STM32L151x6/8/B
STM32L152x6/8/B
Ultra-low-power 32-bit MCU ARM®-based Cortex®-M3,
128KB Flash, 16KB SRAM, 4KB EEPROM, LCD, USB, ADC, DAC
Datasheet - production data
Features
• Ultra-low-power platform
– 1.65 V to 3.6 V power supply
– -40°C to 85°C/105°C temperature range
– 0.3 µA Standby mode (3 wakeup pins)
– 0.9 µA Standby mode + RTC
– 0.57 µA Stop mode (16 wakeup lines)
– 1.2 µA Stop mode + RTC
– 9 µA Low-power run mode
– 214 µA/MHz Run mode
– 10 nA ultra-low I/O leakage
– < 8 µs wakeup time
• Core: ARM® Cortex®-M3 32-bit CPU
– From 32 kHz up to 32 MHz max
– 1.25 DMIPS/MHz (Dhrystone 2.1)
– Memory protection unit
• Reset and supply management
– Ultra-safe, low-power BOR (brownout
reset) with 5 selectable thresholds
– Ultra-low-power POR/PDR
– Programmable voltage detector (PVD)
• Clock sources
– 1 to 24 MHz crystal oscillator
– 32 kHz oscillator for RTC with calibration
– High Speed Internal 16 MHz factorytrimmed RC (+/- 1%)
– Internal low-power 37 kHz RC
– Internal multispeed low-power 65 kHz to
4.2 MHz
– PLL for CPU clock and USB (48 MHz)
• Pre-programmed bootloader
– USART supported
• Development support
– Serial wire debug supported
– JTAG and trace supported
• Up to 83 fast I/Os (73 I/Os 5V tolerant), all
mappable on 16 external interrupt vectors
• Memories
– Up to 128 Kbytes Flash memory with ECC
– Up to 16 Kbytes RAM
April 2016
This is information on a product in full production.
LQFP100 14 × 14 mm UFBGA100 7 × 7 mm UFQFPN48 7 × 7 mm
LQFP64 10 × 10 mm
TFBGA64 5 × 5 mm
LQFP48 7 × 7 mm
– Up to 4 Kbytes of true EEPROM with ECC
– 80-byte backup register
• LCD Driver (except STM32L151x/6/8/B
devices) for up to 8x40 segments
– Support contrast adjustment
– Support blinking mode
– Step-up converter on board
• Rich analog peripherals (down to 1.8 V)
– 12-bit ADC 1 Msps up to 24 channels
– 12-bit DAC 2 channels with output buffers
– 2x ultra-low-power-comparators
(window mode and wake up capability)
• DMA controller 7x channels
• 8x peripheral communication interfaces
– 1x USB 2.0 (internal 48 MHz PLL)
– 3x USARTs (ISO 7816, IrDA)
– 2x SPIs 16 Mbit/s
– 2x I2Cs (SMBus/PMBus)
• 10x timers: 6x 16-bit with up to 4 IC/OC/PWM
channels, 2x 16-bit basic timers, 2x watchdog
timers (independent and window)
• Up to 20 capacitive sensing channels
supporting touchkey, linear and rotary touch
sensors
• CRC calculation unit, 96-bit unique ID
Table 1. Device summary
Reference
Part number
STM32L151x6/8/B
STM32L151CB, STM32L151C8,
STM32L151C6, STM32L151RB,
STM32L151R8, STM32L151R6,
STM32L151VB, STM32L151V8
STM32L152x6/8/B
STM32L152CB, STM32L152C8,
STM32L152C6, STM32L152RB,
STM32L152R8, STM32L152R6,
STM32L152VB, STM32L152V8
DocID17659 Rev 12
1/133
www.st.com
Contents
STM32L151x6/8/B STM32L152x6/8/B
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
2/133
2.1
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.2
Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2
Shared peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3
Common system strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1
Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2
ARM® Cortex®-M3 core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3
Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.4
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4
Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5
Low power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 23
3.6
GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8
DMA (direct memory access) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.9
LCD (liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.10
ADC (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.11
DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.12
Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 26
3.13
Routing interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.14
Touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.15
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
DocID17659 Rev 12
STM32L151x6/8/B STM32L152x6/8/B
3.16
Contents
3.15.1
General-purpose timers (TIM2, TIM3, TIM4, TIM9, TIM10 and TIM11) . 28
3.15.2
Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.15.3
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.15.4
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.15.5
Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.16.1
I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.16.2
Universal synchronous/asynchronous receiver transmitter (USART) . . 29
3.16.3
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.16.4
Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.17
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 30
3.18
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.7
Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.8
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.2
Embedded reset and power control block characteristics . . . . . . . . . . . 54
6.3.3
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.4
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.5
Wakeup time from Low power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3.6
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.7
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.8
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
DocID17659 Rev 12
3/133
4
Contents
7
STM32L151x6/8/B STM32L152x6/8/B
6.3.9
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.10
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.11
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.12
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.13
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.14
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.15
TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.16
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.17
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.18
DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.19
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.20
Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.21
LCD controller (STM32L152xx only) . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.1
LQFP100 14 x 14 mm, 100-pin low-profile quad flat package
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2
LQFP64 10 x 10 mm, 64-pin low-profile quad flat package information . 108
7.3
LQFP48 7 x 7 mm, 48-pin low-profile quad flat package information . . . . 111
7.4
UFQFPN48 7 x 7 mm, 0.5 mm pitch, package information . . . . . . . . . . .114
7.5
UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch
ball grid array package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
7.6
TFBGA64 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball
grid array package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.7
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.7.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4/133
DocID17659 Rev 12
STM32L151x6/8/B STM32L152x6/8/B
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B device features and
peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 15
CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 16
Working mode-dependent functionalities (from Run/active down to standby) . . . . . . . . . . 17
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
STM32L151x6/8/B and STM32L152x6/8/B pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . 37
Alternate function input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 54
Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Current consumption in Run mode, code with data processing running from Flash. . . . . . 58
Current consumption in Run mode, code with data processing running from RAM . . . . . . 59
Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Current consumption in Low power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Current consumption in Low power sleep mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 64
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 66
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Flash memory, data EEPROM endurance and data retention . . . . . . . . . . . . . . . . . . . . . . 78
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
DocID17659 Rev 12
5/133
6
List of tables
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
6/133
STM32L151x6/8/B STM32L152x6/8/B
SCL frequency (fPCLK1= 32 MHz, VDD = VDD_I2C = 3.3 V). . . . . . . . . . . . . . . . . . . . . . . . 88
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
USB: full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
ADC clock frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Maximum source impedance RAIN max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
LQPF100 14 x 14 mm, 100-pin low-profile quad flat package mechanical data . . . . . . . 106
LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanical data. . . . . . . . . . 108
LQFP48 7 x 7 mm, 48-pin low-profile quad flat package mechanical data. . . . . . . . . . . . 112
UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . 115
UFBGA100 7 x 7 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . 117
UFBGA100 7 x 7 mm, 0.5 mm pitch, recommended PCB design rules . . . . . . . . . . . . . . 118
TFBGA64 5 x 5 mm, 0.5 mm pitch, package mechanical data. . . . . . . . . . . . . . . . . . . . . 120
TFBGA64 5 x 5 mm, 0.5 mm pitch, recommended PCB design rules . . . . . . . . . . . . . . . 121
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
DocID17659 Rev 12
STM32L151x6/8/B STM32L152x6/8/B
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B block diagram. . . . . . . . . . . . 13
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
STM32L15xVx UFBGA100 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
STM32L15xVx LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
STM32L15xRx TFBGA64 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
STM32L15xRx LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
STM32L15xCx LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
STM32L15xCx UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Maximum dynamic current consumption on VREF+ supply pin during ADC
conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . . 98
Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . . 98
12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
LQFP100 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 105
LQPF100 14 x 14 mm, 100-pin low-profile quad flat package recommended footprint . . 107
LQFP100 14 x 14 mm, 100-pin package top view example . . . . . . . . . . . . . . . . . . . . . . . 107
LQFP64 10 x 10 mm, 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 108
LQFP64 10 x 10 mm, 64-pin low-profile quad flat package recommended footprint . . . . 109
LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example . . . . . . . . . 110
LQFP48 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 111
LQFP48 7 x 7 mm, 48-pin low-profile quad flat recommended footprint. . . . . . . . . . . . . . 112
LQFP48 7 x 7 mm, 48-pin low-profile quad flat package top view example . . . . . . . . . . . 113
UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
UFQFPN48 7 x 7 mm, 0.5 mm pitch, package recommended footprint . . . . . . . . . . . . . . 115
UFQFPN48 7 x 7 mm, 0.5 mm pitch, package top view example . . . . . . . . . . . . . . . . . . 116
UFBGA100, 7 x 7 mm, 0.5 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
UFBGA100 7 x 7 mm, 0.5 mm pitch, package recommended footprint . . . . . . . . . . . . . . 118
UFBGA100 7 x 7 mm, 0.5 mm pitch, package top view example. . . . . . . . . . . . . . . . . . . 119
TFBGA64 5 x 5 mm, 0.5 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
DocID17659 Rev 12
7/133
8
List of figures
Figure 48.
Figure 49.
Figure 50.
