0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32L152ZET6D

STM32L152ZET6D

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP144_20X20MM

  • 描述:

    IC MCU 32BIT 512KB FLASH 144LQFP

  • 数据手册
  • 价格&库存
STM32L152ZET6D 数据手册
STM32L151xE STM32L152xE Ultra-low-power 32-bit MCU Arm®-based Cortex®-M3 with 512KB Flash, 80KB SRAM, 16KB EEPROM, LCD, USB, ADC, DAC Datasheet - production data Features Includes ST state-of-the-art patented technology • Ultra-low-power platform – 1.65 V to 3.6 V power supply – -40 °C to 105 °C temperature range – 290 nA Standby mode (3 wakeup pins) – 1.11 µA Standby mode + RTC – 560 nA Stop mode (16 wakeup lines) – 1.4 µA Stop mode + RTC – 11 µA Low-power run mode down to 4.6 µA in Low-power sleep mode – 195 µA/MHz Run mode – 10 nA ultra-low I/O leakage – 8 µs wakeup time • Core: Arm® Cortex®-M3 32-bit CPU – From 32 kHz up to 32 MHz max – 1.25 DMIPS/MHz (Dhrystone 2.1) – Memory protection unit • CRC calculation unit, 96-bit unique ID • Reset and supply management – Low-power, ultrasafe BOR (brownout reset) with 5 selectable thresholds – Ultra-low-power POR/PDR – Programmable voltage detector (PVD) • Clock sources – 1 to 24 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – Internal 16 MHz oscillator factory trimmed RC(+/-1%) with PLL option – Internal low-power 37 kHz oscillator – Internal multispeed low-power 65 kHz to 4.2 MHz oscillator – PLL for CPU clock and USB (48 MHz) April 2021 This is information on a product in full production. UFBGA132 (7 × 7 mm) WLCSP104 (0.4 mm pitch) – USB and USART supported • Up to 116 fast I/Os (102 I/Os 5V tolerant), all mappable on 16 external interrupt vectors • Memories – 512 Kbytes of Flash memory with ECC (with 2 banks of 256 Kbytes enabling RWW capability) – 80 Kbytes of RAM – 16 Kbytes of true EEPROM with ECC – 128-byte backup register • LCD driver (except STM32L151xE devices) up to 8x40 segments, contrast adjustment, blinking mode, step-up converter • Up to 34 capacitive sensing channels • Pre-programmed bootloader LQFP144 (20 × 20 mm) LQFP100 (14 × 14 mm) LQFP64 (10 × 10 mm) • Rich analog peripherals (down to 1.8 V) – 2x operational amplifiers – 12-bit ADC 1 Msps up to 40 channels – 12-bit DAC 2 ch with output buffers – 2x ultra-low-power comparators (window mode and wake up capability) • DMA controller 12x channels • 11x peripheral communication interfaces – 1x USB 2.0 (internal 48 MHz PLL) – 5x USARTs – Up to 8x SPIs (2x I2S, 3x 16 Mbit/s) – 2x I2Cs (SMBus/PMBus) • 11x timers: 1x 32-bit, 6x 16-bit with up to 4 IC/OC/PWM channels, 2x 16-bit basic timers, 2x watchdog timers (independent and window) • Development support: serial wire debug, JTAG and trace DS10002 Rev 10 1/136 www.st.com STM32L151xE STM32L152xE Table 1. Device summary Reference Part number STM32L151xE STM32L151QE, STM32L151RE, STM32L151VE, STM32L151ZE STM32L152xE STM32L152QE, STM32L152RE, STM32L152VE, STM32L152ZE 2/136 DS10002 Rev 10 STM32L151xE STM32L152xE Contents Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2 Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Shared peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.3 Common system strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.4 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Arm® Cortex®-M3 core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3.4 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.5 Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 23 3.6 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.7 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.8 DMA (direct memory access) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.9 LCD (liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.10 ADC (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.10.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.11 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.12 Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.13 Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 27 3.14 System configuration controller and routing interface . . . . . . . . . . . . . . . 27 3.15 Touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DS10002 Rev 10 3/136 5 Contents STM32L151xE STM32L152xE 3.16 3.17 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.16.1 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and TIM11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.16.2 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.16.3 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.16.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.16.5 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.17.1 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.17.2 Universal synchronous/asynchronous receiver transmitter (USART) . . 29 3.17.3 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.17.4 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.17.5 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.18 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 30 3.19 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.19.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.19.2 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1 4/136 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.1.7 Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.1.8 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 62 6.3.3 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 64 DS10002 Rev 10 STM32L151xE STM32L152xE 7 Contents 6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.3.5 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.3.15 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.3.16 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.3.17 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.3.18 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.3.19 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.3.20 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.3.21 Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.3.22 LCD controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.1 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 7.2 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 7.3 WLCSP104 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.4 UFBGA132 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.5 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.6 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 7.6.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 9 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 DS10002 Rev 10 5/136 5 List of tables STM32L151xE STM32L152xE List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. 6/136 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Ultra-low-power STM32L151xE and STM32L152xE device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 15 CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 16 Functionalities depending on the working mode (from Run/active down to standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 STM32L151xE and STM32L152xE pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Alternate function input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 62 Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Current consumption in Run mode, code with data processing running from Flash. . . . . . 66 Current consumption in Run mode, code with data processing running from RAM . . . . . . 67 Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Current consumption in Low-power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Current consumption in Low-power sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 71 Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 73 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Flash memory and data EEPROM endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 86 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 DS10002 Rev 10 STM32L151xE STM32L152xE Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. List of tables I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 SCL frequency (fPCLK1= 32 MHz, VDD = VDD_I2C = 3.3 V). . . . . . . . . . . . . . . . . . . . . . . . 96 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 USB: full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 ADC clock frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Maximum source impedance RAIN max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 LQFP64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 LQPF100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 WLCSP104 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 WLCSP104 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 UFBGA132 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 LQFP144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 STM32L151xE and STM32L152xE Ordering information scheme . . . . . . . . . . . . . . . . . . 132 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 DS10002 Rev 10 7/136 7 List of figures STM32L151xE STM32L152xE List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. 8/136 Ultra-low-power STM32L151xE and STM32L152xE block diagram. . . . . . . . . . . . . . . . . . 13 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 STM32L15xRE LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 STM32L15xVE LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 STM32L15xVEY WLCSP104 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 STM32L15xQE UFBGA132 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 STM32L15xZE LQFP144 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 100 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Maximum dynamic current consumption on VREF+ supply pin during ADC conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 LQFP64 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 LQFP64 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 LQFP100 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 LQFP100 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 WLCSP104 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 WLCSP104 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 WLCSP104 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 UFBGA132 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 UFBGA132 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 UFBGA132 top view example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 LQFP144 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 LQFP144 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Thermal resistance suffix 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Thermal resistance suffix 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 DS10002 Rev 10 STM32L151xE STM32L152xE 1 Introduction Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32L151xE and STM32L152xE ultra-low-power Arm® Cortex®-M3 based microcontroller product line. STM32L151xE and STM32L152xE devices are microcontrollers with a Flash memory density of 512 Kbytes. The ultra-low-power STM32L151xE and STM32L152xE family includes devices in 5 different package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. These features make the ultra-low-power STM32L151xE and STM32L152xE microcontroller family suitable for a wide range of applications: • Medical and handheld equipment • Application control and user interface • PC peripherals, gaming, GPS and sport equipment • Alarm systems, wired and wireless sensors, video intercom • Utility metering This STM32L151xE and STM32L152xE datasheet must be read in conjunction with the STM32L1xxxx reference manual (RM0038). The application note “Getting started with STM32L1xxxx hardware development” (AN3216) gives a hardware implementation overview. Both documents are available from the STMicroelectronics website www.st.com. For information on the Arm®(a) Cortex®-M3 core, refer to the Arm® Cortex®-M3 technical reference manual, available from the www.arm.com website. Figure 1 shows the general block diagram of the device family. For information on the device errata with respect to the datasheet and reference manual, refer to the STM32L15xE errata sheet (ES0235), available on the STMicroelectronics website www.st.com. a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. DS10002 Rev 10 9/136 56 Description 2 STM32L151xE STM32L152xE Description The ultra-low-power STM32L151xE and STM32L152xE devices incorporate the connectivity power of the universal serial bus (USB) with the high-performance Arm® Cortex®-M3 32-bit RISC core operating at a frequency of 32 MHz (33.3 DMIPS), a memory protection unit (MPU), high-speed embedded memories (Flash memory up to 512 Kbytes and RAM up to 80 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. The STM32L151xE and STM32L152xE devices offer two operational amplifiers, one 12-bit ADC, two DACs, two ultra-low-power comparators, one general-purpose 32-bit timer, six general-purpose 16-bit timers and two basic timers, which can be used as time bases. Moreover, the STM32L151xE and STM32L152xE devices contain standard and advanced communication interfaces: up to two I2Cs, three SPIs, two I2S, three USARTs, two UARTs and an USB. The STM32L151xE and STM32L152xE devices offer up to 34 capacitive sensing channels to simply add a touch sensing functionality to any application. They also include a real-time clock and a set of backup registers that remain powered in Standby mode. Finally, the integrated LCD controller (except STM32L151xE devices) has a built-in LCD voltage generator that allows to drive up to 8 multiplexed LCDs with the contrast independent of the supply voltage. The ultra-low-power STM32L151xE and STM32L152xE devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +85 °C and -40 to +105 °C temperature ranges. A comprehensive set of power-saving modes allows the design of lowpower applications. 10/136 DS10002 Rev 10 STM32L151xE STM32L152xE 2.1 Description Device overview Table 2. Ultra-low-power STM32L151xE and STM32L152xE device features and peripheral counts Peripheral STM32L15xRE STM32L15xVE STM32L15xQE Flash (Kbytes) 512 Data EEPROM (Kbytes) 16 RAM (Kbytes) 80 Timers Communication interfaces 32 bit 1 General-purpose 6 Basic 2 SPI 8(3)(1) I2S 2 I2C 2 USART 5 USB 1 GPIOs 51 83 Operational amplifiers 12-bit synchronized ADC Number of channels 1 21 1 25 1 1 40 4x44 or 8x40 2 23 33 Max. CPU frequency Packages 1 40 1 4x32 or 8x28 Capacitive sensing channels Operating temperatures 115 2 2 Comparators Operating voltage 109 2 12-bit DAC Number of channels LCD (2) COM x SEG STM32L15xZE 34 32 MHz 1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 V to 3.6 V without BOR option Ambient operating temperature: -40 °C to 85 °C / -40 °C to 105 °C Junction temperature: –40 to + 110 °C LQFP64 LQFP100, WLCSP104 UFBGA132 LQFP144 1. 5 SPIs are USART configured in synchronous mode emulating SPI master. 2. STM32L152xx devices only. DS10002 Rev 10 11/136 56 Description 2.2 STM32L151xE STM32L152xE Ultra-low-power device continuum The ultra-low-power family offers a large choice of cores and features. From proprietary 8bit to up to Cortex-M3, including the Cortex-M0+, the STM32Lx series are the best choice to answer the user needs, in terms of ultra-low-power features. The STM32 ultra-low-power series are the best fit, for instance, for gas/water meter, keyboard/mouse or fitness and healthcare, wearable applications. Several built-in features like LCD drivers, dual-bank memory, Low-power run mode, op-amp, AES 128-bit, DAC, USB crystal-less and many others clearly allow very cost-optimized applications to be built by reducing BOM. Note: STMicroelectronics as a reliable and long-term manufacturer ensures as much as possible the pin-to-pin compatibility between any STM8Lxxxxx and STM32Lxxxxx devices and between any of the STM32Lx and STM32Fx series. Thanks to this unprecedented scalability, the old applications can be upgraded to respond to the latest market features and efficiency demand. 