STM32L422xx
Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100DMIPS,
128KB Flash, 40KB SRAM, analog, AES
Datasheet - production data
Features
• Ultra-low-power with FlexPowerControl
– 1.71 V to 3.6 V power supply
– -40 °C to 85/125 °C temperature range
– 300 nA in VBAT mode: supply for RTC and
32x32-bit backup registers
– 16 nA Shutdown mode (4 wakeup pins)
– 32 nA Standby mode (4 wakeup pins)
– 245 nA Standby mode with RTC
– 0.7 µA Stop 2 mode, 0.95 µA with RTC
– 79 µA/MHz run mode (LDO Mode)
– Batch acquisition mode (BAM)
– 4 µs wakeup from Stop mode
– Brown out reset (BOR)
– Interconnect matrix
• Core: Arm® 32-bit Cortex®-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait-state execution
from Flash memory, frequency up to 80 MHz,
MPU, 100DMIPS and DSP instructions
• Performance benchmark
– 1.25 DMIPS/MHz (Drystone 2.1)
– 273.55 CoreMark® (3.42 CoreMark/MHz @
80 MHz)
• Energy benchmark
– 442 ULPMark-CP®
– 165 ULPMark-PP®
• Clock Sources
– 4 to 48 MHz crystal oscillator
– 32 kHz crystal oscillator for RTC (LSE)
– Internal 16 MHz factory-trimmed RC (±1%)
– Internal low-power 32 kHz RC (±5%)
– Internal multispeed 100 kHz to 48 MHz
oscillator, auto-trimmed by LSE (better than
±0.25 % accuracy)
– Internal 48 MHz with clock recovery
– PLL for system clock
LQFP32 (7x7 mm) UFBGA64 (5x5 mm) UFQFPN32 (5x5 mm)
LQFP48 (7x7 mm)
UFQFPN48 (7x7 mm)
LQFP64 (10x10 mm)
WLCSP36
(2.6x3.1 mm)
• Up to 52 fast I/Os, most 5 V-tolerant
• RTC with HW calendar, alarms and calibration
• Up to 12 capacitive sensing channels: support
touchkey, linear and rotary touch sensors
• 10x timers: 1x 16-bit advanced motor-control,
1x 32-bit and 2x 16-bit general purpose, 1x 16bit basic, 2x low-power 16-bit timers (available
in Stop mode), 2x watchdogs, SysTick timer
• Memories
– 128 KB single bank Flash, proprietary code
readout protection
– 40 KB of SRAM including 8 KB with
hardware parity check
– Quad SPI memory interface with XIP
capability
• Rich analog peripherals (independent supply)
– 2x 12-bit ADC 5 Msps, up to 16-bit with
hardware oversampling, 200 µA/Msps
– 2x operational amplifiers with built-in PGA
– 1x ultra-low-power comparator
– Accurate 2.5 V or 2.048 V reference
voltage buffered output
• AES: 128/256-bit key encryption hardware
accelerator
• 12x communication interfaces
– USB 2.0 full-speed crystal less solution
with LPM and BCD
– 3x I2C FM+(1 Mbit/s), SMBus/PMBus
– 3x USARTs (ISO 7816, LIN, IrDA, modem)
– 1x LPUART (Stop 2 wake-up)
– 2x SPIs (and 1x Quad SPI)
– IRTIM (Infrared interface)
• 14-channel DMA controller
June 2019
This is information on a product in full production.
DS12470 Rev 5
1/184
www.st.com
STM32L422xx
• True random number generator
• CRC calculation unit, 96-bit unique ID
• Development support: serial wire debug
(SWD), JTAG, Embedded Trace Macrocell™
• All packages are ECOPACK2® compliant
Table 1. Device summary
Reference
STM32L422xx
2/184
Part numbers
STM32L422CB, STM32L422KB, STM32L422RB, STM32L422TB
DS12470 Rev 5
STM32L422xx
Contents
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1
Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 16
3.3
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6
Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 19
3.9
Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9.1
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9.4
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9.5
Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.9.6
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.10
Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.11
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.12
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.13
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.14
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.15
3.16
3.14.1
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 36
3.14.2
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 36
Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.15.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.15.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.15.3
VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
DS12470 Rev 5
3/184
6
Contents
STM32L422xx
3.17
Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.18
Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.19
Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.20
Advanced encryption standard hardware accelerator (AES) . . . . . . . . . . 40
3.21
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.21.1
Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.21.2
General-purpose timers (TIM2, TIM15, TIM16) . . . . . . . . . . . . . . . . . . . 42
3.21.3
Basic timer (TIM6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.21.4
Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 42
3.21.5
Infrared interface (IRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.21.6
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.21.7
System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.21.8
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.22
Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 44
3.23
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.24
Universal synchronous/asynchronous receiver transmitter (USART) . . . 46
3.25
Low-power universal asynchronous receiver transmitter (LPUART) . . . . 47
3.26
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.27
Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.28
Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.29
Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.30
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.30.1
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.30.2
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1
4/184
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
DS12470 Rev 5
STM32L422xx
7
Contents
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.2
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 76
6.3.3
Embedded reset and power control block characteristics . . . . . . . . . . . 76
6.3.4
Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.5
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.6
Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.7
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.8
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.9
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.10
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.11
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.12
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3.13
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3.14
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.15
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.16
Extended interrupt and event controller input (EXTI) characteristics . . 128
6.3.17
Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.18
Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . 129
6.3.19
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3.20
Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3.21
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.3.22
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.3.23
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.3.24
Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 148
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.1
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.2
UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.3
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.4
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.5
WLCSP36 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
DS12470 Rev 5
5/184
6
Contents
STM32L422xx
7.6
UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.7
LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.8
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.8.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.8.2
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 179
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6/184
