STM32L432KB STM32L432KC
Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100DMIPS,
up to 256KB Flash, 64KB SRAM, USB FS, analog, audio
Datasheet - production data
Features
• Ultra-low-power with FlexPowerControl
– 1.71 V to 3.6 V power supply
– -40 °C to 85/105/125 °C temperature range
– 8 nA Shutdown mode (2 wakeup pins)
– 28 nA Standby mode (2 wakeup pins)
– 280 nA Standby mode with RTC
– 1.0 µA Stop 2 mode, 1.28 µA with RTC
– 84 µA/MHz run mode
– Batch acquisition mode (BAM)
– 4 µs wakeup from Stop mode
– Brown out reset (BOR)
– Interconnect matrix
• Core: Arm® 32-bit Cortex®-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait-state execution
from Flash memory, frequency up to 80 MHz,
MPU, 100DMIPS and DSP instructions
• Performance benchmark
– 1.25 DMIPS/MHz (Drystone 2.1)
– 273.55 CoreMark® (3.42 CoreMark/MHz @
80 MHz)
• Energy benchmark
– 176.7 ULPBench® score
• Clock Sources
– 32 kHz crystal oscillator for RTC (LSE)
– Internal 16 MHz factory-trimmed RC (±1%)
– Internal low-power 32 kHz RC (±5%)
– Internal multispeed 100 kHz to 48 MHz
oscillator, auto-trimmed by LSE (better than
±0.25 % accuracy)
– Internal 48 MHz with clock recovery
– 2 PLLs for system clock, USB, audio, ADC
UFQFPN32 (5x5)
• Up to 26 fast I/Os, most 5 V-tolerant
• RTC with HW calendar, alarms and calibration
• Up to 3 capacitive sensing channels
• 11x timers: 1x 16-bit advanced motor-control,
1x 32-bit and 2x 16-bit general purpose, 2x 16bit basic, 2x low-power 16-bit timers (available
in Stop mode), 2x watchdogs, SysTick timer
• Memories
– Up to 256 KB single bank Flash,
proprietary code readout protection
– 64 KB of SRAM including 16 KB with
hardware parity check
– Quad SPI memory interface
• Rich analog peripherals (independent supply)
– 1x 12-bit ADC 5 Msps, up to 16-bit with
hardware oversampling, 200 µA/Msps
– 2x 12-bit DAC output channels, low-power
sample and hold
– 1x operational amplifier with built-in PGA
– 2x ultra-low-power comparators
• 14x communication interfaces
– USB 2.0 full-speed crystal less solution
with LPM and BCD
– 1x SAI (serial audio interface)
– 2x I2C FM+(1 Mbit/s), SMBus/PMBus
– 3x USARTs (ISO 7816, LIN, IrDA, modem)
– 1x LPUART (Stop 2 wake-up)
– 2x SPIs (and 1x Quad SPI)
– CAN (2.0B Active)
– SWPMI single wire protocol master I/F
– IRTIM (Infrared interface)
• 14-channel DMA controller
• True random number generator
May 2018
This is information on a product in full production.
DS11451 Rev 4
1/156
www.st.com
STM32L432KB STM32L432KC
• All packages are ECOPACK2® compliant
• CRC calculation unit, 96-bit unique ID
• Development support: serial wire debug
(SWD), JTAG, Embedded Trace Macrocell™
2/156
DS11451 Rev 4
STM32L432KB STM32L432KC
Contents
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1
Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 14
3.3
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6
Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.8
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 17
3.9
Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9.1
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9.4
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9.5
Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.10
Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.11
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.12
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.13
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.14
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.15
3.14.1
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 34
3.14.2
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 34
Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.15.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.15.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.16
Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.17
Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.18
Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
DS11451 Rev 4
3/156
6
Contents
STM32L432KB STM32L432KC
3.19
Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.20
Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.21
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.21.1
Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.21.2
General-purpose timers (TIM2, TIM15, TIM16) . . . . . . . . . . . . . . . . . . . 40
3.21.3
Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.21.4
Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 40
3.21.5
Infrared interface (IRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.21.6
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.21.7
System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.21.8
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.22
Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 42
3.23
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.24
Universal synchronous/asynchronous receiver transmitter (USART) . . . 44
3.25
Low-power universal asynchronous receiver transmitter (LPUART) . . . . 45
3.26
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.27
Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.28
Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 47
3.29
Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.30
Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.31
Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.32
Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.33
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.33.1
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.33.2
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1
4/156
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
DS11451 Rev 4
STM32L432KB STM32L432KC
7
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.2
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 68
6.3.3
Embedded reset and power control block characteristics . . . . . . . . . . . 68
6.3.4
Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.5
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3.6
Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.7
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.8
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.9
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.10
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.11
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.12
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.13
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.14
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.15
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.16
Extended interrupt and event controller input (EXTI) characteristics . . 113
6.3.17
Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3.18
Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . 114
6.3.19
Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 127
6.3.20
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.21
Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.3.22
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.23
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.24
Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 138
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.1
UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.2.1
8
Contents
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
DS11451 Rev 4
5/156
6
Contents
9
6/156
STM32L432KB STM32L432KC
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
DS11451 Rev 4
STM32L432KB STM32L432KC
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
STM32L432Kx family device features and peripheral counts. . . . . . . . . . . . . . . . . . . . . . . 11
Access status versus readout protection level and execution modes. . . . . . . . . . . . . . . . . 15
STM32L432xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
STM32L432xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
STM32L432xx USART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
SAI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
STM32L432xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Alternate function AF0 to AF7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Alternate function AF8 to AF15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
STM32L432xx memory map and peripheral register boundary addresses . . . . . . . . . . . . 60
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 68
Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 73
Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 76
Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Current consumption in Sleep and Low-power sleep modes, Flash ON . . . . . . . . . . . . . . 78
Current consumption in Low-power sleep modes, Flash in power-down . . . . . . . . . . . . . . 79
Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Current consumption in Stop 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Wakeup time using USART/LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
DS11451 Rev 4
7/156
8
List of tables
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
8/156
STM32L432KB STM32L432KC
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
PLL, PLLSAI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
EXTI Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
ADC accuracy - limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
WWDG min/max timeout value at 80 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Quad SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
SWPMI electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
STM32L432xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
DS11451 Rev 4
STM32L432KB STM32L432KC
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
STM32L432xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
STM32L432Kx UFQFPN32 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
STM32L432xx memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Typical current consumption versus MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
HSI48 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
I/O AC characteristics definition(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Quad SPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Quad SPI timing diagram - DDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
UFQFPN32 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
DS11451 Rev 4
9/156
9
Introduction
1
STM32L432KB STM32L432KC
Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32L432xx microcontrollers.
This document should be read in conjunction with the STM32L43xxx/44xxx/45xxx/46xxx
reference manual (RM0394). The reference manual is available from the
STMicroelectronics website www.st.com.
For information on the Arm®(a) Cortex®-M4 core, please refer to the Cortex®-M4 Technical
Reference Manual, available from the www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
10/156
DS11451 Rev 4
STM32L432KB STM32L432KC
2
Description
Description
The STM32L432xx devices are the ultra-low-power microcontrollers based on the highperformance Arm® Cortex®-M4 32-bit RISC core operating at a frequency of up to 80 MHz.
The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all
Arm® single-precision data-processing instructions and data types. It also implements a full
set of DSP instructions and a memory protection unit (MPU) which enhances application
security.
The STM32L432xx devices embed high-speed memories (Flash memory up to 256 Kbyte,
64 Kbyte of SRAM), a Quad SPI flash memories interface and an extensive range of
enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit
multi-AHB bus matrix.
The STM32L432xx devices embed several protection mechanisms for embedded Flash
memory and SRAM: readout protection, write protection, proprietary code readout
protection and Firewall.
The devices offer a fast 12-bit ADC (5 Msps), two comparators, one operational amplifier,
two DAC channels, a low-power RTC, one general-purpose 32-bit timer, one 16-bit PWM
timer dedicated to motor control, four general-purpose 16-bit timers, and two 16-bit lowpower timers.
In addition, up to 3 capacitive sensing channels are available.
They also feature standard and advanced communication interfaces.
•
Two I2Cs
•
Two SPIs
•
Two USARTs and one Low-Power UART.
•
One SAI (Serial Audio Interfaces)
•
One CAN
•
One USB full-speed device crystal less
•
One SWPMI (Single Wire Protocol Master Interface)
The STM32L432xx operates in the -40 to +85 °C (+105 °C junction), -40 to +105 °C
(+125 °C junction) and -40 to +125 °C (+130 °C junction) temperature ranges from a 1.71 to
3.6 V power supply. A comprehensive set of power-saving modes allows the design of lowpower applications.
Some independent power supplies are supported: analog independent supply input for
ADC, DAC, OPAMP and comparators
The STM32L432xx family offers a single 32-pin package.
Table 1. STM32L432Kx family device features and peripheral counts
Peripheral
STM32L432Kx
Flash memory
256KB
SRAM
64KB
Quad SPI
Yes
DS11451 Rev 4
11/156
50
Description
STM32L432KB STM32L432KC
Table 1. STM32L432Kx family device features and peripheral counts (continued)
Peripheral
Timers
Comm. interfaces
STM32L432Kx
Advanced control
1 (16-bit)
General purpose
2 (16-bit)
1 (32-bit)
Basic
2 (16-bit)
Low -power
2 (16-bit)
SysTick timer
1
Watchdog timers (independent,
window)
2
SPI
2
I2C
2
USART
LPUART
2
1
SAI
1
CAN
1
USB FS
Yes(1)
