STM32L412xx
Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100DMIPS,
up to 128KB Flash, 40KB SRAM, analog, ext. SMPS
Datasheet - production data
Features
• Ultra-low-power with FlexPowerControl
– 1.71 V to 3.6 V power supply
– -40 °C to 85/125 °C temperature range
– 300 nA in VBAT mode: supply for RTC and
32x32-bit backup registers
– 16 nA Shutdown mode (4 wakeup pins)
– 32 nA Standby mode (4 wakeup pins)
– 245 nA Standby mode with RTC
– 0.7 µA Stop 2 mode, 0.95 µA with RTC
– 79 µA/MHz run mode (LDO Mode)
– 28 μA/MHz run mode (@3.3 V SMPS
Mode)
– Batch acquisition mode (BAM)
– 4 µs wakeup from Stop mode
– Brown out reset (BOR)
– Interconnect matrix
• Core: Arm® 32-bit Cortex®-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait-state execution
from Flash memory, frequency up to 80 MHz,
MPU, 100DMIPS and DSP instructions
• Performance benchmark
– 1.25 DMIPS/MHz (Drystone 2.1)
– 273.55 CoreMark® (3.42 CoreMark/MHz @
80 MHz)
• Energy benchmark
– 442 ULPMark-CP®
– 165 ULPMark-PP®
• Clock Sources
– 4 to 48 MHz crystal oscillator
– 32 kHz crystal oscillator for RTC (LSE)
– Internal 16 MHz factory-trimmed RC (±1%)
– Internal low-power 32 kHz RC (±5%)
– Internal multispeed 100 kHz to 48 MHz
oscillator, auto-trimmed by LSE (better than
±0.25 % accuracy)
– Internal 48 MHz with clock recovery
November 2020
This is information on a product in full production.
LQFP32 (7x7 mm) UFBGA64 (5x5 mm) UFQFPN32 (5x5 mm)
LQFP48 (7x7 mm)
UFQFPN48 (7x7 mm)
LQFP64 (10x10 mm)
WLCSP36
(2.6x3.1 mm)
– PLL for system clock
• Up to 52 fast I/Os, most 5 V-tolerant
• RTC with HW calendar, alarms and calibration
• Up to 12 capacitive sensing channels: support
touchkey, linear and rotary touch sensors
• 10x timers: 1x 16-bit advanced motor-control,
1x 32-bit and 2x 16-bit general purpose, 1x 16bit basic, 2x low-power 16-bit timers (available
in Stop mode), 2x watchdogs, SysTick timer
• Memories
– 128 KB single bank Flash, proprietary code
readout protection
– 40 KB of SRAM including 8 KB with
hardware parity check
– Quad SPI memory interface with XIP
capability
• Rich analog peripherals (independent supply)
– 2x 12-bit ADC 5 Msps, up to 16-bit with
hardware oversampling, 200 µA/Msps
– 2x operational amplifiers with built-in PGA
– 1x ultra-low-power comparator
– Accurate 2.5 V or 2.048 V reference
voltage buffered output
• 12x communication interfaces
– USB 2.0 full-speed crystal less solution
with LPM and BCD
– 3x I2C FM+(1 Mbit/s), SMBus/PMBus
– 3x USARTs (ISO 7816, LIN, IrDA, modem)
– 1x LPUART (Stop 2 wake-up)
– 2x SPIs (and 1x Quad SPI)
– IRTIM (Infrared interface)
• 14-channel DMA controller
• True random number generator
DS12469 Rev 8
1/192
www.st.com
STM32L412xx
• CRC calculation unit, 96-bit unique ID
• All packages are ECOPACK2 compliant
• Development support: serial wire debug
(SWD), JTAG, Embedded Trace Macrocell™
Table 1. Device summary
Reference
STM32L412xx
2/192
Part numbers
STM32L412CB, STM32L412KB, STM32L412RB, STM32L412TB
STM32L412C8, STM32L412K8, STM32L412R8, STM32L412T8
DS12469 Rev 8
STM32L412xx
Contents
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1
Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 16
3.3
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6
Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.8
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 19
3.9
Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9.1
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9.4
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9.5
Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.9.6
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.10
Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.11
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.12
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.13
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.14
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.15
3.16
3.14.1
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 36
3.14.2
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 36
Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.15.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.15.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.15.3
VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
DS12469 Rev 8
3/192
6
Contents
STM32L412xx
3.17
Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.18
Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.19
Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.20
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.20.1
Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.20.2
General-purpose timers (TIM2, TIM15, TIM16) . . . . . . . . . . . . . . . . . . . 41
3.20.3
Basic timer (TIM6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.20.4
Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 41
3.20.5
Infrared interface (IRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.20.6
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.20.7
System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.20.8
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.21
Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 43
3.22
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.23
Universal synchronous/asynchronous receiver transmitter (USART) . . . 45
3.24
Low-power universal asynchronous receiver transmitter (LPUART) . . . . 46
3.25
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.26
Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.27
Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.28
Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.29
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.29.1
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.29.2
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1
4/192
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
DS12469 Rev 8
STM32L412xx
Contents
6.1.7
7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.2
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 79
6.3.3
Embedded reset and power control block characteristics . . . . . . . . . . . 79
6.3.4
Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.5
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.6
Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.7
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.8
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.9
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.3.10
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.11
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.12
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.13
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.14
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.15
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.16
Extended interrupt and event controller input (EXTI) characteristics . . 137
6.3.17
Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.3.18
Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . 138
6.3.19
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.3.20
Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.3.21
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.3.22
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.3.23
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.3.24
Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 157
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.1
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.2
UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.3
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.4
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.5
WLCSP36 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.6
UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
DS12469 Rev 8
5/192
6
Contents
STM32L412xx
7.7
LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.8
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.8.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.8.2
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 187
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6/192
DS12469 Rev 8
STM32L412xx
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
STM32L412xx family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . 13
Access status versus readout protection level and execution modes. . . . . . . . . . . . . . . . . 17
STM32L412xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
STM32L412xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
STM32L412xx USART/UART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
STM32L412xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Alternate function AF0 to AF7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Alternate function AF8 to AF15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
STM32L412xx memory map and peripheral register boundary addresses . . . . . . . . . . . . 70
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 79
Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 85
Current consumption in Run modes, code with data processing running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Current consumption in Run modes, code with data processing running from Flash,
ART disable and power supplied by external SMPS (VDD12 = 1.10 V). . . . . . . . . . . . . . . 88
Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Current consumption in Run, code with data processing running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . 90
Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 91
Typical current consumption in Run, with different codes running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Typical current consumption in Run, with different codes running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.00 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Typical current consumption in Run modes, with different codes running from
DS12469 Rev 8
7/192
9
List of tables
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
8/192
STM32L412xx
Flash, ART disable and power supplied by external SMPS (VDD12 = 1.10 V) . . . . . . . . . 93
Typical current consumption in Run modes, with different codesrunning from
Flash, ART disable and power supplied by external SMPS (VDD12 = 1.00 V) . . . . . . . . . 94
Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Typical current consumption in Run, with different codes running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . 95
Typical current consumption in Run, with different codes running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.00 V) . . . . . . . . . . . . . . . . . . 95
Current consumption in Sleep and Low-power sleep modes, Flash ON . . . . . . . . . . . . . . 96
Current consumption in Sleep, Flash ON and power supplied by external SMPS
(VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Current consumption in Low-power sleep modes, Flash in power-down . . . . . . . . . . . . . . 97
Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Current consumption in Stop 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Wakeup time using USART/LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
EXTI Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
ADC accuracy - limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
DS12469 Rev 8
STM32L412xx
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.
Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
List of tables
OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
WWDG min/max timeout value at 80 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Quad SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
LQFP64 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
UFBGA64 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
UFBGA64 - Recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . . 170
LQFP48 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
UFQFPN48 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
WLCSP36 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
WLCSP36 - Recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
UFQFPN32 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
LQFP32 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
STM32L412xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
DS12469 Rev 8
9/192
9
List of figures
STM32L412xx
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
10/192
STM32L412xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
STM32L412Rx LQFP64 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
STM32L412Rx, external SMPS, LQFP64 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
STM32L412Rx UFBGA64 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
STM32L412Rx UFBGA64, external SMPS, ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
STM32L412Cx LQFP48 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
STM32L412Cx UFQFPN48 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
STM32L412Tx WLCSP36 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
STM32L412Tx, external SMPS, WLCSP36 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
STM32L412Kx LQFP32 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
STM32L412Kx UFQFPN32 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
STM32L412xx memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Current consumption measurement scheme with and without external
SMPS power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Typical current consumption versus MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
HSI48 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
I/O AC characteristics definition(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Quad SPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Quad SPI timing diagram - DDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
LQFP64 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
LQFP64 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
LQFP64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
LQFP64 (external SMPS device) marking (package top view). . . . . . . . . . . . . . . . . . . . . 168
UFBGA64 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
UFBGA64 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
UFBGA64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
UFBGA64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
LQFP48 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
LQFP48 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
DS12469 Rev 8
STM32L412xx
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
List of figures
LQFP48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
UFQFPN48 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
UFQFPN48 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
UFQFPN48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
WLCSP36 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
WLCSP36 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
WLCSP36 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
UFQFPN32 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
UFQFPN32 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
UFQFPN32 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
LQFP32 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
LQFP32 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
LQFP32 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
DS12469 Rev 8
11/192
11
Introduction
1
STM32L412xx
Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32L412xx microcontrollers.
This document should be read in conjunction with the STM32L41x, STM32L42x,
STM32L43x, STM32L44x, STM32L45x, STM32L46x reference manual (RM0394), available
from the STMicroelectronics website www.st.com.
For information on the Arm®(a) Cortex®-M4 core, refer to the Cortex®-M4 Technical
Reference Manual, available from the www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
12/192
DS12469 Rev 8
STM32L412xx
2
Description
Description
The STM32L412xx devices are ultra-low-power microcontrollers based on the
high-performance Arm® Cortex®-M4 32-bit RISC core operating at a frequency of up to
80 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision that
supports all Arm® single-precision data-processing instructions and data types. It also
implements a full set of DSP instructions and a memory protection unit (MPU) which
enhances application security.
The STM32L412xx devices embed high-speed memories (Flash memory up to 128
Kbyte,40 Kbyte of SRAM), a Quad SPI Flash memories interface (available on all packages)
and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two
AHB buses and a 32-bit multi-AHB bus matrix.
The STM32L412xx devices embed several protection mechanisms for embedded Flash
memory and SRAM: readout protection, write protection, proprietary code readout
protection and Firewall.
The devices offer two fast 12-bit ADC (5 Msps), two comparators, one operational amplifier,
a low-power RTC, one general-purpose 32-bit timer, one 16-bit PWM timer dedicated to
motor control, four general-purpose 16-bit timers, and two 16-bit low-power timers.
In addition, up to 12 capacitive sensing channels are available.
They also feature standard and advanced communication interfaces, namely three I2Cs,
two SPIs, three USARTs and one Low-Power UART, one USB full-speed device crystal
less.
The STM32L412xx operates in the -40 to +85 °C (+105 °C junction) and -40 to +125 °C
(+130 °C junction) temperature ranges from a 1.71 to 3.6 V VDD power supply when using
internal LDO regulator and a 1.00 to 1.32V VDD12 power supply when using external SMPS
supply. A comprehensive set of power-saving modes makes possible the design of lowpower applications.
Some independent power supplies are supported: analog independent supply input for
ADC, OPAMP and comparator. A VBAT input makes it possible to backup the RTC and
backup registers. Dedicated VDD12 power supplies can be used to bypass the internal LDO
regulator when connected to an external SMPS.
The STM32L412xx family offers six packages from 32 to 64-pin packages.
STM32L412CB
STM32L412C8
STM32L412TB
STM32L412T8
STM32L412KB
STM32L412K8
Flash memory
STM32L412R8
Peripheral
STM32L412RB
Table 2. STM32L412xx family device features and peripheral counts
128KB
64KB
128KB
64KB
128KB
64KB
128KB
64KB
SRAM
Quad SPI
40KB
Yes
DS12469 Rev 8
13/192
49
Description
STM32L412xx
Timers
Comm.
interfac
es
Advanced
control
1 (16-bit)
General
purpose
2 (16-bit)
1 (32-bit)
Basic
1 (16-bit)
Low -power
2 (16-bit)
SysTick timer
1
Watchdog
timers
(independent,
window)
2
SPI
2
1
2C
3
2
3
1
2
1
I
USART
LPUART
USB FS
Yes
RTC
Tamper pins
Yes
2
2
1
Random generator
Yes
GPIOs(1)
Wakeup pins
52
4
38
3
Capacitive sensing
Number of channels
12
6
12-bit ADC
Number of channels
2
16
2
10
30
2
2
10
2
10
No
Analog comparator
1
Operational amplifiers
1
Max. CPU frequency
80 MHz
Operating voltage (VDD)
1.71 to 3.6 V
Operating voltage
(VDD12)
1.00 to 1.32 V
Packages
26
2
2
Internal voltage
reference buffer
Operating temperature
STM32L412K8
STM32L412KB
STM32L412T8
STM32L412TB
STM32L412C8
STM32L412CB
STM32L412R8
Peripheral
STM32L412RB
Table 2. STM32L412xx family device features and peripheral counts (continued)
Ambient operating temperature: -40 to 85 °C / -40 to 125 °C
Junction temperature: -40 to 105 °C / -40 to 130 °C
LQFP64
UFBGA64
LQFP48
UFQFPN48
WLCSP36
UFQFPN32
LQFP32
1. In case external SMPS package type is used, 2 GPIO's are replaced by VDD12 pins to connect the SMPS
power supplies hence reducing the number of available GPIO's by 2.
14/192
DS12469 Rev 8
STM32L412xx
Description
Figure 1. STM32L412xx block diagram
D0[3:0],
D1[3:0],
CLK0,
CLK1
CS
NJTRST, JTDI,
JTCK/SWCLK
Quad SPI memory interface
JTAG & SW
MPU
ETM
NVIC
JTDO/SWD, JTDO
TRACECLK
D-BUS
TRACED[3:0]
ARM Cortex-M4
80 MHz
FPU
I-BUS
ART
ACCEL/
CACHE
RNG
Flash
up to
128 KB
AHB bus-matrix
S-BUS
SRAM2 8 KB
SRAM1 32 KB
VDD
AHB2 80 MHz
DMA2
Power management
Voltage
regulator
3.3 to 1.2 V
VDD = 1.71 to 3.6 V
VSS
DMA1
@ VDD
@ VDD
7 Groups of
4 channels max as AF
supervision
RC HSI
Touch sensing controller
Supply
reset
MSI
VDDUSB
Int
BOR
VDDA, VSSA
RC LSI
PA[15:0]
VDD, VSS, NRST
GPIO PORT A
GPIO PORT B
GPIO PORT C
PLL 1&2
AHB1 80 MHz
PB[15:0]
PC[15:0]
PVD, PVM
@VDD
HSI48
OSC_IN
XTAL OSC
OSC_OUT
4- 16MHz
IWDG
PD2
GPIO PORT D
PH[1:0],
PH[3]
GPIO PORT H
VBAT = 1.55 to 3.6 V
Standby
interface
Reset & clock
M AN
AGT
control
@VBAT
XTAL 32 kHz
PCLKx
HCLKx
FCLK
RTC
U STemperature
AR T 2 M sensor
Bps
RTC_TS
AWU
Backup register
RTC_TAMPx
RTC_OUT
TIM2
32b
CRC
@ VDDA
4 channels, ETR as AF
FIFO
ITF
USB FS
PHY
@ VDDUSB
ADC1
16 external analog inputs
OSC32_IN
OSC32_OUT
@ VDD
DP
DM
NOE
ADC2
16 external analog inputs
CRS_SYNC
CRS
@ VDDA
USART2
VREF+
VREF Buffer
83 AF
AHB/APB2
AHB/APB1
USART3
EXT IT. WKUP
3 compl. channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),
ETR, BKIN, BKIN2 as AF
TIM1 / PWM
smcard
IrDA
smcard
RX, TX, CK, CTS, RTS as AF
RX, TX, CK, CTS, RTS as AF
IrDA
16b
SPI2
MOSI, MISO, SCK, NSS as AF
WWDG
1 channel,
1 compl. channel, BKIN as AF
TIM16
RX, TX, CK,CTS,
RTS as AF
smcard
16b
USART1
IrDA
MOSI, MISO,
SCK, NSS as AF
I2C1/SMBUS
SCL, SDA, SMBA as AF
I2C2/SMBUS
SCL, SDA, SMBA as AF
I2C3/SMBUS
SCL, SDA, SMBA as AF
16b
TIM6
A
60PM
B Hz
2
SPI1
16b
A P B(max)
1 3 0 M Hz
APB1 80 MHz
TIM15
APB2 80MHz
2 channels,
1 compl. channel, BKIN as AF
@VDDA
OpAmp1
VOUT, VINM, VINP
LPUART1
RX, TX, CTS, RTS as AF
LPTIM1
IN1, IN2, OUT, ETR as AF
LPTIM2
IN1, OUT, ETR as AF
@ VDDA
INP, INM, OUT
COMP1
FIREWALL
MSv45999V2
Note:
AF: alternate function on I/O pins.
DS12469 Rev 8
15/192
49
Functional overview
STM32L412xx
3
Functional overview
3.1
Arm® Cortex®-M4 core with FPU
The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm® processors for
embedded systems, developed to provide a low-cost platform that meets the needs of MCU
implementation with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced response to interrupts.
The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an Arm® core in the memory size
usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions enabling efficient signal processing and
complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage
development tools, while avoiding saturation.
With its embedded Arm® core, the STM32L412xx family is compatible with all Arm® tools
and software.
Figure 1 shows the general block diagram of the STM32L412xx family devices.
3.2
Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator optimized for STM32 industry-standard
Arm® Cortex®-M4 processors. It balances the inherent performance advantage of the Arm®
Cortex®-M4 over Flash memory technologies, which normally requires the processor to wait
for the Flash memory at higher frequencies.
To release the processor near 100 DMIPS performance at 80 MHz, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 80 MHz.
3.3
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole
4 Gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
16/192
DS12469 Rev 8
STM32L412xx
3.4
Functional overview
Embedded Flash memory
STM32L412xx devices feature 128Kbyte of embedded Flash memory available for storing
programs and data in single bank architecture.The Flash memory contains 64 pages of 2
Kbyte
Flexible protections can be configured thanks to option bytes:
•
Readout protection (RDP) to protect the whole memory. Three levels are available:
–
Level 0: no readout protection
–
Level 1: memory readout protection: the Flash memory cannot be read from or
written to if either debug features are connected, boot in RAM or bootloader is
selected
–
Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial
wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This
selection is irreversible.
Table 3. Access status versus readout protection level and execution modes
Area
Debug, boot from RAM or boot
from system memory (loader)
User execution
Protection
level
Read
Write
Erase
Read
Write
Erase
Main
memory
1
Yes
Yes
Yes
No
No
No
2
Yes
Yes
Yes
N/A
N/A
N/A
System
memory
1
Yes
No
No
Yes
No
No
2
Yes
No
No
N/A
N/A
N/A
Option
bytes
1
Yes
Yes
Yes
Yes
Yes
Yes
2
Yes
No
No
N/A
N/A
N/A
No
No
N/A(1)
Backup
registers
SRAM2
(1)
1
Yes
Yes
N/A
2
Yes
Yes
N/A
N/A
N/A
N/A
1
Yes
Yes
Yes(1)
No
No
No(1)
2
Yes
Yes
Yes
N/A
N/A
N/A
1. Erased when RDP change from Level 1 to Level 0.
•
Write protection (WRP): the protected area is protected against erasing and
programming. Two areas can be selected, with 2-Kbyte granularity.
•
Proprietary code readout protection (PCROP): a part of the flash memory can be
protected against read and write from third parties. The protected area is execute-only:
it can only be reached by the STM32 CPU, as an instruction code, while all other
accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited.
The PCROP area granularity is 64-bit wide. An additional option bit (PCROP_RDP)
allows the user to select if the PCROP area is erased or not when the RDP protection
is changed from Level 1 to Level 0.
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
•
single error detection and correction
•
double error detection.
DS12469 Rev 8
17/192
49
Functional overview
STM32L412xx
The address of the ECC fail can be read in the ECC register.
3.5
Embedded SRAM
STM32L412xx devices feature 40 Kbyte of embedded SRAM, split into two blocks:
•
32 Kbyte mapped at address 0x2000 0000 (SRAM1)
•
8 Kbyte located at address 0x1000 0000 with hardware parity check (SRAM2).
This memory is also mapped at address 0x2000 8000, offering a contiguous address
space with the SRAM1 (8 Kbyte aliased by bit band)
This block is accessed through the ICode/DCode buses for maximum performance.
These 8 Kbyte SRAM can also be retained in Standby mode.
The SRAM2 can be write-protected with 1 Kbyte granularity.
The memory can be accessed in read/write at CPU clock speed with 0 wait states.
3.6
Firewall
The device embeds a Firewall which protects code sensitive and secure data from any
access performed by a code executed outside of the protected areas.
Each illegal access generates a reset which kills immediately the detected intrusion.
The Firewall main features are the following:
•
Three segments can be protected and defined thanks to the Firewall registers:
–
Code segment (located in Flash or SRAM1 if defined as executable protected
area)
–
Non-volatile data segment (located in Flash)
–
Volatile data segment (located in SRAM1)
•
The start address and the length of each segments are configurable:
–
Code segment: up to 1024 Kbyte with granularity of 256 bytes
–
Non-volatile data segment: up to 1024 Kbyte with granularity of 256 bytes
–
Volatile data segment: up to 128 Kbyte with a granularity of 64 bytes
•
Specific mechanism implemented to open the Firewall to get access to the protected
areas (call gate entry sequence)
•
Volatile data segment can be shared or not with the non-protected code
•
Volatile data segment can be executed or not depending on the Firewall configuration
The Flash readout protection must be set to level 2 in order to reach the expected level of
protection.
3.7
Boot modes
At startup, BOOT0 pin or nSWBOOT0 option bit, and BOOT1 option bit are used to select
one of three boot options:
18/192
•
Boot from user Flash
•
Boot from system memory
•
Boot from embedded SRAM
DS12469 Rev 8
STM32L412xx
Functional overview
BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the
value of a user option bit to free the GPIO pad if needed.
A Flash empty check mechanism is implemented to force the boot from system flash if the
first flash memory location is not programmed and if the boot selection is configured to boot
from main flash.
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART, I2C, SPI or USB FS in Device mode through DFU (device firmware upgrade).
3.8
Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.
3.9
Power supply management
3.9.1
Power supply schemes
•
VDD = 1.71 to 3.6 V: external power supply for I/Os (VDDIO1), the internal regulator and
the system analog such as reset, power management and internal clocks. It is provided
externally through VDD pins.
•
VDD12 = 1.00 to 1.32 V: external power supply bypassing internal regulator when
connected to an external SMPS. It is provided externally through VDD12 pins and only
available on packages with the external SMPS supply option. VDD12 does not require
any external decoupling capacitance and cannot support any external load.
•
VDDA = 1.62 V (ADC/COMP) / 1.8 (OPAMP) to 3.6 V: external analog power supply for
ADC, OPAMP, Comparator. The VDDA voltage level is independent from the VDD
voltage.
•
VDDUSB = 3.0 to 3.6 V: external independent power supply for USB transceivers. The
VDDUSB voltage level is independent from the VDD voltage.
•
VBAT = 1.55 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Note:
When the functions supplied by VDDA are not used, this supply should preferably be shorted
to VDD.
Note:
If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V
tolerant.
Note:
VDDIOx is the I/Os general purpose digital functions supply. VDDIOx represents VDDIO1, with
VDDIO1 = VDD.
DS12469 Rev 8
19/192
49
Functional overview
STM32L412xx
Figure 2. Power supply overview
VDDA domain
VDDA
VSSA
A/D converters
Comparators
Operational amplifiers
Voltage reference buffer
VDDUSB
VSS
USB transceivers
VDD domain
VDD
VDDIO1
I/O ring
Reset block
Temp. sensor
PLL, HSI, MSI, HSI48
VSS
Standby circuitry
(Wakeup logic, IWDG)
Voltage regulator
VCORE
VCORE domain
Core
Memories
Digital peripherals
VDD12
Low voltage detector
Backup domain
VBAT
LSE crystal 32 K osc
BKP registers
RCC BDCR register
RTC
MS49685V1
During power-up and power-down phases, the following power sequence requirements
must be respected:
•
When VDD is below 1 V, other power supplies (VDDAVDDUSB) must remain below VDD +
300 mV.
•
When VDD is above 1 V, all power supplies are independent.