DS12470 Rev 5
STM32L422xx
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
STM32L422xx family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . 13
Access status versus readout protection level and execution modes. . . . . . . . . . . . . . . . . 17
STM32L422xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
STM32L422xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
STM32L422xx USART/UART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
STM32L422xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Alternate function AF0 to AF7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Alternate function AF8 to AF15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
STM32L422xx memory map and peripheral register boundary addresses . . . . . . . . . . . . 68
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 76
Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 82
Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 85
Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Current consumption in Sleep and Low-power sleep modes, Flash ON . . . . . . . . . . . . . . 87
Current consumption in Low-power sleep modes, Flash in power-down . . . . . . . . . . . . . . 88
Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Current consumption in Stop 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Wakeup time using USART/LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
DS12470 Rev 5
7/184
9
List of tables
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
8/184
STM32L422xx
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
EXTI Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
ADC accuracy - limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
WWDG min/max timeout value at 80 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Quad SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
LQFP - 64 pins, 10 x 10 mm low-profile quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
UFBGA – 64 balls, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
UFBGA64 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . . 160
LQFP - 48 pins, 7 x 7 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
UFQFPN - 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
WLCSP - 36 balls, 2.58 x 3.07 mm, 0.4 mm pitch, wafer level chip scale
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
DS12470 Rev 5
STM32L422xx
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
List of tables
WLCSP36 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
UFQFPN - 32 pins, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
LQFP - 32 pins, 7 x 7 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
STM32L422xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
DS12470 Rev 5
9/184
9
List of figures
STM32L422xx
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
10/184
STM32L422xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
STM32L422Rx LQFP64 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
STM32L422Rx UFBGA64 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
STM32L422Cx LQFP48 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
STM32L422Cx UFQFPN48 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
STM32L422Tx WLCSP36 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
STM32L422Kx LQFP32 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
STM32L422Kx UFQFPN32 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
STM32L422xx memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Typical current consumption versus MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
HSI48 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
I/O AC characteristics definition(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Quad SPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Quad SPI timing diagram - DDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
LQFP - 64 pins, 10 x 10 mm low-profile quad flat package outline. . . . . . . . . . . . . . . . . . 156
LQFP - 64 pins, 10 x 10 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
LQFP64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
UFBGA – 64 balls, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid
array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
UFBGA64 – 64 balls, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid
array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
UFBGA64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
LQFP - 48 pins, 7 x 7 mm low-profile quad flat package outline. . . . . . . . . . . . . . . . . . . . 162
LQFP - 48 pins, 7 x 7 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
LQFP48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
UFQFPN - 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
DS12470 Rev 5
STM32L422xx
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
List of figures
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
UFQFPN - 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
UFQFPN48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
WLCSP - 36 balls, 2.58 x 3.07 mm, 0.4 mm pitch, wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
WLCSP - 36 balls, 2.58 x 3.07 mm, 0.4 mm pitch, wafer level chip scale
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
WLCSP36 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
UFQFPN - 32 pins, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
UFQFPN - 32 pins, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
UFQFPN32 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
LQFP - 32 pins, 7 x 7 mm low-profile quad flat package outline. . . . . . . . . . . . . . . . . . . . 175
LQFP - 32 pins, 7 x 7 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
LQFP32 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
DS12470 Rev 5
11/184
11
Introduction
1
STM32L422xx
Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32L422xx microcontrollers.
This document should be read in conjunction with the STM32L43xxx/44xxx/45xxx/46xxx
reference manual (RM0394). The reference manual is available from the
STMicroelectronics website www.st.com.
For information on the Arm®(a) Cortex®-M4 core, please refer to the Cortex®-M4 Technical
Reference Manual, available from the www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
12/184
DS12470 Rev 5
STM32L422xx
2
Description
Description
The STM32L422xx devices are the ultra-low-power microcontrollers based on the highperformance Arm® Cortex®-M4 32-bit RISC core operating at a frequency of up to 80 MHz.
The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all
Arm® single-precision data-processing instructions and data types. It also implements a full
set of DSP instructions and a memory protection unit (MPU) which enhances application
security.
The STM32L422xx devices embed high-speed memories (Flash memory up to 128
Kbyte,40 Kbyte of SRAM), a Quad SPI flash memories interface (available on all packages)
and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two
AHB buses and a 32-bit multi-AHB bus matrix.
The STM32L422xx devices embed several protection mechanisms for embedded Flash
memory and SRAM: readout protection, write protection, proprietary code readout
protection and Firewall.
The devices offer two fast 12-bit ADC (5 Msps), two comparators, one operational amplifier,
a low-power RTC, one general-purpose 32-bit timer, one 16-bit PWM timer dedicated to
motor control, four general-purpose 16-bit timers, and two 16-bit low-power timers.
In addition, up to 12 capacitive sensing channels are available.
They also feature standard and advanced communication interfaces.
•
Three I2Cs
•
Two SPIs
•
Three USARTs and one Low-Power UART.
•
One USB full-speed device crystal less
The STM32L422xx devices embed AES hardware accelerator.
The STM32L422xx operates in the -40 to +85 °C (+105 °C junction) and -40 to +125 °C
(+130 °C junction) temperature ranges from a 1.71 to 3.6 V VDD power supply. A
comprehensive set of power-saving modes allows the design of low-power applications.
