.6 BOR detector disabled, after power on 1.65 3.6 1.65 3.6 1.8 3.6 FT pins; 2.0 V ≤VDD -0.3 5.5(3) FT pins; VDD < 2.0 V -0.3 5.25(3) 0 5.5 -0.3 VDD+0.3 LQFP100 package - 465 WLCSP104 package - 435 Ambient temperature for 6 suffix version Maximum power dissipation(5) –40 85 Ambient temperature for 7 suffix version Maximum power dissipation –40 105 6 suffix version –40 105 7 suffix version –40 110 VDD (1) VDDA VIN Standard operating voltage Analog operating voltage (ADC and DAC not used) Analog operating voltage (ADC or DAC used) I/O input voltage Must be the same voltage as VDD(2) BOOT0 pin Any other pin PD TA TJ Power dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for suffix 7(4) Junction temperature range 1. When the ADC is used, refer to Table 54: ADC characteristics. 54/119 DocID027267 Rev 4 Unit MHz V V V mW °C °C STM32L151VD-X STM32L152VD-X Electrical characteristics 2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA can be tolerated during power-up . 3. To sustain a voltage higher than VDD+0.3V, the internal pull-up/pull-down resistors must be disabled. 4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 67: Thermal characteristics on page 114). 5. In low-power dissipation state, TA can be extended to -40°C to 105°C temperature range as long as TJ does not exceed TJ max (see Table 67: Thermal characteristics on page 114). 6.3.2 Embedded reset and power control block characteristics The parameters given in the following table are derived from the tests performed under the conditions summarized in Table 12. Table 13. Embedded reset and power control block characteristics Symbol Parameter VDD rise time rate tVDD(1) VDD fall time rate TRSTTEMPO(1) Reset temporization VPOR/PDR Power on/power down reset threshold VBOR0 Brown-out reset threshold 0 VBOR1 Brown-out reset threshold 1 VBOR2 Brown-out reset threshold 2 Conditions Min Typ Max BOR detector enabled 0 - ∞ BOR detector disabled 0 - 1000 BOR detector enabled 20 - ∞ BOR detector disabled 0 - 1000 VDD rising, BOR enabled - 2 3.3 0.4 0.7 1.6 Falling edge 1 1.5 1.65 Rising edge 1.3 1.5 1.65 Falling edge 1.67 1.7 1.74 Rising edge 1.69 1.76 1.8 Falling edge 1.87 1.93 1.97 Rising edge 1.96 2.03 2.07 Falling edge 2.22 2.30 2.35 Rising edge 2.31 2.41 2.44 VDD rising, BOR disabled(2) DocID027267 Rev 4 Unit µs/V ms V 55/119 107 Electrical characteristics STM32L151VD-X STM32L152VD-X Table 13. Embedded reset and power control block characteristics (continued) Symbol Parameter Conditions VBOR3 Brown-out reset threshold 3 VBOR4 Brown-out reset threshold 4 VPVD0 Programmable voltage detector threshold 0 VPVD1 PVD threshold 1 VPVD2 PVD threshold 2 VPVD3 PVD threshold 3 VPVD4 PVD threshold 4 VPVD5 PVD threshold 5 VPVD6 PVD threshold 6 Vhyst Hysteresis voltage Min Typ Max Falling edge 2.45 2.55 2.6 Rising edge 2.54 2.66 2.7 Falling edge 2.68 2.8 2.85 Rising edge 2.78 2.9 2.95 Falling edge 1.8 1.85 1.88 Rising edge 1.88 1.94 1.99 Falling edge 1.98 2.04 2.09 Rising edge 2.08 2.14 2.18 Falling edge 2.20 2.24 2.28 Rising edge 2.28 2.34 2.38 Falling edge 2.39 2.44 2.48 Rising edge 2.47 2.54 2.58 Falling edge 2.57 2.64 2.69 Rising edge 2.68 2.74 2.79 Falling edge 2.77 2.83 2.88 Rising edge 2.87 2.94 2.99 Falling edge 2.97 3.05 3.09 Rising edge 3.08 3.15 3.20 BOR0 threshold - 40 - All BOR and PVD thresholds excepting BOR0 - 100 - Unit V mV 1. Guaranteed by characterization results. 2. Valid for device version without BOR at power up. Please see option “D” in Ordering information scheme for more details. 56/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X 6.3.3 Electrical characteristics Embedded internal reference voltage The parameters given in Table 15 are based on characterization results, unless otherwise specified. Table 14. Embedded internal reference voltage calibration values Calibration value name Description Raw data acquired at temperature of 30 °C ±5 °C VDDA= 3 V ±10 mV VREFINT_CAL Memory address 0x1FF8 00F8 - 0x1FF8 00F9 Table 15. Embedded internal reference voltage Symbol VREFINT out Parameter (1) Conditions Internal reference voltage Min Typ – 40 °C < TJ < +110 °C 1.202 1.224 Max Unit 1.242 V Internal reference current consumption - - 1.4 2.3 µA TVREFINT Internal reference startup time - - 2 3 ms VVREF_MEAS VDDA and VREF+ voltage during VREFINT factory measure - 2.99 3 3.01 V AVREF_MEAS Including uncertainties Accuracy of factory-measured VREF due to ADC and (2) value VDDA/VREF+ values - - ±5 mV TCoeff(3) Temperature coefficient –40 °C < TJ < +110 °C - 25 100 ppm/°C ACoeff(3) Long-term stability 1000 hours, T= 25 °C - - 1000 ppm VDDCoeff(3) Voltage coefficient 3.0 V < VDDA < 3.6 V - - 2000 ppm/V TS_vrefint(3) ADC sampling time when reading the internal reference voltage - 4 - - µs TADC_BUF(3) Startup time of reference voltage buffer for ADC - - - 10 µs IBUF_ADC(3) Consumption of reference voltage buffer for ADC - - 13.5 25 µA IVREF_OUT(3) VREF_OUT output current (4) - - - 1 µA CVREF_OUT(3) VREF_OUT output load - - - 50 pF Consumption of reference voltage buffer for VREF_OUT and COMP - - 730 1200 nA VREFINT_DIV1(3) 1/4 reference voltage - 24 25 26 VREFINT_DIV2(3) 1/2 reference voltage - 49 50 51 VREFINT_DIV3(3) 3/4 reference voltage - 74 75 76 IREFINT ILPBUF(3) % VREFINT 1. Guaranteed by test in production. 2. The internal VREF value is individually measured in production and stored in dedicated EEPROM bytes. 3. Guaranteed by characterization results. 4. To guarantee less than 1% VREF_OUT deviation. DocID027267 Rev 4 57/119 107 Electrical characteristics 6.3.4 STM32L151VD-X STM32L152VD-X Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 10: Current consumption measurement scheme. