0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32L432KCU6

STM32L432KCU6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    UFQFPN32_5X5MM_EP

  • 描述:

    ARM® Cortex®-M4 STM32L4 Microcontroller IC 32-Bit 80MHz 256KB (256K x 8) FLASH 32-UFQFPN (5x5)

  • 数据手册
  • 价格&库存
STM32L432KCU6 数据手册
STM32L432KB STM32L432KC Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100DMIPS, up to 256KB Flash, 64KB SRAM, USB FS, analog, audio Datasheet - production data Features • Ultra-low-power with FlexPowerControl – 1.71 V to 3.6 V power supply – -40 °C to 85/105/125 °C temperature range – 8 nA Shutdown mode (2 wakeup pins) – 28 nA Standby mode (2 wakeup pins) – 280 nA Standby mode with RTC – 1.0 µA Stop 2 mode, 1.28 µA with RTC – 84 µA/MHz run mode – Batch acquisition mode (BAM) – 4 µs wakeup from Stop mode – Brown out reset (BOR) – Interconnect matrix • Core: Arm® 32-bit Cortex®-M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator™) allowing 0-wait-state execution from Flash memory, frequency up to 80 MHz, MPU, 100DMIPS and DSP instructions • Performance benchmark – 1.25 DMIPS/MHz (Drystone 2.1) – 273.55 CoreMark® (3.42 CoreMark/MHz @ 80 MHz) • Energy benchmark – 176.7 ULPBench® score • Clock Sources – 32 kHz crystal oscillator for RTC (LSE) – Internal 16 MHz factory-trimmed RC (±1%) – Internal low-power 32 kHz RC (±5%) – Internal multispeed 100 kHz to 48 MHz oscillator, auto-trimmed by LSE (better than ±0.25 % accuracy) – Internal 48 MHz with clock recovery – 2 PLLs for system clock, USB, audio, ADC UFQFPN32 (5x5) • Up to 26 fast I/Os, most 5 V-tolerant • RTC with HW calendar, alarms and calibration • Up to 3 capacitive sensing channels • 11x timers: 1x 16-bit advanced motor-control, 1x 32-bit and 2x 16-bit general purpose, 2x 16bit basic, 2x low-power 16-bit timers (available in Stop mode), 2x watchdogs, SysTick timer • Memories – Up to 256 KB single bank Flash, proprietary code readout protection – 64 KB of SRAM including 16 KB with hardware parity check – Quad SPI memory interface • Rich analog peripherals (independent supply) – 1x 12-bit ADC 5 Msps, up to 16-bit with hardware oversampling, 200 µA/Msps – 2x 12-bit DAC output channels, low-power sample and hold – 1x operational amplifier with built-in PGA – 2x ultra-low-power comparators • 14x communication interfaces – USB 2.0 full-speed crystal less solution with LPM and BCD – 1x SAI (serial audio interface) – 2x I2C FM+(1 Mbit/s), SMBus/PMBus – 3x USARTs (ISO 7816, LIN, IrDA, modem) – 1x LPUART (Stop 2 wake-up) – 2x SPIs (and 1x Quad SPI) – CAN (2.0B Active) – SWPMI single wire protocol master I/F – IRTIM (Infrared interface) • 14-channel DMA controller • True random number generator May 2018 This is information on a product in full production. DS11451 Rev 4 1/156 www.st.com STM32L432KB STM32L432KC • All packages are ECOPACK2® compliant • CRC calculation unit, 96-bit unique ID • Development support: serial wire debug (SWD), JTAG, Embedded Trace Macrocell™ 2/156 DS11451 Rev 4 STM32L432KB STM32L432KC Contents Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 14 3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.6 Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.7 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.8 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 17 3.9 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.9.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.9.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.9.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.9.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.9.5 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.10 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.11 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.12 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.13 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.14 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.15 3.14.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 34 3.14.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 34 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.15.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.15.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.16 Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.17 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.18 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 DS11451 Rev 4 3/156 6 Contents STM32L432KB STM32L432KC 3.19 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.20 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.21 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.21.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.21.2 General-purpose timers (TIM2, TIM15, TIM16) . . . . . . . . . . . . . . . . . . . 40 3.21.3 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.21.4 Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 40 3.21.5 Infrared interface (IRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.21.6 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.21.7 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.21.8 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.22 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 42 3.23 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.24 Universal synchronous/asynchronous receiver transmitter (USART) . . . 44 3.25 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 45 3.26 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.27 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.28 Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 47 3.29 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.30 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.31 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.32 Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.33 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.33.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.33.2 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.1 4/156 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 DS11451 Rev 4 STM32L432KB STM32L432KC 7 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 68 6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 68 6.3.4 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3.6 Wakeup time from low-power modes and voltage scaling transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.3.10 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.3.16 Extended interrupt and event controller input (EXTI) characteristics . . 113 6.3.17 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.3.18 Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . 114 6.3.19 Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 127 6.3.20 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6.3.21 Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.3.23 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.3.24 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 138 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 7.1 UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 7.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 7.2.1 8 Contents Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 DS11451 Rev 4 5/156 6 Contents 9 6/156 STM32L432KB STM32L432KC Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 DS11451 Rev 4 STM32L432KB STM32L432KC List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. STM32L432Kx family device features and peripheral counts. . . . . . . . . . . . . . . . . . . . . . . 11 Access status versus readout protection level and execution modes. . . . . . . . . . . . . . . . . 15 STM32L432xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 STM32L432xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 STM32L432xx USART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 SAI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 STM32L432xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Alternate function AF0 to AF7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Alternate function AF8 to AF15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 STM32L432xx memory map and peripheral register boundary addresses . . . . . . . . . . . . 60 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 68 Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Current consumption in Run and Low-power run modes, code with data processing running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 73 Current consumption in Run and Low-power run modes, code with data processing running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Current consumption in Run and Low-power run modes, code with data processing running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 76 Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Typical current consumption in Run and Low-power run modes, with different codes running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Current consumption in Sleep and Low-power sleep modes, Flash ON . . . . . . . . . . . . . . 78 Current consumption in Low-power sleep modes, Flash in power-down . . . . . . . . . . . . . . 79 Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Current consumption in Stop 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Wakeup time using USART/LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 DS11451 Rev 4 7/156 8 List of tables Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. 8/156 STM32L432KB STM32L432KC Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 PLL, PLLSAI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 EXTI Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 ADC accuracy - limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 WWDG min/max timeout value at 80 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Quad SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 SWPMI electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 STM32L432xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 DS11451 Rev 4 STM32L432KB STM32L432KC List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. STM32L432xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 STM32L432Kx UFQFPN32 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 STM32L432xx memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Typical current consumption versus MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 HSI48 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 I/O AC characteristics definition(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Quad SPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Quad SPI timing diagram - DDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 UFQFPN32 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 DS11451 Rev 4 9/156 9 Introduction 1 STM32L432KB STM32L432KC Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32L432xx microcontrollers. This document should be read in conjunction with the STM32L43xxx/44xxx/45xxx/46xxx reference manual (RM0394). The reference manual is available from the STMicroelectronics website www.st.com. For information on the Arm®(a) Cortex®-M4 core, please refer to the Cortex®-M4 Technical Reference Manual, available from the www.arm.com website. a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. 10/156 DS11451 Rev 4 STM32L432KB STM32L432KC 2 Description Description The STM32L432xx devices are the ultra-low-power microcontrollers based on the highperformance Arm® Cortex®-M4 32-bit RISC core operating at a frequency of up to 80 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all Arm® single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security. The STM32L432xx devices embed high-speed memories (Flash memory up to 256 Kbyte, 64 Kbyte of SRAM), a Quad SPI flash memories interface and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix. The STM32L432xx devices embed several protection mechanisms for embedded Flash memory and SRAM: readout protection, write protection, proprietary code readout protection and Firewall. The devices offer a fast 12-bit ADC (5 Msps), two comparators, one operational amplifier, two DAC channels, a low-power RTC, one general-purpose 32-bit timer, one 16-bit PWM timer dedicated to motor control, four general-purpose 16-bit timers, and two 16-bit lowpower timers. In addition, up to 3 capacitive sensing channels are available. They also feature standard and advanced communication interfaces. • Two I2Cs • Two SPIs • Two USARTs and one Low-Power UART. • One SAI (Serial Audio Interfaces) • One CAN • One USB full-speed device crystal less • One SWPMI (Single Wire Protocol Master Interface) The STM32L432xx operates in the -40 to +85 °C (+105 °C junction), -40 to +105 °C (+125 °C junction) and -40 to +125 °C (+130 °C junction) temperature ranges from a 1.71 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of lowpower applications. Some independent power supplies are supported: analog independent supply input for ADC, DAC, OPAMP and comparators The STM32L432xx family offers a single 32-pin package. Table 1. STM32L432Kx family device features and peripheral counts Peripheral STM32L432Kx Flash memory 256KB SRAM 64KB Quad SPI Yes DS11451 Rev 4 11/156 50 Description STM32L432KB STM32L432KC Table 1. STM32L432Kx family device features and peripheral counts (continued) Peripheral Timers Comm. interfaces STM32L432Kx Advanced control 1 (16-bit) General purpose 2 (16-bit) 1 (32-bit) Basic 2 (16-bit) Low -power 2 (16-bit) SysTick timer 1 Watchdog timers (independent, window) 2 SPI 2 I2C 2 USART LPUART 2 1 SAI 1 CAN 1 USB FS Yes(1) SWPMI Yes RTC Yes Tamper pins 1 Random generator Yes GPIOs Wakeup pins 26 2 Capacitive sensing Number of channels 3 12-bit ADC Number of channels 1 10 12-bit DAC channels 2 Analog comparator 2 Operational amplifiers 1 Max. CPU frequency 80 MHz Operating voltage 1.71 to 3.6 V Ambient operating temperature: -40 to 85 °C / 40 to 105 °C / -40 to 125 °C Junction temperature: -40 to 105 °C / -40 to 125 °C / -40 to 130 °C Operating temperature Packages UFQFPN32 1. There is no VDDUSB pin. VDDUSB is connected internally at VDD. To be functional, VDD must be equal to 3.3 V (+/- 10%). 12/156 DS11451 Rev 4 STM32L432KB STM32L432KC Description Figure 1. STM32L432xx block diagram NJTRST, JTDI, JTCK/SWCLK D0[3:0], CLK0, CS Quad SPI memory interface JTAG & SW MPU ETM NVIC JTDO/SWD, JTDO TRACECLK D-BUS TRACED[3:0] ARM Cortex-M4 80 MHz FPU I-BUS ART ACCEL/ CACHE RNG Flash up to 256 KB AHB bus-matrix S-BUS SRAM 48 KB SRAM 16 KB VDD AHB2 80 MHz DMA2 Power management Voltage regulator 3.3 to 1.2 V VDD = 1.71 to 3.6 V VSS DMA1 @ VDD @ VDD 1 Group of 3 channels max as AF supervision RC HSI Touch sensing controller Supply reset MSI Int VDDA, VSSA BOR VDD, VSS, NRST RC LSI GPIO PORT A PB[7:3], PB[1:0] GPIO PORT B PC[15:14] GPIO PORT C PH[3] GPIO PORT H PVD, PVM PLL 1&2 AHB1 80 MHz PA[15:0] HSI48 @VDD IWDG Standby interface Reset & clock M AN AGT control @VBAT XTAL 32 kHz OSC32_IN OSC32_OUT PCLKx HCLKx FCLK RTC RTC_TAMPx AWU Backup register @ VDD TIM2 U STemperature AR T 2 M sensor Bps 32b CRC 4 channels, ETR as AF FIFO @ VDDA ADC1 10 external analog inputs USB FS PHY @ VDDUSB ITF CRS_SYNC CRS AHB/APB2 AHB/APB1 USART2 26 AF EXT IT. WKUP smcard IrDA SPI3 3 compl. channels (TIM1_CH[1:3]N), 4 channels (TIM1_CH[1:4]), ETR, BKIN, BKIN2 as AF DP DM NOE TIM1 / PWM 16b 2 channels, 1 compl. channel, BKIN as AF TIM15 16b 1 channel, 1 compl. channel, BKIN as AF TIM16 16b RX, TX, CK, CTS, RTS as AF MOSI, MISO, SCK, NSS as AF I2C1/SMBUS SCL, SDA, SMBA as AF I2C3/SMBUS SCL, SDA, SMBA as AF USART1 IrDA MCLK_A, SD_A, FS_A, SCK_A, EXTCLK MCLK_B, SD_B, FS_B, SCK_B as AF SAI1 16b TIM7 16b A 60PM B Hz 2 SPI1 TIM6 @ VDDA A P B(max) 1 3 0 M Hz APB1 80 MHz smcard MOSI, MISO, SCK, NSS as AF APB2 80MHz RX, TX, CK,CTS, RTS as AF bxCAN1 COMP1 INP, INM, OUT COMP2 DAC1 TX, RX as AF @VDDA OpAmp1 VOUT, VINM, VINP LPUART1 RX, TX, CTS, RTS as AF SWPMI1 IO RX, TX, SUSPEND as AF LPTIM1 IN1, IN2, OUT, ETR as AF LPTIM2 IN1, OUT, ETR as AF @ VDDA INP, INM, OUT FIFO WWDG ITF DAC2 FIREWALL OUT1 Note: OUT2 MSv39215V3 AF: alternate function on I/O pins. DS11451 Rev 4 13/156 50 Functional overview STM32L432KB STM32L432KC 3 Functional overview 3.1 Arm® Cortex®-M4 core with FPU The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm® processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an Arm® core in the memory size usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation. With its embedded Arm® core, the STM32L432xx family is compatible with all Arm® tools and software. Figure 1 shows the general block diagram of the STM32L432xx family devices. 