Some independent power supplies are supported: analog independent supply input for
ADC, OPAMP and comparator. A VBAT input allows to backup the RTC and backup
registers.
The STM32L422xx family offers six packages from 32 to 64-pin packages.
Table 2. STM32L422xx family device features and peripheral counts
Peripheral
STM32L422Rx
STM32L422Cx
STM32L422Tx
Flash memory
128KB
SRAM
40KB
Quad SPI
STM32L422Kx
Yes
DS12470 Rev 5
13/184
50
Description
STM32L422xx
Table 2. STM32L422xx family device features and peripheral counts (continued)
Peripheral
Timers
Comm.
interfaces
STM32L422Rx
STM32L422Cx
STM32L422Tx
Advanced
control
1 (16-bit)
General
purpose
2 (16-bit)
1 (32-bit)
Basic
1 (16-bit)
Low -power
2 (16-bit)
SysTick timer
1
Watchdog
timers
(independent,
window)
2
STM32L422Kx
SPI
2
1
2C
3
2
3
1
2
1
I
USART
LPUART
USB FS
Yes
RTC
Tamper pins
Yes
2
2
1
AES
Yes
Random generator
Yes
GPIOs
Wakeup pins
52
4
38
3
Capacitive sensing
Number of channels
12
6
12-bit ADC
Number of channels
2
16
2
10
30
2
26
2
2
2
10
Internal voltage reference
buffer
2
10
No
Analog comparator
1
Operational amplifiers
1
Max. CPU frequency
80 MHz
Operating voltage (VDD)
1.71 to 3.6 V
Operating temperature
Ambient operating temperature: -40 to 85 °C / -40 to 125 °C
Junction temperature: -40 to 105 °C / -40 to 130 °C
Packages
14/184
LQFP64
UFBGA64
LQFP48
UFQFPN48
DS12470 Rev 5
WLCSP36
UFQFPN32
LQFP32
STM32L422xx
Description
Figure 1. STM32L422xx block diagram
'>@
'>@
&/.
&/.
&6
1-7567-7',
-7&.6:&/.
4XDG63,PHPRU\LQWHUIDFH
-7$* 6:
038
(70
19,&
-7'26:'-7'2
75$&(&/.
'%86
75$&('>@
$50&RUWH[0
0+]
)38
,%86
$57
$&&(/
&$&+(
51*
)ODVK
XSWR
.%
$+%EXVPDWUL[
6%86
$(6
65$0.%
65$0.%
9''
$+%0+]
'0$
3RZHUPDQDJHPHQW
9ROWDJH
UHJXODWRU
WR9
9'' WR9
966
'0$
#9''
#9''
*URXSVRI
FKDQQHOVPD[DV$)
5&+6,
7RXFKVHQVLQJFRQWUROOHU
6XSSO\
UHVHW
06,
VXSHUYLVLRQ
9''86%
,QW
%25
9''$966$
5&/6,
3$>@
9''9661567
*3,23257$
*3,23257%
*3,23257&
3//
$+%0+]
3%>@
3&>@
39'390
#9''
+6,
26&B,1
;7$/26&
26&B287
0+]
,:'*
9%$7 WR9
*3,23257'
3'
6WDQGE\
3+>@
3+>@
*3,23257+
LQWHUIDFH
5HVHW FORFN
0 $1
$*7
FRQWURO
#9%$7
;7$/N+]
#9''
3&/.[
+&/.[
)&/.
57&
8 67HPSHUDWXUHVHQVRU
$5 7 0 % S V
7,0
26&B287
57&B76
$:8
%DFNXSUHJLVWHU
57&B7$03[
57&B287
E
&5&
#9''$
26&B,1
FKDQQHOV(75DV$)
),)2
$'&
H[WHUQDODQDORJLQSXWV
,7)
86%)6
3+<
#9''86%
'3
'0
12(
$'&
H[WHUQDODQDORJLQSXWV
&56B6@1
FKDQQHOV7,0B&+>@
(75%.,1%.,1DV$)
7,03:0
VPFDUG
,U'$
VPFDUG
5;7;&.&76576DV$)
5;7;&.&76576DV$)
,U'$
E
63,
026,0,626&.166DV$)
::'*
FKDQQHO
FRPSOFKDQQHO%.,1DV$)
7,0
5;7;&.&76
576DV$)
VPFDUG
,U'$
026,0,62
6&.166DV$)
,&60%86
6&/6'$60%$DV$)
,&60%86
6&/6'$60%$DV$)
,&60%86
6&/6'$60%$DV$)
E
E
86$57
7,0
$
30
% +]
63,
E
$ 3 % 0 +]
$3%0+]PD[
7,0
$3%0+]
FKDQQHOV
FRPSOFKDQQHO%.,1DV$)
#9''$
2S$PS
92879,109,13
/38$57
5;7;&76576DV$)
/37,0
,1,1287(75DV$)
/37,0
,1287(75DV$)
#9''$
,13,10287
&203
),5(:$//
06Y9
Note:
AF: alternate function on I/O pins.
DS12470 Rev 5
15/184
50
Functional overview
STM32L422xx
3
Functional overview
3.1
Arm® Cortex®-M4 core with FPU
The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm® processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an Arm® core in the memory size
usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage
development tools, while avoiding saturation.
With its embedded Arm® core, the STM32L422xx family is compatible with all Arm® tools
and software.