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to the Dhrystone 2.1 code, unless otherwise specified. The current consumption values are derived from tests performed under ambient temperature TA = 25 °C and VDD supply voltage conditions summarized in Table 12: General operating conditions, unless otherwise specified. The MCU is placed under the following conditions: 58/119 • All I/O pins are configured in analog input mode • All peripherals are disabled except when explicitly mentioned. • The Flash memory access time, 64-bit access and prefetch is adjusted depending on fHCLK frequency and voltage range to provide the best CPU performance. • When the peripherals are enabled fAPB1 = fAPB2 = fAHB. • When PLL is ON, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or HSE = 16 MHz (if HSE bypass mode is used). • The HSE user clock applied to OSCI_IN input follows the characteristic specified in Table 25: High-speed external user clock characteristics. • For maximum current consumption VDD = VDDA = 3.6 V is applied to all supply pins. • For typical current consumption VDD = VDDA = 3.0 V is applied to all supply pins if not specified otherwise. DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X Electrical characteristics Table 16. Current consumption in Run mode, code with data processing running from Flash Symbol Parameter fHCLK Typ Max(1) 1 MHz 225 500 2 MHz 420 750 4 MHz 780 1200 4 MHz 0.98 1.6 8 MHz 1.85 2.9 16 MHz 3.6 5.2 8 MHz 2.2 3.5 16 MHz 4.4 6.5 32 MHz 8.6 12 Range 2, VCORE=1.5 V VOS[1:0] = 10 16 MHz 3.6 5.2 Range 1, VCORE=1.8 V VOS[1:0] = 01 32 MHz 8.7 12.3 65 kHz 42 145 524 kHz 135 250 4.2 MHz 820 1200 Conditions Range 3, VCORE=1.2 V VOS[1:0] = 11 IDD (Run from Flash) Supply current in Run mode, code executed from Flash fHSE = fHCLK up to 16 MHz included, Range 2, VCORE=1.5 fHSE = fHCLK/2 V VOS[1:0] = 10 above 16 MHz (PLL (2) ON) Range 1, VCORE=1.8 V VOS[1:0] = 01 HSI clock source (16 MHz) MSI clock, 65 kHz MSI clock, 524 kHz Range 3, VCORE=1.2 V VOS[1:0] = 11 MSI clock, 4.2 MHz Unit µA mA µA 1. Guaranteed by characterization results, unless otherwise specified. 2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register). DocID027267 Rev 4 59/119 107 Electrical characteristics STM32L151VD-X STM32L152VD-X Table 17. Current consumption in Run mode, code with data processing running from RAM Symbol Parameter Conditions Typ 1 MHz 200 470 2 MHz 360 780 4 MHz 685 1200 4 MHz 0.80 1.5 8 MHz 1.6 3 16 MHz 3.1 5 8 MHz 1.9 3.5 16 MHz 3.7 5.55 32 MHz 7.55 10.9 Range 2, VCORE=1.5 V VOS[1:0] = 10 16 MHz 3.15 4.8 Range 1, VCORE=1.8 V VOS[1:0] = 01 32 MHz 7.75 11.7 65 kHz 40 130 524 kHz 115 215 4.2 MHz 715 1100 Range 3, VCORE=1.2 V VOS[1:0] = 11 fHSE = fHCLK up to 16 MHz included, fHSE = fHCLK/2 above 16 MHz (PLL ON)(2) IDD (Run from RAM) Supply current in Run mode, code executed from RAM, Flash switched off Range 2, VCORE=1.5 V VOS[1:0] = 10 Range 1, VCORE=1.8 V VOS[1:0] = 01 HSI clock source (16 MHz) MSI clock, 65 kHz Range 3, MSI clock, 524 kHz VCORE=1.2 V VOS[1:0] = 11 MSI clock, 4.2 MHz 1. Guaranteed by characterization results, unless otherwise specified. 2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register). 60/119 Max(1) Unit fHCLK DocID027267 Rev 4 µA mA µA STM32L151VD-X STM32L152VD-X Electrical characteristics Table 18. Current consumption in Sleep mode Symbol Parameter Conditions Range 3, VCORE=1.2 V VOS[1:0] = 11 fHSE = fHCLK up to 16 MHz included, Range 2, fHSE = fHCLK/2 VCORE=1.5 V above 16 MHz (PLL VOS[1:0] = 10 ON)(2) Supply current in Sleep mode, Flash OFF HSI clock source (16 MHz) Typ Max(1) 1 MHz 51 220 2 MHz 81 300 4 MHz 140 380 4 MHz 175 500 8 MHz 330 700 16 MHz 625 1100 Range 1, VCORE=1.8 V VOS[1:0] = 01 8 MHz 395 800 16 MHz 760 1250 32 MHz 1700 2700 Range 2, VCORE=1.5 V VOS[1:0] = 10 16 MHz 670 1100 Range 1, VCORE=1.8 V VOS[1:0] = 01 32 MHz 1750 2700 65 kHz 19 92 524 kHz 33 110 4.2 MHz 150 273 1 MHz 63 250 2 MHz 93 300 4 MHz 155 380 4 MHz 190 500 MSI clock, 65 kHz IDD (Sleep) fHCLK Range 3, MSI clock, 524 kHz VCORE=1.2 V VOS[1:0] = 11 MSI clock, 4.2 MHz Range 3, VCORE=1.2 V VOS[1:0] = 11 fHSE = fHCLK up to 16 MHz included, Range 2, fHSE = fHCLK/2 VCORE=1.5 V above 16 MHz (PLL VOS[1:0] = 10 Supply current ON)(2) in Sleep Range 1, mode, Flash VCORE=1.8 V ON VOS[1:0] = 01 8 MHz 340 700 16 MHz 640 1120 8 MHz 410 800 16 MHz 770 1300 32 MHz 1750 2700 Range 2, VCORE=1.5 V VOS[1:0] = 10 16 MHz 690 1160 Range 1, VCORE=1.8 V VOS[1:0] = 01 32 MHz 1750 2800 65 kHz 31 105 524 kHz 45 125 4.2 MHz 160 290 HSI clock source (16 MHz) Supply current MSI clock, 65 kHz Range 3, in Sleep MSI clock, 524 kHz VCORE=1.2V mode, Flash VOS[1:0] = 11 ON MSI clock, 4.2 MHz Unit µA 1. Guaranteed by characterization results, unless otherwise specified. 2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register) DocID027267 Rev 4 61/119 107 Electrical characteristics STM32L151VD-X STM32L152VD-X Table 19. Current consumption in Low-power run mode Symbol Parameter All peripherals OFF, code executed from RAM, Flash switched OFF, VDD from 1.65 V to 3.6 V IDD (LP Run) Typ Max(1) 11 16 TA = 85 °C 36.2 40 TA = 105 °C 65.4 102 TA =-40 °C to 25 °C 16.5 23 TA = 85 °C 41.9 48 TA = 105 °C 72.1 108 30 45 TA = 55 °C 36.1 48 TA = 85 °C 55.7 66 TA = 105 °C 86.6 125 26 40.5 TA = 85 °C 53.2 67 TA = 105 °C 92.1 120 33 49 TA = 85 °C 60.2 75 TA = 105 °C 95.6 130 TA = -40 °C to 25 °C 48.5 71 TA = 55 °C 54.7 75 TA = 85 °C 76.1 95 TA = 105 °C 112 140 - 200 Conditions Supply current in Low-power run mode MSI clock, 65 kHz fHCLK = 32 kHz MSI clock, 65 kHz fHCLK = 65 kHz TA = -40 °C to 25 °C MSI clock, 131 kHz fHCLK = 131 kHz MSI clock, 65 kHz fHCLK = 32 kHz All peripherals OFF, code executed from Flash, VDD from 1.65 V to 3.6 V Max allowed VDD from IDD max current in 1.65 V to (LP Run) Low-power 3.6 V run mode TA = -40 °C to 25 °C MSI clock, 65 kHz fHCLK = 65 kHz MSI clock, 131 kHz fHCLK = 131 kHz TA = -40 °C to 25 °C TA = -40 °C to 25 °C - 1. Guaranteed by characterization results, unless otherwise specified. 