3.2 Adaptive real-time memory accelerator (ART Accelerator™) The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard Arm® Cortex®-M4 processors. It balances the inherent performance advantage of the Arm® Cortex®-M4 over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies. To release the processor near 100 DMIPS performance at 80MHz, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 80 MHz. 3.3 Memory protection unit The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory. The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. 14/156 DS11451 Rev 4 STM32L432KB STM32L432KC 3.4 Functional overview Embedded Flash memory STM32L432xx devices feature up to 256 Kbyte of embedded Flash memory available for storing programs and data in single bank architecture. The Flash memory contains 128 pages of 2 Kbyte. Flexible protections can be configured thanks to option bytes: • Readout protection (RDP) to protect the whole memory. Three levels are available: – Level 0: no readout protection – Level 1: memory readout protection: the Flash memory cannot be read from or written to if either debug features are connected, boot in RAM or bootloader is selected – Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This selection is irreversible. Table 2. Access status versus readout protection level and execution modes Area Debug, boot from RAM or boot from system memory (loader) User execution Protection level Read Write Erase Read Write Erase Main memory 1 Yes Yes Yes No No No 2 Yes Yes Yes N/A N/A N/A System memory 1 Yes No No Yes No No 2 Yes No No N/A N/A N/A Option bytes 1 Yes Yes Yes Yes Yes Yes 2 Yes No No N/A N/A N/A No No N/A(1) Backup registers SRAM2 (1) 1 Yes Yes N/A 2 Yes Yes N/A N/A N/A N/A 1 Yes Yes Yes(1) No No No(1) 2 Yes Yes Yes N/A N/A N/A 1. Erased when RDP change from Level 1 to Level 0. • Write protection (WRP): the protected area is protected against erasing and programming. Two areas can be selected, with 2-Kbyte granularity. • Proprietary code readout protection (PCROP): a part of the flash memory can be protected against read and write from third parties. The protected area is execute-only: it can only be reached by the STM32 CPU, as an instruction code, while all other accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited. The PCROP area granularity is 64-bit wide. An additional option bit (PCROP_RDP) allows to select if the PCROP area is erased or not when the RDP protection is changed from Level 1 to Level 0. DS11451 Rev 4 15/156 50 Functional overview STM32L432KB STM32L432KC The whole non-volatile memory embeds the error correction code (ECC) feature supporting: 3.5 • single error detection and correction • double error detection. • The address of the ECC fail can be read in the ECC register Embedded SRAM STM32L432xx devices feature 64 Kbyte of embedded SRAM. This SRAM is split into two blocks: • 48 Kbyte mapped at address 0x2000 0000 (SRAM1) • 16 Kbyte located at address 0x1000 0000 with hardware parity check (SRAM2). This memory is also mapped at address 0x2000 C000, offering a contiguous address space with the SRAM1 (16 Kbyte aliased by bit band) This block is accessed through the ICode/DCode buses for maximum performance. These 16 Kbyte SRAM can also be retained in Standby mode. The SRAM2 can be write-protected with 1 Kbyte granularity. The memory can be accessed in read/write at CPU clock speed with 0 wait states. 3.6 Firewall The device embeds a Firewall which protects code sensitive and secure data from any access performed by a code executed outside of the protected areas. Each illegal access generates a reset which kills immediately the detected intrusion. The Firewall main features are the following: • Three segments can be protected and defined thanks to the Firewall registers: – Code segment (located in Flash or SRAM1 if defined as executable protected area) – Non-volatile data segment (located in Flash) – Volatile data segment (located in SRAM1) • The start address and the length of each segments are configurable: – Code segment: up to 1024 Kbyte with granularity of 256 bytes – Non-volatile data segment: up to 1024 Kbyte with granularity of 256 bytes – Volatile data segment: up to 48 Kbyte with a granularity of 64 bytes • Specific mechanism implemented to open the Firewall to get access to the protected areas (call gate entry sequence) • Volatile data segment can be shared or not with the non-protected code • Volatile data segment can be executed or not depending on the Firewall configuration The Flash readout protection must be set to level 2 in order to reach the expected level of protection. 16/156 DS11451 Rev 4 STM32L432KB STM32L432KC 3.7 Functional overview Boot modes At startup, BOOT0 pin or nSWBOOT0 option bit, and BOOT1 option bit are used to select one of three boot options: • Boot from user Flash • Boot from system memory • Boot from embedded SRAM BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the value of a user option bit to free the GPIO pad if needed. A Flash empty check mechanism is implemented to force the boot from system flash if the first flash memory location is not programmed and if the boot selection is configured to boot from main flash. The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART, I2C, SPI or USB FS in Device mode through DFU (device firmware upgrade). 3.8 Cyclic redundancy check calculation unit (CRC) The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 3.9 Power supply management 3.9.1 Power supply schemes • VDD = 1.71 to 3.6 V: external power supply for I/Os (VDDIO1), the internal regulator and the system analog such as reset, power management and internal clocks. It is provided externally through VDD pins. • VDDA = 1.62 V (ADCs/COMPs) / 1.8 (DAC/OPAMP) to 3.6 V: external analog power supply for ADCs, DAC, OPAMPs, Comparators and Voltage reference buffer. The VDDA voltage level is independent from the VDD voltage. Note: When the functions supplied by VDDA or VDDUSB are not used, these supplies should preferably be shorted to VDD. Note: If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V tolerant (refer to Table 18: Voltage characteristics). Note: VDDIOx is the I/Os general purpose digital functions supply. VDDIOx represents VDDIO1, with VDDIO1 = VDD. DS11451 Rev 4 17/156 50 Functional overview STM32L432KB STM32L432KC Figure 2. Power supply overview VDDA domain VDDA VSSA A/D converters Comparators D/A converters Operational amplifiers Voltage reference buffer VDDUSB VSS USB transceivers VDD domain VDD VDDIO1 I/O ring Reset block Temp. sensor PLL, HSI, MSI, HSI48 VSS Standby circuitry (Wakeup logic, IWDG) Voltage regulator VCORE VCORE domain Core Memories Digital peripherals Low voltage detector Backup domain VBAT LSE crystal 32 K osc BKP registers RCC BDCR register RTC MSv39216V3 During power-up and power-down phases, the following power sequence requirements must be respected: • When VDD is below 1 V, other power supplies (VDDA) must remain below VDD + 300 mV. • When VDD is above 1 V, all power supplies are independent. During the power-down phase, VDD can temporarily become lower than other supplies only if the energy provided to the MCU remains below 1 mJ; this allows external decoupling capacitors to be discharged with different time constants during the power- down transient phase. 18/156 DS11451 Rev 4 STM32L432KB STM32L432KC Functional overview Figure 3. Power-up/down sequence V 3.6 VDDX(1) VDD VBOR0 1 0.3 Power-on Invalid supply area Operating mode VDDX < VDD + 300 mV Power-down VDDX independent from VDD time MSv47490V1 1. VDDX refers to VDDA. 3.9.2 Power supply supervisor The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes except Shutdown and ensuring proper operation after power-on and during power down. The device remains in reset mode when the monitored supply voltage VDD is below a specified threshold, without the need for an external reset circuit. The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected through option bytes.The device features an embedded programmable voltage detector (PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. In addition, the device embeds a Peripheral Voltage Monitor which compares the independent supply voltage VDDA with a fixed threshold in order to ensure that the peripheral is in its functional supply range. DS11451 Rev 4 19/156 50 Functional overview 3.9.3 STM32L432KB STM32L432KC Voltage regulator Two embedded linear voltage regulators supply most of the digital circuitries: the main regulator (MR) and the low-power regulator (LPR). • The MR is used in the Run and Sleep modes and in the Stop 0 mode. • The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is also used to supply the 16 Kbyte SRAM2 in Standby with SRAM2 retention. • Both regulators are in power-down in Standby and Shutdown modes: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption. The ultralow-power STM32L432xx supports dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the Main Regulator that supplies the logic (VCORE) can be adjusted according to the system’s maximum operating frequency. There are two power consumption ranges: • Range 1 with the CPU running at up to 80 MHz. • Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also limited to 26 MHz. The VCORE can be supplied by the low-power regulator, the main regulator being switched off. The system is then in Low-power run mode. • 3.9.4 Low-power run mode with the CPU running at up to 2 MHz. Peripherals with independent clock can be clocked by HSI16. Low-power modes The ultra-low-power STM32L432xx supports seven low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wakeup sources. 20/156 DS11451 Rev 4 Mode Run LPRun Sleep LPSleep Regulator(1) MR range 1 MR range2 LPR MR range 1 MR range2 LPR DS11451 Rev 4 Flash SRAM Clocks Yes ON(4) ON Any Yes ON(4) ON Any except PLL No ON(4) ON(5) Any No ON(4) ON(5) Any except PLL All except USB_FS, RNG Any interrupt or event LSE LSI BOR, PVD, PVM RTC, IWDG COMPx (x=1,2) DAC1 OPAMPx (x=1) USARTx (x=1,2)(6) LPUART1(6) I2Cx (x=1,3)(7) LPTIMx (x=1,2) *** All other peripherals are frozen. Reset pin, all I/Os BOR, PVD, PVM RTC, IWDG COMPx (x=1..2) USARTx (x=1,2)(6) LPUART1(6) I2Cx (x=1,3)(7) LPTIMx (x=1,2) USB_FS(8) SWPMI1(9) MR Range 1 Stop 0 No MR Range 2 DMA & Peripherals(2) CPU OFF ON All All except USB_FS, RNG Wakeup source N/A Consumption(3) 97 µA/MHz 84 µA/MHz All except USB_FS, RNG N/A 94 µA/MHz All Any interrupt or event 28 µA/MHz All except USB_FS, RNG 26 µA/MHz 29 µA/MHz Wakeup time N/A to Range 1: 4 µs to Range 2: 64 µs 6 cycles STM32L432KB STM32L432KC Table 3. STM32L432xx modes overview 6 cycles 108 µA 2.4 µs in SRAM 4.1 µs in Flash 108 µA Functional overview 21/156 Mode Stop 1 DS11451 Rev 4 Stop 2 Regulator LPR LPR CPU No No DMA & Peripherals(2) Wakeup source Consumption(3) Wakeup time LSE LSI BOR, PVD, PVM RTC, IWDG COMPx (x=1,2) DAC1 OPAMPx (x=1) USARTx (x=1,2)(6) LPUART1(6) I2Cx (x=1,3)(7) LPTIMx (x=1,2) *** All other peripherals are frozen. Reset pin, all I/Os BOR, PVD, PVM RTC, IWDG COMPx (x=1..2) USARTx (x=1,2)(6) LPUART1(6) I2Cx (x=1,3)(7) LPTIMx (x=1,2) USB_FS(8) SWPMI1(9) 4.34 µA w/o RTC 4.63 µA w RTC 6.3 µs in SRAM 7.8 µs in Flash LSE LSI BOR, PVD, PVM RTC, IWDG COMPx (x=1..2) I2C3(7) LPUART1(6) LPTIM1 *** All other peripherals are frozen. Reset pin, all I/Os BOR, PVD, PVM RTC, IWDG COMPx (x=1..2) I2C3(7) LPUART1(6) LPTIM1 1.3 µA w/o RTC 1.4 µA w/RTC 6.8 µs in SRAM 8.2 µs in Flash Flash SRAM Clocks Off Off ON ON Functional overview 22/156 Table 3. STM32L432xx modes overview (continued) (1) STM32L432KB STM32L432KC Mode Regulator CPU Flash SRAM Clocks Standby OFF Shutdown OFF Power ed Off Power ed Off Off Off Power ed Off Power ed Off Wakeup source Consumption(3) Wakeup time 0.20 µA w/o RTC 0.46 µA w/ RTC DS11451 Rev 4 LSE LSI BOR, RTC, IWDG *** All other peripherals are powered off. *** I/O configuration can be floating, pull-up or pull-down Reset pin 5 I/Os (WKUPx)(10) BOR, RTC, IWDG LSE RTC *** All other peripherals are powered off. *** I/O configuration can be floating, pull-up or pulldown(11) Reset pin 5 I/Os (WKUPx)(10) RTC SRAM 2 ON LPR DMA & Peripherals(2) 0.03 µA w/o RTC 0.29 µA w/ RTC 0.01 µA w/o RTC 0.20 µA w/ RTC 12.2 µs STM32L432KB STM32L432KC Table 3. STM32L432xx modes overview (continued) (1) 262 µs 1. LPR means Main regulator is OFF and Low-power regulator is ON. 2. All peripherals can be active or clock gated to save power consumption. 3. Typical current at VDD = 1.8 V, 25°C. Consumptions values provided running from SRAM, Flash memory Off, 80 MHz in Range 1, 26 MHz in Range 2, 2 MHz in LPRun/LPSleep. 4. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM. 5. The SRAM1 and SRAM2 clocks can be gated on or off independently. 6. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event. 7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match. 8. USB_FS wakeup by resume from suspend and attach detection protocol event. 9. SWPMI1 wakeup by resume from suspend. 11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode. 23/156 Functional overview 10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5. Functional overview STM32L432KB STM32L432KC By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the user to select one of the low-power modes described below: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. • Low-power run mode This mode is achieved with VCORE supplied by the low-power regulator to minimize the regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16. • Low-power sleep mode This mode is entered from the low-power run mode. Only the CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the lowpower run mode. • Stop 0, Stop 1 and Stop 2 modes Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI RC and the HSI16 RC are disabled. The LSE or LSI is still running. The RTC can remain active (Stop mode with RTC, Stop mode without RTC). Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode to detect their wakeup condition. Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode, most of the VCORE domain is put in a lower leakage mode. Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator remains ON, allowing a very fast wakeup time but with much higher consumption. The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI up to 48 MHz or HSI16, depending on software configuration. • Standby mode The Standby mode is used to achieve the lowest power consumption with BOR. The internal regulator is switched off so that the VCORE domain is powered off. The PLL, the MSI RC and the HSI16 RC are also switched off. The RTC can remain active (Standby mode with RTC, Standby mode without RTC). The brown-out reset (BOR) always remains active in Standby mode. The state of each I/O during standby mode can be selected by software: I/O with internal pull-up, internal pull-down or floating. After entering Standby mode, SRAM1 and register contents are lost except for registers in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in Standby mode, supplied by the low-power Regulator (Standby with SRAM2 retention mode). The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE). The system clock after wakeup is MSI up to 8 MHz. 24/156 DS11451 Rev 4 STM32L432KB STM32L432KC • Functional overview Shutdown mode The Shutdown mode allows to achieve the lowest power consumption. The internal regulator is switched off so that the VCORE domain is powered off. The PLL, the HSI16, the MSI and the LSI oscillators are also switched off. The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC). The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode, therefore the switch to Backup domain is not supported. SRAM1, SRAM2 and register contents are lost except for registers in the Backup domain. The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper). The system clock after wakeup is MSI at 4 MHz. DS11451 Rev 4 25/156 50 Functional overview STM32L432KB STM32L432KC Table 4. Functionalities depending on the working mode(1) - Y - Y - - - - - - - - - O(2) O(2) O(2) O(2) - - - - - - - - SRAM1 (48 KB) Y Y(3) Y Y(3) Y - Y - - - - - SRAM2 (16 KB) Y Y(3) Y Y(3) Y - Y - O(4) - - - Quad SPI O O O O - - - - - - - - Backup Registers Y Y Y Y Y - Y - Y - Y - Brown-out reset (BOR) Y Y Y Y Y Y Y Y Y Y - - Programmable Voltage Detector (PVD) O O O O O O O O - - - - Peripheral Voltage Monitor (PVMx; x=1,3,4) O O O O O O O O - - - - DMA O O O O - - - - - - - - High Speed Internal (HSI16) O O O O (5) - (5) - - - - - Oscillator RC48 O O - - - - - - - - - - High Speed External (HSE) O O O O - - - - - - - - Low Speed Internal (LSI) O O O O O - O - O - - - Low Speed External (LSE) O O O O O - O - O - O - Multi-Speed Internal (MSI) O O O O - - - - - - - - Clock Security System (CSS) O O O O - - - - - - - - Clock Security System on LSE O O O O O O O O O O - - RTC / Auto wakeup O O O O O O O O O O O O Number of RTC Tamper pins 1 1 1 1 1 O 1 O 1 O 1 O O(8) O(8) - - - O - - - - - - CPU Flash memory (up to 256 KB) USB FS Run Low- LowSleep power power run sleep DS11451 Rev 4 - Wakeup capability - Wakeup capability Shutdow Wakeup capability Standby - Peripheral 26/156 Stop 2 Wakeup capability Stop 0/1 STM32L432KB STM32L432KC Functional overview Table 4. Functionalities depending on the working mode(1) (continued) - - - - - - Shutdow - Wakeup capability Low- LowSleep power power run sleep Standby Wakeup capability Run Stop 2 Wakeup capability Peripheral Wakeup capability Stop 0/1 - - - USARTx (x=1,2) O O O O O(6) O(6) Low-power UART (LPUART) O O O O O(6) O(6) O(6) O(6) - - - - I2Cx (x=1) O O O O O(7) O(7) (7) O (7) - - - - - - (7) (7) - - - - O O I2C3 O O O O O SPIx (x=1,3) O O O O - - - - - - - - CAN O O O O - - - - - - - - SWPMI1 O O O O - O - - - - - - SAIx (x=1) O O O O - - - - - - - - ADCx (x=1) O O O O - - - - - - - - DAC1 O O O O O - - - - - - - OPAMPx (x=1) O O O O O - - - - - - - COMPx (x=1,2) O O O O O O O O - - - - Temperature sensor O O O O - - - - - - - - Timers (TIMx) O O O O - - - - - - - - Low-power timer 1 (LPTIM1) O O O O O O O O - - - - Low-power timer 2 (LPTIM2) O O O O O O - - - - - - Independent watchdog (IWDG) O O O O O O O O O O - - Window watchdog (WWDG) O O O O - - - - - - - - SysTick timer O O O O - - - - - - - - Touch sensing controller (TSC) O O O O - - - - - - - - Random number generator (RNG) O(8) O(8) - - - - - - - - - - CRC calculation unit O O O O - - - - - - - - GPIOs O O O O O O O O (9) DS11451 Rev 4 2 pins (11) (10) 2 pins (10) 27/156 50 Functional overview STM32L432KB STM32L432KC 1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). - = Not available. 