During the power-down phase, VDD can temporarily become lower than other supplies only
if the energy provided to the MCU remains below 1 mJ; this allows external decoupling
capacitors to be discharged with different time constants during the power-down transient
phase.
20/192
DS12469 Rev 8
STM32L412xx
Functional overview
Figure 3. Power-up/down sequence
V
3.6
VDDX(1)
VDD
VBOR0
1
0.3
Power-on
Invalid supply area
Operating mode
VDDX < VDD + 300 mV
Power-down
time
VDDX independent from VDD
MSv47490V1
1. VDDX refers to any power supply among VDDA, VDDUSB.
3.9.2
Power supply supervisor
The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes
except Shutdown and ensuring proper operation after power-on and during power down.
The device remains in reset mode when the monitored supply voltage VDD is below a
specified threshold, without the need for an external reset circuit.
The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected
through option bytes.The device features an embedded programmable voltage detector
(PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An
interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
In addition, the device embeds a Peripheral Voltage Monitor which compares the
independent supply voltage VDDA with a fixed threshold in order to ensure that the
peripheral is in its functional supply range.
DS12469 Rev 8
21/192
49
Functional overview
3.9.3
STM32L412xx
Voltage regulator
Two embedded linear voltage regulators supply most of the digital circuitries: the main
regulator (MR) and the low-power regulator (LPR).
•
The MR is used in the Run and Sleep modes and in the Stop 0 mode.
•
The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is
also used to supply the 8 Kbyte SRAM2 in Standby with SRAM2 retention.
•
Both regulators are in power-down in Standby and Shutdown modes: the regulator
output is in high impedance, and the kernel circuitry is powered down thus inducing
zero consumption.
The ultralow-power STM32L412xx supports dynamic voltage scaling to optimize its power
consumption in run mode. The voltage from the Main Regulator that supplies the logic
(VCORE) can be adjusted according to the system’s maximum operating frequency.
There are two power consumption ranges:
•
Range 1 with the CPU running at up to 80 MHz.
•
Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also
limited to 26 MHz.
The VCORE can be supplied by the low-power regulator, the main regulator being switched
off. The system is then in Low-power run mode.
•
3.9.4
Low-power run mode with the CPU running at up to 2 MHz. Peripherals with
independent clock can be clocked by HSI16.
Low-power modes
The ultra-low-power STM32L412xx supports seven low-power modes to achieve the best
compromise between low-power consumption, short startup time, available peripherals and
available wakeup sources.
22/192
DS12469 Rev 8
Mode
Regulator(1)
CPU
Flash SRAM Clocks
MR range 1
Run
SMPS range 2 high
MR range2
LPR
Yes
ON(4)
ON
Any
Yes
ON(4)
ON
Any
except
PLL
SMPS range 2 high
MR range2
No
ON(4)
ON(5)
DS12469 Rev 8
LPR
No
ON(4)
ON(5)
No
ON
79 µA/MHz
N/A
83 µA/MHz
to Range 1: 4 µs
to Range 2: 64 µs
7.5 µA/MHz
20 µA/MHz
6 cycles
7 µA/MHz
Any
except
PLL
All except USB_FS, RNG
Any interrupt or
event
83 µA/MHz
6 cycles
LSE
LSI
BOR, PVD, PVM
RTC, IWDG
COMP1, OPAMP1
USARTx (x=1...3)(6)
LPUART1(6)
I2Cx (x=1...3)(7)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMP1
USARTx (x=1...3)(6)
LPUART1(6)
I2Cx (x=1...3)(7)
LPTIMx (x=1,2)
USB_FS(8)
105 µA
2.47 µs in SRAM
4.1 µs in Flash
23/192
Functional overview
MR Range 2
OFF
34 µA/MHz
21 µA/MHz
All except USB_FS, RNG
MR Range 1
Stop 0
N/A
Any interrupt or
event
Any
Wakeup time
28 µA/MHz
All
SMPS range 2 low
LPSleep
N/A
All except USB_FS, RNG
Consumption(3)
91 µA/MHz
All except USB_FS, RNG
MR range 1
Sleep
Wakeup source
All
SMPS range 2 low
LPRun
DMA and Peripherals(2)
STM32L412xx
Table 4. STM32L412xx modes overview
Mode
Stop 1
DS12469 Rev 8
Stop 2
Regulator
LPR
LPR
CPU
No
No
DMA and Peripherals(2)
Wakeup source
Consumption(3)
Wakeup time
LSE
LSI
BOR, PVD, PVM
RTC, IWDG
COMP1, OPAMP1
USARTx (x=1...3)(6)
LPUART1(6)
I2Cx (x=1...3)(7)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMP1
USARTx (x=1...3)(6)
LPUART1(6)
I2Cx (x=1...3)(7)
LPTIMx (x=1,2)
USB_FS(8)
3.25 µA w/o RTC
3.65 µA w RTC
5.7 µs in SRAM
7 µs in Flash
LSE
LSI
BOR, PVD, PVM
RTC, IWDG
COMP1
I2C3(7)
LPUART1(6)
LPTIMx (x = 1, 2)
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMP1
I2C3(7)
LPUART1(6)
LPTIMx (x = 1, 2)
710 nA w/o RTC
950 nA w RTC
5.8 µs in SRAM
8.3 µs in Flash
Flash SRAM Clocks
Off
Off
ON
ON
Functional overview
24/192
Table 4. STM32L412xx modes overview (continued)
(1)
STM32L412xx
Mode
Regulator
CPU
Flash SRAM Clocks
SRAM
2 ON
LPR
Standby
OFF
Shutdown
OFF
Power
ed Off
Power
ed Off
Off
Off
Power
ed
Off
Power
ed
Off
DMA and Peripherals(2)
Wakeup source
DS12469 Rev 8
LSE
LSI
BOR, RTC, IWDG
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pull-down
Reset pin
5 I/Os (WKUPx)(9)
BOR, RTC, IWDG
LSE
RTC
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pulldown(10)
Reset pin
5 I/Os (WKUPx)(9)
RTC
Consumption(3)
Wakeup time
195 nA
STM32L412xx
Table 4. STM32L412xx modes overview (continued)
(1)
16.1 µs
105 nA
18 nA
256 µs
1. LPR means Main regulator is OFF and Low-power regulator is ON.
2. All peripherals can be active or clock gated to save power consumption.
3. Typical current at VDD = 1.8 V, 25°C. Consumptions values provided running from SRAM, Flash memory Off, 80 MHz in Range 1, 26 MHz in Range 2, 2 MHz in
LPRun/LPSleep.
4. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM.
5. The SRAM1 and SRAM2 clocks can be gated on or off independently.
6. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
8. USB_FS wakeup by resume from suspend and attach detection protocol event.
9. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PA2, PC5.
25/192
Functional overview
10. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.
Functional overview
STM32L412xx
By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the
user to select one of the low-power modes described below:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
•
Low-power run mode
This mode is achieved with VCORE supplied by the low-power regulator to minimize the
regulator's operating current. The code can be executed from SRAM or from Flash,
and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can
be clocked by HSI16.
•
Low-power sleep mode
This mode is entered from the low-power run mode. Only the CPU clock is stopped.
When wakeup is triggered by an event or an interrupt, the system reverts to the lowpower run mode.
•
Stop 0, Stop 1 and Stop 2 modes
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI
RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still
running.
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).
Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode
to detect their wakeup condition.
Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode,
most of the VCORE domain is put in a lower leakage mode.
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller
wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator
remains ON, allowing a very fast wakeup time but with much higher consumption.
The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI
up to 48 MHz or HSI16, depending on software configuration.
•
Standby mode
The Standby mode is used to achieve the lowest power consumption with BOR. The
internal regulator is switched off so that the VCORE domain is powered off. The PLL, the
MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.
The RTC can remain active (Standby mode with RTC, Standby mode without RTC).
The brown-out reset (BOR) always remains active in Standby mode.
The state of each I/O during standby mode can be selected by software: I/O with
internal pull-up, internal pull-down or floating.
After entering Standby mode, SRAM1 and register contents are lost except for registers
in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in
Standby mode, supplied by the low-power Regulator (Standby with SRAM2 retention
mode).
The device exits Standby mode when an external reset (NRST pin), an IWDG reset,
WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm,
periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).
The system clock after wakeup is MSI up to 8 MHz.
26/192
DS12469 Rev 8
STM32L412xx
•
Functional overview
Shutdown mode
The Shutdown mode permits to achieve the lowest power consumption. The internal
regulator is switched off so that the VCORE domain is powered off. The PLL, the HSI16,
the MSI, the LSI and the HSE oscillators are also switched off.
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).
The BOR is not available in Shutdown mode. No power voltage monitoring is possible
in this mode, therefore the switch to Backup domain is not supported.
SRAM1, SRAM2 and register contents are lost except for registers in the Backup
domain.
The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin
event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic
wakeup, timestamp, tamper).
The system clock after wakeup is MSI at 4 MHz.
DS12469 Rev 8
27/192
49
Functional overview
STM32L412xx
Table 5. Functionalities depending on the working mode(1)
-
-
Y
-
Y
-
-
-
-
-
-
-
-
-
-
O(2)
O(2)
O(2)
O(2)
-
-
-
-
-
-
-
-
-
SRAM1 (32 KB)
Y
Y(3)
Y
Y(3)
Y
-
Y
-
-
-
-
-
-
SRAM2 (8 KB)
Y
Y(3)
Y
Y(3)
Y
-
Y
-
O(4)
-
-
-
-
Quad SPI
O
O
O
O
-
-
-
-
-
-
-
-
-
Backup registers
Y
Y
Y
Y
Y
-
Y
-
Y
-
Y
-
Y
Brown-out reset
(BOR)
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
-
-
Programmable
voltage detector
(PVD)
O
O
O
O
O
O
O
O
-
-
-
-
-
Peripheral voltage
monitor (PVMx;
x=1,3,4)
O
O
O
O
O
O
O
O
-
-
-
-
-
DMA
O
O
O
O
-
-
-
-
-
-
-
-
-
High speed Internal
(HSI16)
O
O
O
O
(5)
-
(5)
-
-
-
-
-
-
Oscillator RC48
O
O
-
-
-
-
-
-
-
-
-
-
-
High speed external
(HSE)
O
O
O
O
-
-
-
-
-
-
-
-
-
Low speed internal
(LSI)
O
O
O
O
O
-
O
-
O
-
-
-
-
Low speed external
(LSE)
O
O
O
O
O
-
O
-
O
-
O
-
O
Multi-Speed internal
(MSI)
O
O
O
O
-
-
-
-
-
-
-
-
-
Clock security
system (CSS)
O
O
O
O
-
-
-
-
-
-
-
-
-
Clock security
system on LSE
O
O
O
O
O
O
O
O
O
O
-
-
-
RTC / Auto wakeup
O
O
O
O
O
O
O
O
O
O
O
O
O
Number of RTC
Tamper pins
2
2
2
2
2
O
2
O
2
O
2
O
2
USARTx (x=1,2,3)
O
O
O
O
-
-
-
-
-
-
-
Peripheral
CPU
Flash memory (up to
128 KB)
28/192
Run
Sleep
Lowpower
run
Lowpower
sleep
-
O(6) O(6)
DS12469 Rev 8
Wakeup capability
-
Wakeup capability
Standby Shutdown
Wakeup capability
Stop 2
Wakeup capability
Stop 0/1
VBAT
STM32L412xx
Functional overview
Table 5. Functionalities depending on the working mode(1) (continued)
O
O
O
O
O(6) O(6) O(6) O(6)
-
-
-
-
-
I2Cx (x=1,2)
O
O
O
O
O(7) O(7)
-
-
-
-
-
-
-
O(7)
O(7)
O(7)
-
-
-
-
-
Sleep
Lowpower
run
Lowpower
sleep
-
-
-
Wakeup capability
Wakeup capability
Standby Shutdown
Low-power UART
(LPUART)
Run
Wakeup capability
Stop 2
-
Peripheral
Wakeup capability
Stop 0/1
VBAT
I2C3
O
O
O
O
O(7)
SPIx (x=1,2)
O
O
O
O
-
-
-
-
-
-
-
-
-
ADCx (x=1,2)
O
O
O
O
-
-
-
-
-
-
-
-
-
OPAMPx (x=1)
O
O
O
O
O
-
-
-
-
-
-
-
-
COMP1
O
O
O
O
O
O
O
O
-
-
-
-
-
Temperature sensor
O
O
O
O
-
-
-
-
-
-
-
-
-
Timers (TIMx)
O
O
O
O
-
-
-
-
-
-
-
-
-
Low-power timer 1
(LPTIM1)
O
O
O
O
O
O
O
O
-
-
-
-
-
Low-power timer 2
(LPTIM2)
O
O
O
O
O
O
O
O
-
-
-
-
-
Independent
watchdog (IWDG)
O
O
O
O
O
O
O
O
O
O
-
-
-
Window watchdog
(WWDG)
O
O
O
O
-
-
-
-
-
-
-
-
-
SysTick timer
O
O
O
O
-
-
-
-
-
-
-
-
-
Touch sensing
controller (TSC)
O
O
O
O
-
-
-
-
-
-
-
-
-
Random number
generator (RNG)
O(8)
O(8)
-
-
-
-
-
-
-
-
-
-
-
CRC calculation unit
O
O
O
O
-
-
-
-
-
-
-
-
-
GPIOs
O
O
O
O
O
O
O
O
(9)
4
pins
(11)
4
pins
-
(10)
(10)
1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). - = Not available.
2. The Flash can be configured in power-down mode. By default, it is not in power-down mode.
3. The SRAM clock can be gated on or off.
4. SRAM2 content is preserved when the bit RRS is set in PWR_CR3 register.
5. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by
the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not
need it anymore.
6. LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame
event.
DS12469 Rev 8
29/192
49
Functional overview
STM32L412xx
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
8. Voltage scaling Range 1 only.
9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when
exiting the Shutdown mode.
3.9.5
Reset mode
In order to improve the consumption under reset, the I/Os state under and after reset is
“analog state” (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is
deactivated when the reset source is internal.
3.9.6
VBAT operation
The VBAT pin permits to power the device VBAT domain from an external battery, an
external supercapacitor, or from VDD when no external battery and an external
supercapacitor are present. The VBAT pin supplies the RTC with LSE and the backup
registers. Two anti-tamper detection pins are available in VBAT mode.
VBAT operation is automatically activated when VDD is not present.
An internal VBAT battery charging circuit is embedded and can be activated when VDD is
present.
Note:
When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
3.10
Interconnect matrix
Several peripherals have direct connections between them. This allows autonomous
communication between peripherals, saving CPU resources thus power supply
consumption. In addition, these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run
and sleep, Stop 0, Stop 1 and Stop 2 modes.
Sleep
Low-power run
Low-power sleep
Stop 0 / Stop 1
Stop 2
Interconnect source
Run
Table 6. STM32L412xx peripherals interconnect matrix
Timers synchronization or chaining
Y
Y
Y
Y
-
-
Conversion triggers
Y
Y
Y
Y
-
-
DMA
Memory to memory transfer trigger
Y
Y
Y
Y
-
-
COMPx
Comparator output blanking
Y
Y
Y
Y
-
-
Interconnect
destination
TIMx
ADCx
TIMx
30/192
Interconnect action
DS12469 Rev 8
STM32L412xx
Functional overview
Run
Sleep
Low-power run
Low-power sleep
Stop 0 / Stop 1
Stop 2
Table 6. STM32L412xx peripherals interconnect matrix (continued)
IRTIM
Infrared interface output generation
Y
Y
Y
Y
-
-
TIM1
TIM2
Timer input channel, trigger, break from
analog signals comparison
Y
Y
Y
Y
-
-
LPTIMERx
Low-power timer triggered by analog
signals comparison
Y
Y
Y
Y
Y
Y
TIM1
Timer triggered by analog watchdog
Y
Y
Y
Y
-
-
TIM16
Timer input channel from RTC events
Y
Y
Y
Y
-
-
LPTIMERx
Low-power timer triggered by RTC alarms
or tampers
Y
Y
Y
Y
Y
Y
All clocks sources (internal TIM2
and external)
TIM15, 16
Clock source used as input channel for
RC measurement and trimming
Y
Y
Y
Y
-
-
CSS
CPU (hard fault)
RAM (parity error)
TIM1
Flash memory (ECC error) TIM15,16
COMPx
PVD
Timer break
Y
Y
Y
Y
-
-
TIMx
External trigger
Y
Y
Y
Y
-
-
LPTIMERx
External trigger
Y
Y
Y
Y
Y
Y
ADCx
Conversion external trigger
Y
Y
Y
Y
-
-
Interconnect source
TIM15/TIM16
COMPx
ADCx
RTC
Interconnect
destination
Interconnect action
GPIO
DS12469 Rev 8
31/192
49
Functional overview
3.11
STM32L412xx
Clocks and startup
The clock controller (see Figure 4) distributes the clocks coming from different oscillators to
the core and the peripherals. It also manages clock gating for low-power modes and
ensures clock robustness. It features:
32/192
•
Clock prescaler: to get the best trade-off between speed and current consumption,
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler
•
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
•
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
•
System clock source: four different clock sources can be used to drive the master
clock SYSCLK:
–
4-48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply
a PLL. The HSE can also be configured in bypass mode for an external clock.
–
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can
supply a PLL
–
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate
12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is
available in the system (LSE), the MSI frequency can be automatically trimmed by
hardware to reach better than ±0.25% accuracy. The MSI can supply a PLL.
–
System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency
at 80 MHz.
•
RC48 with clock recovery system (HSI48): internal RC48 MHz clock source can be
used to drive the USB or the RNG peripherals. This clock can be output on the MCO.
•
Auxiliary clock source: two ultralow-power clock sources that can be used to drive
the real-time clock:
–
32.768 kHz low-speed external crystal (LSE), supporting four drive capability
modes. The LSE can also be configured in bypass mode for an external clock.
–
32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock accuracy is ±5% accuracy.
•
Peripheral clock sources: Several peripherals (RNG, USARTs, I2Cs, LPTimers) have
their own independent clock whatever the system clock. PLL having three independent
outputs allowing the highest flexibility, can generate independent clocks for the RNG.
•
Startup clock: after reset, the microcontroller restarts by default with an internal 4 MHz
clock (MSI). The prescaler ratio and clock source can be changed by the application
program as soon as the code execution starts.
•
Clock security system (CSS): this feature can be enabled by software. If a HSE clock
failure occurs, the master clock is automatically switched to HSI16 and a software
DS12469 Rev 8
STM32L412xx
Functional overview
interrupt is generated if enabled. LSE failure can also be detected and generated an
interrupt.
•
Clock-out capability:
–
MCO: microcontroller clock output: it outputs one of the internal clocks for
external use by the application. Low frequency clocks (LSI, LSE) are available
down to Stop 1 low power state.
–
LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes
down to Standby mode. LSE can also be output on LSCO in Shutdown mode.
LSCO is not available in VBAT mode.
Several prescalers permit to configure the AHB frequency, the high speed APB (APB2) and
the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB
domains is 80 MHz.
DS12469 Rev 8
33/192
49
Functional overview
STM32L412xx
Figure 4. Clock tree
to IWDG
LSI RC 32 kHz
LSCO
to RTC
OSC32_OUT
LSE OSC
32.768 kHz
/32
OSC32_IN
LSE
LSI
HSE
MCO
/ 1→16
to PWR
SYSCLK
HSI16
OSC_OUT
HSE OSC
4-48 MHz
OSC_IN
Clock
detector
to AHB bus, core, memory and DMA
Clock
source
control
HSI48
MSI
PLLCLK
AHB PRESC
/ 1,2,..512
HCLK
FCLK Cortex free running clock
to Cortex system timer
HSE
/8
MSI
SYSCLK
HSI16
APB1 PRESC
/ 1,2,4,8,16
PCLK1
to APB1 peripherals
x1 or x2
HSI RC
16 MHz
LSE
HSI16
SYSCLK
to USARTx
x=2..3
to LPUART1
HSI16
SYSCLK
MSI RC
100 kHz – 48 MHz
to I2Cx
x=1,2,3
LSI
LSE
HSI16
MSI
PLL
/M
/Q
/R
PLLCLK
to LPTIMx
x=1,2
PCLK2
HSI16
APB2 PRESC
/ 1,2,4,8,16
HSE
/P
PLL48M1CLK
to TIMx
x=2,6,7
to APB2 peripherals
x1 or x2
LSE
HSI16
SYSCLK
MSI
HSI RC
48 MHz
to TIMx
x=1,15,16
to
USART1
48 MHz clock to USB, RNG
SYSCLK
to ADCx, x=1,2
CRS
MSv46900V3
34/192
DS12469 Rev 8
STM32L412xx
3.12
Functional overview
General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be
achieved thanks to their mapping on the AHB2 bus.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
3.13
Direct memory access controller (DMA)
The device embeds 2 DMAs. Refer to Table 7: DMA implementation for the features
implementation.
Direct memory access (DMA) is used in order to provide high-speed data transfer between
peripherals and memory as well as memory to memory. Data can be quickly moved by DMA
without any CPU actions. This keeps CPU resources free for other operations.
The two DMA controllers have 14 channels in total, each dedicated to managing memory
access requests from one or more peripherals. Each has an arbiter for handling the priority
between DMA requests.
The DMA supports:
•
14 independently configurable channels (requests)
•
Each channel is connected to dedicated hardware DMA requests, software trigger is
also supported on each channel. This configuration is done by software.
•
Priorities between requests from channels of one DMA are software programmable (4
levels consisting of very high, high, medium, low) or hardware in case of equality
(example: request 1 has priority over request 2)
•
Independent source and destination transfer size (byte, half word, word), emulating
packing and unpacking. Source/destination addresses must be aligned on the data
size.
•
Support for circular buffer management
•
3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error)
logically ORed together in a single interrupt request for each channel
•
Memory-to-memory transfer
•
Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral
transfers
•
Access to Flash, SRAM, APB and AHB peripherals as source and destination
•
Programmable number of data to be transferred: up to 65536.
Table 7. DMA implementation
DMA features
DMA1
DMA2
Number of regular channels
7
7
DS12469 Rev 8
35/192
49
Functional overview
STM32L412xx
3.14
Interrupts and events
3.14.1
Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 67 maskable interrupt channels plus the 16 interrupt lines of the Cortex®M4.
The NVIC benefits are the following:
•
Closely coupled NVIC gives low latency interrupt processing
•
Interrupt entry vector table address passed directly to the core
•
Allows early processing of interrupts
•
Processing of late arriving higher priority interrupts
•
Support for tail chaining
•
Processor state automatically saved on interrupt entry, and restored on interrupt exit,
with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal
interrupt latency.
3.14.2
Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 37 edge detector lines used to generate
interrupt/event requests and wake-up the system from Stop mode. Each external line can be
independently configured to select the trigger event (rising edge, falling edge, both) and can
be masked independently. A pending register maintains the status of the interrupt requests.
The internal lines are connected to peripherals with wakeup from Stop mode capability. The
EXTI can detect an external line with a pulse width shorter than the internal clock period. Up
to 52 GPIOs can be connected to the 16 external interrupt lines.
36/192
DS12469 Rev 8
STM32L412xx
3.15
Functional overview
Analog to digital converter (ADC)
The device embeds 2 successive approximation analog-to-digital converter with the
following features:
•
12-bit native resolution, with built-in calibration
•
5.33 Msps maximum conversion rate with full resolution
–
Down to 18.75 ns sampling time
–
Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit
resolution)
•
Up to 16 external channels, some of them shared between ADC1 and ADC2.
•
3 internal channels: internal reference voltage, temperature sensor, VBAT/3.
•
One external reference pin is available on some package, allowing the input voltage
range to be independent from the power supply
•
Single-ended and differential mode inputs
•
Low-power design
–
•
3.15.1
Capable of low-current operation at low conversion rate (consumption decreases
linearly with speed)
Highly versatile digital interface
–
Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups
of analog signals conversions can be programmed to differentiate background and
high-priority real-time conversions
–
Handles two ADC converters for dual mode operation (simultaneous or
interleaved sampling modes)
–
Each ADC supports multiple trigger inputs for synchronization with on-chip timers
and external signals
–
Results stored into 2 data register or in RAM with DMA controller support
–
Data pre-processing: left/right alignment and per channel offset compensation
–
Built-in oversampling unit for enhanced SNR
–
Channel-wise programmable sampling time
–
Three analog watchdog for automatic voltage monitoring, generating interrupts
and trigger for selected timers
–
Hardware assistant to prepare the context of the injected channels to allow fast
context switching
Temperature sensor
The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature.