62/119 DocID027267 Rev 4 - Unit µA STM32L151VD-X STM32L152VD-X Electrical characteristics Table 20. Current consumption in Low-power sleep mode Symbol Parameter MSI clock, 65 kHz fHCLK = 32 kHz Flash OFF MSI clock, 65 kHz fHCLK = 32 kHz Flash ON All peripherals OFF, VDD from 1.65 V to 3.6 V IDD (LP Sleep) Typ Max(1) TA = -40 °C to 25 °C 5.5 - TA = -40 °C to 25 °C 18.5 21 TA = 85 °C 26.8 29 TA = 105 °C 37 47 TA = -40 °C to 25 °C 18.5 21 TA = 85 °C 27.2 29 TA = 105 °C 37.3 47 TA = -40 °C to 25 °C 21.5 25 23.7 26 29.8 32 TA = 105 °C 39.7 50 TA = -40 °C to 25 °C 18.5 21 TA = 85 °C 26.8 29 TA = 105 °C 38.3 47 TA = -40 °C to 25 °C 18.5 21 TA = 85 °C 27.2 29 TA = 105 °C 38.5 47 TA = -40 °C to 25 °C 21.5 25 23.7 26 29.8 32 41.2 50 - 200 Conditions MSI clock, 65 kHz fHCLK = 65 kHz, Flash ON MSI clock, 131 kHz T = 55 °C A fHCLK = 131 kHz, TA = 85 °C Flash ON Supply current in Low-power sleep mode MSI clock, 65 kHz fHCLK = 32 kHz TIM9 and USART1 enabled, Flash ON, VDD from 1.65 V to 3.6 V MSI clock, 65 kHz fHCLK = 65 kHz MSI clock, 131 kHz TA = 55 °C fHCLK = 131 kHz TA = 85 °C TA = 105 °C IDD max (LP Sleep) Max allowed VDD from 1.65 V current in to 3.6 V Low-power sleep mode - - Unit µA 1. Guaranteed by characterization results, unless otherwise specified. DocID027267 Rev 4 63/119 107 Electrical characteristics STM32L151VD-X STM32L152VD-X Table 21. Typical and maximum current consumptions in Stop mode Symbol Parameter Conditions LCD OFF RTC clocked by LSI or LSE external clock (32.768kHz), regulator in LP mode, HSI and HSE OFF (no independent watchdog) Typ TA = -40°C to 25°C VDD = 1.8 V 1.18 - TA = -40°C to 25°C 1.4 4 TA = 55°C 3.02 6 TA= 85°C 7.44 11 TA = 105°C 15.5 27 1.5 6 4.65 7 9.07 13 15.6 31 3.9 10 5.19 11 9.8 17 TA = 105°C 18.4 48 TA = -40°C to 25°C 1.65 - TA = 55°C 3.32 - TA= 85°C 7.83 - 16 - 1.75 - 4.9 - 9.41 - 15.8 - 4.1 - 5.53 - 10 - TA = 105°C 18.5 - TA = -40°C to 25°C VDD = 1.8V 1.33 - TA = -40°C to 25°C VDD = 3.0V 1.62 - TA = -40°C to 25°C VDD = 3.6V 1.87 - TA = -40°C to 25°C LCD TA = 55°C ON (static T = 85°C A duty)(2) TA = 105°C TA = -40°C to 25°C LCD TA = 55°C ON (1/8 duty)(3) TA= 85°C IDD (Stop with RTC) Supply current in Stop mode with RTC enabled LCD OFF TA = 105°C TA = -40°C to 25°C LCD TA = 55°C ON (static T = 85°C A duty)(2) TA = 105°C RTC clocked by LSE external quartz (32.768kHz), regulator in LP mode, TA = -40°C to 25°C HSI and HSE OFF LCD TA = 55°C (no independent ON (1/8 watchdog(4) duty)(3) TA= 85°C LCD OFF 64/119 DocID027267 Rev 4 Max(1) Unit µA STM32L151VD-X STM32L152VD-X Electrical characteristics Table 21. Typical and maximum current consumptions in Stop mode (continued) Symbol Parameter Conditions Regulator in LP mode, HSI and HSE OFF, independent watchdog and LSI enabled IDD (Stop) Supply current in Stop mode (RTC disabled) Typ TA = -40°C to 25°C 1.8 2.2 TA = -40°C to 25°C 0.560 1.5 2.18 4 6.6 12 14.9 26 2 - 1.45 - 1.45 - Regulator in LP mode, LSI, HSI T = 55°C A and HSE OFF (no independent TA= 85°C watchdog) TA = 105°C IDD (WU from Stop) MSI = 4.2 MHz Supply current during wakeup from Stop MSI = 1.05 MHz mode MSI = 65 kHz(5) Max(1) Unit TA = -40°C to 25°C µA mA 1. Guaranteed by characterization results, unless otherwise specified. 2. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected. 3. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected. 4. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors. 5. When MSI = 64 kHz, the RMS current is measured over the first 15 µs following the wakeup event. For the remaining part of the wakeup period, the current corresponds the Run mode current. DocID027267 Rev 4 65/119 107 Electrical characteristics STM32L151VD-X STM32L152VD-X Table 22. Typical and maximum current consumptions in Standby mode Symbol Parameter Typ Max(1) 0.865 - 1.11 1.9 1.72 2.2 TA= 85 °C 2.12 4 TA = 105 °C 2.54 8.3(2) TA = -40 °C to 25 °C VDD = 1.8 V 0.97 - TA = -40 °C to 25 °C 1.28 - TA = 55 °C 2.01 - TA= 85 °C 2.5 - TA = 105 °C 2.98 - 1 1.7 0.29 1 0.96 1.3 1.38 3 1.98 7(2) 1 - Conditions TA = -40 °C to 25 °C VDD = 1.8 V T = -40 °C to 25 °C RTC clocked by LSI (no A independent watchdog) TA = 55 °C IDD (Standby with RTC) Supply current in Standby mode with RTC enabled RTC clocked by LSE external quartz (no independent watchdog)(3) Independent watchdog TA = -40 °C to 25 °C and LSI enabled IDD (Standby) Supply current in Standby mode (RTC disabled) TA = -40 °C to 25 °C Independent watchdog TA = 55 °C and LSI OFF TA = 85 °C TA = 105 °C IDD (WU from Standby) Supply current during wakeup time from Standby mode - TA = -40 °C to 25 °C Unit µA mA 1. Guaranteed by characterization results, unless otherwise specified. 2. Guaranteed by test in production. 3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors. On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in the following table. The MCU is placed under the following conditions: 66/119 • all I/O pins are in input mode with a static value at VDD or VSS (no load) • all peripherals are disabled unless otherwise mentioned • the given value is calculated by measuring the current consumption – with all peripherals clocked off – with only one peripheral clocked on DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X Electrical characteristics Table 23. Peripheral current consumption(1) Typical consumption, VDD = 3.0 V, TA = 25 °C Peripheral APB1 Range 1, Range 2, Range 3, VCORE= VCORE= VCORE= Low-power 1.8 V 1.5 V 1.2 V sleep and run VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11 TIM2 12.0 10.0 8.0 10.0 TIM3 10.5 8.8 7.0 8.8 TIM4 10.4 8.8 7.0 8.8 TIM5 13.8 11.5 9.1 11.5 TIM6 3.9 3.0 2.5 3.0 TIM7 3.8 3.3 2.6 3.3 LCD 4.2 3.6 2.8 3.6 WWDG 2.9 2.5 2.1 2.5 SPI2 5.4 4.4 3.5 4.4 SPI3 5.5 4.6 3.7 4.6 USART2 7.6 6.2 4.9 6.2 USART3 7.6 6.2 5.0 6.2 USART4 7.3 6.1 4.8 6.1 USART5 7.6 6.3 5.0 6.3 I2C1 7.3 6.1 4.8 6.1 I2C2 7.2 5.9 4.7 5.9 USB 13.0 11.2 8.9 11.2 PWR 2.6 2.3 1.9 2.3 DAC 5.9 5.0 4.0 5.0 COMP 3.9 3.3 2.6 3.3 DocID027267 Rev 4 Unit µA/MHz (fHCLK) 67/119 107 Electrical characteristics STM32L151VD-X STM32L152VD-X Table 23. Peripheral