2. The Flash can be configured in power-down mode. By default, it is not in power-down mode. 3. The SRAM clock can be gated on or off. 4. SRAM2 content is preserved when the bit RRS is set in PWR_CR3 register. 5. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not need it anymore. 6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event. 7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match. 8. Voltage scaling Range 1 only. 9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode. 10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PA2. 11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode. 3.9.5 Reset mode In order to improve the consumption under reset, the I/Os state under and after reset is “analog state” (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is deactivated when the reset source is internal. 3.10 Interconnect matrix Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency. Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run and sleep, Stop 0, Stop 1 and Stop 2 modes. 28/156 Low-power sleep Stop 0 / Stop 1 Stop 2 TIM15/TIM16 Low-power run TIMx Sleep Interconnect source Run Table 5. STM32L432xx peripherals interconnect matrix TIMx Timers synchronization or chaining Y Y Y Y - - ADCx DAC1 Conversion triggers Y Y Y Y - - DMA Memory to memory transfer trigger Y Y Y Y - - COMPx Comparator output blanking Y Y Y Y - - IRTIM Infrared interface output generation Y Y Y Y - - Interconnect destination Interconnect action DS11451 Rev 4 STM32L432KB STM32L432KC Functional overview Run Sleep Low-power run Low-power sleep Stop 0 / Stop 1 Stop 2 Table 5. STM32L432xx peripherals interconnect matrix (continued) TIM1 TIM2 Timer input channel, trigger, break from analog signals comparison Y Y Y Y - - LPTIMERx Low-power timer triggered by analog signals comparison Y Y Y Y Y (1) TIM1 Timer triggered by analog watchdog Y Y Y Y - - TIM16 Timer input channel from RTC events Y Y Y Y - - LPTIMERx Low-power timer triggered by RTC alarms or tampers Y Y Y Y Y (1) All clocks sources (internal TIM2 and external) TIM15, 16 Clock source used as input channel for RC measurement and trimming Y Y Y Y - - USB Timer triggered by USB SOF Y Y - - - - Timer break Y Y Y Y - - TIMx External trigger Y Y Y Y - - LPTIMERx External trigger Y Y Y Y Y (1) ADCx DAC1 Conversion external trigger Y Y Y Y - - Interconnect source COMPx ADCx RTC Interconnect destination TIM2 CSS CPU (hard fault) RAM (parity error) TIM1 Flash memory (ECC error) TIM15,16 COMPx PVD Interconnect action Y Y Y GPIO 1. LPTIM1 only. DS11451 Rev 4 29/156 50 Functional overview 3.11 STM32L432KB STM32L432KC Clocks and startup The clock controller (see Figure 4) distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features: 30/156 • Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler • Safe clock switching: clock sources can be changed safely on the fly in run mode through a configuration register. • Clock management: to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. • System clock source: four different clock sources can be used to drive the master clock SYSCLK: – High Speed External clock (HSE) can supply a PLL. – 16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can supply a PLL – Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be automatically trimmed by hardware to reach better than ±0.25% accuracy. In this mode the MSI can feed the USB device. The MSI can supply a PLL. – System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency at 80 MHz. • RC48 with clock recovery system (HSI48): internal RC48 MHz clock source can be used to drive the USB or the RNG peripherals. This clock can be output on the MCO. • Auxiliary clock source: two ultralow-power clock sources that can be used to drive the real-time clock: – 32.768 kHz low-speed external crystal (LSE), supporting four drive capability modes. The LSE can also be configured in bypass mode for an external clock. – 32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock accuracy is ±5% accuracy. • Peripheral clock sources: Several peripherals (USB, RNG, SAI, USARTs, I2Cs, LPTimers, ADC, SWPMI) have their own independent clock whatever the system clock. Two PLLs, each having three independent outputs allowing the highest flexibility, can generate independent clocks for the ADC, the USB/RNG and the SAI. • Startup clock: after reset, the microcontroller restarts by default with an internal 4 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. • Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI16 and a software DS11451 Rev 4 STM32L432KB STM32L432KC Functional overview interrupt is generated if enabled. LSE failure can also be detected and generated an interrupt. • Clock-out capability: – MCO: microcontroller clock output: it outputs one of the internal clocks for external use by the application. Low frequency clocks (LSI, LSE) are available down to Stop 1 low power state. – LSCO: low speed clock output: it outputs LSI or LSE in all low-power modesdown to Standby mode. LSE can also be output on LSCO in Shutdown mode. LSCO is not available in VBAT mode. Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 80 MHz. DS11451 Rev 4 31/156 50 Functional overview STM32L432KB STM32L432KC Figure 4. Clock tree to IWDG LSI RC 32 kHz LSCO to RTC OSC32_OUT LSE OSC 32.768 kHz /32 OSC32_IN LSE LSI HSE to PWR SYSCLK MCO / 1䊻㻝㻢 MSI HSI16 Clock source control HSI48 PLLCLK CK_IN to AHB bus, core, memory and DMA AHB PRESC / 1,2,..512 HCLK to Cortex system timer HSE Clock detector FCLK Cortex free running clock /8 MSI SYSCLK APB1 PRESC / 1,2,4,8,16 HSI16 PCLK1 to APB1 peripherals x1 or x2 HSI RC 16 MHz LSE HSI16 SYSCLK to USARTx x=2..3 to LPUART1 HSI16 SYSCLK MSI RC 100 kHz – 48 MHz to TIMx x=2,6,7 to I2Cx x=1,2,3 LSI LSE HSI16 to LPTIMx x=1,2 HSI16 to SWPMI MSI PLL /M VCO FVCO PLLSAI1 VCO FVCO /P PLLSAI1CLK /Q PLL48M1CLK /R PLLCLK /P PLLSAI2CLK /Q PLL48M2CLK /R PLLADC1CLK PCLK2 HSI16 APB2 PRESC / 1,2,4,8,16 HSE to APB2 peripherals x1 or x2 LSE HSI16 SYSCLK SYSCLK HSI RC 48 MHz HSI16 to TIMx x=1,15,16 to USART1 to ADC MSI CRS 48 MHz clock to USB, RNG HSI16 to SAI1 SAI1_EXTCLK MSv39217V4 32/156 DS11451 Rev 4 STM32L432KB STM32L432KC 3.12 Functional overview General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be achieved thanks to their mapping on the AHB2 bus. The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. 3.13 Direct memory access controller (DMA) The device embeds 2 DMAs. Refer to Table 6: DMA implementation for the features implementation. Direct memory access (DMA) is used in order to provide high-speed data transfer between peripherals and memory as well as memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps CPU resources free for other operations. The two DMA controllers have 14 channels in total, each dedicated to managing memory access requests from one or more peripherals. Each has an arbiter for handling the priority between DMA requests. The DMA supports: • 14 independently configurable channels (requests) • Each channel is connected to dedicated hardware DMA requests, software trigger is also supported on each channel. This configuration is done by software. • Priorities between requests from channels of one DMA are software programmable (4 levels consisting of very high, high, medium, low) or hardware in case of equality (request 1 has priority over request 2, etc.) • Independent source and destination transfer size (byte, half word, word), emulating packing and unpacking. Source/destination addresses must be aligned on the data size. • Support for circular buffer management • 3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error) logically ORed together in a single interrupt request for each channel • Memory-to-memory transfer • Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral transfers • Access to Flash, SRAM, APB and AHB peripherals as source and destination • Programmable number of data to be transferred: up to 65536. Table 6. DMA implementation DMA features DMA1 DMA2 Number of regular channels 7 7 DS11451 Rev 4 33/156 50 Functional overview STM32L432KB STM32L432KC 3.14 Interrupts and events 3.14.1 Nested vectored interrupt controller (NVIC) The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 61 maskable interrupt channels plus the 16 interrupt lines of the Cortex®M4. The NVIC benefits are the following: • Closely coupled NVIC gives low latency interrupt processing • Interrupt entry vector table address passed directly to the core • Allows early processing of interrupts • Processing of late arriving higher priority interrupts • Support for tail chaining • Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction overhead The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency. 3.14.2 Extended interrupt/event controller (EXTI) The extended interrupt/event controller consists of 34 edge detector lines used to generate interrupt/event requests and wake-up the system from Stop mode. Each external line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The internal lines are connected to peripherals with wakeup from Stop mode capability. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 26 GPIOs can be connected to the 16 external interrupt lines. 34/156 DS11451 Rev 4 STM32L432KB STM32L432KC 3.15 Functional overview Analog to digital converter (ADC) The device embeds a successive approximation analog-to-digital converter with the following features: • 12-bit native resolution, with built-in calibration • 5.33 Msps maximum conversion rate with full resolution Down to 18.75 ns sampling time – Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit resolution) • Up to 10 external channels. • 4 internal channels: internal reference voltage, temperature sensor, DAC1_OUT1 and DAC1_OUT2. • Single-ended and differential mode inputs • Low-power design • 3.15.1 – – Capable of low-current operation at low conversion rate (consumption decreases linearly with speed) – Dual clock domain architecture: ADC speed independent from CPU frequency Highly versatile digital interface – Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups of analog signals conversions can be programmed to differentiate background and high-priority real-time conversions – ADC supports multiple trigger inputs for synchronization with on-chip timers and external signals – Results stored into data register or in RAM with DMA controller support – Data pre-processing: left/right alignment and per channel offset compensation – Built-in oversampling unit for enhanced SNR – Channel-wise programmable sampling time – Three analog watchdog for automatic voltage monitoring, generating interrupts and trigger for selected timers – Hardware assistant to prepare the context of the injected channels to allow fast context switching Temperature sensor The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature. The temperature sensor is internally connected to the ADC1_IN17 input channel which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. DS11451 Rev 4 35/156 50 Functional overview STM32L432KB STM32L432KC Table 7. Temperature sensor calibration values 3.15.2 Calibration value name Description Memory address TS_CAL1 TS ADC raw data acquired at a temperature of 30 °C (± 5 °C), VDDA = VREF+ = 3.0 V (± 10 mV) 0x1FFF 75A8 - 0x1FFF 75A9 TS_CAL2 TS ADC raw data acquired at a temperature of 130 °C (± 5 °C), VDDA = VREF+ = 3.0 V (± 10 mV) 0x1FFF 75CA - 0x1FFF 75CB Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC1_IN0 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. Table 8. Internal voltage reference calibration values 3.16 Calibration value name Description Memory address VREFINT Raw data acquired at a temperature of 30 °C (± 5 °C), VDDA = VREF+ = 3.0 V (± 10 mV) 0x1FFF 75AA - 0x1FFF 75AB Digital to analog converter (DAC) Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration. This digital interface supports the following features: • Up to two DAC output channels • 8-bit or 12-bit output mode • Buffer offset calibration (factory and user trimming) • Left or right data alignment in 12-bit mode • Synchronized update capability • Noise-wave generation • Triangular-wave generation • Dual DAC channel independent or simultaneous conversions • DMA capability for each channel • External triggers for conversion • Sample and hold low-power mode, with internal or external capacitor The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels. 36/156 DS11451 Rev 4 STM32L432KB STM32L432KC 3.17 Functional overview Comparators (COMP) The STM32L432xx devices embed two rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) and with selectable output polarity. The reference voltage can be one of the following: • External I/O • DAC output channels • Internal reference voltage or submultiple (1/4, 1/2, 3/4). All comparators can wake up from Stop mode, generate interrupts and breaks for the timers and can be also combined into a window comparator. 3.18 Operational amplifier (OPAMP) The STM32L432xx embeds one operational amplifier with external or internal follower routing and PGA capability. The operational amplifier features: 3.19 • Low input bias current • Low offset voltage • Low-power mode • Rail-to-rail input Touch sensing controller (TSC) The touch sensing controller provides a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect finger presence near an electrode which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application. DS11451 Rev 4 37/156 50 Functional overview STM32L432KB STM32L432KC The main features of the touch sensing controller are the following: • Proven and robust surface charge transfer acquisition principle • Supports up to 3 capacitive sensing channels • Up to 3 capacitive sensing channels can be acquired in parallel offering a very good response time • Spread spectrum feature to improve system robustness in noisy environments • Full hardware management of the charge transfer acquisition sequence • Programmable charge transfer frequency • Programmable sampling capacitor I/O pin • Programmable channel I/O pin • Programmable max count value to avoid long acquisition when a channel is faulty • Dedicated end of acquisition and max count error flags with interrupt capability • One sampling capacitor for up to 3 capacitive sensing channels to reduce the system components • Compatible with proximity, touchkey, linear and rotary touch sensor implementation • Designed to operate with STMTouch touch sensing firmware library Note: The number of capacitive sensing channels is dependent on the size of the packages and subject to I/O availability. 