8/133
STM32L151x6/8/B STM32L152x6/8/B
TFBGA64, 5 x 5 mm, 0.5 mm pitch, recommended footprint . . . . . . . . . . . . . . . . . . . . . . 121
TFBGA64 5 x 5 mm, 0.5 mm pitch, package top view example . . . . . . . . . . . . . . . . . . . . 122
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
DocID17659 Rev 12
STM32L151x6/8/B STM32L152x6/8/B
1
Introduction
Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32L151x6/8/B and STM32L152x6/8/B ultra-low-power ARM® Cortex®-M3 based
microcontrollers product line.
The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B family includes devices in 3
different package types: from 48 to 100 pins. Depending on the device chosen, different sets
of peripherals are included, the description below gives an overview of the complete range
of peripherals proposed in this family.
These features make the ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B
microcontroller family suitable for a wide range of applications:
•
Medical and handheld equipment
•
Application control and user interface
•
PC peripherals, gaming, GPS and sport equipment
•
Alarm systems, Wired and wireless sensors, Video intercom
•
Utility metering
This STM32L151x6/8/B and STM32L152x6/8/B datasheet should be read in conjunction
with the STM32L1xxxx reference manual (RM0038).
The document "Getting started with STM32L1xxxx hardware development” AN3216 gives a
hardware implementation overview. Both documents are available from the
STMicroelectronics website www.st.com.
For information on the ARM® Cortex®-M3 core please refer to the Cortex®-M3 Technical
Reference Manual, available from the www.arm.com website.
Figure 1 shows the general block diagram of the device family.
Caution:
This datasheet does not apply to STM32L15xx6/8/B-A covered by a separate datasheet.
DocID17659 Rev 12
9/133
48
Description
2
STM32L151x6/8/B STM32L152x6/8/B
Description
The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices incorporate the
connectivity power of the universal serial bus (USB) with the high-performance ARM®
Cortex®-M3 32-bit RISC core operating at 32 MHz frequency (33.3 DMIPS), a memory
protection unit (MPU), high-speed embedded memories (Flash memory up to 128 Kbytes
and RAM up to 16 Kbytes) and an extensive range of enhanced I/Os and peripherals
connected to two APB buses.
All the devices offer a 12-bit ADC, 2 DACs and 2 ultra-low-power comparators, six generalpurpose 16-bit timers and two basic timers, which can be used as time bases.
Moreover, the STM32L151x6/8/B and STM32L152x6/8/B devices contain standard and
advanced communication interfaces: up to two I2Cs and SPIs, three USARTs and a USB.
The STM32L151x6/8/B and STM32L152x6/8/B devices offer up to 20 capacitive sensing
channels to simply add touch sensing functionality to any application.
They also include a real-time clock and a set of backup registers that remain powered in
Standby mode.
Finally, the integrated LCD controller (except STM32L151x6/8/B devices) has a built-in LCD
voltage generator that allows to drive up to 8 multiplexed LCDs with contrast independent of
the supply voltage.
The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices operate from a 1.8
to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V
power supply without BOR option. It is available in the -40 to +85 °C temperature range,
extended to 105°C in low power dissipation state. A comprehensive set of power-saving
modes allows the design of low-power applications.
10/133
DocID17659 Rev 12
STM32L151x6/8/B STM32L152x6/8/B
2.1
Description
Device overview
Table 2. Ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B device features and
peripheral counts
Peripheral
Flash (Kbytes)
STM32L15xCx
32
64
128
STM32L15xRx
32
Data EEPROM (Kbytes)
RAM (Kbytes)
Timers
Communication
interfaces
10
16
10
10
Generalpurpose
6
Basic
2
SPI
2
I2C
2
USART
3
USB
1
12-bit synchronized ADC
Number of channels
Operating temperatures
16
10
16
83
1
14 channels
1
20 channels
1
24 channels
2
2
4x32
8x28
4x18
4x44
8x40
2
13
20
Max. CPU frequency
Operating voltage
128
51
Comparator
Capacitive sensing channels
64
37
12-bit DAC
Number of channels
LCD (STM32L152xx Only)
COM x SEG
128
4
10
GPIOs
Packages
64
STM32L15xVx
32 MHz
1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option
1.65 V to 3.6 V without BOR option
Ambient temperatures: –40 to +85 °C
Junction temperature: –40 to + 105 °C
LQFP48, UFQFPN48
DocID17659 Rev 12
LQFP64, BGA64
LQFP100, BGA100
11/133
48
Description
2.2
STM32L151x6/8/B STM32L152x6/8/B
Ultra-low-power device continuum
The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices are fully pin-to-pin
and software compatible. Besides the full compatibility within the family, the devices are part
of STMicroelectronics microcontrollers ultra-low-power strategy which also includes
STM8L101xx and STM8L15xx devices. The STM8L and STM32L families allow a
continuum of performance, peripherals, system architecture and features.
They are all based on STMicroelectronics ultra-low leakage process.
Note:
The ultra-low-power STM32L and general-purpose STM32Fxxxx families are pin-to-pin
compatible. The STM8L15xxx devices are pin-to-pin compatible with the STM8L101xx
devices. Please refer to the STM32F and STM8L documentation for more information on
these devices.
2.2.1
Performance
All families incorporate highly energy-efficient cores with both Harvard architecture and
pipelined execution: advanced STM8 core for STM8L families and ARM® Cortex®-M3 core
for STM32L family. In addition specific care for the design architecture has been taken to
optimize the mA/DMIPS and mA/MHz ratios.
This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs.
2.2.2
Shared peripherals
STM8L15xxx and STM32L1xxxx share identical peripherals which ensure a very easy
migration from one family to another:
2.2.3
•
Analog peripherals: ADC, DAC and comparators
•
Digital peripherals: RTC and some communication interfaces
Common system strategy
To offer flexibility and optimize performance, the STM8L15xx and STM32L1xxxx families
use a common architecture:
2.2.4
•
Same power supply range from 1.65 V to 3.6 V, (1.65 V at power down only for
STM8L15xx devices)
•
Architecture optimized to reach ultra-low consumption both in low power modes and
Run mode
•
Fast startup strategy from low power modes
•
Flexible system clock
•
Ultrasafe reset: same reset strategy including power-on reset, power-down reset,
brownout reset and programmable voltage detector.
Features
ST ultra-low-power continuum also lies in feature compatibility:
12/133
•
More than 10 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm
•
Memory density ranging from 4 to 384 Kbytes
DocID17659 Rev 12
STM32L151x6/8/B STM32L152x6/8/B
Functional overview
Figure 1 shows the block diagram.
Figure 1. Ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B block diagram
dZ^
ŽŵƉϭ
KDWϮͺ/EͲͬ/Eн
Λs
ZD^
/Ŷƚ
Ws
sсϭ͘ϲϱsƚŽϯ͘ϲs
s ^^
Z,^
WŽǁĞƌƌĞƐĞƚ
Λs
,͗&ŵĂdžсϯϮD,nj
EZ^d
sZ&KhdWhd
WKtZ
ϭϮϴ
ĂĐŬƵƉŝŶƚĞƌĨĂĐĞ
, Ϯ
ϴϯ&
yd͘/d
tϴdžϰϬ;ϰdžϰϰͿ
^'dž
KDdž
tt'
Λs
d/Dϲ
ϭŚĂŶŶĞů
d/DϭϬ
ϭŚĂŶŶĞů
d/Dϭϭ
^>͕^
ĂƐ&
^>͕^͕^DƵƐ͕WDƵƐ
ĂƐ&
h^ͺW
h^ͺD
^/d/DZ^
d/Dϵ
DK^/͕D/^K͕^ VDDA
VESD(HBM)
Electrostatic discharge voltage
(human body model)
Unit
V
mV
V
see Section 6.3.11
-
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. VIN maximum must always be respected. Refer to Table 11 for maximum allowed injected current values.
3. Include VREF- pin.
Table 11. Current characteristics
Symbol
IVDDΣ
IVSSΣ
IIO
IINJ(PIN) (2)
ΣIINJ(PIN)
Ratings
Max.
Total current into VDD/VDDA power lines (source)(1)
Total current out of VSS ground lines
(sink)(1)
80
80
Output current sunk by any I/O and control pin
25
Output current sourced by any I/O and control pin
- 25
Injected current on five-volt tolerant I/O(3)
-5/+0
Injected current on any other pin
(4)
Total injected current (sum of all I/O and control
Unit
±5
pins)(5)
± 25
mA
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. Negative injection disturbs the analog performance of the device. See note in Section 6.3.17.
3. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN VDD while a negative injection is induced by VIN < VSS. IINJ(PIN)
must never be exceeded. Refer to Table 10: Voltage characteristics for the maximum allowed input voltage
values.