The temperature sensor is internally connected to the ADC1_IN17 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
DS12469 Rev 8
37/192
49
Functional overview
STM32L412xx
Table 8. Temperature sensor calibration values
3.15.2
Calibration value name
Description
Memory address
TS_CAL1
TS ADC raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75A8 - 0x1FFF 75A9
TS_CAL2
TS ADC raw data acquired at a
temperature of 130 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75CA - 0x1FFF 75CB
Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for
the ADC and Comparators. VREFINT is internally connected to the ADC1_IN0 input
channel. The precise voltage of VREFINT is individually measured for each part by ST
during production test and stored in the system memory area. It is accessible in read-only
mode.
Table 9. Internal voltage reference calibration values
3.15.3
Calibration value name
Description
Memory address
VREFINT
Raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75AA - 0x1FFF 75AB
VBAT battery voltage monitoring
This embedded hardware feature allows the application to measure the VBAT battery voltage
using the internal ADC channel ADC1_IN18 or ADC3_IN18. As the VBAT voltage may be
higher than VDDA, and thus outside the ADC input range, the VBAT pin is internally
connected to a bridge divider by 3. As a consequence, the converted digital value is one
third the VBAT voltage.
3.16
Comparators (COMP)
The STM32L412xx devices embed one rail-to-rail comparator with programmable reference
voltage (internal or external), hysteresis and speed (low speed for low-power) and with
selectable output polarity.
The reference voltage can be one of the following:
•
External I/O
•
Internal reference voltage or submultiple (1/4, 1/2, 3/4).
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers
and can be also combined into a window comparator.
3.17
Operational amplifier (OPAMP)
The STM32L412xx embeds one operational amplifier with external or internal follower
routing and PGA capability.
38/192
DS12469 Rev 8
STM32L412xx
Functional overview
The operational amplifier features:
3.18
•
Low input bias current
•
Low offset voltage
•
Low-power mode
•
Rail-to-rail input
Touch sensing controller (TSC)
The touch sensing controller provides a simple solution for adding capacitive sensing
functionality to any application. Capacitive sensing technology is able to detect finger
presence near an electrode which is protected from direct touch by a dielectric (such as
glass or plastic). The capacitive variation introduced by the finger (or any conductive object)
is measured using a proven implementation based on a surface charge transfer acquisition
principle.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware
library which is free to use and allows touch sensing functionality to be implemented reliably
in the end application.
The main features of the touch sensing controller are the following:
•
Proven and robust surface charge transfer acquisition principle
•
Supports up to 12 capacitive sensing channels
•
Up to 3 capacitive sensing channels can be acquired in parallel offering a very good
response time
•
Spread spectrum feature to improve system robustness in noisy environments
•
Full hardware management of the charge transfer acquisition sequence
•
Programmable charge transfer frequency
•
Programmable sampling capacitor I/O pin
•
Programmable channel I/O pin
•
Programmable max count value to avoid long acquisition when a channel is faulty
•
Dedicated end of acquisition and max count error flags with interrupt capability
•
One sampling capacitor for up to 3 capacitive sensing channels to reduce the system
components
•
Compatible with proximity, touchkey, linear and rotary touch sensor implementation
•
Designed to operate with STMTouch touch sensing firmware library
Note:
The number of capacitive sensing channels is dependent on the size of the packages and
subject to I/O availability.
3.19
Random number generator (RNG)
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated
analog circuit.
DS12469 Rev 8
39/192
49
Functional overview
3.20
STM32L412xx
Timers and watchdogs
The STM32L412xx includes one advanced control timers, up to five general-purpose timers,
two basic timers, two low-power timers, two watchdog timers and a SysTick timer. The table
below compares the features of the advanced control, general purpose and basic timers.
Table 10. Timer feature comparison
Timer type
Timer
Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
outputs
Advanced
control
TIM1
16-bit
Up, down,
Up/down
Any integer
between 1
and 65536
Yes
4
3
Generalpurpose
TIM2
32-bit
Up, down,
Up/down
Any integer
between 1
and 65536
Yes
4
No
Generalpurpose
TIM15
16-bit
Up
Any integer
between 1
and 65536
Yes
2
1
Generalpurpose
TIM16
16-bit
Up
Any integer
between 1
and 65536
Yes
1
1
Basic
TIM6
16-bit
Up
Any integer
between 1
and 65536
Yes
0
No
3.20.1
Advanced-control timer (TIM1)
The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6
channels. They have complementary PWM outputs with programmable inserted deadtimes. They can also be seen as complete general-purpose timers. The 4 independent
channels can be used for:
•
Input capture
•
Output compare
•
PWM generation (edge or center-aligned modes) with full modulation capability (0100%)
•
One-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs
disabled to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIMx timers (described in
Section 3.20.2) using the same architecture, so the advanced-control timer can work
together with the TIMx timers via the Timer Link feature for synchronization or event
chaining.
40/192
DS12469 Rev 8
STM32L412xx
3.20.2
Functional overview
General-purpose timers (TIM2, TIM15, TIM16)
There are up to three synchronizable general-purpose timers embedded in the
STM32L412xx (see Table 10 for differences). Each general-purpose timer can be used to
generate PWM outputs, or act as a simple time base.
•
TIM2
It is a full-featured general-purpose timers:
–
TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler.
This timers feature 4 independent channels for input capture/output compare, PWM or
one-pulse mode output. They can work with the other general-purpose timers via the
Timer Link feature for synchronization or event chaining.
The counters can be frozen in debug mode.
All have independent DMA request generation and support quadrature encoder.
•
TIM15 and 16
They are general-purpose timers with mid-range features:
They have 16-bit auto-reload upcounters and 16-bit prescalers.
–
TIM15 has 2 channels and 1 complementary channel
–
TIM16 has 1 channel and 1 complementary channel
All channels can be used for input capture/output compare, PWM or one-pulse mode
output.
The timers can work together via the Timer Link feature for synchronization or event
chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.
3.20.3
Basic timer (TIM6)
The basic timer can be used as generic 16-bit timebase.
3.20.4
Low-power timer (LPTIM1 and LPTIM2)
The devices embed two low-power timers. These timers have an independent clock and are
running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to
wakeup the system from Stop mode.
Both LPTIM1 and LPTIM2 are active in Stop 0, Stop 1 and Stop 2 modes.
This low-power timer supports the following features:
•
16-bit up counter with 16-bit autoreload register
•
16-bit compare register
•
Configurable output: pulse, PWM
•
Continuous/ one shot mode
•
Selectable software/hardware input trigger
•
Selectable clock source
–
Internal clock sources: LSE, LSI, HSI16 or APB clock
–
External clock source over LPTIM input (working even with no internal clock
source running, used by pulse counter application).
•
Programmable digital glitch filter
•
Encoder mode (LPTIM1 only)
DS12469 Rev 8
41/192
49
Functional overview
3.20.5
STM32L412xx
Infrared interface (IRTIM)
The STM32L412xx includes one infrared interface (IRTIM), which can be used with an
infrared LED to perform remote control functions. It uses TIM15 and TIM16 output channels
to generate output signal waveforms on IR_OUT pin.
3.20.6
Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC (LSI) and as it operates independently
from the main clock, it can operate in Stop and Standby modes. It can be used either as a
watchdog to reset the device when a problem occurs, or as a free running timer for
application timeout management. It is hardware or software configurable through the option
bytes. The counter can be frozen in debug mode.
3.20.7
System window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.20.8
SysTick timer
This timer is dedicated to real-time operating systems, but can also be used as a standard
down counter. It features:
42/192
•
A 24-bit down counter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0
•
Programmable clock source
DS12469 Rev 8
STM32L412xx
3.21
Functional overview
Real-time clock (RTC) and backup registers
The RTC is an independent BCD timer/counter. It supports the following features:
•
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
•
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
•
Two programmable alarms.
•
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
•
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
•
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy.
•
Two anti-tamper detection pins with programmable filter.
•
Timestamp feature, which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to
VBAT mode.
•
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable
resolution and period.
The RTC and the 32 backup registers are supplied through a switch that takes power either
from the VDD supply when present or from the VBAT pin.
The backup registers are 32-bit registers used to store 128 bytes of user application data
when VDD power is not present. They are not reset by a system or power reset, or when the
device wakes up from Standby or Shutdown mode.
The RTC clock sources can be:
•
A 32.768 kHz external crystal (LSE)
•
An external resonator or oscillator (LSE)
•
The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
•
The high-speed external clock (HSE) divided by 32.
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the
LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in
all low-power modes except Shutdown mode.
All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt
and wakeup the device from the low-power modes.
DS12469 Rev 8
43/192
49
Functional overview
3.22
STM32L412xx
Inter-integrated circuit interface (I2C)
The device embeds three I2C. Refer to Table 11: I2C implementation for the features
implementation.
The I2C bus interface handles communications between the microcontroller and the serial
I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
•
•
I2C-bus specification and user manual rev. 5 compatibility:
–
Slave and master modes, multimaster capability
–
Standard-mode (Sm), with a bitrate up to 100 kbit/s
–
Fast-mode (Fm), with a bitrate up to 400 kbit/s
–
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
–
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
–
Programmable setup and hold times
–
Optional clock stretching
System Management Bus (SMBus) specification rev 2.0 compatibility:
–
Hardware PEC (Packet Error Checking) generation and verification with ACK
control
–
Address resolution protocol (ARP) support
–
SMBus alert
•
Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
•
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming. Refer to
Figure 4: Clock tree.
•
Wakeup from Stop mode on address match
•
Programmable analog and digital noise filters
•
1-byte buffer with DMA capability
Table 11. I2C implementation
I2C features(1)
I2C1
I2C2
I2C3
Standard-mode (up to 100 kbit/s)
X
X
X
Fast-mode (up to 400 kbit/s)
X
X
X
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)
X
X
X
Programmable analog and digital noise filters
X
X
X
SMBus/PMBus hardware support
X
X
X
Independent clock
X
X
X
Wakeup from Stop 1 mode on address match
X
X
X
Wakeup from Stop 2 mode on address match
-
-
X
1. X: supported
44/192
DS12469 Rev 8
STM32L412xx
3.23
Functional overview
Universal synchronous/asynchronous receiver transmitter
(USART)
The STM32L412xx devices have three embedded universal synchronous receiver
transmitters (USART1, USART2 and USART3).
These interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. They provide hardware management of the CTS and RTS
signals, and RS485 Driver Enable, and are able to communicate at speeds of up to
10 Mbit/s.
USART1, USART2 and USART3 also provide Smart Card mode (ISO 7816 compliant) and
SPI-like communication capability.
All USART have a clock domain independent from the CPU clock, allowing the USARTx
(x=1,2,3) to wake up the MCU from Stop mode using baudrates up to 204 Kbaud. The wake
up events from Stop mode are programmable and can be:
•
Start bit detection
•
Any received data frame
•
A specific programmed data frame
All USART interfaces can be served by the DMA controller.
Table 12. STM32L412xx USART/UART/LPUART features
USART modes/features(1)
USART1
USART2
USART3
LPUART1
Hardware flow control for modem
X
X
X
X
Continuous communication using DMA
X
X
X
X
Multiprocessor communication
X
X
X
X
Synchronous mode
X
X
X
-
Smartcard mode
X
X
X
-
Single-wire half-duplex communication
X
X
X
X
IrDA SIR ENDEC block
X
X
X
-
LIN mode
X
X
X
-
Dual clock domain
X
X
X
X
Wakeup from Stop 0 / Stop 1 modes
X
X
X
X
Wakeup from Stop 2 mode
-
-
-
X
Receiver timeout interrupt
X
X
X
-
Modbus communication
X
X
X
-
Auto baud rate detection
X (4 modes)
Driver Enable
X
LPUART/USART data length
X
X
X
7, 8 and 9 bits
1. X = supported.
DS12469 Rev 8
45/192
49
Functional overview
3.24
STM32L412xx
Low-power universal asynchronous receiver transmitter
(LPUART)
The device embeds one Low-Power UART. The LPUART supports asynchronous serial
communication with minimum power consumption. It supports half duplex single wire
communication and modem operations (CTS/RTS). It allows multiprocessor
communication.
The LPUART has a clock domain independent from the CPU clock, and can wakeup the
system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop
mode are programmable and can be:
•
Start bit detection
•
Any received data frame
•
A specific programmed data frame
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600
baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while
having an extremely low energy consumption. Higher speed clock can be used to reach
higher baudrates.
LPUART interface can be served by the DMA controller.
46/192
DS12469 Rev 8
STM32L412xx
3.25
Functional overview
Serial peripheral interface (SPI)
Three SPI interfaces allow communication up to 40 Mbits/s in master and up to 24 Mbits/s
slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8
master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI
interfaces support NSS pulse mode, TI mode and Hardware CRC calculation.
All SPI interfaces can be served by the DMA controller.
3.26
Universal serial bus (USB)
The STM32L412xx devices embed a full-speed USB device peripheral compliant with the
USB specification version 2.0. The internal USB PHY supports USB FS signaling,
embedded DP pull-up and also battery charging detection according to Battery Charging
Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function
interface with added support for USB 2.0 Link Power Management. It has softwareconfigurable endpoint setting with packet memory up-to 1 KB and suspend/resume support.
It requires a precise 48 MHz clock which can be generated from the internal main PLL (the
clock source must use a HSE crystal oscillator) or by the internal 48 MHz oscillator in
automatic trimming mode. The synchronization for this oscillator can be taken from the USB
data stream itself (SOF signalization) which allows crystal less operation.
3.27
Clock recovery system (CRS)
The STM32L412xx devices embed a special block which allows automatic trimming of the
internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device
operational range. This automatic trimming is based on the external synchronization signal,
which could be either derived from LSE oscillator, from an external signal on CRS_SYNC
pin or generated by user software. For faster lock-in during startup it is also possible to
combine automatic trimming with manual trimming action.
3.28
Quad SPI memory interface (QUADSPI)
The Quad SPI is a specialized communication interface targeting single, dual or quad SPI
Flash memories. It can operate in any of the three following modes:
•
Indirect mode: all the operations are performed using the QUADSPI registers
•
Status polling mode: the external Flash memory status register is periodically read and
an interrupt can be generated in case of flag setting
•
Memory-mapped mode: the external Flash is memory mapped and is seen by the
system as if it were an internal memory
Both throughput and capacity can be increased two-fold using dual-flash mode, where two
Quad SPI flash memories are accessed simultaneously.
DS12469 Rev 8
47/192
49
Functional overview
STM32L412xx
The Quad SPI interface supports:
48/192
•
Three functional modes: indirect, status-polling, and memory-mapped
•
Dual-flash mode, where 8 bits can be sent/received simultaneously by accessing two
flash memories in parallel.
•
SDR and DDR support
•
Fully programmable opcode for both indirect and memory mapped mode
•
Fully programmable frame format for both indirect and memory mapped mode
•
Each of the five following phases can be configured independently (enable, length,
single/dual/quad communication)
–
Instruction phase
–
Address phase
–
Alternate bytes phase
–
Dummy cycles phase
–
Data phase
•
Integrated FIFO for reception and transmission
•
8, 16, and 32-bit data accesses are allowed
•
DMA channel for indirect mode operations
•
Programmable masking for external flash flag management
•
Timeout management
•
Interrupt generation on FIFO threshold, timeout, status match, operation complete, and
access error
DS12469 Rev 8
STM32L412xx
Functional overview
3.29
Development support
3.29.1
Serial wire JTAG debug port (SWJ-DP)
The Arm® SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using only two pins instead of the five required by the JTAG (JTAG pins
can be reused as GPIO with alternate function): the JTAG TMS and TCK pins are shared
with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
3.29.2
Embedded Trace Macrocell™
The Arm® Embedded Trace Macrocell™ provides a greater visibility of the instruction and
data flow inside the CPU core by streaming compressed data at a very high rate from the
STM32L412xx through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then
formatted for display on the host computer that runs the debugger software. TPA hardware
is commercially available from common development tool vendors.
The Embedded Trace Macrocell™ operates with third party debugger software tools.
DS12469 Rev 8
49/192
49
Pinouts and pin description
4
STM32L412xx
Pinouts and pin description
VDD
VSS
PB9
PB8
PH3-BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
Figure 5. STM32L412Rx LQFP64 pinout(1)
VBAT
1
48
VDDUSB
PC13
2
47
VSS
PC14-OSC32_IN
3
46
PA13
PC15-OSC32_OUT
4
45
PA12
PH0-OSC_IN
5
44
PA11
PH1-OSC_OUT
6
43
PA10
NRST
7
42
PA9
PC0
8
41
PA8
PC1
9
40
PC9
PC2
10
39
PC8
PC3
11
38
PC7
VSSA/VREF-
12
37
PC6
VDDA/VREF+
13
36
PB15
PA0
14
35
PB14
PA1
15
34
PB13
PA2
16
33
PB12
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS
VDD
LQFP64
MSv46920V1
1. The above figure shows the package top view.
VDD
VSS
VDD12
PB9
PB8
PH3-BOOT0
PB7
PB6
PB5
PB4
PB3
PC12
PC11
PC10
PA15
PA14
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
Figure 6. STM32L412Rx, external SMPS, LQFP64 pinout(1)
VBAT
1
48
VDDUSB
PC13
2
47
VSS
PC14-OSC32_IN
3
46
PA13
PC15-OSC32_OUT
4
45
PA12
PH0-OSC_IN
5
44
PA11
PH1-OSC_OUT
6
43
PA10
NRST
7
42
PA9
PC0
8
41
PA8
PC1
9
40
PC9
PC2
10
39
PC8
PC3
11
38
PC7
VSSA/VREF-
12
37
PC6
VDDA/VREF+
13
36
PB15
PA0
14
35
PB14
PA1
15
34
PB13
PA2
16
33
PB12
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PB0
PB1
PB2
PB10
PB11
VDD12
VSS
VDD
LQFP64
1. The above figure shows the package top view.
50/192
DS12469 Rev 8
MS46959V1
STM32L412xx
Pinouts and pin description
Figure 7. STM32L412Rx UFBGA64 ballout(1)
1
2
3
4
5
6
7
8
A
PC14OSC32_IN
PC13
PB9
PB4
PB3
PA15
PA14
PA13
B
PC15OSC32_OUT
VBAT
PB8
PH3-BOOT0
PD2
PC11
PC10
PA12
C
PH0-OSC_IN
VSS
PB7
PB5
PC12
PA10
PA9
PA11
D
PH1OSC_OUT
VDD
PB6
VSS
VSS
VSS
PA8
PC9
E
NRST
PC1
PC0
VDD
VDDUSB
VDD
PC7
PC8
F
VSSA/VREF-
PC2
PA2
PA5
PB0
PC6
PB15
PB14
G
PC3
PA0
PA3
PA6
PB1
PB2
PB10
PB13
H
VDDA/VREF+
PA1
PA4
PA7
PC4
PC5
PB11
PB12
MSv46919V1
1. The above figure shows the package top view.
Figure 8. STM32L412Rx UFBGA64, external SMPS, ballout(1)
1
2
3
4
5
6
7
8
A
PC14OSC32_IN
PC13
PB9
PB4
PB3
PA15
PA14
PA13
B
PC15OSC32_OUT
VBAT
PB8
PH3-BOOT0
VDD12
PC11
PC10
PA12
C
PH0-OSC_IN
VSS
PB7
PB5
PC12
PA10
PA9
PA11
D
PH1OSC_OUT
VDD
PB6
VSS
VSS
VSS
PA8
PC9
E
NRST
PC1
PC0
VDD
VDDUSB
VDD
PC7
PC8
F
VSSA/VREF-
PC2
PA2
PA5
PB0
PC6
PB15
PB14
G
PC3
PA0
PA3
PA6
PB1
PB2
PB10
PB13
H
VDDA/VREF+
PA1
PA4
PA7
PC4
VDD12
PB11
PB12
MS53656V1
1. The above figure shows the package top view.
DS12469 Rev 8
51/192
72
Pinouts and pin description
STM32L412xx
VDD
VSS
PB9
PB8
PH3/BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
48
47
46
45
44
43
42
41
40
39
38
37
Figure 9. STM32L412Cx LQFP48 pinout(1)
VBAT
1
36
VDDUSB
PC13
2
35
VSS
PC14/OSC32_IN
3
34
PA13
PC15/OSC32_OUT
4
33
PA12
PH0/OSC_IN
5
32
PA11
PH1/OSC_OUT
6
31
PA10
NRST
7
30
PA9
VSSA
8
29
PA8
VDDA
9
28
PB15
PA0/CK_IN
10
27
PB14
PA1
11
26
PB13
PA2
12
25
PB12
13
14
15
16
17
18
19
20
21
22
23
24
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
VSS
VDD
LQFP48
MSv46916V1
1. The above figure shows the package top view.
VDD
VSS
PB9
PB8
PH3/BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
48
47
46
45
44
43
42
41
40
39
38
37
Figure 10. STM32L412Cx UFQFPN48 pinout(1)
VBAT
1
36
VDDUSB
PC13
2
35
VSS
PC14/OSC32_IN
3
34
PA13
PC15/OSC32_OUT
4
33
PA12
PH0/OSC_IN
5
32
PA11
PH1/OSC_OUT
6
31
PA10
NRST
7
30
PA9
VSSA
8
29
PA8
VDDA
9
28
PB15
PA0/CK_IN
10
27
PB14
PA1
11
26
PB13
PA2
12
25
PB12
13
14
15
16
17
18
19
20
21
22
23
24
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
VSS
VDD
UFQFPN48
MSv46917V1
1. The above figure shows the package top view.
52/192
DS12469 Rev 8
STM32L412xx
Pinouts and pin description
Figure 11. STM32L412Tx WLCSP36 ballout(1)
1
2
3
4
5
6
A
PA12
PA14
PB4
PB7
VSS
VDD
B
PA11
PA13
PB3
PB6
PB8
PC14
C
PA9
PA10
PA15
PB5
D
PA8
PB1
PA6
PA1
PA0
NRST
E
VDD
PB2
PA7
PA5
PA2
VREF+
F
VSS
PB10
PB0
PA4
PA3
VDDA
PH3
PC15
BOOT0
MS49688V1
1. The above figure shows the package top view.
Figure 12. STM32L412Tx, external SMPS, WLCSP36 ballout(1)
1
2
3
4
5
6
A
PA12
PA14
PB4
PB7
VSS
VDD
B
PA11
PA13
PB3
PB6
VDD12
PC14
C
PA9
PA10
PA15
PB5
PH3
PC15
D
PA8
PB1
PA6
PA2
PA1
NRST
E
VDD
PB10
PB0
PA5
PA3
VDDA/
VREF+
F
VSS
VDD12
PB2
PA7
PA4
PA0
MS51459V1
1. The above figure shows the package top view.
DS12469 Rev 8
53/192
72
Pinouts and pin description
STM32L412xx
VSS
PH3-BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
32
31
30
29
28
27
26
25
Figure 13. STM32L412Kx LQFP32 pinout(1)
VDD
1
24
PA14
PC14-OSC32_IN
2
23
PA13
PC15-OSC32_OUT
3
22
PA12
NRST
4
21
PA11
VDDA/VREF+
5
20
PA10
PA0-CK_IN
6
19
PA9
PA1
7
18
PA8
PA2
8
17
VDD
9
10
11
12
13
14
15
16
PA3
PA4
PA5
PA6
PA7
PB0
PB1
VSS
LQFP32
MSv46914V1
1. The above figure shows the package top view.
VSS
PH3-BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
32
31
30
29
28
27
26
25
Figure 14. STM32L412Kx UFQFPN32 pinout(1)
VDD
1
24
PA14
PC14-OSC32_IN
2
23
PA13
PC15-OSC32_OUT
3
22
PA12
NRST
4
21
PA11
VDDA/VREF+
5
20
PA10
PA0-CK_IN
6
19
PA9
PA1
7
18
PA8
PA2
8
17
VDD
9
10
11
12
13
14
15
16
PA3
PA4
PA5
PA6
PA7
PB0
PB1
VSS
UFQFPN32
MSv46915V1
1. The above figure shows the package top view.
54/192
DS12469 Rev 8
STM32L412xx
Pinouts and pin description
Table 13. Legend/abbreviations used in the pinout table
Name
Pin name
Pin type
Abbreviation
Definition
Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
TT
3.6 V tolerant I/O
RST
Bidirectional reset pin with embedded weak pull-up resistor
I/O structure
Option for TT or FT I/Os
_f (1)
_u
I/O, Fm+ capable
(2)
I/O, with USB function supplied by VDDUSB
_a (3)
Notes
I/O, with Analog switch function supplied by VDDA
Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.