2.2.1 Performance All the families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and Arm Cortex-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios. This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs. 2.2.2 Shared peripherals STM8L15xxx, STM32L15xxx and STM32L162xx share identical peripherals which ensure a very easy migration from one family to another: 2.2.3 • Analog peripherals: ADC, DAC and comparators • Digital peripherals: RTC and some communication interfaces Common system strategy. To offer flexibility and optimize performance, the STM8L15xxx, STM32L15xxx and STM32L162xx family uses a common architecture: 2.2.4 • Same power supply range from 1.65 V to 3.6 V • Architecture optimized to reach ultra-low consumption both in low-power modes and Run mode • Fast startup strategy from low-power modes • Flexible system clock • Ultrasafe reset: same reset strategy including power-on reset, power-down reset, brownout reset and programmable voltage detector Features ST ultra-low-power continuum also lies in feature compatibility: 12/136 • More than 15 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm • Memory density ranging from 2 to 512 Kbytes DS10002 Rev 10 STM32L151xE STM32L152xE Functional overview Figure 1. Ultra-low-power STM32L151xE and STM32L152xE block diagram TRACECK, TRACED0, TRACED1, TRACED2, TRACED4 Fmax: 32 MHz MPU Dbus System NVIC GP DMA 7 channels EEPROM ob l M3 CPU VOLT. REG. ibus Bus Matrix 5M / 5S NJTRST JTDI JTCK / SWCLK JTMS / SWDAT JTDO as AF 512 KB PROGRAM 16 KB DATA 8KB BOOT DUAL BANK SRAM 80K BOR PB[15:0] GPIO PORT B PC[15:0] GPIO PORT C PD[15:0] GPIO PORT D PE[15:0] GPIO PORT E PH[2:0] GPIO PORT H PF[15:0] GPIO PORT F 115 AF MOSI, MISO, SCK, NSS as AF RX, TX, CTS, RTS, SmartCard as AF AHB/APB2 12bit ADC VSSREF_ADC* Temp sensor IF USB SRAM 512 B WinWATCHDOG TIMER6 TIMER7 4 channels TIMER3 4 channels TIMER4 4 channels TIMERS (32 bits) 4 channels USART2 RX, TX, CTS, RTS, SmartCard as AF USART3 RX, TX, CTS, RTS, SmartCard as AF USART4 RX, TX as AF USART5 RX, TX as AF SPI2/I2S 2x(8x16bit) MOSI, MISO, SCK,NSS,WS, CK MCK, SD as AF SPI3/I2S 2x(8x16bit) MOSI, MISO, SCK,NSS,WS, CK MCK, SD as AF I2C1 SCL, SDA As AF I2C2 SCL, SDA, SMBus, PMBus As AF USB2.0 FS device Cap. sensing General purpose timers 2 channels TIMER9 1 channel TIMER10 1 channel TIMER11 VLCD = 2.5V to 3.6V TIMER2 AHB/APB1 USART1 40 AF VDDREF_ADC* LCD Booster SPI1 @VDDA TAMPER @VDD33 GPIO PORT G EXT.IT WKUP Backup Reg 128 Backup interface APB1: Fmax = 32 MHz PG[15:0] @VDDA OSC32_IN OSC32_OUT RTC_OUT RTC V2 AWU VLCD GPIO PORT A OSC_OUT XTAL 32 kHz AHB: Fmax = 32 MHz PA[15:0] OSC_IN XTAL OSC 1-24 MHz RC LSIA @VDD GP Comp PU / PD @ VDD33 Standby interface RC MSI Int NRST WDG 32K RC HSI Cap. sens COMPx_INx PDR PLL & Clock Mgmt FCLK PVD Vref PDR AHBPCLK APBPCLK HCLK BOR / Bgap Vss Supply monitoring @VDDA Supply monitoring VDD33=1.65V to 3.6V EEPROM 64 bit GP DMA2 5 channels VDDA / VSSA @ VDD 33 POWER VDD CORE Trace Controller ETM pbus Interface JTAG & SW APB2: Fmax = 32 MHz 3 Functional overview LCD 8x40 OPAMP1 USB_DP USB_DM Px SEGx COMx @VDDA OPAMP2 12bit DAC1 DAC_OUT1 as AF 12bit DAC2 DAC_OUT2 as AF IF IIF F VINP a VOUT VINP VINM VOUT DS10002 Rev 10 MSv34186V1 13/136 56 Functional overview 3.1 STM32L151xE STM32L152xE Low-power modes The ultra-low-power STM32L151xE and STM32L152xE devices support dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the internal lowdrop regulator that supplies the logic can be adjusted according to the system’s maximum operating frequency and the external voltage supply. There are three power consumption ranges: • Range 1 (VDD range limited to 1.71 V - 3.6 V), with the CPU running at up to 32 MHz • Range 2 (full VDD range), with a maximum CPU frequency of 16 MHz • Range 3 (full VDD range), with a maximum CPU frequency limited to 4 MHz (generated only with the multispeed internal RC oscillator clock source) Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at 16 MHz is about 1 mA with all peripherals off. • Low-power run mode This mode is achieved with the multispeed internal (MSI) RC oscillator set to the MSI range 0 or MSI range 1 clock range (maximum 131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In low-power run mode, the clock frequency and the number of enabled peripherals are both limited. • Low-power sleep mode This mode is achieved by entering Sleep mode with the internal voltage regulator in Low-power mode to minimize the regulator’s operating current. In Low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz. When wakeup is triggered by an event or an interrupt, the system reverts to the run mode with the regulator on. • Stop mode with RTC Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the VCORE domain are stopped, the PLL, MSI RC, HSI RC and HSE crystal oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on), it can be the RTC alarm(s), the USB wakeup, the RTC tamper events, the RTC timestamp event or the RTC wakeup. 14/136 DS10002 Rev 10 STM32L151xE STM32L152xE • Functional overview Stop mode without RTC Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, LSE and HSE crystal oscillators are disabled. The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB wakeup. • Standby mode with RTC Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire VCORE domain is powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR). The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs. • Standby mode without RTC Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire VCORE domain is powered off. The PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR). The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by entering Stop or Standby mode. Table 3. Functionalities depending on the operating power supply range - Functionalities depending on the operating power supply range(1) Operating power supply range DAC and ADC operation USB Dynamic voltage scaling range VDD= VDDA = 1.65 to 1.71 V Not functional Not functional Range 2 or Range 3 Not functional Not functional Range 1, Range 2 or Range 3 Conversion time up to 500 Ksps Not functional Range 1, Range 2 or Range 3 VDD=VDDA= 1.71 to 1.8 V(2) VDD=VDDA= 1.8 to 2.0 V(2) DS10002 Rev 10 15/136 56 Functional overview STM32L151xE STM32L152xE Table 3. Functionalities depending on the operating power supply range (continued) Functionalities depending on the operating power supply range(1) Operating power supply range DAC and ADC operation USB Dynamic voltage scaling range VDD=VDDA = 2.0 to 2.4 V Conversion time up to 500 Ksps Functional(3) Range 1, Range 2 or Range 3 VDD=VDDA = 2.4 to 3.6 V Conversion time up to 1 Msps Functional(3) Range 1, Range 2 or Range 3 1. The GPIO speed also depends from VDD voltage and the user has to refer to Table 44: I/O AC characteristics for more information about I/O speed. 2. CPU frequency changes from initial to final must respect “FCPU initial < 4*FCPU final” to limit VCORE drop due to current consumption peak when frequency increases. It must also respect 5 µs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, the user can switch from 4.2 MHz to 16 MHz, wait 5 µs, then switch from 16 MHz to 32 MHz. 3. Must be USB compliant from I/O voltage standpoint, the minimum VDD is 3.0 V. Table 4. CPU frequency range depending on dynamic voltage scaling 16/136 CPU frequency range Dynamic voltage scaling range 16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws) Range 1 8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws) Range 2 2.1MHz to 4.2 MHz (1ws) 32 kHz to 2.1 MHz (0ws) Range 3 DS10002 Rev 10 STM32L151xE STM32L152xE Functional overview Table 5. Functionalities depending on the working mode (from Run/active down to standby) Ips Run/Active Sleep Stop Standby Lowpower Run Lowpower Sleep - Wakeup capability - Wakeup capability CPU Y -- Y -- -- -- -- -- Flash Y Y Y Y -- -- -- -- RAM Y Y Y Y Y -- -- -- Backup Registers Y Y Y Y Y -- Y -- EEPROM Y Y Y Y Y -- -- -- Brown-out rest (BOR) Y Y Y Y Y Y Y -- DMA Y Y Y Y -- -- -- -- Programmable Voltage Detector (PVD) Y Y Y Y Y Y Y -- Power On Reset (POR) Y Y Y Y Y Y Y -- Power Down Rest (PDR) Y Y Y Y Y -- Y -- High Speed Internal (HSI) Y Y -- -- -- -- -- -- High Speed External (HSE) Y Y -- -- -- -- -- -- Low Speed Internal (LSI) Y Y Y Y Y -- Y -- Low Speed External (LSE) Y Y Y Y Y -- Y -- Multi-Speed Internal (MSI) Y Y Y Y -- -- -- -- Inter-Connect Controller Y Y Y Y -- -- -- -- RTC Y Y Y Y Y Y Y -- RTC Tamper Y Y Y Y Y Y Y Y Auto WakeUp (AWU) Y Y Y Y Y Y Y Y LCD Y Y Y Y Y -- -- -- USB Y Y -- -- -- Y -- -- -- -- USART Y Y Y Y Y (1) SPI Y Y Y Y -- -- -- -- I2C Y Y -- -- -- (1) -- -- DS10002 Rev 10 17/136 56 Functional overview STM32L151xE STM32L152xE Table 5. Functionalities depending on the working mode (from Run/active down to standby) (continued) Ips Run/Active Sleep Stop Standby Lowpower Run Lowpower Sleep - Wakeup capability - Wakeup capability ADC Y Y -- -- -- -- -- -- DAC Y Y Y Y Y -- -- -- Tempsensor Y Y Y Y Y -- -- -- OP amp Y Y Y Y Y -- -- -- Comparators Y Y Y Y Y Y -- -- 16-bit and 32-bit Timers Y Y Y Y -- -- -- -- IWDG Y Y Y Y Y Y Y Y WWDG Y Y Y Y -- -- -- -- Touch sensing Y Y -- -- -- -- -- -- Systic Timer Y Y Y Y - -- -- -- GPIOs Y Y Y Y Y Y -- 3 pins 0 µs 0.4 µs 3 µs 46 µs Wakeup time to Run mode Consumption VDD=1.8 to 3.6 V (Typ) Down to 195 µA/MHz (from Flash) Down to 38 µA/MHz (from Flash) Down to 11 µA Down to 4.6 µA < 8 µs 58 µs 0.53 µA (no RTC) VDD=1.8V 0.285 µA (no RTC) VDD=1.8V 1.2 µA (with RTC) VDD=1.8V 0.97 µA (with RTC) VDD=1.8V 0.56 µA (no RTC) VDD=3.0V 0.29 µA (no RTC) VDD=3.0V 1.4 µA (with RTC) VDD=3.0V 1.11 µA (with RTC) VDD=3.0V 1. The startup on communication line wakes the CPU which was made possible by an EXTI, this induces a delay before entering run mode. 3.2 Arm® Cortex®-M3 core with MPU The Arm® Cortex®-M3 processor is the industry leading processor for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The Arm® Cortex®-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an Arm core in the memory size usually associated with 8- and 16-bit devices. 18/136 DS10002 Rev 10 STM32L151xE STM32L152xE Functional overview The memory protection unit (MPU) improves system reliability by defining the memory attributes (such as read/write access permissions) for different memory regions. It provides up to eight different regions and an optional predefined background region. Owing to its embedded Arm core, the STM32L151xE and STM32L152xE devices are compatible with all Arm tools and software. Nested vectored interrupt controller (NVIC) The ultra-low-power STM32L151xE and STM32L152xE devices embed a nested vectored interrupt controller able to handle up to 56 maskable interrupt channels (not including the 16 interrupt lines of Arm® Cortex®-M3) and 16 priority levels. • Closely coupled NVIC gives low-latency interrupt processing • Interrupt entry vector table address passed directly to the core • Closely coupled NVIC core interface • Allows early processing of interrupts • Processing of late arriving, higher-priority interrupts • Support for tail-chaining • Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. 3.3 Reset and supply management 3.3.1 Power supply schemes 3.3.2 • VDD = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through VDD pins. • VSSA, VDDA = 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs and PLL (minimum voltage to be applied to VDDA is 1.8 V when the ADC is used). VDDA and VSSA must be connected to VDD and VSS, respectively. Power supply supervisor The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry. The device exists in two versions: • The version with BOR activated at power-on operates between 1.8 V and 3.6 V. • The other version without BOR operates between 1.65 V and 3.6 V. After the VDD threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes 1.65 V (whatever the version, BOR active or not, at power-on). When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up must guarantee that 1.65 V is reached on VDD at least 1 ms after it exits the POR area. DS10002 Rev 10 19/136 56 Functional overview STM32L151xE STM32L152xE Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (VREFINT) in Stop mode. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external reset circuit. Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up. The device features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 3.3.3 Voltage regulator The regulator has three operation modes: main (MR), low-power (LPR) and power down. 3.3.4 • MR is used in Run mode (nominal regulation) • LPR is used in the Low-power run, Low-power sleep and Stop modes • Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32K osc, RCC_CSR). Boot modes At startup, boot pins are used to select one of three boot options: • Boot from Flash memory • Boot from System memory • Boot from embedded RAM The boot from Flash usually boots at the beginning of the Flash (bank 1). An additional boot mechanism is available through user option byte, to allow booting from bank 2 when bank 2 contains valid code. This dual boot capability can be used to easily implement a secure field software update mechanism. The boot loader is located in System memory. It is used to reprogram the Flash memory by using USART1, USART2 or USB. See Application note “STM32 microcontroller system memory boot mode” (AN2606) for details. 20/136 DS10002 Rev 10 STM32L151xE STM32L152xE 3.4 Functional overview Clock management The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features: • Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler. • Safe clock switching: clock sources can be changed safely on the fly in run mode through a configuration register. • Clock management: to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. • System clock source: three different clock sources can be used to drive the master clock SYSCLK: • – 1-24 MHz high-speed external crystal (HSE), that can supply a PLL – 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLL – Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz). When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy. Auxiliary clock source: two ultra-low-power clock sources that can be used to drive the LCD controller and the real-time clock: – 32.768 kHz low-speed external crystal (LSE) – 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision. • RTC and LCD clock sources: the LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever the system clock. • USB clock source: the embedded PLL has a dedicated 48 MHz clock output to supply the USB interface. • Startup clock: after reset, the microcontroller restarts by default with an internal 2 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. • Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled. • Clock-out capability (MCO: microcontroller clock output): it outputs one of the internal clocks for external use by the application. Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See Figure 2 for details on the clock tree. DS10002 Rev 10 21/136 56 Functional overview STM32L151xE STM32L152xE Figure 2. Clock tree Standby supplied voltage domain enable Watchdog LSI RC LSI tempo LSE OSC LSE tempo Watchdog LS RTC enable RTC Radio Sleep Timer Radio Sleep Timer enable LS LS LS LS @VDDCORE 1 MHz LCD enable @V33 MSI RC level shifters @VDDCORE CK_ADC ADC enable ck_lsi ck_lse CK_LCD MCO / 1,2,4,8,16 not deepsleep / 2,4,8,16 CK_PWR @V33 not deepsleep HSI RC CK_FCLK not (sleep or deepsleep level shifters @VDDCORE System clock @V33 HSE OSC ck_msi ck_hsi ck_hse level shifters @VDDCORE AHB prescaler / 1,2,..512 @V33 ck_pll PLL ck_pllin X 3,4,6,8,12 16,24,32,48 LS @V33 1 MHz clock detector not (sleep or deepsleep) /8 CK_CPU CK_TIMSYS APB1 APB2 prescaler prescaler / 1,2,4,8,16 / 1,2,4,8,16 / 2, 3, 4 HSE present or not LS level shifters @VDDCORE Clock source control usben and (not deepsleep) CK_USB48 ck_usb = Vco / 2 (Vco must be atz) 96 MH CK_TIMTGO CK_APB1 timer9en and (not deepsleep) apb1 periphen and (not deepsleep) if (APB1 presc = 1)x1 x2 else apb2 periphen and (not deepsleep) CK_APB2 MS18583V1 22/136 DS10002 Rev 10 STM32L151xE STM32L152xE 3.5 Functional overview Low-power real-time clock and backup registers The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the sub-second, second, minute, hour (12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are made automatically. The RTC provides two programmable alarms and programmable periodic interrupts with wakeup from Stop and Standby modes. The programmable wakeup time ranges from 120 µs to 36 hours. The RTC can be calibrated with an external 512 Hz output, and a digital compensation circuit helps reduce drift due to crystal deviation. The RTC can also be automatically corrected with a 50/60Hz stable powerline. The RTC calendar can be updated on the fly down to sub second precision, which enables network system synchronization. A time stamp can record an external event occurrence, and generates an interrupt. There are thirty-two 32-bit backup registers provided to store 128 bytes of user application data. They are cleared in case of tamper detection. Three pins can be used to detect tamper events. A change on one of these pins can reset backup register and generate an interrupt. To prevent false tamper event, like ESD event, these three tamper inputs can be digitally filtered. 3.6 GPIOs (general-purpose inputs/outputs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated AFIO registers. All GPIOs are high current capable. The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to the AHB with a toggling speed of up to 16 MHz. External interrupt/event controller (EXTI) The external interrupt/event controller consists of 24 edge detector lines used to generate interrupt/event requests. Each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 115 GPIOs can be connected to the 16 external interrupt lines. The 8 other lines are connected to RTC, PVD, USB, comparator events or capacitive sensing acquisition. DS10002 Rev 10 23/136 56 Functional overview 3.7 STM32L151xE STM32L152xE Memories The STM32L151xE and STM32L152xE devices have the following features: • 80 Kbytes of embedded RAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses). • The non-volatile memory is divided into three arrays: – 512 Kbytes of embedded Flash program memory – 16 Kbytes of data EEPROM – Options bytes Flash program and data EEPROM are divided into two banks, this enables writing in one bank while running code or reading data in the other bank. The options bytes are used to write-protect or read-out protect the memory (with 4 Kbytes granularity) and/or readout-protect the whole memory with the following options: – Level 0: no readout protection – Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected – Level 2: chip readout protection, debug features (Arm Cortex-M3 JTAG and serial wire) and boot in RAM selection disabled (JTAG fuse) The whole non-volatile memory embeds the error correction code (ECC) feature. 3.8 DMA (direct memory access) The flexible 12-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose timers, DAC and ADC. 24/136 DS10002 Rev 10 STM32L151xE STM32L152xE 3.9 Functional overview LCD (liquid crystal display) The LCD drives up to 8 common terminals and 44 segment terminals to drive up to 320 pixels. 3.10 • Internal step-up converter to guarantee functionality and contrast control irrespective of VDD. This converter can be deactivated, in which case the VLCD pin is used to provide the voltage to the LCD • Supports static, 1/2, 1/3, 1/4 and 1/8 duty • Supports static, 1/2, 1/3 and 1/4 bias • Phase inversion to reduce power consumption and EMI • Up to 8 pixels can be programmed to blink • Unneeded segments and common pins can be used as general I/O pins • LCD RAM can be updated at any time owing to a double-buffer • The LCD controller can operate in Stop mode ADC (analog-to-digital converter) A 12-bit analog-to-digital converters is embedded into STM32L151xE and STM32L152xE devices with up to 40 external channels, performing conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs with up to 28 external channels in a group. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all scanned channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start triggers, to allow the application to synchronize A/D conversions and timers. An injection mode allows high priority conversions to be done by interrupting a scan mode which runs in as a background task. The ADC includes a specific low-power mode. The converter is able to operate at maximum speed even if the CPU is operating at a very low frequency and has an auto-shutdown function. The ADC’s runtime and analog front-end current consumption are thus minimized whatever the MCU operating mode. 3.10.1 Temperature sensor The temperature sensor (TS) generates a voltage VSENSE that varies linearly with temperature. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are DS10002 Rev 10 25/136 56 Functional overview STM32L151xE STM32L152xE stored by ST in the system memory area, accessible in read-only mode. See Table 60: Temperature sensor calibration values. 3.10.2 Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC_IN17 input channel. It enables accurate monitoring of the VDD value (when no external voltage, VREF+, is available for ADC). The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in readonly mode. See Table 15: Embedded internal reference voltage calibration values. 3.11 DAC (digital-to-analog converter) The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration. This dual digital Interface supports the following features: • Two DAC converters: one for each output channel • 8-bit or 12-bit monotonic output • Left or right data alignment in 12-bit mode • Synchronized update capability • Noise-wave generation • Triangular-wave generation • Dual DAC channels, independent or simultaneous conversions • DMA capability for each channel (including the underrun interrupt) • External triggers for conversion • Input reference voltage VREF+ Eight DAC trigger inputs are used in the STM32L151xE and STM32L152xE devices. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels. 3.12 Operational amplifier The STM32L151xE and STM32L152xE devices embed two operational amplifiers with external or internal follower routing capability (or even amplifier and filter capability with external components). When one operational amplifier is selected, one external ADC channel is used to enable output measurement. The operational amplifiers feature: 26/136 • Low input bias current • Low offset voltage • Low-power mode • Rail-to-rail input DS10002 Rev 10 STM32L151xE STM32L152xE 3.13 Functional overview Ultra-low-power comparators and reference voltage The STM32L151xE and STM32L152xE devices embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O). • One comparator with fixed threshold • One comparator with rail-to-rail inputs, fast or slow mode. The threshold can be one of the following: – DAC output – External I/O – Internal reference voltage (VREFINT) or a sub-multiple (1/4, 1/2, 3/4) Both comparators can wake up from Stop mode, and be combined into a window comparator. The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 µA typical). 3.14 System configuration controller and routing interface The system configuration controller provides the capability to remap some alternate functions on different I/O ports. The highly flexible routing interface allows the application firmware to control the routing of different I/Os to the TIM2, TIM3 and TIM4 timer input captures. It also controls the routing of internal analog signals to ADC1, COMP1 and COMP2 and the internal reference voltage VREFINT. 3.15 Touch sensing The STM32L151xE and STM32L152xE devices provide a simple solution for adding capacitive sensing functionality to any application. Thesedevices offer up to 34 capacitive sensing channels distributed over 11 analog I/O groups. Both software and timer capacitive sensing acquisition modes are supported. Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. The capacitive sensing acquisition only requires few external components to operate. This acquisition is managed directly by the GPIOs, timers and analog I/O groups (see Section 3.14: System configuration controller and routing interface). Reliable touch sensing functionality can be quickly and easily implemented using the free STM32L1xx STMTouch touch sensing firmware library. DS10002 Rev 10 27/136 56 Functional overview 3.16 STM32L151xE STM32L152xE Timers and watchdogs The ultra-low-power STM32L151xE and STM32L152xE devices include seven generalpurpose timers, two basic timers, and two watchdog timers. Table 6 compares the features of the general-purpose and basic timers. Table 6. Timer feature comparison DMA Capture/compare Complementary request channels outputs generation Timer Counter resolution Counter type Prescaler factor TIM2, TIM3, TIM4 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 No TIM5 32-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 No TIM9 16-bit Up, down, up/down Any integer between 1 and 65536 No 2 No TIM10, TIM11 16-bit Up Any integer between 1 and 65536 No 1 No TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No 3.16.1 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and TIM11) There are seven synchronizable general-purpose timers embedded in the STM32L151xE and STM32L152xE devices (see Table 6 for differences). TIM2, TIM3, TIM4, TIM5 TIM2, TIM3, TIM4 are based on 16-bit auto-reload up/down counter. TIM5 is based on a 32bit auto-reload up/down counter. They include a 16-bit prescaler. They feature four independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input captures/output compares/PWMs on the largest packages. TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together or with the TIM10, TIM11 and TIM9 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. TIM10, TIM11 and TIM9 TIM10 and TIM11 are based on a 16-bit auto-reload upcounter. TIM9 is based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. 28/136 DS10002 Rev 10 STM32L151xE STM32L152xE Functional overview They can also be used as simple time bases and be clocked by the LSE clock source (32.768 kHz) to provide time bases independent from the main CPU clock. 3.16.2 Basic timers (TIM6 and TIM7) These timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit time bases. 3.16.3 SysTick timer This timer is dedicated to the OS, but could also be used as a standard downcounter. It is based on a 24-bit downcounter with autoreload capability and a programmable clock source. It features a maskable system interrupt generation when the counter reaches 0. 3.16.4 Independent watchdog (IWDG) The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 37 kHz internal RC and, as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode. 3.16.5 Window watchdog (WWDG) The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.17 Communication interfaces 3.17.1 I²C bus Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes. They support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master mode. A hardware CRC generation/verification is embedded. They can be served by DMA and they support SM Bus 2.0/PM Bus. 3.17.2 Universal synchronous/asynchronous receiver transmitter (USART) The three USART and two UART interfaces are able to communicate at speeds of up to 4 Mbit/s. They support IrDA SIR ENDEC and have LIN Master/Slave capability. The three USARTs provide hardware management of the CTS and RTS signals and are ISO 7816 compliant. All USART/UART interfaces can be served by the DMA controller. DS10002 Rev 10 29/136 56 Functional overview 3.17.3 STM32L151xE STM32L152xE Serial peripheral interface (SPI) Up to three SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. The SPIs can be served by the DMA controller. 3.17.4 Inter-integrated sound (I2S) Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can operate in master or slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. The I2Ss can be served by the DMA controller. 3.17.5 Universal serial bus (USB) The STM32L151xE and STM32L152xE devices embed a USB device peripheral compatible with the USB full-speed 12 Mbit/s. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and supports suspend/resume. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator). 3.18 CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 30/136 DS10002 Rev 10 STM32L151xE STM32L152xE Functional overview 3.19 Development support 3.19.1 Serial wire JTAG debug port (SWJ-DP) The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG JTMS and JTCK pins are shared with SWDAT and SWCLK, respectively, and a specific sequence on the JTMS pin is used to switch between JTAG-DP and SW-DP. The JTAG port can be permanently disabled with a JTAG fuse. 3.19.2 Embedded Trace Macrocell™ The Arm® Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32L151xE and STM32L152xE device through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools. DS10002 Rev 10 31/136 56 Pin descriptions 4 STM32L151xE STM32L152xE Pin descriptions VDD_3 VSS_3 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 Figure 3. STM32L15xRE LQFP64 pinout 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 1 47 2 46 3 45 4 44 5 43 6 42 7 41 8 LQFP64 40 9 39 10 38 11 37 12 36 13 35 14 34 15 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VDD_2 VSS_ 2 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12 PA3 VSS_4 VDD_4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PB10 PB11 VSS_1 VDD_1 VLCD PC13-WKUP2 PC14-OSC32_IN PC15-OSC32_OUT PH0 -OSC_IN PH1-OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VDDA PA0-WKUP1 PA1 PA2 ai15693c 1. This figure shows the package top view. 32/136 DS10002 Rev 10 STM32L151xE STM32L152xE Pin descriptions 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 VDD_3 VSS_3 PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 Figure 4. STM32L15xVE LQFP100 pinout 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 LQFP100 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 VDD_2 VSS_2 PH2 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12 PA3 VSS_4 VDD_4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS_1 VDD_1 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PE2 PE3 PE4 PE5 PE6-WKUP3 VLCD PC13-WKUP2 PC14-OSC32_IN PC15-OSC32_OUT VSS_5 VDD_5 PH0-OSC_IN PH1-OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VREFVREF+ VDDA PA0-WKUP1 PA1 PA2 ai15692c 1. This figure shows the package top view. DS10002 Rev 10 33/136 56 Pin descriptions STM32L151xE STM32L152xE Figure 5. STM32L15xVEY WLCSP104 ballout 1 2 3 4 5 6 7 8 9 A VSS_2 PD0 PD4 PD7 PB4 PB5 BOOT0 PE1 VDD_3 B PA15 PC12 PD5 PD6 PB3 PB7 PE0 VDD_3 PE5 C VDD_2 PC11 PD2 PD3 PB6 PB9 VSS_3 PE4 D PH2 VSS_2 PA14 PD1 PB8 PE2 PE3 PC14 OSC32IN E PA11 PA12 PA13 PC10 PE6 WKUP3 VLCD VSS_5 F PA9 PA10 PA8 PC9 PC0 NRST PH0 OSCIN PH1 OSCOUT G PC7 PC8 PD15 PD11 VDDA VREF+ PC3 PC2 H PC6 PD13 PD12 PD8 PA6 PA3 VREF- PC1 J PD14 PD9 PB13 PB12 PE10 PB0 PA4 PA2 VSSA K PD10 PB15 VDD_1 PE15 PE13 PB1 PA7 VSS_4 PA0 WKUP1 L PB14 VSS_1 PB11 PE14 PE11 PE7 PC4 VDD_4 PA1 M VSS_1 PB10 PE12 PE9 PE8 PB2 PC5 PA5 VDD_4 PC13 WKUP2 PC15 OSC32OUT VDD_5 MSv41009V1 1. This figure shows the package top view. 34/136 DS10002 Rev 10 STM32L151xE STM32L152xE Pin descriptions Figure 6. STM32L15xQE UFBGA132 ballout 1 2 3 4 5 6 7 8 9 10 11 12 A PE3 PE1 PB8 BOOT0 PD7 PD5 PB4 PB3 PA15 PA14 PA13 PA12 B PE4 PE2 PB9 PB7 PB6 PD6 PD4 PD3 PD1 PC12 PC10 PA11 PE0 VDD_3 PB5 PG14 PG13 PD2 PD0 PC11 PH2 PA10 PF1 PF0 PG12 PG10 PG9 PA9 PA8 PC9 PG5 PC8 PC7 PC6 C PC13WKUP2 PE5 D PC14OSC32 _IN PE6WKUP3 VSS_3 PF2 E PC15OSC32 _OUT VLCD VSS_6 PF3 F PH0 OSC_IN VSS_5 PF4 PF5 VSS_9 VSS_10 PG3 PG4 VSS_2 VSS_1 G PH1 OSC_ OUT VDD_5 PF6 PF7 VDD_9 VDD_10 PG1 PG2 VDD_2 VDD_1 VDD_6 PF8 PG0 PD15 PD14 PD13 H PC0 NRST J VSSA PC1 PC2 PA4 PA7 PF9 PF12 PF14 PF15 PD12 PD11 PD10 K NC PC3 PA2 PA5 PC4 PF11 PF13 PD9 PD8 PB15 PB14 PB13 L VREF+ PA0WKUP1 PA3 PA6 PC5 PB2 PE8 PE10 PE12 PB10 PB11 PB12 M VDDA PA1 PB0 PB1 PE7 PE9 PE11 PE13 PE14 PE15 OPAMP1 OPAMP2 _VINM _VINM MS33002V1 1. This figure shows the package top view. DS10002 Rev 10 35/136 56 Pin descriptions STM32L151xE STM32L152xE 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 VDD_3 VSS_3 PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 VDD_11 VSS_11 PG14 PG13 PG12 PG11 PG10 PG9 PD7 PD6 VDD_10 VSS_10 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 Figure 7. STM32L15xZE LQFP144 pinout 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 LQFP144 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 VDD_2 VSS_2 PH2 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 VDD_9 VSS_9 PG8 PG7 PG6 PG5 PG4 PG3 PG2 PD15 PD14 VDD_8 VSS_8 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12 VSS_6 VDD_6 PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 VSS_7 VDD_7 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS_1 VDD_1 PA3 VSS_4 VDD_4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PF11 PF12 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 PE2 PE3 PE4 PE5 PE6-WKUP3 VLCD PC13-WKUP2 PC14-OSC32_IN PC15-OSC32_OUT PF0 PF1 PF2 PF3 PF4 PF5 VSS_5 VDD_5 PF6 PF7 PF8 PF9 PF10 OSC_IN OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VREFVREF+ VDDA PA0 -WKUP1 PA1 PA2 MS18581V2 1. This figure shows the package top view. 36/136 DS10002 Rev 10 STM32L151xE STM32L152xE Pin descriptions Table 7. Legend/abbreviations used in the pinout table Name Abbreviation Definition Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name Pin name Pin type I/O structure S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O TC Standard 3.3 V I/O B Dedicated BOOT0 pin RST Bidirectional reset pin with embedded weak pull-up resistor Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset Notes Alternate Functions selected through GPIOx_AFR registers functions Pin functions Additional Functions directly selected/enabled through peripheral registers functions Table 8. STM32L151xE and STM32L152xE pin definitions Pins LQFP144 UFBGA132 LQFP100 LQFP64 WLCSP104 Pin Type(1) I / O structure Pin functions Main function(2) (after reset) 1 B2 1 - D6 PE2 I/O FT PE2 TIM3_ETR/LCD_SEG38/ TRACECLK - 2 A1 2 - D7 PE3 I/O FT PE3 TIM3_CH1/LCD_SEG39/ TRACED0 - 3 B1 3 - C8 PE4 I/O FT PE4 TIM3_CH2/TRACED1 - 4 C2 4 - B9 PE5 I/O FT PE5 TIM9_CH1/TRACED2 - 5 D2 5 - E6 PE6WKUP3 I/O FT PE6 TIM9_CH2/TRACED3 WKUP3/ RTC_TAMP3 6 E2 6 1 E7 VLCD(3) S - VLCD - - 7 C1 7 2 C9 PC13-WKUP2 I/O FT PC13 - WKUP2/RTC_TA MP1/RTC_TS/ RTC_OUT Pin name DS10002 Rev 10 Alternate functions Additional functions 37/136 56 Pin descriptions STM32L151xE STM32L152xE Table 8. STM32L151xE and STM32L152xE pin definitions (continued) Pins LQFP144 UFBGA132 LQFP100 LQFP64 WLCSP104 Pin Type(1) I / O structure Pin functions Main function(2) (after reset) 8 D1 8 3 D8 PC14OSC32_IN(4) I/O TC PC14 - OSC32_IN 9 E1 9 4 D9 PC15OSC32_OUT I/O TC PC15 - OSC32_OUT 10 D6 - - - PF0 I/O FT PF0 - - 11 D5 - - - PF1 I/O FT PF1 - - 12 D4 - - - PF2 I/O FT PF2 - - 13 E4 - - - PF3 I/O FT PF3 - - 14 F3 - - - PF4 I/O FT PF4 - - 15 F4 - - - PF5 I/O FT PF5 - - 16 F2 10 - E8 VSS_5 S - VSS_5 - - 17 G2 11 - E9 VDD_5 S - VDD_5 - - 18 G3 - - - PF6 I/O FT PF6 TIM5_CH1/TIM5_ETR ADC_IN27 19 G4 - - - PF7 I/O FT PF7 TIM5_CH2 ADC_IN28/ COMP1_INP 20 H4 - - - PF8 I/O FT PF8 TIM5_CH3 ADC_IN29/ COMP1_INP 21 J6 - - - PF9 I/O FT PF9 TIM5_CH4 ADC_IN30/ COMP1_INP 22 - - - - PF10 I/O FT PF10 - ADC_IN31/ COMP1_INP 23 F1 12 5 F8 PH0-OSC_IN(5) I/O TC PH0 - OSC_IN 24 G1 13 6 F9 PH1OSC_OUT(5) TC PH1 - OSC_OUT 25 H2 14 7 F7 NRST NRST - - 26 H1 15 8 F6 PC0 I/O FT PC0 LCD_SEG18 ADC_IN10/ COMP1_INP 27 J2 16 9 H9 PC1 I/O FT PC1 LCD_SEG19 ADC_IN11/ COMP1_INP 28 - 17 10 G9 PC2 I/O FT PC2 LCD_SEG20 ADC_IN12/ COMP1_INP 38/136 Pin name I/O I/O RST DS10002 Rev 10 Alternate functions Additional functions STM32L151xE STM32L152xE Pin descriptions Table 8. STM32L151xE and STM32L152xE pin definitions (continued) Pins LQFP144 UFBGA132 LQFP100 LQFP64 WLCSP104 Pin Type(1) I / O structure Pin functions Main function(2) (after reset) - J3 - - - PC2 I/O FT PC2 LCD_SEG20 ADC_IN12/ COMP1_INP - K1 - - - NC I - NC - - 29 K2 18 11 G8 PC3 I/O TC PC3 LCD_SEG21 ADC_IN13/ COMP1_INP 30 J1 19 12 J9 VSSA S - VSSA - - 31 - 20 - H8 VREF- S - VREF- - - 32 L1 21 - G7 VREF+ S - VREF+ - - 33 M1 22 13 G6 VDDA S - VDDA - - 34 L2 23 14 K9 PA0-WKUP1 I/O FT PA0 TIM2_CH1_ETR/ TIM5_CH1/ USART2_CTS WKUP1/RTC_TA MP2/ADC_IN0/ COMP1_INP 35 M2 24 15 L9 PA1 I/O FT PA1 TIM2_CH2/TIM5_CH2/ USART2_RTS/ LCD_SEG0 ADC_IN1/ COMP1_INP/ OPAMP1_VINP 36 - 25 16 J8 PA2 I/O FT PA2 TIM2_CH3/TIM5_CH3/ TIM9_CH1/ USART2_TX/LCD_SEG1 ADC_IN2/ COMP1_INP/ OPAMP1_VINM - K3 - - - PA2 I/O FT PA2 TIM2_CH3/TIM5_CH3/ TIM9_CH1/ USART2_TX/LCD_SEG1 ADC_IN2/ COMP1_INP - M3 - - - OPAMP1_VINM I TC OPAMP1_ VINM - - 37 L3 26 17 H7 PA3 I/O TC PA3 TIM2_CH4/TIM5_CH4/ TIM9_CH2/ USART2_RX/LCD_SEG2 ADC_IN3/ COMP1_INP/ OPAMP1_VOUT 38 - 27 18 K8 VSS_4 S - VSS_4 - - 39 - 28 19 L8, M9 VDD_4 S - VDD_4 - - 40 J4 29 20 J7 PA4 I/O TC PA4 SPI1_NSS/SPI3_NSS/ I2S3_WS/ USART2_CK ADC_IN4/ DAC_OUT1/ COMP1_INP Pin name DS10002 Rev 10 Alternate functions Additional functions 39/136 56 Pin descriptions STM32L151xE STM32L152xE Table 8. STM32L151xE and STM32L152xE pin definitions (continued) Pins UFBGA132 LQFP100 LQFP64 Pin Type(1) I / O structure Main function(2) (after reset) 41 K4 30 21 M8 PA5 I/O TC PA5 TIM2_CH1_ETR/ SPI1_SCK ADC_IN5/ DAC_OUT2/ COMP1_INP 42 L4 31 22 H6 PA6 I/O FT PA6 TIM3_CH1/TIM10_CH1/S PI1_MISO/ LCD_SEG3 ADC_IN6/ COMP1_INP/ OPAMP2_VINP 43 - 32 23 K7 PA7 I/O FT PA7 TIM3_CH2/TIM11_CH1/ SPI1_MOSI/ LCD_SEG4 ADC_IN7/ COMP1_INP/ OPAMP2_VINM - J5 - - - PA7 I/O FT PA7 TIM3_CH2/TIM11_CH1/ SPI1_MOSI/ LCD_SEG4 ADC_IN7/ COMP1_INP - M4 - - - OPAMP2_VINM I TC OPAMP2_ VINM - - 44 K5 33 24 L7 PC4 I/O FT PC4 LCD_SEG22 ADC_IN14/ COMP1_INP 45 L5 34 25 M7 PC5 I/O FT PC5 LCD_SEG23 ADC_IN15/ COMP1_INP WLCSP104 LQFP144 Pin functions Pin name Alternate functions Additional functions 46 M5 35 26 J6 PB0 I/O TC PB0 TIM3_CH3/LCD_SEG5 ADC_IN8/ COMP1_INP/ OPAMP2_VOUT/ VREF_OUT 47 M6 36 27 K6 PB1 I/O FT PB1 TIM3_CH4/LCD_SEG6 ADC_IN9/ COMP1_INP/ VREF_OUT 48 L6 37 28 M6 PB2 I/O FT PB2/ BOOT1 BOOT1 ADC_IN0b 49 K6 - - - PF11 I/O FT PF11 - ADC_IN1b 50 J7 - - - PF12 I/O FT PF12 - ADC_IN2b 51 E3 - - - VSS_6 S - VSS_6 - - 52 H3 - - - VDD_6 S - VDD_6 - - 53 K7 - - - PF13 I/O FT PF13 - ADC_IN3b 54 J8 - - - PF14 I/O FT PF14 - ADC_IN6b 55 J9 - - - PF15 I/O FT PF15 - ADC_IN7b 40/136 DS10002 Rev 10 STM32L151xE STM32L152xE Pin descriptions Table 8. STM32L151xE and STM32L152xE pin definitions (continued) Pins LQFP144 UFBGA132 LQFP100 LQFP64 WLCSP104 Pin Type(1) I / O structure Pin functions Main function(2) (after