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
52/133
DocID17659 Rev 12
STM32L151x6/8/B STM32L152x6/8/B
Electrical characteristics
Table 12. Thermal characteristics
Symbol
Ratings
TSTG
Storage temperature range
Value
Unit
–65 to +150
°C
150
°C
Maximum junction temperature
TJ
6.3
Operating conditions
6.3.1
General operating conditions
Table 13. General operating conditions
Symbol
Parameter
Conditions
Min
Max
Unit
fHCLK
Internal AHB clock frequency
-
0
32
fPCLK1
Internal APB1 clock frequency
-
0
32
fPCLK2
Internal APB2 clock frequency
-
0
32
BOR detector disabled
1.65
3.6
BOR detector enabled,
at power on
1.8
3.6
BOR detector disabled, after
power on
1.65
3.6
1.65
3.6
1.8
3.6
–0.3
–0.3
0
–0.3
5.5
5.25
5.5
VDD+0.3
V
-
339
mW
–40
85
Low power dissipation
–40
105
-40 °C ≤TA ≤105°C
–40
105
VDD
(1)
VDDA
Standard operating voltage
Analog operating voltage
(ADC and DAC not used)
Analog operating voltage
(ADC or DAC used)
Input voltage on FT pins(3)
VIN
Must be the same voltage as
VDD(2)
2.0 V ≤VDD ≤ 3.6 V
1.65 V ≤ VDD ≤ 2.0 V
Input voltage on BOOT0 pin
Input voltage on any other pin
PD
Power dissipation at
TA = 85 °C(4)
TA
Temperature range
TJ
Junction temperature range
BGA100 package
Maximum power dissipation
(5)
MHz
V
V
°C
°C
1. When the ADC is used, refer to Table 54: ADC characteristics.
2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and operation.
3. To sustain a voltage higher than VDD+0.3 V, the internal pull-up/pull-down resistors must be disabled.
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 12: Thermal characteristics
on page 53).
5. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJ max (see Table 12:
Thermal characteristics on page 53).
DocID17659 Rev 12
53/133
104
Electrical characteristics
6.3.2
STM32L151x6/8/B STM32L152x6/8/B
Embedded reset and power control block characteristics
The parameters given in the following table are derived from the tests performed under the
ambient temperature condition summarized in the following table.
Table 14. Embedded reset and power control block characteristics
Symbol
Parameter
VDD rise time rate
tVDD(1)
VDD fall time rate
TRSTTEMPO(1) Reset temporization
VPOR/PDR
Power on/power down reset
threshold
VBOR0
Brown-out reset threshold 0
VBOR1
Brown-out reset threshold 1
VBOR2
Brown-out reset threshold 2
VBOR3
Brown-out reset threshold 3
VBOR4
Brown-out reset threshold 4
54/133
Conditions
Min
Typ
Max
BOR detector enabled
0
-
∞
BOR detector disabled
0
-
1000
BOR detector enabled
20
-
∞
BOR detector disabled
0
-
1000
VDD rising, BOR enabled
-
2
3.3
0.4
0.7
1.6
Falling edge
1
1.5
1.65
Rising edge
1.3
1.5
1.65
Falling edge
1.67
1.7
1.74
Rising edge
1.69
1.76
1.8
Falling edge
1.87
1.93
1.97
Rising edge
1.96
2.03
2.07
Falling edge
2.22
2.30
2.35
Rising edge
2.31
2.41
2.44
Falling edge
2.45
2.55
2.60
Rising edge
2.54
2.66
2.7
Falling edge
2.68
2.8
2.85
Rising edge
2.78
2.9
2.95
VDD rising, BOR
DocID17659 Rev 12
disabled(2)
Unit
µs/V
ms
V
V
STM32L151x6/8/B STM32L152x6/8/B
Electrical characteristics
Table 14. Embedded reset and power control block characteristics (continued)
Symbol
Parameter
Conditions
VPVD0
Programmable voltage detector
threshold 0
VPVD1
PVD threshold 1
VPVD2
PVD threshold 2
VPVD3
PVD threshold 3
VPVD4
PVD threshold 4
VPVD5
PVD threshold 5
VPVD6
PVD threshold 6
Vhyst
Hysteresis voltage
Min
Typ
Max
Falling edge
1.8
1.85
1.88
Rising edge
1.88
1.94
1.99
Falling edge
1.98
2.04
2.09
Rising edge
2.08
2.14
2.18
Falling edge
2.20
2.24
2.28
Rising edge
2.28
2.34
2.38
Falling edge
2.39
2.44
2.48
Rising edge
2.47
2.54
2.58
Falling edge
2.57
2.64
2.69
Rising edge
2.68
2.74
2.79
Falling edge
2.77
2.83
2.88
Rising edge
2.87
2.94
2.99
Falling edge
2.97
3.05
3.09
Rising edge
3.08
3.15
3.20
BOR0 threshold
-
40
-
All BOR and PVD thresholds
excepting BOR0
-
100
-
Unit
V
mV
1. Guaranteed by characterization results.
2. Valid for device version without BOR at power up. Please see option "T" in Ordering information scheme for more details.
DocID17659 Rev 12
55/133
104
Electrical characteristics
6.3.3
STM32L151x6/8/B STM32L152x6/8/B
Embedded internal reference voltage
The parameters given in the following table are based on characterization results, unless
otherwise specified.
Table 15. Embedded internal reference voltage calibration values
Calibration value name
Description
Memory address
Raw data acquired at
0x1FF8 0078-0x1FF8 0079
temperature of 30 °C, VDDA= 3 V
VREFINT_CAL
Table 16. Embedded internal reference voltage
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VREFINT out(1)
Internal reference voltage
IREFINT
Internal reference current
consumption
-
-
1.4
2.3
µA
TVREFINT
Internal reference startup time
-
-
2
3
ms
VVREF_MEAS
VDDA and VREF+voltage during
VREFINT factory measure
-
2.99
3
3.01
V
AVREF_MEAS
Accuracy of factory-measured VREF
value (2)
Including uncertainties
due to ADC and
VDDA/VREF+ values
-
-
±5
mV
TCoeff(3)
Temperature coefficient
–40 °C < TJ < +105 °C
-
25
100
ppm/°C
ACoeff(3)
Long-term stability
1000 hours, T= 25 °C
-
-
1000
ppm
VDDCoeff(3)
Voltage coefficient
3.0 V < VDDA < 3.6 V
-
-
2000
ppm/V
– 40 °C < TJ < +105 °C 1.202 1.224 1.242
V
TS_vrefint(3)(4)
ADC sampling time when reading the
internal reference voltage
-
5
10
-
µs
TADC_BUF(3)
Startup time of reference voltage
buffer for ADC
-
-
-
10
µs
IBUF_ADC(3)
Consumption of reference voltage
buffer for ADC
-
-
13.5
25
µA
IVREF_OUT(3)
VREF_OUT output current(5)
-
-
-
1
µA
CVREF_OUT(3)
VREF_OUT output load
-
-
-
50
pF
Consumption of reference voltage
buffer for VREF_OUT and COMP
-
-
730
1200
nA
VREFINT_DIV1(3) 1/4 reference voltage
-
24
25
26
VREFINT_DIV2(3)
1/2 reference voltage
-
49
50
51
VREFINT_DIV3(3) 3/4 reference voltage
-
74
75
76
ILPBUF(3)
1. Tested in production.
2. The internal VREF value is individually measured in production and stored in dedicated EEPROM bytes.
3. Guaranteed by characterization results.
4. Shortest sampling time can be determined in the application by multiple iterations.
5. To guarantee less than 1% VREF_OUT deviation.
56/133
DocID17659 Rev 12
% VREFINT
STM32L151x6/8/B STM32L152x6/8/B
6.3.4
Electrical characteristics
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code. The current consumption is measured as described in Figure 14: Current
consumption measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to Dhrystone 2.1 code.
The current consumption values are derived from the tests performed under ambient
temperature TA=25°C and VDD supply voltage conditions summarized in Table 13: General
operating conditions, unless otherwise specified. The MCU is placed under the following
conditions:
The MCU is placed under the following conditions:
•
VDD = 3.6 V
•
All I/O pins are configured in analog input mode.
•
All peripherals are disabled except when explicitly mentioned
•
The Flash memory access time, 64-bit access and prefetch is adjusted depending on
fHCLK frequency and voltage range to provide the best CPU performance.
•
When the peripherals are enabled fAPB1 = fAPB2 = fAHB
•
When PLL is ON, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or
HSE = 16 MHz (if HSE bypass mode is used).
•
The HSE user clock applied to OSC_IN input follows the characteristics specified in
Table 26: High-speed external user clock characteristics.