Alternate
Functions selected through GPIOx_AFR registers
functions
Pin
functions Additional
Functions directly selected/enabled through peripheral registers
functions
1. The related I/O structures in Table 14 are: FT_f, FT_fa.
2. The related I/O structures in Table 14 are: FT_u, FT_fu.
3. The related I/O structures in Table 14 are: FT_a, FT_fa, TT_a.
DS12469 Rev 8
55/192
72
WLCSP36 SMPS
WLCSP36
LQFP48
UFQFPN48
LQFP64 SMPS
LQFP64
UFBGA64
UFBGA64 SMPS
Pin type
I/O structure
Notes
Alternate functions
-
-
-
-
1
1
1
1
B2
B2
VBAT
S
-
-
-
-
-
-
-
-
2
2
2
2
A2
A2
PC13
I/O
FT
-
EVENTOUT
RTC_TAMP1/RTC_TS/RT
C_OUT1/WKUP2
2
2
B6
B6
3
3
3
3
A1
A1
PC14-OSC32_IN
(PC14)
I/O
FT
-
EVENTOUT
OSC32_IN
3
3
C6
C6
4
4
4
4
B1
B1
PC15OSC32_OUT
(PC15)
I/O
FT
-
EVENTOUT
OSC32_OUT
-
-
-
-
5
5
5
5
C1
C1
PH0-OSC_IN
(PH0)
I/O
FT
-
EVENTOUT
OSC_IN
-
-
-
-
6
6
6
6
D1
D1
PH1-OSC_OUT
(PH1)
I/O
FT
-
EVENTOUT
OSC_OUT
4
4
D6
D6
7
7
7
7
E1
E1
NRST
I/O
RST
-
-
-
-
-
-
-
-
-
8
8
E3
E3
PC0
I/O
FT_fa
-
TRACECK, LPTIM1_IN1,
I2C3_SCL, LPUART1_RX,
LPTIM2_IN1, EVENTOUT
ADC12_IN1
-
-
-
-
-
-
9
9
E2
E2
PC1
I/O
FT_fa
-
TRACED0, LPTIM1_OUT,
I2C3_SDA, LPUART1_TX,
EVENTOUT
ADC12_IN2
-
-
-
-
-
-
10
10
F2
F2
PC2
I/O
FT_a
-
LPTIM1_IN2, SPI2_MISO,
EVENTOUT
ADC12_IN3
-
-
-
-
-
-
11
11
G1
G1
PC3
I/O
FT_a
-
LPTIM1_ETR, SPI2_MOSI,
LPTIM2_ETR, EVENTOUT
ADC12_IN4
-
-
-
-
8
8
12
12
F1
F1
VSSA/VREF-
S
-
-
-
-
-
-
E6
E6
-
-
-
-
-
-
VREF+
S
-
-
-
-
Pin name
(function after
reset)
Additional functions
STM32L412xx
UFQFPN32
DS12469 Rev 8
LQFP32
Pin Number
Pinouts and pin description
56/192
Table 14. STM32L412xx pin definitions
LQFP32
UFQFPN32
WLCSP36 SMPS
WLCSP36
LQFP48
UFQFPN48
LQFP64 SMPS
LQFP64
UFBGA64
UFBGA64 SMPS
Pin type
I/O structure
Notes
Pin Number
Alternate functions
-
-
-
F6
-
-
-
-
-
-
VDDA
S
-
-
-
5
5
E6
-
9
9
13
13
H1
H1
VDDA/VREF+
S
-
-
-
DS12469 Rev 8
6
7
8
-
6
7
8
-
F6
D5
D4
-
D5
D4
E5
10
-
11
12
10
-
11
12
14
-
15
16
14
-
15
16
G2
-
H2
F3
G2
-
H2
F3
Pin name
(function after
reset)
PA0
PA0-CK_IN
PA1
PA2
I/O
I/O
I/O
I/O
FT_a
FT_a
FT_a
FT_a
TT_a
-
-
-
-
TIM2_CH1, USART2_CTS,
OPAMP1_VINP,
COMP1_OUT, TIM2_ETR, COMP1_INM, ADC1_IN5,
EVENTOUT
RTC_TAMP2/WKUP1
-
OPAMP1_VINP,
TIM2_CH1, USART2_CTS,
COMP1_INM, ADC1_IN5,
COMP1_OUT, TIM2_ETR,
RTC_TAMP2/WKUP1,
EVENTOUT
CK_IN
-
TIM2_CH2, I2C1_SMBA,
SPI1_SCK,
USART2_RTS_DE,
TIM15_CH1N, EVENTOUT
OPAMP1_VINM,
COMP1_INP, ADC1_IN6
-
TIM2_CH3, USART2_TX,
LPUART1_TX,
QUADSPI_BK1_NCS,
TIM15_CH1, EVENTOUT
ADC12_IN7,
WKUP4/LSCO
-
TIM2_CH4, USART2_RX,
LPUART1_RX,
QUADSPI_CLK,
TIM15_CH2, EVENTOUT
OPAMP1_VOUT,
ADC12_IN8
9
9
F5
F5
13
13
17
17
G3
G3
-
-
-
-
-
-
18
18
C2
C2
VSS
S
-
-
-
-
-
-
-
-
-
-
19
19
D2
D2
VDD
S
-
-
-
-
10
10
F5
F4
14
14
20
20
H3
H3
PA4
I/O
TT_a
SPI1_NSS, USART2_CK,
COMP1_INM, ADC12_IN9
LPTIM2_OUT, EVENTOUT
57/192
Pinouts and pin description
PA3
I/O
Additional functions
STM32L412xx
Table 14. STM32L412xx pin definitions (continued)
WLCSP36
LQFP48
UFQFPN48
LQFP64 SMPS
LQFP64
UFBGA64
UFBGA64 SMPS
E4
E4
15
15
21
21
F4
F4
12
12
D3
D3
16
16
22
22
G4
G4
PA5
PA6
DS12469 Rev 8
Alternate functions
Additional functions
I/O
TT_a
TIM2_CH1, TIM2_ETR,
SPI1_SCK, LPTIM2_ETR,
EVENTOUT
COMP1_INM,
ADC12_IN10
FT_a
TIM1_BKIN, SPI1_MISO,
COMP1_OUT,
USART3_CTS,
LPUART1_CTS,
QUADSPI_BK1_IO3,
TIM16_CH1, EVENTOUT
ADC12_IN11
ADC12_IN12
I/O
Notes
WLCSP36 SMPS
11
I/O structure
UFQFPN32
11
Pin name
(function after
reset)
Pin type
LQFP32
Pin Number
13
F4
E3
17
17
23
23
H4
H4
PA7
I/O
FT_fa
-
-
-
-
-
-
24
24
H5
H5
PC4
I/O
FT_a
USART3_TX, EVENTOUT
COMP1_INM,
ADC12_IN13
-
-
-
-
-
-
-
25
H6
-
PC5
I/O
FT_a
USART3_RX, EVENTOUT
COMP1_INP,
ADC12_IN14, WKUP5
FT_a
TRACED0, TIM1_CH2N,
SPI1_NSS, USART3_CK,
QUADSPI_BK1_IO1,
COMP1_OUT, EVENTOUT
ADC12_IN15
TRACED1, TIM1_CH3N,
USART3_RTS_DE,
LPUART1_RTS_DE,
QUADSPI_BK1_IO0,
LPTIM2_IN1, EVENTOUT
COMP1_INM,
ADC12_IN16
14
14
E3
F3
18
18
25
26
F5
F5
PB0
I/O
15
15
D2
D2
19
19
26
27
G5
G5
PB1
I/O
FT_a
-
-
F3
E2
20
20
27
28
G6
G6
PB2
I/O
FT_a
LPTIM1_OUT, I2C3_SMBA,
COMP1_INP, RTC_OUT2
EVENTOUT
STM32L412xx
13
TIM1_CH1N, I2C3_SCL,
SPI1_MOSI,
QUADSPI_BK1_IO2,
EVENTOUT
Pinouts and pin description
58/192
Table 14. STM32L412xx pin definitions (continued)
-
-
-
-
E2
-
F2
-
21
22
21
28
22
29
29
30
G7
G7
PB10
H7
H7
PB11
I/O
I/O
Notes
I/O structure
Pin name
(function after
reset)
Pin type
UFBGA64 SMPS
UFBGA64
LQFP64
LQFP64 SMPS
UFQFPN48
LQFP48
WLCSP36
WLCSP36 SMPS
UFQFPN32
LQFP32
Pin Number
DS12469 Rev 8
Alternate functions
Additional functions
FT_f
TIM2_CH3, I2C2_SCL,
SPI2_SCK, USART3_TX,
LPUART1_RX, TSC_SYNC,
QUADSPI_CLK,
COMP1_OUT, EVENTOUT
-
FT_f
TIM2_CH4, I2C2_SDA,
USART3_RX, LPUART1_TX,
QUADSPI_BK1_NCS,
EVENTOUT
-
-
F2
-
-
-
30
-
-
H6
VDD12
S
-
-
-
-
16
F1
F1
23
23
31
31
D6
D6
VSS
S
-
-
-
-
17
17
E1
E1
24
24
32
32
E6
E6
VDD
S
-
-
-
-
-
TIM1_BKIN, I2C2_SMBA,
SPI2_NSS, USART3_CK,
LPUART1_RTS_DE,
TSC_G1_IO1, TIM15_BKIN,
EVENTOUT
-
FT_f
TIM1_CH1N, I2C2_SCL,
SPI2_SCK, USART3_CTS,
LPUART1_CTS,
TSC_G1_IO2, TIM15_CH1N,
EVENTOUT
-
FT_f
TIM1_CH2N, I2C2_SDA,
SPI2_MISO,
USART3_RTS_DE,
TSC_G1_IO3, TIM15_CH1,
EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
-
-
25
26
27
25
26
27
33
34
35
33
34
35
H8
G8
F8
H8
G8
F8
PB12
PB13
PB14
I/O
I/O
I/O
FT
-
59/192
Pinouts and pin description
16
STM32L412xx
Table 14. STM32L412xx pin definitions (continued)
UFQFPN32
WLCSP36 SMPS
WLCSP36
LQFP48
UFQFPN48
LQFP64 SMPS
LQFP64
UFBGA64
UFBGA64 SMPS
Pin type
I/O structure
Notes
DS12469 Rev 8
LQFP32
Pin Number
Alternate functions
-
-
-
-
28
28
36
36
F7
F7
PB15
I/O
FT
-
RTC_REFIN, TIM1_CH3N,
SPI2_MOSI, TSC_G1_IO4,
TIM15_CH2, EVENTOUT
-
-
-
-
-
-
-
37
37
F6
F6
PC6
I/O
FT
-
TSC_G4_IO1, EVENTOUT
-
-
-
-
-
-
-
38
38
E7
E7
PC7
I/O
FT
-
TSC_G4_IO2, EVENTOUT
-
-
-
-
-
-
-
39
39
E8
E8
PC8
I/O
FT
-
TSC_G4_IO3, EVENTOUT
-
TSC_G4_IO4, USB_NOE,
EVENTOUT
-
Pin name
(function after
reset)
Additional functions
-
-
-
-
-
40
40
D8
D8
PC9
I/O
FT
-
18
18
D1
D1
29
29
41
41
D7
D7
PA8
I/O
FT
MCO, TIM1_CH1,
- USART1_CK, LPTIM2_OUT,
EVENTOUT
-
19
19
C1
C1
30
30
42
42
C7
C7
PA9
I/O
FT_f
-
TIM1_CH2, I2C1_SCL,
USART1_TX, TIM15_BKIN,
EVENTOUT
-
-
TIM1_CH3, I2C1_SDA,
USART1_RX,
USB_CRS_SYNC,
EVENTOUT
-
-
-
20
20
C2
C2
31
31
43
43
C6
C6
PA10
I/O
FT_f
21
21
B1
B1
32
32
44
44
C8
C8
PA11
I/O
FT_u
-
TIM1_CH4, TIM1_BKIN2,
SPI1_MISO, COMP1_OUT,
USART1_CTS, USB_DM,
TIM1_BKIN2_COMP1,
EVENTOUT
22
22
A1
A1
33
33
45
45
B8
B8
PA12
I/O
FT_u
-
TIM1_ETR, SPI1_MOSI,
USART1_RTS_DE,
USB_DP, EVENTOUT
STM32L412xx
-
Pinouts and pin description
60/192
Table 14. STM32L412xx pin definitions (continued)
UFQFPN32
WLCSP36 SMPS
WLCSP36
LQFP48
UFQFPN48
LQFP64 SMPS
LQFP64
UFBGA64
UFBGA64 SMPS
Pin type
I/O structure
Notes
DS12469 Rev 8
LQFP32
Pin Number
Alternate functions
23
23
B2
B2
34
34
46
46
A8
A8
PA13
(JTMS/SWDIO)
I/O
FT
-
JTMS/SWDIO, IR_OUT,
USB_NOE, EVENTOUT
-
-
-
-
-
35
35
47
47
D5
D5
VSS
S
-
-
-
-
-
-
-
-
36
36
48
48
E5
E5
VDDUSB
S
-
-
-
-
24
24
A2
A2
37
37
49
49
A7
A7
PA14
(JTCK/SWCLK)
I/O
FT
-
JTCK/SWCLK,
LPTIM1_OUT, I2C1_SMBA,
EVENTOUT
-
-
Pin name
(function after
reset)
Additional functions
25
C3
C3
38
38
50
50
A6
A6
PA15 (JTDI)
I/O
FT
-
-
-
-
-
-
-
51
51
B7
B7
PC10
I/O
FT
-
TRACED1, USART3_TX,
TSC_G3_IO2, EVENTOUT
-
-
-
-
-
-
-
52
52
B6
B6
PC11
I/O
FT
-
USART3_RX, TSC_G3_IO3,
EVENTOUT
-
-
-
-
-
-
-
53
53
C5
C5
PC12
I/O
FT
-
TRACED3, USART3_CK,
TSC_G3_IO4, EVENTOUT
-
-
-
-
-
-
-
-
54
B5
-
PD2
I/O
FT
-
TRACED2,
USART3_RTS_DE,
TSC_SYNC, EVENTOUT
-
A5
PB3
(JTDO/TRACESW
O)
-
JTDO/TRACESWO,
TIM2_CH2, SPI1_SCK,
USART1_RTS_DE,
EVENTOUT
-
26
26
B3
B3
39
39
54
55
A5
I/O
FT_a
61/192
Pinouts and pin description
25
JTDI, TIM2_CH1,
TIM2_ETR, USART2_RX,
SPI1_NSS,
USART3_RTS_DE,
TSC_G3_IO1, EVENTOUT
STM32L412xx
Table 14. STM32L412xx pin definitions (continued)
WLCSP36
LQFP48
UFQFPN48
LQFP64 SMPS
LQFP64
UFBGA64
UFBGA64 SMPS
A3
A3
40
40
55
56
A4
A4
28
28
C4
C4
41
41
56
57
C4
C4
PB4 (NJTRST)
I/O
FT_fa
PB5
I/O
DS12469 Rev 8
Notes
WLCSP36 SMPS
27
I/O structure
UFQFPN32
27
Pin name
(function after
reset)
Pin type
LQFP32
Pin Number
Alternate functions
Additional functions
-
NJTRST, I2C3_SDA,
SPI1_MISO, USART1_CTS,
TSC_G2_IO1, EVENTOUT
-
FT
TRACED2, LPTIM1_IN1,
I2C1_SMBA, SPI1_MOSI,
USART1_CK, TSC_G2_IO2,
TIM16_BKIN, EVENTOUT
-
-
29
B4
B4
42
42
57
58
D3
D3
PB6
I/O
FT_fa
30
30
A4
A4
43
43
58
59
C3
C3
PB7
I/O
FT_fa
-
TRACECK, LPTIM1_IN2,
I2C1_SDA, USART1_RX,
TSC_G2_IO4, EVENTOUT
PVD_IN
31
31
C5
C5
44
44
59
60
B4
B4
PH3-BOOT0
(BOOT0)
I/O
FT
-
EVENTOUT
-
-
-
-
B5
45
45
60
61
B3
B3
PB8
I/O
FT_f
-
I2C1_SCL, TIM16_CH1,
EVENTOUT
-
-
-
-
-
46
46
61
62
A3
A3
PB9
I/O
FT_f
-
IR_OUT, I2C1_SDA,
SPI2_NSS, EVENTOUT
-
-
-
B5
-
-
-
62
-
-
B5
VDD12
S
-
-
-
32
32
A5
A5
47
47
63
63
D4
D4
VSS
S
-
-
-
1
1
A6
A6
48
48
64
64
E4
E4
VDD
S
-
-
-
STM32L412xx
29
TRACED3, LPTIM1_ETR,
I2C1_SCL, USART1_TX,
TSC_G2_IO3, TIM16_CH1N,
EVENTOUT
Pinouts and pin description
62/192
Table 14. STM32L412xx pin definitions (continued)
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/TIM2/LPT
IM1
TIM1/TIM2
USART2
I2C1/I2C2/I2C3
SPI1/SPI2
COMP1
USART1/USA
RT2/USART3
PA0
-
TIM2_CH1
-
-
-
-
-
USART2_CTS
PA1
-
TIM2_CH2
-
-
I2C1_SMBA
SPI1_SCK
-
USART2_RTS_
DE
PA2
-
TIM2_CH3
-
-
-
-
-
USART2_TX
PA3
-
TIM2_CH4
-
-
-
-
-
USART2_RX
PA4
-
-
-
-
-
SPI1_NSS
-
USART2_CK
PA5
-
TIM2_CH1
TIM2_ETR
-
-
SPI1_SCK
-
-
PA6
-
TIM1_BKIN
-
-
SPI1_MISO
COMP1_OUT
USART3_CTS
PA7
-
TIM1_CH1N
-
-
SPI1_MOSI
-
-
PA8
MCO
TIM1_CH1
-
-
-
-
USART1_CK
PA9
-
TIM1_CH2
-
-
I2C1_SCL
-
-
USART1_TX
PA10
-
TIM1_CH3
-
-
I2C1_SDA
-
-
USART1_RX
PA11
-
TIM1_CH4
TIM1_BKIN2
-
-
SPI1_MISO
COMP1_OUT
USART1_CTS
PA12
-
TIM1_ETR
-
-
-
SPI1_MOSI
-
USART1_RTS_
DE
PA13
JTMS/SWDAT
IR_OUT
-
-
-
-
-
-
PA14
JTCK/SWCLK
LPTIM1_OUT
-
-
I2C1_SMBA
-
-
-
PA15
JTDI
TIM2_CH1
TIM2_ETR
USART2_RX
-
SPI1_NSS
-
USART3_RTS_
DE
Port
DS12469 Rev 8
Port A
I2C3_SCL
63/192
Pinouts and pin description
AF0
STM32L412xx
Table 15. Alternate function AF0 to AF7(1)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/TIM2/LPT
IM1
TIM1/TIM2
USART2
I2C1/I2C2/I2C3
SPI1/SPI2
COMP1
USART1/USA
RT2/USART3
PB0
TRACED0
TIM1_CH2N
-
-
-
SPI1_NSS
-
USART3_CK
PB1
TRACED1
TIM1_CH3N
-
-
-
-
-
USART3_RTS_
DE
PB2
-
LPTIM1_OUT
-
-
I2C3_SMBA
-
-
-
PB3
JTDO/TRACES
WO
TIM2_CH2
-
-
-
SPI1_SCK
-
USART1_RTS_
DE
PB4
NJTRST
-
-
-
I2C3_SDA
SPI1_MISO
-
USART1_CTS
PB5
TRACED2
LPTIM1_IN1
-
-
I2C1_SMBA
SPI1_MOSI
-
USART1_CK
PB6
TRACED3
LPTIM1_ETR
-
-
I2C1_SCL
-
-
USART1_TX
PB7
TRACECK
LPTIM1_IN2
-
-
I2C1_SDA
-
-
USART1_RX
PB8
-
-
-
-
I2C1_SCL
-
-
-
PB9
-
IR_OUT
-
-
I2C1_SDA
SPI2_NSS
-
-
PB10
-
TIM2_CH3
-
-
I2C2_SCL
SPI2_SCK
-
USART3_TX
PB11
-
TIM2_CH4
-
-
I2C2_SDA
-
USART3_RX
PB12
-
TIM1_BKIN
-
-
I2C2_SMBA
SPI2_NSS
-
USART3_CK
PB13
-
TIM1_CH1N
-
-
I2C2_SCL
SPI2_SCK
-
USART3_CTS
PB14
-
TIM1_CH2N
-
-
I2C2_SDA
SPI2_MISO
-
USART3_RTS_
DE
PB15
RTC_REFIN
TIM1_CH3N
-
-
-
SPI2_MOSI
-
-
Port
DS12469 Rev 8
Port B
Pinouts and pin description
64/192
Table 15. Alternate function AF0 to AF7(1) (continued)