3.20 Random number generator (RNG) All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit. 3.21 Timers and watchdogs The STM32L432xx includes one advanced control timers, up to five general-purpose timers, two basic timers, two low-power timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers. Table 9. Timer feature comparison Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Capture/ compare channels Complementary outputs Advanced control TIM1 16-bit Up, down, Up/down Any integer between 1 and 65536 Yes 4 3 Generalpurpose TIM2 32-bit Up, down, Up/down Any integer between 1 and 65536 Yes 4 No Generalpurpose TIM15 16-bit Up Any integer between 1 and 65536 Yes 2 1 38/156 DS11451 Rev 4 STM32L432KB STM32L432KC Functional overview Table 9. Timer feature comparison (continued) Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Capture/ compare channels Complementary outputs Generalpurpose TIM16 16-bit Up Any integer between 1 and 65536 Yes 1 1 Basic TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No 3.21.1 Advanced-control timer (TIM1) The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted deadtimes. They can also be seen as complete general-purpose timers. The 4 independent channels can be used for: • Input capture • Output compare • PWM generation (edge or center-aligned modes) with full modulation capability (0100%) • One-pulse mode output In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs. Many features are shared with those of the general-purpose TIMx timers (described in Section 3.21.2) using the same architecture, so the advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining. DS11451 Rev 4 39/156 50 Functional overview 3.21.2 STM32L432KB STM32L432KC General-purpose timers (TIM2, TIM15, TIM16) There are up to three synchronizable general-purpose timers embedded in the STM32L432xx (see Table 9 for differences). Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base. • TIM2 It is a full-featured general-purpose timer: TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler. This timer features 4 independent channels for input capture/output compare, PWM or one-pulse mode output. It can work with the other general-purpose timers via the Timer Link feature for synchronization or event chaining. The counter can be frozen in debug mode. It has independent DMA request generation and support quadrature encoder. • TIM15 and 16 They are general-purpose timers with mid-range features: They have 16-bit auto-reload upcounters and 16-bit prescalers. – TIM15 has 2 channels and 1 complementary channel – TIM16 has 1 channel and 1 complementary channel All channels can be used for input capture/output compare, PWM or one-pulse mode output. The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation. The counters can be frozen in debug mode. 3.21.3 Basic timers (TIM6 and TIM7) The basic timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit timebases. 3.21.4 Low-power timer (LPTIM1 and LPTIM2) The devices embed two low-power timers. These timers have an independent clock and are running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to wakeup the system from Stop mode. LPTIM1 is active in Stop 0, Stop 1 and Stop 2 modes. LPTIM2 is active in Stop 0 and Stop 1 mode. 40/156 DS11451 Rev 4 STM32L432KB STM32L432KC Functional overview This low-power timer supports the following features: 3.21.5 • 16-bit up counter with 16-bit autoreload register • 16-bit compare register • Configurable output: pulse, PWM • Continuous/ one shot mode • Selectable software/hardware input trigger • Selectable clock source – Internal clock sources: LSE, LSI, HSI16 or APB clock – External clock source over LPTIM input (working even with no internal clock source running, used by pulse counter application). • Programmable digital glitch filter • Encoder mode (LPTIM1 only) Infrared interface (IRTIM) The STM32L432xx includes one infrared interface (IRTIM). It can be used with an infrared LED to perform remote control functions. It uses TIM15 and TIM16 output channels to generate output signal waveforms on IR_OUT pin. 3.21.6 Independent watchdog (IWDG) The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC (LSI) and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. 3.21.7 System window watchdog (WWDG) The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.21.8 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features: • A 24-bit down counter • Autoreload capability • Maskable system interrupt generation when the counter reaches 0. • Programmable clock source DS11451 Rev 4 41/156 50 Functional overview 3.22 STM32L432KB STM32L432KC Real-time clock (RTC) and backup registers The RTC is an independent BCD timer/counter. It supports the following features: • Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format. • Automatic correction for 28, 29 (leap year), 30, and 31 days of the month. • Two programmable alarms. • On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock. • Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. • Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy. • One anti-tamper detection pin with programmable filter. • Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. • 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period. The RTC and the 32 backup registers are supplied through a switch that takes power from the VDD supply. The backup registers are 32-bit registers used to store 128 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby or Shutdown mode. The RTC clock sources can be: • A 32.768 kHz external crystal (LSE) • An external resonator or oscillator (LSE) • The internal low power RC oscillator (LSI, with typical frequency of 32 kHz) • The high-speed external clock (HSE) divided by 32. The RTC is functional in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is functional in all low-power modes except Shutdown mode. All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes. 42/156 DS11451 Rev 4 STM32L432KB STM32L432KC 3.23 Functional overview Inter-integrated circuit interface (I2C) The device embeds two I2C. Refer to Table 10: I2C implementation for the features implementation. The I2C bus interface handles communications between the microcontroller and the serial I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing. The I2C peripheral supports: • • I2C-bus specification and user manual rev. 5 compatibility: – Slave and master modes, multimaster capability – Standard-mode (Sm), with a bitrate up to 100 kbit/s – Fast-mode (Fm), with a bitrate up to 400 kbit/s – Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os – 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses – Programmable setup and hold times – Optional clock stretching System Management Bus (SMBus) specification rev 2.0 compatibility: – Hardware PEC (Packet Error Checking) generation and verification with ACK control – Address resolution protocol (ARP) support – SMBus alert • Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility • Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming. Refer to Figure 4: Clock tree. • Wakeup from Stop mode on address match • Programmable analog and digital noise filters • 1-byte buffer with DMA capability Table 10. I2C implementation I2C features(1) I2C1 I2C3 Standard-mode (up to 100 kbit/s) X X Fast-mode (up to 400 kbit/s) X X Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X X Programmable analog and digital noise filters X X SMBus/PMBus hardware support X X Independent clock X X Wakeup from Stop 0 / Stop 1 mode on address match X X Wakeup from Stop 2 mode on address match - X 1. X: supported DS11451 Rev 4 43/156 50 Functional overview 3.24 STM32L432KB STM32L432KC Universal synchronous/asynchronous receiver transmitter (USART) The STM32L432xx devices have two embedded universal synchronous receiver transmitters (USART1 and USART2). These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. They provide hardware management of the CTS and RTS signals, and RS485 Driver Enable. They are able to communicate at speeds of up to 10Mbit/s. USART1 and USART2 also provide Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All USART have a clock domain independent from the CPU clock, allowing the USARTx (x=1,2) to wake up the MCU from Stop mode using baudrates up to 204 Kbaud. The wake up events from Stop mode are programmable and can be: • Start bit detection • Any received data frame • A specific programmed data frame All USART interfaces can be served by the DMA controller. Table 11. STM32L432xx USART/LPUART features USART modes/features(1) USART1 USART2 LPUART1 Hardware flow control for modem X X X Continuous communication using DMA X X X Multiprocessor communication X X X Synchronous mode X X - Smartcard mode X X - Single-wire half-duplex communication X X X IrDA SIR ENDEC block X X - LIN mode X X - Dual clock domain X X X Wakeup from Stop 0 / Stop 1 modes X X X Wakeup from Stop 2 mode - - X Receiver timeout interrupt X X - Modbus communication X X - Auto baud rate detection X (4 modes) Driver Enable X LPUART/USART data length X 7, 8 and 9 bits 1. X = supported. 44/156 - DS11451 Rev 4 X STM32L432KB STM32L432KC 3.25 Functional overview Low-power universal asynchronous receiver transmitter (LPUART) The device embeds one Low-Power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication. The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop mode are programmable and can be: • Start bit detection • Any received data frame • A specific programmed data frame Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates. LPUART interface can be served by the DMA controller. DS11451 Rev 4 45/156 50 Functional overview 3.26 STM32L432KB STM32L432KC Serial peripheral interface (SPI) Two SPI interfaces allow communication up to 40 Mbits/s in master and up to 24 Mbits/s slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI interfaces support NSS pulse mode, TI mode and Hardware CRC calculation. All SPI interfaces can be served by the DMA controller. 3.27 Serial audio interfaces (SAI) The device embeds 1 SAI. Refer to Table 12: SAI implementation for the features implementation. The SAI bus interface handles communications between the microcontroller and the serial audio protocol. The SAI peripheral supports: • Two independent audio sub-blocks which can be transmitters or receivers with their respective FIFO. • 8-word integrated FIFOs for each audio sub-block. • Synchronous or asynchronous mode between the audio sub-blocks. • Master or slave configuration independent for both audio sub-blocks. • Clock generator for each audio block to target independent audio frequency sampling when both audio sub-blocks are configured in master mode. • Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit. • Peripheral with large configurability and flexibility allowing to target as example the following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF out. • Up to 16 slots available with configurable size and with the possibility to select which ones are active in the audio frame. • Number of bits by frame may be configurable. • Frame synchronization active level configurable (offset, bit length, level). • First active bit position in the slot is configurable. • LSB first or MSB first for data transfer. • Mute mode. • Stereo/Mono audio frame capability. • Communication clock strobing edge configurable (SCK). • Error flags with associated interrupts if enabled respectively. • • 46/156 – Overrun and underrun detection. – Anticipated frame synchronization signal detection in slave mode. – Late frame synchronization signal detection in slave mode. – Codec not ready for the AC’97 mode in reception. Interruption sources when enabled: – Errors. – FIFO requests. DMA interface with 2 dedicated channels to handle access to the dedicated integrated FIFO of each SAI audio sub-block. DS11451 Rev 4 STM32L432KB STM32L432KC Functional overview Table 12. SAI implementation SAI features Support(1) I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 X Mute mode X Stereo/Mono audio frame capability. X 16 slots X Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit X FIFO Size X (8 Word) SPDIF X 1. X: supported 3.28 Single wire protocol master interface (SWPMI) The Single wire protocol master interface (SWPMI) is the master interface corresponding to the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The main features are: • full-duplex communication mode • automatic SWP bus state management (active, suspend, resume) • configurable bitrate up to 2 Mbit/s • automatic SOF, EOF and CRC handling SWPMI can be served by the DMA controller. 3.29 Controller area network (CAN) The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks. DS11451 Rev 4 47/156 50 Functional overview STM32L432KB STM32L432KC The CAN peripheral supports: • Supports CAN protocol version 2.0 A, B Active • Bit rates up to 1 Mbit/s • Transmission • • • 3.30 – Three transmit mailboxes – Configurable transmit priority Reception – Two receive FIFOs with three stages – 14 Scalable filter banks – Identifier list feature – Configurable FIFO overrun Time-triggered communication option – Disable automatic retransmission mode – 16-bit free running timer – Time Stamp sent in last two data bytes Management – Maskable interrupts – Software-efficient mailbox mapping at a unique address space Universal serial bus (USB) The STM32L432xx devices embed a full-speed USB device peripheral compliant with the USB specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP pull-up and also battery charging detection according to Battery Charging Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with added support for USB 2.0 Link Power Management. It has softwareconfigurable endpoint setting with packet memory up-to 1 KB and suspend/resume support. It requires a precise 48 MHz clock which can be generated from the internal main PLL or by the internal 48 MHz oscillator in automatic trimming mode. The synchronization for this oscillator can be taken from the USB data stream itself (SOF signalization) which allows crystal less operation. 3.31 Clock recovery system (CRS) The STM32L432xx devices embed a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action. 48/156 DS11451 Rev 4 STM32L432KB STM32L432KC 3.32 Functional overview Quad SPI memory interface (QUADSPI) The Quad SPI is a specialized communication interface targeting single, dual or quad SPI flash memories. It can operate in any of the three following modes: • Indirect mode: all the operations are performed using the QUADSPI registers • Status polling mode: the external flash status register is periodically read and an interrupt can be generated in case of flag setting • Memory-mapped mode: the external Flash is memory mapped and is seen by the system as if it were an internal memory Both throughput and capacity can be increased two-fold using dual-flash mode, where two Quad SPI flash memories are accessed simultaneously. The Quad SPI interface supports: • Three functional modes: indirect, status-polling, and memory-mapped • SDR and DDR support • Fully programmable opcode for both indirect and memory mapped mode • Fully programmable frame format for both indirect and memory mapped mode • Each of the 5 following phases can be configured independently (enable, length, single/dual/quad communication) – Instruction phase – Address phase – Alternate bytes phase – Dummy cycles phase – Data phase • Integrated FIFO for reception and transmission • 8, 16, and 32-bit data accesses are allowed • DMA channel for indirect mode operations • Programmable masking for external flash flag management • Timeout management • Interrupt generation on FIFO threshold, timeout, status match, operation complete, and access error DS11451 Rev 4 49/156 50 Functional overview STM32L432KB STM32L432KC 3.33 Development support 3.33.1 Serial wire JTAG debug port (SWJ-DP) The Arm® SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 3.33.2 Embedded Trace Macrocell™ The Arm® Embedded Trace Macrocell™ provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32L432xx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors. The Embedded Trace Macrocell™ operates with third party debugger software tools. 