Figure 1 shows the general block diagram of the STM32L422xx family devices.
3.2
Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard Arm® Cortex®-M4 processors. It balances the inherent performance advantage of
the Arm® Cortex®-M4 over Flash memory technologies, which normally requires the
processor to wait for the Flash memory at higher frequencies.
To release the processor near 100 DMIPS performance at 80MHz, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 80 MHz.
3.3
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
16/184
DS12470 Rev 5
STM32L422xx
3.4
Functional overview
Embedded Flash memory
STM32L422xx devices feature up to 128Kbyte of embedded Flash memory available for
storing programs and data in single bank architecture.The Flash memory contains 64 pages
of 2 Kbyte
Flexible protections can be configured thanks to option bytes:
•
Readout protection (RDP) to protect the whole memory. Three levels are available:
–
Level 0: no readout protection
–
Level 1: memory readout protection: the Flash memory cannot be read from or
written to if either debug features are connected, boot in RAM or bootloader is
selected
–
Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial
wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This
selection is irreversible.
Table 3. Access status versus readout protection level and execution modes
Area
Debug, boot from RAM or boot
from system memory (loader)
User execution
Protection
level
Read
Write
Erase
Read
Write
Erase
Main
memory
1
Yes
Yes
Yes
No
No
No
2
Yes
Yes
Yes
N/A
N/A
N/A
System
memory
1
Yes
No
No
Yes
No
No
2
Yes
No
No
N/A
N/A
N/A
Option
bytes
1
Yes
Yes
Yes
Yes
Yes
Yes
2
Yes
No
No
N/A
N/A
N/A
No
No
N/A(1)
Backup
registers
SRAM2
N/A
(1)
1
Yes
Yes
2
Yes
Yes
N/A
N/A
N/A
N/A
1
Yes
Yes
Yes(1)
No
No
No(1)
2
Yes
Yes
Yes
N/A
N/A
N/A
1. Erased when RDP change from Level 1 to Level 0.
•
Write protection (WRP): the protected area is protected against erasing and
programming. Two areas can be selected, with 2-Kbyte granularity.
•
Proprietary code readout protection (PCROP): a part of the flash memory can be
protected against read and write from third parties. The protected area is execute-only:
it can only be reached by the STM32 CPU, as an instruction code, while all other
accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited.
The PCROP area granularity is 64-bit wide. An additional option bit (PCROP_RDP)
allows to select if the PCROP area is erased or not when the RDP protection is
changed from Level 1 to Level 0.
DS12470 Rev 5
17/184
50
Functional overview
STM32L422xx
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
3.5
•
single error detection and correction
•
double error detection.
•
The address of the ECC fail can be read in the ECC register
Embedded SRAM
STM32L422xx devices feature 40 Kbyte of embedded SRAM. This SRAM is split into two
blocks:
•
32 Kbyte mapped at address 0x2000 0000 (SRAM1)
•
8 Kbyte located at address 0x1000 0000 with hardware parity check (SRAM2).
This memory is also mapped at address 0x2000 8000, offering a contiguous address
space with the SRAM1 (8 Kbyte aliased by bit band)
This block is accessed through the ICode/DCode buses for maximum performance.
These 8 Kbyte SRAM can also be retained in Standby mode.
The SRAM2 can be write-protected with 1 Kbyte granularity.
The memory can be accessed in read/write at CPU clock speed with 0 wait states.
3.6
Firewall
The device embeds a Firewall which protects code sensitive and secure data from any
access performed by a code executed outside of the protected areas.
Each illegal access generates a reset which kills immediately the detected intrusion.
The Firewall main features are the following:
•
Three segments can be protected and defined thanks to the Firewall registers:
–
Code segment (located in Flash or SRAM1 if defined as executable protected
area)
–
Non-volatile data segment (located in Flash)
–
Volatile data segment (located in SRAM1)
•
The start address and the length of each segments are configurable:
–
Code segment: up to 1024 Kbyte with granularity of 256 bytes
–
Non-volatile data segment: up to 1024 Kbyte with granularity of 256 bytes
–
Volatile data segment: up to 128 Kbyte with a granularity of 64 bytes
•
Specific mechanism implemented to open the Firewall to get access to the protected
areas (call gate entry sequence)
•
Volatile data segment can be shared or not with the non-protected code
•
Volatile data segment can be executed or not depending on the Firewall configuration
The Flash readout protection must be set to level 2 in order to reach the expected level of
protection.
18/184
DS12470 Rev 5
STM32L422xx
3.7
Functional overview
Boot modes
At startup, BOOT0 pin or nSWBOOT0 option bit, and BOOT1 option bit are used to select
one of three boot options:
•
Boot from user Flash
•
Boot from system memory
•
Boot from embedded SRAM
BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the
value of a user option bit to free the GPIO pad if needed.
A Flash empty check mechanism is implemented to force the boot from system flash if the
first flash memory location is not programmed and if the boot selection is configured to boot
from main flash.
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART, I2C, SPI or USB FS in Device mode through DFU (device firmware upgrade).
3.8
Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.
3.9
Power supply management
3.9.1
Power supply schemes
•
VDD = 1.71 to 3.6 V: external power supply for I/Os (VDDIO1), the internal regulator and
the system analog such as reset, power management and internal clocks. It is provided
externally through VDD pins.
•
VDDA = 1.62 V (ADC/COMP) / 1.8 (OPAMP) to 3.6 V: external analog power supply for
ADC, OPAMP, Comparator. The VDDA voltage level is independent from the VDD
voltage.