current consumption(1) (continued) Typical consumption, VDD = 3.0 V, TA = 25 °C Peripheral APB2 AHB Range 1, Range 2, Range 3, VCORE= VCORE= VCORE= Low-power 1.8 V 1.5 V 1.2 V sleep and run VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11 SYSCFG & RI 2.9 2.4 2.0 2.4 TIM9 8.2 6.9 5.5 6.9 TIM10 6.2 5.1 4.1 5.1 TIM11 6.2 5.1 4.1 5.1 ADC 9.5 7.9 6.2 7.9 SPI1 4.8 3.9 3.2 3.9 USART1 8.2 6.9 5.4 6.9 GPIOA 6.3 5.3 4.1 5.3 GPIOB 6.3 5.3 4.1 5.3 GPIOC 6.3 5.2 4.1 5.2 GPIOD 8.1 6.8 5.4 6.8 GPIOE 6.7 5.7 4.5 5.7 GPIOF 5.9 4.9 3.9 4.9 GPIOG 7.2 6.1 4.9 6.1 GPIOH 1.7 1.4 1.1 1.4 CRC 0.8 0.7 0.5 0.7 FLASH 21.6 18.1 16.0 - (3) DMA1 16.8 14.5 11.5 14.5 DMA2 15.7 13.6 10.8 13.6 222 184 160 165.9 (2) All enabled IDD (RTC) 0.4 IDD (LCD) 3.1 IDD (ADC)(4) 1450 IDD (DAC)(5) 340 IDD (COMP1) 0.16 IDD (COMP2) Slow mode 2 Fast mode 5 IDD (PVD / BOR)(6) 2.6 IDD (IWDG) 0.25 Unit µA/MHz (fHCLK) µA 1. Data based on differential IDD measurement between all peripherals OFF an one peripheral with clock enabled, in the following conditions: fHCLK = 32 MHz (range 1), fHCLK = 16 MHz (range 2), fHCLK = 4 MHz (range 3), fHCLK = 64kHz (Lowpower run/sleep), fAPB1 = fHCLK, fAPB2 = fHCLK, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling. 2. HSI oscillator is OFF for this measure. 68/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X Electrical characteristics 3. In Low-power sleep and run mode, the Flash memory must always be in power-down mode. 4. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion (HSI consumption not included). 5. Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC conversion of VDD/2. DAC is in buffered mode, output is left floating. 6. Including supply current of internal reference voltage. 6.3.5 Wakeup time from low-power mode The wakeup times given in the following table are measured with the MSI RC oscillator. The clock source used to wake up the device depends on the current operating mode: • Sleep mode: the clock source is the clock that was set before entering Sleep mode • Stop mode: the clock source is the MSI oscillator in the range configured before entering Stop mode • Standby mode: the clock source is the MSI oscillator running at 2.1 MHz All timings are derived from tests performed under the conditions summarized in Table 12. Table 24. Low-power mode wakeup timings Symbol tWUSLEEP tWUSLEEP_LP Parameter Wakeup from Sleep mode tWUSTDBY Typ Max(1) Unit fHCLK = 32 MHz 0.4 - fHCLK = 262 kHz Flash enabled 46 - fHCLK = 262 kHz Flash switched OFF 46 - fHCLK = fMSI = 4.2 MHz 8.2 - fHCLK = fMSI = 4.2 MHz Voltage range 1 and 2 7.7 8.9 fHCLK = fMSI = 4.2 MHz Voltage range 3 8.2 13.1 fHCLK = fMSI = 2.1 MHz 10.2 13.4 fHCLK = fMSI = 1.05 MHz 16 20 fHCLK = fMSI = 524 kHz 31 37 fHCLK = fMSI = 262 kHz 57 66 fHCLK = fMSI = 131 kHz 112 123 fHCLK = MSI = 65 kHz 221 236 Wakeup from Standby mode ULP bit = 1 and FWU bit = 1 fHCLK = MSI = 2.1 MHz 58 104 Wakeup from Standby mode FWU bit = 0 fHCLK = MSI = 2.1 MHz 2.6 3.25 Wakeup from Low-power sleep mode, fHCLK = 262 kHz Wakeup from Stop mode, regulator in Run mode ULP bit = 1 and FWU bit = 1 tWUSTOP Conditions Wakeup from Stop mode, regulator in low-power mode ULP bit = 1 and FWU bit = 1 µs ms 1. Guaranteed by characterization, unless otherwise specified DocID027267 Rev 4 69/119 107 Electrical characteristics 6.3.6 STM32L151VD-X STM32L152VD-X External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The external clock signal has to respect the I/O characteristics in Section 6.3.12. However, the recommended clock input waveform is shown in Figure 11. Table 25. High-speed external user clock characteristics(1) Symbol fHSE_ext Parameter User external clock source frequency Conditions Min Typ Max Unit CSS is on or PLL is used 1 8 32 MHz CSS is off, PLL not used 0 8 32 MHz VHSEH OSC_IN input pin high level voltage 0.7VDD - VDD VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD 12 - - tw(HSEH) tw(HSEL) OSC_IN high or low time tr(HSE) tf(HSE) OSC_IN rise or fall time - - 20 OSC_IN input capacitance - 2.6 - Cin(HSE) - V ns pF 1. Guaranteed by design. Figure 11. High-speed external clock source AC timing diagram WZ +6(+ 9+6(+  9+6(/  WU +6( WI +6( WZ +6(/ W 7+6( 069 70/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X Electrical characteristics Low-speed external user clock generated from an external source The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under the conditions summarized in Table 12. Table 26. Low-speed external user clock characteristics(1) Symbol Parameter Conditions fLSE_ext User external clock source frequency VLSEH OSC32_IN input pin high level voltage VLSEL OSC32_IN input pin low level voltage tw(LSEH) tw(LSEL) OSC32_IN high or low time tr(LSE) tf(LSE) OSC32_IN rise or fall time CIN(LSE) Min Typ Max Unit 1 32.768 1000 kHz 0.7VDD - VDD V - VSS - 0.3VDD 465 - ns OSC32_IN input capacitance - - - 10 - 0.6 - pF 1. Guaranteed by design. Figure 12. Low-speed external clock source AC timing diagram WZ /6(+ 9/6(+  9/6(/  WU /6( WI /6( W WZ /6(/ 7/6( 069 High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 1 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 27. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). DocID027267 Rev 4 71/119 107 Electrical characteristics STM32L151VD-X STM32L152VD-X Table 27. HSE oscillator characteristics(1)(2) Symbol fOSC_IN Parameter Conditions Min Typ Max Unit 24 MHz Oscillator frequency - 1 RF Feedback resistor - - 200 - kΩ C Recommended load capacitance versus equivalent serial resistance of the crystal (RS)(3) RS = 30 Ω - 20 - pF VDD= 3.3 V, VIN = VSS with 30 pF load - - 3 mA C = 20 pF fOSC = 16 MHz - - 2.5 (startup) 0.7 (stabilized) C = 10 pF fOSC = 16 MHz - - 2.5 (startup) 0.46 (stabilized) Startup 3.5 - - mA /V VDD is stabilized - 1 - ms IHSE IDD(HSE) gm tSU(HSE)(4) HSE driving current HSE oscillator power consumption Oscillator transconductance Startup time mA 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Guaranteed by characterization results. 