50/156 DS11451 Rev 4 STM32L432KB STM32L432KC 4 Pinouts and pin description Pinouts and pin description VSS PH3/BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 32 31 30 29 28 27 26 25 Figure 5. STM32L432Kx UFQFPN32 pinout(1) VDD 1 24 PA14 PC14-OSC32_IN 2 23 PA13 PC15-OSC32_OUT 3 22 PA12 NRST 4 21 PA11 VDDA/VREF+ 5 20 PA10 PA0/CK_IN 6 19 PA9 PA1 7 18 PA8 PA2 8 17 VDD 9 10 11 12 13 14 15 16 PA3 PA4 PA5 PA6 PA7 PB0 PB1 VSS UFQFPN32 MSv37605V2 1. The above figure shows the package top view. Table 13. Legend/abbreviations used in the pinout table Name Pin name Pin type Abbreviation Definition Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O TT 3.6 V tolerant I/O RST Bidirectional reset pin with embedded weak pull-up resistor I/O structure Option for TT or FT I/Os _f (1) I/O, Fm+ capable _u (2) I/O, with USB function supplied by VDDUSB _a Notes (3) I/O, with Analog switch function supplied by VDDA Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset. Alternate Functions selected through GPIOx_AFR registers functions Pin functions Additional Functions directly selected/enabled through peripheral registers functions 1. The related I/O structures in Table 14 are: FT_f, FT_fa. 2. The related I/O structures in Table 14 is: FT_u. 3. The related I/O structures in Table 14 are: FT_a, FT_fa, TT_a. DS11451 Rev 4 51/156 62 Pinouts and pin description STM32L432KB STM32L432KC I/O structure PC14OSC32_I N (PC14) I/O FT 3 PC15OSC32_ OUT (PC15) I/O FT 4 NRST I/O RST - - - 5 VDDA/VR EF+ S - - - - 6 PA0/ CK_IN - TIM2_CH1, USART2_CTS, COMP1_OUT, SAI1_EXTCLK, TIM2_ETR, EVENTOUT OPAMP1_VINP, COMP1_INM, ADC1_IN5, RTC_TAMP2, WKUP1, CK_IN - TIM2_CH2, I2C1_SMBA, SPI1_SCK, USART2_RTS_DE, TIM15_CH1N, EVENTOUT OPAMP1_VINM, COMP1_INP, ADC1_IN6 - TIM2_CH3, USART2_TX, LPUART1_TX, QUADSPI_BK1_NCS, COMP2_OUT, TIM15_CH1, EVENTOUT COMP2_INM, ADC1_IN7, WKUP4, LSCO OPAMP1_VOUT, COMP2_INP, ADC1_IN8 8 PA1 PA2 I/O I/O I/O FT_a FT_a FT_a Alternate functions Additional functions EVENTOUT OSC32_IN (2) EVENTOUT OSC32_OUT Notes UFQFPN32 Pin type Pin functions 2 7 (1) (2) (1) 9 PA3 I/O TT_a - TIM2_CH4, USART2_RX, LPUART1_RX, QUADSPI_CLK, SAI1_MCLK_A, TIM15_CH2, EVENTOUT 10 PA4 I/O TT_a - SPI1_NSS, SPI3_NSS, USART2_CK, SAI1_FS_B, LPTIM2_OUT, EVENTOUT COMP1_INM, COMP2_INM, ADC1_IN9, DAC1_OUT1 11 PA5 I/O TT_a - TIM2_CH1, TIM2_ETR, SPI1_SCK, LPTIM2_ETR, EVENTOUT COMP1_INM, COMP2_INM, ADC1_IN10, DAC1_OUT2 - TIM1_BKIN, SPI1_MISO, COMP1_OUT, USART3_CTS, LPUART1_CTS, QUADSPI_BK1_IO3, TIM1_BKIN_COMP2, TIM16_CH1, EVENTOUT ADC1_IN11 12 52/156 Pin name (function after reset) Table 14. STM32L432xx pin definitions Pin Number PA6 I/O FT_a DS11451 Rev 4 STM32L432KB STM32L432KC Pinouts and pin description 13 14 PA7 PB0 I/O I/O FT_fa FT_a Alternate functions Additional functions - TIM1_CH1N, I2C3_SCL, SPI1_MOSI, QUADSPI_BK1_IO2, COMP2_OUT, EVENTOUT ADC1_IN12 - TIM1_CH2N, SPI1_NSS, USART3_CK, QUADSPI_BK1_IO1, COMP1_OUT, SAI1_EXTCLK, EVENTOUT ADC1_IN15 COMP1_INM, ADC1_IN16 Notes I/O structure Pin functions Pin type UFQFPN32 Pin Number Pin name (function after reset) Table 14. STM32L432xx pin definitions (continued) 15 PB1 I/O FT_a - TIM1_CH3N, USART3_RTS_DE, LPUART1_RTS_DE, QUADSPI_BK1_IO0, LPTIM2_IN1, EVENTOUT 16 VSS S - - - - 17 VDD S - - - - - 18 PA8 I/O FT - MCO, TIM1_CH1, USART1_CK, SWPMI1_IO, SAI1_SCK_A, LPTIM2_OUT, EVENTOUT 19 PA9 I/O FT_f - TIM1_CH2, I2C1_SCL, USART1_TX, SAI1_FS_A, TIM15_BKIN, EVENTOUT - - TIM1_CH3, I2C1_SDA, USART1_RX, USB_CRS_SYNC, SAI1_SD_A, EVENTOUT - - TIM1_CH4, TIM1_BKIN2, SPI1_MISO, COMP1_OUT, USART1_CTS, CAN1_RX, USB_DM, TIM1_BKIN2_COMP1, EVENTOUT - - - 20 21 PA10 PA11 I/O I/O FT_f FT_u 22 PA12 I/O FT_u - TIM1_ETR, SPI1_MOSI, USART1_RTS_DE, CAN1_TX, USB_DP, EVENTOUT 23 PA13 (JTMSSWDIO) I/O FT (3) JTMS-SWDIO, IR_OUT, USB_NOE, SWPMI1_TX, SAI1_SD_B, EVENTOUT DS11451 Rev 4 53/156 62 Pinouts and pin description STM32L432KB STM32L432KC PA14 (JTCKSWCLK) 25 PA15 (JTDI) 26 PB3 (JTDOTRACE SWO) 27 PB4 (NJTRST) 28 PB5 I/O FT (3) JTCK-SWCLK, LPTIM1_OUT, I2C1_SMBA, SWPMI1_RX, SAI1_FS_B, EVENTOUT - FT JTDI, TIM2_CH1, TIM2_ETR, USART2_RX, SPI1_NSS, SPI3_NSS, (3) USART3_RTS_DE, TSC_G3_IO1, SWPMI1_SUSPEND, EVENTOUT - I/O Notes I/O structure 24 Pin functions Pin type UFQFPN32 Pin Number Pin name (function after reset) Table 14. STM32L432xx pin definitions (continued) Alternate functions Additional functions JTDO-TRACESWO, TIM2_CH2, SPI1_SCK, SPI3_SCK, USART1_RTS_DE, SAI1_SCK_B, EVENTOUT COMP2_INM I/O FT_a (3) I/O (3) NJTRST, I2C3_SDA, SPI1_MISO, SPI3_MISO, USART1_CTS, TSC_G2_IO1, SAI1_MCLK_B, EVENTOUT COMP2_INP - LPTIM1_IN1, I2C1_SMBA, SPI1_MOSI, SPI3_MOSI, USART1_CK, TSC_G2_IO2, COMP2_OUT, SAI1_SD_B, TIM16_BKIN, EVENTOUT - COMP2_INP I/O FT_fa FT 29 PB6 I/O FT_fa - LPTIM1_ETR, I2C1_SCL, USART1_TX, TSC_G2_IO3, SAI1_FS_B, TIM16_CH1N, EVENTOUT 30 PB7 I/O FT_fa - LPTIM1_IN2, I2C1_SDA, USART1_RX, TSC_G2_IO4, EVENTOUT COMP2_INM, PVD_IN 31 PH3/ BOOT0 I/O FT - EVENTOUT BOOT0 32 VSS S - - - - 1 VDD S - - - - 1. PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC14 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF - These GPIOs must not be used as current sources (e.g. to drive an LED). 2. After a Backup domain power-up, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the RM0394 reference manual. 3. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated. 54/156 DS11451 Rev 4 AF1 AF2 AF3 AF4 AF5 AF6 AF7 SYS_AF TIM1/TIM2/ LPTIM1 TIM1/TIM2 USART2 I2C1/I2C2/I2C3 SPI1/SPI2 SPI3 USART1/ USART2/ USART3 PA0 - TIM2_CH1 - - - - - USART2_CTS PA1 - TIM2_CH2 - - I2C1_SMBA SPI1_SCK - USART2_RTS_ DE PA2 - TIM2_CH3 - - - - - USART2_TX PA3 - TIM2_CH4 - - - - - USART2_RX PA4 - - - - - SPI1_NSS SPI3_NSS USART2_CK PA5 - TIM2_CH1 TIM2_ETR - - SPI1_SCK - - PA6 - TIM1_BKIN - - - SPI1_MISO COMP1_OUT USART3_CTS PA7 - TIM1_CH1N - - I2C3_SCL SPI1_MOSI - - PA8 MCO TIM1_CH1 - - - - - USART1_CK PA9 - TIM1_CH2 - - I2C1_SCL - - USART1_TX PA10 - TIM1_CH3 - - I2C1_SDA - - USART1_RX PA11 - TIM1_CH4 TIM1_BKIN2 - - SPI1_MISO COMP1_OUT USART1_CTS PA12 - TIM1_ETR - - - SPI1_MOSI - USART1_RTS_ DE PA13 JTMS-SWDIO IR_OUT - - - - - - PA14 JTCK-SWCLK LPTIM1_OUT - - I2C1_SMBA - - - PA15 JTDI TIM2_CH1 TIM2_ETR USART2_RX - SPI1_NSS SPI3_NSS USART3_RTS_ DE Port DS11451 Rev 4 Port A 55/156 Pinouts and pin description AF0 STM32L432KB STM32L432KC Table 15. Alternate function AF0 to AF7(1) AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 SYS_AF TIM1/TIM2/ LPTIM1 TIM1/TIM2 USART2 I2C1/I2C2/I2C3 SPI1/SPI2 SPI3 USART1/ USART2/ USART3 PB0 - TIM1_CH2N - - - SPI1_NSS - USART3_CK PB1 - TIM1_CH3N - - - - - USART3_RTS_ DE PB3 JTDOTRACESWO TIM2_CH2 - - - SPI1_SCK SPI3_SCK USART1_RTS_ DE PB4 NJTRST - - - I2C3_SDA SPI1_MISO SPI3_MISO USART1_CTS PB5 - LPTIM1_IN1 - - I2C1_SMBA SPI1_MOSI SPI3_MOSI USART1_CK PB6 - LPTIM1_ETR - - I2C1_SCL - - USART1_TX PB7 - LPTIM1_IN2 - - I2C1_SDA - - USART1_RX PC14 - - - - - - - - PC15 - - - - - - - - PH3 - - - - - - - - Port Port B DS11451 Rev 4 Port C Port H Pinouts and pin description 56/156 Table 15. Alternate function AF0 to AF7(1) (continued) 1. Please refer to Table 16 for AF8 to AF15. STM32L432KB STM32L432KC AF9 AF10 AF11 AF12 AF13 AF14 AF15 LPUART1 CAN1/TSC USB/QUADSPI - COMP1/ COMP2/ SWPMI1 SAI1 TIM2/TIM15/ TIM16/LPTIM2 EVENTOUT PA0 - - - - COMP1_OUT SAI1_EXTCLK TIM2_ETR EVENTOUT PA1 - - - - - - TIM15_CH1N EVENTOUT PA2 LPUART1_TX - QUADSPI_ BK1_NCS - COMP2_OUT - TIM15_CH1 EVENTOUT PA3 LPUART1_RX - QUADSPI_CLK - - SAI1_MCLK_A TIM15_CH2 EVENTOUT PA4 - - - - - SAI1_FS_B LPTIM2_OUT EVENTOUT PA5 - - - - - - LPTIM2_ETR EVENTOUT PA6 LPUART1_CTS - QUADSPI_ BK1_IO3 - TIM1_BKIN_ COMP2 - TIM16_CH1 EVENTOUT PA7 - - QUADSPI_ BK1_IO2 - COMP2_OUT - - EVENTOUT PA8 - - - - SWPMI1_IO SAI1_SCK_A LPTIM2_OUT EVENTOUT PA9 - - - - - SAI1_FS_A TIM15_BKIN EVENTOUT PA10 - - USB_CRS_ SYNC - - SAI1_SD_A - EVENTOUT PA11 - CAN1_RX USB_DM - TIM1_BKIN2_ COMP1 - - EVENTOUT PA12 - CAN1_TX USB_DP - - - - EVENTOUT PA13 - - USB_NOE - SWPMI1_TX SAI1_SD_B - EVENTOUT PA14 - - - - SWPMI1_RX SAI1_FS_B - EVENTOUT PA15 - TSC_G3_IO1 - - SWPMI1_ SUSPEND - - EVENTOUT Port DS11451 Rev 4 Port A 57/156 Pinouts and pin description AF8 STM32L432KB STM32L432KC Table 16. Alternate function AF8 to AF15(1) AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 LPUART1 CAN1/TSC USB/QUADSPI - COMP1/ COMP2/ SWPMI1 SAI1 TIM2/TIM15/ TIM16/LPTIM2 EVENTOUT PB0 - - QUADSPI_ BK1_IO1 - COMP1_OUT SAI1_EXTCLK - EVENTOUT PB1 LPUART1_RTS _DE - QUADSPI_ BK1_IO0 - - - LPTIM2_IN1 EVENTOUT PB3 - - - - - SAI1_SCK_B - EVENTOUT PB4 - TSC_G2_IO1 - - - SAI1_MCLK_B - EVENTOUT PB5 - TSC_G2_IO2 - - COMP2_OUT SAI1_SD_B TIM16_BKIN EVENTOUT PB6 - TSC_G2_IO3 - - - SAI1_FS_B TIM16_CH1N EVENTOUT PB7 - TSC_G2_IO4 - - - - - EVENTOUT PC14 - - - - - - - EVENTOUT PC15 - - - - - - - EVENTOUT PH3 - - - - - - - EVENTOUT Port Port B DS11451 Rev 4 Port C Port H Pinouts and pin description 58/156 Table 16. Alternate function AF8 to AF15(1) (continued) 1. Please refer to Table 15 for AF0 to AF7. STM32L432KB STM32L432KC STM32L432KB STM32L432KC 5 Memory mapping Memory mapping Figure 6. STM32L432xx memory map 0xFFFF FFFF 0xBFFF FFFF Reserved Cortex™-M4 with FPU Internal Peripherals 7 0xA000 1400 QUADSPI registers 0xA000 1000 0xE000 0000 0x5FFF FFFF Reserved 6 0x5006 0C00 AHB2 0x4800 0000 Reserved 0xC000 0000 0x4002 4400 QUADSPI registers 5 AHB1 0x4002 0000 0xA000 1000 0x4001 5800 0xA000 0000 APB2 0x4001 0000 QUADSPI Flash bank 4 Reserved Reserved 0x4000 9800 0x9000 0000 APB1 0x4000 0000 0x1FFF FFFF 0x8000 0000 3 Reserved 0x6000 0000 0x1FFF 7810 Options Bytes 2 0x1FFF 7800 Reserved 0x1FFF 7400 Peripherals OTP area 0x4000 0000 0x1FFF 7000 System memory 1 0x2000 C000 0x1FFF 0000 SRAM2 Reserved 0x1000 4000 SRAM1 SRAM2 0x2000 0000 0x1000 0000 Reserved 0 0x0804 0000 CODE Flash memory 0x0800 0000 0x0000 0000 0x0004 0000 0x0000 0000 Reserved Reserved Flash, system memory or SRAM, depending on BOOT configuration MSv36892V2 DS11451 Rev 4 59/156 62 Memory mapping STM32L432KB STM32L432KC Table 17. STM32L432xx memory map and peripheral register boundary addresses(1) Bus AHB2 - AHB1 APB2 60/156 Boundary address Size(bytes) Peripheral 0x5006 0800 - 0x5006 0BFF 1 KB 0x5004 0400 - 0x5006 07FF 158 KB 0x5004 0000 - 0x5004 03FF 1 KB ADC 0x5000 0000 - 0x5003 FFFF 16 KB Reserved 0x4800 2000 - 0x4FFF FFFF ~127 MB Reserved 0x4800 1C00 - 0x4800 1FFF 1 KB GPIOH 0x4800 0C00 - 0x4800 1BFF 4 KB Reserved 0x4800 0800 - 0x4800 0BFF 1 KB GPIOC 0x4800 0400 - 0x4800 07FF 1 KB GPIOB 0x4800 0000 - 0x4800 03FF 1 KB GPIOA 0x4002 4400 - 0x47FF FFFF ~127 MB 0x4002 4000 - 0x4002 43FF 1 KB TSC 0x4002 3400 - 0x4002 3FFF 1 KB Reserved 0x4002 3000 - 0x4002 33FF 1 KB CRC 0x4002 2400 - 0x4002 2FFF 3 KB Reserved 0x4002 2000 - 0x4002 23FF 1 KB FLASH registers 0x4002 1400 - 0x4002 1FFF 3 KB Reserved 0x4002 1000 - 0x4002 13FF 1 KB RCC 0x4002 0800 - 0x4002 0FFF 2 KB Reserved 0x4002 0400 - 0x4002 07FF 1 KB DMA2 0x4002 0000 - 0x4002 03FF 1 KB DMA1 0x4001 5800 - 0x4001 FFFF 42 KB Reserved 0x4001 5400 - 0x4000 57FF 1 KB SAI1 0x4001 4800 - 0x4000 53FF 3 KB Reserved 0x4001 4400 - 0x4001 47FF 1 KB TIM16 0x4001 4000 - 0x4001 43FF 1 KB TIM15 0x4001 3C00 - 0x4001 3FFF 1 KB Reserved 0x4001 3800 - 0x4001 3BFF 1 KB USART1 0x4001 3400 - 0x4001 37FF 1 KB Reserved 0x4001 3000 - 0x4001 33FF 1 KB SPI1 0x4001 2C00 - 0x4001 2FFF 1 KB TIM1 0x4001 2000 - 0x4001 2BFF 3 KB Reserved DS11451 Rev 4 RNG Reserved Reserved STM32L432KB STM32L432KC Memory mapping Table 17. STM32L432xx memory map and peripheral register boundary addresses(1) (continued) Bus APB2 Boundary address Size(bytes) 0x4001 1C00 - 0x4001 1FFF 1 KB FIREWALL 0x4001 0800- 0x4001 1BFF 5 KB Reserved 0x4001 0400 - 0x4001 07FF 1 KB EXTI 0x4001 0200 - 0x4001 03FF 0x4001 0030 - 0x4001 01FF COMP 1 KB 0x4001 0000 - 0x4001 002F APB1 Peripheral Reserved SYSCFG 0x4000 9800 - 0x4000 FFFF 26 KB Reserved 0x4000 9400 - 0x4000 97FF 1 KB LPTIM2 0x4000 8C00 - 0x4000 93FF 2 KB Reserved 0x4000 8800 - 0x4000 8BFF 1 KB SWPMI1 0x4000 8400 - 0x4000 87FF 1 KB Reserved 0x4000 8000 - 0x4000 83FF 1 KB LPUART1 0x4000 7C00 - 0x4000 7FFF 1 KB LPTIM1 0x4000 7800 - 0x4000 7BFF 1 KB OPAMP 0x4000 7400 - 0x4000 77FF 1 KB DAC1 0x4000 7000 - 0x4000 73FF 1 KB PWR 0x4000 6C00 - 0x4000 6FFF 1 KB USB SRAM 0x4000 6800 - 0x4000 6BFF 1 KB USB FS 0x4000 6400 - 0x4000 67FF 1 KB CAN1 0x4000 6000 - 0x4000 63FF 1 KB CRS 0x4000 5C00- 0x4000 5FFF 1 KB I2C3 0x4000 5800 - 0x4000 5BFF 1 KB Reserved 0x4000 5400 - 0x4000 57FF 1 KB I2C1 0x4000 4800 - 0x4000 53FF 3 KB Reserved 0x4000 4400 - 0x4000 47FF 1 KB USART2 0x4000 4000 - 0x4000 43FF 1 KB Reserved 0x4000 3C00 - 0x4000 3FFF 1 KB SPI3 0x4000 3400 - 0x4000 3BFF 2 KB Reserved 0x4000 3000 - 0x4000 33FF 1 KB IWDG 0x4000 2C00 - 0x4000 2FFF 1 KB WWDG 0x4000 2800 - 0x4000 2BFF 1 KB RTC 0x4000 1800 - 0x4000 27FF 4 KB Reserved 0x4000 1400 - 0x4000 17FF 1 KB TIM7 DS11451 Rev 4 61/156 62 Memory mapping STM32L432KB STM32L432KC Table 17. STM32L432xx memory map and peripheral register boundary addresses(1) (continued) Bus APB1 Boundary address Peripheral 0x4000 1000 - 0x4000 13FF 1 KB TIM6 0x4000 0400- 0x4000 0FFF 3 KB Reserved 0x4000 0000 - 0x4000 03FF 1 KB TIM2 1. The gray color is used for reserved boundary addresses. 62/156 Size(bytes) DS11451 Rev 4 STM32L432KB STM32L432KC Electrical characteristics 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean ±2σ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 7. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 8. Figure 7. Pin loading conditions Figure 8. Pin input voltage MCU pin MCU pin C = 50 pF VIN MS19210V1 DS11451 Rev 4 MS19211V1 63/156 148 Electrical characteristics 6.1.6 STM32L432KB STM32L432KC Power supply scheme Figure 9. Power supply scheme Backup circuitry (LSE, RTC, Backup registers) 1.55 – 3.6 V VDD VCORE n x VDD Regulator OUT n x 100 nF GPIOs IN +1 x 4.7 μF Level shifter VDDIO1 IO logic Kernel logic (CPU, Digital & Memories) n x VSS VDDA VDDA VREF 10 nF +1 μF VREF+ VREF- 100 nF +1 μF ADCs/ DACs/ OPAMPs/ COMPs VSSA MSv40915V2 Caution: 64/156 Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. DS11451 Rev 4 STM32L432KB STM32L432KC 6.1.7 Electrical characteristics Current consumption measurement Figure 10. Current consumption measurement scheme IDD_USB VDDUSB IDD VDD IDDA VDDA MSv41630V1 The IDD_ALL parameters given in Table 25 to Table 37 represent the total MCU consumption including the current supplying VDD, VDDA, VDDUSB and VBAT. 6.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 18: Voltage characteristics, Table 19: Current characteristics and Table 20: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 qualification standard, extended mission profiles are available on demand. Table 18. Voltage characteristics(1) Symbol VDDX - VSS VIN(2) |∆VDDx| |VSSx-VSS| Ratings Min Max Unit -0.3 4.0 V Input voltage on FT_xxx pins VSS-0.3 min (VDD, VDDA, VDDUSB) + 4.0(3)(4) Input voltage on TT_xx pins VSS-0.3 4.0 Input voltage on any other pins VSS-0.3 4.0 Variations between different VDDX power pins of the same domain - 50 mV Variations between all the different ground pins(5) - 50 mV External main supply voltage (including VDD, VDDA, VDDUSB) DS11451 Rev 4 V 65/156 148 Electrical characteristics STM32L432KB STM32L432KC 1. All main power (VDD, VDDA, VDDUSB,) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 19: Current characteristics for the maximum allowed injected current values. 3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table. 4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled. 5. Include VREF- pin. Table 19. Current characteristics Symbol Ratings Max ∑IVDD Total current into sum of all VDD power lines (source)(1) 140 ∑IVSS (sink)(1) 140 Total current out of sum of all VSS ground lines IVDD(PIN) Maximum current into each VDD power pin (source)(1) 100 IVSS(PIN) Maximum current out of each VSS ground pin (sink)(1) 100 Output current sunk by any I/O and control pin except FT_f 20 Output current sunk by any FT_f pin 20 Output current sourced by any I/O and control pin 20 IIO(PIN) ∑IIO(PIN) IINJ(PIN)(3) ∑|IINJ(PIN)| Total output current sunk by sum of all I/Os and control pins(2) Unit mA 100 (2) Total output current sourced by sum of all I/Os and control pins 100 Injected current on FT_xxx, TT_xx, RST and B pins, except PA4, PA5 -5/+0(4) Injected current on PA4, PA5 -5/0 Total injected current (sum of all I/Os and control pins)(5) 25 1. All main power (VDD, VDDA, VDDUSB) and ground (VSS, VSSA) pins must always be connected to the external power supplies, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages. 3. Positive injection (when VIN > VDDIOx) is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 4. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 18: Voltage characteristics for the maximum allowed input voltage values. 5. When several inputs are submitted to a current injection, the maximum ∑|IINJ(PIN)| is the absolute sum of the negative injected currents (instantaneous values). Table 20. Thermal characteristics Symbol TSTG TJ 66/156 Ratings Storage temperature range Maximum junction temperature DS11451 Rev 4 Value Unit –65 to +150 °C 150 °C STM32L432KB STM32L432KC Electrical characteristics 6.3 Operating conditions 6.3.1 General operating conditions Table 21. General operating conditions Symbol Parameter Conditions Min Max fHCLK Internal AHB clock frequency - 0 80 fPCLK1 Internal APB1 clock frequency - 0 80 fPCLK2 Internal APB2 clock frequency - 0 80 Standard operating voltage - VDD VDDA Analog supply voltage 1.71 (1) ADC or COMP used 1.62 DAC or OPAMP used 1.8 ADC, DAC, OPAMP, COMP not used VDDUSB USB supply voltage USB used Unit MHz 3.6 V 3.6 V 0 3.0 3.6 0 3.6 TT_xx I/O -0.3 VDDIOx+0.3 All I/O except TT_xx -0.3 Min(Min(VDD, VDDA, VDDUSB)+3.6 V, 5.5 V)(2)(3) V USB not used V VIN I/O input voltage PD Power dissipation at TA = 125 °C for suffix 3(4) UFQFPN32 - 128 mW PD Power dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for suffix 7(4) UFQFPN32 - 523 mW –40 85 –40 105 –40 105 –40 125 –40 125 –40 130 Suffix 6 version –40 105 Suffix 7 version –40 125 Suffix 3 version –40 130 TA TJ Ambient temperature for the suffix 6 version Maximum power dissipation Ambient temperature for the suffix 7 version Maximum power dissipation Ambient temperature for the suffix 3 version Maximum power dissipation Junction temperature range Low-power dissipation Low-power dissipation Low-power dissipation (5) (5) (5) °C °C 1. When RESET is released functionality is guaranteed down to VBOR0 Min. 2. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table. Maximum I/O input voltage is the smallest value between Min(VDD, VDDA, VDDUSB)+3.6 V and 5.5V. 3. For operation with voltage higher than Min (VDD, VDDA, VDDUSB) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled. 4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.2: Thermal characteristics). DS11451 Rev 4 67/156 148 Electrical characteristics STM32L432KB STM32L432KC 5. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.2: Thermal characteristics). 6.3.2 Operating conditions at power-up / power-down The parameters given in Table 22 are derived from tests performed under the ambient temperature condition summarized in Table 21. Table 22. Operating conditions at power-up / power-down Symbol Parameter Conditions VDD rise time rate tVDD VDDA rise time rate 0 ∞ 10 ∞ 0 ∞ 10 ∞ 0 ∞ 10 ∞ - VDDA fall time rate VDDUSB rise time rate tVDDUSB Max - VDD fall time rate tVDDA Min - VDDUSB fall time rate Unit µs/V The requirements for power-up/down sequence specified in Section 3.9.1: Power supply schemes must be respected. 6.3.3 Embedded reset and power control block characteristics The parameters given in Table 23 are derived from tests performed under the ambient temperature conditions summarized in Table 21: General operating conditions. Table 23. Embedded reset and power control block characteristics Symbol tRSTTEMPO(2) 68/156 Parameter Reset temporization after BOR0 is detected VBOR0(2) Brown-out reset threshold 0 VBOR1 Brown-out reset threshold 1 VBOR2 Brown-out reset threshold 2 VBOR3 Brown-out reset threshold 3 VBOR4 Brown-out reset threshold 4 VPVD0 Programmable voltage detector threshold 0 Conditions(1) Min Typ Max Unit - 250 400 μs Rising edge 1.62 1.66 1.7 Falling edge 1.6 1.64 1.69 Rising edge 2.06 2.1 2.14 Falling edge 1.96 2 2.04 Rising edge 2.26 2.31 2.35 Falling edge 2.16 2.20 2.24 Rising edge 2.56 2.61 2.66 Falling edge 2.47 2.52 2.57 Rising edge 2.85 2.90 2.95 Falling edge 2.76 2.81 2.86 Rising edge 2.1 2.15 2.19 Falling edge 2 2.05 2.1 VDD rising DS11451 Rev 4 V V V V V V STM32L432KB STM32L432KC Electrical characteristics Table 23. Embedded reset and power control block characteristics (continued) Conditions(1) Min Typ Max Rising edge 2.26 2.31 2.36 Falling edge 2.15 2.20 2.25 Rising edge 2.41 2.46 2.51 Falling edge 2.31 2.36 2.41 Rising edge 2.56 2.61 2.66 Falling edge 2.47 2.52 2.57 Rising edge 2.69 2.74 2.79 Falling edge 2.59 2.64 2.69 Rising edge 2.85 2.91 2.96 Falling edge 2.75 2.81 2.86 Rising edge 2.92 2.98 3.04 Falling edge 2.84 2.90 2.96 Hysteresis in continuous Hysteresis voltage of BORH0 mode - 20 - Hysteresis in other mode - 30 - Symbol Parameter VPVD1 PVD threshold 1 VPVD2 PVD threshold 2 VPVD3 PVD threshold 3 VPVD4 PVD threshold 4 VPVD5 PVD threshold 5 VPVD6 PVD threshold 6 Vhyst_BORH0 Unit V V V V V V mV Hysteresis voltage of BORH (except BORH0) and PVD - - 100 - mV BOR(3) (except BOR0) and IDD (2) (BOR_PVD) PVD consumption from VDD - - 1.1 1.6 µA - 1.18 1.22 1.26 V Vhyst_BOR_PVD VPVM1 VDDUSB peripheral voltage monitoring VPVM3 VDDA peripheral voltage monitoring Rising edge 1.61 1.65 1.69 Falling edge 1.6 1.64 1.68 VPVM4 VDDA peripheral voltage monitoring Rising edge 1.78 1.82 1.86 Falling edge 1.77 1.81 1.85 V V Vhyst_PVM3 PVM3 hysteresis - - 10 - mV Vhyst_PVM4 PVM4 hysteresis - - 10 - mV PVM1 consumption from VDD - - 0.2 - µA - - 2 - µA IDD (PVM1) (2) IDD PVM3 and PVM4 (PVM3/PVM4) consumption from VDD (2) 1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes. 2. Guaranteed by design. 3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply current characteristics tables. DS11451 Rev 4 69/156 148 Electrical characteristics 6.3.4 STM32L432KB STM32L432KC Embedded voltage reference The parameters given in Table 24 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. Table 24. Embedded internal voltage reference Symbol VREFINT Parameter Internal reference voltage Conditions –40 °C < TA < +130 °C Min Typ Max Unit 1.182 1.212 1.232 V tS_vrefint (1) ADC sampling time when reading the internal reference voltage - 4(2) - - µs tstart_vrefint Start time of reference voltage buffer when ADC is enable - - 8 12(2) µs - - 12.5 20(2) µA VREFINT buffer consumption from VDD when converted by IDD(VREFINTBUF) ADC ∆VREFINT TCoeff Internal reference voltage spread over the temperature range VDD = 3 V - 5 7.5(2) mV Temperature coefficient –40°C < TA < +130°C - 30 50(2) ppm/°C ppm ppm/V ACoeff Long term stability 1000 hours, T = 25°C - 300 1000(2) VDDCoeff Voltage coefficient 3.0 V < VDD < 3.6 V - 250 1200(2) 24 25 26 49 50 51 74 75 76 VREFINT_DIV1 1/4 reference voltage VREFINT_DIV2 1/2 reference voltage VREFINT_DIV3 3/4 reference voltage - 1. The shortest sampling time can be determined in the application by multiple iterations. 2. Guaranteed by design. 70/156 DS11451 Rev 4 % VREFINT STM32L432KB STM32L432KC Electrical characteristics Figure 11. VREFINT versus temperature V 1.235 1.23 1.225 1.22 1.215 1.21 1.205 1.2 1.195 1.19 1.185 -40 -20 0 20 40 Mean 60 Min 80 100 120 °C Max MSv40169V1 DS11451 Rev 4 71/156 148 Electrical characteristics 6.3.5 STM32L432KB STM32L432KC Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 10: Current consumption measurement scheme. Typical and maximum current consumption The MCU is placed under the following conditions: • All I/O pins are in analog input mode • All peripherals are disabled except when explicitly mentioned • The Flash memory access time is adjusted with the minimum wait states number, depending on the fHCLK frequency (refer to the table “Number of wait states according to CPU clock (HCLK) frequency” available in the RM0394 reference manual). • When the peripherals are enabled fPCLK = fHCLK The parameters given in Table 25 to Table 37 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. 72/156 DS11451 Rev 4 running from Flash, ART enable (Cache ON Prefetch OFF) Conditions Symbol Parameter - Voltage scaling DS11451 Rev 4 85 °C 2.7 2.7 2.8 2.9 3.2 1.79 1.7 1.7 1.8 2.0 2.3 0.94 1.08 0.9 0.9 1.0 1.2 1.5 0.52 0.59 0.73 0.5 0.6 0.6 0.8 1.1 0.3 0.34 0.41 0.55 0.3 0.4 0.4 0.6 0.9 0.2 0.21 0.25 0.32 0.46 0.2 0.3 0.3 0.5 0.8 100 kHz 0.12 0.13 0.17 0.24 0.38 0.1 0.2 0.2 0.4 0.7 80 MHz 8.53 8.56 8.64 8.74 8.92 9.5 9.6 9.7 9.9 10.3 72 MHz 7.7 7.73 7.8 7.9 8.08 8.6 8.6 8.7 8.9 9.3 64 MHz 6.86 6.9 6.97 7.06 7.23 7.7 7.7 7.8 8.0 8.3 Range 1 48 MHz 5.13 5.16 5.23 5.32 5.49 5.8 5.8 6.0 6.1 6.5 32 MHz 3.46 3.48 3.55 3.64 3.8 3.9 4.0 4.1 4.2 4.6 24 MHz 2.63 2.64 2.71 2.79 2.96 3.0 3.0 3.1 3.3 3.6 16 MHz 1.8 1.81 1.87 1.96 2.12 2.0 2.1 2.2 2.3 2.7 2 MHz 211 230 280 355 506 273.8 301.1 360.4 502.7 815.9 1 MHz 117 134 179 254 404 154.7 184.6 249.6 398.4 712.4 400 kHz 58.5 70.4 116 189 338 80.2 111.5 179.7 330.8 643.4 100 kHz 30 41.1 85.2 159 308 46.5 76.6 147.1 299.1 611.2 fHCLK = fHSE up to 48MHz included, Supply bypass mode current in PLL ON above Run mode 48 MHz all peripherals disable Supply current in fHCLK = fMSI Low-power all peripherals disable run mode 25 °C 55 °C 85 °C 26 MHz 2.37 2.38 2.44 2.52 2.66 16 MHz 1.5 1.52 1.57 1.64 8 MHz 0.81 0.82 0.87 4 MHz 0.46 0.47 2 MHz 0.29 1 MHz fHCLK 1. Guaranteed by characterization results, unless otherwise specified. 105 °C 125 °C 25 °C 105 °C 125 °C mA µA 73/156 Electrical characteristics IDD_ALL (LPRun) Unit 55 °C Range 2 IDD_ALL (Run) MAX(1) TYP STM32L432KB STM32L432KC Table 25. Current consumption in Run and Low-power run modes, code with data processing running from Flash, ART disable Conditions Symbol Parameter - Voltage scaling Range 2 IDD_ALL (Run) DS11451 Rev 4 Unit 25 °C 55 °C 85 °C 26 MHz 2.66 2.68 2.73 2.81 2.96 16 MHz 1.88 1.9 1.94 2.02 8 MHz 1.05 1.06 1.11 1.18 4 MHz 0.6 0.62 0.66 fHCLK 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C 3.0 3.1 3.2 3.3 3.6 2.17 2.1 2.2 2.3 2.4 2.7 1.33 1.2 1.2 1.3 1.4 1.7 0.73 0.87 0.7 0.7 0.8 0.9 1.2 2 MHz 0.36 0.37 0.34 0.48 0.62 0.4 0.4 0.5 0.6 0.9 1 MHz 0.23 0.25 0.25 0.36 0.5 0.3 0.3 0.4 0.5 0.8 100 kHz 0.12 0.14 0.17 0.25 0.39 0.1 0.2 0.2 0.4 0.7 80 MHz 8.56 8.61 8.69 8.79 8.97 9.6 9.7 9.8 10.0 10.3 72 MHz 7.74 7.79 7.86 7.96 8.14 8.7 8.7 8.8 9.0 9.4 64 MHz 7.63 7.68 7.75 7.85 8.04 8.6 8.6 8.7 8.9 9.3 Range 1 48 MHz 6.36 6.4 6.48 6.58 6.76 7.2 7.3 7.4 7.6 7.9 32 MHz 4.56 4.6 4.66 4.76 4.93 5.2 5.2 5.3 5.5 5.8 24 MHz 3.45 3.48 3.54 3.64 3.8 3.9 4.0 4.1 4.2 4.6 16 MHz 2.48 2.51 2.56 2.65 2.82 2.8 2.9 3.0 3.1 3.5 2 MHz 310 317 364 440 593 375.3 400.9 456.7 595.3 909.6 1 MHz 157 173 226 296 448 204.8 234.2 298.2 445.8 758.9 400 kHz 72.6 89 130 206 356 99.7 131.2 199.7 349.3 663.7 100 kHz 32.3 46 89.7 164 314 52.4 82.1 153.3 301.2 616.9 Supply current in fHCLK = fMSI Low-power all peripherals disable run 1. Guaranteed by characterization results, unless otherwise specified. mA µA STM32L432KB STM32L432KC IDD_ALL (LPRun) fHCLK = fHSE up to 48MHz included, Supply bypass mode current in PLL ON above Run mode 48 MHz all peripherals disable MAX(1) TYP Electrical characteristics 74/156 Table 26. Current consumption in Run and Low-power run modes, code with data processing Conditions Symbol Parameter - Voltage scaling Range 2 IDD_ALL (Run) Supply current in Run mode DS11451 Rev 4 fHCLK = fHSE up to 48MHz included, bypass mode PLL ON above 48 MHz all peripherals disable Range 1 IDD_ALL (LPRun) Supply current in low-power run mode fHCLK = fMSI all peripherals disable FLASH in power-down MAX(1) TYP fHCLK 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 26 MHz 2.42 2.43 2.49 16 MHz 1.54 1.55 1.6 2.56 2.71 2.7 1.67 1.82 1.7 85 °C 105 °C 2.7 2.8 3.0 3.3 1.7 1.8 2.0 2.3 55 °C 125 °C 8 MHz 0.82 0.84 0.88 0.95 1.1 0.9 1.0 1.0 1.2 1.5 4 MHz 0.47 0.48 0.52 0.59 0.73 0.5 0.6 0.6 0.8 1.1 2 MHz 0.29 0.3 0.34 0.41 0.55 0.3 0.4 0.4 0.6 0.9 1 MHz 0.2 0.21 0.25 0.32 0.46 0.2 0.3 0.3 0.5 0.8 100 kHz 0.12 0.13 0.17 0.24 0.38 0.1 0.2 0.2 0.4 0.7 80 MHz 8.63 8.68 8.74 8.84 9.01 9.5 9.6 9.7 9.9 10.2 72 MHz 7.79 7.83 7.9 7.99 8.17 8.6 8.6 8.8 8.9 9.3 64 MHz 6.95 6.99 7.05 7.15 7.32 7.7 7.7 7.9 8.0 8.4 48 MHz 5.19 5.22 5.29 5.38 5.55 5.8 5.8 5.9 6.1 6.5 32 MHz 3.51 3.53 3.6 3.68 3.85 3.9 4.0 4.1 4.2 4.6 24 MHz 2.66 2.68 2.74 2.83 2.99 3.0 3.0 3.1 3.3 3.6 16 MHz 1.82 1.84 1.89 1.98 2.14 2.0 2.1 2.2 2.3 2.7 2 MHz 205 228 275 352 501 276.5 302.3 358.4 502.5 816.4 1 MHz 111 126 175 248 397 151.3 180.9 245.3 390.7 703.4 400 kHz 49.2 62.7 108 181 330 73.3 104.0 170.8 321.0 632.4 100 kHz 21.5 33.3 76.6 151 299 36.4 67.7 137.2 287.8 600.8 mA µA 75/156 Electrical characteristics 1. Guaranteed by characterization results, unless otherwise specified. Unit STM32L432KB STM32L432KC Table 27. Current consumption in Run and Low-power run modes, code with data processing running from SRAM1 Electrical characteristics STM32L432KB STM32L432KC Table 28. Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ART enable (Cache ON Prefetch OFF) Conditions - IDD_ALL (Run) Supply current in Run mode fHCLK = fHSE up to 48 MHz included, bypass mode PLL ON above 48 MHz all peripherals disable Voltage scaling Range 2 fHCLK = 26 MHz Parameter Supply current in fHCLK = fMSI = 2 MHz Low-power all peripherals disable run 25 °C Reduced code(1) 2.37 91 Coremark 2.69 103 Dhrystone 2.1 2.74 Fibonacci 2.58 99 2.30 88 Reduced code 8.53 107 Coremark 9.68 121 Dhrystone 2.1 9.76 Fibonacci 9.27 116 8.20 103 Reduced code 211 106 Coremark 251 126 Dhrystone 2.1 269 Fibonacci 230 115 While(1) 286 143 While(1) While(1) 1. Reduced code used for characterization results provided in Table 25, Table 26, Table 27. 76/156 Unit 25 °C (1) IDD_ALL (LPRun) TYP Unit Code (1) Range 1 fHCLK = 80 MHz Symbol TYP DS11451 Rev 4 mA mA µA 105 122 135 µA/MHz µA/MHz µA/MHz STM32L432KB STM32L432KC Electrical characteristics Table 29. Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ART disable Conditions Parameter - IDD_ALL (Run) IDD_ALL (LPRun) Supply current in Run mode fHCLK = fHSE up to 48 MHz included, bypass mode PLL ON above 48 MHz all peripherals disable Supply current in fHCLK = fMSI = 2 MHz Low-power all peripherals disable run TYP Unit Voltage scaling Range 1 Range 2 fHCLK = 80 MHz fHCLK = 26 MHz Symbol TYP Code Unit 25 °C 25 °C Reduced code(1) 2.66 102 Coremark 2.44 94 Dhrystone 2.1 2.46 Fibonacci 2.27 87 While(1) 2.20 84.6 Reduced code(1) 8.56 107 Coremark 8.00 mA 95 µA/MHz 100 mA Dhrystone 2.1 7.98 100 Fibonacci 7.41 While(1) 7.83 98 Reduced code(1) 310 155 µA/MHz 93 Coremark 342 Dhrystone 2.1 324 171 Fibonacci 324 162 While(1) 384 192 µA 162 µA/MHz 1. Reduced code used for characterization results provided in Table 25, Table 26, Table 27. Table 30. Typical current consumption in Run and Low-power run modes, with different codes running from SRAM1 Conditions Parameter - IDD_ALL (Run) IDD_ALL (LPRun) fHCLK = fHSE up to 48 MHz included, bypass mode Supply current in PLL ON above Run mode 48 MHz all peripherals disable Voltage scaling Range 1 Range 2 fHCLK = 80 MHz fHCLK = 26 MHz Symbol Supply current in fHCLK = fMSI = 2 MHz Low-power all peripherals disable run TYP TYP Unit Code Unit 25 °C 25 °C Reduced code(1) 2.42 93 Coremark 2.18 Dhrystone 2.1 2.40 84 mA 92 Fibonacci 2.40 92 While(1) 2.29 88 Reduced code(1) 8.63 108 Coremark 7.76 µA/MHz 97 mA Dhrystone 2.1 8.55 107 Fibonacci 8.56 107 While(1) 8.12 102 Reduced code(1) 205 103 Coremark 188 µA/MHz 94 µA Dhrystone 2.1 222 111 Fibonacci 204 102 While(1) 211 106 µA/MHz 1. Reduced code used for characterization results provided in Table 25, Table 26, Table 27. DS11451 Rev 4 77/156 148 Conditions Symbol Parameter - Voltage scaling Unit fHCLK 26 MHz IDD_ALL (Sleep) DS11451 Rev 4 IDD_ALL (LPSleep) 25 °C 55 °C 85 °C 0.68 0.74 0.69 105 °C 125 °C 25 °C 0.81 0.95 0.8 55 °C 85 °C 0.8 0.9 105 °C 125 °C 1.0 1.3 0.46 0.48 0.52 0.59 0.73 0.5 0.6 0.6 0.8 1.1 8 MHz 0.29 0.30 0.34 0.41 0.55 0.3 0.4 0.4 0.6 0.9 4 MHz 0.20 0.21 0.25 0.32 0.46 0.2 0.3 0.3 0.5 0.8 2 MHz 0.16 0.17 0.21 0.28 0.42 0.2 0.2 0.3 0.4 0.7 1 MHz 0.13 0.15 0.19 0.26 0.40 0.1 0.2 0.3 0.4 0.7 100 kHz 0.11 0.13 0.17 0.24 0.38 0.1 0.2 0.2 0.4 0.7 80 MHz 2.23 2.25 2.30 2.38 2.54 2.5 2.5 2.6 2.8 3.1 72 MHz 2.02 2.04 2.10 2.18 2.34 2.2 2.3 2.4 2.5 2.9 64 MHz 1.82 1.84 1.89 1.98 2.14 2.0 2.1 2.1 2.3 2.6 Range 1 48 MHz 1.34 1.36 1.42 1.50 1.66 1.5 1.6 1.7 1.8 2.2 32 MHz 0.93 0.95 1.01 1.09 1.25 1.1 1.1 1.2 1.4 1.7 24 MHz 0.73 0.75 0.80 0.88 1.04 0.8 0.9 1.0 1.1 1.4 16 MHz 0.53 0.55 0.60 0.68 0.84 0.6 0.6 0.7 0.9 1.2 2 MHz 71.8 80.7 125 200 350 91.1 122.7 191.3 341.5 653.5 1 MHz 45.0 57.3 101 176 325 63.2 95.4 165.4 316.5 628.7 400 kHz 27.0 40.7 84.6 158 308 43.9 75.8 147.2 297.6 609.2 100 kHz 22.8 30.9 63.3 113.2 207.7 35.2 67.9 140.9 290.8 602.4 fHCLK = fHSE up to 48 MHz included, bypass mode pll ON above 48 MHz all peripherals disable Supply current in =f f low-power HCLK MSI all peripherals disable sleep mode 1. Guaranteed by characterization results, unless otherwise specified. mA µA STM32L432KB STM32L432KC 16 MHz Range 2 Supply current in sleep mode, MAX(1) TYP Electrical characteristics 78/156 Table 31. Current consumption in Sleep and Low-power sleep modes, Flash ON Conditions Symbol Parameter Voltage scaling - IDD_ALL (LPSleep) Supply current in low-power sleep mode fHCLK = fMSI all peripherals disable MAX(1) TYP Unit fHCLK 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 2 MHz 58.7 70.7 103.2 153.7 248.5 105 °C 125 °C 80 113 180 330 641 1 MHz 39.4 47.2 79.3 129.6 224.8 53 86 154 304 616 400 kHz 20.8 30.8 62.1 112.5 207.8 35 67 137 286 597 100 kHz 14.3 23.1 55.1 105.7 201.5 27 58 130 279 590 µA 1. Guaranteed by characterization results, unless otherwise specified. STM32L432KB STM32L432KC Table 32. Current consumption in Low-power sleep modes, Flash in power-down Table 33. Current consumption in Stop 2 mode DS11451 Rev 4 Symbol Parameter IDD_ALL (Stop 2) Supply current in Stop 2 mode, RTC disabled Conditions - - RTC clocked by LSI Supply current in RTC clocked by LSE Stop 2 mode, bypassed at 32768 Hz RTC enabled RTC clocked by LSE quartz(2) in low drive mode VDD 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C 1.8 V 1 2.54 8.74 19.8 43.4 2.0 5.6 21.1 50.8 116.0 2.4 V 1.02 2.59 8.89 20.2 44.3 2.1 5.8 21.6 52.3 119.6 3V 1.06 2.67 9.11 20.7 45.5 2.1 5.9 22.2 53.7 123.2 3.6 V 1.23 2.88 9.56 21.6 47.3 2.3 6.1 23.0 55.8 127.9 1.8 V 1.3 2.82 9.02 20.1 43.6 2.5 6.2 21.6 51.3 116.3 2.4 V 1.39 2.95 9.24 20.5 44.6 2.8 6.4 22.3 52.8 120.0 3V 1.5 3.11 9.55 21.1 45.8 3.0 6.8 23.0 54.5 123.8 3.6 V 1.76 3.42 10.1 22.1 47.8 3.3 7.2 24.1 56.7 128.7 1.8 V 1.36 2.9 9.1 20.1 43.7 - - - - - 2.4 V 1.48 3.09 9.44 20.8 45 - - - - - 3V 1.83 3.67 10.4 22.3 47.3 - - - - - 3.6 V 3.58 6.17 13.9 26.6 53 - - - - - 1.8 V 1.28 2.81 9.13 20.8 - - - - - - 2.4 V 1.39 2.93 9.34 21.3 - - - - - - 3V 1.59 3.1 9.64 21.8 - - - - - - 3.6 V 1.86 3.45 10.2 22.8 - - - - - - Unit µA µA 79/156 Electrical characteristics IDD_ALL (Stop 2 with RTC) MAX(1) TYP Symbol Parameter Supply current IDD_ALL during wakeup (wakeup from from Stop 2 Stop2) mode Conditions - MAX(1) TYP VDD 25 °C 55 °C Wakeup clock is MSI = 48 MHz, voltage Range 1. See (3). 