DocID17659 Rev 12
57/133
104
Electrical characteristics
STM32L151x6/8/B STM32L152x6/8/B
Table 17. Current consumption in Run mode, code with data processing running from Flash
Max(1)
Symbol Parameter
Conditions
Range 3,
VCORE=1.2 V
VOS[1:0] = 11
IDD (Run
from
Flash)
Supply
current in
Run mode,
code
executed
from Flash
fHSE = fHCLK
up to 16 MHz,
included
fHSE = fHCLK/2
above 16 MHz
(PLL ON)(2)
HSI clock source
(16 MHz)
MSI clock, 65 kHz
MSI clock, 524 kHz
MSI clock, 4.2 MHz
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
Typ
Unit
1 MHz
270
400
400
400
2 MHz
470
600
600
600
4 MHz
890
1025
1025
1025
4 MHz
1
1.3
1.3
1.3
8 MHz
2
2.5
2.5
2.5
16 MHz
3.9
5
5
5
55 °C 85 °C 105 °C
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
8 MHz
2.16
3
3
3
16 MHz
4.8
5.5
5.5
5.5
32 MHz
9.6
11
11
11
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
16 MHz
4
5
5
5
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
32 MHz
9.4
11
11
11
65 kHz
0.05
0.085
0.09
0.1
524 kHz
0.15
0.185
0.19
0.2
4.2 MHz
0.9
1
1
1
Range 3,
VCORE=1.2 V
VOS[1:0] = 11
1. Guaranteed by characterization results, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
58/133
fHCLK
DocID17659 Rev 12
µA
mA
STM32L151x6/8/B STM32L152x6/8/B
Electrical characteristics
Table 18. Current consumption in Run mode, code with data processing running from RAM
Max(1)
Symbol
Parameter
Conditions
fHCLK
Typ
1 MHz
200
300
300
300
2 MHz
380
500
500
500
4 MHz
720
860
860
860(3)
4 MHz
0.9
1
1
1
8 MHz
1.65
2
2
2
16 MHz
3.2
3.7
3.7
3.7
8 MHz
2
2.5
2.5
2.5
16 MHz
4
4.5
4.5
4.5
32 MHz
7.7
8.5
8.5
8.5
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
16 MHz
3.3
3.8
3.8
3.8
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
32 MHz
7.8
9.2
9.2
9.2
65 kHz
40
60
60
80
524 kHz
110
140
140
160
4.2 MHz
700
800
800
820
Range 3,
VCORE=1.2 V
VOS[1:0] = 11
Supply current
in Run mode,
IDD (Run
code executed
from
from RAM,
RAM)
Flash switched
off
fHSE = fHCLK
up to 16 MHz,
included
fHSE = fHCLK/2
above 16 MHz
(PLL ON)(2)
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
HSI clock source
(16 MHz)
MSI clock, 65 kHz
Range 3,
MSI clock, 524 kHz VCORE=1.2 V
VOS[1:0] = 11
MSI clock, 4.2 MHz
Unit
55 °C 85 °C 105 °C
µA
mA
µA
1. Guaranteed by characterization results, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
3. Tested in production.
DocID17659 Rev 12
59/133
104
Electrical characteristics
STM32L151x6/8/B STM32L152x6/8/B
Table 19. Current consumption in Sleep mode
Max(1)
Symbol Parameter
Conditions
Range 3,
VCORE=1.2 V
VOS[1:0] = 11
fHSE = fHCLK up to
Range 2,
16 MHz included,
VCORE=1.5 V
fHSE = fHCLK/2
above 16 MHz (PLL VOS[1:0] = 10
ON)(2)
Supply
current in
Sleep
mode,
code
executed
from RAM,
Flash
switched
HSI clock source
OFF
(16 MHz)
60/133
80
140
140
140
2 MHz
150
210
210
210
4 MHz
280
330
330
330(3)
4 MHz
280
400
400
400
8 MHz
450
550
550
550
16 MHz
900
1050
1050
1050
8 MHz
550
650
16 MHz 1050 1200
1200
1200
32 MHz 2300 2500
2500
2500
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
16 MHz 1000 1100
1100
1100
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
32 MHz 2300 2500
2500
2500
fHSE = fHCLK up to
16 MHz included,
Range 2,
fHSE = fHCLK/2
VCORE=1.5 V
above 16 MHz (PLL VOS[1:0] = 10
ON)(2)
HSI clock source
(16 MHz)
1 MHz
650
Range 3,
VCORE=1.2 V
VOS[1:0] = 11
Supply
current in
Sleep
mode,
code
executed
from Flash
Unit
55 °C 85 °C 105 °C
650
Range 3,
MSI clock, 524 kHz VCORE=1.2 V
VOS[1:0] = 11
MSI clock, 4.2 MHz
(Sleep)
Typ
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
MSI clock, 65 kHz
IDD
fHCLK
65 kHz
30
50
50
60
524 kHz
50
70
70
80
4.2 MHz
200
240
240
250
1 MHz
80
140
140
140
2 MHz
150
210
210
210
4 MHz
290
350
350
350
4 MHz
300
400
400
400
8 MHz
500
600
600
600
16 MHz 1000 1100
1100
1100
8 MHz
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
650
650
650
16 MHz 1050 1200
1200
1200
32 MHz 2300 2500
2500
2500
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
16 MHz 1000 1100
1100
1100
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
32 MHz 2300 2500
2500
2500
DocID17659 Rev 12
550
µA
µA
STM32L151x6/8/B STM32L152x6/8/B
Electrical characteristics
Table 19. Current consumption in Sleep mode (continued)
Max(1)
Symbol Parameter
IDD
(Sleep)
Conditions
Supply
MSI clock, 65 kHz
current in
MSI clock, 524 kHz
Sleep
Range 3,
mode,
VCORE=1.2V
VOS[1:0] = 11
code
MSI clock, 4.2 MHz
executed
from Flash
fHCLK
Typ
Unit
65 kHz
40
70
70
80
524 kHz
60
90
90
100
55 °C 85 °C 105 °C
µA
4.2 MHz
210
250
250
260
1. Guaranteed by characterization results, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register)
3. Tested in production
DocID17659 Rev 12
61/133
104
Electrical characteristics
STM32L151x6/8/B STM32L152x6/8/B
Table 20. Current consumption in Low power run mode
Symbol
Parameter
Conditions
All
peripherals
OFF, code
executed
from RAM,
Flash
switched
OFF, VDD
from 1.65 V
to 3.6 V
IDD (LP
Run)
Supply
current in
Low power
run mode
MSI clock, 65 kHz
fHCLK = 65 kHz
MSI clock, 131 kHz
fHCLK = 131 kHz
MSI clock, 65 kHz
fHCLK = 32 kHz
All
peripherals
OFF, code
executed
from Flash,
VDD from
1.65 V to
3.6 V
IDD Max
(LP
Run)(2)
MSI clock, 65 kHz
fHCLK = 32 kHz
Max allowed
VDD from
current in
1.65 V to
Low power
3.6 V
run mode
MSI clock, 65 kHz
fHCLK = 65 kHz
MSI clock, 131 kHz
fHCLK = 131 kHz
Typ
TA = -40 °C to 25 °C
Max
(1)
9
12
TA = 85 °C
17.5
24
TA = 105 °C
31
46
TA = -40 °C to 25 °C
14
17
TA = 85 °C
22
29
TA = 105 °C
35
51
TA = -40 °C to 25 °C
37
42
TA = 55 °C
37
42
TA = 85 °C
37
42
TA = 105 °C
48
65
TA = -40 °C to 25 °C
24
32
TA = 85 °C
33
42
TA = 105 °C
48
64
TA = -40 °C to 25 °C
31
40
TA = 85 °C
40
48
TA = 105 °C
54
70
TA = -40 °C to 25 °C
48
58
TA = 55 °C
54
63
TA = 85 °C
56
65
TA = 105 °C
70
90
-
200
-
-
1. Guaranteed by characterization results, unless otherwise specified.
2. This limitation is related to the consumption of the CPU core and the peripherals that are powered by the regulator.
Consumption of the I/Os is not included in this limitation.
62/133
DocID17659 Rev 12
Unit
µA
STM32L151x6/8/B STM32L152x6/8/B
Electrical characteristics
Table 21. Current consumption in Low power sleep mode
Symbol
Parameter
Conditions
MSI clock, 65 kHz
fHCLK = 32 kHz
Flash OFF
MSI clock, 65 kHz
fHCLK = 32 kHz
Flash ON
All
peripherals
OFF, VDD
MSI clock, 65 kHz
from 1.65 V f
HCLK = 65 kHz,
to 3.6 V
Flash ON
IDD (LP
Sleep)
Typ
TA = -40 °C to 25 °C
MSI clock, 65 kHz
fHCLK = 32 kHz
TIM9 and
USART1
enabled,
Flash ON,
VDD from
1.65 V to
3.6 V
MSI clock, 65 kHz
fHCLK = 65 kHz
TA = 85 °C
22
27
TA = 105 °C
31
39
TA = -40 °C to 25 °C
18
26
TA = 85 °C
23
28
TA = 105 °C
31
40
22
30
24
32
26
34
34
45
TA = -40 °C to 25 °C 17.5
25
TA = 85 °C
22
27
TA = 105 °C
31
39
TA = -40 °C to 25 °C
18
26
TA = 85 °C
23
28
TA = 105 °C
31
40
TA = -40 °C to 25 °C
22
30
24
32
26
34
34
45
-
200
MSI clock, 131 kHz TA = 55 °C
fHCLK = 131 kHz
TA = 85 °C
-
-
Unit
25
TA = 105 °C
Max
allowed
VDD from
IDD Max
current in
1.65 V to
(LP Sleep) Low power
3.6 V
Sleep
mode
(1)