STM32L412xx
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/TIM2/LPT
IM1
TIM1/TIM2
USART2
I2C1/I2C2/I2C3
SPI1/SPI2
COMP1
USART1/USA
RT2/USART3
PC0
TRACECK
LPTIM1_IN1
-
-
I2C3_SCL
-
-
-
PC1
TRACED0
LPTIM1_OUT
-
-
I2C3_SDA
-
-
-
PC2
-
LPTIM1_IN2
-
-
-
SPI2_MISO
-
-
PC3
-
LPTIM1_ETR
-
-
-
SPI2_MOSI
-
-
PC4
-
-
-
-
-
-
-
USART3_TX
PC5
-
-
-
-
-
-
-
USART3_RX
PC6
-
-
-
-
-
-
-
-
PC7
-
-
-
-
-
-
-
-
PC8
-
-
-
-
-
-
-
-
PC9
-
-
-
-
-
-
-
-
PC10
TRACED1
-
-
-
-
-
-
USART3_TX
PC11
-
-
-
-
-
-
-
USART3_RX
PC12
TRACED3
-
-
-
-
-
-
USART3_CK
PC13
-
-
-
-
-
-
-
-
PC14
-
-
-
-
-
-
-
-
PC15
-
-
-
-
-
-
-
-
PD2
TRACED2
-
-
-
-
-
-
USART3_RTS_
DE
PH0
-
-
-
-
-
-
-
-
PH1
-
-
-
-
-
-
-
-
PH3
-
-
-
-
-
-
-
-
Port
DS12469 Rev 8
Port C
Port D
Port H
1. Refer to Table 16 for AF8 to AF15.
65/192
Pinouts and pin description
AF0
STM32L412xx
Table 15. Alternate function AF0 to AF7(1) (continued)
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
LPUART1
TSC
QUADSPI
-
COMP1
-
TIM2/TIM15/
TIM16/LPTIM2
EVENOUT
PA0
-
-
-
-
-
TIM2_ETR
EVENTOUT
PA1
-
-
-
-
-
-
TIM15_CH1N
EVENTOUT
Port
DS12469 Rev 8
Port A
COMP1_OUT
PA2
LPUART1_TX
-
QUADSPI_BK1
_NCS
-
-
-
TIM15_CH1
EVENTOUT
PA3
LPUART1_RX
-
QUADSPI_CLK
-
-
-
TIM15_CH2
EVENTOUT
PA4
-
-
-
-
-
-
LPTIM2_OUT
EVENTOUT
PA5
-
-
-
-
-
-
LPTIM2_ETR
EVENTOUT
PA6
LPUART1_CTS
-
QUADSPI_BK1
_IO3
-
-
-
TIM16_CH1
EVENTOUT
PA7
-
-
QUADSPI_BK1
_IO2
-
-
-
PA8
-
-
-
-
-
-
LPTIM2_OUT
EVENTOUT
PA9
-
-
-
-
-
-
TIM15_BKIN
EVENTOUT
PA10
-
-
USB_CRS_SY
NC
-
-
-
-
EVENTOUT
PA11
-
-
USB_DM
-
TIM1_BKIN2_C
OMP1
-
-
EVENTOUT
PA12
-
-
USB_DP
-
-
-
-
EVENTOUT
PA13
-
-
USB_NOE
-
-
-
-
EVENTOUT
PA14
-
-
-
-
-
-
-
EVENTOUT
PA15
-
-
-
-
-
-
EVENTOUT
TSC_G3_IO1
-
Pinouts and pin description
66/192
Table 16. Alternate function AF8 to AF15(1)
EVENTOUT
STM32L412xx
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
LPUART1
TSC
QUADSPI
-
COMP1
-
TIM2/TIM15/
TIM16/LPTIM2
EVENOUT
PB0
-
-
QUADSPI_BK1
_IO1
-
-
-
-
PB1
LPUART1_RTS
_DE
-
QUADSPI_BK1
_IO0
-
PB2
-
-
-
-
-
-
-
EVENTOUT
PB3
-
-
-
-
-
-
-
EVENTOUT
PB4
-
TSC_G2_IO1
-
-
-
-
-
EVENTOUT
PB5
-
TSC_G2_IO2
-
-
-
-
TIM16_BKIN
EVENTOUT
PB6
-
TSC_G2_IO3
-
-
-
-
TIM16_CH1N
EVENTOUT
PB7
-
TSC_G2_IO4
-
-
-
-
PB8
-
-
-
-
-
-
PB9
-
-
-
-
-
-
-
EVENTOUT
-
QUADSPI_CLK
-
-
-
-
EVENTOUT
QUADSPI_BK1
_NCS
-
-
-
EVENTOUT
Port
DS12469 Rev 8
Port B
PB10 LPUART1_RX
TSC_SYNC
COMP1_OUT
COMP1_OUT
-
LPTIM2_IN1
TIM16_CH1
STM32L412xx
Table 16. Alternate function AF8 to AF15(1) (continued)
EVENTOUT
EVENTOUT
EVENTOUT
EVENTOUT
LPUART1_TX
PB12
LPUART1_RTS
TSC_G1_IO1
_DE
-
-
-
-
TIM15_BKIN
EVENTOUT
PB13 LPUART1_CTS TSC_G1_IO2
-
-
-
-
TIM15_CH1N
EVENTOUT
PB14
-
TSC_G1_IO3
-
-
-
-
TIM15_CH1
EVENTOUT
PB15
-
TSC_G1_IO4
-
-
-
-
TIM15_CH2
EVENTOUT
67/192
Pinouts and pin description
PB11
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
LPUART1
TSC
QUADSPI
-
COMP1
-
TIM2/TIM15/
TIM16/LPTIM2
EVENOUT
LPTIM2_IN1
Port
DS12469 Rev 8
Port C
Port D
Port H
PC0
LPUART1_RX
-
-
-
-
-
EVENTOUT
PC1
LPUART1_TX
-
-
-
-
-
-
EVENTOUT
-
EVENTOUT
PC2
-
-
-
-
-
-
PC3
-
-
-
-
-
-
PC4
-
-
-
-
-
-
-
EVENTOUT
PC5
-
-
-
-
-
-
-
EVENTOUT
PC6
-
TSC_G4_IO1
-
-
-
-
-
EVENTOUT
PC7
-
TSC_G4_IO2
-
-
-
-
-
EVENTOUT
PC8
-
TSC_G4_IO3
-
-
-
-
-
EVENTOUT
PC9
-
TSC_G4_IO4
-
-
-
-
EVENTOUT
PC10
-
TSC_G3_IO2
-
-
-
-
-
EVENTOUT
PC11
-
TSC_G3_IO3
-
-
-
-
-
EVENTOUT
PC12
-
TSC_G3_IO4
-
-
-
-
-
EVENTOUT
PC13
-
-
-
-
-
-
-
EVENTOUT
PC14
-
-
-
-
-
-
-
EVENTOUT
PC15
-
-
-
-
-
-
-
EVENTOUT
PD2
-
-
-
-
-
-
EVENTOUT
PH0
-
-
-
-
-
-
-
EVENTOUT
PH1
-
-
-
-
-
-
-
PH3
-
-
-
-
-
-
-
EVENTOUT
EVENTOUT
STM32L412xx
1. Refer to Table 15 for AF0 to AF7.
TSC_SYNC
USB_NOE
LPTIM2_ETR
Pinouts and pin description
68/192
Table 16. Alternate function AF8 to AF15(1) (continued)
STM32L412xx
5
Memory mapping
Memory mapping
Figure 15. STM32L412xx memory map
0xFFFF FFFF
0xBFFF FFFF
Cortex™-M4
with FPU
Internal
Peripherals
7
Reserved
0xA000 1400
QUADSPI registers
0xA000 1000
0xE000 0000
0x5FFF FFFF
Reserved
6
0x5006 0C00
AHB2
0x4800 0000
Reserved
0xC000 0000
QUADSPI
registers
5
0x4002 4400
AHB1
0x4002 0000
0xA000 1000
0x4001 5800
0xA000 0000
QUADSPI Flash
bank
4
0x9000 0000
Reserved
APB2
0x4001 0000
Reserved
0x4000 9800
APB1
0x4000 0000
0x1FFF FFFF
0x8000 0000
3
Reserved
0x6000 0000
0x1FFF 7810
Options Bytes
2
0x1FFF 7800
Reserved
0x1FFF 7400
Peripherals
0x4000 0000
OTP area
0x1FFF 7000
System memory
1
0x2000 A000
0x2000 8000
SRAM2
SRAM1
0x2000 0000
0x1FFF 0000
Reserved
0x1000 2000
SRAM2
0x1000 0000
Reserved
0
CODE
0x0802 0000
Flash memory
0x0800 0000
0x0000 0000
0x0002 0000
Reserved
0x0000 0000
Reserved
Flash, system memory
or SRAM, depending on
BOOT configuration
MSv45997V1
DS12469 Rev 8
69/192
72
Memory mapping
STM32L412xx
Table 17. STM32L412xx memory map and peripheral register boundary addresses(1)
Bus
Boundary address
-
AHB1
70/192
Peripheral
0x5006 0800 - 0x5006 0BFF
1 KB
RNG
0x5006 0400 - 0x5006 07FF
1 KB
Reserved
128 KB
Reserved
0x5004 0400 - 5006 07FF
AHB2
Size(bytes)
0x5004 0000 - 0x5004 03FF
1 KB
ADC
0x5000 0000 - 0x5003 FFFF
16 KB
Reserved
0x4800 2000 - 0x4FFF FFFF
~127 MB
Reserved
0x4800 1C00 - 0x4800 1FFF
1 KB
GPIOH
0x4800 1000 - 0x4800 1BFF
3 KB
Reserved
0x4800 0C00 - 0x4800 0FFF
1 KB
GPIOD
0x4800 0800 - 0x4800 0BFF
1 KB
GPIOC
0x4800 0400 - 0x4800 07FF
1 KB
GPIOB
0x4800 0000 - 0x4800 03FF
1 KB
GPIOA
0x4002 4400 - 0x47FF FFFF
~127 MB
0x4002 4000 - 0x4002 43FF
1 KB
TSC
0x4002 3400 - 0x4002 3FFF
1 KB
Reserved
0x4002 3000 - 0x4002 33FF
1 KB
CRC
0x4002 2400 - 0x4002 2FFF
3 KB
Reserved
0x4002 2000 - 0x4002 23FF
1 KB
FLASH registers
0x4002 1400 - 0x4002 1FFF
3 KB
Reserved
0x4002 1000 - 0x4002 13FF
1 KB
RCC
0x4002 0800 - 0x4002 0FFF
2 KB
Reserved
0x4002 0400 - 0x4002 07FF
1 KB
DMA2
0x4002 0000 - 0x4002 03FF
1 KB
DMA1
DS12469 Rev 8
Reserved
STM32L412xx
Memory mapping
Table 17. STM32L412xx memory map and peripheral register boundary addresses(1)
(continued)
Bus
APB2
APB1
Boundary address
Size(bytes)
Peripheral
0x4001 4800 - 0x4001 FFFF
46 KB
Reserved
0x4001 4400 - 0x4001 47FF
1 KB
TIM16
0x4001 4000 - 0x4001 43FF
1 KB
TIM15
0x4001 3C00 - 0x4001 3FFF
1 KB
Reserved
0x4001 3800 - 0x4001 3BFF
1 KB
USART1
0x4001 3400 - 0x4001 37FF
1 KB
Reserved
0x4001 3000 - 0x4001 33FF
1 KB
SPI1
0x4001 2C00 - 0x4001 2FFF
1 KB
TIM1
0x4001 2000 - 0x4001 2BFF
3 KB
Reserved
0x4001 1C00 - 0x4001 1FFF
1 KB
FIREWALL
0x4001 0800- 0x4001 1BFF
5 KB
Reserved
0x4001 0400 - 0x4001 07FF
1 KB
EXTI
0x4001 0200 - 0x4001 03FF
1 KB
COMP
0x4001 0030 - 0x4001 01FF
1 KB
Reserved
0x4001 0000 - 0x4001 002F
1 KB
SYSCFG
0x4000 9800 - 0x4000 FFFF
26 KB
Reserved
0x4000 9400 - 0x4000 97FF
1 KB
LPTIM2
0x4000 8400 - 0x4000 93FF
4 KB
Reserved
0x4000 8000 - 0x4000 83FF
1 KB
LPUART1
0x4000 7C00 - 0x4000 7FFF
1 KB
LPTIM1
0x4000 7800 - 0x4000 7BFF
1 KB
OPAMP
0x4000 7400 - 0x4000 77FF
1 KB
Reserved
0x4000 7000 - 0x4000 73FF
1 KB
PWR
0x4000 6C00 - 0x4000 6FFF
1 KB
USB SRAM
0x4000 6800 - 0x4000 6BFF
1 KB
USB FS
0x4000 6400 - 0x4000 67FF
1 KB
Reserved
0x4000 6000 - 0x4000 63FF
1 KB
CRS
0x4000 5C00- 0x4000 5FFF
1 KB
I2C3
0x4000 5800 - 0x4000 5BFF
1 KB
I2C2
0x4000 5400 - 0x4000 57FF
1 KB
I2C1
0x4000 4C00 - 0x4000 53FF
2 KB
Reserved
0x4000 4800 - 0x4000 4BFF
1 KB
USART3
0x4000 4400 - 0x4000 47FF
1 KB
USART2
0x4000 4000 - 0x4000 43FF
1 KB
Reserved
DS12469 Rev 8
71/192
72
Memory mapping
STM32L412xx
Table 17. STM32L412xx memory map and peripheral register boundary addresses(1)
(continued)
Bus
APB1
Boundary address
Peripheral
0x4000 3C00 - 0x4000 3FFF
1 KB
SPI3
0x4000 3800 - 0x4000 3BFF
1 KB
SPI2
0x4000 3400 - 0x4000 37FF
1 KB
Reserved
0x4000 3000 - 0x4000 33FF
1 KB
IWDG
0x4000 2C00 - 0x4000 2FFF
1 KB
WWDG
0x4000 2800 - 0x4000 2BFF
1 KB
RTC
0x4000 1400 - 0x4000 27FF
5 KB
Reserved
0x4000 1000 - 0x4000 13FF
1 KB
TIM6
0x4000 0400- 0x4000 0FFF
3 KB
Reserved
0x4000 0000 - 0x4000 03FF
1 KB
TIM2
1. The gray color is used for reserved boundary addresses.
72/192
Size(bytes)
DS12469 Rev 8
STM32L412xx
Electrical characteristics
6
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3σ).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2σ).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 16.
6.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 17.
Figure 16. Pin loading conditions
Figure 17. Pin input voltage
MCU pin
MCU pin
C = 50 pF
VIN
MS19210V1
DS12469 Rev 8
MS19211V1
73/192
164
Electrical characteristics
6.1.6
STM32L412xx
Power supply scheme
Figure 18. Power supply scheme
VBAT
Backup circuitry
(LSE, RTC,
Backup registers)
1.55 – 3.6 V
Power switch
VDD
VCORE
n x VDD
Regulator
OUT
n x 100 nF
GPIOs
IN
+1 x 4.7 μF
Level shifter
VDDIO1
IO
logic
Kernel logic
(CPU, Digital
& Memories)
n x VSS
VDDA
VDDA
VREF
10 nF
+1 μF
100 nF +1 μF
VREF+
VREF-
ADCs/
OPAMPs/
COMPs/
VSSA
MS49692V1
Caution:
74/192
Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure the good functionality of
the device.
DS12469 Rev 8
STM32L412xx
6.1.7
Electrical characteristics
Current consumption measurement
Figure 19. Current consumption measurement scheme with and without external
SMPS power supply
IDD_USB
IDD_USB
VDDUSB
VDDUSB
IDD_VBAT
IDD_VBAT
VBAT
VBAT
IDD
IDD
IDDA
SMPS
VDD
VDD12
VDD
IDDA
VDDA
VDDA
MSv45729V1
The IDD_ALL parameters given in Table 25 to Table 47 represent the total MCU consumption
including the current supplying VDD, VDDA, VDDUSB and VBAT.
6.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 18: Voltage characteristics,
Table 19: Current characteristics and Table 20: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability. Device mission profile (application conditions)
is compliant with JEDEC JESD47 qualification standard, extended mission profiles are
available on demand.
Table 18. Voltage characteristics(1)
Symbol
Ratings
Min
Max
Unit
VDDX - VSS
External main supply voltage (including
VDD, VDDA, VDDUSB, VBAT)
-0.3
4.0
V
VDD12 - VSS
External SMPS supply voltage
-0.3
1.32
V
Input voltage on FT_xxx pins
VSS-0.3
min (VDD, VDDA, VDDUSB)
+ 4.0(3)(4)
Input voltage on TT_xx pins
VSS-0.3
4.0
Input voltage on any other pins
VSS-0.3
4.0
VIN(2)
DS12469 Rev 8
V
75/192
164
Electrical characteristics
STM32L412xx
Table 18. Voltage characteristics(1) (continued)
Symbol
|∆VDDx|
|VSSx-VSS|
Ratings
Min
Max
Unit
Variations between different VDDX power
pins of the same domain
-
50
mV
Variations between all the different ground
pins(5)
-
50
mV
1. All main power (VDD, VDDA, VDDUSB, VBAT) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. VIN maximum must always be respected. Refer to Table 19: Current characteristics for the maximum allowed injected
current values.
3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table.
4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
5. Include VREF- pin.
Table 19. Current characteristics
Symbol
∑IVDD
Ratings
Max
Total current into sum of all VDD power lines (source)(1)(2)
140
(1)
∑IVSS
Total current out of sum of all VSS ground lines (sink)
IVDD(PIN)
Maximum current into each VDD power pin (source)(1)
100
IVSS(PIN)
Maximum current out of each VSS ground pin (sink)(1)
100
Output current sunk by any I/O and control pin except FT_f
20
Output current sunk by any FT_f pin
20
Output current sourced by any I/O and control pin
20
IIO(PIN)
∑IIO(PIN)
IINJ(PIN)(4)
∑|IINJ(PIN)|
Unit
140
Total output current sunk by sum of all I/Os and control pins(3)
mA
100
(3)
Total output current sourced by sum of all I/Os and control pins
Injected current on FT_xxx, TT_xx, RST and B pins, except PA4,
PA5
100
-5/+0(5)
Injected current on PA4, PA5
-5/0
Total injected current (sum of all I/Os and control pins)(6)
25
1. All main power (VDD, VDDA, VDDUSB, VBAT) and ground (VSS, VSSA) pins must always be connected to the external power
supplies, in the permitted range.
2. Valid also for VDD12 on SMPS packages.
3. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
4. Positive injection (when VIN > VDDIOx) is not possible on these I/Os and does not occur for input voltages lower than the
specified maximum value.
5. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 18: Voltage
characteristics for the maximum allowed input voltage values.
6. When several inputs are submitted to a current injection, the maximum ∑|IINJ(PIN)| is the absolute sum of the negative
injected currents (instantaneous values).
76/192
DS12469 Rev 8
STM32L412xx
Electrical characteristics
Table 20. Thermal characteristics
Symbol
TSTG
TJ
Ratings
Storage temperature range
Maximum junction temperature
DS12469 Rev 8
Value
Unit
–65 to +150
°C
150
°C
77/192
164
Electrical characteristics
STM32L412xx
6.3
Operating conditions
6.3.1
General operating conditions
Table 21. General operating conditions
Symbol
Parameter
Conditions
Min
Max
fHCLK
Internal AHB clock frequency
-
0
80
fPCLK1
Internal APB1 clock frequency
-
0
80
fPCLK2
Internal APB2 clock frequency
-
0
80
Standard operating voltage
-
VDD
VDDA
Analog supply voltage
Standard operating voltage
VBAT
Backup operating voltage
VDDUSB USB supply voltage
VIN
PD
PD
78/192
I/O input voltage
Power dissipation at
TA = 85 °C for suffix 6
or
TA = 105 °C for suffix 7(4)
Power dissipation at
TA = 125 °C for suffix 3(4)
MHz
3.6
V
3.6
V
1.32
V
1.55
3.6
V
3.0
3.6
0
3.6
TT_xx I/O
-0.3
VDDIOx+0.3
All I/O except TT_xx
-0.3
Min(Min(VDD, VDDA,
VDDUSB)+3.6 V,
5.5 V)(2)(3)
LQFP64
-
303
UFBGA64
-
317
LQFP48
-
294
UFQFPN48
-
667
(1)
ADC or COMP used
1.62
OPAMP used
1.8
ADC, OPAMP, COMP not used
VDD12
1.71
Unit
0
Full frequency range
1.08
Up to 26 MHz
1.00
-
USB used
USB not used
WLCSP36
235
LQFP32
294
UFQFPN32
541
LQFP64
-
76
UFBGA64
-
79
LQFP48
-
75
UFQFPN48
-
167
WLCSP36
-
59
LQFP32
-
75
UFQFPN32
-
135
DS12469 Rev 8
V
V
mW
mW
STM32L412xx
Electrical characteristics
Table 21. General operating conditions (continued)
Symbol
Parameter
Conditions
Max
Ambient temperature for the
suffix 6 version
Maximum power dissipation
–40
85
Low-power dissipation(5)
–40
105
Ambient temperature for the
suffix 3 version
Maximum power dissipation
–40
125
Low-power dissipation(5)
–40
130
Suffix 6 version
–40
105
Suffix 3 version
–40
130
TA
TJ
Min
Junction temperature range
Unit
°C
°C
1. When RESET is released functionality is guaranteed down to VBOR0 Min.
2. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table.
Maximum I/O input voltage is the smallest value between Min(VDD, VDDA, VDDUSB)+3.6 V and 5.5V.
3. For operation with voltage higher than Min (VDD, VDDA, VDDUSB) +0.3 V, the internal Pull-up and Pull-Down resistors must
be disabled.
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.8: Thermal characteristics).
5. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.8:
Thermal characteristics).
6.3.2
Operating conditions at power-up / power-down
The parameters given in Table 22 are derived from tests performed under the ambient
temperature condition summarized in Table 21.
Table 22. Operating conditions at power-up / power-down
Symbol
Parameter
Conditions
Min
Max
-
0
∞
ULPEN = 0
10
∞
ULPEN = 1
100
∞
0
∞
10
∞
0
∞
10
∞
VDD rise time rate
tVDD
VDD fall time rate
VDDA rise time rate
tVDDA
VDDA fall time rate
VDDUSB rise time rate
tVDDUSB
6.3.3
-
-
VDDUSB fall time rate
Unit
µs/V
ms/V
µs/V
Embedded reset and power control block characteristics
The parameters given in Table 23 are derived from tests performed under the ambient
temperature conditions summarized in Table 21: General operating conditions.
Table 23. Embedded reset and power control block characteristics
Symbol
tRSTTEMPO(2)
VBOR0(2)
Parameter
Reset temporization after
BOR0 is detected
Brown-out reset threshold 0
Conditions(1)
Min
Typ
Max
Unit
-
250
400
μs
Rising edge
1.62
1.66
1.7
Falling edge
1.6
1.64
1.69
VDD rising
DS12469 Rev 8
V
79/192
164
Electrical characteristics
STM32L412xx
Table 23. Embedded reset and power control block characteristics (continued)
Symbol
Min
Typ
Max
Rising edge
2.06
2.1
2.14
Falling edge
1.96
2
2.04
Rising edge
2.26
2.31
2.35
Falling edge
2.16
2.20
2.24
Rising edge
2.56
2.61
2.66
Falling edge
2.47
2.52
2.57
Rising edge
2.85
2.90
2.95
Falling edge
2.76
2.81
2.86
Rising edge
2.1
2.15
2.19
Falling edge
2
2.05
2.1
Rising edge
2.26
2.31
2.36
Falling edge
2.15
2.20
2.25
Rising edge
2.41
2.46
2.51
Falling edge
2.31
2.36
2.41
Rising edge
2.56
2.61
2.66
Falling edge
2.47
2.52
2.57
Rising edge
2.69
2.74
2.79
Falling edge
2.59
2.64
2.69
Rising edge
2.85
2.91
2.96
Falling edge
2.75
2.81
2.86
Rising edge
2.92
2.98
3.04
Falling edge
2.84
2.90
2.96
Hysteresis in
continuous
Hysteresis voltage of BORH0 mode
-
20
-
Hysteresis in
other mode
-
30
-
VBOR1
Brown-out reset threshold 1
VBOR2
Brown-out reset threshold 2
VBOR3
Brown-out reset threshold 3
VBOR4
Brown-out reset threshold 4
VPVD0
Programmable voltage
detector threshold 0
VPVD1
PVD threshold 1
VPVD2
PVD threshold 2
VPVD3
PVD threshold 3
VPVD4
PVD threshold 4
VPVD5
PVD threshold 5
VPVD6
PVD threshold 6
Vhyst_BORH0
Vhyst_BOR_PVD
80/192
Conditions(1)
Parameter
Unit
V
V
V
V
V
V
V
V
V
V
V
mV
Hysteresis voltage of BORH
(except BORH0) and PVD
-
-
100
-
mV
BOR(3) (except BOR0) and
PVD consumption from VDD
-
-
1.1
1.6
µA
IDD
(3)
(BOR_PVD)(2) BOR (except BOR0) and
PVD average consumption
from VDD with ENULP = 1
-
-
55
1000
nA
VPVM1
VDDUSB peripheral voltage
monitoring
-
1.18
1.22
1.26
V
VPVM3
VDDA peripheral voltage
monitoring
Rising edge
1.61
1.65
1.69
Falling edge
1.6
1.64
1.68
DS12469 Rev 8
V
STM32L412xx
Electrical characteristics
Table 23. Embedded reset and power control block characteristics (continued)
Symbol
VPVM4
Parameter
VDDA peripheral voltage
monitoring
Conditions(1)
Min
Typ
Max
Rising edge
1.78
1.82
1.86
Falling edge
1.77
1.81
1.85
Unit
V
Vhyst_PVM3
PVM3 hysteresis
-
-
10
-
mV
Vhyst_PVM4
PVM4 hysteresis
-
-
10
-
mV
PVM1 consumption from VDD
-
-
0.2
-
µA
-
-
2
-
µA
IDD (PVM1)
(2)
IDD
PVM3 and PVM4
(PVM3/PVM4)
consumption from VDD
(2)
1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power
sleep modes.
2. Guaranteed by design.
3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply
current characteristics tables.
DS12469 Rev 8
81/192
164
Electrical characteristics
6.3.4
STM32L412xx
Embedded voltage reference
The parameters given in Table 24 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions.
Table 24. Embedded internal voltage reference
Symbol
VREFINT
Parameter
Internal reference voltage
Conditions
–40 °C < TA < +130 °C
Min
Typ
Max
Unit
1.182
1.212
1.232
V
tS_vrefint (1)
ADC sampling time when
reading the internal reference
voltage
-
4(2)
-
-
µs
tstart_vrefint
Start time of reference voltage
buffer when ADC is enable
-
-
8
12(2)
µs
-
-
12.5
20(2)
µA
VREFINT buffer consumption
from VDD when converted by
IDD(VREFINTBUF)
ADC
∆VREFINT
TCoeff
Internal reference voltage
spread over the temperature
range
VDD = 3 V
-
5
7.5(2)
mV
Temperature coefficient
–40°C < TA < +130°C
-
30
50(2)
ppm/°C
ppm
ppm/V
ACoeff
Long term stability
1000 hours, T = 25°C
-
300
1000(2)
VDDCoeff
Voltage coefficient
3.0 V < VDD < 3.6 V
-
250
1200(2)
24
25
26
49
50
51
74
75
76
VREFINT_DIV1
1/4 reference voltage
VREFINT_DIV2
1/2 reference voltage
VREFINT_DIV3
3/4 reference voltage
-
1. The shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
82/192
DS12469 Rev 8
%
VREFINT
STM32L412xx
Electrical characteristics
Figure 20. VREFINT versus temperature
V
1.235
1.23
1.225
1.22
1.215
1.21
1.205
1.2
1.195
1.19
1.185
-40
-20
0
20
40
Mean
60
Min
80
100
120
°C
Max
MSv40169V1
DS12469 Rev 8
83/192
164
Electrical characteristics
6.3.5
STM32L412xx
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 19: Current consumption
measurement scheme with and without external SMPS power supply.
Typical and maximum current consumption
The MCU is placed under the following conditions:
•
All I/O pins are in analog input mode
•
All peripherals are disabled except when explicitly mentioned
•
The Flash memory access time is adjusted with the minimum wait states number,
depending on the fHCLK frequency (refer to the table “Number of wait states according
to CPU clock (HCLK) frequency” available in the RM0394 reference manual).
•
When the peripherals are enabled fPCLK = fHCLK
The parameters given in Table 25 to Table 48 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 21: General
operating conditions.