3V 1.85 - - - - Wakeup clock is MSI = 4 MHz, voltage Range 2. See (3). 3V 1.52 - - - Wakeup clock is HSI16 = 16 MHz, voltage Range 1. See (3). 3V 1.54 - - - 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C - - - - - - - - - - - - - - - - - Unit mA Electrical characteristics 80/156 Table 33. Current consumption in Stop 2 mode (continued) DS11451 Rev 4 1. Guaranteed based on test during characterization, unless otherwise specified. 2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors. 3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 39: Low-power mode wakeup timings. STM32L432KB STM32L432KC Symbol Parameter IDD_ALL (Stop 1) Supply current in Stop 1 mode, RTC disabled Conditions - - RTC clocked by LSI DS11451 Rev 4 Supply IDD_ALL current in stop RTC clocked by LSE (Stop 1 with 1 mode, bypassed, at 32768 Hz RTC) RTC enabled RTC clocked by LSE quartz(2) in low drive mode Wakeup clock MSI = 48 MHz, voltage Range 1. See (3). VDD 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C 1.8 V 4.34 12.4 43.6 96.4 204 9.3 27.4 98.9 198.7 397.5 2.4 V 4.35 12.5 43.8 97 205 9.4 27.6 99.5 199.0 398.0 3V 4.41 12.6 44.1 97.7 207 9.5 27.8 100.3 200.4 400.8 3.6 V 4.56 12.9 44.8 98.9 210 9.7 28.3 101.7 202.1 404.2 1.8 V 4.63 12.7 43.9 96.8 205 9.9 28.0 99.5 198.9 397.8 2.4 V 4.78 12.8 44.2 97.4 206 10.1 28.3 100.3 199.5 399.0 3V 4.93 13 44.6 98.1 207 10.4 28.7 101.2 200.9 401.9 3.6 V 5.05 13.4 45.3 99.5 210 10.8 29.4 102.8 202.5 405.0 1.8 V 4.7 12.8 44 96.9 205 - - - - - 2.4 V 4.95 13 44.4 97.6 206 - - - - - 3V 5.33 13.6 45.4 99.1 209 - - - - - 3.6 V 6.91 16.1 48.8 103 216 - - - - - 1.8 V 4.76 12.3 43.7 99.1 - - - - - - 2.4 V 4.95 12.4 43.8 99.3 - - - - - - 3V 5.1 12.6 44.1 99.6 - - - - - - 3.6 V 5.65 13 44.8 101 - - - - - - 3V 1.14 - - - - - - - - - 3V 1.22 - - - - - - - - - 3V 1.20 - - - - - - - - - 1. Guaranteed based on test during characterization, unless otherwise specified. 2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors. 3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 39: Low-power mode wakeup timings. Unit µA µA mA 81/156 Electrical characteristics Supply Wakeup clock MSI = 4 MHz, IDD_ALL current during voltage Range 2. (wakeup wakeup from from Stop1) See (3). Stop 1 Wakeup clock HSI16 = 16 MHz, voltage Range 1. See (3). MAX(1) TYP STM32L432KB STM32L432KC Table 34. Current consumption in Stop 1 mode Symbol Parameter IDD_ALL (Stop 0) Supply current in Stop 0 mode, RTC disabled Conditions VDD MAX(1) TYP 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C 1.8 V 108 119 158 221 347 133 158 244 395 704 2.4 V 110 121 160 223 349 136 161 248 399 710 3V 111 123 161 224 352 139 164 251 403 716 3.6 V 114 125 163 227 355 142 167 254 408 722(2) 1. Guaranteed by characterization results, unless otherwise specified. Unit µA Electrical characteristics 82/156 Table 35. Current consumption in Stop 0 2. Guaranteed by test in production. DS11451 Rev 4 STM32L432KB STM32L432KC Symbol IDD_ALL (Standby) Parameter Supply current in Standby mode (backup registers retained), RTC disabled Conditions - no independent watchdog with independent watchdog DS11451 Rev 4 RTC clocked by LSI, no independent watchdog IDD_ALL (Standby with RTC) Supply current in Standby mode (backup registers retained), RTC enabled RTC clocked by LSI, with independent watchdog RTC clocked by LSE bypassed at 32768Hz MAX(1) TYP VDD 25 °C 55 °C 1.8 V 27.7 144 758 2 072 5 425 2.4 V 50.9 187 892 2 408 3V 90.2 253 1 090 3.6 V 253 459 1.8 V 216 - 2.4 V 342 3V 416 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C 119 425 2866 7524 20510 6 247 183 564 3383 8778 23768 2 884 7 409 225 681 3912 10071 26976 1 474 3 575 8 836 292 877 4638 11659 30758 - - - - - - - - - - - - - - - - - - - - - - - - - - 3.6 V 551 - - - - - - - - - 1.8 V 287 407 989 2 230 5 396 585 944 3344 7866 20504 2.4 V 386 526 1 201 2 638 6 274 811 1230 4007 9246 23824 3V 513 679 1 478 3 167 7 414 1022 1521 4683 10671 27124 3.6 V 771 978 1 963 3 992 9 039 1284 1924 5577 12383 1.8 V 342 - - - - - - - - - 2.4 V 521 - - - - - - - - - Unit nA STM32L432KB STM32L432KC Table 36. Current consumption in Standby mode 30954 (2) 3V 655 - - - - - - - - - 3.6 V 865 - - - - - - - - - 1.8 V 142 126 865 2 220 5 650 - - - - - 2.4 V 249 219 1 090 2 660 6 600 - - - - - 404 364 1 410 3 260 7 850 - - - - - 742 670 2 000 4 230 9 700 - - - - - 1.8 V 281 423 1 046 2 410 5 700 - - - - - 2.4 V RTC clocked by LSE quartz (3) in low drive mode 3 V 388 548 1 268 2 847 6 564 - - - - - 535 715 1 565 3 420 7 694 - - - - - 3.6 V 836 1 048 2 081 4 311 9 338 - - - - - nA 83/156 Electrical characteristics 3V 3.6 V nA Symbol IDD_ALL (SRAM2)(4) IDD_ALL (wakeup from Standby) Conditions Parameter Supply current to be added in Standby mode when SRAM2 is retained Supply current during wakeup from Standby mode - VDD - Wakeup clock is MSI = 4 MHz. See (5). MAX(1) TYP 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C 1.8 V 173 349 1 009 2 158 4 542 249 527 1604 3402 6908 2.4 V 174 345 1 015 2 163 4 535 271 589 1623 3438 6924 3V 178 350 1 019 2 148 4 419 277 594 1628 3467 6935 3.6 V 184 352 1 033 2 208 4 610 293 611 1631 3480 6948 3V 1.23 - - - - - - - - - Unit nA Electrical characteristics 84/156 Table 36. Current consumption in Standby mode (continued) mA 1. Guaranteed by characterization results, unless otherwise specified. 2. Guaranteed by test in production. 3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors. DS11451 Rev 4 4. The supply current in Standby with SRAM2 mode is: IDD_ALL(Standby) + IDD_ALL(SRAM2). The supply current in Standby with RTC with SRAM2 mode is: IDD_ALL(Standby + RTC) + IDD_ALL(SRAM2). 5. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 39: Low-power mode wakeup timings. Table 37. Current consumption in Shutdown mode Symbol Supply current in Shutdown mode (backup registers retained) RTC disabled - - MAX(1) TYP VDD 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 1.8 V 7.82 190 386 1 286 3 854 2.4 V 23 229 485 1 517 3V 44.3 290 634 3.6 V 212 397 977 105 °C 125 °C 25.0 255 1721 5052 15543 4 431 34.9 270 2085 5878 17639 1 878 5 310 70.1 345 2454 6755 19984 2 516 6 656 119.1 496 2992 7939 22860 Unit nA STM32L432KB STM32L432KC IDD_ALL (Shutdown) Parameter Conditions Symbol IDD_ALL (Shutdown with RTC) Parameter Supply current in Shutdown mode (backup registers retained) RTC enabled DS11451 Rev 4 Supply current IDD_ALL during wakeup (wakeup from from Shutdown Shutdown) mode Conditions - RTC clocked by LSE bypassed at 32768 Hz RTC clocked by LSE quartz (2) in low drive mode Wakeup clock is MSI = 4 MHz. See (3). MAX(1) TYP VDD 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C 1.8 V 63 133 522 1 490 4 270 - - - - - 2.4 V 165 253 710 1 830 4 980 - - - - - 3V 316 423 990 2 340 6 050 - - - - - 3.6 V 649 787 1 530 3 220 7 710 - - - - - 1.8 V 203 293 700 1 675 - - - - - - 2.4 V 303 411 880 2 001 - - - - - - 3V 448 567 1 136 2 479 - - - - - - 3.6 V 744 887 1 609 3 256 - - - - - - 3V 0.780 - - - - - - - - - Unit nA STM32L432KB STM32L432KC Table 37. Current consumption in Shutdown mode (continued) mA 1. Guaranteed by characterization results, unless otherwise specified. 2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors. 3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 39: Low-power mode wakeup timings. Electrical characteristics 85/156 Electrical characteristics STM32L432KB STM32L432KC I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 57: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the internal peripheral current consumption measured previously (see Table 38: Peripheral current consumption), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: I SW = V DDIOx × f SW × C where ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDDIOx is the I/O supply voltage fSW is the I/O switching frequency C is the total capacitance seen by the I/O pin: C = CINT+ CEXT + CS CS is the PCB board capacitance including the pad pin. The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. 86/156 DS11451 Rev 4 STM32L432KB STM32L432KC Electrical characteristics On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 38. The MCU is placed under the following conditions: • All I/O pins are in Analog mode • The given value is calculated by measuring the difference of the current consumptions: – when the peripheral is clocked on – when the peripheral is clocked off • Ambient operating temperature and supply voltage conditions summarized in Table 18: Voltage characteristics • The power consumption of the digital part of the on-chip peripherals is given in Table 38. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet. Table 38. Peripheral current consumption Range 1 Range 2 Low-power run and sleep Bus Matrix(1) 3.2 2.9 3.1 ADC independent clock domain 0.4 0.1 0.2 ADC clock domain 2.1 1.9 1.9 CRC 0.4 0.2 0.3 DMA1 1.4 1.3 1.4 DMA2 1.5 1.3 1.4 6.2 5.2 5.8 1.7 1.4 1.6 Peripheral FLASH (2) GPIOA AHB GPIOB(2)) 1.6 1.3 1.6 (2) GPIOC 1.7 1.5 1.6 GPIOH(2) 0.6 0.6 0.5 QSPI 7.0 5.8 7.3 RNG independent clock domain 2.2 N/A N/A RNG clock domain 0.5 N/A N/A SRAM1 0.8 0.9 0.7 SRAM2 1.0 0.8 0.8 TSC 1.6 1.3 1.3 21.7 18.5 20.3 AHB to APB1 bridge 0.9 0.7 0.9 CAN1 4.1 3.2 3.9 DAC1 2.4 1.8 2.2 RTCA 1.7 1.1 2.1 CRS 0.3 0.3 0.6 All AHB Peripherals (3) APB1 DS11451 Rev 4 Unit µA/MHz 87/156 148 Electrical characteristics STM32L432KB STM32L432KC Table 38. Peripheral current consumption (continued) Range 1 Range 2 Low-power run and sleep USB FS independent clock domain 2.9 N/A N/A USB FS clock domain 2.3 N/A N/A I2C1 independent clock domain 3.5 2.8 3.4 I2C1 clock domain 1.1 0.9 1.0 I2C3 independent clock domain 2.9 2.3 2.5 I2C3 clock domain 0.9 0.4 0.8 LPUART1 independent clock domain 1.9 1.6 1.8 LPUART1 clock domain 0.6 0.6 0.6 LPTIM1 independent clock domain 2.9 2.4 2.8 LPTIM1 clock domain 0.8 0.4 0.7 LPTIM2 independent clock domain 3.1 2.7 3.9 LPTIM2 clock domain 0.8 0.7 0.8 OPAMP 0.4 0.2 0.4 PWR 0.4 0.1 0.4 SPI3 1.7 1.3 1.6 SWPMI1 independent clock domain 1.9 1.6 1.9 SWPMI1 clock domain 0.9 0.7 0.8 TIM2 6.2 5.0 5.9 TIM6 1.0 0.6 0.9 TIM7 1.0 0.6 0.6 USART2 independent clock domain 4.1 3.6 3.8 USART2 clock domain 1.3 0.9 1.1 WWDG 0.5 0.5 0.5 All APB1 on 40.2 26.7 37.9 AHB to APB2(4) 1.0 0.9 0.9 FW 0.2 0.2 0.2 SAI1 independent clock domain 2.3 1.8 1.9 SAI1 clock domain 2.1 1.8 2.0 SPI1 1.8 1.6 1.7 SYSCFG/COMP 0.6 0.5 0.6 Peripheral APB1 APB2 88/156 DS11451 Rev 4 Unit µA/MHz STM32L432KB STM32L432KC Electrical characteristics Table 38. Peripheral current consumption (continued) Range 1 Range 2 Low-power run and sleep TIM1 8.1 6.5 7.6 TIM15 3.7 3.0 3.4 TIM16 2.7 2.1 2.6 USART1 independent clock domain 4.8 4.2 4.6 USART1 clock domain 1.5 1.3 1.7 All APB2 on 24.2 19.9 22.6 86.1 65.1 80.9 Peripheral APB2 ALL Unit µA/MHz 1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA). 2. The GPIOx (x= A…H) dynamic current consumption is approximately divided by a factor two versus this table values when the GPIO port is locked thanks to LCKK and LCKy bits in the GPIOx_LCKR register. In order to save the full GPIOx current consumption, the GPIOx clock should be disabled in the RCC when all port I/Os are used in alternate function or analog mode (clock is only required to read or write into GPIO registers, and is not used in AF or analog modes). 3. The AHB to APB1 Bridge is automatically active when at least one peripheral is ON on the APB1. 4. The AHB to APB2 Bridge is automatically active when at least one peripheral is ON on the APB2. 6.3.6 Wakeup time from low-power modes and voltage scaling transition times The wakeup times given in Table 39 are the latency between the event and the execution of the first user instruction. The device goes in low-power mode after the WFE (Wait For Event) instruction. Table 39. Low-power mode wakeup timings(1) Symbol tWUSLEEP Parameter Conditions Typ Max - 6 6 Wakeup time from Sleep mode to Run mode Wakeup time from LowtWULPSLEEP power sleep mode to Lowpower run mode Wakeup in Flash with Flash in power-down during low-power sleep mode (SLEEP_PD=1 in FLASH_ACR) and with clock MSI = 2 MHz DS11451 Rev 4 6 8.3 Unit Nb of CPU cycles 89/156 148 Electrical characteristics STM32L432KB STM32L432KC Table 39. Low-power mode wakeup timings(1) (continued) Symbol Parameter Conditions Range 1 Wake up time from Stop 0 mode to Run mode in Flash Range 2 tWUSTOP0 Range 1 Wake up time from Stop 0 mode to Run mode in SRAM1 Range 2 Range 1 Wake up time from Stop 1 mode to Run in Flash Range 2 Range 1 tWUSTOP1 Wake up time from Stop 1 mode to Run mode in SRAM1 Wake up time from Stop 1 mode to Low-power run mode in Flash Wake up time from Stop 1 mode to Low-power run mode in SRAM1 90/156 Range 2 Regulator in low-power mode (LPR=1 in PWR_CR1) Typ Max Wakeup clock MSI = 48 MHz 3.8 5.7 Wakeup clock HSI16 = 16 MHz 4.1 6.9 Wakeup clock MSI = 24 MHz 4.07 6.2 Wakeup clock HSI16 = 16 MHz 4.1 6.8 Wakeup clock MSI = 4 MHz 8.45 11.8 Wakeup clock MSI = 48 MHz 1.5 2.9 Wakeup clock HSI16 = 16 MHz 2.4 2.76 Wakeup clock MSI = 24 MHz 2.4 3.48 Wakeup clock HSI16 = 16 MHz 2.4 2.76 Wakeup clock MSI = 4 MHz 8.16 10.94 Wakeup clock MSI = 48 MHz 6.34 7.86 Wakeup clock HSI16 = 16 MHz 6.84 8.23 Wakeup clock MSI = 24 MHz 6.74 8.1 Wakeup clock HSI16 = 16 MHz 6.89 8.21 Wakeup clock MSI = 4 MHz 10.47 12.1 Wakeup clock MSI = 48 MHz 4.7 5.97 Wakeup clock HSI16 = 16 MHz 5.9 6.92 Wakeup clock MSI = 24 MHz 5.4 6.51 Wakeup clock HSI16 = 16 MHz 5.9 6.92 Wakeup clock MSI = 4 MHz 11.1 12.2 16.4 17.73 Wakeup clock MSI = 2 MHz DS11451 Rev 4 17.3 18.82 Unit µs µs STM32L432KB STM32L432KC Electrical characteristics Table 39. Low-power mode wakeup timings(1) (continued) Symbol Parameter Conditions Typ Max Wakeup clock MSI = 48 MHz 8.02 9.24 Wakeup clock HSI16 = 16 MHz 7.66 8.95 Wakeup clock MSI = 24 MHz 8.5 9.54 Wakeup clock HSI16 = 16 MHz 7.75 8.95 Wakeup clock MSI = 4 MHz 12.06 13.16 Wakeup clock MSI = 48 MHz 5.45 6.79 Wakeup clock HSI16 = 16 MHz 6.9 7.98 Wakeup clock MSI = 24 MHz 6.3 7.36 Wakeup clock HSI16 = 16 MHz 6.9 7.9 Wakeup clock MSI = 4 MHz 13.1 13.31 Wakeup time from Standby Range 1 mode to Run mode Wakeup clock MSI = 8 MHz 12.2 18.35 Wakeup clock MSI = 4 MHz 19.14 25.8 Wakeup time from Standby Range 1 with SRAM2 to Run mode Wakeup clock MSI = 8 MHz 12.1 Wakeup clock MSI = 4 MHz 19.2 25.87 Wakeup clock MSI = 4 MHz 261.5 315.7 Range 1 Wake up time from Stop 2 mode to Run mode in Flash Range 2 tWUSTOP2 Range 1 Wake up time from Stop 2 mode to Run mode in SRAM1 tWUSTBY tWUSTBY SRAM2 tWUSHDN Wakeup time from Shutdown mode to Run mode Range 2 Range 1 18.3 Unit µs µs µs µs 1. Guaranteed by characterization results. Table 40. Regulator modes transition times(1) Symbol tWULPRUN tVOST Parameter Conditions Typ Max Wakeup time from Low-power run mode to Code run with MSI 2 MHz Run mode(2) 5 7 Regulator transition time from Range 2 to Range 1 or Range 1 to Range 2(3) 20 40 Typ Max Stop 0 mode - 1.7 Stop 1 mode and Stop 2 mode - 8.5 Code run with MSI 24 MHz Unit µs 1. Guaranteed by characterization results. 