TA = -40 °C to 25 °C 17.5
TA = -40 °C to 25 °C
MSI clock, 131 kHz T = 55 °C
A
fHCLK = 131 kHz,
T
A = 85 °C
Flash ON
TA = 105 °C
Supply
current in
Low power
sleep
mode
4.4
Max
µA
1. Guaranteed by characterization results, unless otherwise specified.
DocID17659 Rev 12
63/133
104
Electrical characteristics
STM32L151x6/8/B STM32L152x6/8/B
Table 22. Typical and maximum current consumptions in Stop mode
Symbol
Parameter
Typ
Max
TA = -40°C to 25°C
VDD = 1.8 V
1.2
2.75
TA = -40°C to 25°C
1.4
4
TA = 55°C
2.6
6
TA= 85°C
4.8
10
TA = 105°C
10.2
23
TA = -40°C to 25°C
3.3
6
4.5
8
6.6
12
TA = 105°C
13.6
27
TA = -40°C to 25°C
7.7
10
8.6
12
10.7
16
TA = 105°C
19.8
40
TA = -40°C to 25°C
1.6
4
TA = 55°C
2.7
6
TA= 85°C
4.8
10
TA = 105°C
10.3
23
TA = -40°C to 25°C
3.6
6
TA = 55°C
4.6
8
TA= 85°C
6.7
12
TA = 105°C
10.9
23
TA = -40°C to 25°C
7.6
10
8.6
12
10.7
16
19.8
40
Conditions
LCD
OFF
RTC clocked by LSI,
regulator in LP mode,
HSI and HSE OFF
(no independent
watchdog)
(1)
LCD ON T = 55°C
A
(static
duty)(3) TA= 85°C
LCD ON T = 55°C
A
(1/8
duty)(4) TA= 85°C
Supply current
IDD (Stop in Stop mode
with RTC) with RTC
enabled
LCD
OFF
RTC clocked by LSE
external clock (32.768
LCD ON
kHz), regulator in LP
(static
mode, HSI and HSE
duty)(3)
OFF (no independent
watchdog)
LCD ON T = 55°C
A
(1/8
duty)(4) TA= 85°C
TA = 105°C
RTC clocked by LSE
(no independent
watchdog)(5)
64/133
LCD
OFF
DocID17659 Rev 12
(1)(2)
TA = -40°C to 25°C
1.45
VDD = 1.8 V
-
TA = -40°C to 25°C
VDD = 3.0 V
1.9
-
TA = -40°C to 25°C
VDD = 3.6 V
2.2
-
Unit
µA
STM32L151x6/8/B STM32L152x6/8/B
Electrical characteristics
Table 22. Typical and maximum current consumptions in Stop mode (continued)
Symbol
Parameter
Typ
Max
TA = -40°C to 25°C
1.1
2.2
TA = -40°C to 25°C
0.5
0.9
TA = 55°C
1.9
5
TA= 85°C
3.7
8
TA = 105°C
8.9
20(6)
2
-
1.45
-
Conditions
Regulator in LP mode, HSI and
HSE OFF, independent
watchdog and LSI enabled
Supply current
in Stop mode
IDD (Stop)
(RTC
Regulator in LP mode, LSI, HSI
disabled)
and HSE OFF (no independent
watchdog)
RMS (root
MSI = 4.2 MHz
mean square)
MSI = 1.05 MHz
supply current
IDD (WU
during wakeup
from Stop) time when
MSI = 65 kHz(7)
exiting from
Stop mode
(1)
VDD = 3.0 V
TA = -40°C to 25°C
Unit
(1)(2)
µA
mA
1.45
-
1. The typical values are given for VDD = 3.0 V and max values are given for VDD = 3.6 V, unless otherwise
specified.
2. Guaranteed by characterization results, unless otherwise specified
3. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected
4. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD
connected.
5. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY)
with two 6.8pF loading capacitors.
6. Tested in production
7. When MSI = 64 kHz, the RMS current is measured over the first 15 µs following the wakeup event. For the
remaining time of the wakeup period, the current is similar to the Run mode current.
DocID17659 Rev 12
65/133
104
Electrical characteristics
STM32L151x6/8/B STM32L152x6/8/B
Table 23. Typical and maximum current consumptions in Standby mode
Symbol
Parameter
RTC clocked by LSI (no
independent watchdog)
IDD
(Standby
with RTC)
Supply current in Standby
mode with RTC enabled
RTC clocked by LSE (no
independent watchdog)(3)
Independent watchdog
and LSI enabled
IDD
(Standby)
Supply current in Standby
mode with RTC disabled
Independent watchdog
and LSI OFF
(1)(2)
TA = -40 °C to 25 °C
VDD = 1.8 V
0.9
-
TA = -40 °C to 25 °C
1.1
1.8
TA = 55 °C
1.42
2.5
TA= 85 °C
1.87
3
TA = 105 °C
2.78
5
TA = -40 °C to 25 °C
VDD = 1.8 V
1
-
TA = -40 °C to 25 °C
1.33
2.9
TA = 55 °C
1.59
3.4
TA= 85 °C
2.01
4.3
TA = 105 °C
3.27
6.3
TA = -40 °C to 25 °C
1.1
1.6
TA = -40 °C to 25 °C
0.3
0.55
TA = 55 °C
0.5
0.8
TA = 85 °C
1
1.7
2.5
4(4)
1
-
TA = 105 °C
IDD (WU
from
Standby)
RMS supply current during
wakeup time when exiting
from Standby mode
-
Max
Typ(1)
Conditions
VDD = 3.0 V
TA = -40 °C to 25 °C
Unit
µA
1. The typical values are given for VDD = 3.0 V and max values are given for VDD = 3.6 V, unless otherwise specified.
2. Guaranteed by characterization results, unless otherwise specified.
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF
loading capacitors.
4. Tested in production.
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in the following table. The MCU
is placed under the following conditions:
66/133
•
all I/O pins are in input mode with a static value at VDD or VSS (no load)
•
all peripherals are disabled unless otherwise mentioned
•
the given value is calculated by measuring the current consumption
–
with all peripherals clocked off
–
with only one peripheral clocked on
DocID17659 Rev 12
STM32L151x6/8/B STM32L152x6/8/B
Electrical characteristics
Table 24. Peripheral current consumption(1)
Typical consumption, VDD = 3.0 V, TA = 25 °C
Peripheral
TIM2
13
10.5
8
10.5
TIM3
14
12
9
12
TIM4
12.5
10.5
8
11
TIM6
5.5
4.5
3.5
4.5
TIM7
5.5
5
3.5
4.5
LCD
5.5
5
3.5
5
4
3.5
2.5
3.5
5.5
5
4
5
USART2
9
8
5.5
8.5
USART3
10.5
9
6
8
I2C1
8.5
7
5.5
7.5
I2C2
8.5
7
5.5
6.5
USB
12.5
10
6.5
10
PWR
4.5
4
3
3.5
DAC
9
7.5
6
7
4.5
4
3.5
4.5
SYSCFG & RI
3
2.5
2
2.5
TIM9
9
7.5
6
7
TIM10
6.5
5.5
4.5
5.5
TIM11
7
6
4.5
5.5
ADC(2)
11.5
9.5
8
9
SPI1
5
4.5
3
4
USART1
9
7.5
6
7.5
WWDG
APB1
SPI2
COMP
APB2
Range 2,
Range 3,
Range 1,
Low power
VCORE=1.8 V VCORE=1.5 V VCORE=1.2 V
sleep and run
VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11
DocID17659 Rev 12
Unit
µA/MHz
(fHCLK)
µA/MHz
(fHCLK)
67/133
104
Electrical characteristics
STM32L151x6/8/B STM32L152x6/8/B
Table 24. Peripheral current consumption(1) (continued)
Typical consumption, VDD = 3.0 V, TA = 25 °C
Peripheral
AHB
Range 2,
Range 3,
Range 1,
Low power
VCORE=1.8 V VCORE=1.5 V VCORE=1.2 V
sleep and run
VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11
GPIOA
5
4.5
3.5
4
GPIOB
5
4.5
3.5
4.5
GPIOC
5
4.5
3.5
4.5
GPIOD
5
4.5
3.5
4.5
GPIOE
5
4.5
3.5
4.5
GPIOH
4
4
3
3.5
CRC
1
0.5
0.5
0.5
FLASH
13
11.5
9
18.5
DMA1
12
10
8
10.5
166
138
106
130
All enabled
IDD (RTC)
0.47
IDD (LCD)
3.1
IDD (ADC)(3)
340
IDD (COMP1)
0.16
IDD (COMP2)
µA/MHz
(fHCLK)
1450
(4)
IDD (DAC)
Unit
Slow mode
2
Fast mode
5
IDD (PVD / BOR)(5)
2.6
IDD (IWDG)
0.25
µA
1. Data based on differential IDD measurement between all peripherals OFF an one peripheral with clock enabled, in the
following conditions: fHCLK = 32 MHz (Range 1), fHCLK = 16 MHz (Range 2), fHCLK = 4 MHz (Range 3), fHCLK = 64kHz
(Low power run/sleep), fAPB1 = fHCLK, fAPB2 = fHCLK, default prescaler value for each peripheral. The CPU is in Sleep
mode in both cases. No I/O pins toggling.
2. HSI oscillator is OFF for this measure.
3. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion (HSI
consumption not included).
4. Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC conversion of
VDD/2. DAC is in buffered mode, output is left floating.
5. Including supply current of internal reference voltage.
68/133
DocID17659 Rev 12
STM32L151x6/8/B STM32L152x6/8/B
6.3.5
Electrical characteristics
Wakeup time from Low power mode
The wakeup times given in the following table are measured with the MSI RC oscillator. The
clock source used to wake up the device depends on the current operating mode:
•
Sleep mode: the clock source is the clock that was set before entering Sleep mode
•
Stop mode: the clock source is the MSI oscillator in the range configured before
entering Stop mode
•
Standby mode: the clock source is the MSI oscillator running at 2.1 MHz
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 13.