84/192
DS12469 Rev 8
running from Flash, ART enable (Cache ON Prefetch OFF)
Conditions
Symbol
Parameter
-
Voltage
scaling
DS12469 Rev 8
85 °C
2.20
2.25
2.30
2.40
2.60
1.60
1.40
1.45
1.50
1.60
1.80
0.855
1.00
0.76
0.78
0.84
0.96
1.25
0.475
0.555
0.710
0.45
0.50
0.55
0.70
0.90
0.28
0.325
0.400
0.555
0.30
0.30
0.40
0.50
0.80
0.190 0.205
0.250
0.325
0.480
0.20
0.25
0.30
0.44
0.70
100 kHz 0.120 0.135
0.180
0.255
0.410
0.15
0.20
0.25
0.40
0.60
80 MHz
7.30
7.35
7.40
7.55
7.70
7.75
7.80
7.80
7.90
8.10
72 MHz
6.60
6.65
6.70
6.80
7.00
7.00
7.00
7.10
7.20
7.40
64 MHz
5.90
5.90
6.00
6.10
6.30
6.25
6.30
6.35
6.40
6.65
Range 1 48 MHz
4.40
4.40
4.50
4.60
4.80
4.70
4.75
4.80
4.90
5.10
32 MHz
3.00
3.00
3.05
3.15
3.35
3.20
3.25
3.30
3.40
3.60
24 MHz
2.30
2.30
2.35
2.45
2.65
2.40
2.40
2.50
2.60
2.90
16 MHz
1.55
1.60
1.65
1.75
1.90
1.70
1.75
1.80
1.90
2.20
2 MHz
190
205
255
335
505
235
230
315
455
725
1 MHz
110
120
165
250
415
135
145
230
370
645
400 kHz
55.0
65.5
115
195
360
75.0
90.5
180
325
590
100 kHz
26.0
40.0
87.5
170
335
45.0
65.5
160
290
550
fHCLK = fHSE up to
48MHz included,
Supply
bypass mode
current in
PLL ON above
Run mode
48 MHz all
peripherals disable
Supply
current in fHCLK = fMSI
Low-power all peripherals disable
run mode
25 °C 55 °C
85 °C
26 MHz
2.05
2.10
2.10
2.20
2.35
16 MHz
1.30
1.35
1.40
1.45
8 MHz
0.715 0.730
0.780
4 MHz
0.415 0.430
2 MHz
0.265
1 MHz
fHCLK
1. Guaranteed by characterization results, unless otherwise specified.
105 °C 125 °C 25 °C
105 °C 125 °C
mA
µA
85/192
Electrical characteristics
IDD_ALL
(LPRun)
Unit
55 °C
Range 2
IDD_ALL
(Run)
MAX(1)
TYP
STM32L412xx
Table 25. Current consumption in Run and Low-power run modes, code with data processing
Conditions(1)
Symbol
Unit
-
IDD_ALL(Run)
TYP
Parameter
Supply current in Run
mode
fHCLK = fHSE up to 48MHz included, bypass mode
PLL ON above
48 MHz all peripherals disable
DS12469 Rev 8
fHCLK
25 °C
55 °C
85 °C
105 °C 125 °C
80 MHz
2.62
2.64
2.66
2.71
2.77
72 MHz
2.37
2.39
2.41
2.44
2.52
64 MHz
2.12
2.12
2.16
2.19
2.26
48 MHz
1.58
1.58
1.62
1.65
1.73
32 MHz
1.08
1.08
1.10
1.13
1.20
24 MHz
0.83
0.83
0.84
0.88
0.95
16 MHz
0.56
0.58
0.59
0.63
0.68
8 MHz
0.26
0.26
0.28
0.31
0.36
4 MHz
0.15
0.15
0.17
0.20
0.26
2 MHz
9.53
0.10
0.12
0.14
0.20
1 MHz
0.07
0.07
0.09
0.12
0.17
100 kHz
0.01
0.01
0.03
0.06
0.12
Electrical characteristics
86/192
Table 26. Current consumption in Run modes, code with data processing running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.10 V)
mA
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%,
VDD12 = 1.10 V
STM32L412xx
running from Flash, ART disable
Conditions
Symbol
Parameter
-
Voltage
scaling
Unit
25 °C 55 °C
85 °C
2.40
2.45
2.50
2.55
16 MHz
1.70
1.75
1.80
1.85
2.05
1.85
1.90
1.95
2.05
2.30
8 MHz
0.970 0.985
1.05
1.10
1.25
1.05
1.10
1.15
1.25
1.50
4 MHz
0.570 0.585
0.630
0.710
0.865
0.61
0.63
0.70
0.80
1.10
fHCLK
26 MHz
Range 2
IDD_ALL
(Run)
DS12469 Rev 8
IDD_ALL
(LPRun)
MAX(1)
TYP
105 °C 125 °C 25 °C
2.75
2.60
55 °C
85 °C
2.65
2.70
105 °C 125 °C
2.80
3.00
2 MHz
0.340 0.355
0.400
0.475
0.635
0.40
0.40
0.50
0.60
0.80
1 MHz
0.230 0.240
0.285
0.365
0.52
0.25
0.30
0.34
0.50
0.70
100 kHz 0.125 0.140
0.185
0.260
0.415
0.14
0.20
0.25
0.40
0.60
80 MHz
7.65
7.70
7.85
8.00
8.20
8.20
8.30
8.40
8.50
8.80
72 MHz
6.95
6.95
7.05
7.15
7.35
7.40
7.45
7.50
7.60
7.80
64 MHz
6.90
6.95
7.05
7.20
7.40
7.40
7.45
7.50
7.60
7.80
Range 1 48 MHz
5.85
5.90
6.00
6.15
6.35
6.30
6.35
6.50
6.65
6.90
32 MHz
4.20
4.20
4.30
4.45
4.65
4.50
4.55
4.70
4.80
5.10
24 MHz
3.15
3.20
3.25
3.35
3.55
3.40
3.40
3.50
3.60
3.90
16 MHz
2.25
2.30
2.35
2.50
2.65
2.50
2.50
2.60
2.70
3.00
2 MHz
275
290
340
425
590
325
360
425
565
840
1 MHz
155
165
210
295
460
185
195
275
420
690
400 kHz
69.0
83.0
130
215
280
90.5
108
195
340
600
100 kHz
32.0
45.5
92.0
175
340
48.0
69
155
300
570
fHCLK = fHSE up to
48MHz included,
Supply
bypass mode
current in
PLL ON above
Run mode
48 MHz all
peripherals disable
Supply
current in fHCLK = fMSI
Low-power all peripherals disable
run
mA
µA
87/192
Electrical characteristics
1. Guaranteed by characterization results, unless otherwise specified.
STM32L412xx
Table 27. Current consumption in Run and Low-power run modes, code with data processing
Conditions(1)
Symbol
-
IDD_ALL(Run)
TYP
Parameter
Supply current in Run
mode
fHCLK = fHSE up to 48MHz included, bypass mode
PLL ON above 48 MHz all peripherals disable
DS12469 Rev 8
fHCLK
25 °C
55 °C
85 °C 105 °C 125 °C
80 MHz
2.75
2.77
2.82
2.88
2.95
72 MHz
2.50
2.50
2.53
2.57
2.64
64 MHz
2.48
2.50
2.53
2.59
2.66
48 MHz
2.10
2.12
2.16
2.21
2.28
32 MHz
1.51
1.51
1.55
1.60
1.67
24 MHz
1.13
1.15
1.17
1.20
1.28
16 MHz
0.81
0.83
0.84
0.90
0.95
8 MHz
0.35
0.35
0.38
0.40
0.45
4 MHz
0.20
0.21
0.23
0.26
0.31
2 MHz
12.22
0.13
0.14
0.17
0.23
1 MHz
0.08
0.09
0.10
0.13
0.19
100 kHz
0.01
0.02
0.03
0.06
0.12
Uni
t
Electrical characteristics
88/192
Table 28. Current consumption in Run modes, code with data processing running from Flash,
ART disable and power supplied by external SMPS (VDD12 = 1.10 V)
mA
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%,
VDD12 = 1.10 V
STM32L412xx
Conditions
Symbol
Parameter
-
Voltage
scaling
Range 2
IDD_ALL
(Run)
Supply
current in
Run mode
DS12469 Rev 8
fHCLK = fHSE up to
48MHz included,
bypass mode
PLL ON above
48 MHz all
peripherals disable
Range 1
IDD_ALL
(LPRun)
Supply
current in
low-power
run mode
fHCLK = fMSI
all peripherals disable
FLASH in power-down
MAX(1)
TYP
fHCLK
25 °C
55 °C
85 °C
105
°C
125
°C
25 °C
55 °C
85 °C
105
°C
125
°C
26 MHz
2.00
2.05
2.10
2.15
2.35
2.20
2.20
2.25
2.35
2.55
16 MHz
1.30
1.30
1.35
1.45
1.60
1.40
1.45
1.45
1.55
1.80
8 MHz
0.705
0.720
0.765
0.845
1.00
0.75
0.77
0.83
0.94
1.20
4 MHz
0.410
0.425
0.470
0.550
0.700
0.44
0.46
0.52
0.64
0.90
2 MHz
0.265
0.275
0.320
0.395
0.555
0.28
0.30
0.37
0.49
0.75
1 MHz
0.190
0.200
0.245
0.325
0.475
0.21
0.22
0.29
0.42
0.67
100 kHz
0.120
0.135
0.180
0.255
0.410
0.14
0.15
0.23
0.35
0.61
80 MHz
7.15
7.20
7.25
7.45
7.55
7.65
7.65
7.75
7.75
8.00
72 MHz
6.45
6.50
6.55
6.75
6.85
6.90
6.95
7.00
7.05
7.25
64 MHz
5.75
5.80
5.85
6.05
6.15
6.15
6.20
6.25
6.30
6.50
48 MHz
4.20
4.35
4.40
4.50
7.70
4.65
4.65
4.70
4.80
5.00
32 MHz
2.95
2.95
3.00
3.10
3.30
3.15
3.15
3.20
3.30
3.55
24 MHz
2.25
2.25
2.30
2.40
2.60
2.40
2.40
2.50
2.60
2.85
16 MHz
1.55
1.55
1.60
1.70
1.85
1.65
1.70
1.75
1.85
2.10
2 MHz
180
190
240
320
485
215
225
300
450
720
1 MHz
90.5
110
155
235
400
120
135
220
360
640
400 kHz
40.5
56.0
105
185
350
60.0
76.5
165
315
565
100 kHz
17.5
32.0
78.5
160
325
33.5
53.5
140
285
555
mA
µA
89/192
Electrical characteristics
1. Guaranteed by characterization results, unless otherwise specified.
Unit
STM32L412xx
Table 29. Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1
Conditions(1)
Symbol
TYP
Parameter
Unit
-
fHCLK = fHSE up to 48MHz included, bypass mode
IDD_ALL(Run) Supply current in Run mode PLL ON above
48 MHz all peripherals disable
DS12469 Rev 8
25 °C 55 °C
85 °C
80 MHz
2.57
2.59
2.61
2.68
2.71
72 MHz
2.32
2.34
2.35
2.43
2.46
64 MHz
2.07
2.08
2.10
2.17
2.21
48 MHz
1.55
1.56
1.58
1.62
1.69
32 MHz
1.06
1.06
1.08
1.11
1.19
24 MHz
0.81
0.81
0.83
0.86
0.93
16 MHz
0.56
0.56
0.58
0.61
0.67
8 MHz
0.25
0.26
0.28
0.30
0.36
4 MHz
0.15
0.15
0.17
0.20
0.25
2 MHz
9.53
0.10
0.12
0.15
0.20
1 MHz
0.07
0.07
0.09
0.14
0.17
100 kHz
0.01
0.01
0.03
0.06
0.12
fHCLK
105 °C 125 °C
Electrical characteristics
90/192
Table 30. Current consumption in Run, code with data processing running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V)
mA
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%,
VDD12 = 1.10 V
STM32L412xx
STM32L412xx
Electrical characteristics
Table 31. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF)
Conditions
Parameter
Supply
current in
Run mode
Range 2
fHCLK = 26 MHz
IDD_ALL
(Run)
fHCLK = fHSE up
to 48 MHz
included, bypass
mode PLL ON
above 48 MHz
all peripherals
disable
Code
25 °C
Reduced code(1)
2.05
79
Coremark
2.30
88
Dhrystone 2.1
2.35
Fibonacci
2.25
87
1.95
75
Reduced code
7.30
91
Coremark
8.15
102
Dhrystone 2.1
8.35
Fibonacci
8.10
101
7.20
90
Reduced code
190
95
Coremark
205
103
Dhrystone 2.1
220
Fibonacci
205
103
While(1)
225
113
While(1)
(1)
Supply
current in fHCLK = fMSI = 2 MHz
Low-power all peripherals disable
run
Unit
25 °C
While(1)
(1)
IDD_ALL
(LPRun)
TYP
Unit
Voltage
scaling
-
Range 1
fHCLK = 80 MHz
Symbol
TYP
mA
mA
µA
90
104
110
µA/MHz
µA/MHz
µA/MHz
1. Reduced code used for characterization results provided in Table 25, Table 27, Table 29.
Table 32. Typical current consumption in Run, with different codes running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.10 V)
Conditions(1)
Supply
current in
Run mode
-
fHCLK = fHSE up to
48 MHz included,
bypass mode PLL
ON above
48 MHz
all peripherals
disable
Voltage
scaling
fHCLK = 26 MHz
IDD_ALL
(Run)
Parameter
fHCLK = 80 MHz
Symbol
TYP
Code
25 °C
Reduced code(2)
0.88
TYP
Unit
25 °C
34
Coremark
0.99
38
Dhrystone 2.1
1.01
39
Fibonacci
0.97
37
While(1)
0.84
Reduced
code(2)
3.15
mA
32
39
Coremark
3.52
44
Dhrystone 2.1
3.60
45
Fibonacci
3.49
44
While(1)
3.11
39
DS12469 Rev 8
Unit
µA/MHz
91/192
164
Electrical characteristics
STM32L412xx
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters:
SMPS input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.10 V
2. Reduced code used for characterization results provided in Table 25, Table 27, Table 29.
Table 33. Typical current consumption in Run, with different codes running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.00 V)
Conditions(1)
IDD_ALL
(Run)
Parameter
Supply
current in
Run mode
fHCLK = fHSE up to
48 MHz included,
bypass mode PLL
ON above
48 MHz
all peripherals
disable
Voltage
scaling
fHCLK = 26 MHz
Symbol
TYP
TYP
Unit
Code
25 °C
Reduced code(2)
0.73
28
Coremark
0.82
32
Dhrystone 2.1
0.84
Fibonacci
0.80
31
While(1)
0.70
27
mA
Unit
25 °C
32
µA/MHz
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters:
SMPS input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.00 V
2. Reduced code used for characterization results provided in Table 25, Table 27, Table 29.
92/192
DS12469 Rev 8
STM32L412xx
Electrical characteristics
Table 34. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART disable
Conditions
Parameter
IDD_ALL
(Run)
IDD_ALL
(LPRun)
Supply
current in
Run mode
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz
all peripherals
disable
Supply
current in fHCLK = fMSI = 2 MHz
Low-power all peripherals disable
run
TYP
Unit
Voltage
scaling
-
Range 1
Range 2
fHCLK = 80 MHz fHCLK = 26 MHz
Symbol
TYP
Code
25 °C
Unit
25 °C
Reduced code(1)
2.40
92
Coremark
2.15
83
Dhrystone 2.1
2.20
mA
85
Fibonacci
2.05
79
While(1)
1.90
73
(1)
Reduced code
7.65
96
Coremark
6.95
87
Dhrystone 2.1
7.00
Fibonacci
6.60
While(1)
6.85
86
Reduced code(1)
275
138
mA
88
µA/MHz
µA/MHz
83
Coremark
300
Dhrystone 2.1
315
150
Fibonacci
305
153
While(1)
385
193
µA
158
µA/MHz
1. Reduced code used for characterization results provided in Table 25, Table 27, Table 29.
Table 35. Typical current consumption in Run modes, with different codes running from
Flash, ART disable and power supplied by external SMPS (VDD12 = 1.10 V)
Conditions(1)
IDD_ALL
(Run)
Parameter
Supply
current in
Run mode
-
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz
all peripherals
disable
Voltage
scaling
fHCLK = 80 MHz fHCLK = 26 MHz
Symbol
TYP
TYP
Unit
Code
25 °C
Reduced code(2)
1.04
40
Coremark
0.93
36
Dhrystone 2.1
0.95
37
Fibonacci
0.88
34
While(1)
0.82
Reduced code(2)
3.30
mA
25 °C
32
41
Coremark
3.00
37
Dhrystone 2.1
3.02
38
Fibonacci
2.85
36
While(1)
2.95
37
Unit
µA/MHz
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS
input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.10 V
2. Reduced code used for characterization results provided in Table 25, Table 27, Table 29.
DS12469 Rev 8
93/192
164
Electrical characteristics
STM32L412xx
Table 36. Typical current consumption in Run modes, with different codesrunning from
Flash, ART disable and power supplied by external SMPS (VDD12 = 1.00 V)
Conditions(1)
IDD_ALL
(Run)
Parameter
Supply
current in
Run mode
TYP
Voltage
scaling
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz
all peripherals
fHCLK = 26 MHz
Symbol
Code
25 °C
Reduced code(2)
0.86
TYP
Unit
25 °C
Unit
33
Coremark
0.77
Dhrystone 2.1
0.78
29
Fibonacci
0.73
28
While(1)
0.68
26
mA
30
µA/MHz
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS
input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.00 V
2. Reduced code used for characterization results provided in Table 25, Table 27, Table 29.
Table 37. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1
Conditions
Parameter
-
IDD_ALL
(Run)
IDD_ALL
(LPRun)
fHCLK = fHSE up to
48 MHz included,
Supply
bypass mode
current in PLL ON above
Run mode 48 MHz all
peripherals
disable
Voltage
scaling
Range 1
Range 2
fHCLK = 80 MHz fHCLK = 26 MHz
Symbol
Supply
current in fHCLK = fMSI = 2 MHz
Low-power all peripherals disable
run
TYP
Unit
Code
25 °C
Unit
25 °C
Reduced code(1)
2.00
77
Coremark
2.00
77
Dhrystone 2.1
2.05
mA
79
Fibonacci
2.00
77
While(1)
1.85
71
Reduced code(1)
7.15
89
Coremark
7.00
88
Dhrystone 2.1
7.15
Fibonacci
7.10
89
While(1)
6.60
83
Reduced code(1)
180
90
mA
89
Coremark
180
Dhrystone 2.1
185
Fibonacci
170
85
While(1)
170
85
1. Reduced code used for characterization results provided in Table 25, Table 27, Table 29.
94/192
TYP
DS12469 Rev 8
µA/MHz
µA/MHz
90
µA
93
µA/MHz
STM32L412xx
Electrical characteristics
Table 38. Typical current consumption in Run, with different codes running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V)
Conditions(1)
IDD_ALL
(Run)
Parameter
Supply
current in
Run mode
TYP
Voltage
scaling
-
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz all
peripherals disable
fHCLK = 80 MHz fHCLK = 26 MHz
Symbol
Code
25 °C
Reduced code(2)
0.86
TYP
Unit
25 °C
Unit
33
Coremark
0.86
33
Dhrystone 2.1
0.88
34
Fibonacci
0.86
33
While(1)
0.80
Reduced code(2)
3.08
mA
31
39
Coremark
3.02
38
Dhrystone 2.1
3.08
39
Fibonacci
3.06
38
While(1)
2.85
36
µA/MHz
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS
input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.10 V
2. Reduced code used for characterization results provided in Table 25, Table 27, Table 29.
Table 39. Typical current consumption in Run, with different codes running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.00 V)
Conditions(1)
IDD_ALL
(Run)
Parameter
Supply
current in
Run mode
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz all
peripherals disable
Voltage
scaling
fHCLK = 26 MHz
Symbol
TYP
Code
25 °C
Reduced code(2)
0.71
TYP
Unit
25 °C
Unit
27
Coremark
0.71
Dhrystone 2.1
0.73
27
Fibonacci
0.71
27
While(1)
0.66
25
mA
28
µA/MHz
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS
input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.00 V
2. Reduced code used for characterization results provided in Table 25, Table 27, Table 29.
DS12469 Rev 8
95/192
164
Conditions
Symbol
Parameter
-
Voltage
scaling
Range 2
IDD_ALL
(Sleep)
Supply
current in
sleep
mode,
DS12469 Rev 8
fHCLK = fHSE up
to 48 MHz
included, bypass
mode
pll ON above
48 MHz all
peripherals
disable
Unit
fHCLK
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
26 MHz
0.535 0.550
0.600
0.680
0.835
0.58
0.60
0.66
0.79
1.05
16 MHz
0.375 0.390
0.435
0.515
0.670
0.41
0.43
0.50
0.62
0.88
8 MHz
0.245 0.260
0.305
0.385
0.540
0.27
0.29
0.36
0.49
0.74
4 MHz
0.180 0.195
0.240
0.315
0.470
0.20
0.22
0.29
0.42
0.67
2 MHz
0.150 0.160
0.205
0.285
0.435
0.17
0.18
0.25
0.38
0.63
1 MHz
0.130 0.145
0.190
0.265
0.420
0.15
0.16
0.24
0.36
0.62
100 kHz
0.115 0.130
0.175
0.250
0.405
0.13
0.15
0.22
0.35
0.60
80 MHz
1.65
1.70
1.75
1.85
2.00
1.80
1.80
1.85
1.95
2.25
72 MHz
1.50
1.55
1.60
1.70
1.85
1.60
1.65
1.70
1.80
2.10
64 MHz
1.35
1.40
1.45
1.55
1.70
1.45
1.50
1.55
1.65
1.95
1.00
Range 1 48 MHz
IDD_ALL
(LPSleep)
Supply
current in
=f
f
low-power HCLK MSI
all peripherals disable
sleep
mode
MAX(1)
TYP
105 °C 125 °C
1.05
1.10
1.2
1.35
1.10
1.15
1.20
1.35
1.65
32 MHz
0.725 0.740
0.795
0.885
1.05
0.78
0.80
0.87
1.05
1.35
24 MHz
0.575 0.595
0.650
0.740
0.910
0.62
0.64
0.72
0.86
1.15
16 MHz
0.425 0.440
0.495
0.585
0.760
0.47
0.48
0.56
0.71
1.00
2 MHz
52.5
66.5
115
195
360
71.0
91.5
175
315
600
1 MHz
37.0
51.5
97.5
180
345
55.0
73.0
165
295
575
400 kHz
25.5
39.0
85.0
170
330
41.0
63.0
150
280
565
100 kHz
18.5
33.5
80.5
165
325
36.0
57.5
145
280
560
Electrical characteristics
96/192
Table 40. Current consumption in Sleep and Low-power sleep modes, Flash ON
mA
µA
1. Guaranteed by characterization results, unless otherwise specified.
STM32L412xx
Conditions(1)
Symbol
TYP
Parameter
Unit
fHCLK
25 °C
55 °C
85 °C
105 °C
125 °C
80 MHz
0.59
0.61
0.63
0.67
0.72
72 MHz
0.54
0.56
0.58
0.61
0.67
64 MHz
0.49
0.50
0.52
0.56
0.61
48 MHz
0.36
0.38
0.40
0.43
0.49
32 MHz
0.26
0.27
0.29
0.32
0.38
24 MHz
0.21
0.21
0.23
0.27
0.33
16 MHz
0.15
0.16
0.18
0.21
0.27
8 MHz
0.09
0.09
0.11
0.14
0.19
4 MHz
0.06
0.07
0.09
0.11
0.17
2 MHz
5.39
0.06
0.07
0.10
0.15
1 MHz
0.05
0.05
0.07
0.10
0.15
100 kHz
0.01
0.01
0.03
0.06
0.12
-
IDD_ALL(Sleep)
Supply current in sleep mode,
fHCLK = fHSE up to 48 MHz included, bypass
mode
pll ON above
48 MHz all peripherals disable
STM32L412xx
Table 41. Current consumption in Sleep, Flash ON and power supplied by external SMPS
(VDD12 = 1.10 V)