2. Time until REGLPF flag is cleared in PWR_SR2. 3. Time until VOSF flag is cleared in PWR_SR2. Table 41. Wakeup time using USART/LPUART(1) Symbol tWUUSART tWULPUART Parameter Conditions Wakeup time needed to calculate the maximum USART/LPUART baudrate allowing to wakeup up from stop mode when USART/LPUART clock source is HSI16 Unit µs 1. Guaranteed by design. DS11451 Rev 4 91/156 148 Electrical characteristics 6.3.7 STM32L432KB STM32L432KC External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 12: High-speed external clock source AC timing diagram. Table 42. High-speed external user clock characteristics(1) Symbol fHSE_ext Parameter User external clock source frequency Conditions Min Typ Max Voltage scaling Range 1 - 8 48 Voltage scaling Range 2 - 8 26 Unit MHz VHSEH CK_IN input pin high level voltage - 0.7 VDDIOx - VDDIOx VHSEL CK_IN input pin low level voltage - VSS - 0.3 VDDIOx Voltage scaling Range 1 7 - - Voltage scaling Range 2 18 tw(HSEH) CK_IN high or low time tw(HSEL) V ns - - 1. Guaranteed by design. Figure 12. High-speed external clock source AC timing diagram tw(HSEH) VHSEH 90% VHSEL 10% tr(HSE) tf(HSE) tw(HSEL) t THSE MS19214V2 92/156 DS11451 Rev 4 STM32L432KB STM32L432KC Electrical characteristics Low-speed external user clock generated from an external source In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 13. Table 43. Low-speed external user clock characteristics(1) Symbol Parameter Conditions Min Typ Max Unit kHz fLSE_ext User external clock source frequency - - 32.768 1000 VLSEH OSC32_IN input pin high level voltage - 0.7 VDDIOx - VDDIOx VLSEL OSC32_IN input pin low level voltage - VSS - 0.3 VDDIOx - 250 - - tw(LSEH) OSC32_IN high or low time tw(LSEL) V ns 1. Guaranteed by design. Figure 13. Low-speed external clock source AC timing diagram tw(LSEH) VLSEH 90% VLSEL 10% tr(LSE) tf(LSE) t tw(LSEL) TLSE MS19215V2 Low-speed external clock generated from a crystal resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 44. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). DS11451 Rev 4 93/156 148 Electrical characteristics STM32L432KB STM32L432KC Table 44. LSE oscillator characteristics (fLSE = 32.768 kHz)(1) Symbol IDD(LSE) Conditions(2) Parameter LSE current consumption Maximum critical crystal Gmcritmax gm tSU(LSE)(3) Startup time Min Typ Max LSEDRV[1:0] = 00 Low drive capability - 250 - LSEDRV[1:0] = 01 Medium low drive capability - 315 - LSEDRV[1:0] = 10 Medium high drive capability - 500 - LSEDRV[1:0] = 11 High drive capability - 630 - LSEDRV[1:0] = 00 Low drive capability - - 0.5 LSEDRV[1:0] = 01 Medium low drive capability - - 0.75 LSEDRV[1:0] = 10 Medium high drive capability - - 1.7 LSEDRV[1:0] = 11 High drive capability - - 2.7 VDD is stabilized - 2 - Unit nA µA/V s 1. Guaranteed by design. 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 14. Typical application with a 32.768 kHz crystal Resonator with integrated capacitors CL1 OSC32_IN fLSE Drive programmable amplifier 32.768 kHz resonator OSC32_OUT CL2 MS30253V2 Note: 94/156 An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. DS11451 Rev 4 STM32L432KB STM32L432KC 6.3.8 Electrical characteristics Internal clock source characteristics The parameters given in Table 45 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. The provided curves are characterization results, not tested in production. High-speed internal (HSI16) RC oscillator Table 45. HSI16 oscillator characteristics(1) Symbol fHSI16 TRIM Parameter HSI16 Frequency HSI16 user trimming step DuCy(HSI16)(2) Duty Cycle Conditions Min Typ Max Unit 15.88 - 16.08 MHz Trimming code is not a multiple of 64 0.2 0.3 0.4 Trimming code is a multiple of 64 -4 -6 -8 45 - 55 % -1 - 1 % -2 - 1.5 % -0.1 - 0.05 % VDD=3.0 V, TA=30 °C - % ∆Temp(HSI16) HSI16 oscillator frequency TA= 0 to 85 °C drift over temperature TA= -40 to 125 °C ∆VDD(HSI16) HSI16 oscillator frequency VDD=1.62 V to 3.6 V drift over VDD tsu(HSI16)(2) HSI16 oscillator start-up time - - 0.8 1.2 μs tstab(HSI16)(2) HSI16 oscillator stabilization time - - 3 5 μs IDD(HSI16)(2) HSI16 oscillator power consumption - - 155 190 μA 1. Guaranteed by characterization results. 2. Guaranteed by design. DS11451 Rev 4 95/156 148 Electrical characteristics STM32L432KB STM32L432KC Figure 15. HSI16 frequency versus temperature MHz 16.4 +2% 16.3 +1.5% 16.2 +1% 16.1 16 15.9 -1% 15.8 -1.5% 15.7 -2% 15.6 -40 -20 0 20 min 40 mean 60 80 100 120 °C max MSv39299V1 96/156 DS11451 Rev 4 STM32L432KB STM32L432KC Electrical characteristics Multi-speed internal (MSI) RC oscillator Table 46. MSI oscillator characteristics(1) Symbol Parameter Conditions Min Typ Max Range 0 98.7 100 101.3 Range 1 197.4 200 202.6 Range 2 394.8 400 405.2 Range 3 789.6 800 810.4 Range 4 0.987 1 1.013 Range 5 1.974 2 2.026 Range 6 3.948 4 4.052 Range 7 7.896 8 8.104 Range 8 15.79 16 16.21 Range 9 23.69 24 24.31 Range 10 31.58 32 32.42 Range 11 47.38 48 48.62 Range 0 - 98.304 - Range 1 - 196.608 - Range 2 - 393.216 - Range 3 - 786.432 - Range 4 - 1.016 - PLL mode Range 5 XTAL= 32.768 kHz Range 6 - 1.999 - - 3.998 - Range 7 - 7.995 - Range 8 - 15.991 - Range 9 - 23.986 - Range 10 - 32.014 - Range 11 - 48.005 - -3.5 - 3 -8 - 6 MSI mode fMSI ∆TEMP(MSI)(2) MSI frequency after factory calibration, done at VDD=3 V and TA=30 °C MSI oscillator frequency drift over temperature MSI mode TA= -0 to 85 °C TA= -40 to 125 °C DS11451 Rev 4 Unit kHz MHz kHz MHz % 97/156 148 Electrical characteristics STM32L432KB STM32L432KC Table 46. MSI oscillator characteristics(1) (continued) Symbol Parameter Conditions Min Typ VDD=1.62 V to 3.6 V -1.2 - VDD=2.4 V to 3.6 V -0.5 - VDD=1.62 V to 3.6 V -2.5 - VDD=2.4 V to 3.6 V -0.8 - VDD=1.62 V to 3.6 V -5 - VDD=2.4 V to 3.6 V -1.6 - TA= -40 to 85 °C - 1 2 TA= -40 to 125 °C - 2 4 Range 0 to 3 ∆VDD(MSI) (2) MSI oscillator frequency drift MSI mode over VDD (reference is 3 V) Range 4 to 7 Range 8 to 11 ∆FSAMPLING (MSI)(2)(6) Frequency variation in MSI mode sampling mode(3) P_USB Jitter(MSI)(6) Period jitter for USB clock(4) MT_USB Jitter(MSI)(6) Medium term jitter PLL mode for USB clock(5) Range 11 CC jitter(MSI)(6) P jitter(MSI)(6) tSU(MSI)(6) tSTAB(MSI)(6) 98/156 PLL mode Range 11 Max Unit 0.5 0.7 % 1 for next transition - - - 3.458 for paired transition - - - 3.916 for next transition - - - 2 for paired transition - - - 1 % ns ns RMS cycle-tocycle jitter PLL mode Range 11 - - 60 - ps RMS Period jitter PLL mode Range 11 - - 50 - ps Range 0 - - 10 20 Range 1 - - 5 10 Range 2 - - 4 8 Range 3 - - 3 7 Range 4 to 7 - - 3 6 Range 8 to 11 - - 2.5 6 10 % of final frequency - - 0.25 0.5 5 % of final frequency - - 0.5 1.25 1 % of final frequency - - - 2.5 MSI oscillator start-up time MSI oscillator stabilization time PLL mode Range 11 DS11451 Rev 4 us ms STM32L432KB STM32L432KC Electrical characteristics Table 46. MSI oscillator characteristics(1) (continued) Symbol IDD(MSI)(6) Parameter MSI oscillator power consumption Conditions MSI and PLL mode Min Typ Max Range 0 - - 0.6 1 Range 1 - - 0.8 1.2 Range 2 - - 1.2 1.7 Range 3 - - 1.9 2.5 Range 4 - - 4.7 6 Range 5 - - 6.5 9 Range 6 - - 11 15 Range 7 - - 18.5 25 Range 8 - - 62 80 Range 9 - - 85 110 Range 10 - - 110 130 Range 11 - - 155 190 Unit µA 1. Guaranteed by characterization results. 2. This is a deviation for an individual part once the initial frequency has been measured. 3. Sampling mode means Low-power run/Low-power sleep modes with Temperature sensor disable. 4. Average period of MSI @48 MHz is compared to a real 48 MHz clock over 28 cycles. It includes frequency tolerance + jitter of MSI @48 MHz clock. 5. Only accumulated jitter of MSI @48 MHz is extracted over 28 cycles. For next transition: min. and max. jitter of 2 consecutive frame of 28 cycles of the MSI @48 MHz, for 1000 captures over 28 cycles. For paired transitions: min. and max. jitter of 2 consecutive frame of 56 cycles of the MSI @48 MHz, for 1000 captures over 56 cycles. 6. Guaranteed by design. DS11451 Rev 4 99/156 148 Electrical characteristics STM32L432KB STM32L432KC Figure 16. Typical current consumption versus MSI frequency High-speed internal 48 MHz (HSI48) RC oscillator Table 47. HSI48 oscillator characteristics(1) Symbol Parameter fHSI48 HSI48 Frequency TRIM HSI48 user trimming step USER TRIM COVERAGE HSI48 user trimming coverage DuCy(HSI48) Duty Cycle Accuracy of the HSI48 oscillator ACCHSI48_REL over temperature (factory calibrated) DVDD(HSI48) HSI48 oscillator frequency drift with VDD Conditions VDD=3.0V, TA=30°C ±32 steps VDD = 3.0 V to 3.6 V, TA = –15 to 85 °C Min Typ Max Unit - 48 - MHz - 0.11(2) 0.18(2) % ±3(3) ±3.5(3) - % 45(2) - 55(2) % - - ±3(3) % VDD = 1.65 V to 3.6 V, TA = –40 to 125 °C - - ±4.5(3) VDD = 3 V to 3.6 V - 0.025(3) 0.05(3) VDD = 1.65 V to 3.6 V - 0.05(3) 0.1(3) % tsu(HSI48) HSI48 oscillator start-up time - - 2.5(2) 6(2) μs IDD(HSI48) HSI48 oscillator power consumption - - 340(2) 380(2) μA 100/156 DS11451 Rev 4 STM32L432KB STM32L432KC Electrical characteristics Table 47. HSI48 oscillator characteristics(1) (continued) Symbol Parameter Conditions Min Typ Max Unit NT jitter Next transition jitter Accumulated jitter on 28 cycles(4) - - +/-0.15(2) - ns PT jitter Paired transition jitter Accumulated jitter on 56 cycles(4) - - +/-0.25(2) - ns 1. VDD = 3 V, TA = –40 to 125°C unless otherwise specified. 2. Guaranteed by design. 3. Guaranteed by characterization results. 4. Jitter measurement are performed without clock source activated in parallel. Figure 17. HSI48 frequency versus temperature % 6 4 2 0 -2 -4 -6 -50 -30 -10 Avg 10 30 50 70 90 min 110 130 °C max MSv40989V1 Low-speed internal (LSI) RC oscillator Table 48. LSI oscillator characteristics(1) Symbol fLSI tSU(LSI)(2) tSTAB(LSI)(2) IDD(LSI)(2) Parameter LSI Frequency LSI oscillator startup time LSI oscillator stabilization time LSI oscillator power consumption Conditions Min Typ Max Unit VDD = 3.0 V, TA = 30 °C 31.04 - 32.96 VDD = 1.62 to 3.6 V, TA = -40 to 125 °C 29.5 - 34 - - 80 130 μs 5% of final frequency - 125 180 μs - - 110 180 nA kHz 1. Guaranteed by characterization results. 2. Guaranteed by design. DS11451 Rev 4 101/156 148 Electrical characteristics 6.3.9 STM32L432KB STM32L432KC PLL characteristics The parameters given in Table 49 are derived from tests performed under temperature and VDD supply voltage conditions summarized in Table 21: General operating conditions. Table 49. PLL, PLLSAI1 characteristics(1) Symbol fPLL_IN Parameter Conditions Min Typ Max Unit PLL input clock(2) - 4 - 16 MHz PLL input clock duty cycle - 45 - 55 % Voltage scaling Range 1 3.0968 - 80 Voltage scaling Range 2 3.0968 - 26 Voltage scaling Range 1 12 - 80 Voltage scaling Range 2 12 - 26 Voltage scaling Range 1 12 - 80 Voltage scaling Range 2 12 - 26 Voltage scaling Range 1 96 - 344 Voltage scaling Range 2 96 - 128 - 15 40 - 40 - - 30 - VCO freq = 96 MHz - 200 260 VCO freq = 192 MHz - 300 380 VCO freq = 344 MHz - 520 650 fPLL_P_OUT PLL multiplier output clock P fPLL_Q_OUT PLL multiplier output clock Q fPLL_R_OUT PLL multiplier output clock R fVCO_OUT tLOCK Jitter IDD(PLL) PLL VCO output PLL lock time RMS cycle-to-cycle jitter RMS period jitter PLL power consumption on VDD(1) System clock 80 MHz MHz MHz MHz MHz μs ±ps 1. Guaranteed by design. 2. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between the 2 PLLs. 102/156 DS11451 Rev 4 μA STM32L432KB STM32L432KC 6.3.10 Electrical characteristics Flash memory characteristics Table 50. Flash memory characteristics(1) Symbol Parameter Conditions Typ Max Unit tprog 64-bit programming time - 81.69 90.76 µs tprog_row one row (32 double word) programming time normal programming 2.61 2.90 fast programming 1.91 2.12 tprog_page one page (2 Kbyte) programming time normal programming 20.91 23.24 fast programming 15.29 16.98 22.02 24.47 normal programming 5.35 5.95 fast programming 3.91 4.35 22.13 24.59 Write mode 3.4 - Erase mode 3.4 - Write mode 7 (for 2 μs) - Erase mode 7 (for 41 μs) - tERASE tprog_bank tME IDD Page (2 KB) erase time one bank (512 Kbyte) programming time - Mass erase time (one or two banks) - Average consumption from VDD Maximum current (peak) ms s ms mA 1. Guaranteed by design. Table 51. Flash memory endurance and data retention Symbol NEND tRET Min(1) Unit TA = –40 to +105 °C 10 kcycles 1 kcycle(2) at TA = 85 °C 30 Parameter Endurance Data retention Conditions 1 kcycle (2) 1 kcycle (2) at TA = 105 °C 15 at TA = 125 °C 7 (2) at TA = 55 °C 30 10 kcycles(2) at TA = 85 °C 15 10 kcycles 10 kcycles (2) at TA = 105 °C Years 10 1. Guaranteed by characterization results. 2. Cycling performed over the whole temperature range. DS11451 Rev 4 103/156 148 Electrical characteristics 6.3.11 STM32L432KB STM32L432KC EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 52. They are based on the EMS levels and classes defined in application note AN1709. Table 52. EMS characteristics Conditions Level/ Class Symbol Parameter VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VDD = 3.3 V, TA = +25 °C, fHCLK = 80 MHz, conforming to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, TA = +25 °C, fHCLK = 80 MHz, conforming to IEC 61000-4-4 5A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: 104/156 • Corrupted program counter • Unexpected reset • Critical Data corruption (control registers...) DS11451 Rev 4 STM32L432KB STM32L432KC Electrical characteristics Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 53. EMI characteristics Symbol Parameter Max vs. [fHSE/fHCLK] Monitored frequency band Conditions Unit 8 MHz/ 80 MHz SEMI Peak level 0.1 MHz to 30 MHz 1 VDD = 3.6 V, TA = 25 °C, 30 MHz to 130 MHz UFQFPN32 package 130 MHz to 1 GHz compliant with IEC 61967-2 1 GHz to 2 GHz 0 7 EMI Level 6.3.12 dBµV -1 1 - Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/JEDEC standard. Table 54. ESD absolute maximum ratings Symbol VESD(HBM) Ratings Conditions TA = +25 °C, conforming Electrostatic discharge to ANSI/ESDA/JEDEC voltage (human body model) JS-001 Electrostatic discharge VESD(CDM) voltage (charge device model) TA = +25 °C, conforming to ANSI/ESD STM5.3.1 Class Maximum value(1) 2 2000 Unit V C3 250 1. Guaranteed by characterization results. DS11451 Rev 4 105/156 148 Electrical characteristics STM32L432KB STM32L432KC Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin. • A current injection is applied to each input, output and configurable I/O pin. These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 55. Electrical sensitivities Symbol LU 6.3.13 Parameter Static latch-up class Conditions Class TA = +105 °C conforming to JESD78A II I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or oscillator frequency deviation). The characterization results are given in Table 56. Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection. Table 56. I/O current injection susceptibility(1) Functional susceptibility Symbol IINJ Description Positive injection Injected current on all pins except PA4, PA5 -5 N/A(2) Injected current on PA4, PA5 pins -5 0 1. Guaranteed by characterization results. 2. Injection is not possible. 106/156 Unit Negative injection DS11451 Rev 4 mA STM32L432KB STM32L432KC 6.3.14 Electrical characteristics I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 57 are derived from tests performed under the conditions summarized in Table 21: General operating conditions. All I/Os are designed as CMOS- and TTL-compliant. Table 57. I/O static characteristics Symbol VIL(1) VIH(1) Vhys(3) Parameter Conditions Min Typ Max Unit I/O input low level voltage 1.62 V
STM32L432KCU6 价格&库存

很抱歉,暂时无法提供与“STM32L432KCU6”相匹配的价格&库存,您可以联系我们找货

免费人工找货
STM32L432KCU6
  •  国内价格
  • 1+22.25880
  • 10+19.36440
  • 30+16.64280
  • 100+14.90400

库存:0

STM32L432KCU6
  •  国内价格
  • 1+33.54750
  • 10+32.30500
  • 100+29.32300
  • 500+27.83200

库存:5