SWPMI
Yes
RTC
Yes
Tamper pins
1
Random generator
Yes
GPIOs
Wakeup pins
26
2
Capacitive sensing
Number of channels
3
12-bit ADC
Number of channels
1
10
12-bit DAC channels
2
Analog comparator
2
Operational amplifiers
1
Max. CPU frequency
80 MHz
Operating voltage
1.71 to 3.6 V
Ambient operating temperature: -40 to 85 °C / 40 to 105 °C / -40 to 125 °C
Junction temperature: -40 to 105 °C / -40 to
125 °C / -40 to 130 °C
Operating temperature
Packages
UFQFPN32
1. There is no VDDUSB pin. VDDUSB is connected internally at VDD. To be functional, VDD must be equal to
3.3 V (+/- 10%).
12/156
DS11451 Rev 4
STM32L432KB STM32L432KC
Description
Figure 1. STM32L432xx block diagram
NJTRST, JTDI,
JTCK/SWCLK
D0[3:0],
CLK0,
CS
Quad SPI memory interface
JTAG & SW
MPU
ETM
NVIC
JTDO/SWD, JTDO
TRACECLK
D-BUS
TRACED[3:0]
ARM Cortex-M4
80 MHz
FPU
I-BUS
ART
ACCEL/
CACHE
RNG
Flash
up to
256 KB
AHB bus-matrix
S-BUS
SRAM 48 KB
SRAM 16 KB
VDD
AHB2 80 MHz
DMA2
Power management
Voltage
regulator
3.3 to 1.2 V
VDD = 1.71 to 3.6 V
VSS
DMA1
@ VDD
@ VDD
1 Group of
3 channels max as AF
supervision
RC HSI
Touch sensing controller
Supply
reset
MSI
Int
VDDA, VSSA
BOR
VDD, VSS, NRST
RC LSI
GPIO PORT A
PB[7:3],
PB[1:0]
GPIO PORT B
PC[15:14]
GPIO PORT C
PH[3]
GPIO PORT H
PVD, PVM
PLL 1&2
AHB1 80 MHz
PA[15:0]
HSI48
@VDD
IWDG
Standby
interface
Reset & clock
M AN
AGT
control
@VBAT
XTAL 32 kHz
OSC32_IN
OSC32_OUT
PCLKx
HCLKx
FCLK
RTC
RTC_TAMPx
AWU
Backup register
@ VDD
TIM2
U STemperature
AR T 2 M sensor
Bps
32b
CRC
4 channels, ETR as AF
FIFO
@ VDDA
ADC1
10 external analog inputs
USB FS
PHY
@ VDDUSB
ITF
CRS_SYNC
CRS
AHB/APB2
AHB/APB1
USART2
26 AF
EXT IT. WKUP
smcard
IrDA
SPI3
3 compl. channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),
ETR, BKIN, BKIN2 as AF
DP
DM
NOE
TIM1 / PWM
16b
2 channels,
1 compl. channel, BKIN as AF
TIM15
16b
1 channel,
1 compl. channel, BKIN as AF
TIM16
16b
RX, TX, CK, CTS, RTS as AF
MOSI, MISO, SCK, NSS as AF
I2C1/SMBUS
SCL, SDA, SMBA as AF
I2C3/SMBUS
SCL, SDA, SMBA as AF
USART1
IrDA
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK
MCLK_B, SD_B, FS_B, SCK_B as AF
SAI1
16b
TIM7
16b
A
60PM
B Hz
2
SPI1
TIM6
@ VDDA
A P B(max)
1 3 0 M Hz
APB1 80 MHz
smcard
MOSI, MISO,
SCK, NSS as AF
APB2 80MHz
RX, TX, CK,CTS,
RTS as AF
bxCAN1
COMP1
INP, INM, OUT
COMP2
DAC1
TX, RX as AF
@VDDA
OpAmp1
VOUT, VINM, VINP
LPUART1
RX, TX, CTS, RTS as AF
SWPMI1
IO
RX, TX, SUSPEND as AF
LPTIM1
IN1, IN2, OUT, ETR as AF
LPTIM2
IN1, OUT, ETR as AF
@ VDDA
INP, INM, OUT
FIFO
WWDG
ITF
DAC2
FIREWALL
OUT1
Note:
OUT2
MSv39215V3
AF: alternate function on I/O pins.
DS11451 Rev 4
13/156
50
Functional overview
STM32L432KB STM32L432KC
3
Functional overview
3.1
Arm® Cortex®-M4 core with FPU
The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm® processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an Arm® core in the memory size
usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage
development tools, while avoiding saturation.
With its embedded Arm® core, the STM32L432xx family is compatible with all Arm® tools
and software.
Figure 1 shows the general block diagram of the STM32L432xx family devices.
3.2
Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard Arm® Cortex®-M4 processors. It balances the inherent performance advantage of
the Arm® Cortex®-M4 over Flash memory technologies, which normally requires the
processor to wait for the Flash memory at higher frequencies.
To release the processor near 100 DMIPS performance at 80MHz, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 80 MHz.