Table 25. Low-power mode wakeup timings
Symbol
Parameter
tWUSLEEP
Wakeup from Sleep mode
tWUSLEEP_LP
Wakeup from Low power
sleep mode
fHCLK = 262 kHz
tWUSTDBY
Typ
Max(1) Unit
fHCLK = 32 MHz
0.36
-
fHCLK = 262 kHz
Flash enabled
32
-
fHCLK = 262 kHz
Flash switched OFF
34
-
fHCLK = fMSI = 4.2 MHz
8.2
-
fHCLK = fMSI = 4.2 MHz
Voltage Range 1 and 2
8.2
9.3
fHCLK = fMSI = 4.2 MHz
Voltage Range 3
7.8
11.2
fHCLK = fMSI = 2.1 MHz
10
12
fHCLK = fMSI = 1.05 MHz
15.5
20
fHCLK = fMSI = 524 kHz
29
35
fHCLK = fMSI = 262 kHz
53
63
fHCLK = fMSI = 131 kHz
105
118
fHCLK = MSI = 65 kHz
210
237
Wakeup from Standby
mode
FWU bit = 1
fHCLK = MSI = 2.1 MHz
50
103
Wakeup from Standby
mode
FWU bit = 0
fHCLK = MSI = 2.1 MHz
2.5
3.2
Wakeup from Stop mode,
regulator in Run mode
tWUSTOP
Conditions
Wakeup from Stop mode,
regulator in low power
mode
µs
ms
1. Guaranteed by characterization results, unless otherwise specified
DocID17659 Rev 12
69/133
104
Electrical characteristics
6.3.6
STM32L151x6/8/B STM32L152x6/8/B
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The
external clock signal has to respect the I/O characteristics in Section 6.3.13. However, the
recommended clock input waveform is shown in Figure 15: High-speed external clock
source AC timing diagram.
Table 26. High-speed external user clock characteristics(1)
Symbol
fHSE_ext
Parameter
User external clock source
frequency
Conditions
Min
CSS is on or
PLL is used
1
CSS is off, PLL
not used
0
Typ
Max
Unit
8
32
MHz
VHSEH
OSC_IN input pin high level voltage
0.7VDD
-
VDD
VHSEL
OSC_IN input pin low level voltage
VSS
-
0.3VDD
12
-
-
-
-
20
-
-
2.6
-
pF
-
45
-
55
%
VSS ≤VIN ≤VDD
-
-
±1
µA
tw(HSEH)
tw(HSEL)
OSC_IN high or low time
tr(HSE)
tf(HSE)
OSC_IN rise or fall time
Cin(HSE)
-
ns
OSC_IN input capacitance
DuCy(HSE) Duty cycle
IL
V
OSC_IN Input leakage current
1. Guaranteed by design.
Figure 15. High-speed external clock source AC timing diagram
WZ+6(+
9+6(+
9+6(/
WU+6(
WI+6(
WZ+6(/
W
7+6(
069
70/133
DocID17659 Rev 12
STM32L151x6/8/B STM32L152x6/8/B
Electrical characteristics
Low-speed external user clock generated from an external source
The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 13.
Table 27. Low-speed external user clock characteristics(1)
Symbol
Parameter
Conditions
fLSE_ext
User external clock source
frequency
VLSEH
OSC32_IN input pin high level
voltage
VLSEL
OSC32_IN input pin low level
voltage
tw(LSEH)
tw(LSEL)
OSC32_IN high or low time
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time
CIN(LSE)
Typ
Max
Unit
1
32.768
1000
kHz
0.7VDD
-
VDD
V
-
VSS
-
0.3VDD
465
-
ns
-
-
10
-
-
0.6
-
pF
-
45
-
55
%
VSS ≤VIN ≤VDD
-
-
±1
µA
OSC32_IN input capacitance
DuCy(LSE) Duty cycle
IL
Min
OSC32_IN Input leakage current
1. Guaranteed by design.
Figure 16. Low-speed external clock source AC timing diagram
WZ/6(+
9/6(+
9/6(/
WU/6(
WI/6(
W
WZ/6(/
7/6(
069
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 1 to 24 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 28. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
DocID17659 Rev 12
71/133
104
Electrical characteristics
STM32L151x6/8/B STM32L152x6/8/B
Table 28. HSE oscillator characteristics(1)(2)
Symbol
Parameter
Conditions
fOSC_IN Oscillator frequency
-
RF
Feedback resistor
C
Recommended load
capacitance versus
equivalent serial resistance
of the crystal (RS)(3)
IHSE
IDD(HSE)
gm
tSU(HSE)
(4)
Min Typ
HSE oscillator power
consumption
Oscillator transconductance
Startup time
Unit
24
MHz
200
-
kΩ
1
-
HSE driving current
Max
RS = 30 Ω
-
20
-
pF
VDD= 3.3 V, VIN = VSS
with 30 pF load
-
-
3
mA
C = 20 pF
fOSC = 16 MHz
-
-
2.5 (startup)
0.7 (stabilized)
mA
C = 10 pF
fOSC = 16 MHz
-
-
2.5 (startup)
0.46 (stabilized)
Startup
3.5
-
-
mA
/V
VDD is stabilized
-
1
-
ms
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Guaranteed by characterization results.
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a
humid environment, due to the induced leakage and the bias condition change. However, it is
recommended to take this point into account if the MCU is used in tough humidity conditions.
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer.
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 17). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
72/133
DocID17659 Rev 12
STM32L151x6/8/B STM32L152x6/8/B
Electrical characteristics
Figure 17. HSE oscillator circuit diagram
I+6(WRFRUH
5P
5)
&2
/P
&/
26&B,1
&P
JP
5HVRQDWRU
&RQVXPSWLRQ
FRQWURO
5HVRQDWRU
670
26&B287
&/
DLE
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 29. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 29. LSE oscillator characteristics (fLSE = 32.768 kHz)(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
fLSE
Low speed external oscillator
frequency
-
-
32.768
-
kHz
RF
Feedback resistor
-
-
1.2
-
MΩ
C(2)
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)(3)
RS = 30 kΩ
-
8
-
pF
ILSE
LSE driving current
VDD = 3.3 V, VIN = VSS
-
-
1.1
µA
VDD = 1.8 V
-
450
-
VDD = 3.0 V
-
600
-
VDD = 3.6V
-
750
-
-
3
-
-
µA/V
VDD is stabilized
-
1
-
s
IDD (LSE)
gm
LSE oscillator current
consumption
Oscillator transconductance
tSU(LSE)(4) Startup time
nA
1. Guaranteed by characterization results.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator
design guide for ST microcontrollers”.
3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with
small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details.
DocID17659 Rev 12
73/133
104
Electrical characteristics
4.
STM32L151x6/8/B STM32L152x6/8/B
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary
significantly with the crystal manufacturer.
Note:
For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to
15 pF range selected to match the requirements of the crystal or resonator (see Figure 18 ).
CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load
capacitance which is the series combination of CL1 and CL2.
Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray
where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically,
it is between 2 pF and 7 pF.
Caution:
To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended
to use a resonator with a load capacitance CL ≤ 7 pF. Never use a resonator with a load
capacitance of 12.5 pF.
Example: if a resonator is chosen with a load capacitance of CL = 6 pF and Cstray = 2 pF,
then CL1 = CL2 = 8 pF.
Figure 18. Typical application with a 32.768 kHz crystal
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
&/
I/6(
26&B,1
N+]
UHVRQDWRU
5)
26&B287
%LDV
FRQWUROOHG
JDLQ
670/[[
&/
DLE
74/133
DocID17659 Rev 12
STM32L151x6/8/B STM32L152x6/8/B
6.3.7
Electrical characteristics
Internal clock source characteristics
The parameters given in the following table are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 13.
High-speed internal (HSI) RC oscillator
Table 30. HSI oscillator characteristics
Symbol
fHSI
TRIM
(1)(2)
Parameter
Conditions
Min
Typ
Max
Unit
Frequency
VDD = 3.0 V
-
16
-
MHz
HSI user-trimmed
resolution
Trimming code is not a multiple of 16
-
± 0.4
0.7
%
Trimming code is a multiple of 16
-
Accuracy of the
ACCHSI(2) factory-calibrated
HSI oscillator
-
± 1.5
%
VDDA = 3.0 V, TA = 25 °C
-1(3)
-
1(3)
%
VDDA = 3.0 V, TA = 0 to 55 °C
-1.5
-
1.5
%
VDDA = 3.0 V, TA = -10 to 70 °C
-2
-
2
%
VDDA = 3.0 V, TA = -10 to 85 °C
-2.5
-
2
%
VDDA = 3.0 V, TA = -10 to 105 °C
-4
-
2
%
VDDA = 1.65 V to 3.6 V
TA = -40 to 105 °C
-4
-
3
%
tSU(HSI)(2)
HSI oscillator
startup time
-
-
3.7
6
µs
IDD(HSI)(2)
HSI oscillator
power consumption
-
-
100
140
µA
1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are
multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).