•
VDDUSB = 3.0 to 3.6 V: external independent power supply for USB transceivers. The
VDDUSB voltage level is independent from the VDD voltage.
•
VBAT = 1.55 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Note:
When the functions supplied by VDDA are not used, this supply should preferably be shorted
to VDD.
Note:
If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V
tolerant.
Note:
VDDIOx is the I/Os general purpose digital functions supply. VDDIOx represents VDDIO1, with
VDDIO1 = VDD.
DS12470 Rev 5
19/184
50
Functional overview
STM32L422xx
Figure 2. Power supply overview
9''$GRPDLQ
9''$
966$
$'FRQYHUWHUV
&RPSDUDWRUV
2SHUDWLRQDODPSOLILHUV
9ROWDJHUHIHUHQFHEXIIHU
9''86%
966
86%WUDQVFHLYHUV
9''GRPDLQ
9''
9'',2
,2ULQJ
5HVHWEORFN
7HPSVHQVRU
3//+6,06,+6,
966
6WDQGE\FLUFXLWU\
:DNHXSORJLF,:'*
9ROWDJHUHJXODWRU
9&25(
9&25(GRPDLQ
&RUH
0HPRULHV
'LJLWDOSHULSKHUDOV
/RZYROWDJHGHWHFWRU
%DFNXSGRPDLQ
9%$7
/6(FU\VWDO.RVF
%.3UHJLVWHUV
5&&%'&5UHJLVWHU
57&
069
During power-up and power-down phases, the following power sequence requirements
must be respected:
•
When VDD is below 1 V, other power supplies (VDDAVDDUSB) must remain below VDD +
300 mV.
•
When VDD is above 1 V, all power supplies are independent.
During the power-down phase, VDD can temporarily become lower than other supplies only
if the energy provided to the MCU remains below 1 mJ; this allows external decoupling
capacitors to be discharged with different time constants during the power-down transient
phase.
20/184
DS12470 Rev 5
STM32L422xx
Functional overview
Figure 3. Power-up/down sequence
9
9'';
9''
9%25
3RZHURQ
,QYDOLGVXSSO\DUHD
2SHUDWLQJPRGH
9'';9''P9
3RZHUGRZQ
9'';LQGHSHQGHQWIURP9''
WLPH
06Y9
1. VDDX refers to any power supply among VDDA, VDDUSB.
3.9.2
Power supply supervisor
The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes
except Shutdown and ensuring proper operation after power-on and during power down.
The device remains in reset mode when the monitored supply voltage VDD is below a
specified threshold, without the need for an external reset circuit.
The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected
through option bytes.The device features an embedded programmable voltage detector
(PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An
interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
In addition, the device embeds a Peripheral Voltage Monitor which compares the
independent supply voltage VDDA with a fixed threshold in order to ensure that the
peripheral is in its functional supply range.
DS12470 Rev 5
21/184
50
Functional overview
3.9.3
STM32L422xx
Voltage regulator
Two embedded linear voltage regulators supply most of the digital circuitries: the main
regulator (MR) and the low-power regulator (LPR).
•
The MR is used in the Run and Sleep modes and in the Stop 0 mode.
•
The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is
also used to supply the 8 Kbyte SRAM2 in Standby with SRAM2 retention.
•
Both regulators are in power-down in Standby and Shutdown modes: the regulator
output is in high impedance, and the kernel circuitry is powered down thus inducing
zero consumption.
The ultralow-power STM32L422xx supports dynamic voltage scaling to optimize its power
consumption in run mode. The voltage from the Main Regulator that supplies the logic
(VCORE) can be adjusted according to the system’s maximum operating frequency.
There are two power consumption ranges:
•
Range 1 with the CPU running at up to 80 MHz.
•
Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also
limited to 26 MHz.
The VCORE can be supplied by the low-power regulator, the main regulator being switched
off. The system is then in Low-power run mode.
•
3.9.4
Low-power run mode with the CPU running at up to 2 MHz. Peripherals with
independent clock can be clocked by HSI16.
Low-power modes
The ultra-low-power STM32L422xx supports seven low-power modes to achieve the best
compromise between low-power consumption, short startup time, available peripherals and
available wakeup sources.