3.3
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
14/156
DS11451 Rev 4
STM32L432KB STM32L432KC
3.4
Functional overview
Embedded Flash memory
STM32L432xx devices feature up to 256 Kbyte of embedded Flash memory available for
storing programs and data in single bank architecture. The Flash memory contains 128
pages of 2 Kbyte.
Flexible protections can be configured thanks to option bytes:
•
Readout protection (RDP) to protect the whole memory. Three levels are available:
–
Level 0: no readout protection
–
Level 1: memory readout protection: the Flash memory cannot be read from or
written to if either debug features are connected, boot in RAM or bootloader is
selected
–
Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial
wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This
selection is irreversible.
Table 2. Access status versus readout protection level and execution modes
Area
Debug, boot from RAM or boot
from system memory (loader)
User execution
Protection
level
Read
Write
Erase
Read
Write
Erase
Main
memory
1
Yes
Yes
Yes
No
No
No
2
Yes
Yes
Yes
N/A
N/A
N/A
System
memory
1
Yes
No
No
Yes
No
No
2
Yes
No
No
N/A
N/A
N/A
Option
bytes
1
Yes
Yes
Yes
Yes
Yes
Yes
2
Yes
No
No
N/A
N/A
N/A
No
No
N/A(1)
Backup
registers
SRAM2
(1)
1
Yes
Yes
N/A
2
Yes
Yes
N/A
N/A
N/A
N/A
1
Yes
Yes
Yes(1)
No
No
No(1)
2
Yes
Yes
Yes
N/A
N/A
N/A
1. Erased when RDP change from Level 1 to Level 0.
•
Write protection (WRP): the protected area is protected against erasing and
programming. Two areas can be selected, with 2-Kbyte granularity.
•
Proprietary code readout protection (PCROP): a part of the flash memory can be
protected against read and write from third parties. The protected area is execute-only:
it can only be reached by the STM32 CPU, as an instruction code, while all other
accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited.
The PCROP area granularity is 64-bit wide. An additional option bit (PCROP_RDP)
allows to select if the PCROP area is erased or not when the RDP protection is
changed from Level 1 to Level 0.
DS11451 Rev 4
15/156
50
Functional overview
STM32L432KB STM32L432KC
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
3.5
•
single error detection and correction
•
double error detection.
•
The address of the ECC fail can be read in the ECC register
Embedded SRAM
STM32L432xx devices feature 64 Kbyte of embedded SRAM. This SRAM is split into two
blocks:
•
48 Kbyte mapped at address 0x2000 0000 (SRAM1)
•
16 Kbyte located at address 0x1000 0000 with hardware parity check (SRAM2).
This memory is also mapped at address 0x2000 C000, offering a contiguous address
space with the SRAM1 (16 Kbyte aliased by bit band)
This block is accessed through the ICode/DCode buses for maximum performance.
These 16 Kbyte SRAM can also be retained in Standby mode.
The SRAM2 can be write-protected with 1 Kbyte granularity.
The memory can be accessed in read/write at CPU clock speed with 0 wait states.
3.6
Firewall
The device embeds a Firewall which protects code sensitive and secure data from any
access performed by a code executed outside of the protected areas.
Each illegal access generates a reset which kills immediately the detected intrusion.
The Firewall main features are the following:
•
Three segments can be protected and defined thanks to the Firewall registers:
–
Code segment (located in Flash or SRAM1 if defined as executable protected
area)
–
Non-volatile data segment (located in Flash)
–
Volatile data segment (located in SRAM1)
•
The start address and the length of each segments are configurable:
–
Code segment: up to 1024 Kbyte with granularity of 256 bytes
–
Non-volatile data segment: up to 1024 Kbyte with granularity of 256 bytes
–
Volatile data segment: up to 48 Kbyte with a granularity of 64 bytes
•
Specific mechanism implemented to open the Firewall to get access to the protected
areas (call gate entry sequence)
•
Volatile data segment can be shared or not with the non-protected code
•
Volatile data segment can be executed or not depending on the Firewall configuration
The Flash readout protection must be set to level 2 in order to reach the expected level of
protection.
16/156
DS11451 Rev 4
STM32L432KB STM32L432KC
3.7
Functional overview
Boot modes
At startup, BOOT0 pin or nSWBOOT0 option bit, and BOOT1 option bit are used to select
one of three boot options:
•
Boot from user Flash
•
Boot from system memory
•
Boot from embedded SRAM
BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the
value of a user option bit to free the GPIO pad if needed.
A Flash empty check mechanism is implemented to force the boot from system flash if the
first flash memory location is not programmed and if the boot selection is configured to boot
from main flash.
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART, I2C, SPI or USB FS in Device mode through DFU (device firmware upgrade).
3.8
Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.
3.9
Power supply management
3.9.1
Power supply schemes
•
VDD = 1.71 to 3.6 V: external power supply for I/Os (VDDIO1), the internal regulator and
the system analog such as reset, power management and internal clocks. It is provided
externally through VDD pins.