2. Guaranteed by characterization results.
3. Tested in production.
Low-speed internal (LSI) RC oscillator
Table 31. LSI oscillator characteristics
Symbol
Parameter
Min
Typ
Max
Unit
fLSI(1)
LSI frequency
26
38
56
kHz
DLSI(2)
LSI oscillator frequency drift
0°C ≤TA ≤ 85°C
-10
-
4
%
LSI oscillator startup time
-
-
200
µs
LSI oscillator power consumption
-
400
510
nA
tsu(LSI)(3)
IDD(LSI)
(3)
1. Tested in production.
2. This is a deviation for an individual part, once the initial frequency has been measured.
3. Guaranteed by design.
DocID17659 Rev 12
75/133
104
Electrical characteristics
STM32L151x6/8/B STM32L152x6/8/B
Multi-speed internal (MSI) RC oscillator
Table 32. MSI oscillator characteristics
Symbol
Condition
Typ
Max
MSI range 0
65.5
-
MSI range 1
131
-
MSI range 2
262
-
MSI range 3
524
-
MSI range 4
1.05
-
MSI range 5
2.1
-
MSI range 6
4.2
-
Frequency error after factory calibration
-
±0.5
-
%
DTEMP(MSI)(1)
MSI oscillator frequency drift
0 °C ≤TA ≤85 °C
-
±3
-
%
DVOLT(MSI)(1)
MSI oscillator frequency drift
1.65 V ≤VDD ≤3.6 V, TA = 25 °C
-
-
2.5
%/V
MSI range 0
0.75
-
MSI range 1
1
-
MSI range 2
1.5
-
MSI range 3
2.5
-
MSI range 4
4.5
-
MSI range 5
8
-
MSI range 6
15
-
MSI range 0
30
-
MSI range 1
20
-
MSI range 2
15
-
MSI range 3
10
-
MSI range 4
6
-
MSI range 5
5
-
MSI range 6,
Voltage range 1
and 2
3.5
-
MSI range 6,
Voltage range 3
5
-
fMSI
ACCMSI
IDD(MSI)(2)
tSU(MSI)
76/133
Parameter
Frequency after factory calibration, done at
VDD= 3.3 V and TA = 25 °C
MSI oscillator power consumption
MSI oscillator startup time
DocID17659 Rev 12
Unit
kHz
MHz
µA
µs
STM32L151x6/8/B STM32L152x6/8/B
Electrical characteristics
Table 32. MSI oscillator characteristics (continued)
Symbol
tSTAB(MSI)(2)
fOVER(MSI)
Parameter
Condition
MSI oscillator stabilization time
MSI oscillator frequency overshoot
Typ
Max
MSI range 0
-
40
MSI range 1
-
20
MSI range 2
-
10
MSI range 3
-
4
MSI range 4
-
2.5
MSI range 5
-
2
MSI range 6,
Voltage range 1
and 2
-
2
MSI range 3,
Voltage Range 3
-
3
Any range to
range 5
-
4
Any range to
range 6
-
Unit
µs
MHz
6
1. This is a deviation for an individual part, once the initial frequency has been measured.
2. Guaranteed by characterization results.
6.3.8
PLL characteristics
The parameters given in Table 33 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 13.
Table 33. PLL characteristics
Value
Symbol
Parameter
Unit
Min
Typ
Max(1)
PLL input clock(2)
2
-
24
MHz
PLL input clock duty cycle
45
-
55
%
fPLL_OUT
PLL output clock
2
-
32
MHz
tLOCK
Worst case PLL lock time
PLL input = 2 MHz
PLL VCO = 96 MHz
-
100
130
µs
Jitter
Cycle-to-cycle jitter
-
-
± 600
ps
IDDA(PLL)
Current consumption on VDDA
-
220
450
IDD(PLL)
Current consumption on VDD
-
120
150
fPLL_IN
µA
1. Guaranteed by characterization results.
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT.
DocID17659 Rev 12
77/133
104
Electrical characteristics
6.3.9
STM32L151x6/8/B STM32L152x6/8/B
Memory characteristics
The characteristics are given at TA = -40 to 105 °C unless otherwise specified.
RAM memory
Table 34. RAM and hardware registers
Symbol
VRM
Parameter
Data retention
Conditions
mode(1)
STOP mode (or RESET)
Min
Typ
Max
Unit
1.65
-
-
V
1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware
registers (only in Stop mode).
Flash memory and data EEPROM
Table 35. Flash memory and data EEPROM characteristics
Symbol
Parameter
VDD
Operating voltage
Read / Write / Erase
tprog
Programming / erasing time for
byte / word / double word / halfpage
Average current during whole
program/erase operation
IDD
Maximum current (peak) during
program/erase operation
Max(1) Unit
Conditions
Min
Typ
-
1.65
-
3.6
Erasing
-
3.28
3.94
Programming
-
3.28
3.94
-
300
-
µA
-
1.5
2.5
mA
V
ms
TA = 25 °C, VDD = 3.6 V
1. Guaranteed by design.
Table 36. Flash memory, data EEPROM endurance and data retention
Value
Symbol
NCYC(2)
Parameter
Cycling (erase / write)
Program memory
Cycling (erase / write)
EEPROM data memory
Data retention (program memory) after
10 kcycles at TA = 85 °C
tRET
(2)
Data retention (EEPROM data memory)
after 300 kcycles at TA = 85 °C
Data retention (program memory) after
10 kcycles at TA = 105 °C
Data retention (EEPROM data memory)
after 300 kcycles at TA = 105 °C
Conditions
TA = -40°C to
105 °C
10
-
-
300
-
-
30
-
-
30
-
-
10
-
-
10
-
-
Unit
kcycles
TRET = +85 °C
years
TRET = +105 °C
1. Guaranteed by characterization results.
2. Characterization is done according to JEDEC JESD22-A117.
78/133
Min(1) Typ Max
DocID17659 Rev 12
STM32L151x6/8/B STM32L152x6/8/B
6.3.10
Electrical characteristics
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 37. They are based on the EMS levels and classes
defined in application note AN1709.
Table 37. EMS characteristics
Symbol
Parameter
Conditions
VFESD
VDD = 3.3 V, LQFP100, TA = +25 °C,
Voltage limits to be applied on any I/O pin to
fHCLK = 32 MHz
induce a functional disturbance
conforms to IEC 61000-4-2
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
Level/
Class
VDD = 3.3 V, LQFP100, TA = +25
°C,
fHCLK = 32 MHz
conforms to IEC 61000-4-4
2B
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
•
Corrupted program counter
•
Unexpected reset
•
Critical data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1
second.
DocID17659 Rev 12
79/133
104
Electrical characteristics
STM32L151x6/8/B STM32L152x6/8/B
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 38. EMI characteristics
Max vs. frequency range
Symbol
SEMI
6.3.11
Parameter
Peak level
Conditions
VDD = 3.3 V,
TA = 25 °C,
LQFP100 package
compliant with IEC
61967-2
Monitored
frequency band
4 MHz
16 MHz
voltage
Range 3
voltage
Range 2
32 MHz
voltage
Range 1
0.1 to 30 MHz
3
-6
-5
30 to 130 MHz
18
4
-7
130 MHz to 1GHz
15
5
-7
SAE EMI Level
2.5
2
1
Unit
dBµV
-
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 39. ESD absolute maximum ratings
Symbol
Ratings
Conditions
Packages Class
Maximum
value(1)
VESD(HBM)
Electrostatic discharge voltage TA = +25 °C, conforming to
(human body model)
JESD22-A114
All
2
2000
VESD(CDM)
Electrostatic discharge voltage TA = +25 °C, conforming to
(charge device model)
JESD22-C101
All
III
500
1. Guaranteed by characterization results.
80/133
DocID17659 Rev 12
Unit
V
STM32L151x6/8/B STM32L152x6/8/B
Electrical characteristics
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
•
A supply overvoltage is applied to each power supply pin
•
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 40. Electrical sensitivities
Symbol
LU
6.3.12
Parameter
Static latch-up class
Conditions
Class
TA = +105 °C conforming to JESD78A
II level A
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard pins) should be avoided during normal product operation.
However, in order to give an indication of the robustness of the microcontroller in cases
when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error, out of spec current
injection on adjacent pins or other functional failure (for example reset, oscillator frequency
deviation, LCD levels, etc.).
The test results are given in Table 41.
Table 41. I/O current injection susceptibility
Functional susceptibility
Symbol
IINJ
Note:
Description
Negative
injection
Positive
injection
Injected current on all 5 V tolerant (FT) pins
-5
+0
Injected current on any other pin
-5
+5
Unit
mA
It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
DocID17659 Rev 12
81/133
104
Electrical characteristics
6.3.13
STM32L151x6/8/B STM32L152x6/8/B
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 42 are derived from tests
performed under conditions summarized in Table 13. All I/Os are CMOS and TTL compliant.