reset) 56 H9 - - - PG0 I/O FT PG0 - ADC_IN8b 57 G9 - - - PG1 I/O FT PG1 - ADC_IN9b 58 M7 38 - L6 PE7 I/O TC PE7 - ADC_IN22/ COMP1_INP 59 L7 39 - M5 PE8 I/O TC PE8 - ADC_IN23/ COMP1_INP 60 M8 40 - M4 PE9 I/O TC PE9 TIM2_CH1_ETR ADC_IN24/ COMP1_INP 61 - - - - VSS_7 S - VSS_7 - - 62 - - - - VDD_7 S - VDD_7 - - 63 L8 41 - J5 PE10 I/O TC PE10 TIM2_CH2 ADC_IN25/ COMP1_INP 64 M9 42 - L5 PE11 I/O FT PE11 TIM2_CH3 - 65 L9 43 - M3 PE12 I/O FT PE12 TIM2_CH4/SPI1_NSS - 66 M10 44 - K5 PE13 I/O FT PE13 SPI1_SCK - 67 M11 45 - L4 PE14 I/O FT PE14 SPI1_MISO - 68 M12 46 - K4 PE15 I/O FT PE15 SPI1_MOSI - 69 L10 47 29 M2 PB10 I/O FT PB10 TIM2_CH3/I2C2_SCL/ USART3_TX/ LCD_SEG10 - 70 L11 48 30 L3 PB11 I/O FT PB11 TIM2_CH4/I2C2_SDA/ USART3_RX/ LCD_SEG11 - 71 F12 49 31 L2, M1 VSS_1 S - VSS_1 - - 72 G12 50 32 K3 VDD_1 S - VDD_1 - - PB12 TIM10_CH1/I2C2_SMBA/ SPI2_NSS/I2S2_WS/ USART3_CK/ LCD_SEG12 ADC_IN18/ COMP1_INP 73 L12 51 33 J4 Pin name PB12 I/O FT DS10002 Rev 10 Alternate functions Additional functions 41/136 56 Pin descriptions STM32L151xE STM32L152xE Table 8. STM32L151xE and STM32L152xE pin definitions (continued) I / O structure Pin name Pin Type(1) WLCSP104 Pin functions LQFP64 LQFP100 LQFP144 UFBGA132 Pins Main function(2) (after reset) Alternate functions Additional functions ADC_IN19/ COMP1_INP 74 K12 52 34 J3 PB13 I/O FT PB13 TIM9_CH1/SPI2_SCK/ I2S2_CK/ USART3_CTS/ LCD_SEG13 75 K11 53 35 L1 PB14 I/O FT PB14 TIM9_CH2/SPI2_MISO/ USART3_RTS/ LCD_SEG14 ADC_IN20/ COMP1_INP 76 K10 54 36 K2 PB15 I/O FT PB15 TIM11_CH1/SPI2_MOSI/ I2S2_SD/ LCD_SEG15 ADC_IN21/ COMP1_INP/ RTC_REFIN 77 K9 55 - H4 PD8 I/O FT PD8 USART3_TX/ LCD_SEG28 - 78 K8 56 - J2 PD9 I/O FT PD9 USART3_RX/ LCD_SEG29 - 79 J12 57 - K1 PD10 I/O FT PD10 USART3_CK/ LCD_SEG30 - 80 J11 58 - G4 PD11 I/O FT PD11 USART3_CTS/ LCD_SEG31 - 81 J10 59 - H3 PD12 I/O FT PD12 TIM4_CH1/ USART3_RTS/ LCD_SEG32 - 82 H12 60 - H2 PD13 I/O FT PD13 TIM4_CH2/LCD_SEG33 - 83 - - - - VSS_8 S - VSS_8 - - 84 - - - - VDD_8 S - VDD_8 - - 85 H11 61 - J1 PD14 I/O FT PD14 TIM4_CH3/LCD_SEG34 - 86 H10 62 - G3 PD15 I/O FT PD15 TIM4_CH4/LCD_SEG35 - 87 G10 - - - PG2 I/O FT PG2 - ADC_IN10b 88 F9 - - - PG3 I/O FT PG3 - ADC_IN11b 89 F10 - - - PG4 I/O FT PG4 - ADC_IN12b 90 E9 - - - PG5 I/O FT PG5 - - 91 - - - - PG6 I/O FT PG6 - - 92 - - - - PG7 I/O FT PG7 - - 93 - - - - PG8 I/O FT PG8 - - 42/136 DS10002 Rev 10 STM32L151xE STM32L152xE Pin descriptions Table 8. STM32L151xE and STM32L152xE pin definitions (continued) Pins LQFP144 UFBGA132 LQFP100 LQFP64 WLCSP104 Pin Type(1) I / O structure Pin functions Main function(2) (after reset) 94 F6 - - - VSS_9 S - VSS_9 - - 95 G6 - - - VDD_9 S - VDD_9 - - 96 E12 63 37 H1 PC6 I/O FT PC6 TIM3_CH1/I2S2_MCK/ LCD_SEG24 - 97 E11 64 38 G1 PC7 I/O FT PC7 TIM3_CH2/I2S3_MCK/ LCD_SEG25 - 98 E10 65 39 G2 PC8 I/O FT PC8 TIM3_CH3/LCD_SEG26 - 99 D12 66 40 F4 PC9 I/O FT PC9 TIM3_CH4/LCD_SEG27 - 100 D11 67 41 F3 PA8 I/O FT PA8 USART1_CK/MCO/ LCD_COM0 - 101 D10 68 42 F1 PA9 I/O FT PA9 USART1_TX / LCD_COM1 - 102 C12 69 43 F2 PA10 I/O FT PA10 USART1_RX / LCD_COM2 - 103 B12 70 44 E1 PA11 I/O FT PA11 USART1_CTS/ SPI1_MISO USB_DM 104 A12 71 45 E2 PA12 I/O FT PA12 USART1_RTS/ SPI1_MOSI USB_DP 105 A11 72 46 E3 PA13 I/O FT JTMSSWDIO JTMS-SWDIO - 106 C11 73 - D1 PH2 I/O FT PH2 - - 107 F11 74 47 D2, A1 VSS_2 S - VSS_2 - - 108 G11 75 48 C1 VDD_2 S - VDD_2 - - 109 A10 76 49 D3 PA14 I/O FT JTCKSWCLK JTCK-SWCLK - JTDI TIM2_CH1_ETR/ SPI1_NSS/SPI3_NSS/ I2S3_WS/LCD_SEG17/ JTDI - PC10 SPI3_SCK/I2S3_CK/ USART3_TX/ UART4_TX/ LCD_SEG28/ LCD_SEG40/LCD_COM4 - 110 111 A9 B11 77 78 50 51 B1 E4 Pin name PA15 PC10 I/O I/O FT FT DS10002 Rev 10 Alternate functions Additional functions 43/136 56 Pin descriptions STM32L151xE STM32L152xE Table 8. STM32L151xE and STM32L152xE pin definitions (continued) 112 C10 79 52 C2 PC11 I/O I / O structure Pin name Pin Type(1) WLCSP104 Pin functions LQFP64 LQFP100 UFBGA132 LQFP144 Pins FT Main function(2) (after reset) Alternate functions Additional functions PC11 SPI3_MISO/USART3_RX/ UART4_RX/ LCD_SEG29/ LCD_SEG41/LCD_COM5 - - 113 B10 80 53 B2 PC12 I/O FT PC12 SPI3_MOSI/I2S3_SD/ USART3_CK/ UART5_TX/LCD_SEG30/ LCD_SEG42/ LCD_COM6 114 C9 81 - A2 PD0 I/O FT PD0 TIM9_CH1/SPI2_NSS/ I2S2_WS - 115 B9 82 - D4 PD1 I/O FT PD1 SPI2_SCK/I2S2_CK - 116 C8 83 54 C3 PD2 I/O FT PD2 TIM3_ETR/UART5_RX/ LCD_SEG31/ LCD_SEG43/LCD_COM7 - 117 B8 84 - C4 PD3 I/O FT PD3 SPI2_MISO/ USART2_CTS - 118 B7 85 - A3 PD4 I/O FT PD4 SPI2_MOSI/I2S2_SD/ USART2_RTS - 119 A6 86 - B3 PD5 I/O FT PD5 USART2_TX - 120 F7 - - - VSS_10 S - VSS_10 - - 121 G7 - - - VDD_10 S - VDD_10 - - 122 B6 87 - B4 PD6 I/O FT PD6 USART2_RX - 123 A5 88 - A4 PD7 I/O FT PD7 TIM9_CH2/USART2_CK - 124 D9 - - - PG9 I/O FT PG9 - - 125 D8 - - - PG10 I/O FT PG10 - - 126 - - - - PG11 I/O FT PG11 - - 127 D7 - - - PG12 I/O FT PG12 - - 128 C7 - - - PG13 I/O FT PG13 - - 129 C6 - - - PG14 I/O FT PG14 - - 130 - - - - VSS_11 S - VSS_11 - - 131 - - - - VDD_11 S - VDD_11 - - 44/136 DS10002 Rev 10 STM32L151xE STM32L152xE Pin descriptions Table 8. STM32L151xE and STM32L152xE pin definitions (continued) Pins LQFP144 UFBGA132 LQFP100 LQFP64 WLCSP104 Pin Type(1) I / O structure Pin functions Main function(2) (after reset) 132 - - - - PG15 I/O FT PG15 - - 133 A8 89 55 B5 PB3 I/O FT JTDO TIM2_CH2/SPI1_SCK/ SPI3_SCK/ I2S3_CK/ LCD_SEG7/JTDO COMP2_INM 134 A7 90 56 A5 PB4 I/O FT NJTRST TIM3_CH1/SPI1_MISO/ SPI3_MISO/ LCD_SEG8/NJTRST COMP2_INP COMP2_INP Pin name Alternate functions Additional functions 135 C5 91 57 A6 PB5 I/O FT PB5 TIM3_CH2/I2C1_SMBA/ SPI1_MOSI/ SPI3_MOSI/I2S3_SD/ LCD_SEG9 136 B5 92 58 C5 PB6 I/O FT PB6 TIM4_CH1/I2C1_SCL/ USART1_TX COMP2_INP 137 B4 93 59 B6 PB7 I/O FT PB7 TIM4_CH2/I2C1_SDA/ USART1_RX COMP2_INP/ PVD_IN 138 A4 94 60 A7 BOOT0 I B BOOT0 - - 139 A3 95 61 D5 PB8 I/O FT PB8 TIM4_CH3/TIM10_CH1/ I2C1_SCL/ LCD_SEG16 - 140 B3 96 62 C6 PB9 I/O FT PB9 TIM4_CH4/ TIM11_CH1/I2C1_SDA/ LCD_COM3 - 141 C3 97 - B7 PE0 I/O FT PE0 TIM4_ETR/TIM10_CH1/ LCD_SEG36 - 142 A2 98 - A8 PE1 I/O FT PE1 TIM11_CH1/LCD_SEG37 - 143 D3 99 63 C7 VSS_3 S - VSS_3 - - 144 C4 100 64 B8, A9 VDD_3 S - VDD_3 - - 1. I = input, O = output, S = supply. 2. Function availability depends on the chosen device. 3. Applicable to STM32L152xE devices only. In STM32L151xE devices, this pin should be connected to VDD. 4. The PC14 and PC15 I/Os are only configured as OSC32_IN/OSC32_OUT when the LSE oscillator is ON (by setting the LSEON bit in the RCC_CSR register). The LSE oscillator pins OSC32_IN/OSC32_OUT can be used as general-purpose PH0/PH1 I/Os, respectively, when the LSE oscillator is off (after reset, the LSE oscillator is off). The LSE has priority over the GPIO function. For more details, refer to Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins section in the STM32L151xx, STM32L152xx and STM32L162xx reference manual (RM0038). DS10002 Rev 10 45/136 56 Pin descriptions STM32L151xE STM32L152xE 5. The PH0 and PH1 I/Os are only configured as OSC_IN/OSC_OUT when the HSE oscillator is ON (by setting the HSEON bit in the RCC_CR register). The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os, respectively, when the HSE oscillator is off ( after reset, the HSE oscillator is off). The HSE has priority over the GPIO function. 46/136 DS10002 Rev 10 Table 9. Alternate function input/output Digital alternate function number AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO8 . . AFIO11 AFIO14 . . AFIO15 Port name Alternate function SYSTEM TIM2 TIM3/4/ 5 TIM9/ 10/11 I2C1/2 SPI1/2 SPI3 USART1/2/ UART4/ 3 5 LCD - CPRI SYSTEM EVENT OUT DS10002 Rev 10 BOOT0 BOOT0 - - - - - - - - - - - - NRST NRST - - - - - - - - - - - - - - TIMx_IC1 EVENT OUT - - TIM2_CH1_ ETR TIM5_CH1 - - - - USART2_CTS - - PA1 - TIM2_CH2 TIM5_CH2 - - - - USART2_RTS - - SEG0 - TIMx_IC2 EVENT OUT PA2 - TIM2_CH3 TIM5_CH3 TIM9_CH1 - - - USART2_TX - - SEG1 - TIMx_IC3 EVENT OUT PA3 - TIM2_CH4 TIM5_CH4 TIM9_CH2 - - - USART2_RX - - SEG2 - TIMx_IC4 EVENT OUT PA4 - - - - - SPI1_NSS USART2_CK - - - - TIMx_IC1 EVENT OUT PA5 - TIM2_CH1_ ETR - - - SPI1_SCK - - - - - - TIMx_IC2 EVENT OUT PA6 - - TIM3_CH1 TIM10_CH1 - SPI1_MISO - - - - SEG3 - TIMx_IC3 EVENT OUT PA7 - - TIM3_CH2 TIM11_CH1 - SPI1_MOSI - - - - SEG4 - TIMx_IC4 EVENT OUT - - - - - - USART1_CK - - COM0 - TIMx_IC1 EVENT OUT PA8 MCO 47/136 PA9 - - - - - - - USART1_TX - - COM1 - TIMx_IC2 EVENT OUT PA10 - - - - - - - USART1_RX - - COM2 - TIMx_IC3 EVENT OUT Pin descriptions PA0-WKUP1 SPI3_NSS I2S3_WS STM32L151xE STM32L152xE Alternate functions Digital alternate function number AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO8 . . AFIO11 AFIO14 . . AFIO15 Port name Alternate function SYSTEM TIM2 TIM3/4/ 5 TIM9/ 10/11 I2C1/2 SPI1/2 SPI3 USART1/2/ UART4/ 3 5 PA11 - - - - - SPI1_MISO - USART1_CTS - - - - TIMx_IC4 EVENT OUT PA12 - - - - - SPI1_MOSI - USART1_RTS - - - - TIMx_IC1 EVENT OUT LCD - CPRI SYSTEM DS10002 Rev 10 PA13 JTMSSWDIO - - - - - - - - - - - TIMx_IC2 EVENT OUT PA14 JTCKSWCLK - - - - - - - - - - - TIMx_IC3 EVEN TOUT PA15 JTDI TIM2_CH1_ ETR - - - SPI1_NSS - - - SEG17 - TIMx_IC4 EVEN TOUT SPI3_NSS I2S3_WS - - TIM3_CH3 - - - - - - - SEG5 - - EVEN TOUT PB1 - - TIM3_CH4 - - - - - - - SEG6 - - EVENT OUT - - - - - - - - - - - - EVENT OUT - - - SPI1_SCK - - - SEG7 - - EVENT OUT - TIM3_CH1 - - SPI1_MISO SPI3_MISO - - - SEG8 - - EVENT OUT SPI1_MOSI SPI3_MOSI I2S3_SD - - - SEG9 - - EVENT OUT - EVENT OUT BOOT1 PB3 JTDO PB4 NJTRST TIM2_CH2 SPI3_SCK I2S3_CK PB5 - - TIM3_CH2 - I2C1_ SMBA PB6 - - TIM4_CH1 - I2C1_SCL - - USART1_TX - - - - PB7 - - TIM4_CH2 - I2C1_SDA - - USART1_RX - - - - PB8 - - TIM4_CH3 TIM10_CH1 I2C1_SCL - - - - SEG16 - - EVENT OUT - EVENT OUT STM32L151xE STM32L152xE PB0 PB2 Pin descriptions 48/136 Table 9. Alternate function input/output (continued) Digital alternate function number AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO8 . . AFIO11 AFIO14 . . AFIO15 Port name Alternate function DS10002 Rev 10 SYSTEM TIM2 TIM3/4/ 5 TIM9/ 10/11 I2C1/2 SPI1/2 SPI3 PB9 - - TIM4_CH4 TIM11_CH1 I2C1_SDA - - PB10 - TIM2_CH3 - - I2C2_SCL - - PB11 - TIM2_CH4 - - I2C2_SDA - PB12 - - - TIM10_CH1 I2C2_SM BA PB13 - - - TIM9_CH1 PB14 - - - PB15 - - PC0 - PC1 USART1/2/ UART4/ 3 5 LCD - CPRI SYSTEM - COM3 - - EVENT OUT USART3_TX - - SEG10 - - EVENT OUT - USART3_RX - - SEG11 - - EVENT OUT SPI2_NSS I2S2_WS - USART3_CK - - SEG12 - - EVENT OUT - SPI2_SCK I2S2_CK - USART3_CTS - - SEG13 - - EVENT OUT TIM9_CH2 - SPI2_MISO - USART3_RTS - - SEG14 - - EVENT OUT - TIM11_CH1 - SPI2_MOSI I2S2_SD - - - - SEG15 - - EVENT OUT - - - - - - - - - SEG18 - TIMx_IC1 EVENT OUT - - - - - - - - - - SEG19 - TIMx_IC2 EVENT OUT PC2 - - - - - - - - - - SEG20 - TIMx_IC3 EVENT OUT PC3 - - - - - - - - - - SEG21 - TIMx_IC4 EVENT OUT PC4 - - - - - - - - - - SEG22 - TIMx_IC1 EVENT OUT PC5 - - - - - - - - - - SEG23 - TIMx_IC2 EVENT OUT PC6 - - TIM3_CH1 - - I2S2_MCK - - - - SEG24 - TIMx_IC3 EVENT OUT Pin descriptions 49/136 - - STM32L151xE STM32L152xE Table 9. Alternate function input/output (continued) Digital alternate function number AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO8 . . AFIO11 AFIO14 . . AFIO15 Port name Alternate function DS10002 Rev 10 TIM2 TIM3/4/ 5 TIM9/ 10/11 I2C1/2 SPI1/2 PC7 - - TIM3_CH2 - - - PC8 - - TIM3_CH3 - - - PC9 - - TIM3_CH4 - - - PC10 - - - - - - SPI3_SCK I2S3_CK PC11 - - - - - - PC12 - - - - - PC13-WKUP2 - - - - PC14 OSC32_IN - - - PC15 OSC32_OUT - - - PD0 - - - PD1 - - - PD2 - - PD3 - - SPI3 USART1/2/ UART4/ 3 5 LCD - CPRI SYSTEM - - - SEG25 - TIMx_IC4 EVENT OUT - - - - SEG26 - TIMx_IC1 EVENT OUT - - - - SEG27 - TIMx_IC2 EVENT OUT USART3_TX UART4_TX COM4/ - SEG28/ SEG40 - TIMx_IC3 EVENT OUT SPI3_MISO USART3_RX COM5/ UART4_RX - SEG29 /SEG41 - TIMx_IC4 EVENT OUT - SPI3_MOSI I2S3_SD USART3_CK UART5_TX COM6/ - SEG30/ SEG42 - TIMx_IC1 EVENT OUT - - - - - - - - TIMx_IC2 EVENT OUT - - - - - - - - - TIMx_IC3 EVENT OUT - - - - - - - - - TIMx_IC4 EVENT OUT - SPI2_NSS I2S2_WS - - - - - - TIMx_IC1 EVENT OUT - - SPI2 SCK I2S2_CK - - - - - - TIMx_IC2 EVENT OUT TIM3_ETR - - - - - - TIMx_IC3 EVENT OUT - - - SPI2_MISO - USART2_CTS - TIMx_IC4 EVENT OUT TIM9_CH1 I2S3_MCK COM7/ UART5_RX - SEG31/ SEG43 - - - STM32L151xE STM32L152xE SYSTEM Pin descriptions 50/136 Table 9. Alternate function input/output (continued) Digital alternate function number AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO8 . . AFIO11 AFIO14 . . AFIO15 Port name Alternate function DS10002 Rev 10 TIM2 TIM3/4/ 5 TIM9/ 10/11 I2C1/2 SPI1/2 SPI3 PD4 - - - - - SPI2_MOSI I2S2_SD - USART2_RTS - - - - TIMx_IC1 EVENT OUT PD5 - - - - - - - USART2_TX - - - - TIMx_IC2 EVENT OUT PD6 - - - - - - - USART2_RX - - - - TIMx_IC3 EVENT OUT PD7 - - - - - - USART2_CK - - - - TIMx_IC4 EVENT OUT PD8 - - - - - - - USART3_TX - - SEG28 - TIMx_IC1 EVENT OUT PD9 - - - - - - - USART3_RX - - SEG29 - TIMx_IC2 EVENT OUT PD10 - - - - - - - USART3_CK - - SEG30 - TIMx_IC3 EVENT OUT PD11 - - - - - - - USART3_CTS - - SEG31 - TIMx_IC4 EVENT OUT PD12 - - TIM4_CH1 - - - - USART3_RTS - - SEG32 - TIMx_IC1 EVENT OUT PD13 - - TIM4_CH2 - - - - - - - SEG33 - TIMx_IC2 EVENT OUT PD14 - - TIM4_CH3 - - - - - - - SEG34 - TIMx_IC3 EVENT OUT PD15 - - TIM4_CH4 - - - - - - - SEG35 - TIMx_IC4 EVENT OUT PE0 - - TIM4_ETR TIM10_CH1 - - - - - - SEG36 - TIMx_IC1 EVENT OUT PE1 - - - TIM11_CH1 - - - - - - SEG37 - TIMx_IC2 EVENT OUT TIM9_CH2 USART1/2/ UART4/ 3 5 LCD - CPRI SYSTEM Pin descriptions 51/136 SYSTEM STM32L151xE STM32L152xE Table 9. Alternate function input/output (continued) Digital alternate function number AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO8 . . AFIO11 AFIO14 . . AFIO15 Port name Alternate function SYSTEM TIM2 TIM3/4/ 5 TIM9/ 10/11 I2C1/2 SPI1/2 SPI3 USART1/2/ UART4/ 3 5 LCD - CPRI Pin descriptions 52/136 Table 9. Alternate function input/output (continued) SYSTEM DS10002 Rev 10 PE2 TRACECK - TIM3_ETR - - - - - - - SEG 38 - TIMx_IC3 EVENT OUT PE3 TRACED0 - TIM3_CH1 - - - - - - - SEG 39 - TIMx_IC4 EVENT OUT PE4 TRACED1 - TIM3_CH2 - - - - - - - - - TIMx_IC1 EVENT OUT PE5 TRACED2 - - TIM9_CH1 - - - - - - - - TIMx_IC2 EVENT OUT PE6WKUP3 TRACED3 - - TIM9_CH2 - - - - - - - - TIMx_IC3 EVENT OUT - - - - - - - - - - - - TIMx_IC4 EVENT OUT PE8 - - - - - - - - - - - - TIMx_IC1 EVENT OUT PE9 - TIM2_CH1_ ETR - - - - - - - - - - TIMx_IC2 EVENT OUT PE10 - TIM2_CH2 - - - - - - - - - - TIMx_IC3 EVENT OUT PE11 - TIM2_CH3 - - - - - - - - - - TIMx_IC4 EVENT OUT PE12 - TIM2_CH4 - - - SPI1_NSS - - - - - - TIMx_IC1 EVENT OUT PE13 - - - - - SPI1_SCK - - - - - - TIMx_IC2 EVENT OUT PE14 - - - - - SPI1_MISO - - - - - - TIMx_IC3 EVENT OUT PE15 - - - - - SPI1_MOSI - - - - - - TIMx_IC4 EVENT OUT STM32L151xE STM32L152xE PE7 Digital alternate function number AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO8 . . AFIO11 AFIO14 . . AFIO15 Port name Alternate function DS10002 Rev 10 SYSTEM TIM2 TIM3/4/ 5 TIM9/ 10/11 I2C1/2 SPI1/2 SPI3 USART1/2/ UART4/ 3 5 PF0 - - - - - - - - - PF1 - - - - - - - - PF2 - - - - - - - PF3 - - - - - - PF4 - - - - - PF5 - - - - PF6 - - TIM5_ETR PF7 - - PF8 - PF9 - CPRI SYSTEM - - - - EVENT OUT - - - - - EVENT OUT - - - - - - EVENT OUT - - - - - - - EVENT OUT - - - - - - - - EVENT OUT - - - - - - - - - EVENT OUT - - - - - - - - - - EVENT OUT TIM5_CH2 - - - - - - - - - - EVENT OUT - TIM5_CH3 - - - - - - - - - - EVENT OUT - - TIM5_CH4 - - - - - - - - - - EVENT OUT PF10 - - - - - - - - - - - - - EVENT OUT PF11 - - - - - - - - - - - - - EVENT OUT PF12 - - - - - - - - - - - - - EVENT OUT PF13 - - - - - - - - - - - - - EVENT OUT Pin descriptions 53/136 LCD STM32L151xE STM32L152xE Table 9. Alternate function input/output (continued) Digital alternate function number AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO8 . . AFIO11 AFIO14 . . AFIO15 Port name Alternate function DS10002 Rev 10 TIM2 TIM3/4/ 5 TIM9/ 10/11 I2C1/2 SPI1/2 SPI3 USART1/2/ UART4/ 3 5 PF14 - - - - - - - - - PF15 - - - - - - - - PG0 - - - - - - - PG1 - - - - - - PG2 - - - - - PG3 - - - - PG4 - - - PG5 - - PG6 - PG7 LCD - CPRI SYSTEM - - - - EVENT OUT - - - - - EVENT OUT - - - - - - EVENT OUT - - - - - - - EVENT OUT - - - - - - - - EVENT OUT - - - - - - - - - EVENT OUT - - - - - - - - - - EVENT OUT - - - - - - - - - - - EVENT OUT - - - - - - - - - - - - EVENT OUT - - - - - - - - - - - - - EVENT OUT PG8 - - - - - - - - - - - - - EVENT OUT PG9 - - - - - - - - - - - - - EVENT OUT PG10 - - - - - - - - - - - - - EVENT OUT PG11 - - - - - - - - - - - - - EVENT OUT STM32L151xE STM32L152xE SYSTEM Pin descriptions 54/136 Table 9. Alternate function input/output (continued) Digital alternate function number AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO8 . . AFIO11 AFIO14 . . AFIO15 Port name Alternate function DS10002 Rev 10 SYSTEM TIM2 TIM3/4/ 5 TIM9/ 10/11 I2C1/2 SPI1/2 SPI3 USART1/2/ UART4/ 3 5 PG12 - - - - - - - - - PG13 - - - - - - - - PG14 - - - - - - - PG15 - - - - - - PH0OSC_IN - - - - - PH1OSC_OUT - - - - PH2 - - - - LCD - CPRI SYSTEM - - - - EVENT OUT - - - - - EVENT OUT - - - - - - EVENT OUT - - - - - - - EVENT OUT - - - - - - - - - - - - - - - - - - - - - - - - - - - - - STM32L151xE STM32L152xE Table 9. Alternate function input/output (continued) Pin descriptions 55/136 Memory mapping 5 STM32L151xE STM32L152xE Memory mapping Figure 8. Memory map APB memory space 0x4002 67FF 0x4002 6400 0x4002 6000 0x4002 4000 0x4002 3C00 0x4002 3800 0xFFFF FFFF 0x4002 3400 0x4002 3000 7 0xE010 0000 0xE000 0000 0x4002 2000 0x4002 1C00 Cortex-M3 Internal Peripherals 0x4002 1800 0x4002 1400 0x4002 1000 0x4002 0C00 0x4002 0800 0x4002 0400 0x4002 0000 6 0xC000 0000 0x4001 3C00 0x4001 3800 5 0x4001 3400 0x4001 3000 0xA000 0000 0x4001 2C00 DMA2 DMA1 reserved Flash Interface RCC reserved CRC reserved Port G Port F Port H Port E Port D Port C Port B Port A reserved USART1 reserved SPI1 reserved 0x4001 2800 0x4001 2400 4 0x4001 1400 0x4001 1000 0x8000 0000 0x1FF8 009F 0x1FF8 0080 3 0x1FF8 0020 0x1FF8 0000 Option Bytes Bank 2 reserved Option Bytes Bank 1 0x6000 0000 reserved 0x4000 0000 0x1FF0 1000 Peripherals 0x1FF0 0000 0 0x4001 0000 0x4000 8000 0x4000 7800 0x4000 7400 System memory Bank 1 0x4000 7000 0x4000 6400 0x4000 6000 0x4000 5C00 reserved 0x4000 5800 0x4000 5400 SRAM 0x0808 4000 Nonvolatile memory 0x0000 0000 0x4000 5000 Data EEPROM Bank 2 0x0808 2000 Data EEPROM Bank 1 0x0808 0000 Reserved 0x0800 0000 0x0000 0000 0x4000 4C00 0x4000 4800 0x4000 4400 0x4000 4000 0x4000 3C00 0x0804 0000 56/136 0x4001 0400 System memory reserved Bank 2 1 0x2000 0000 0x4001 0800 0x4001 7C00 0x1FF0 2000 2 0x4001 0C00 Flash memory Bank 2 0x4000 3800 0x4000 3400 Flash memory Bank 1 0x4000 3000 Aliased to Flash or system memory depending on BOOT pins DS10002 Rev 10 0x4000 2C00 0x4000 2800 0x4000 2400 0x4000 1C00 0x4000 1400 0x4000 1000 0x4000 0C00 0x4000 0800 0x4000 0400 0x4000 0000 ADC reserved TIM11 TIM10 TIM9 EXTI SYSCFG reserved COMP + RI reserved DAC1 & 2 PWR reserved 512 byte USB USB Registers I2C2 I2C1 UART5 UART4 USART3 USART2 reserved SPI3 SPI2 reserved IWDG WWDG RTC LCD reserved TIM7 TIM6 TIM5 TIM4 TIM3 TIM2 MS33003V4 STM32L151xE STM32L152xE Electrical characteristics 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.6 V (for the 1.65 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean ±2σ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 9. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 10. Figure 9. Pin loading conditions Figure 10. Pin input voltage MCU pin MCU pin C = 50 pF VIN ai17851c ai17852d DS10002 Rev 10 57/136 114 Electrical characteristics 6.1.6 STM32L151xE STM32L152xE Power supply scheme Figure 11. Power supply scheme OUT GP I/Os IN VDD VDD Level shifter Standby-power circuitry (LSE,RTC,Wake-up logic, RTC backup registers) IO Logic Kernel logic (CPU, Digital & Memories) Regulator N × 100 nF + 1 × 4.7 μF VSS VDDA VDDA VREF 100 nF + 1 μF 100 nF + 1 μF VREF+ VREF- ADC/ DAC Analog: OSC,PLL,COMP, …. VSSA N – number of VDD/VSS pairs 58/136 MS32461V3 DS10002 Rev 10 STM32L151xE STM32L152xE 6.1.7 Electrical characteristics Optional LCD power supply scheme Figure 12. Optional LCD power supply scheme VSEL VDD N x 100 nF + 1 x 10 μF Option 1 VDD1/2/.../N Step-up Converter VLCD 100 nF LCD VLCD Option 2 CEXT VSS1/2/.../N MS32462V2 1. Option 1: LCD power supply is provided by a dedicated VLCD supply source, VSEL switch is open. 2. Option 2: LCD power supply is provided by the internal step-up converter, VSEL switch is closed, an external capacitance is needed for correct behavior of this converter. 6.1.8 Current consumption measurement Figure 13. Current consumption measurement scheme A + - N x 100 nF +1 x 10 μF N x VDD N x VSS VLCD VDDA 100 nF +1 μF VREF+ VREFVSSA MS33028V1 DS10002 Rev 10 59/136 114 Electrical characteristics 6.2 STM32L151xE STM32L152xE Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 10: Voltage characteristics, Table 11: Current characteristics, and Table 12: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 10. Voltage characteristics Symbol VDD–VSS VIN(2) |ΔVDDx| Ratings Min Max –0.3 4.0 Input voltage on five-volt tolerant pin VSS − 0.3 VDD+4.0 Input voltage on any other pin VSS − 0.3 4.0 - 50 - 50 External main supply voltage (including VDDA and VDD)(1) Variations between different VDD power pins pins(3) Unit V mV |VSSX − VSS| Variations between all different ground VREF+ –VDDA Allowed voltage difference for VREF+ > VDDA - 0.4 V Electrostatic discharge voltage (human body model) see Section 6.3.11 - VESD(HBM) 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 11 for maximum allowed injected current values. 3. Include VREF- pin. Table 11. Current characteristics Symbol IVDD(Σ) IVSS(Σ) (2) Ratings Max. Total current into sum of all VDD_x power lines (source)(1) 100 (sink)(1) 100 Total current out of sum of all VSS_x ground lines IVDD(PIN) Maximum current into each VDD_x power pin (source)(1) 70 IVSS(PIN) (sink)(1) -70 IIO ΣIIO(PIN) IINJ(PIN) (3) ΣIINJ(PIN) Maximum current out of each VSS_x ground pin Output current sunk by any I/O and control pin 25 Output current sourced by any I/O and control pin - 25 Total output current sunk by sum of all IOs and control pins(2) Total output current sourced by sum of all IOs and control pins Injected current on five-volt tolerant Injected current on any other pin I/O(4), Unit mA 60 (2) RST and B pins (5) Total injected current (sum of all I/O and control pins)(6) -60 -5/+0 ±5 ± 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages. 3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.17. 60/136 DS10002 Rev 10 STM32L151xE STM32L152xE Electrical characteristics 4. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN VDD while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer to Table 10: Voltage characteristics for the maximum allowed input voltage values. 6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 12. Thermal characteristics Symbol TSTG TJ Ratings Storage temperature range Maximum junction temperature 6.3 Operating conditions 6.3.1 General operating conditions Value Unit –65 to +150 °C 150 °C Table 13. General operating conditions Symbol Parameter Conditions Min Max fHCLK Internal AHB clock frequency - 0 32 fPCLK1 Internal APB1 clock frequency - 0 32 fPCLK2 Internal APB2 clock frequency - 0 32 BOR detector disabled 1.65 3.6 BOR detector enabled, at power on 1.8 3.6 BOR detector disabled, after power on 1.65 3.6 1.65 3.6 1.8 3.6 FT pins; 2.0 V ≤ VDD -0.3 5.5(3) FT pins; VDD < 2.0 V -0.3 5.25(3) 0 5.5 -0.3 VDD+0.3 UFBGA132 package - 333 LQFP144 package - 500 LQFP100 package - 465 LQFP64 package - 435 WLCSP104 package - 435 –40 85 –40 105 VDD VDDA(1) VIN Standard operating voltage Analog operating voltage (ADC and DAC not used) Analog operating voltage (ADC or DAC used) I/O input voltage Must be the same voltage as VDD(2) BOOT0 pin Any other pin PD TA Power dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for suffix 7(4) Ambient temperature for 6 suffix version Maximum power dissipation(5) Ambient temperature for 7 suffix version Maximum power dissipation DS10002 Rev 10 Unit MHz V V V mW °C 61/136 114 Electrical characteristics STM32L151xE STM32L152xE Table 13. General operating conditions (continued) Symbol TJ Parameter Junction temperature range Conditions Min Max 6 suffix version –40 105 7 suffix version –40 110 Unit °C 1. When the ADC is used, refer to Table 55: ADC characteristics. 2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA can be tolerated during power-up . 3. To sustain a voltage higher than VDD+0.3V, the internal pull-up/pull-down resistors must be disabled. 4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 71: Thermal characteristics on page 130). 5. In low-power dissipation state, TA can be extended to -40°C to 105°C temperature range as long as TJ does not exceed TJ max (see Table 71: Thermal characteristics on page 130). 6.3.2 Embedded reset and power control block characteristics The parameters given in the following table are derived from the tests performed under the conditions summarized in Table 13. Table 14. Embedded reset and power control block characteristics Symbol Parameter VDD rise time rate tVDD(1) VDD fall time rate TRSTTEMPO(1) Reset temporization VPOR/PDR Power on/power down reset threshold VBOR0 Brown-out reset threshold 0 VBOR1 Brown-out reset threshold 1 VBOR2 Brown-out reset threshold 2 62/136 Conditions Min Typ Max BOR detector enabled 0 - ∞ BOR detector disabled 0 - 1000 BOR detector enabled 20 - ∞ BOR detector disabled 0 - 1000 VDD rising, BOR enabled - 2 3.3 0.4 0.7 1.6 Falling edge 1 1.5 1.65 Rising edge 1.3 1.5 1.65 Falling edge 1.67 1.7 1.74 Rising edge 1.69 1.76 1.8 Falling edge 1.87 1.93 1.97 Rising edge 1.96 2.03 2.07 Falling edge 2.22 2.30 2.35 Rising edge 2.31 2.41 2.44 VDD rising, BOR disabled(2) DS10002 Rev 10 Unit µs/V ms V STM32L151xE STM32L152xE Electrical characteristics Table 14. Embedded reset and power control block characteristics (continued) Symbol Parameter Conditions VBOR3 Brown-out reset threshold 3 VBOR4 Brown-out reset threshold 4 VPVD0 Programmable voltage detector threshold 0 VPVD1 PVD threshold 1 VPVD2 PVD threshold 2 VPVD3 PVD threshold 3 VPVD4 PVD threshold 4 VPVD5 PVD threshold 5 VPVD6 PVD threshold 6 Vhyst Hysteresis voltage Min Typ Max Falling edge 2.45 2.55 2.6 Rising edge 2.54 2.66 2.7 Falling edge 2.68 2.8 2.85 Rising edge 2.78 2.9 2.95 Falling edge 1.8 1.85 1.88 Rising edge 1.88 1.94 1.99 Falling edge 1.98 2.04 2.09 Rising edge 2.08 2.14 2.18 Falling edge 2.20 2.24 2.28 Rising edge 2.28 2.34 2.38 Falling edge 2.39 2.44 2.48 Rising edge 2.47 2.54 2.58 Falling edge 2.57 2.64 2.69 Rising edge 2.68 2.74 2.79 Falling edge 2.77 2.83 2.88 Rising edge 2.87 2.94 2.99 Falling edge 2.97 3.05 3.09 Rising edge 3.08 3.15 3.20 BOR0 threshold - 40 - All BOR and PVD thresholds excepting BOR0 - 100 - Unit V mV 1. Guaranteed by characterization results. 2. Valid for device version without BOR at power up. See option “D” in Ordering information scheme for more details. DS10002 Rev 10 63/136 114 Electrical characteristics 6.3.3 STM32L151xE STM32L152xE Embedded internal reference voltage The parameters given in Table 16 are based on characterization results, unless otherwise specified. Table 15. Embedded internal reference voltage calibration values Calibration value name Description Raw data acquired at temperature of 30 °C ±5 °C VDDA= 3 V ±10 mV VREFINT_CAL Memory address 0x1FF8 00F8 - 0x1FF8 00F9 Table 16. Embedded internal reference voltage Symbol VREFINT out Parameter (1) Conditions Min Typ Unit 1.242 V Internal reference voltage – 40 °C < TJ < +110 °C Internal reference current consumption - - 1.4 2.3 µA TVREFINT Internal reference startup time - - 2 3 ms VVREF_MEAS VDDA and VREF+ voltage during VREFINT factory measure - 2.99 3 3.01 V AVREF_MEAS Including uncertainties Accuracy of factory-measured VREF due to ADC and (2) value VDDA/VREF+ values - - ±5 mV TCoeff(3) Temperature coefficient –40 °C < TJ < +110 °C - 25 100 ppm/°C ACoeff(3) Long-term stability 1000 hours, T= 25 °C - - 1000 ppm VDDCoeff(3) Voltage coefficient 3.0 V < VDDA < 3.6 V - - 2000 ppm/V TS_vrefint(3) ADC sampling time when reading the internal reference voltage - 4 - - µs TADC_BUF(3) Startup time of reference voltage buffer for ADC - - - 10 µs IBUF_ADC(3) Consumption of reference voltage buffer for ADC - - 13.5 25 µA IVREF_OUT(3) VREF_OUT output current (4) - - - 1 µA CVREF_OUT(3) VREF_OUT output load - - - 50 pF Consumption of reference voltage buffer for VREF_OUT and COMP - - 730 1200 nA VREFINT_DIV1(3) 1/4 reference voltage - 24 25 26 VREFINT_DIV2(3) 1/2 reference voltage - 49 50 51 VREFINT_DIV3(3) 3/4 reference voltage - 74 75 76 IREFINT ILPBUF(3) 1.202 1.224 Max 1. Guaranteed by test in production. 2. The internal VREF value is individually measured in production and stored in dedicated EEPROM bytes. 3. Guaranteed by characterization results. 4. To guarantee less than 1% VREF_OUT deviation. 64/136 DS10002 Rev 10 % VREFINT STM32L151xE STM32L152xE 6.3.4 Electrical characteristics Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 13: Current consumption measurement scheme. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to the Dhrystone 2.1 code, unless otherwise specified. The current consumption values are derived from tests performed under ambient temperature TA = 25 °C and VDD supply voltage conditions summarized in Table 13: General operating conditions, unless otherwise specified. The MCU is placed under the following conditions: • All I/O pins are configured in analog input mode • All peripherals are disabled except when explicitly mentioned. • The Flash memory access time, 64-bit access and prefetch is adjusted depending on fHCLK frequency and voltage range to provide the best CPU performance. • When the peripherals are enabled fAPB1 = fAPB2 = fAHB. • When PLL is ON, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or HSE = 16 MHz (if HSE bypass mode is used). • The HSE user clock applied to OSCI_IN input follows the characteristic specified in Table 26: High-speed external user clock characteristics. • For maximum current consumption VDD = VDDA = 3.6 V is applied to all supply pins. • For typical current consumption VDD = VDDA = 3.0 V is applied to all supply pins if not specified otherwise. DS10002 Rev 10 65/136 114 Electrical characteristics STM32L151xE STM32L152xE Table 17. Current consumption in Run mode, code with data processing running from Flash Symbol Parameter fHCLK Typ Max(1) 1 MHz 225 500 2 MHz 420 750 4 MHz 780 1200 4 MHz 0.98 1.6 8 MHz 1.85 2.9 16 MHz 3.6 5.2 8 MHz 2.2 3.5 16 MHz 4.4 6.5 32 MHz 8.6 12 Range 2, VCORE=1.5 V VOS[1:0] = 10 16 MHz 3.6 5.2 Range 1, VCORE=1.8 V VOS[1:0] = 01 32 MHz 8.7 12.3 65 kHz 42 145 524 kHz 135 250 4.2 MHz 820 1200 Conditions Range 3, VCORE=1.2 V VOS[1:0] = 11 IDD (Run from Flash) Supply current in Run mode, code executed from Flash fHSE = fHCLK up to 16 MHz included, Range 2, VCORE=1.5 fHSE = fHCLK/2 V VOS[1:0] = 10 above 16 MHz (PLL (2) ON) Range 1, VCORE=1.8 V VOS[1:0] = 01 HSI clock source (16 MHz) MSI clock, 65 kHz MSI clock, 524 kHz Range 3, VCORE=1.2 V VOS[1:0] = 11 MSI clock, 4.2 MHz 1. Guaranteed by characterization results, unless otherwise specified. 2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register). 66/136 DS10002 Rev 10 Unit µA mA µA STM32L151xE STM32L152xE Electrical characteristics Table 18. Current consumption in Run mode, code with data processing running from RAM Symbol Parameter Conditions Typ 1 MHz 200 470 2 MHz 360 780 4 MHz 685 1200 4 MHz 0.80 1.5 8 MHz 1.6 3 16 MHz 3.1 5 8 MHz 1.9 3.5 16 MHz 3.7 5.55 32 MHz 7.55 10.9 Range 2, VCORE=1.5 V VOS[1:0] = 10 16 MHz 3.15 4.8 Range 1, VCORE=1.8 V VOS[1:0] = 01 32 MHz 7.75 11.7 65 kHz 40 130 524 kHz 115 215 4.2 MHz 715 1100 Range 3, VCORE=1.2 V VOS[1:0] = 11 fHSE = fHCLK up to 16 MHz included, fHSE = fHCLK/2 above 16 MHz (PLL ON)(2) IDD (Run from RAM) Supply current in Run mode, code executed from RAM, Flash switched off Range 2, VCORE=1.5 V VOS[1:0] = 10 Range 1, VCORE=1.8 V VOS[1:0] = 01 HSI clock source (16 MHz) Max(1) Unit fHCLK MSI clock, 65 kHz Range 3, MSI clock, 524 kHz VCORE=1.2 V VOS[1:0] = 11 MSI clock, 4.2 MHz µA mA µA 1. Guaranteed by characterization results, unless otherwise specified. 2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register). DS10002 Rev 10 67/136 114 Electrical characteristics STM32L151xE STM32L152xE Table 19. Current consumption in Sleep mode Symbol Parameter Conditions Range 3, VCORE=1.2 V VOS[1:0] = 11 fHSE = fHCLK up to 16 MHz included, Range 2, fHSE = fHCLK/2 VCORE=1.5 V above 16 MHz (PLL VOS[1:0] = 10 ON)(2) Supply current in Sleep mode, Flash OFF HSI clock source (16 MHz) Max(1) 1 MHz 51 220 2 MHz 81 300 4 MHz 140 380 4 MHz 175 500 8 MHz 330 700 16 MHz 625 1100 8 MHz 395 800 16 MHz 760 1250 32 MHz 1700 2700 Range 2, VCORE=1.5 V VOS[1:0] = 10 16 MHz 670 1100 Range 1, VCORE=1.8 V VOS[1:0] = 01 32 MHz 1750 2700 65 kHz 19 92 524 kHz 33 110 4.2 MHz 150 273 1 MHz 63 250 2 MHz 93 300 4 MHz 155 380 4 MHz 190 500 Range 3, MSI clock, 524 kHz VCORE=1.2 V VOS[1:0] = 11 MSI clock, 4.2 MHz Range 3, VCORE=1.2 V VOS[1:0] = 11 fHSE = fHCLK up to 16 MHz included, Range 2, fHSE = fHCLK/2 VCORE=1.5 V above 16 MHz (PLL VOS[1:0] = 10 Supply current ON)(2) in Sleep Range 1, mode, Flash VCORE=1.8 V ON VOS[1:0] = 01 8 MHz 340 700 16 MHz 640 1120 8 MHz 410 800 16 MHz 770 1300 32 MHz 1750 2700 Range 2, VCORE=1.5 V VOS[1:0] = 10 16 MHz 690 1160 Range 1, VCORE=1.8 V VOS[1:0] = 01 32 MHz 1750 2800 65 kHz 31 105 524 kHz 45 125 4.2 MHz 160 290 HSI clock source (16 MHz) Supply current MSI clock, 65 kHz Range 3, in Sleep MSI clock, 524 kHz VCORE=1.2V mode, Flash VOS[1:0] = 11 ON MSI clock, 4.2 MHz 1. Guaranteed by characterization results, unless otherwise specified. 2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register) 68/136 Typ Range 1, VCORE=1.8 V VOS[1:0] = 01 MSI clock, 65 kHz IDD (Sleep) fHCLK DS10002 Rev 10 Unit µA STM32L151xE STM32L152xE Electrical characteristics Table 20. Current consumption in Low-power run mode Symbol Parameter All peripherals OFF, code executed from RAM, Flash switched OFF, VDD from 1.65 V to 3.6 V IDD (LP Run) Typ Max(1) 11 16 TA = 85 °C 36.2 40 TA = 105 °C 65.4 102 TA =-40 °C to 25 °C 16.5 23 TA = 85 °C 41.9 48 TA = 105 °C 72.1 108 30 45 TA = 55 °C 36.1 48 TA = 85 °C 55.7 66 TA = 105 °C 86.6 125 26 40.5 TA = 85 °C 53.2 67 TA = 105 °C 92.1 120 33 49 TA = 85 °C 60.2 75 TA = 105 °C 95.6 130 TA = -40 °C to 25 °C 48.5 71 TA = 55 °C 54.7 75 TA = 85 °C 76.1 95 TA = 105 °C 112 140 - 200 Conditions Supply current in Low-power run mode MSI clock, 65 kHz fHCLK = 32 kHz MSI clock, 65 kHz fHCLK = 65 kHz TA = -40 °C to 25 °C MSI clock, 131 kHz fHCLK = 131 kHz MSI clock, 65 kHz fHCLK = 32 kHz All peripherals OFF, code executed from Flash, VDD from 1.65 V to 3.6 V Max allowed VDD from IDD max current in 1.65 V to (LP Run) Low-power 3.6 V run mode TA = -40 °C to 25 °C MSI clock, 65 kHz fHCLK = 65 kHz MSI clock, 131 kHz fHCLK = 131 kHz TA = -40 °C to 25 °C TA = -40 °C to 25 °C - - Unit µA 1. Guaranteed by characterization results, unless otherwise specified. DS10002 Rev 10 69/136 114 Electrical characteristics STM32L151xE STM32L152xE Table 21. Current consumption in Low-power sleep mode Symbol Parameter MSI clock, 65 kHz fHCLK = 32 kHz Flash OFF MSI clock, 65 kHz fHCLK = 32 kHz Flash ON All peripherals OFF, VDD from 1.65 V to 3.6 V IDD (LP Sleep) Typ Max(1) TA = -40 °C to 25 °C 5.5 - TA = -40 °C to 25 °C 18.5 21 TA = 85 °C 26.8 29 TA = 105 °C 37 47 TA = -40 °C to 25 °C 18.5 21 TA = 85 °C 27.2 29 TA = 105 °C 37.3 47 TA = -40 °C to 25 °C 21.5 25 23.7 26 29.8 32 TA = 105 °C 39.7 50 TA = -40 °C to 25 °C 18.5 21 TA = 85 °C 26.8 29 TA = 105 °C 38.3 47 TA = -40 °C to 25 °C 18.5 21 TA = 85 °C 27.2 29 TA = 105 °C 38.5 47 TA = -40 °C to 25 °C 21.5 25 23.7 26 29.8 32 41.2 50 - 200 Conditions MSI clock, 65 kHz fHCLK = 65 kHz, Flash ON MSI clock, 131 kHz T = 55 °C A fHCLK = 131 kHz, TA = 85 °C Flash ON Supply current in Low-power sleep mode MSI clock, 65 kHz fHCLK = 32 kHz TIM9 and USART1 enabled, Flash ON, VDD from 1.65 V to 3.6 V MSI clock, 65 kHz fHCLK = 65 kHz MSI clock, 131 kHz TA = 55 °C fHCLK = 131 kHz TA = 85 °C TA = 105 °C IDD max (LP Sleep) Max allowed VDD from 1.65 V current in to 3.6 V Low-power sleep mode - 1. Guaranteed by characterization results, unless otherwise specified. 