•
VDDA = 1.62 V (ADCs/COMPs) / 1.8 (DAC/OPAMP) to 3.6 V: external analog power
supply for ADCs, DAC, OPAMPs, Comparators and Voltage reference buffer. The VDDA
voltage level is independent from the VDD voltage.
Note:
When the functions supplied by VDDA or VDDUSB are not used, these supplies should
preferably be shorted to VDD.
Note:
If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V
tolerant (refer to Table 18: Voltage characteristics).
Note:
VDDIOx is the I/Os general purpose digital functions supply. VDDIOx represents VDDIO1, with
VDDIO1 = VDD.
DS11451 Rev 4
17/156
50
Functional overview
STM32L432KB STM32L432KC
Figure 2. Power supply overview
VDDA domain
VDDA
VSSA
A/D converters
Comparators
D/A converters
Operational amplifiers
Voltage reference buffer
VDDUSB
VSS
USB transceivers
VDD domain
VDD
VDDIO1
I/O ring
Reset block
Temp. sensor
PLL, HSI, MSI, HSI48
VSS
Standby circuitry
(Wakeup logic, IWDG)
Voltage regulator
VCORE
VCORE domain
Core
Memories
Digital peripherals
Low voltage detector
Backup domain
VBAT
LSE crystal 32 K osc
BKP registers
RCC BDCR register
RTC
MSv39216V3
During power-up and power-down phases, the following power sequence requirements
must be respected:
•
When VDD is below 1 V, other power supplies (VDDA) must remain below VDD +
300 mV.
•
When VDD is above 1 V, all power supplies are independent.
During the power-down phase, VDD can temporarily become lower than other supplies only
if the energy provided to the MCU remains below 1 mJ; this allows external decoupling
capacitors to be discharged with different time constants during the power- down transient
phase.
18/156
DS11451 Rev 4
STM32L432KB STM32L432KC
Functional overview
Figure 3. Power-up/down sequence
V
3.6
VDDX(1)
VDD
VBOR0
1
0.3
Power-on
Invalid supply area
Operating mode
VDDX < VDD + 300 mV
Power-down
VDDX independent from VDD
time
MSv47490V1
1. VDDX refers to VDDA.
3.9.2
Power supply supervisor
The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes
except Shutdown and ensuring proper operation after power-on and during power down.
The device remains in reset mode when the monitored supply voltage VDD is below a
specified threshold, without the need for an external reset circuit.
The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected
through option bytes.The device features an embedded programmable voltage detector
(PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An
interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
In addition, the device embeds a Peripheral Voltage Monitor which compares the
independent supply voltage VDDA with a fixed threshold in order to ensure that the
peripheral is in its functional supply range.
DS11451 Rev 4
19/156
50
Functional overview
3.9.3
STM32L432KB STM32L432KC
Voltage regulator
Two embedded linear voltage regulators supply most of the digital circuitries: the main
regulator (MR) and the low-power regulator (LPR).
•
The MR is used in the Run and Sleep modes and in the Stop 0 mode.
•
The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is
also used to supply the 16 Kbyte SRAM2 in Standby with SRAM2 retention.
•
Both regulators are in power-down in Standby and Shutdown modes: the regulator
output is in high impedance, and the kernel circuitry is powered down thus inducing
zero consumption.
The ultralow-power STM32L432xx supports dynamic voltage scaling to optimize its power
consumption in run mode. The voltage from the Main Regulator that supplies the logic
(VCORE) can be adjusted according to the system’s maximum operating frequency.
There are two power consumption ranges:
•
Range 1 with the CPU running at up to 80 MHz.
•
Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also
limited to 26 MHz.
The VCORE can be supplied by the low-power regulator, the main regulator being switched
off. The system is then in Low-power run mode.
•
3.9.4
Low-power run mode with the CPU running at up to 2 MHz. Peripherals with
independent clock can be clocked by HSI16.
Low-power modes
The ultra-low-power STM32L432xx supports seven low-power modes to achieve the best
compromise between low-power consumption, short startup time, available peripherals and
available wakeup sources.