Table 42. I/O static characteristics
Symbol
Parameter
VIL
Input low level voltage
VIH
Input high level voltage
Vhys
Ilkg
RPU
Conditions
-
FT I/O
I/O pin capacitance
-
0.7 VDD
-
Max
10%
0.3VDD
-
-
-
-
VDD(3)
-
VSS ≤VIN ≤VDD
I/Os with LCD
-
-
±50
VSS ≤VIN ≤VDD
I/Os with analog
switches
-
-
±50
VSS ≤VIN ≤VDD
I/Os with analog
switches and LCD
-
-
±50
VSS ≤VIN ≤VDD
I/Os with USB
-
-
TBD
FT I/O
VDD ≤VIN ≤5V
-
-
TBD
VSS ≤VIN ≤VDD
Standard I/Os
-
-
±50
VIN = VSS
30
45
60
kΩ
VIN = VDD
30
45
60
kΩ
-
5
-
pF
-
-
1. Tested in production
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization.
3. With a minimum of 200 mV. Based on characterization results.
4. With a minimum of 100 mV. Based on characterization results.
5. The max. value may be exceeded if negative current is injected on adjacent pins.
6. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
MOS/NMOS contribution to the series resistance is minimum (~10% order).
82/133
V
-
(6)
5% VDD
(4)
Unit
(1)
FT I/O
Weak pull-up equivalent resistor(6)(1)
CIO
Typ
-
Standard I/O
Input leakage current (5)
Weak pull-down equivalent resistor
-
Standard I/O
I/O Schmitt trigger voltage
hysteresis(2)
RPD
Min
DocID17659 Rev 12
nA
STM32L151x6/8/B STM32L152x6/8/B
Electrical characteristics
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with the non-standard VOL/VOH specifications given in Table 43.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
•
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDDΣ (see Table 11).
•
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSSΣ (see Table 11).
Output voltage levels
Unless otherwise specified, the parameters given in Table 43 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 13. All I/Os are CMOS and TTL compliant.
Table 43. Output voltage characteristics
Symbol
Parameter
VOL(1)(2)
Output low level voltage for an I/O pin
VOH(3)(2)
Output high level voltage for an I/O pin
VOL
(1)(4)
Output low level voltage for an I/O pin
VOH (3)(4)
Output high level voltage for an I/O pin
VOL(1)(4)
Output low level voltage for an I/O pin
VOH(3)(4)
Output high level voltage for an I/O pin
Conditions
Min
Max
IIO = 8 mA
2.7 V < VDD < 3.6 V
-
0.4
2.4
-
-
0.45
VDD-0.45
-
-
1.3
VDD-1.3
-
IIO = 4 mA
1.65 V < VDD < 2.7 V
IIO = 20 mA
2.7 V < VDD < 3.6 V
Unit
V
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 11 and the sum of
IIO (I/O ports and control pins) must not exceed IVSS.
2. Tested in production.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 11 and the sum
of IIO (I/O ports and control pins) must not exceed IVDD.
4. Guaranteed by characterization results.
DocID17659 Rev 12
83/133
104
Electrical characteristics
STM32L151x6/8/B STM32L152x6/8/B
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 19 and
Table 44, respectively.
Unless otherwise specified, the parameters given in Table 44 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 13.
Table 44. I/O AC characteristics(1)
OSPEEDRx
[1:0] bit
value(1)
Symbol
Parameter
fmax(IO)out
Maximum frequency(3)
tf(IO)out
tr(IO)out
Output rise and fall time
fmax(IO)out
Maximum frequency(3)
tf(IO)out
tr(IO)out
Output rise and fall time
Fmax(IO)out
Maximum frequency(3)
tf(IO)out
tr(IO)out
Output rise and fall time
Fmax(IO)out
Maximum frequency(3)
tf(IO)out
tr(IO)out
Output rise and fall time
tEXTIpw
Pulse width of external
signals detected by the
EXTI controller
00
01
10
11
-
Conditions
Min
Max(2)
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
400
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
400
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
625
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
625
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
2
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
1
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
125
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
250
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
10
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
2
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
25
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
125
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
50
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
8
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
5
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
30
-
8
3. The maximum frequency is defined in Figure 19.
84/133
DocID17659 Rev 12
kHz
ns
MHz
ns
MHz
ns
MHz
ns
-
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32L151x6/8/B and STM32L152x6/8/B
reference manual for a description of GPIO Port configuration register.
2. Guaranteed by design.
Unit
STM32L151x6/8/B STM32L152x6/8/B
Electrical characteristics
Figure 19. I/O AC characteristics definition
%84%2.!,
/54054
/.P&
TR)/ OUT
TF)/ OUT
4
-AXIMUMFREQUENCYISACHIEVEDIFT RTF 4ANDIFTHEDUTYCYCLEIS
WHENLOADEDBYP&
6.3.14
AIC
NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 45).
Unless otherwise specified, the parameters given in Table 45 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 13.
Table 45. NRST pin characteristics
Symbol
VIL(NRST)
(1)
Parameter
Conditions
Min
Typ
NRST input low level voltage
-
-
-
-
1.4
-
IOL = 2 mA
2.7 V < VDD < 3.6 V
-
-
IOL = 1.5 mA
1.65 V < VDD < 2.7 V
-
-
-
-
10%VDD(2)
Weak pull-up equivalent
resistor(3)
VIN = VSS
30
45
60
kΩ
NRST input filtered pulse
-
-
-
50
ns
NRST input not filtered pulse
-
350
-
VIH(NRST)(1) NRST input high level voltage
VOL(NRST)
(1)
Vhys(NRST)(1)
RPU
VF(NRST)(1)
VNF(NRST)
(1)
NRST output low level
voltage
NRST Schmitt trigger voltage
hysteresis
Max Unit
0.8
V
0.4
mV
ns
1. Guaranteed by design.
2. 200 mV minimum value
3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to
the series resistance is around 10%.
DocID17659 Rev 12
85/133
104
Electrical characteristics
STM32L151x6/8/B STM32L152x6/8/B
Figure 20. Recommended NRST pin protection
([WHUQDOUHVHWFLUFXLW
1567
9''
538
,QWHUQDOUHVHW
)LOWHU
)
670/[[
DLE
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 45. Otherwise the reset will not be taken into account by the device.
6.3.15
TIM timer characteristics
The parameters given in Table 46 are guaranteed by design.
Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 46. TIMx(1) characteristics
Symbol
tres(TIM)
fEXT
ResTIM
tCOUNTER
Parameter
Conditions
Min
Max
Unit
-
1
-
tTIMxCLK
fTIMxCLK = 32 MHz
31.25
-
ns
Timer external clock
frequency on CH1 to CH4 f
TIMxCLK = 32 MHz
0
fTIMxCLK/2
MHz
0
16
MHz
Timer resolution
-
-
16
bit
16-bit counter clock
period when internal clock
is selected (timer’s
prescaler disabled)
-
1
65536
tTIMxCLK
2048
µs
Timer resolution time
tMAX_COUNT Maximum possible count
fTIMxCLK = 32 MHz 0.0312
-
-
65536 × 65536
tTIMxCLK
fTIMxCLK = 32 MHz
-
134.2
s
1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers.
86/133
DocID17659 Rev 12
STM32L151x6/8/B STM32L152x6/8/B
6.3.16
Electrical characteristics
Communication interfaces
I2C interface characteristics
The STM32L151x6/8/B and STM32L152x6/8/B product line I2C interface meets the
requirements of the standard I2C communication protocol with the following restrictions:
SDA and SCL are not “true” open-drain I/O pins. When configured as open-drain, the PMOS
connected between the I/O pin and VDD is disabled, but is still present.
The I2C characteristics are described in Table 47. Refer also to Section 6.3.12: I/O current
injection characteristics for more details on the input/output alternate function characteristics
(SDA and SCL).
Table 47. I2C characteristics
Standard mode I2C(1)
Symbol
Fast mode I2C(1)(2)
Parameter
Unit
Min
Max
Min
Max
tw(SCLL)
SCL clock low time
4.7
-
1.3
-
tw(SCLH)
SCL clock high time
4.0
-
0.6
-
tsu(SDA)
SDA setup time
250
-
100
-
th(SDA)
SDA data hold time
0
-
0
900(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time
-
1000
20 + 0.1Cb
300
tf(SDA)
tf(SCL)
SDA and SCL fall time
-
300
-
300
th(STA)
Start condition hold time
4.0
-
0.6
-
tsu(STA)
Repeated Start condition
setup time
4.7
-
0.6
-
tsu(STO)
Stop condition setup time
4.0
-
0.6
-
μs
tw(STO:STA)
Stop to Start condition time
(bus free)
4.7
-
1.3
-
μs
Cb
Capacitive load for each bus
line
-
400
-
400
pF
µs
ns
µs
1. Guaranteed by design.
2. fPCLK1 must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to
achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I²C fast
mode clock.
3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL
signal.
DocID17659 Rev 12
87/133
104
Electrical characteristics
STM32L151x6/8/B STM32L152x6/8/B
Figure 21. I2C bus AC waveforms and measurement circuit
sͺ/Ϯ
sͺ/Ϯ
ZW
ZW
^dDϯϮ>ϭdždž
Z^
^
/ϮďƵƐ
Z^
^>
^ dZdZWd
^ dZd
^ dZd
ƚƐƵ;^dͿ
^
ƚĨ;^Ϳ
ƚƌ;^Ϳ
ƚŚ;^dͿ
ƚƐƵ;^Ϳ
ƚǁ;^Ϳ
ƚŚ;^Ϳ
ƚƐƵ;^d͗^dKͿ
^ dKW
^>
ƚƌ;^