22/184
DS12470 Rev 5
Mode
Run
LPRun
Sleep
LPSleep
Regulator(1)
MR range 1
MR range2
LPR
MR range 1
MR range2
LPR
DS12470 Rev 5
Yes
ON(4)
ON
Any
Yes
ON(4)
ON
Any
except
PLL
No
ON(4)
ON(5)
Any
No
ON(4)
ON(5)
Any
except
PLL
All except USB_FS, RNG
Any interrupt or
event
83 µA/MHz
6 cycles
LSE
LSI
BOR, PVD, PVM
RTC, IWDG
COMP1, OPAMP1
USARTx (x=1...3)(6)
LPUART1(6)
I2Cx (x=1...3)(7)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMP1
USARTx (x=1...3)(6)
LPUART1(6)
I2Cx (x=1...3)(7)
LPTIMx (x=1,2)
USB_FS(8)
105 µA
2.47 µs in SRAM
4.1 µs in Flash
No
MR Range 2
OFF
ON
All
All except USB_FS, RNG
Wakeup source
Consumption(3)
Flash SRAM Clocks
MR Range 1
Stop 0
DMA & Peripherals(2)
CPU
N/A
91 µA/MHz
79 µA/MHz
All except USB_FS, RNG
N/A
83 µA/MHz
All
Any interrupt or
event
21 µA/MHz
All except USB_FS, RNG
20 µA/MHz
Wakeup time
N/A
STM32L422xx
Table 4. STM32L422xx modes overview
to Range 1: 4 µs
to Range 2: 64 µs
6 cycles
Functional overview
23/184
Mode
Stop 1
DS12470 Rev 5
Stop 2
Regulator
LPR
LPR
CPU
No
No
DMA & Peripherals(2)
Wakeup source
Consumption(3)
Wakeup time
LSE
LSI
BOR, PVD, PVM
RTC, IWDG
COMP1, OPAMP1
USARTx (x=1...3)(6)
LPUART1(6)
I2Cx (x=1...3)(7)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMP1
USARTx (x=1...3)(6)
LPUART1(6)
I2Cx (x=1...3)(7)
LPTIMx (x=1,2)
USB_FS(8)
3.25 µA w/o RTC
3.65 µA w RTC
5.7 µs in SRAM
7 µs in Flash
LSE
LSI
BOR, PVD, PVM
RTC, IWDG
COMP1
I2C3(7)
LPUART1(6)
LPTIMx (x = 1, 2)
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMP1
I2C3(7)
LPUART1(6)
LPTIMx (x = 1, 2)
710 nA w/o RTC
950 nA w RTC
5.8 µs in SRAM
8.3 µs in Flash
Flash SRAM Clocks
Off
Off
ON
ON
Functional overview
24/184
Table 4. STM32L422xx modes overview (continued)
(1)
STM32L422xx
Mode
Regulator
CPU
Flash SRAM Clocks
SRAM
2 ON
LPR
Standby
OFF
Shutdown
OFF
Power
ed Off
Power
ed Off
Off
Off
Power
ed
Off
Power
ed
Off
DMA & Peripherals(2)
Wakeup source
DS12470 Rev 5
LSE
LSI
BOR, RTC, IWDG
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pull-down
Reset pin
5 I/Os (WKUPx)(9)
BOR, RTC, IWDG
LSE
RTC
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pulldown(10)
Reset pin
5 I/Os (WKUPx)(9)
RTC
Consumption(3)
Wakeup time
195 nA
STM32L422xx
Table 4. STM32L422xx modes overview (continued)
(1)
16.1 µs
105 nA
18 nA
256 µs
1. LPR means Main regulator is OFF and Low-power regulator is ON.
2. All peripherals can be active or clock gated to save power consumption.
3. Typical current at VDD = 1.8 V, 25°C. Consumptions values provided running from SRAM, Flash memory Off, 80 MHz in Range 1, 26 MHz in Range 2, 2 MHz in
LPRun/LPSleep.
4. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM.
5. The SRAM1 and SRAM2 clocks can be gated on or off independently.
6. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
8. USB_FS wakeup by resume from suspend and attach detection protocol event.
9. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PA2, PC5.
25/184
Functional overview
10. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.
Functional overview
STM32L422xx
By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the
user to select one of the low-power modes described below:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
•
Low-power run mode
This mode is achieved with VCORE supplied by the low-power regulator to minimize the
regulator's operating current. The code can be executed from SRAM or from Flash,
and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can
be clocked by HSI16.
•
Low-power sleep mode
This mode is entered from the low-power run mode. Only the CPU clock is stopped.
When wakeup is triggered by an event or an interrupt, the system reverts to the lowpower run mode.
•
Stop 0, Stop 1 and Stop 2 modes
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI
RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still
running.
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).
Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode
to detect their wakeup condition.
Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode,
most of the VCORE domain is put in a lower leakage mode.
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller
wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator
remains ON, allowing a very fast wakeup time but with much higher consumption.
The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI
up to 48 MHz or HSI16, depending on software configuration.
•
Standby mode
The Standby mode is used to achieve the lowest power consumption with BOR. The
internal regulator is switched off so that the VCORE domain is powered off. The PLL, the
MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.
The RTC can remain active (Standby mode with RTC, Standby mode without RTC).
The brown-out reset (BOR) always remains active in Standby mode.
The state of each I/O during standby mode can be selected by software: I/O with
internal pull-up, internal pull-down or floating.
After entering Standby mode, SRAM1 and register contents are lost except for registers
in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in
Standby mode, supplied by the low-power Regulator (Standby with SRAM2 retention
mode).
The device exits Standby mode when an external reset (NRST pin), an IWDG reset,
WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm,
periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).
The system clock after wakeup is MSI up to 8 MHz.
26/184
DS12470 Rev 5
STM32L422xx
•
Functional overview
Shutdown mode
The Shutdown mode allows to achieve the lowest power consumption. The internal
regulator is switched off so that the VCORE domain is powered off. The PLL, the HSI16,
the MSI, the LSI and the HSE oscillators are also switched off.
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).
The BOR is not available in Shutdown mode. No power voltage monitoring is possible
in this mode, therefore the switch to Backup domain is not supported.
SRAM1, SRAM2 and register contents are lost except for registers in the Backup
domain.
The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin
event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic
wakeup, timestamp, tamper).
The system clock after wakeup is MSI at 4 MHz.