20/156
DS11451 Rev 4
Mode
Run
LPRun
Sleep
LPSleep
Regulator(1)
MR range 1
MR range2
LPR
MR range 1
MR range2
LPR
DS11451 Rev 4
Flash SRAM Clocks
Yes
ON(4)
ON
Any
Yes
ON(4)
ON
Any
except
PLL
No
ON(4)
ON(5)
Any
No
ON(4)
ON(5)
Any
except
PLL
All except USB_FS, RNG
Any interrupt or
event
LSE
LSI
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1)
USARTx (x=1,2)(6)
LPUART1(6)
I2Cx (x=1,3)(7)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
USARTx (x=1,2)(6)
LPUART1(6)
I2Cx (x=1,3)(7)
LPTIMx (x=1,2)
USB_FS(8)
SWPMI1(9)
MR Range 1
Stop 0
No
MR Range 2
DMA & Peripherals(2)
CPU
OFF
ON
All
All except USB_FS, RNG
Wakeup source
N/A
Consumption(3)
97 µA/MHz
84 µA/MHz
All except USB_FS, RNG
N/A
94 µA/MHz
All
Any interrupt or
event
28 µA/MHz
All except USB_FS, RNG
26 µA/MHz
29 µA/MHz
Wakeup time
N/A
to Range 1: 4 µs
to Range 2: 64 µs
6 cycles
STM32L432KB STM32L432KC
Table 3. STM32L432xx modes overview
6 cycles
108 µA
2.4 µs in SRAM
4.1 µs in Flash
108 µA
Functional overview
21/156
Mode
Stop 1
DS11451 Rev 4
Stop 2
Regulator
LPR
LPR
CPU
No
No
DMA & Peripherals(2)
Wakeup source
Consumption(3)
Wakeup time
LSE
LSI
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1)
USARTx (x=1,2)(6)
LPUART1(6)
I2Cx (x=1,3)(7)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
USARTx (x=1,2)(6)
LPUART1(6)
I2Cx (x=1,3)(7)
LPTIMx (x=1,2)
USB_FS(8)
SWPMI1(9)
4.34 µA w/o RTC
4.63 µA w RTC
6.3 µs in SRAM
7.8 µs in Flash
LSE
LSI
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
I2C3(7)
LPUART1(6)
LPTIM1
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
I2C3(7)
LPUART1(6)
LPTIM1
1.3 µA w/o RTC
1.4 µA w/RTC
6.8 µs in SRAM
8.2 µs in Flash
Flash SRAM Clocks
Off
Off
ON
ON
Functional overview
22/156
Table 3. STM32L432xx modes overview (continued)
(1)
STM32L432KB STM32L432KC
Mode
Regulator
CPU
Flash SRAM Clocks
Standby
OFF
Shutdown
OFF
Power
ed Off
Power
ed Off
Off
Off
Power
ed
Off
Power
ed
Off
Wakeup source
Consumption(3)
Wakeup time
0.20 µA w/o RTC
0.46 µA w/ RTC
DS11451 Rev 4
LSE
LSI
BOR, RTC, IWDG
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pull-down
Reset pin
5 I/Os (WKUPx)(10)
BOR, RTC, IWDG
LSE
RTC
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pulldown(11)
Reset pin
5 I/Os (WKUPx)(10)
RTC
SRAM
2 ON
LPR
DMA & Peripherals(2)
0.03 µA w/o RTC
0.29 µA w/ RTC
0.01 µA w/o RTC
0.20 µA w/ RTC
12.2 µs
STM32L432KB STM32L432KC
Table 3. STM32L432xx modes overview (continued)
(1)
262 µs
1. LPR means Main regulator is OFF and Low-power regulator is ON.
2. All peripherals can be active or clock gated to save power consumption.
3. Typical current at VDD = 1.8 V, 25°C. Consumptions values provided running from SRAM, Flash memory Off, 80 MHz in Range 1, 26 MHz in Range 2, 2 MHz in
LPRun/LPSleep.
4. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM.
5. The SRAM1 and SRAM2 clocks can be gated on or off independently.
6. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
8. USB_FS wakeup by resume from suspend and attach detection protocol event.
9. SWPMI1 wakeup by resume from suspend.
11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.
23/156
Functional overview
10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
Functional overview
STM32L432KB STM32L432KC
By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the
user to select one of the low-power modes described below:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
•
Low-power run mode
This mode is achieved with VCORE supplied by the low-power regulator to minimize the
regulator's operating current. The code can be executed from SRAM or from Flash,
and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can
be clocked by HSI16.
•
Low-power sleep mode
This mode is entered from the low-power run mode. Only the CPU clock is stopped.
When wakeup is triggered by an event or an interrupt, the system reverts to the lowpower run mode.
•
Stop 0, Stop 1 and Stop 2 modes
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI RC
and the HSI16 RC are disabled. The LSE or LSI is still running.
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).
Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode
to detect their wakeup condition.
Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode,
most of the VCORE domain is put in a lower leakage mode.
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller
wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator
remains ON, allowing a very fast wakeup time but with much higher consumption.
The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI
up to 48 MHz or HSI16, depending on software configuration.
•
Standby mode
The Standby mode is used to achieve the lowest power consumption with BOR. The
internal regulator is switched off so that the VCORE domain is powered off. The PLL, the
MSI RC and the HSI16 RC are also switched off.
The RTC can remain active (Standby mode with RTC, Standby mode without RTC).
The brown-out reset (BOR) always remains active in Standby mode.
The state of each I/O during standby mode can be selected by software: I/O with
internal pull-up, internal pull-down or floating.
After entering Standby mode, SRAM1 and register contents are lost except for registers
in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in
Standby mode, supplied by the low-power Regulator (Standby with SRAM2 retention
mode).
The device exits Standby mode when an external reset (NRST pin), an IWDG reset,
WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm,
periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).