70/136 DS10002 Rev 10 - Unit µA STM32L151xE STM32L152xE Electrical characteristics Table 22. Typical and maximum current consumptions in Stop mode Symbol Parameter Conditions LCD OFF RTC clocked by LSI or LSE external clock (32.768kHz), regulator in LP mode, HSI and HSE OFF (no independent watchdog) Typ TA = -40°C to 25°C VDD = 1.8 V 1.18 - TA = -40°C to 25°C 1.4 4 TA = 55°C 3.02 6 TA= 85°C 7.44 11 TA = 105°C 15.5 27 1.5 6 4.65 7 9.07 13 15.6 31 3.9 10 5.19 11 9.8 17 TA = 105°C 18.4 48 TA = -40°C to 25°C 1.65 - TA = 55°C 3.32 - TA= 85°C 7.83 - 16 - 1.75 - 4.9 - 9.41 - 15.8 - 4.1 - 5.53 - 10 - TA = 105°C 18.5 - TA = -40°C to 25°C VDD = 1.8V 1.33 - TA = -40°C to 25°C VDD = 3.0V 1.62 - TA = -40°C to 25°C VDD = 3.6V 1.87 - TA = -40°C to 25°C LCD TA = 55°C ON (static T = 85°C A duty)(2) TA = 105°C TA = -40°C to 25°C LCD TA = 55°C ON (1/8 duty)(3) TA= 85°C IDD (Stop with RTC) Supply current in Stop mode with RTC enabled LCD OFF TA = 105°C TA = -40°C to 25°C LCD TA = 55°C ON (static T = 85°C A duty)(2) TA = 105°C RTC clocked by LSE external quartz (32.768kHz), regulator in LP mode, TA = -40°C to 25°C HSI and HSE OFF LCD TA = 55°C (no independent ON (1/8 watchdog(4) duty)(3) TA= 85°C LCD OFF DS10002 Rev 10 Max(1) Unit µA 71/136 114 Electrical characteristics STM32L151xE STM32L152xE Table 22. Typical and maximum current consumptions in Stop mode (continued) Symbol Parameter Conditions Regulator in LP mode, HSI and HSE OFF, independent watchdog and LSI enabled IDD (Stop) Supply current in Stop mode (RTC disabled) Typ TA = -40°C to 25°C 1.8 2.2 TA = -40°C to 25°C 0.560 1.5 2.18 4 6.6 12 14.9 26 2 - 1.45 - 1.45 - Regulator in LP mode, LSI, HSI T = 55°C A and HSE OFF (no independent TA= 85°C watchdog) TA = 105°C IDD (WU from Stop) MSI = 4.2 MHz Supply current during wakeup from Stop MSI = 1.05 MHz mode MSI = 65 kHz(5) Max(1) Unit TA = -40°C to 25°C µA mA 1. Guaranteed by characterization results, unless otherwise specified. 2. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected. 3. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected. 4. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors. 5. When MSI = 64 kHz, the RMS current is measured over the first 15 µs following the wakeup event. For the remaining part of the wakeup period, the current corresponds the Run mode current. 72/136 DS10002 Rev 10 STM32L151xE STM32L152xE Electrical characteristics Table 23. Typical and maximum current consumptions in Standby mode Symbol Parameter Typ Max(1) 0.865 - 1.11 1.9 1.72 2.2 TA= 85 °C 2.12 4 TA = 105 °C 2.54 8.3(2) TA = -40 °C to 25 °C VDD = 1.8 V 0.97 - TA = -40 °C to 25 °C 1.28 - TA = 55 °C 2.01 - TA= 85 °C 2.5 - TA = 105 °C 2.98 - 1 1.7 0.29 1 0.96 1.3 1.38 3 1.98 7(2) 1 - Conditions TA = -40 °C to 25 °C VDD = 1.8 V T = -40 °C to 25 °C RTC clocked by LSI (no A independent watchdog) TA = 55 °C IDD (Standby with RTC) Supply current in Standby mode with RTC enabled RTC clocked by LSE external quartz (no independent watchdog)(3) Independent watchdog TA = -40 °C to 25 °C and LSI enabled IDD (Standby) Supply current in Standby mode (RTC disabled) TA = -40 °C to 25 °C Independent watchdog TA = 55 °C and LSI OFF TA = 85 °C TA = 105 °C IDD (WU from Standby) Supply current during wakeup time from Standby mode - TA = -40 °C to 25 °C Unit µA mA 1. Guaranteed by characterization results, unless otherwise specified. 2. Guaranteed by test in production. 3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors. On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in the following table. The MCU is placed under the following conditions: • all I/O pins are in input mode with a static value at VDD or VSS (no load) • all peripherals are disabled unless otherwise mentioned • the given value is calculated by measuring the current consumption – with all peripherals clocked off – with only one peripheral clocked on DS10002 Rev 10 73/136 114 Electrical characteristics STM32L151xE STM32L152xE Table 24. Peripheral current consumption(1) Typical consumption, VDD = 3.0 V, TA = 25 °C Peripheral APB1 74/136 Range 1, Range 2, Range 3, VCORE= VCORE= VCORE= Low-power 1.8 V 1.5 V 1.2 V sleep and run VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11 TIM2 12.0 10.0 8.0 10.0 TIM3 10.5 8.8 7.0 8.8 TIM4 10.4 8.8 7.0 8.8 TIM5 13.8 11.5 9.1 11.5 TIM6 3.9 3.0 2.5 3.0 TIM7 3.8 3.3 2.6 3.3 LCD 4.2 3.6 2.8 3.6 WWDG 2.9 2.5 2.1 2.5 SPI2 5.4 4.4 3.5 4.4 SPI3 5.5 4.6 3.7 4.6 USART2 7.6 6.2 4.9 6.2 USART3 7.6 6.2 5.0 6.2 USART4 7.3 6.1 4.8 6.1 USART5 7.6 6.3 5.0 6.3 I2C1 7.3 6.1 4.8 6.1 I2C2 7.2 5.9 4.7 5.9 USB 13.0 11.2 8.9 11.2 PWR 2.6 2.3 1.9 2.3 DAC 5.9 5.0 4.0 5.0 COMP 3.9 3.3 2.6 3.3 DS10002 Rev 10 Unit µA/MHz (fHCLK) STM32L151xE STM32L152xE Electrical characteristics Table 24. Peripheral current consumption(1) (continued) Typical consumption, VDD = 3.0 V, TA = 25 °C Peripheral APB2 AHB Range 1, Range 2, Range 3, VCORE= VCORE= VCORE= Low-power 1.8 V 1.5 V 1.2 V sleep and run VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11 SYSCFG & RI 2.9 2.4 2.0 2.4 TIM9 8.2 6.9 5.5 6.9 TIM10 6.2 5.1 4.1 5.1 TIM11 6.2 5.1 4.1 5.1 ADC 9.5 7.9 6.2 7.9 SPI1 4.8 3.9 3.2 3.9 USART1 8.2 6.9 5.4 6.9 GPIOA 6.3 5.3 4.1 5.3 GPIOB 6.3 5.3 4.1 5.3 GPIOC 6.3 5.2 4.1 5.2 GPIOD 8.1 6.8 5.4 6.8 GPIOE 6.7 5.7 4.5 5.7 GPIOF 5.9 4.9 3.9 4.9 GPIOG 7.2 6.1 4.9 6.1 GPIOH 1.7 1.4 1.1 1.4 CRC 0.8 0.7 0.5 0.7 FLASH 21.6 18.1 16.0 - (3) DMA1 16.8 14.5 11.5 14.5 DMA2 15.7 13.6 10.8 13.6 222 184 160 165.9 (2) All enabled IDD (RTC) 0.4 IDD (LCD) 3.1 IDD (ADC)(4) 1450 IDD (DAC)(5) 340 IDD (COMP1) 0.16 IDD (COMP2) Slow mode 2 Fast mode 5 IDD (PVD / BOR)(6) 2.6 IDD (IWDG) 0.25 Unit µA/MHz (fHCLK) µA 1. Data based on differential IDD measurement between all peripherals OFF an one peripheral with clock enabled, in the following conditions: fHCLK = 32 MHz (range 1), fHCLK = 16 MHz (range 2), fHCLK = 4 MHz (range 3), fHCLK = 64kHz (Lowpower run/sleep), fAPB1 = fHCLK, fAPB2 = fHCLK, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling. 2. HSI oscillator is OFF for this measure. DS10002 Rev 10 75/136 114 Electrical characteristics STM32L151xE STM32L152xE 3. In Low-power sleep and run mode, the Flash memory must always be in power-down mode. 4. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion (HSI consumption not included). 5. Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC conversion of VDD/2. DAC is in buffered mode, output is left floating. 6. Including supply current of internal reference voltage. 6.3.5 Wakeup time from low-power mode The wakeup times given in the following table are measured with the MSI RC oscillator. The clock source used to wake up the device depends on the current operating mode: • Sleep mode: the clock source is the clock that was set before entering Sleep mode • Stop mode: the clock source is the MSI oscillator in the range configured before entering Stop mode • Standby mode: the clock source is the MSI oscillator running at 2.1 MHz All timings are derived from tests performed under the conditions summarized in Table 13. Table 25. Low-power mode wakeup timings Symbol tWUSLEEP tWUSLEEP_LP Parameter Wakeup from Sleep mode tWUSTDBY Max(1) Unit 0.4 - fHCLK = 262 kHz Flash enabled 46 - fHCLK = 262 kHz Flash switched OFF 46 - fHCLK = fMSI = 4.2 MHz 8.2 - fHCLK = fMSI = 4.2 MHz Voltage range 1 and 2 7.7 8.9 fHCLK = fMSI = 4.2 MHz Voltage range 3 8.2 13.1 fHCLK = fMSI = 2.1 MHz 10.2 13.4 fHCLK = fMSI = 1.05 MHz 16 20 fHCLK = fMSI = 524 kHz 31 37 fHCLK = fMSI = 262 kHz 57 66 fHCLK = fMSI = 131 kHz 112 123 fHCLK = MSI = 65 kHz 221 236 Wakeup from Standby mode ULP bit = 1 and FWU bit = 1 fHCLK = MSI = 2.1 MHz 58 104 Wakeup from Standby mode FWU bit = 0 fHCLK = MSI = 2.1 MHz 2.6 3.25 Wakeup from Low-power sleep mode, fHCLK = 262 kHz Wakeup from Stop mode, regulator in low-power mode ULP bit = 1 and FWU bit = 1 1. Guaranteed by characterization, unless otherwise specified 76/136 Typ fHCLK = 32 MHz Wakeup from Stop mode, regulator in Run mode ULP bit = 1 and FWU bit = 1 tWUSTOP Conditions DS10002 Rev 10 µs ms STM32L151xE STM32L152xE 6.3.6 Electrical characteristics External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The external clock signal has to respect the I/O characteristics in Section 6.3.12. However, the recommended clock input waveform is shown in Figure 14. Table 26. High-speed external user clock characteristics(1) Symbol fHSE_ext Parameter User external clock source frequency Conditions Min Typ Max Unit CSS is on or PLL is used 1 8 32 MHz CSS is off, PLL not used 0 8 32 MHz VHSEH OSC_IN input pin high level voltage 0.7VDD - VDD VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD 12 - - tw(HSEH) tw(HSEL) OSC_IN high or low time tr(HSE) tf(HSE) OSC_IN rise or fall time - - 20 OSC_IN input capacitance - 2.6 - Cin(HSE) - V ns pF 1. Guaranteed by design. Figure 14. High-speed external clock source AC timing diagram tw(HSEH) VHSEH 90% VHSEL 10% tr(HSE) tf(HSE) tw(HSEL) t THSE MS19214V2 DS10002 Rev 10 77/136 114 Electrical characteristics STM32L151xE STM32L152xE Low-speed external user clock generated from an external source The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under the conditions summarized in Table 13. Table 27. Low-speed external user clock characteristics(1) Symbol Parameter Conditions fLSE_ext User external clock source frequency VLSEH OSC32_IN input pin high level voltage VLSEL OSC32_IN input pin low level voltage tw(LSEH) tw(LSEL) OSC32_IN high or low time tr(LSE) tf(LSE) OSC32_IN rise or fall time CIN(LSE) Min Typ Max Unit 1 32.768 1000 kHz 0.7VDD - VDD V - VSS - 0.3VDD 465 - ns OSC32_IN input capacitance - - - 10 - 0.6 - pF 1. Guaranteed by design. Figure 15. Low-speed external clock source AC timing diagram tw(LSEH) VLSEH 90% VLSEL 10% tr(LSE) tf(LSE) t tw(LSEL) TLSE MS19215V2 High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 1 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 28. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). 78/136 DS10002 Rev 10 STM32L151xE STM32L152xE Electrical characteristics Table 28. HSE oscillator characteristics(1)(2) Symbol fOSC_IN Parameter Conditions Min Typ Max Unit Oscillator frequency - 1 - 24 MHz RF Feedback resistor - - 200 - kΩ C Recommended load capacitance versus equivalent serial resistance of the crystal (RS)(3) RS = 30 Ω - 20 - pF VDD= 3.3 V, VIN = VSS with 30 pF load - - 3 mA C = 20 pF fOSC = 16 MHz - - 2.5 (startup) 0.7 (stabilized) C = 10 pF fOSC = 16 MHz - - 2.5 (startup) 0.46 (stabilized) Startup 3.5 - - mA /V VDD is stabilized - 1 - ms IHSE IDD(HSE) gm tSU(HSE)(4) HSE driving current HSE oscillator power consumption Oscillator transconductance Startup time mA 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Guaranteed by characterization results. 3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions. 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 16). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. DS10002 Rev 10 79/136 114 Electrical characteristics STM32L151xE STM32L152xE Figure 16. HSE oscillator circuit diagram fHSE to core Rm RF CO Lm CL1 OSC_IN Cm gm Resonator Consumption control Resonator STM32 OSC_OUT CL2 ai18235b Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 29. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 29. LSE oscillator characteristics (fLSE = 32.768 kHz)(1) Symbol Parameter Conditions Min Typ Max Unit fLSE Low speed external oscillator frequency - - 32.768 - kHz RF Feedback resistor - - 1.2 - MΩ C(2) Recommended load capacitance versus equivalent serial resistance of the crystal (RS)(3) RS = 30 kΩ - 8 - pF ILSE LSE driving current VDD = 3.3 V, VIN = VSS - - 1.1 µA VDD = 1.8 V - 450 - VDD = 3.0 V - 600 - VDD = 3.6V - 750 - - 3 - - µA/V VDD is stabilized - 1 - s IDD (LSE) Oscillator transconductance gm tSU(LSE) LSE oscillator current consumption (4) Startup time nA 1. Guaranteed by characterization results. 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details. 4. 80/136 tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. DS10002 Rev 10 STM32L151xE STM32L152xE Electrical characteristics Note: For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see Figure 17). CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF. Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL ≤ 7 pF. Never use a resonator with a load capacitance of 12.5 pF. Example: if the user chooses a resonator with a load capacitance of CL = 6 pF and Cstray = 2 pF, then CL1 = CL2 = 8 pF. Figure 17. Typical application with a 32.768 kHz crystal Resonator with integrated capacitors CL1 fLSE OSC32_IN 32.768 kHz resonator RF OSC32_OUT Bias controlled gain STM32L1xx CL2 ai17853b DS10002 Rev 10 81/136 114 Electrical characteristics 6.3.7 STM32L151xE STM32L152xE Internal clock source characteristics The parameters given in Table 30 are derived from tests performed under the conditions summarized in Table 13. High-speed internal (HSI) RC oscillator Table 30. HSI oscillator characteristics Symbol fHSI TRIM (1)(2) Parameter Conditions Min Typ Max Unit Frequency VDD = 3.0 V - 16 - MHz HSI user-trimmed resolution Trimming code is not a multiple of 16 - ± 0.4 0.7 % Trimming code is a multiple of 16 - Accuracy of the ACCHSI(2) factory-calibrated HSI oscillator - ± 1.5 % VDDA = 3.0 V, TA = 25 °C -1(3) - 1(3) % VDDA = 3.0 V, TA = 0 to 55 °C -1.5 - 1.5 % VDDA = 3.0 V, TA = -10 to 70 °C -2 - 2 % VDDA = 3.0 V, TA = -10 to 85 °C -2.5 - 2 % VDDA = 3.0 V, TA = -10 to 105 °C -4 - 2 % VDDA = 1.65 V to 3.6 V TA = -40 to 105 °C -4 - 3 % tSU(HSI)(2) HSI oscillator startup time - - 3.7 6 µs IDD(HSI)(2) HSI oscillator power consumption - - 100 140 µA 1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0). 2. Guaranteed by characterization results. 3. Guaranteed by test in production. Low-speed internal (LSI) RC oscillator Table 31. LSI oscillator characteristics Symbol fLSI(1) DLSI(2) tsu(LSI)(3) IDD(LSI) (3) Parameter Min Typ Max Unit LSI frequency 26 38 56 kHz LSI oscillator frequency drift 0°C ≤ TA ≤ 105°C -10 - 4 % LSI oscillator startup time - - 200 µs LSI oscillator power consumption - 400 510 nA 1. Guaranteed by test in production. 2. This is a deviation for an individual part, once the initial frequency has been measured. 3. Guaranteed by design. 82/136 DS10002 Rev 10 STM32L151xE STM32L152xE Electrical characteristics Multi-speed internal (MSI) RC oscillator Table 32. MSI oscillator characteristics Symbol Condition Typ MSI range 0 65.5 - MSI range 1 131 - MSI range 2 262 - MSI range 3 524 - MSI range 4 1.05 - MSI range 5 2.1 - MSI range 6 4.2 - Frequency error after factory calibration - ±0.5 - % DTEMP(MSI)(1) MSI oscillator frequency drift 0 °C ≤ TA ≤ 105 °C - ±3 - % DVOLT(MSI)(1) MSI oscillator frequency drift 1.65 V ≤ VDD ≤ 3.6 V, TA = 25 °C - - 2.5 %/V MSI range 0 0.75 - MSI range 1 1 - MSI range 2 1.5 - MSI range 3 2.5 - MSI range 4 4.5 - MSI range 5 8 - MSI range 6 15 - MSI range 0 30 - MSI range 1 20 - MSI range 2 15 - MSI range 3 10 - MSI range 4 6 - MSI range 5 5 - MSI range 6, Voltage range 1 and 2 3.5 - MSI range 6, Voltage range 3 5 - fMSI ACCMSI IDD(MSI)(2) tSU(MSI) Parameter Frequency after factory calibration, done at VDD= 3.3 V and TA = 25 °C MSI oscillator power consumption MSI oscillator startup time DS10002 Rev 10 Max Unit kHz MHz µA µs 83/136 114 Electrical characteristics STM32L151xE STM32L152xE Table 32. MSI oscillator characteristics (continued) Symbol tSTAB(MSI)(2) fOVER(MSI) Parameter MSI oscillator stabilization time MSI oscillator frequency overshoot Condition 84/136 DS10002 Rev 10 Max Unit MSI range 0 - 40 MSI range 1 - 20 MSI range 2 - 10 MSI range 3 - 4 MSI range 4 - 2.5 MSI range 5 - 2 MSI range 6, Voltage range 1 and 2 - 2 MSI range 3, Voltage range 3 - 3 Any range to range 5 - 4 Any range to range 6 - 1. This is a deviation for an individual part, once the initial frequency has been measured. 2. Guaranteed by characterization results. Typ µs MHz 6 STM32L151xE STM32L152xE 6.3.8 Electrical characteristics PLL characteristics The parameters given in Table 33 are derived from tests performed under the conditions summarized in Table 13. Table 33. PLL characteristics Value Symbol Parameter Unit Min Typ Max(1) PLL input clock(2) 2 - 24 MHz PLL input clock duty cycle 45 - 55 % fPLL_OUT PLL output clock 2 - 32 MHz tLOCK PLL lock time PLL input = 16 MHz PLL VCO = 96 MHz - 115 160 µs Jitter Cycle-to-cycle jitter - - ± 600 ps IDDA(PLL) Current consumption on VDDA - 220 450 IDD(PLL) Current consumption on VDD - 120 150 fPLL_IN µA 1. Guaranteed by characterization results. 2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT. 6.3.9 Memory characteristics The characteristics are given at TA = -40 to 105 °C unless otherwise specified. RAM memory Table 34. RAM and hardware registers Symbol VRM Parameter Data retention mode(1) Conditions STOP mode (or RESET) Min Typ Max Unit 1.65 - - V 1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode). DS10002 Rev 10 85/136 114 Electrical characteristics STM32L151xE STM32L152xE Flash memory and data EEPROM Table 35. Flash memory and data EEPROM characteristics Symbol Conditions Min Typ Max(1) Unit - 1.65 - 3.6 V Erasing - 3.28 3.94 Programming - 3.28 3.94 Average current during the whole programming / erase operation - 600 - µA Maximum current (peak) TA = 25 °C, VDD = 3.6 V during the whole programming / erase operation - 1.5 2.5 mA Parameter VDD Operating voltage Read / Write / Erase tprog Programming/ erasing time for byte / word / double word / half-page IDD ms 1. Guaranteed by design. Table 36. Flash memory and data EEPROM endurance and retention Value Symbol NCYC(2) Parameter Cycling (erase / write) Program memory TA = -40°C to 105 °C Cycling (erase / write) EEPROM data memory Data retention (program memory) after 10 kcycles at TA = 85 °C tRET(2) Conditions Data retention (EEPROM data memory) after 300 kcycles at TA = 85 °C Data retention (program memory) after 10 kcycles at TA = 105 °C Data retention (EEPROM data memory) after 300 kcycles at TA = 105 °C - - 300 - - 30 - - 30 - - 10 - - 10 - - kcycles years TRET = +105 °C 2. Characterization is done according to JEDEC JESD22-A117. DS10002 Rev 10 10 Unit TRET = +85 °C 1. Guaranteed by characterization results. 86/136 Min(1) Typ Max STM32L151xE STM32L152xE 6.3.10 Electrical characteristics EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 37. They are based on the EMS levels and classes defined in application note AN1709. Table 37. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD VDD = 3.3 V, LQFP144, TA = +25 °C, Voltage limits to be applied on any I/O pin to fHCLK = 32 MHz induce a functional disturbance conforms to IEC 61000-4-2 4B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, LQFP144, TA = +25 °C, fHCLK = 32 MHz conforms to IEC 61000-4-4 4A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It must be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second. DS10002 Rev 10 87/136 114 Electrical characteristics STM32L151xE STM32L152xE To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 38. EMI characteristics Max vs. frequency range Symbol Parameter SEMI 6.3.11 Conditions VDD = 3.6 V, TA = 25 °C, Peak level LQFP144 package compliant with IEC 61967-2 Monitored frequency band 4 MHz 16 MHz 32 MHz voltage voltage voltage range 3 range 2 range 1 0.1 to 30 MHz -14 -6 -4 30 to 130 MHz -11 0 9 130 MHz to 1GHz -7 -1 9 SAE EMI Level 1 2 2.5 Unit dBµV - Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114, ANSI/ESD STM5.3.1. standard. Table 39. ESD absolute maximum ratings Symbol Ratings Electrostatic VESD(HBM) discharge voltage (human body model) Conditions TA = +25 °C, conforming to JESD22-A114 Electrostatic TA = +25 °C, conforming VESD(CDM) discharge voltage to ANSI/ESD STM5.3.1. (charge device model) 1. Guaranteed by characterization results. 88/136 Class DS10002 Rev 10 LQFP144 and WLCSP104 packages packages except LQFP144 and WLCSP104 Maximum Unit value(1) 2 2000 C3 250 V V C4 500 STM32L151xE STM32L152xE Electrical characteristics Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin • A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 40. Electrical sensitivities Symbol LU 6.3.12 Parameter Static latch-up class Conditions Class TA = +105 °C conforming to JESD78A II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard pins) must be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –5 µA/+0 µA range), or other functional failure (for example reset occurrence oscillator frequency deviation, LCD levels). The test results are given in the Table 41. Table 41. I/O current injection susceptibility Functional susceptibility Symbol Description Injected current on all 5 V tolerant (FT) pins IINJ Injected current on BOOT0 Injected current on any other pin Negative injection Positive injection -5 (1) NA(2) -0 NA(2) -5 (1) Unit mA +5 1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. 2. Injection is not possible. DS10002 Rev 10 89/136 114 Electrical characteristics 6.3.13 STM32L151xE STM32L152xE I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 48 are derived from tests performed under the conditions summarized in Table 13. All I/Os are CMOS and TTL compliant. Table 42. I/O static characteristics Symbol VIL VIH Parameter Conditions Input low level voltage Input high level voltage Ilkg I/O Schmitt trigger voltage hysteresis(2) Input leakage current (4) Typ Max Unit VDD(1)(2) TC and FT I/O - - 0.3 BOOT0 - - 0.14 VDD(2) TC I/O 0.45 VDD+0.38(2) - - FT I/O 0.39 VDD+0.59(2) - - 0.15 VDD+0.56(2) - - BOOT0 Vhys Min V TC and FT I/O - 10% VDD(3) - BOOT0 - 0.01 - VSS ≤ VIN ≤ VDD I/Os with LCD - - ±50 VSS ≤ VIN ≤ VDD I/Os with analog switches - - ±50 VSS ≤ VIN ≤ VDD I/Os with analog switches and LCD - - ±50 VSS ≤ VIN ≤ VDD I/Os with USB - - ±250 VSS ≤ VIN ≤ VDD TC and FT I/Os - - ±50 FT I/O VDD ≤ VIN ≤ 5V - - ±10 µA nA RPU Weak pull-up equivalent resistor(5)(1) VIN = VSS 25 45 65 kΩ RPD Weak pull-down equivalent resistor(5) VIN = VDD 25 45 65 kΩ CIO I/O pin capacitance - - 5 - pF 1. Guaranteed by test in production. 2. Guaranteed by design. 3. With a minimum of 200 mV. 4. The max. value may be exceeded if negative current is injected on adjacent pins. 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order). 90/136 DS10002 Rev 10 STM32L151xE STM32L152xE Electrical characteristics Output driving current The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ±20 mA with the non-standard VOL/VOH specifications given in Table 43. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2: • The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD(Σ) (see Table 11). • The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS(Σ) (see Table 11). Output voltage levels Unless otherwise specified, the parameters given in Table 43 are derived from tests performed under the conditions summarized in Table 13. All I/Os are CMOS and TTL compliant. Table 43. Output voltage characteristics Symbol VOL(1)(2) Parameter Output low level voltage for an I/O pin VOH (2)(3) Output high level voltage for an I/O pin VOL (3)(4) Output low level voltage for an I/O pin VOH (3)(4) Output high level voltage for an I/O pin VOL(1)(4) VOH (3)(4) Output low level voltage for an I/O pin Output high level voltage for an I/O pin Conditions Min Max IIO = 8 mA 2.7 V < VDD < 3.6 V - 0.4 VDD-0.4 - IIO = 4 mA 1.65 V < VDD < 3.6 V V -0.45 DD IIO = 20 mA 2.7 V < VDD < 3.6 V Unit 0.45 V - - 1.3 VDD-1.3 - 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 11 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. Guaranteed by test in production. 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 11 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. 4. Guaranteed by characterization results. DS10002 Rev 10 91/136 114 Electrical characteristics STM32L151xE STM32L152xE Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 18 and Table 44, respectively. Unless otherwise specified, the parameters given in Table 44 are derived from tests performed under the conditions summarized in Table 13. Table 44. I/O AC characteristics(1) OSPEEDRx [1:0] bit value(1) Symbol Maximum frequency(3) tf(IO)out tr(IO)out Output rise and fall time fmax(IO)out Maximum frequency(3) tf(IO)out tr(IO)out Output rise and fall time 00 01 Fmax(IO)out Maximum frequency(3) 10 Output rise and fall time Fmax(IO)out Maximum frequency(3) 11 - Max(2) CL = 50 pF, VDD = 2.7 V to 3.6 V - 400 CL = 50 pF, VDD = 1.65 V to 2.7 V - 400 CL = 50 pF, VDD = 2.7 V to 3.6 V - 625 CL = 50 pF, VDD = 1.65 V to 2.7 V - 625 CL = 50 pF, VDD = 2.7 V to 3.6 V - 2 CL = 50 pF, VDD = 1.65 V to 2.7 V - 1 CL = 50 pF, VDD = 2.7 V to 3.6 V - 125 CL = 50 pF, VDD = 1.65 V to 2.7 V - 250 CL = 50 pF, VDD = 2.7 V to 3.6 V - 10 CL = 50 pF, VDD = 1.65 V to 2.7 V - 2 CL = 50 pF, VDD = 2.7 V to 3.6 V - 25 CL = 50 pF, VDD = 1.65 V to 2.7 V - 125 CL = 30 pF, VDD = 2.7 V to 3.6 V - 50 CL = 50 pF, VDD = 1.65 V to 2.7 V - 8 CL = 30 pF, VDD = 2.7 V to 3.6 V - 5 CL = 50 pF, VDD = 1.65 V to 2.7 V - 30 Conditions fmax(IO)out tf(IO)out tr(IO)out Min Parameter tf(IO)out tr(IO)out Output rise and fall time tEXTIpw Pulse width of external signals detected by the EXTI controller - Unit kHz ns MHz ns MHz ns MHz ns 8 - 1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32L151xx, STM32L152xx and STM32L162xx reference manual for a description of GPIO Port configuration register. 2. Guaranteed by design. 3. The maximum frequency is defined in Figure 18. 92/136 DS10002 Rev 10 STM32L151xE STM32L152xE Electrical characteristics Figure 18. I/O AC characteristics definition 90% 10% 50% 50% 90% 10% EXTERNAL OUTPUT ON 50pF tr(IO)out tf(IO)out T Maximum frequency is achieved if (tr + tf) ≤ 2/3)T and if the duty cycle is (45-55%) when loaded by 50pF ai14131c 6.3.14 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 45) Unless otherwise specified, the parameters given in Table 45 are derived from tests performed under the conditions summarized in Table 13. Table 45. NRST pin characteristics Symbol Parameter Conditions Min Typ Max VIL(NRST)(1) NRST input low level voltage - - - 0.3 VDD VIH(NRST)(1) NRST input high level voltage - 0.39VDD+0.59 - - VOL(NRST)(1) NRST output low level voltage Unit V IOL = 2 mA 2.7 V < VDD < 3.6 V - IOL = 1.5 mA 1.65 V < VDD < 2.7 V - - 0.4 Vhys(NRST)(1) NRST Schmitt trigger voltage hysteresis - - 10%VDD(2) - mV RPU Weak pull-up equivalent resistor(3) VIN = VSS 25 45 65 kΩ VF(NRST)(1) NRST input filtered pulse - - - 50 ns VNF(NRST)(3) NRST input not filtered pulse - 350 - - ns 1. Guaranteed by design. 2. With a minimum of 200 mV. 3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%. DS10002 Rev 10 93/136 114 Electrical characteristics STM32L151xE STM32L152xE Figure 19. Recommended NRST pin protection External reset circuit(1) NRST(2) VDD RPU Internal reset Filter 0.1 μF STM32L1xx ai17854b 1. The reset network protects the device against parasitic resets. 0.1 uF capacitor must be placed as close as possible to the chip. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 45. Otherwise the reset is not taken into account by the device. 6.3.15 TIM timer characteristics The parameters given in the Table 46 are guaranteed by design. Refer to Section 6.3.13: I/O port characteristics for details on the input/output ction characteristics (output compare, input capture, external clock, PWM output). Table 46. TIMx(1) characteristics Symbol tres(TIM) fEXT ResTIM tCOUNTER Parameter Conditions Min Max Unit - 1 - tTIMxCLK fTIMxCLK = 32 MHz 31.25 - ns Timer external clock frequency on CH1 to CH4 f TIMxCLK = 32 MHz 0 fTIMxCLK/2 MHz 0 16 MHz Timer resolution - - 16 bit 16-bit counter clock period when internal clock is selected (timer’s prescaler disabled) - 1 65536 tTIMxCLK 2048 µs Timer resolution time tMAX_COUNT Maximum possible count fTIMxCLK = 32 MHz 0.0312 - - 65536 × 65536 tTIMxCLK fTIMxCLK = 32 MHz - 134.2 s 1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers. 94/136 DS10002 Rev 10 STM32L151xE STM32L152xE 6.3.16 Electrical characteristics Communications interfaces I2C interface characteristics The device I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: SDA and SCL are not “true” open-drain I/O pins. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 47. Refer also to Section 6.3.13: I/O port characteristics for more details on the input/output ction characteristics (SDA and SCL). Table 47. I2C characteristics Symbol Standard mode I2C(1)(2) Parameter Fast mode I2C(1)(2) Unit Min Max Min Max tw(SCLL) SCL clock low time 4.7 - 1.3 - tw(SCLH) SCL clock high time 4.0 - 0.6 - tsu(SDA) SDA setup time 250 - 100 - th(SDA) SDA data hold time - 3450(3) - 900(3) tr(SDA) tr(SCL) SDA and SCL rise time - 1000 - 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 th(STA) Start condition hold time 4.0 - 0.6 - tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - tsu(STO) Stop condition setup time 4.0 - 0.6 - μs tw(STO:STA) Stop to Start condition time (bus free) 4.7 - 1.3 - μs Cb Capacitive load for each bus line - 400 - 400 pF tSP Pulse width of spikes that are suppressed by the analog filter 0 50(4) 0 50(4) ns µs ns µs 1. Guaranteed by design. 2. fPCLK1 must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I²C fast mode clock. 3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal. 4. The minimum width of the spikes filtered by the analog filter is above tSP(max). DS10002 Rev 10 95/136 114 Electrical characteristics STM32L151xE STM32L152xE Figure 20. I2C bus AC waveforms and measurement circuit VDD_I2C VDD_I2C RP RP STM32L1xx RS SDA I2C bus RS SCL S TART REPEATED S TART S TART tsu(STA) SDA tf(SDA) tr(SDA) tsu(SDA) th(STA) tw(SCKL) th(SDA) tsu(STA:STO) S TOP SCL tr(SCK) tw(SCKH) tf(SCK) tsu(STO) ai17855c 1. RS = series protection resistor. 2. RP = external pull-up resistor. 3. VDD_I2C is the I2C bus power supply. 4. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. Table 48. SCL frequency (fPCLK1= 32 MHz, VDD = VDD_I2C = 3.3 V)(1)(2) I2C_CCR value fSCL (kHz) RP = 4.7 kΩ 400 0x801B 300 0x8024 200 0x8035 100 0x00A0 50 0x0140 20 0x0320 1. RP = External pull-up resistance, fSCL = I2C speed. 2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external components used to design the application. 96/136 DS10002 Rev 10 STM32L151xE STM32L152xE Electrical characteristics SPI characteristics Unless otherwise specified, the parameters given in the following table are derived from tests performed under the conditions summarized in Table 13. Refer to Section 6.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 49. SPI characteristics(1) Symbol fSCK 1/tc(SCK) SPI clock frequency tr(SCK)(2) tf(SCK)(2) SPI clock rise and fall time DuCy(SCK) Min Max(2) Master mode - 16 Slave mode - 16 Slave transmitter - 12(3) Capacitive load: C = 30 pF - 6 ns 30 70 % Parameter Conditions SPI slave input clock duty cycle Slave mode tsu(NSS) NSS setup time Slave mode 4tHCLK - th(NSS) NSS hold time Slave mode 2tHCLK - SCK high and low time Master mode tw(SCKH)(2) tw(SCKL)(2) tsu(MI)(2) tsu(SI)(2) th(MI) th(SI) Data input setup time (2) (2) Data input hold time Master mode 5 - Slave mode 6 - Master mode 5 - Slave mode 5 - Data output access time Slave mode 0 3tHCLK tv(SO) (2) Data output valid time Slave mode - 33 (2) Data output valid time Master mode - 6.5 Slave mode 17 - Master mode 0.5 - th(SO) (2) th(MO)(2) Data output hold time MHz tSCK/2 − 5 tSCK/2 +3 ta(SO)(4) tv(MO) Unit ns 1. The characteristics above are given for voltage range 1. 2. Guaranteed by characterization results. 3. The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty cycle (DuCy(SCK)) ranging between 40 to 60%. 4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data. DS10002 Rev 10 97/136 114 Electrical characteristics STM32L151xE STM32L152xE Figure 21. SPI timing diagram - slave mode and CPHA = 0 SCK input NSS input MISO OUTPUT MSB OUT BIT6 OUT MSB IN BIT1 IN LSB OUT (SI) MOSI INPUT LSB IN (SI) Figure 22. SPI timing diagram - slave mode and CPHA = 1(1) NSS input SCK input tSU(NSS) CPHA=1 CPOL=0 CPHA=1 CPOL=1 tw(SCKH) tw(SCKL) th(SO) tv(SO) ta(SO) MISO OUTPUT MSB OUT BIT6 OUT tr(SCK) tf(SCK) tdis(SO) LSB OUT th(SI) tsu(SI) MOSI INPUT th(NSS) tc(SCK) MSB IN BIT 1 IN LSB IN ai14135b 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. 98/136 DS10002 Rev 10 STM32L151xE STM32L152xE Electrical characteristics Figure 23. SPI timing diagram - master mode(1) High NSS input SCK Output CPHA= 0 CPOL=0 SCK Output tc(SCK) CPHA=1 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=1 tsu(MI) MISO INP UT tw(SCKH) tw(SCKL) MSB IN tr(SCK) tf(SCK) BIT6 IN LSB IN th(MI) MOSI OUTPUT MSB OUT B I T1 OUT tv(MO) LSB OUT th(MO) ai14136c 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. DS10002 Rev 10 99/136 114 Electrical characteristics STM32L151xE STM32L152xE USB characteristics The USB interface is USB-IF certified (full speed). Table 50. USB startup time Symbol Parameter tSTARTUP(1) USB transceiver startup time Max Unit 1 µs 1. Guaranteed by design. Table 51. USB DC electrical characteristics Symbol Parameter Conditions Min.(1) Max.(1) Unit - 3.0 3.6 V 0.2 - Input levels VDD USB operating voltage VDI(2) Differential input sensitivity VCM(2) Differential common mode range Includes VDI range 0.8 2.5 VSE(2) Single ended receiver threshold 1.3 2.0 - 0.3 2.8 3.6 I(USB_DP, USB_DM) - V Output levels VOL(3) VOH (3) RL of 1.5 kΩ to 3.6 V(4) Static output level low Static output level high RL of 15 kΩ to VSS(4) V 1. All the voltages are measured from the local ground potential. 2. Guaranteed by characterization results. 3. Guaranteed by test in production. 4. RL is the load connected on the USB drivers. Figure 24. USB timings: definition of data signal rise and fall time Cross over points Differential data lines VCRS VSS tf tr ai14137b Table 52. USB: full speed electrical characteristics Driver characteristics(1) Symbol Conditions Min Max Unit tr Rise time(2) CL = 50 pF 4 20 ns tf Time(2) CL = 50 pF 4 20 ns tr/tf 90 110 % - 1.3 2.0 V trfm VCRS 100/136 Parameter Fall Rise/ fall time matching Output signal crossover voltage DS10002 Rev 10 STM32L151xE STM32L152xE Electrical characteristics 1. Guaranteed by design. 2. Measured from 10% to 90% of the data signal. For more detailed informations, refer to USB Specification Chapter 7 (version 2.0). I2S characteristics Table 53. I2S characteristics Symbol fMCK Parameter Conditions Min Max 256 x 8K 256xFs (1) I2S Main Clock Output Master data: 32 bits - 64xFs Slave data: 32 bits - 64xFs 30 70 fCK I2S clock frequency DCK I2S clock frequency duty cycle Slave receiver, 48KHz tr(CK) I2S clock rise time tf(CK) I2S clock fall time tv(WS) - WS valid time Master mode 4 24 th(WS) WS hold time Master mode 0 - tsu(WS) WS setup time Slave mode 15 - th(WS) WS hold time Slave mode 0 - tsu(SD_MR) Data input setup time Master receiver 8 - tsu(SD_SR) Data input setup time Slave receiver 9 - th(SD_MR) Master receiver 5 - Slave receiver 4 - th(SD_SR) MHz MHz % 8 Capacitive load CL=30pF Data input hold time Unit 8 tv(SD_ST) Data output valid time Slave transmitter (after enable edge) - 64 th(SD_ST) Data output hold time Slave transmitter (after enable edge) 22 - tv(SD_MT) Data output valid time Master transmitter (after enable edge) - 12 th(SD_MT) Data output hold time Master transmitter (after enable edge) 8 - ns 1. The maximum for 256xFs is 8 MHz Note: Refer to the I2S section of the product reference manual for more details about the sampling frequency (Fs), fMCK, fCK and DCK values. These values reflect only the digital peripheral behavior, source clock precision might slightly change them. DCK depends mainly on the ODD bit value, digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max of (I2SDIV+ODD)/(2*I2SDIV+ODD). Fs max is supported for each mode/condition. DS10002 Rev 10 101/136 114 Electrical characteristics STM32L151xE STM32L152xE Figure 25. I2S slave timing diagram (Philips protocol)(1) 1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Figure 26. I2S master timing diagram (Philips protocol)(1) 1. Guaranteed by characterization results. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. 