mA
DS12469 Rev 8
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%,
VDD12 = 1.10 V
Table 42. Current consumption in Low-power sleep modes, Flash in power-down
Conditions
Symbol
Parameter
-
fHCLK = fMSI
all peripherals disable
Unit
fHCLK
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
2 MHz
50
60
105
185
350
63
83
170
300
585
1 MHz
35
45
89.0
170
335
46
65
150
285
570
400 kHz
20
32
76.5
155
320
32
51
135
270
560
100 kHz
15
25
71.5
150
315
25
46
135
270
555
1. Guaranteed by characterization results, unless otherwise specified.
µA
97/192
Electrical characteristics
IDD_ALL
(LPSleep)
Supply current
in low-power
sleep mode
Voltage
scaling
MAX(1)
TYP
Symbol
Conditions
Parameter
-
IDD_ALL
(Stop 2)
Supply current in
Stop 2 mode,
RTC disabled
ENULP = 1
DS12469 Rev 8
RTC clocked by LSI
IDD_ALL
(Stop 2 with
RTC)
Supply current in RTC clocked by LSI
Stop 2 mode,
ENULP = 1
RTC enabled
LPCAL = 1
RTC clocked by LSI
ENULP = 1
LPCAL = 1
LSIPREDIV = 1
MAX(1)
TYP
VDD
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
1.8 V
0.77
2.35
8.60
20.5
46.0
2.0
5.6
21.5
51.0
115
2.4 V
0.78
2.35
8.75
21.0
3V
0.79
2.40
9.00
21.5
47.0
2.1
5.8
22.0
52.5
120
49.0
2.1
5.9
22.5
54.0
125
3.6 V
0.84
2.55
9.40
22.5
51.5
2.3
6.1
23.0
56.0
130
1.8 V
0.72
2.35
9.35
21.0
46.5
-
-
-
-
-
2.4 V
0.74
2.35
9.65
22.0
48.0
-
-
-
-
-
3V
0.75
2.65
10.0
22.5
50.0
-
-
-
-
-
3.6 V
0.79
2.90
10.5
24.0
52.5
-
-
-
-
-
1.8 V
1.05
2.70
9.00
21.0
46.0
2.5
6.2
22.0
51.5
120
2.4 V
1.10
2.90
9.30
21.5
47.5
2.8
6.4
22.5
53.0
120
3V
1.20
3.10
9.65
22.5
49.5
3.0
6.8
23.0
54.5
125
3.6 V
1.30
3.35
10.0
23.5
52.0
3.3
7.2
24.5
57.0
130
1.8 V
1.00
2.65
9.55
21.5
46.5
-
-
-
-
-
2.4 V
1.05
2.90
10.0
22.0
48.5
-
-
-
-
-
3V
1.10
3.15
10.5
23.0
50.5
-
-
-
-
-
3.6 V
1.20
3.55
11.5
24.5
53.0
-
-
-
-
-
1.8 V
0.86
2.45
9.35
21.5
46.5
-
-
-
-
-
2.4 V
0.88
2.60
9.70
22.0
48.0
-
-
-
-
-
3V
0.93
2.75
10.0
23.0
50.0
-
-
-
-
-
3.6 V
0.98
3.05
11.0
24.0
52.5
-
-
-
-
-
Unit
µA
Electrical characteristics
98/192
Table 43. Current consumption in Stop 2 mode
µA
STM32L412xx
Symbol
Parameter
Conditions
VDD
25 °C 55 °C
85 °C
1.8 V
1.35
2.85
9.15
2.4 V
1.60
3.15
9.60
22.0
48.0
-
-
-
-
-
3V
2.00
3.85
11.0
24.0
51.5
-
-
-
-
-
3.6 V
3.90
6.60
15.0
29.5
58.5
-
-
-
-
-
1.8 V
RTC clocked by LSE
bypassed at 32768 Hz, 2.4 V
ENULP = 1,
3V
Supply current in LPCAL = 1
3.6 V
Stop 2 mode,
1.8 V
RTC enabled
RTC clocked by LSE
2.4 V
quartz in low drive
3V
mode
3.6 V
1.20
2.80
9.70
21.5
46.5
-
-
-
-
-
1.35
3.10
10.5
22.5
48.5
-
-
-
-
-
1.80
3.90
11.5
25.0
52.5
-
-
-
-
-
3.65
6.75
16.0
30.5
59.5
-
-
-
-
-
1.20
2.65
8.85
20.5
47.5
-
-
-
-
-
-
RTC clocked by LSE
bypassed at 32768 Hz
IDD_ALL
(Stop 2 with
RTC)
MAX(1)
TYP
21.0
46.0
-
55 °C
85 °C
-
-
105 °C 125 °C
-
DS12469 Rev 8
2.75
9.10
21.0
49.0
-
-
-
-
-
2.90
9.45
22.0
51.0
-
-
-
-
-
1.50
3.10
9.95
23.0
53.0
-
-
-
-
-
1.8 V
1.00
2.55
9.50
21.0
48.0
-
-
-
-
-
2.4 V
1.10
2.75
9.90
22.0
49.5
-
-
-
-
-
3V
1.15
3.00
10.5
23.0
52.0
-
-
-
-
-
3.6 V
1.25
3.25
11.0
25.0
54.5
-
-
-
-
-
Wakeup clock is
MSI = 48 MHz,
voltage Range 1.
See (3).
3V
185
-
-
-
-
-
-
-
-
-
Wakeup clock is
MSI = 4 MHz,
voltage Range 2.
See (3).
3V
155
-
-
-
-
-
-
-
-
-
Wakeup clock is
HSI16 = 16 MHz,
voltage Range 1.
See (3).
3V
152
-
-
-
-
-
-
-
-
-
µA
mA
Electrical characteristics
99/192
1.25
1. Guaranteed by characterization results, unless otherwise specified.
Unit
-
1.35
RTC clocked by LSE
quartz(2) in low drive
mode, ENULP = 1,
LPCAL = 1
Supply current
IDD_ALL
during wakeup
(wakeup from
from Stop 2
Stop2)
mode
105 °C 125 °C 25 °C
STM32L412xx
Table 43. Current consumption in Stop 2 mode (continued)
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 50: Low-power mode wakeup timings.
Electrical characteristics
100/192
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
DS12469 Rev 8
STM32L412xx
Symbol
Parameter
IDD_ALL
(Stop 1)
Supply current
in Stop 1
mode,
RTC disabled
Conditions
-
-
-
RTC clocked by LSI
DS12469 Rev 8
Supply current
IDD_ALL
in stop 1
RTC clocked by LSE
(Stop 1 with
mode,
bypassed at 32768 Hz
RTC)
RTC enabled
RTC clocked by LSE
in low drive mode
quartz(2)
Wakeup clock MSI = 48 MHz,
voltage Range 1.
See (3).
VDD
25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
1.8 V
3.95
13.0
47.5
110
230
7.40
24.5
87.0
190
395
2.4 V
3.95
13.0
48.0
110
230
7.50
24.5
86.0
190
395
3V
4.00
13.5
48.0
110
235
7.30
24.5
87.0
195
400
3.6 V
4.10
13.5
48.5
110
240
7.85
25.0
90.0
195
405
1.8 V
4.40
13.5
48.0
110
230
8.05
24.5
86.5
190
395
2.4 V
4.60
14.0
48.5
110
235
8.10
25.0
90.0
195
395
3V
4.75
14.0
48.5
110
235
8.20
25.5
89.0
195
400
3.6 V
5.05
14.5
49.5
115
240
8.55
27.0
89.5
195
405
1.8 V
4.50
13.5
48.5
110
230
11.5
26.5
86.0
190
395
2.4 V
4.70
14.0
49.0
110
230
29.0
31.5
90.0
190
395
3V
5.35
14.5
50.0
115
240
36.0
31.5
87.5
195
400
3.6 V
7.20
17.5
54.5
120
245
26.0
28.0
88.0
195
405
1.8 V
4.25
13.5
47.5
110
-
-
-
-
-
-
2.4 V
4.35
13.5
48.0
110
-
-
-
-
-
-
3V
4.40
13.5
48.0
110
-
-
-
-
-
-
3.6 V
4.50
14.0
49.0
125
-
-
-
-
-
-
3V
1.15
-
-
-
-
-
-
-
-
-
3V
1.25
-
-
-
-
-
-
-
-
-
3V
1.20
-
-
-
-
-
-
-
-
-
1. Guaranteed by characterization results, unless otherwise specified.
101/192
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 50: Low-power mode wakeup timings.
Unit
µA
µA
mA
Electrical characteristics
Supply current Wakeup clock MSI = 4 MHz,
IDD_ALL
voltage Range 2.
during
(wakeup
wakeup from See (3).
from Stop1)
Stop 1
Wakeup clock
HSI16 = 16 MHz,
voltage Range 1.
See (3).
MAX(1)
TYP
STM32L412xx
Table 44. Current consumption in Stop 1 mode
Symbol
Parameter
IDD_ALL
(Stop 0)
Supply current
in Stop 0 mode,
RTC disabled
Conditions
MAX(1)
TYP
VDD
25 °C
55 °C
85 °C
105 °C
125 °C
25 °C
55 °C
85 °C
105 °C
125 °C
1.8 V
110
125
165
240
380
130
145
215
340
585
2.4 V
110
125
170
240
385
130
145
215
340
585
3V
115
125
170
245
385
130
145
220
345
590
3.6 V
115
130
175
250
390
135
150
220
345
595
1. Guaranteed by characterization results, unless otherwise specified.
Unit
µA
Electrical characteristics
102/192
Table 45. Current consumption in Stop 0
DS12469 Rev 8
STM32L412xx
Symbol
Parameter
Conditions
-
No independent watchdog
IDD_ALL
(Standby)
DS12469 Rev 8
Supply current
in Standby
mode (backup
registers
retained),
RTC disabled
No independent watchdog
ENULP = 1
With independent
watchdog
With independent
watchdog
ENULP = 1
MAX(1)
TYP
VDD
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
1.8 V
95
255
1150
3200
8350
115
405
2750
7150
19500
2.4 V
105
290
1300
3600
9500
175
540
3250
8350
23000
3V
120
354
1550
4350
11500
215
650
3750
9600
26000
3.6 V
150
410
1850
5050
13000
280
835
4450
11500
29500
1.8 V
32
225
1400
3850
9000
115
405
2750
7250
19500
2.4 V
46
315
1800
4500
10500
175
540
3250
8350
23000
3V
66
430
2400
5450
12500
215
650
3750
9600
26000
3.6 V
115
570
3050
6350
14500
280
835
4450
11500
29500
1.8 V
295
450
1300
3250
8250
-
-
-
-
-
2.4 V
350
530
1500
3750
9450
-
-
-
-
-
3V
415
635
1800
4450
11500
-
-
-
-
-
3.6 V
505
775
2200
5350
13500
-
-
-
-
-
1.8 V
230
415
1450
3900
8850
-
-
-
-
-
2.4 V
290
540
1950
4600
10550
-
-
-
-
-
3V
365
710
2550
5500
12500
-
-
-
-
-
3.6 V
460
915
3300
6600
14500
-
-
-
-
-
Unit
STM32L412xx
Table 46. Current consumption in Standby mode
nA
Electrical characteristics
103/192
Symbol
Parameter
Conditions
-
RTC clocked by LSI, no
independent watchdog
IDD_ALL
(Standby
with RTC)
DS12469 Rev 8
Supply current
in Standby
mode (backup
registers
retained),
RTC enabled
RTC clocked by LSI, no
independent watchdog
ENULP = 1
RTC clocked by LSI, with
independent watchdog
RTC clocked by LSI, with
independent watchdog
ENULP = 1
MAX(1)
TYP
VDD
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
1.8 V
480
635
1500
3450
2.4 V
615
800
1800
3V
775
995
2150
3.6 V
970
1250
1.8 V
330
2.4 V
3V
55 °C
85 °C
8400
560
900
3180
4050
9700
770
1200
4850
11500
975
1450
2650
5850
14000
1250
515
1600
4000
9000
435
690
2100
4750
565
915
2750
5750
3.6 V
725
1200
3600
1.8 V
530
680
2.4 V
675
3V
850
3.6 V
1050
1.8 V
105 °C 125 °C
7500
19500
3850
880
23000
4450
10500
26000
1850
5300
12000
29500
560
900
3180
7500
19500
10500
770
1200
3850
8800
23000
12500
975
1450
4450
10500
26000
6900
1500
1250
1850
5300
12000
29500
1550
3500
8450
-
-
-
-
-
855
1850
4100
9850
-
-
-
-
-
1050
2250
4900
11500
-
-
-
-
-
1350
2750
4900
11500
-
-
-
-
-
370
560
1600
4050
9050
-
-
-
-
-
2.4 V
495
755
2150
4800
10500
-
-
-
-
-
3V
645
985
2850
5800
12500
-
-
-
-
-
3.6 V
825
1300
3700
6950
15000
-
-
-
-
-
Unit
Electrical characteristics
104/192
Table 46. Current consumption in Standby mode (continued)
nA
STM32L412xx
Symbol
Parameter
Conditions
-
DS12469 Rev 8
IDD_ALL
(SRAM2)(3)
85 °C
105 °C 125 °C 25 °C
640
1500
3450
2.4 V
615
800
1800
3V
775
995
2150
3.6 V
960
1250
1.8 V
330
2.4 V
3V
105 °C 125 °C
-
-
-
4000
9300
-
-
-
-
-
4800
11000
-
-
-
-
-
2650
5800
13000
-
-
-
-
-
510
1600
4000
8800
-
-
-
-
-
435
695
2100
4750
10000
-
-
-
-
-
565
910
2750
5700
12000
-
-
-
-
-
3.6 V
730
1200
3600
6900
14500
-
-
-
-
-
1.8 V
415
575
1450
3400
-
-
-
-
-
-
2.4 V
485
670
1650
3900
-
-
-
-
-
-
3V
550
800
1950
4600
-
-
-
-
-
-
3.6 V
690
985
2400
-
-
-
-
-
-
-
1.8 V
RTC clocked by LSE
(2) in low drive mode 2.4 V
quartz
ENULP = 1
3V
LPCAL = 1
3.6 V
245
450
1600
4000
-
-
-
-
-
-
290
565
2050
4650
-
-
-
-
-
-
355
705
2650
5500
-
-
-
-
-
-
450
915
3400
-
-
-
-
-
-
-
1.8 V
100
230
750
1600
3500
-
-
-
-
-
2.4 V
100
230
750
1650
3500
-
-
-
-
-
3V
100
235
750
1700
3500
-
-
-
-
-
3.6 V
100
240
750
1700
3500
-
-
-
-
-
3V
1.25
-
-
-
-
-
-
-
-
-
Wakeup clock is
MSI = 4 MHz.
See (4).
480
85 °C
-
-
1.8 V
55 °C
Unit
nA
nA
mA
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
105/192
3. The supply current in Standby with SRAM2 mode is: IDD_ALL(Standby) + IDD_ALL(SRAM2). The supply current in Standby with RTC with SRAM2 mode is: IDD_ALL(Standby
+ RTC) + IDD_ALL(SRAM2).
4. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 50: Low-power mode wakeup timings.
Electrical characteristics
IDD_ALL
(wakeup
from
Standby)
25 °C 55 °C
-
RTC clocked by LSE
Supply current bypassed at 32768 Hz
in Standby
ENULP = 1
mode (backup
registers
retained),
RTC enabled RTC clocked by LSE
(cont.)
quartz (2) in low drive mode
Supply current
to be added in
Standby mode
when SRAM2
is retained
Supply current
during wakeup
from Standby
mode
VDD
8100
RTC clocked by LSE
bypassed at 32768 Hz
IDD_ALL
(Standby
with RTC)
(cont.)
MAX(1)
TYP
STM32L412xx
Table 46. Current consumption in Standby mode (continued)
Symbol
IDD_ALL
(Shutdown)
Parameter
Supply current
in Shutdown
mode
(backup
registers
retained) RTC
disabled
Conditions
-
-
RTC clocked by LSE
bypassed at 32768 Hz
DS12469 Rev 8
IDD_ALL
(Shutdown
with RTC)
Supply current
in Shutdown
mode
(backup
registers
retained) RTC
enabled
RTC clocked by LSE
bypassed at 32768 Hz
ENULP = 1
RTC clocked by LSE
quartz (2) in low drive
mode
RTC clocked by LSE
quartz (2) in low drive
mode ENULP = 1
Wakeup clock is
MSI = 4 MHz.
See (3).
VDD
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
1.8 V
16
100
600
1850
5450
56
310
1200
3350
9550
2.4 V
22
120
705
2150
6250
65
365
1350
3800
11000
3V
31
155
870
2650
7700
97
600
1700
4750
12500
3.6 V
52
220
1150
3350
9350
95
440
1850
5050
14500
1.8 V
210
300
820
2050
5750
-
-
-
-
-
2.4 V
315
445
1100
2650
6950
-
-
-
-
-
3V
625
1000
2200
44000
10000
-
-
-
-
-
3.6 V
820
1650
3500
5600
14500
-
-
-
-
-
1.8 V
210
300
820
2050
5750
-
-
-
-
-
2.4 V
315
445
1100
2650
6950
-
-
-
-
-
3V
625
1000
2200
44000
10000
-
-
-
-
-
3.6 V
820
1650
3500
5600
14500
-
-
-
-
-
1.8 V
325
425
930
2200
-
-
-
-
-
-
2.4 V
400
515
1100
2550
-
-
-
-
-
-
3V
475
630
1350
3100
-
-
-
-
-
-
3.6 V
595
795
1750
-
-
-
-
-
-
-
1.8 V
230
325
830
2050
-
-
-
-
-
-
2.4 V
270
380
975
2400
-
-
-
-
-
-
3V
320
455
1200
1950
-
-
-
-
-
-
3.6 V
400
575
1500
-
-
-
-
-
-
-
3V
0.78
-
-
-
-
-
-
-
-
-
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
Unit
nA
nA
mA
STM32L412xx
Supply current
IDD_ALL
during wakeup
(wakeup from
from Shutdown
Shutdown)
mode
MAX(1)
TYP
Electrical characteristics
106/192
Table 47. Current consumption in Shutdown mode
Table 48. Current consumption in VBAT mode
Symbol
Parameter
Conditions
-
RTC disabled
IDD_VBAT
(VBAT)
Backup domain
supply current
RTC enabled and
clocked by LSE
quartz(2)
MAX(1)
TYP
VBAT
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
1.8 V
2
12
66
195
540
-
-
-
-
-
2.4 V
3
14
73
215
600
-
-
-
-
-
3V
5
16
92
265
730
-
-
-
-
-
3.6 V
6
30
161
460
1250
-
-
-
-
-
1.8 V
300
455
460
990
1750
-
-
-
-
-
2.4 V
380
515
575
1050
1950
-
-
-
-
-
3V
445
550
595
1200
2550
-
-
-
-
-
3.6 V
495
630
820
1500
2950
-
-
-
-
-
Unit
STM32L412xx
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 50: Low-power mode wakeup timings.
nA
DS12469 Rev 8
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
Electrical characteristics
107/192
Electrical characteristics
STM32L412xx
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 69: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 49: Peripheral current consumption), the I/Os used by an application also contribute
to the current consumption. When an I/O pin switches, it uses the current from the I/O
supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load
(internal or external) connected to the pin:
I SW = V DDIOx × f SW × C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDIOx is the I/O supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
108/192
DS12469 Rev 8
STM32L412xx
Electrical characteristics
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 49. The MCU is placed
under the following conditions:
•
All I/O pins are in Analog mode
•
The given value is calculated by measuring the difference of the current consumptions:
–
when the peripheral is clocked on
–
when the peripheral is clocked off
•
Ambient operating temperature and supply voltage conditions summarized in Table 18:
Voltage characteristics
•
The power consumption of the digital part of the on-chip peripherals is given in
Table 49. The power consumption of the analog part of the peripherals (where
applicable) is indicated in each related section of the datasheet.
Table 49. Peripheral current consumption
Range 1
Range 2
Low-power run
and sleep
Bus Matrix(1)
3.0
2.9
2.8
ADC clock domain
2.2
1.8
1.8
CRC
0.5
0.3
0.2
DMA1
1.3
1.2
1.1
DMA2
1.3
1.2
1.1
5.9
4.9
5.6
GPIOA
1.6
1.5
1.3
GPIOB(2))
1.5
1.4
1.3
GPIOC(2)
1.7
1.6
1.5
(2)
GPIOH
0.6
0.5
0.6
QSPI
6.9
7.0
5.6
RNG independent clock domain
2.2
NA
NA
RNG clock domain
0.5
NA
NA
SRAM1
0.7
0.6
0.7
SRAM2
0.9
0.7
0.8
TSC
1.5
1.3
1.3
21.9
19.2
20.5
0.8
0.6
0.8
RTCA
1.7
1.1
2.1
CRS
0.3
0.3
0.5
USB FS independent clock
domain
2.8
NA
NA
USB FS clock domain
2.2
NA
NA
Peripheral
FLASH
(2)
AHB
All AHB Peripherals
AHB to APB1
APB1
bridge(3)
DS12469 Rev 8
Unit
µA/MHz
109/192
164
Electrical characteristics
STM32L412xx
Table 49. Peripheral current consumption (continued)
Range 1
Range 2
Low-power run
and sleep
I2C1 independent clock domain
3.4
2.8
3.3
I2C1 clock domain
1.0
0.9
0.9
I2C2 independent clock domain
3.4
2.8
3.3
I2C2 clock domain
1.0
0.9
0.9
I2C3 independent clock domain
2.8
2.3
2.4
I2C3 clock domain
0.9
0.4
0.7
LPUART1 independent clock
domain
1.8
1.6
1.7
LPUART1 clock domain
0.6
0.6
1.7
LPTIM1 independent clock
domain
2.8
2.3
2.7
LPTIM1 clock domain
0.8
0.4
0.7
LPTIM2 independent clock
domain
2.9
2.6
3.8
LPTIM2 clock domain
0.8
0.7
0.8
OPAMP
0.4
0.2
0.4
PWR
0.4
0.1
0.4
SPI2
1.7
1.5
1.5
SPI3
1.7
1.4
1.5
TIM2
6.2
5.0
5.8
TIM6
1.0
0.6
0.9
USART2 independent clock
domain
4.0
3.5
3.7
USART2 clock domain
1.3
0.8
1.1
USART3 independent clock
domain
4.2
3.4
4.1
USART3 clock domain
1.5
1.1
1.3
WWDG
0.5
0.5
0.5
All APB1 on
41.4
28.5
38.9
Peripheral
APB1
110/192
DS12469 Rev 8
Unit
µA/MHz
STM32L412xx
Electrical characteristics
Table 49. Peripheral current consumption (continued)
Range 1
Range 2
Low-power run
and sleep
AHB to APB2(4)
1.0
0.9
0.9
FW
0.2
0.2
0.2
SPI1
1.7
1.6
1.7
SYSCFG/COMP
0.6
0.5
0.6
TIM1
8.1
6.4
7.6
TIM15
3.7
3.0
3.4
TIM16
2.6
2.1
2.5
USART1 independent clock
domain
4.1
4.1
4.4
USART1 clock domain
1.5
1.2
1.6
All APB2 on
19.2
16.1
17.8
82.5
63.8
77.2
Peripheral
APB2
ALL
Unit
µA/MHz
1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).
2. The GPIOx (x= A…H) dynamic current consumption is approximately divided by a factor two versus this table values when
the GPIO port is locked thanks to LCKK and LCKy bits in the GPIOx_LCKR register. In order to save the full GPIOx current
consumption, the GPIOx clock should be disabled in the RCC when all port I/Os are used in alternate function or analog
mode (clock is only required to read or write into GPIO registers, and is not used in AF or analog modes).
3. The AHB to APB1 Bridge is automatically active when at least one peripheral is ON on the APB1.
4. The AHB to APB2 Bridge is automatically active when at least one peripheral is ON on the APB2.
The consumption for the peripherals when using SMPS can be found using STM32CubeMX
PCC tool.
6.3.6
Wakeup time from low-power modes and voltage scaling
transition times
The wakeup times given in Table 50 are the latency between the event and the execution of
the first user instruction.
The device goes in low-power mode after the WFE (Wait For Event) instruction.