The system clock after wakeup is MSI up to 8 MHz.
24/156
DS11451 Rev 4
STM32L432KB STM32L432KC
•
Functional overview
Shutdown mode
The Shutdown mode allows to achieve the lowest power consumption. The internal
regulator is switched off so that the VCORE domain is powered off. The PLL, the HSI16,
the MSI and the LSI oscillators are also switched off.
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).
The BOR is not available in Shutdown mode. No power voltage monitoring is possible
in this mode, therefore the switch to Backup domain is not supported.
SRAM1, SRAM2 and register contents are lost except for registers in the Backup
domain.
The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin
event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic
wakeup, timestamp, tamper).
The system clock after wakeup is MSI at 4 MHz.
DS11451 Rev 4
25/156
50
Functional overview
STM32L432KB STM32L432KC
Table 4. Functionalities depending on the working mode(1)
-
Y
-
Y
-
-
-
-
-
-
-
-
-
O(2)
O(2)
O(2)
O(2)
-
-
-
-
-
-
-
-
SRAM1 (48 KB)
Y
Y(3)
Y
Y(3)
Y
-
Y
-
-
-
-
-
SRAM2 (16 KB)
Y
Y(3)
Y
Y(3)
Y
-
Y
-
O(4)
-
-
-
Quad SPI
O
O
O
O
-
-
-
-
-
-
-
-
Backup Registers
Y
Y
Y
Y
Y
-
Y
-
Y
-
Y
-
Brown-out reset
(BOR)
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
-
Programmable
Voltage Detector
(PVD)
O
O
O
O
O
O
O
O
-
-
-
-
Peripheral Voltage
Monitor (PVMx;
x=1,3,4)
O
O
O
O
O
O
O
O
-
-
-
-
DMA
O
O
O
O
-
-
-
-
-
-
-
-
High Speed Internal
(HSI16)
O
O
O
O
(5)
-
(5)
-
-
-
-
-
Oscillator RC48
O
O
-
-
-
-
-
-
-
-
-
-
High Speed
External (HSE)
O
O
O
O
-
-
-
-
-
-
-
-
Low Speed Internal
(LSI)
O
O
O
O
O
-
O
-
O
-
-
-
Low Speed External
(LSE)
O
O
O
O
O
-
O
-
O
-
O
-
Multi-Speed Internal
(MSI)
O
O
O
O
-
-
-
-
-
-
-
-
Clock Security
System (CSS)
O
O
O
O
-
-
-
-
-
-
-
-
Clock Security
System on LSE
O
O
O
O
O
O
O
O
O
O
-
-
RTC / Auto wakeup
O
O
O
O
O
O
O
O
O
O
O
O
Number of RTC
Tamper pins
1
1
1
1
1
O
1
O
1
O
1
O
O(8)
O(8)
-
-
-
O
-
-
-
-
-
-
CPU
Flash memory (up
to 256 KB)
USB FS
Run
Low- LowSleep power power
run
sleep
DS11451 Rev 4
-
Wakeup capability
-
Wakeup capability
Shutdow
Wakeup capability
Standby
-
Peripheral
26/156
Stop 2
Wakeup capability
Stop 0/1
STM32L432KB STM32L432KC
Functional overview
Table 4. Functionalities depending on the working mode(1) (continued)
-
-
-
-
-
-
Shutdow
-
Wakeup capability
Low- LowSleep power power
run
sleep
Standby
Wakeup capability
Run
Stop 2
Wakeup capability
Peripheral
Wakeup capability
Stop 0/1
-
-
-
USARTx (x=1,2)
O
O
O
O
O(6) O(6)
Low-power UART
(LPUART)
O
O
O
O
O(6) O(6) O(6) O(6)
-
-
-
-
I2Cx (x=1)
O
O
O
O
O(7) O(7)
(7)
O
(7)
-
-
-
-
-
-
(7)
(7)
-
-
-
-
O
O
I2C3
O
O
O
O
O
SPIx (x=1,3)
O
O
O
O
-
-
-
-
-
-
-
-
CAN
O
O
O
O
-
-
-
-
-
-
-
-
SWPMI1
O
O
O
O
-
O
-
-
-
-
-
-
SAIx (x=1)
O
O
O
O
-
-
-
-
-
-
-
-
ADCx (x=1)
O
O
O
O
-
-
-
-
-
-
-
-
DAC1
O
O
O
O
O
-
-
-
-
-
-
-
OPAMPx (x=1)
O
O
O
O
O
-
-
-
-
-
-
-
COMPx (x=1,2)
O
O
O
O
O
O
O
O
-
-
-
-
Temperature sensor
O
O
O
O
-
-
-
-
-
-
-
-
Timers (TIMx)
O
O
O
O
-
-
-
-
-
-
-
-
Low-power timer 1
(LPTIM1)
O
O
O
O
O
O
O
O
-
-
-
-
Low-power timer 2
(LPTIM2)
O
O
O
O
O
O
-
-
-
-
-
-
Independent
watchdog (IWDG)
O
O
O
O
O
O
O
O
O
O
-
-
Window watchdog
(WWDG)
O
O
O
O
-
-
-
-
-
-
-
-
SysTick timer
O
O
O
O
-
-
-
-
-
-
-
-
Touch sensing
controller (TSC)
O
O
O
O
-
-
-
-
-
-
-
-
Random number
generator (RNG)
O(8)
O(8)
-
-
-
-
-
-
-
-
-
-
CRC calculation
unit
O
O
O
O
-
-
-
-
-
-
-
-
GPIOs
O
O
O
O
O
O
O
O
(9)
DS11451 Rev 4
2
pins (11)
(10)
2
pins
(10)
27/156
50
Functional overview
STM32L432KB STM32L432KC
1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). - = Not
available.