102/136 DS10002 Rev 10 STM32L151xE STM32L152xE 6.3.17 Electrical characteristics 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 55 are guaranteed by design. Table 54. ADC clock frequency Symbol fADC Parameter ADC clock frequency Conditions 2.4 V ≤ VDDA ≤ 3.6 V Voltage range 1 & 2 Min VREF+ = VDDA 16 VREF+ < VDDA VREF+ > 2.4 V 8 VREF+ < VDDA VREF+ ≤ 2.4 V 1.8 V ≤ VDDA ≤ 2.4 V Max 0.480 4 VREF+ = VDDA 8 VREF+ < VDDA 4 Voltage range 3 Unit MHz 4 Table 55. ADC characteristics Symbol VDDA Parameter Power supply Conditions Min Typ Max - 1.8 - 3.6 - VDDA VREF+ Positive reference voltage - 1.8(1) VREF- Negative reference voltage - - VSSA - IVDDA Current on the VDDA input pin - - 1000 1450 IVREF(2) Current on the VREF input pin Peak - Average -- - 0(4) - VREF+ Direct channels - - 1 Multiplexed channels - - 0.76 Direct channels - - 1.07 Multiplexed channels - - 0.8 Direct channels - - 1.23 Multiplexed channels - - 0.89 Direct channels - - 1.45 Multiplexed channels - - 1 VAIN Conversion voltage range(3) 12-bit sampling rate 10-bit sampling rate fS 8-bit sampling rate 6-bit sampling rate DS10002 Rev 10 400 700 Unit V µA 450 V Msps Msps Msps Msps 103/136 114 Electrical characteristics STM32L151xE STM32L152xE Table 55. ADC characteristics (continued) Symbol tS(5) Parameter Sampling time tCONV Total conversion time (including sampling time) CADC Internal sample and hold capacitor fTRIG External trigger frequency Regular sequencer fTRIG External trigger frequency Injected sequencer RAIN(6) Signal source impedance Conditions Min Typ Max Direct channels 2.4 V ≤ VDDA ≤ 3.6 V 0.25 - - Multiplexed channels 2.4 V ≤ VDDA ≤ 3.6 V 0.56 - - Direct channels 1.8 V ≤ VDDA ≤ 2.4 V 0.56 - - Multiplexed channels 1.8 V ≤ VDDA ≤ 2.4 V 1 - - - 4 - 384 1/fADC fADC = 16 MHz 1 - 24.75 µs - Unit µs 4 to 384 (sampling phase) +12 (successive approximation) 1/fADC Direct channels - Multiplexed channels - 12-bit conversions - - 6/8/10-bit conversions - - 12-bit conversions - - Tconv+2 1/fADC 6/8/10-bit conversions - - Tconv+1 1/fADC - - - 50 kΩ 16 - pF - Tconv+1 1/fADC Tconv 1/fADC tlat Injection trigger conversion latency fADC = 16 MHz 219 - 281 ns - 3.5 - 4.5 1/fADC tlatr Regular trigger conversion latency fADC = 16 MHz 156 - 219 ns - 2.5 - 3.5 1/fADC - - - 3.5 µs tSTAB Power-up time 1. The Vref+ input can be grounded if neither the ADC nor the DAC are used (this allows to shut down an external voltage reference). 2. The current consumption through VREF is composed of two parameters: - one constant (max 300 µA) - one variable (max 400 µA), only during sampling time + 2 first conversion pulses So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 µA at 1Msps 3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package. Refer to Section 4: Pin descriptions for further details. 4. VSSA or VREF- must be tied to ground. 5. Minimum sampling time is reached for an external input impedance limited to a value as defined in Table 57: Maximum source impedance RAIN max. 6. External impedance has another high value limitation when using short sampling time as defined in Table 57: Maximum source impedance RAIN max. 104/136 DS10002 Rev 10 STM32L151xE STM32L152xE Electrical characteristics Table 56. ADC accuracy(1)(2) Symbol Parameter ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error ENOB Effective number of bits SINAD Signal-to-noise and distortion ratio SNR Signal-to-noise ratio THD Total harmonic distortion ENOB Effective number of bits SINAD Signal-to-noise and distortion ratio SNR Signal-to-noise ratio THD Total harmonic distortion Test conditions 2.4 V ≤ VDDA ≤ 3.6 V 2.4 V ≤ VREF+ ≤ 3.6 V fADC = 8 MHz, RAIN = 50 Ω TA = -40 to 105 °C 2.4 V ≤ VDDA ≤ 3.6 V VDDA = VREF+ fADC = 16 MHz, RAIN = 50 Ω TA = -40 to 105 °C Finput=10kHz 1.8 V ≤ VDDA ≤ 2.4 V VDDA = VREF+ fADC = 8 MHz or 4 MHz, RAIN = 50 Ω TA = -40 to 105 °C Finput=10kHz Min(3) Typ Max(3) - 2.5 4 - 1 2 - 1.5 3.5 - 1 2 - 2.2 3 9.2 10 - 57.5 62 - 57.5 62 - - -70 -65 9.2 10 - 57.5 62 - 57.5 62 - - -70 -65 - 4 6.5 - 1.5 4 - 3.5 6 - 1 2 ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error - 2.5 3 ET Total unadjusted error - 2 3 EO Offset error - 1 1.5 EG Gain error - 1.5 2 ED Differential linearity error - 1 2 EL Integral linearity error - 2.2 3 2.4 V ≤ VDDA ≤ 3.6 V 1.8 V ≤ VREF+ ≤ 2.4 V fADC = 4 MHz, RAIN = 50 Ω TA = -40 to 105 °C 1.8 V ≤ VDDA ≤ 2.4 V 1.8 V ≤ VREF+ ≤ 2.4 V fADC = 4 MHz, RAIN = 50 Ω TA = -40 to 105 °C Unit LSB bits dB bits dB LSB LSB 1. ADC DC accuracy values are measured after internal calibration. 2. ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins must be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.12 does not affect the ADC accuracy. 3. Guaranteed by characterization results. DS10002 Rev 10 105/136 114 Electrical characteristics STM32L151xE STM32L152xE Figure 27. ADC accuracy characteristics Output code EG (1) Example of an actual transfer curve (2) Ideal transfer curve (3) End-point correlation line 2n-1 2n-2 2n-3 n = ADC resolution ET = total unajusted error: maximum deviation between the actual and ideal transfer curves EO = offset error: maximum deviation between the first actual transition and the first ideal one EG = gain error: deviation between the last ideal transition and the last actual one ED = differential linearity error: maximum deviation between actual steps and the ideal one EL = integral linearity error: maximum deviation between any actual transition and the end point correlation line (2) ET (3) 7 (1) 6 5 EO EL 4 3 ED 2 1 LSB IDEAL 1 0 1 2 3 4 5 6 7 2n-3 2n-2 2n-1 2n VREF+ (or VDDA) MS19880V4 Figure 28. Typical connection diagram using the ADC VDDA STM32Lxx Sample and hold ADC converter RAIN(1) VAIN AINx Cparasitic IL± 50 nA 12-bit converter CADC(1) ai17856e 1. Refer to Table 57: Maximum source impedance RAIN max for the value of RAIN and Table 55: ADC characteristics for the value of CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this, fADC must be reduced. 106/136 DS10002 Rev 10 STM32L151xE STM32L152xE Electrical characteristics Figure 29. Maximum dynamic current consumption on VREF+ supply pin during ADC conversion Sampling (n cycles) Conversion (12 cycles) ADC clock Iref+ 700µA 300µA MS36686V1 Table 57. Maximum source impedance RAIN max(1) RAIN max (kΩ) Ts (µs) Multiplexed channels Ts (cycles) Direct channels fADC=16 MHz(2) 2.4 V < VDDA < 3.6 V 1.8 V < VDDA < 2.4 V 2.4 V < VDDA < 3.6 V 1.8 V < VDDA < 2.4 V 0.25 Not allowed Not allowed 0.7 Not allowed 4 0.5625 0.8 Not allowed 2.0 1.0 9 1 2.0 0.8 4.0 3.0 16 1.5 3.0 1.8 6.0 4.5 24 3 6.8 4.0 15.0 10.0 48 6 15.0 10.0 30.0 20.0 96 12 32.0 25.0 50.0 40.0 192 24 50.0 50.0 50.0 50.0 384 1. Guaranteed by design. 2. Number of samples calculated for fADC = 16 MHz. For fADC = 8 and 4 MHz the number of sampling cycles can be reduced with respect to the minimum sampling time Ts (µs), General PCB design guidelines Power supply decoupling must be performed as shown in Figure 11. The applicable procedure depends on whether VREF+ is connected to VDDA or not. The 100 nF capacitors must be ceramic (good quality). They must be placed as close as possible to the chip. DS10002 Rev 10 107/136 114 Electrical characteristics 6.3.18 STM32L151xE STM32L152xE DAC electrical specifications Data guaranteed by design, unless otherwise specified. Table 58. DAC characteristics Symbol Parameter Conditions Min Typ Max - 1.8 - 3.6 1.8 - 3.6 VDDA Analog supply voltage VREF+ Reference supply voltage VREF- Lower reference voltage IDDVREF+(1) Current consumption on No load, middle code (0x800) VREF+ supply No load, worst code (0x000) VREF+ = 3.3 V - 130 220 - 220 350 IDDA(1) Current consumption on No load, middle code (0x800) VDDA supply No load, worst code (0xF1C) VDDA = 3.3 V - 210 320 - 320 520 5 - - 25 - - RL Resistive load VREF+ must always be below VDDA - Connected to DAC output VSSA buffer ON Conected to VDDA Unit V VSSA µA kΩ CL(2) Capacitive load DAC output buffer ON - - 50 pF RO Output impedance DAC output buffer OFF 12 16 20 kΩ DAC output buffer ON 0.2 - VDDA – 0.2 V DAC output buffer OFF 0.5 - VREF+ – 1LSB mV CL ≤ 50 pF, RL ≥ 5 kΩ DAC output buffer ON - 1.5 3 No RL, CL ≤ 50 pF DAC output buffer OFF - 1.5 3 CL ≤ 50 pF, RL ≥ 5 kΩ DAC output buffer ON - 2 4 No RL, CL ≤ 50 pF DAC output buffer OFF - 2 4 CL ≤ 50 pF, RL ≥ 5 kΩ DAC output buffer ON - ±10 ±25 No RL, CL ≤ 50 pF DAC output buffer OFF - ±5 ±8 No RL, CL ≤ 50 pF DAC output buffer OFF - ±1.5 ±5 VDAC_OUT DNL(1) INL(1) Offset(1) Offset1(1) 108/136 Voltage on DAC_OUT output Differential non linearity(3) Integral non linearity(4) Offset error at code 0x800 (5) Offset error at code 0x001(6) DS10002 Rev 10 LSB STM32L151xE STM32L152xE Electrical characteristics Table 58. DAC characteristics (continued) Symbol Parameter Conditions VDDA = 3.3V VREF+ = 3.0V TA = 0 to 50 °C DAC output buffer OFF Offset error temperature dOffset/dT(1) coefficient (code 0x800) V = 3.3V Min Typ Max -20 -10 0 Unit µV/°C DDA VREF+ = 3.0V TA = 0 to 50 °C DAC output buffer ON 0 20 50 CL ≤ 50 pF, RL ≥ 5 kΩ DAC output buffer ON - No RL, CL ≤ 50 pF DAC output buffer OFF - +0 / -0.2% +0 / -0.4% VDDA = 3.3V VREF+ = 3.0V TA = 0 to 50 °C DAC output buffer OFF -10 -2 0 VDDA = 3.3V VREF+ = 3.0V TA = 0 to 50 °C DAC output buffer ON -40 -8 0 CL ≤ 50 pF, RL ≥ 5 kΩ DAC output buffer ON - 12 30 No RL, CL ≤ 50 pF DAC output buffer OFF - 8 12 tSETTLING Settling time (full scale: for a 12-bit code transition between the lowest and the highest CL ≤ 50 pF, RL ≥ 5 kΩ input codes till DAC_OUT reaches final value ±1LSB - 7 12 µs Update rate Max frequency for a correct DAC_OUT change (95% of final value) with 1 LSB variation in the input code CL ≤ 50 pF, RL ≥ 5 kΩ - - 1 Msps tWAKEUP Wakeup time from off state (setting the ENx bit CL ≤ 50 pF, RL ≥ 5 kΩ in the DAC Control (8) register) - 9 15 µs PSRR+ VDDA supply rejection ratio (static DC measurement) - -60 -35 dB Gain(1) dGain/dT(1) TUE(1) Gain error(7) Gain error temperature coefficient Total unadjusted error CL ≤ 50 pF, RL ≥ 5 kΩ +0.1 / -0.2% +0.2 / -0.5% % µV/°C LSB 1. Data based on characterization results. 2. Connected between DAC_OUT and VSSA. 3. Difference between two consecutive codes - 1 LSB. DS10002 Rev 10 109/136 114 Electrical characteristics STM32L151xE STM32L152xE 4. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095. 5. Difference between the value measured at Code (0x800) and the ideal value = VREF+/2. 6. Difference between the value measured at Code (0x001) and the ideal value. 7. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is OFF, and from code giving 0.2 V and (VDDA – 0.2) V when buffer is ON. 8. In buffered mode, the output can overshoot above the final value for low input code (starting from min value). Figure 30. 12-bit buffered /non-buffered DAC Buffered/Non-buffered DAC Buffer(1) RL DAC_OUTx 12-bit digital to analog converter CL ai17157V3 1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. 6.3.19 Operational amplifier characteristics Table 59. Operational amplifier characteristics Symbol CMIR VIOFFSET Condition(1) Min(2) Typ Max(2) Unit - 0 - VDD - Maximum calibration range - - - ±15 After offset calibration - - - ±1.5 - - - ±40 µV/°C - - - ±80 - - - 1 - - 10 Parameter Common mode input range Input offset voltage ΔVIOFFSET Input offset voltage Normal mode drift Low-power mode IIB Input current bias ILOAD Drive current IDD Consumption CMRR Common mode rejection ration mV Dedicated input 110/136 General purpose input 75 °C Normal mode - - - 500 Low-power mode - - - 100 - 100 220 - 30 60 Normal mode Low-power mode No load, quiescent mode Normal mode - - -85 - Low-power mode - - -90 - DS10002 Rev 10 nA µA µA dB STM32L151xE STM32L152xE Electrical characteristics Table 59. Operational amplifier characteristics (continued) Symbol PSRR Condition(1) Parameter Power supply rejection ratio Normal mode Low-power mode Normal mode GBW Bandwidth Low-power mode Normal mode Low-power mode SR Slew rate RL Resistive load CL Capacitive load VOHSAT High saturation voltage VDD2.4 V (between 0.1 V and VDD-0.1 V) - 700 - Low-power mode VDD>2.4 V - 100 - - 300 - - 50 - Low-power mode Open loop gain VDD>2.4 V Typ Normal mode Normal mode AO DC Min(2) VDD TJ max 2000.00 PD (mW) LQFP64 10x10 mm / WLCSP104 1500.00 UFBGA132 7x7 mm LQFP144 20x20 mm LQFP 100 14x14 mm 1000.00 500.00 0.00 105 75 50 25 0 Temperature (°C) MSv34185V1 7.6.1 Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. DS10002 Rev 10 131/136 135 Ordering information 8 STM32L151xE STM32L152xE Ordering information Table 72. STM32L151xE and STM32L152xE Ordering information scheme Example: STM32 L 151 R E T 6 D TR Device family STM32 = Arm-based 32-bit microcontroller Product type L = Low-power Device subfamily 151: Devices without LCD 152: Devices with LCD Pin count R = 64 pins V = 100/104 pins Z = 144 pins Q = 132 pins Flash memory size E= 512 Kbytes of Flash memory Package H = BGA T = LQFP Y = WLCSP104 Temperature range 6 = Industrial temperature range, –40 to 85 °C 7 = Industrial temperature range, –40 to 105 °C Options No character = VDD range: 1.8 to 3.6 V and BOR enabled D = VDD range: 1.65 to 3.6 V and BOR disabled Packing TR = tape and reel No character = tray or tube For a list of available options (speed, package, etc.) or for further information on any aspect of this device, contact the nearest ST sales office. 132/136 DS10002 Rev 10 STM32L151xE STM32L152xE 9 Revision History Revision History Table 73. Document revision history Date Revision 31-Oct-2013 1 Initial release. 19-Feb-2014 2 Added Input Voltage in Table 13: General operating conditions. Updated: Section 2.2: Ultra-low-power device continuum, Table 21: Current consumption in Low-power sleep mode, Table 20: Current consumption in Low-power run mode, Table 36: Flash memory and data EEPROM endurance and retention, Updated Ultra-Low-power Feature inside Cover Page Updated Table 56: ADC accuracy, Table 37: EMS characteristics, Table 38: EMI characteristics, Table 39: ESD absolute maximum ratings, Table 42: I/O static characteristics, Table 45: NRST pin characteristics. Added WLCSP104 recommended footprint for package WLCSP104, removed figures “Power supply and reference decoupling (VREF+ not connected to VDDA) and “Power supply and reference decoupling (VREF+ connected to VDDA). Updated current consumption values. 21-Feb-2014 3 Ultra low power features modification inside Cover page. Updated Table 5: Functionalities depending on the working mode (from Run/active down to standby), Table 58: DAC characteristics 4 Updated IIO in Table 11: Current characteristics. Removed note 4 in Table 61: Temperature sensor characteristics. Added Table 41: UFBGA132 recommended footprint.. Modified pins F9 for WLCSP104 package inside Table 8: STM32L151xE and STM32L152xE pin definitions 13-Oct-2014 5 Updated Section 3.17: Communication interfaces putting I2S characteristics inside. Updated DMIPS features in cover page and Section 2: Description. Updated max temperature at 105°C instead of 85°C in the whole datasheet. Updated current consumption in Table 19: Current consumption in Sleep mode. Updated Table 24: Peripheral current consumption with new measured current values. Updated Table 57: Maximum source impedance RAIN max adding note 2. 10-Feb-2015 6 Updated Section 7: Package information with new package device marking. Updated Figure 8: Memory map. 16-May-2014 Changes DS10002 Rev 10 133/136 135 Revision History STM32L151xE STM32L152xE Table 73. Document revision history (continued) Date 27-Apr-2015 09-Feb-2016 134/136 Revision Changes 7 Updated Section 7: Package information structure: Paragraph titles and paragraph heading level. Updated Section : LQFP144 is a 144-pin 20 x 20 mm, low-profile quad flat package. removing gate mark in Figure 45 and adding text for device orientation versus pin1 identifier. Updated Section : LQFP100 is a 100-pin, 14 x 14 mm, low-profile quad flat package. removing gate mark in Figure 36 and adding note for device orientation versus pin 1 identifier. Updated Section 7: Package information for all other package device marking adding text in for device orientation versus pin 1 or ball A1 identifier. Added Figure 38: WLCSP104 recommended footprint and Table 68: WLCSP104 recommended PCB design rules. Updated Table 8: STM32L151xE and STM32L152xE pin definitions ADC inputs. Updated Table 16: Embedded internal reference voltage temperature coefficient at 100ppm/°C. and table footnote 3: “guaranteed by design” changed by “guaranteed by characterization results”. Updated Table 63: Comparator 2 characteristics new maximum threshold voltage temperature coefficient at 100ppm/°C. 8 Updated cover page putting eight SPIs in the peripheral communication interface list. Updated Table 2: Ultra-low-power STM32L151xE and STM32L152xE device features and peripheral counts SPI and I2S lines. Updated Table 39: ESD absolute maximum ratings CDM class II by class C3 and C4 depending of the package. Updated all the notes, removing ‘not tested in production’. Updated Table 10: Voltage characteristics adding note about VREFpin. Updated Table 5: Functionalities depending on the working mode (from Run/active down to standby) LSI and LSE functionalities putting “Y” in Standby mode. DS10002 Rev 10 STM32L151xE STM32L152xE Revision History Table 73. Document revision history (continued) Date 25-Aug-2017 20-Apr-2021 Revision Changes 9 Updated Table 42: I/O static characteristics pull-up and pull-down values. Updated Table 45: NRST pin characteristics pull-up values. Updated Section 7: Package information adding information about other optional marking or inset/upset marks. Updated note 1 below all the package device marking figures. Updated Section 7: Package information replacing “Marking of engineering samples” by “device marking”. Updated Nested vectored interrupt controller (NVIC) in Section 3.2: Arm® Cortex®-M3 core with MPU about process state automatically saved. Updated Table 3: Functionalities depending on the operating power supply range removing I/O operation column and adding note about GPIO speed. Updated Table 41: I/O current injection susceptibility note by ‘injection is not possible’. Updated Figure 19: Recommended NRST pin protection note about the 0.1uF capacitor. Updated Table 58: DAC characteristics resistive load. Updated Section 3.1: Low-power modes Low-power run mode (MSI) RC oscillator clock. Updated Table 5: Functionalities depending on the working mode (from Run/active down to standby) disabling I2C functionality in Lowpower Run and Low-power Sleep modes. 10 Updated: – Cover features. – Section 1: Introduction adding reference to errata sheet. – Section 4: Pin descriptions. – Figure 8: Memory map. – Figure 27: ADC accuracy characteristics. – Section 7: Package information. DS10002 Rev 10 135/136 135 STM32L151xE STM32L152xE IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2021 STMicroelectronics – All rights reserved 136/136 DS10002 Rev 10
STM32L152ZET6D 价格&库存

很抱歉,暂时无法提供与“STM32L152ZET6D”相匹配的价格&库存,您可以联系我们找货

免费人工找货