DS12470 Rev 5
27/184
50
Functional overview
STM32L422xx
Table 5. Functionalities depending on the working mode(1)
-
-
-
Y
-
Y
-
-
-
-
-
-
-
-
-
-
O(2)
O(2)
O(2)
O(2)
-
-
-
-
-
-
-
-
-
SRAM1 (32 KB)
Y
Y(3)
Y
Y(3)
Y
-
Y
-
-
-
-
-
-
SRAM2 (8 KB)
Y
Y(3)
Y
Y(3)
Y
-
Y
-
O(4)
-
-
-
-
Quad SPI
O
O
O
O
-
-
-
-
-
-
-
-
-
Backup Registers
Y
Y
Y
Y
Y
-
Y
-
Y
-
Y
-
Y
Brown-out reset
(BOR)
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
-
-
Programmable
Voltage Detector
(PVD)
O
O
O
O
O
O
O
O
-
-
-
-
-
Peripheral Voltage
Monitor (PVMx;
x=1,3,4)
O
O
O
O
O
O
O
O
-
-
-
-
-
DMA
O
O
O
O
-
-
-
-
-
-
-
-
-
High Speed Internal
(HSI16)
O
O
O
O
(5)
-
(5)
-
-
-
-
-
-
Oscillator RC48
O
O
-
-
-
-
-
-
-
-
-
-
-
High Speed External
(HSE)
O
O
O
O
-
-
-
-
-
-
-
-
-
Low Speed Internal
(LSI)
O
O
O
O
O
-
O
-
O
-
-
-
-
Low Speed External
(LSE)
O
O
O
O
O
-
O
-
O
-
O
-
O
Multi-Speed Internal
(MSI)
O
O
O
O
-
-
-
-
-
-
-
-
-
Clock Security
System (CSS)
O
O
O
O
-
-
-
-
-
-
-
-
-
Clock Security
System on LSE
O
O
O
O
O
O
O
O
O
O
-
-
-
RTC / Auto wakeup
O
O
O
O
O
O
O
O
O
O
O
O
O
Number of RTC
Tamper pins
2
2
2
2
2
O
2
O
2
O
2
O
2
USARTx (x=1,2,3)
O
O
O
O
-
-
-
-
-
-
-
Peripheral
CPU
Flash memory (up to
128 KB)
28/184
Run
Sleep
Lowpower
run
Lowpower
sleep
-
O(6) O(6)
DS12470 Rev 5
Wakeup capability
Shutdown
Wakeup capability
Standby
Wakeup capability
Stop 2
Wakeup capability
Stop 0/1
VBAT
STM32L422xx
Functional overview
Table 5. Functionalities depending on the working mode(1) (continued)
O
O
O
O
O(6) O(6) O(6) O(6)
-
-
-
-
-
I2Cx (x=1,2)
O
O
O
O
O(7) O(7)
-
-
-
-
-
-
-
O(7)
O(7)
O(7)
-
-
-
-
-
Sleep
Lowpower
run
Lowpower
sleep
-
-
-
Wakeup capability
Shutdown
Wakeup capability
Standby
Low-power UART
(LPUART)
Run
Wakeup capability
Stop 2
-
Peripheral
Wakeup capability
Stop 0/1
VBAT
I2C3
O
O
O
O
O(7)
SPIx (x=1,2)
O
O
O
O
-
-
-
-
-
-
-
-
-
ADCx (x=1,2)
O
O
O
O
-
-
-
-
-
-
-
-
-
OPAMPx (x=1)
O
O
O
O
O
-
-
-
-
-
-
-
-
COMP1
O
O
O
O
O
O
O
O
-
-
-
-
-
Temperature sensor
O
O
O
O
-
-
-
-
-
-
-
-
-
Timers (TIMx)
O
O
O
O
-
-
-
-
-
-
-
-
-
Low-power timer 1
(LPTIM1)
O
O
O
O
O
O
O
O
-
-
-
-
-
Low-power timer 2
(LPTIM2)
O
O
O
O
O
O
O
O
-
-
-
-
-
Independent
watchdog (IWDG)
O
O
O
O
O
O
O
O
O
O
-
-
-
Window watchdog
(WWDG)
O
O
O
O
-
-
-
-
-
-
-
-
-
SysTick timer
O
O
O
O
-
-
-
-
-
-
-
-
-
Touch sensing
controller (TSC)
O
O
O
O
-
-
-
-
-
-
-
-
-
Random number
generator (RNG)
O(8)
O(8)
-
-
-
-
-
-
-
-
-
-
-
CRC calculation unit
O
O
O
O
-
-
-
-
-
-
-
-
-
GPIOs
O
O
O
O
O
O
O
O
(9)
4
pins
(11)
4
pins
-
(10)
(10)
1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). - = Not available.
2. The Flash can be configured in power-down mode. By default, it is not in power-down mode.
3. The SRAM clock can be gated on or off.
4. SRAM2 content is preserved when the bit RRS is set in PWR_CR3 register.
5. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by
the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not
need it anymore.
6. LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame
event.
DS12470 Rev 5
29/184
50
Functional overview
STM32L422xx
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
8. Voltage scaling Range 1 only.
9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when
exiting the Shutdown mode.
3.9.5
Reset mode
In order to improve the consumption under reset, the I/Os state under and after reset is
“analog state” (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is
deactivated when the reset source is internal.
3.9.6
VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
supercapacitor, or from VDD when no external battery and an external supercapacitor are
present. The VBAT pin supplies the RTC with LSE and the backup registers. Two antitamper detection pins are available in VBAT mode.
VBAT operation is automatically activated when VDD is not present.
An internal VBAT battery charging circuit is embedded and can be activated when VDD is
present.