3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions. 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 13). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. 72/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X Electrical characteristics Figure 13. HSE oscillator circuit diagram I+6(WRFRUH 5P 5) &2 /P &/ 26&B,1 &P JP 5HVRQDWRU &RQVXPSWLRQ FRQWURO 5HVRQDWRU 670 26&B287 &/ DLE Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 28. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 28. LSE oscillator characteristics (fLSE = 32.768 kHz)(1) Symbol Parameter Conditions Min Typ Max Unit fLSE Low speed external oscillator frequency - - 32.768 - kHz RF Feedback resistor - - 1.2 - MΩ C(2) Recommended load capacitance versus equivalent serial resistance of the crystal (RS)(3) RS = 30 kΩ - 8 - pF ILSE LSE driving current VDD = 3.3 V, VIN = VSS - - 1.1 µA VDD = 1.8 V - 450 - VDD = 3.0 V - 600 - VDD = 3.6V - 750 - - 3 - - µA/V VDD is stabilized - 1 - s IDD (LSE) Oscillator transconductance gm tSU(LSE) LSE oscillator current consumption (4) Startup time nA 1. Guaranteed by characterization results. 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details. 4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. DocID027267 Rev 4 73/119 107 Electrical characteristics STM32L151VD-X STM32L152VD-X Note: For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see Figure 14). CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF. Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL ≤7 pF. Never use a resonator with a load capacitance of 12.5 pF. Example: if the user chooses a resonator with a load capacitance of CL = 6 pF and Cstray = 2 pF, then CL1 = CL2 = 8 pF. Figure 14. Typical application with a 32.768 kHz crystal 5HVRQDWRUZLWK LQWHJUDWHGFDSDFLWRUV &/ I/6( 26&B,1 N+] UHVRQDWRU 5) 26&B287 %LDV FRQWUROOHG JDLQ 670/[[ &/ DLE 74/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X 6.3.7 Electrical characteristics Internal clock source characteristics The parameters given in Table 29 are derived from tests performed under the conditions summarized in Table 12. High-speed internal (HSI) RC oscillator Table 29. HSI oscillator characteristics Symbol fHSI TRIM (1)(2) Parameter Conditions Min Typ Max Unit Frequency VDD = 3.0 V - 16 - MHz HSI user-trimmed resolution Trimming code is not a multiple of 16 - ± 0.4 0.7 % Trimming code is a multiple of 16 - Accuracy of the ACCHSI(2) factory-calibrated HSI oscillator - ± 1.5 % VDDA = 3.0 V, TA = 25 °C -1(3) - 1(3) % VDDA = 3.0 V, TA = 0 to 55 °C -1.5 - 1.5 % VDDA = 3.0 V, TA = -10 to 70 °C -2 - 2 % VDDA = 3.0 V, TA = -10 to 85 °C -2.5 - 2 % VDDA = 3.0 V, TA = -10 to 105 °C -4 - 2 % VDDA = 1.65 V to 3.6 V TA = -40 to 105 °C -4 - 3 % tSU(HSI)(2) HSI oscillator startup time - - 3.7 6 µs IDD(HSI)(2) HSI oscillator power consumption - - 100 140 µA 1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0). 2. Guaranteed by characterization results. 3. Guaranteed by test in production. Low-speed internal (LSI) RC oscillator Table 30. LSI oscillator characteristics Symbol fLSI(1) DLSI(2) tsu(LSI)(3) IDD(LSI) (3) Parameter Min Typ Max Unit LSI frequency 26 38 56 kHz LSI oscillator frequency drift 0°C ≤TA ≤ 105°C -10 - 4 % LSI oscillator startup time - - 200 µs LSI oscillator power consumption - 400 510 nA 1. Guaranteed by test in production. 2. This is a deviation for an individual part, once the initial frequency has been measured. 3. Guaranteed by design. DocID027267 Rev 4 75/119 107 Electrical characteristics STM32L151VD-X STM32L152VD-X Multi-speed internal (MSI) RC oscillator Table 31. MSI oscillator characteristics Symbol Condition Typ MSI range 0 65.5 - MSI range 1 131 - MSI range 2 262 - MSI range 3 524 - MSI range 4 1.05 - MSI range 5 2.1 - MSI range 6 4.2 - Frequency error after factory calibration - ±0.5 - % DTEMP(MSI)(1) MSI oscillator frequency drift 0 °C ≤TA ≤105 °C - ±3 - % DVOLT(MSI)(1) MSI oscillator frequency drift 1.65 V ≤VDD ≤3.6 V, TA = 25 °C - - 2.5 %/V MSI range 0 0.75 - MSI range 1 1 - MSI range 2 1.5 - MSI range 3 2.5 - MSI range 4 4.5 - MSI range 5 8 - MSI range 6 15 - MSI range 0 30 - MSI range 1 20 - MSI range 2 15 - MSI range 3 10 - MSI range 4 6 - MSI range 5 5 - MSI range 6, Voltage range 1 and 2 3.5 - MSI range 6, Voltage range 3 5 - fMSI ACCMSI IDD(MSI)(2) tSU(MSI) 76/119 Parameter Frequency after factory calibration, done at VDD= 3.3 V and TA = 25 °C MSI oscillator power consumption MSI oscillator startup time DocID027267 Rev 4 Max Unit kHz MHz µA µs STM32L151VD-X STM32L152VD-X Electrical characteristics Table 31. MSI oscillator characteristics (continued) Symbol tSTAB(MSI)(2) fOVER(MSI) Parameter MSI oscillator stabilization time MSI oscillator frequency overshoot Condition Typ Max Unit MSI range 0 - 40 MSI range 1 - 20 MSI range 2 - 10 MSI range 3 - 4 MSI range 4 - 2.5 MSI range 5 - 2 MSI range 6, Voltage range 1 and 2 - 2 MSI range 3, Voltage range 3 - 3 Any range to range 5 - 4 Any range to range 6 - µs MHz 6 1. This is a deviation for an individual part, once the initial frequency has been measured. 2. Guaranteed by characterization results. DocID027267 Rev 4 77/119 107 Electrical characteristics 6.3.8 STM32L151VD-X STM32L152VD-X PLL characteristics The parameters given in Table 32 are derived from tests performed under the conditions summarized in Table 12. Table 32. PLL characteristics Value Symbol Parameter Unit Min Typ Max(1) PLL input clock(2) 2 - 24 MHz PLL input clock duty cycle 45 - 55 % fPLL_OUT PLL output clock 2 - 32 MHz tLOCK PLL lock time PLL input = 16 MHz PLL VCO = 96 MHz - 115 160 µs Jitter Cycle-to-cycle jitter - - ± 600 ps IDDA(PLL) Current consumption on VDDA - 220 450 IDD(PLL) Current consumption on VDD - 120 150 fPLL_IN µA 1. Guaranteed by characterization results. 