Table 50. Low-power mode wakeup timings(1)
Symbol
tWUSLEEP
Parameter
Conditions
Typ
Max
-
6
6
Wakeup time from Sleep
mode to Run mode
Wakeup time from LowtWULPSLEEP power sleep mode to Lowpower run mode
Wakeup in Flash with Flash in power-down
during low-power sleep mode (SLEEP_PD=1 in
FLASH_ACR) and with clock MSI = 2 MHz
DS12469 Rev 8
6
8.3
Unit
Nb of
CPU
cycles
111/192
164
Electrical characteristics
STM32L412xx
Table 50. Low-power mode wakeup timings(1) (continued)
Symbol
Parameter
Conditions
Range 1
Wake up time from Stop 0
mode to Run mode in
Flash
Range 2
tWUSTOP0
Range 1
Wake up time from Stop 0
mode to Run mode in
SRAM1
Range 2
Range 1
Wake up time from Stop 1
mode to Run in Flash
Range 2
Range 1
tWUSTOP1
Wake up time from Stop 1
mode to Run mode in
SRAM1
Wake up time from Stop 1
mode to Low-power run
mode in Flash
Wake up time from Stop 1
mode to Low-power run
mode in SRAM1
112/192
Range 2
Regulator in
low-power
mode (LPR=1
in PWR_CR1)
Typ
Max
Wakeup clock MSI = 48 MHz
3.8
5.7
Wakeup clock HSI16 = 16 MHz
4.1
6.9
Wakeup clock MSI = 24 MHz
4.07
6.2
Wakeup clock HSI16 = 16 MHz
4.1
6.8
Wakeup clock MSI = 4 MHz
8.45
11.8
Wakeup clock MSI = 48 MHz
1.5
2.9
Wakeup clock HSI16 = 16 MHz
2.4
2.76
Wakeup clock MSI = 24 MHz
2.4
3.48
Wakeup clock HSI16 = 16 MHz
2.4
2.76
Wakeup clock MSI = 4 MHz
8.16 10.94
Wakeup clock MSI = 48 MHz
6.34
7.86
Wakeup clock HSI16 = 16 MHz
6.84
8.23
Wakeup clock MSI = 24 MHz
6.74
8.1
Wakeup clock HSI16 = 16 MHz
6.89
8.21
Wakeup clock MSI = 4 MHz
10.47 12.1
Wakeup clock MSI = 48 MHz
4.7
5.97
Wakeup clock HSI16 = 16 MHz
5.9
6.92
Wakeup clock MSI = 24 MHz
5.4
6.51
Wakeup clock HSI16 = 16 MHz
5.9
6.92
Wakeup clock MSI = 4 MHz
11.1
12.2
16.4 17.73
Wakeup clock MSI = 2 MHz
DS12469 Rev 8
17.3 18.82
Unit
µs
µs
STM32L412xx
Electrical characteristics
Table 50. Low-power mode wakeup timings(1) (continued)
Symbol
Parameter
Conditions
Typ
Max
Wakeup clock MSI = 48 MHz
8.02
9.24
Wakeup clock HSI16 = 16 MHz
7.66
8.95
Wakeup clock MSI = 24 MHz
8.5
9.54
Wakeup clock HSI16 = 16 MHz
7.75
8.95
Wakeup clock MSI = 4 MHz
12.06 13.16
Wakeup clock MSI = 48 MHz
5.45
6.79
Wakeup clock HSI16 = 16 MHz
6.9
7.98
Wakeup clock MSI = 24 MHz
6.3
7.36
Wakeup clock HSI16 = 16 MHz
6.9
7.9
Wakeup clock MSI = 4 MHz
13.1 13.31
Wakeup time from Standby
Range 1
mode to Run mode
Wakeup clock MSI = 8 MHz
12.2 18.35
Wakeup clock MSI = 4 MHz
19.14 25.8
Wakeup time from Standby
Range 1
with SRAM2 to Run mode
Wakeup clock MSI = 8 MHz
12.1
Wakeup clock MSI = 4 MHz
19.2 25.87
Wakeup clock MSI = 4 MHz
261.5 315.7
Range 1
Wake up time from Stop 2
mode to Run mode in
Flash
Range 2
tWUSTOP2
Range 1
Wake up time from Stop 2
mode to Run mode in
SRAM1
tWUSTBY
tWUSTBY
SRAM2
tWUSHDN
Wakeup time from
Shutdown mode to Run
mode
Range 2
Range 1
18.3
Unit
µs
µs
µs
µs
1. Guaranteed by characterization results.
Table 51. Regulator modes transition times(1)
Symbol
tWULPRUN
tVOST
Parameter
Conditions
Typ
Max
Wakeup time from Low-power run mode to
Code run with MSI 2 MHz
Run mode(2)
5
7
Regulator transition time from Range 2 to
Range 1 or Range 1 to Range 2(3)
20
40
Typ
Max
Stop 0 mode
-
1.7
Stop 1 mode and Stop 2
mode
-
8.5
Code run with MSI 24 MHz
Unit
µs
1. Guaranteed by characterization results.
2. Time until REGLPF flag is cleared in PWR_SR2.
3. Time until VOSF flag is cleared in PWR_SR2.
Table 52. Wakeup time using USART/LPUART(1)
Symbol
tWUUSART
tWULPUART
Parameter
Conditions
Wakeup time needed to calculate the
maximum USART/LPUART baudrate
allowing to wakeup up from stop mode
when USART/LPUART clock source is
HSI
Unit
µs
1. Guaranteed by design.
DS12469 Rev 8
113/192
164
Electrical characteristics
6.3.7
STM32L412xx
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 21: High-speed external clock
source AC timing diagram.
Table 53. High-speed external user clock characteristics(1)
Symbol
fHSE_ext
Parameter
User external clock source frequency
Conditions
Min
Typ
Max
Voltage scaling
Range 1
-
8
48
Voltage scaling
Range 2
-
8
26
Unit
MHz
VHSEH
OSC_IN input pin high level voltage
-
0.7 VDDIOx
-
VDDIOx
VHSEL
OSC_IN input pin low level voltage
-
VSS
-
0.3 VDDIOx
Voltage scaling
Range 1
7
-
-
Voltage scaling
Range 2
18
tw(HSEH)
OSC_IN high or low time
tw(HSEL)
V
ns
-
-
1. Guaranteed by design.
Figure 21. High-speed external clock source AC timing diagram
tw(HSEH)
VHSEH
90%
VHSEL
10%
tr(HSE)
tf(HSE)
tw(HSEL)
t
THSE
MS19214V2
114/192
DS12469 Rev 8
STM32L412xx
Electrical characteristics
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 22.
Table 54. Low-speed external user clock characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
kHz
fLSE_ext
User external clock source frequency
-
-
32.768
1000
VLSEH
OSC32_IN input pin high level voltage
-
0.7 VDDIOx
-
VDDIOx
VLSEL
OSC32_IN input pin low level voltage
-
VSS
-
0.3 VDDIOx
-
250
-
-
tw(LSEH)
OSC32_IN high or low time
tw(LSEL)
V
ns
1. Guaranteed by design.
Figure 22. Low-speed external clock source AC timing diagram
tw(LSEH)
VLSEH
90%
VLSEL
10%
tr(LSE)
tf(LSE)
t
tw(LSEL)
TLSE
MS19215V2
DS12469 Rev 8
115/192
164
Electrical characteristics
STM32L412xx
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 55. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Table 55. HSE oscillator characteristics(1)
Symbol
fOSC_IN
RF
Conditions(2)
Min
Typ
Max
Unit
Oscillator frequency
-
4
8
48
MHz
Feedback resistor
-
-
200
-
kΩ
-
-
5.5
VDD = 3 V,
Rm = 30 Ω,
CL = 10 pF@8 MHz
-
0.44
-
VDD = 3 V,
Rm = 45 Ω,
CL = 10 pF@8 MHz
-
0.45
-
VDD = 3 V,
Rm = 30 Ω,
CL = 5 pF@48 MHz
-
0.68
-
VDD = 3 V,
Rm = 30 Ω,
CL = 10 pF@48 MHz
-
0.94
-
VDD = 3 V,
Rm = 30 Ω,
CL = 20 pF@48 MHz
-
1.77
-
Startup
-
-
1.5
mA/V
VDD is stabilized
-
2
-
ms
Parameter
During startup
IDD(HSE)
Gm
HSE current consumption
Maximum critical crystal
transconductance
tSU(HSE)(4) Startup time
(3)
mA
1. Guaranteed by design.
2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 23). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
116/192
DS12469 Rev 8
STM32L412xx
Note:
Electrical characteristics
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 23. Typical application with an 8 MHz crystal
Resonator with integrated
capacitors
CL1
OSC_IN
8 MHz
resonator
CL2
REXT (1)
fHSE
RF
Bias
controlled
gain
OSC_OUT
MS19876V1
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. All the information given in this paragraph are based on design simulation results
obtained with typical external components specified in Table 56. In the application, the
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Table 56. LSE oscillator characteristics (fLSE = 32.768 kHz)(1)
Symbol
IDD(LSE)
Parameter
LSE current consumption
Maximum critical crystal
Gmcritmax
gm
tSU(LSE)(3) Startup time
Conditions(2)
Min
Typ
Max
LSEDRV[1:0] = 00
Low drive capability
-
250
-
LSEDRV[1:0] = 01
Medium low drive capability
-
315
-
LSEDRV[1:0] = 10
Medium high drive capability
-
500
-
LSEDRV[1:0] = 11
High drive capability
-
630
-
LSEDRV[1:0] = 00
Low drive capability
-
-
0.5
LSEDRV[1:0] = 01
Medium low drive capability
-
-
0.75
LSEDRV[1:0] = 10
Medium high drive capability
-
-
1.7
LSEDRV[1:0] = 11
High drive capability
-
-
2.7
VDD is stabilized
-
2
-
DS12469 Rev 8
Unit
nA
µA/V
s
117/192
164
Electrical characteristics
STM32L412xx
1. Guaranteed by design.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
3.
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 24. Typical application with a 32.768 kHz crystal
Resonator with integrated
capacitors
CL1
OSC32_IN
fLSE
Drive
programmable
amplifier
32.768 kHz
resonator
OSC32_OUT
CL2
MS30253V2
Note:
118/192
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
DS12469 Rev 8
STM32L412xx
6.3.8
Electrical characteristics
Internal clock source characteristics
The parameters given in Table 57 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions. The provided curves are characterization results, not tested in production.
High-speed internal (HSI16) RC oscillator
Table 57. HSI16 oscillator characteristics(1)
Symbol
fHSI16
TRIM
Parameter
HSI16 Frequency
HSI16 user trimming step
DuCy(HSI16)(2) Duty Cycle
Conditions
Min
Typ
Max
Unit
15.88
-
16.08
MHz
Trimming code is not a
multiple of 64
0.2
0.3
0.4
Trimming code is a
multiple of 64
-4
-6
-8
45
-
55
%
-1
-
1
%
-2
-
1.5
%
-0.1
-
0.05
%
VDD=3.0 V, TA=30 °C
-
%
∆Temp(HSI16)
HSI16 oscillator frequency TA= 0 to 85 °C
drift over temperature
TA= -40 to 125 °C
∆VDD(HSI16)
HSI16 oscillator frequency
VDD=1.62 V to 3.6 V
drift over VDD
tsu(HSI16)(2)
HSI16 oscillator start-up
time
-
-
0.8
1.2
μs
tstab(HSI16)(2)
HSI16 oscillator
stabilization time
-
-
3
5
μs
IDD(HSI16)(2)
HSI16 oscillator power
consumption
-
-
155
190
μA
1. Guaranteed by characterization results.
2. Guaranteed by design.
DS12469 Rev 8
119/192
164
Electrical characteristics
STM32L412xx
Figure 25. HSI16 frequency versus temperature
MHz
16.4
+2%
16.3
+1.5%
16.2
+1%
16.1
16
15.9
-1%
15.8
-1.5%
15.7
-2%
15.6
-40
-20
0
20
min
40
mean
60
80
100
120 °C
max
MSv39299V1
120/192
DS12469 Rev 8
STM32L412xx
Electrical characteristics
Multi-speed internal (MSI) RC oscillator
Table 58. MSI oscillator characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Range 0
98.7
100
101.3
Range 1
197.4
200
202.6
Range 2
394.8
400
405.2
Range 3
789.6
800
810.4
Range 4
0.987
1
1.013
Range 5
1.974
2
2.026
Range 6
3.948
4
4.052
Range 7
7.896
8
8.104
Range 8
15.79
16
16.21
Range 9
23.69
24
24.31
Range 10
31.58
32
32.42
Range 11
47.38
48
48.62
Range 0
-
98.304
-
Range 1
-
196.608
-
Range 2
-
393.216
-
Range 3
-
786.432
-
Range 4
-
1.016
-
PLL mode Range 5
XTAL=
32.768 kHz Range 6
-
1.999
-
-
3.998
-
Range 7
-
7.995
-
Range 8
-
15.991
-
Range 9
-
23.986
-
Range 10
-
32.014
-
Range 11
-
48.005
-
-3.5
-
3
-8
-
6
MSI mode
fMSI
∆TEMP(MSI)(2)
MSI frequency
after factory
calibration, done
at VDD=3 V and
TA=30 °C
MSI oscillator
frequency drift
over temperature
MSI mode
TA= -0 to 85 °C
TA= -40 to 125 °C
DS12469 Rev 8
Unit
kHz
MHz
kHz
MHz
%
121/192
164
Electrical characteristics
STM32L412xx
Table 58. MSI oscillator characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
VDD=1.62 V
to 3.6 V
-1.2
-
VDD=2.4 V
to 3.6 V
-0.5
-
VDD=1.62 V
to 3.6 V
-2.5
-
VDD=2.4 V
to 3.6 V
-0.8
-
VDD=1.62 V
to 3.6 V
-5
-
VDD=2.4 V
to 3.6 V
-1.6
-
TA= -40 to 85 °C
-
1
2
TA= -40 to 125 °C
-
2
4
Range 0 to 3
∆VDD(MSI)
(2)
MSI oscillator
frequency drift
MSI mode
over VDD
(reference is 3 V)
Range 4 to 7
Range 8 to 11
∆FSAMPLING
(MSI)(2)(6)
Frequency
variation in
MSI mode
sampling mode(3)
P_USB
Jitter(MSI)(6)
Period jitter for
USB clock(4)
MT_USB
Jitter(MSI)(6)
Medium term jitter PLL mode
for USB clock(5)
Range 11
CC jitter(MSI)(6)
P jitter(MSI)(6)
tSU(MSI)(6)
tSTAB(MSI)(6)
122/192
PLL mode
Range 11
Max
Unit
0.5
0.7
%
1
for next
transition
-
-
-
3.458
for paired
transition
-
-
-
3.916
for next
transition
-
-
-
2
for paired
transition
-
-
-
1
%
ns
ns
RMS cycle-tocycle jitter
PLL mode Range 11
-
-
60
-
ps
RMS Period jitter
PLL mode Range 11
-
-
50
-
ps
Range 0
-
-
10
20
Range 1
-
-
5
10
Range 2
-
-
4
8
Range 3
-
-
3
7
Range 4 to 7
-
-
3
6
Range 8 to 11
-
-
2.5
6
10 % of final
frequency
-
-
0.25
0.5
5 % of final
frequency
-
-
0.5
1.25
1 % of final
frequency
-
-
-
2.5
MSI oscillator
start-up time
MSI oscillator
stabilization time
PLL mode
Range 11
DS12469 Rev 8
us
ms
STM32L412xx
Electrical characteristics
Table 58. MSI oscillator characteristics(1) (continued)
Symbol
IDD(MSI)(6)
Parameter
MSI oscillator
power
consumption
Conditions
MSI and
PLL mode
Min
Typ
Max
Range 0
-
-
0.6
1
Range 1
-
-
0.8
1.2
Range 2
-
-
1.2
1.7
Range 3
-
-
1.9
2.5
Range 4
-
-
4.7
6
Range 5
-
-
6.5
9
Range 6
-
-
11
15
Range 7
-
-
18.5
25
Range 8
-
-
62
80
Range 9
-
-
85
110
Range 10
-
-
110
130
Range 11
-
-
155
190
Unit
µA
1. Guaranteed by characterization results.
2. This is a deviation for an individual part once the initial frequency has been measured.
3. Sampling mode means Low-power run/Low-power sleep modes with Temperature sensor disable.
4. Average period of MSI @48 MHz is compared to a real 48 MHz clock over 28 cycles. It includes frequency tolerance + jitter
of MSI @48 MHz clock.
5. Only accumulated jitter of MSI @48 MHz is extracted over 28 cycles.
For next transition: min. and max. jitter of 2 consecutive frame of 28 cycles of the MSI @48 MHz, for 1000 captures over 28
cycles.
For paired transitions: min. and max. jitter of 2 consecutive frame of 56 cycles of the MSI @48 MHz, for 1000 captures over
56 cycles.
6. Guaranteed by design.
DS12469 Rev 8
123/192
164
Electrical characteristics
STM32L412xx
Figure 26. Typical current consumption versus MSI frequency
High-speed internal 48 MHz (HSI48) RC oscillator
Table 59. HSI48 oscillator characteristics(1)
Symbol
Parameter
fHSI48
HSI48 Frequency
TRIM
HSI48 user trimming step
USER TRIM
COVERAGE
HSI48 user trimming coverage
DuCy(HSI48) Duty Cycle
Accuracy of the HSI48 oscillator
ACCHSI48_REL over temperature (factory
calibrated)
DVDD(HSI48)
HSI48 oscillator frequency drift
with VDD
Conditions
VDD=3.0V, TA=30°C
±32 steps
VDD = 3.0 V to 3.6 V,
TA = –15 to 85 °C
Min
Typ
Max
Unit
-
48
-
MHz
-
0.11(2)
0.18(2)
%
±3(3)
±3.5(3)
-
%
45(2)
-
55(2)
%
-
-
±3(3)
%
VDD = 1.65 V to 3.6 V,
TA = –40 to 125 °C
-
-
±4.5(3)
VDD = 3 V to 3.6 V
-
0.025(3)
0.05(3)
VDD = 1.65 V to 3.6 V
-
0.05(3)
0.1(3)
%
tsu(HSI48)
HSI48 oscillator start-up time
-
-
2.5(2)
6(2)
μs
IDD(HSI48)
HSI48 oscillator power
consumption
-
-
340(2)
380(2)
μA
124/192
DS12469 Rev 8
STM32L412xx
Electrical characteristics
Table 59. HSI48 oscillator characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
NT jitter
Next transition jitter
Accumulated jitter on 28 cycles(4)
-
-
+/-0.15(2)
-
ns
PT jitter
Paired transition jitter
Accumulated jitter on 56 cycles(4)
-
-
+/-0.25(2)
-
ns
1. VDD = 3 V, TA = –40 to 125°C unless otherwise specified.
2. Guaranteed by design.
3. Guaranteed by characterization results.
4. Jitter measurement are performed without clock source activated in parallel.
Figure 27. HSI48 frequency versus temperature
%
6
4
2
0
-2
-4
-6
-50
-30
-10
Avg
10
30
50
70
90
min
110
130
°C
max
MSv40989V1
Low-speed internal (LSI) RC oscillator
Table 60. LSI oscillator characteristics(1)
Symbol
fLSI
tSU(LSI)(2)
tSTAB(LSI)(2)
IDD(LSI)(2)
Parameter
LSI Frequency
LSI oscillator startup time
LSI oscillator
stabilization time
LSI oscillator power
consumption
Conditions
Min
Typ
Max
Unit
VDD = 3.0 V, TA = 30 °C
31.04
-
32.96
VDD = 1.62 to 3.6 V, TA = -40 to 125 °C
29.5
-
34
-
-
80
130
μs
5% of final frequency
-
125
180
μs
-
-
110
180
nA
kHz
1. Guaranteed by characterization results.
2. Guaranteed by design.
DS12469 Rev 8
125/192
164
Electrical characteristics
6.3.9
STM32L412xx
PLL characteristics
The parameters given in Table 61 are derived from tests performed under temperature and
VDD supply voltage conditions summarized in Table 21: General operating conditions.
Table 61. PLL characteristics(1)
Symbol
fPLL_IN
Parameter
Conditions
Min
Typ
Max
Unit
PLL input clock(2)
-
4
-
16
MHz
PLL input clock duty cycle
-
45
-
55
%
Voltage scaling Range 1
3.0968
-
80
Voltage scaling Range 2
3.0968
-
26
Voltage scaling Range 1
12
-
80
Voltage scaling Range 2
12
-
26
Voltage scaling Range 1
12
-
80
Voltage scaling Range 2
12
-
26
Voltage scaling Range 1
96
-
344
Voltage scaling Range 2
96
-
128
-
15
40
-
40
-
-
30
-
VCO freq = 96 MHz
-
200
260
VCO freq = 192 MHz
-
300
380
VCO freq = 344 MHz
-
520
650
fPLL_P_OUT PLL multiplier output clock P
fPLL_Q_OUT PLL multiplier output clock Q
fPLL_R_OUT PLL multiplier output clock R
fVCO_OUT
tLOCK
Jitter
IDD(PLL)
PLL VCO output
PLL lock time
RMS cycle-to-cycle jitter
RMS period jitter
PLL power consumption on
VDD(1)
System clock 80 MHz
MHz
MHz
MHz
MHz
μs
±ps
1. Guaranteed by design.
2. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between the 2 PLLs.
126/192
DS12469 Rev 8
μA
STM32L412xx
6.3.10
Electrical characteristics
Flash memory characteristics
Table 62. Flash memory characteristics(1)
Symbol
Parameter
Conditions
Typ
Max
Unit
tprog
64-bit programming time
-
81.69
90.76
µs
tprog_row
one row (32 double
word) programming time
normal programming
2.61
2.90
fast programming
1.91
2.12
tprog_page
one page (2 Kbyte)
programming time
normal programming
20.91
23.24
fast programming
15.29
16.98
22.02
24.47
normal programming
5.35
5.95
fast programming
3.91
4.35
22.13
24.59
Write mode
3.4
-
Erase mode
3.4
-
Write mode
7 (for 2 μs)
-
Erase mode
7 (for 41 μs)
-
tERASE
tprog_bank
tME
IDD
Page (2 KB) erase time
one bank (512 Kbyte)
programming time
-
Mass erase time
(one or two banks)
-
Average consumption
from VDD
Maximum current (peak)
ms
s
ms
mA
1. Guaranteed by design.
Table 63. Flash memory endurance and data retention
Symbol
NEND
tRET
Min(1)
Unit
TA = –40 to +105 °C
10
kcycles
1 kcycle(2) at TA = 85 °C
30
Parameter
Endurance
Data retention
Conditions
1 kcycle
(2)
1 kcycle
(2)
at TA = 105 °C
15
at TA = 125 °C
7
(2)
at TA = 55 °C
30
10 kcycles(2) at TA = 85 °C
15
10 kcycles
10 kcycles
(2)
at TA = 105 °C
Years
10
1. Guaranteed by characterization results.
2. Cycling performed over the whole temperature range.
DS12469 Rev 8
127/192
164
Electrical characteristics
6.3.11
STM32L412xx
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 64. They are based on the EMS levels and classes
defined in application note AN1709.
Table 64. EMS characteristics
Conditions
Level/
Class
Symbol
Parameter
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 80 MHz,
conforming to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 80 MHz,
conforming to IEC 61000-4-4
5A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
128/192
•
Corrupted program counter
•
Unexpected reset
•
Critical Data corruption (control registers...)
DS12469 Rev 8
STM32L412xx
Electrical characteristics
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 65. EMI characteristics
Symbol
Parameter
Conditions
Max vs.
[fHSE/fHCLK]
Monitored
frequency band
Unit
8 MHz/ 80 MHz
SEMI
Peak level
0.1 MHz to 30 MHz
3
VDD = 3.6 V, TA = 25 °C, 30 MHz to 130 MHz
LQFP64 package
130 MHz to 1 GHz
compliant with IEC
61967-2
1 GHz to 2 GHz
3
8
EMI Level
6.3.12
dBµV
4
2.5
-
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the ANSI/JEDEC standard.
Table 66. ESD absolute maximum ratings
Symbol
Ratings
Conditions
VESD(HBM)
T = +25 °C, conforming
Electrostatic discharge voltage A
to ANSI/ESDA/JEDEC
(human body model)
JS-001
VESD
T = +25 °C,
Electrostatic discharge voltage A
conforming to
(charge device model)
ANSI/ESDA/JEDEC-002
Package
Class
Maximum
value(1)
All
2
2000
BGA64
C2a
500
All others
C1
250
Unit
V
1. Guaranteed by characterization results.
DS12469 Rev 8
129/192
164
Electrical characteristics
STM32L412xx
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
•
A supply overvoltage is applied to each power supply pin.
•
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 67. Electrical sensitivities
Symbol
LU
6.3.13
Parameter
Static latch-up class
Conditions
Class
TA = +105 °C conforming to JESD78A
II
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal
product operation. However, in order to give an indication of the robustness of the
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests
are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or
oscillator frequency deviation).
The characterization results are given in Table 68.
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
Table 68. I/O current injection susceptibility(1)
Functional
susceptibility
Symbol
IINJ
Description
Positive
injection
Injected current on all pins except PA4, PA5
-5
N/A(2)
Injected current on PA4, PA5 pins
-5
0
1. Guaranteed by characterization results.
2. Injection is not possible.
130/192
Unit
Negative
injection
DS12469 Rev 8
mA
STM32L412xx
6.3.14
Electrical characteristics
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 69 are derived from tests
performed under the conditions summarized in Table 21: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant.
Table 69. I/O static characteristics
Symbol
VIL(1)
VIH(1)
Vhys(3)
Parameter
Conditions
Min
Typ
Max
Unit
I/O input low level
voltage
1.62 V