Note:
When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
3.10
Interconnect matrix
Several peripherals have direct connections between them. This allows autonomous
communication between peripherals, saving CPU resources thus power supply
consumption. In addition, these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run
and sleep, Stop 0, Stop 1 and Stop 2 modes.
Sleep
Low-power run
Low-power sleep
Stop 0 / Stop 1
Stop 2
Interconnect source
Run
Table 6. STM32L422xx peripherals interconnect matrix
Timers synchronization or chaining
Y
Y
Y
Y
-
-
Conversion triggers
Y
Y
Y
Y
-
-
DMA
Memory to memory transfer trigger
Y
Y
Y
Y
-
-
COMPx
Comparator output blanking
Y
Y
Y
Y
-
-
Interconnect
destination
TIMx
ADCx
TIMx
30/184
Interconnect action
DS12470 Rev 5
STM32L422xx
Functional overview
Run
Sleep
Low-power run
Low-power sleep
Stop 0 / Stop 1
Stop 2
Table 6. STM32L422xx peripherals interconnect matrix (continued)
IRTIM
Infrared interface output generation
Y
Y
Y
Y
-
-
TIM1
TIM2
Timer input channel, trigger, break from
analog signals comparison
Y
Y
Y
Y
-
-
LPTIMERx
Low-power timer triggered by analog
signals comparison
Y
Y
Y
Y
Y
Y
TIM1
Timer triggered by analog watchdog
Y
Y
Y
Y
-
-
TIM16
Timer input channel from RTC events
Y
Y
Y
Y
-
-
LPTIMERx
Low-power timer triggered by RTC alarms
or tampers
Y
Y
Y
Y
Y
Y
All clocks sources (internal TIM2
and external)
TIM15, 16
Clock source used as input channel for
RC measurement and trimming
Y
Y
Y
Y
-
-
CSS
CPU (hard fault)
RAM (parity error)
TIM1
Flash memory (ECC error) TIM15,16
COMPx
PVD
Timer break
Y
Y
Y
Y
-
-
TIMx
External trigger
Y
Y
Y
Y
-
-
LPTIMERx
External trigger
Y
Y
Y
Y
Y
Y
ADCx
Conversion external trigger
Y
Y
Y
Y
-
-
Interconnect source
TIM15/TIM16
COMPx
ADCx
RTC
Interconnect
destination
Interconnect action
GPIO
DS12470 Rev 5
31/184
50
Functional overview
3.11
STM32L422xx
Clocks and startup
The clock controller (see Figure 4) distributes the clocks coming from different oscillators to
the core and the peripherals. It also manages clock gating for low-power modes and
ensures clock robustness. It features:
32/184
•
Clock prescaler: to get the best trade-off between speed and current consumption,
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler
•
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
•
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
•
System clock source: four different clock sources can be used to drive the master
clock SYSCLK:
–
4-48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply
a PLL. The HSE can also be configured in bypass mode for an external clock.
–
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can
supply a PLL
–
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate
12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is
available in the system (LSE), the MSI frequency can be automatically trimmed by
hardware to reach better than ±0.25% accuracy. The MSI can supply a PLL.
–
System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency
at 80 MHz.
•
RC48 with clock recovery system (HSI48): internal RC48 MHz clock source can be
used to drive the USB or the RNG peripherals. This clock can be output on the MCO.
•
Auxiliary clock source: two ultralow-power clock sources that can be used to drive
the real-time clock:
–
32.768 kHz low-speed external crystal (LSE), supporting four drive capability
modes. The LSE can also be configured in bypass mode for an external clock.
–
32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock accuracy is ±5% accuracy.
•
Peripheral clock sources: Several peripherals (RNG, USARTs, I2Cs, LPTimers) have
their own independent clock whatever the system clock. PLL having three independent
outputs allowing the highest flexibility, can generate independent clocks for the RNG.
•
Startup clock: after reset, the microcontroller restarts by default with an internal 4 MHz
clock (MSI). The prescaler ratio and clock source can be changed by the application
program as soon as the code execution starts.
•
Clock security system (CSS): this feature can be enabled by software. If a HSE clock
failure occurs, the master clock is automatically switched to HSI16 and a software
DS12470 Rev 5
STM32L422xx
Functional overview
interrupt is generated if enabled. LSE failure can also be detected and generated an
interrupt.
•
Clock-out capability:
–
MCO: microcontroller clock output: it outputs one of the internal clocks for
external use by the application. Low frequency clocks (LSI, LSE) are available
down to Stop 1 low power state.
–
LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes
down to Standby mode. LSE can also be output on LSCO in Shutdown mode.
LSCO is not available in VBAT mode.
Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and
the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB
domains is 80 MHz.
DS12470 Rev 5
33/184
50
Functional overview
STM32L422xx
Figure 4. Clock tree
WR,:'*
>^/ZϯϮŬ,nj
/6&2
WR57&
26&B287
>^K^
ϯϮ͘ϳϲϴŬ,nj
ͬϯϮ
26&B,1
/6(
/6,
+6(
0&2
ĺ
WR3:5
6^͕Zd͕
ĂĐŬƵƉƌĞŐŝƐƚĞƌƐͿ
ϭ͘ϱϱʹϯ͘ϲs
WŽǁĞƌƐǁŝƚĐŚ
9''
9&25(
Q[9''
ZĞŐƵůĂƚŽƌ
Khd
Q[Q)
*3,2V
/E
[)
/HYHOVKLIWHU
9'',2
,2
ORJLF