2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT. 6.3.9 Memory characteristics The characteristics are given at TA = -40 to 105 °C unless otherwise specified. RAM memory Table 33. RAM and hardware registers Symbol VRM Parameter Conditions Data retention mode(1) STOP mode (or RESET) Min Typ Max Unit 1.65 - - V 1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode). 78/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X Electrical characteristics Flash memory and data EEPROM Table 34. Flash memory and data EEPROM characteristics Symbol Conditions Min Typ Max(1) Unit - 1.65 - 3.6 V Erasing - 3.28 3.94 Programming - 3.28 3.94 Average current during the whole programming / erase operation - 600 - µA Maximum current (peak) TA = 25 °C, VDD = 3.6 V during the whole programming / erase operation - 1.5 2.5 mA Parameter VDD Operating voltage Read / Write / Erase tprog Programming/ erasing time for byte / word / double word / half-page IDD ms 1. Guaranteed by design. Table 35. Flash memory and data EEPROM endurance and retention Value Symbol NCYC(2) Parameter Cycling (erase / write) Program memory Cycling (erase / write) EEPROM data memory Data retention (program memory) after 10 kcycles at TA = 85 °C tRET (2) Data retention (EEPROM data memory) after 300 kcycles at TA = 85 °C Data retention (program memory) after 10 kcycles at TA = 105 °C Data retention (EEPROM data memory) after 300 kcycles at TA = 105 °C Conditions TA = -40°C to 105 °C Min(1) Typ Max 10 - - 300 - - 30 - - 30 - - 10 - - 10 - - Unit kcycles TRET = +85 °C years TRET = +105 °C 1. Guaranteed by characterization results. 2. Characterization is done according to JEDEC JESD22-A117. DocID027267 Rev 4 79/119 107 Electrical characteristics 6.3.10 STM32L151VD-X STM32L152VD-X EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 36. They are based on the EMS levels and classes defined in application note AN1709. Table 36. EMS characteristics Symbol Parameter Conditions VFESD VDD = 3.3 V, LQFP100, TA = +25 °C, Voltage limits to be applied on any I/O pin to fHCLK = 32 MHz induce a functional disturbance conforms to IEC 61000-4-2 VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance Level/ Class VDD = 3.3 V, LQFP100, TA = +25 °C, fHCLK = 32 MHz conforms to IEC 61000-4-4 4B 4A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second. 80/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X Electrical characteristics To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 37. EMI characteristics Max vs. frequency range Symbol Parameter SEMI 6.3.11 Conditions VDD = 3.6 V, TA = 25 °C, Peak level LQFP100 package compliant with IEC 61967-2 Monitored frequency band 4 MHz 16 MHz 32 MHz voltage voltage voltage range 3 range 2 range 1 0.1 to 30 MHz -14 -6 -4 30 to 130 MHz -11 0 9 130 MHz to 1GHz -7 -1 9 SAE EMI Level 1 2 2.5 Unit dBµV - Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114, ANSI/ESD STM5.3.1. standard. Table 38. ESD absolute maximum ratings Symbol Ratings Conditions Electrostatic VESD(HBM) discharge voltage (human body model) Class TA = +25 °C, conforming to JESD22-A114 Electrostatic TA = +25 °C, conforming VESD(CDM) discharge voltage to ANSI/ESD STM5.3.1. (charge device model) Maximum Unit value(1) 2 2000 LQFP100 C4 500 WLCSP104 C3 250 V V 1. Guaranteed by characterization results. DocID027267 Rev 4 81/119 107 Electrical characteristics STM32L151VD-X STM32L152VD-X Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin • A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 39. Electrical sensitivities Symbol LU 6.3.12 Parameter Static latch-up class Conditions Class TA = +105 °C conforming to JESD78A II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –5 µA/+0 µA range), or other functional failure (for example reset occurrence oscillator frequency deviation, LCD levels). The test results are given in the Table 40. Table 40. I/O current injection susceptibility Functional susceptibility Symbol Description Injected current on all 5 V tolerant (FT) pins IINJ Injected current on BOOT0 Injected current on any other pin Negative injection Positive injection -5 (1) NA(2) -0 NA(2) -5 (1) +5 1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. 2. Injection is not possible. 82/119 DocID027267 Rev 4 Unit mA STM32L151VD-X STM32L152VD-X 6.3.13 Electrical characteristics I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 47 are derived from tests performed under the conditions summarized in Table 12. All I/Os are CMOS and TTL compliant. Table 41. I/O static characteristics Symbol VIL VIH Parameter Conditions Input low level voltage Input high level voltage Ilkg I/O Schmitt trigger voltage hysteresis(2) Input leakage current (4) Typ Max 0.3 Unit VDD(1)(2) TC and FT I/O - - BOOT0 - - 0.14 VDD(2) TC I/O 0.45 VDD+0.38(2) - - FT I/O 0.39 VDD+0.59(2) - - 0.15 VDD+0.56(2) - - BOOT0 Vhys Min V TC and FT I/O - 10% VDD(3) - BOOT0 - 0.01 - VSS ≤VIN ≤VDD I/Os with LCD - - ±50 VSS ≤VIN ≤VDD I/Os with analog switches - - ±50 VSS ≤VIN ≤VDD I/Os with analog switches and LCD - - ±50 VSS ≤VIN ≤VDD I/Os with USB - - ±250 VSS ≤VIN ≤VDD TC and FT I/Os - - ±50 FT I/O VDD ≤VIN ≤5V - - ±10 µA nA RPU Weak pull-up equivalent resistor(5)(1) VIN = VSS 25 45 65 kΩ RPD Weak pull-down equivalent resistor(5) VIN = VDD 25 45 65 kΩ CIO I/O pin capacitance - - 5 - pF 1. Guaranteed by test in production. 2. Guaranteed by design. 3. With a minimum of 200 mV. 4. The max. value may be exceeded if negative current is injected on adjacent pins. 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order). DocID027267 Rev 4 83/119 107 Electrical characteristics STM32L151VD-X STM32L152VD-X Output driving current The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ±20 mA with the non-standard VOL/VOH specifications given in Table 42. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2: • The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD(Σ) (see Table 10). • The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS(Σ) (see Table 10). Output voltage levels Unless otherwise specified, the parameters given in Table 42 are derived from tests performed under the conditions summarized in Table 12. All I/Os are CMOS and TTL compliant. Table 42. Output voltage characteristics Symbol VOL(1)(2) Parameter Output low level voltage for an I/O pin VOH (2)(3) Output high level voltage for an I/O pin VOL (3)(4) Output low level voltage for an I/O pin VOH (3)(4) Output high level voltage for an I/O pin VOL(1)(4) VOH (3)(4) Conditions Min Max IIO = 8 mA 2.7 V < VDD < 3.6 V - 0.4 VDD-0.4 - IIO = 4 mA 1.65 V < VDD < 3.6 V V -0.45 DD Output low level voltage for an I/O pin Output high level voltage for an I/O pin IIO = 20 mA 2.7 V < VDD < 3.6 V Unit 0.45 - - 1.3 VDD-1.3 - 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 10 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. Guaranteed by test in production. 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 10 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. 4. Guaranteed by characterization results. 84/119 DocID027267 Rev 4 V STM32L151VD-X STM32L152VD-X Electrical characteristics Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 15 and Table 43, respectively. Unless otherwise specified, the parameters given in Table 43 are derived from tests performed under the conditions summarized in Table 12. Table 43. I/O AC characteristics(1) OSPEEDRx [1:0] bit value(1) Symbol Maximum frequency(3) tf(IO)out tr(IO)out Output rise and fall time fmax(IO)out Maximum frequency(3) tf(IO)out tr(IO)out Output rise and fall time 00 01 Fmax(IO)out Maximum frequency(3) 10 Output rise and fall time Fmax(IO)out Maximum frequency(3) 11 - Max(2) CL = 50 pF, VDD = 2.7 V to 3.6 V - 400 CL = 50 pF, VDD = 1.65 V to 2.7 V - 400 CL = 50 pF, VDD = 2.7 V to 3.6 V - 625 CL = 50 pF, VDD = 1.65 V to 2.7 V - 625 CL = 50 pF, VDD = 2.7 V to 3.6 V - 2 CL = 50 pF, VDD = 1.65 V to 2.7 V - 1 CL = 50 pF, VDD = 2.7 V to 3.6 V - 125 CL = 50 pF, VDD = 1.65 V to 2.7 V - 250 CL = 50 pF, VDD = 2.7 V to 3.6 V - 10 CL = 50 pF, VDD = 1.65 V to 2.7 V - 2 CL = 50 pF, VDD = 2.7 V to 3.6 V - 25 CL = 50 pF, VDD = 1.65 V to 2.7 V - 125 CL = 30 pF, VDD = 2.7 V to 3.6 V - 50 CL = 50 pF, VDD = 1.65 V to 2.7 V - 8 CL = 30 pF, VDD = 2.7 V to 3.6 V - 5 CL = 50 pF, VDD = 1.65 V to 2.7 V - 30 Conditions fmax(IO)out tf(IO)out tr(IO)out Min Parameter tf(IO)out tr(IO)out Output rise and fall time tEXTIpw Pulse width of external signals detected by the EXTI controller - Unit kHz ns MHz ns MHz ns MHz ns 8 - 1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32L151xx, STM32L152xx and STM32L162xx reference manual for a description of GPIO Port configuration register. 2. Guaranteed by design. 3. The maximum frequency is defined in Figure 15. DocID027267 Rev 4 85/119 107 Electrical characteristics STM32L151VD-X STM32L152VD-X Figure 15. I/O AC characteristics definition       %84%2.!, /54054 /.P& TR)/ OUT TF)/ OUT 4 -AXIMUMFREQUENCYISACHIEVEDIFT R TF ” 4ANDIFTHEDUTYCYCLEIS  WHENLOADEDBYP& 6.3.14 AIC NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 44) Unless otherwise specified, the parameters given in Table 44 are derived from tests performed under the conditions summarized in Table 12. Table 44. NRST pin characteristics Symbol Parameter Conditions Min Typ Max VIL(NRST)(1) NRST input low level voltage - - - 0.3 VDD VIH(NRST)(1) NRST input high level voltage - 0.39VDD+0.59 - - VOL(NRST)(1) NRST output low level voltage Unit V IOL = 2 mA 2.7 V < VDD < 3.6 V - IOL = 1.5 mA 1.65 V < VDD < 2.7 V - - 0.4 Vhys(NRST)(1) NRST Schmitt trigger voltage hysteresis - - 10%VDD(2) - mV RPU Weak pull-up equivalent resistor(3) VIN = VSS 25 45 65 kΩ VF(NRST)(1) NRST input filtered pulse - - - 50 ns VNF(NRST)(3) NRST input not filtered pulse - 350 - - ns 1. Guaranteed by design. 2. With a minimum of 200 mV. 3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%. 86/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X Electrical characteristics Figure 16. Recommended NRST pin protection ([WHUQDOUHVHWFLUFXLW  1567  9'' 538 ,QWHUQDOUHVHW )LOWHU —) 670/[[ DLE 1. The reset network protects the device against parasitic resets. 0.1 uF capacitor must be placed as close as possible to the chip. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 44. Otherwise the reset will not be taken into account by the device. 6.3.15 TIM timer characteristics The parameters given in the Table 45 are guaranteed by design. Refer to Section 6.3.13: I/O port characteristics for details on the input/output ction characteristics (output compare, input capture, external clock, PWM output). Table 45. TIMx(1) characteristics Symbol tres(TIM) fEXT ResTIM tCOUNTER Parameter Timer resolution time Conditions Min Max Unit - 1 - tTIMxCLK fTIMxCLK = 32 MHz 31.25 - ns 0 fTIMxCLK/2 MHz 0 16 MHz 16 bit 65536 tTIMxCLK 2048 µs Timer external clock frequency on CH1 to CH4 f TIMxCLK = 32 MHz Timer resolution - 16-bit counter clock period when internal clock is selected (timer’s prescaler disabled) - tMAX_COUNT Maximum possible count 1 fTIMxCLK = 32 MHz 0.0312 - - 65536 × 65536 tTIMxCLK fTIMxCLK = 32 MHz - 134.2 s 1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers. DocID027267 Rev 4 87/119 107 Electrical characteristics 6.3.16 STM32L151VD-X STM32L152VD-X Communications interfaces I2C interface characteristics The device I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: SDA and SCL are not “true” open-drain I/O pins. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 46. Refer also to Section 6.3.13: I/O port characteristics for more details on the input/output ction characteristics (SDA and SCL). Table 46. I2C characteristics Symbol Parameter Standard mode I2C(1)(2) Fast mode I2C(1)(2) Unit Min Max Min Max tw(SCLL) SCL clock low time 4.7 - 1.3 - tw(SCLH) SCL clock high time 4.0 - 0.6 - tsu(SDA) SDA setup time 250 - 100 - th(SDA) SDA data hold time - 3450(3) - 900(3) tr(SDA) tr(SCL) SDA and SCL rise time - 1000 - 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 th(STA) Start condition hold time 4.0 - 0.6 - tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - tsu(STO) Stop condition setup time 4.0 - 0.6 - μs tw(STO:STA) Stop to Start condition time (bus free) 4.7 - 1.3 - μs Cb Capacitive load for each bus line - 400 - 400 pF tSP Pulse width of spikes that are suppressed by the analog filter 0 50(4) 0 50(4) ns µs ns µs 1. Guaranteed by design. 2. fPCLK1 must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I²C fast mode clock. 3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal. 4. The minimum width of the spikes filtered by the analog filter is above tSP(max). 88/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X Electrical characteristics Figure 17. I2C bus AC waveforms and measurement circuit sͺ/Ϯ sͺ/Ϯ ZW ZW ^dDϯϮ>ϭdždž Z^ ^ /ϮďƵƐ Z^ ^> ^ dZdZWd ^ dZd ^ dZd ƚƐƵ;^dͿ ^ ƚĨ;^Ϳ ƚƌ;^Ϳ ƚƐƵ;^Ϳ ƚŚ;^dͿ ƚǁ;^Ϳ ƚŚ;^Ϳ ƚƐƵ;^d͗^dKͿ ^ dKW ^> ƚƌ;^2.4 V - 100 - - 300 - - 50 - Normal mode 55 100 - Low-power mode 65 110 - 4 - - 20 - - - - 50 VDD100 - - VDD-50 - - - - 100 - - 50 Low-power mode Open loop gain VDD>2.4 V Typ Normal mode Normal mode AO DC Min(2) Normal mode Low-power mode VDDY&WϭϬϬϭϰdžϭϰŵŵ         7HPSHUDWXUH ƒ& 06Y9 114/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X Package information Figure 35. Thermal resistance suffix 7   &ŽƌďŝĚĚĞŶĂƌĞĂd:хd:ŵĂdž  3' P: t>^WϭϬϰϭϬdžϭϬŵŵ  >Y&WϭϬϬϭϰdžϭϰŵŵ         7HPSHUDWXUH ƒ& 06Y9 7.3.1 Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. DocID027267 Rev 4 115/119 118 Ordering information 8 STM32L151VD-X STM32L152VD-X Ordering information Table 68. STM32L151VD-X and STM32L152VD-X Ordering information scheme Example: STM32 L 151 V D Y 6 X D TR Device family STM32 = ARM-based 32-bit microcontroller Product type L = Low-power Device subfamily 151: Devices without LCD 152: Devices with LCD Pin count V = 100/104 pins Flash memory size D=384 Kbytes of Flash memory Package T = LQFP Y = WLCSP104 Temperature range 6 = Industrial temperature range, –40 to 85 °C 7 = Industrial temperature range, –40 to 105 °C Options X = device generation X Options No character = VDD range: 1.8 to 3.6 V and BOR enabled D = VDD range: 1.65 to 3.6 V and BOR disabled Packing TR = tape and reel No character = tray or tube For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact the nearest ST sales office. 116/119 DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X 9 Revision History Revision History Table 69. Document revision history Date Revision 22-Jan-2015 1 Initial release. 2 Updated Section 7: Package information structure: paragraph titles and paragraph heading level. Updated Section 7.1: LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package information removing gate mark in Figure 30. Updated Section 7: Package information for LQFP100 & WLCSP104 package device marking adding text in for device orientation versus pin 1 / ball A1 identifier. Updated Figure 31: WLCSP104, 0.4 mm pitch wafer level chip scale package outline. Updated Table 65: WLCSP104, 0.4 mm pitch wafer level chip scale package mechanical data. Added Figure 32: WLCSP104, 0.4 mm pitch wafer level chip scale package recommended footprint. Added Table 66: WLCSP104, 0.4 mm pitch recommended PCB design rules. Updated Table 7: STM32L151VD-X and STM32L152VD-X pin definitions ADC inputs. Updated Table 15: Embedded internal reference voltage temperature coefficient at 100ppm/°C and table footnote 3: “guaranteed by design” changed by “guaranteed by characterization results”. Updated Table 62: Comparator 2 characteristics new maximum threshold voltage temperature coefficient at 100ppm/°C. 28-Apr-2015 Changes DocID027267 Rev 4 117/119 118 Revision History STM32L151VD-X STM32L152VD-X Table 69. Document revision history (continued) Date 12-Feb-2016 28-Aug-2017 118/119 Revision Changes 3 Updated cover page putting eight SPIs in the peripheral communication interface list. Updated Table 1: Ultra-low-power STM32L151VD-X and STM32L152VD-X device features and peripheral counts SPI and I2S lines. Updated Table 38: ESD absolute maximum ratings CDM class. Updated all the notes, removing ‘not tested in production’. Updated Table 9: Voltage characteristics adding note about VREF- pin. Updated Table 4: Functionalities depending on the working mode (from Run/active down to standby) LSI and LSE functionalities putting “Y” in Standby mode. 4 Updated Table 41: I/O static characteristics pull-up and pull-down values. Updated Table 44: NRST pin characteristics pull-up values. Updated Section 7: Package information adding information about other optional marking or inset/upset marks. Updated note 1 below all the package device marking figures. Updated Section 7: Package information replacing “Marking of engineering samples” by “device marking”. Updated Nested vectored interrupt controller (NVIC) in Section 3.2: ARM® Cortex®-M3 core with MPU about process state automatically saved. Updated Table 2: Functionalities depending on the operating power supply range removing I/O operation column and adding note about GPIO speed. Updated Table 40: I/O current injection susceptibility note by ‘injection is not possible’. Updated Figure 16: Recommended NRST pin protection note about the 0.1uF capacitor. Updated Table 57: DAC characteristics resistive load. Updated Section 3.1: Low-power modes Low-power run mode (MSI) RC oscillator clock. Updated Table 4: Functionalities depending on the working mode (from Run/active down to standby) disabling I2C functionality in Lowpower Run and Low-power Sleep modes. DocID027267 Rev 4 STM32L151VD-X STM32L152VD-X IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2017 STMicroelectronics – All rights reserved DocID027267 Rev 4 119/119 119
STM32L151VDY6XTR 价格&库存

很抱歉,暂时无法提供与“STM32L151VDY6XTR”相匹配的价格&库存,您可以联系我们找货

免费人工找货