2. The Flash can be configured in power-down mode. By default, it is not in power-down mode.
3. The SRAM clock can be gated on or off.
4. SRAM2 content is preserved when the bit RRS is set in PWR_CR3 register.
5. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16
is woken up by the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put
off when the peripheral does not need it anymore.
6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start,
address match or received frame event.
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address
match.
8. Voltage scaling Range 1 only.
9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PA2.
11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is
lost when exiting the Shutdown mode.
3.9.5
Reset mode
In order to improve the consumption under reset, the I/Os state under and after reset is
“analog state” (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is
deactivated when the reset source is internal.
3.10
Interconnect matrix
Several peripherals have direct connections between them. This allows autonomous
communication between peripherals, saving CPU resources thus power supply
consumption. In addition, these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run
and sleep, Stop 0, Stop 1 and Stop 2 modes.
28/156
Low-power sleep
Stop 0 / Stop 1
Stop 2
TIM15/TIM16
Low-power run
TIMx
Sleep
Interconnect source
Run
Table 5. STM32L432xx peripherals interconnect matrix
TIMx
Timers synchronization or chaining
Y
Y
Y
Y
-
-
ADCx
DAC1
Conversion triggers
Y
Y
Y
Y
-
-
DMA
Memory to memory transfer trigger
Y
Y
Y
Y
-
-
COMPx
Comparator output blanking
Y
Y
Y
Y
-
-
IRTIM
Infrared interface output generation
Y
Y
Y
Y
-
-
Interconnect
destination
Interconnect action
DS11451 Rev 4
STM32L432KB STM32L432KC
Functional overview
Run
Sleep
Low-power run
Low-power sleep
Stop 0 / Stop 1
Stop 2
Table 5. STM32L432xx peripherals interconnect matrix (continued)
TIM1
TIM2
Timer input channel, trigger, break from
analog signals comparison
Y
Y
Y
Y
-
-
LPTIMERx
Low-power timer triggered by analog
signals comparison
Y
Y
Y
Y
Y
(1)
TIM1
Timer triggered by analog watchdog
Y
Y
Y
Y
-
-
TIM16
Timer input channel from RTC events
Y
Y
Y
Y
-
-
LPTIMERx
Low-power timer triggered by RTC alarms
or tampers
Y
Y
Y
Y
Y
(1)
All clocks sources (internal TIM2
and external)
TIM15, 16
Clock source used as input channel for
RC measurement and trimming
Y
Y
Y
Y
-
-
USB
Timer triggered by USB SOF
Y
Y
-
-
-
-
Timer break
Y
Y
Y
Y
-
-
TIMx
External trigger
Y
Y
Y
Y
-
-
LPTIMERx
External trigger
Y
Y
Y
Y
Y
(1)
ADCx
DAC1
Conversion external trigger
Y
Y
Y
Y
-
-
Interconnect source
COMPx
ADCx
RTC
Interconnect
destination
TIM2
CSS
CPU (hard fault)
RAM (parity error)
TIM1
Flash memory (ECC error) TIM15,16
COMPx
PVD
Interconnect action
Y
Y
Y
GPIO
1. LPTIM1 only.
DS11451 Rev 4
29/156
50
Functional overview
3.11
STM32L432KB STM32L432KC
Clocks and startup
The clock controller (see Figure 4) distributes the clocks coming from different oscillators to
the core and the peripherals. It also manages clock gating for low-power modes and
ensures clock robustness. It features:
30/156
•
Clock prescaler: to get the best trade-off between speed and current consumption,
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler
•
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
•
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
•
System clock source: four different clock sources can be used to drive the master
clock SYSCLK:
–
High Speed External clock (HSE) can supply a PLL.
–
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can
supply a PLL
–
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate
12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is
available in the system (LSE), the MSI frequency can be automatically trimmed by
hardware to reach better than ±0.25% accuracy. In this mode the MSI can feed the
USB device. The MSI can supply a PLL.
–
System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency
at 80 MHz.
•
RC48 with clock recovery system (HSI48): internal RC48 MHz clock source can be
used to drive the USB or the RNG peripherals. This clock can be output on the MCO.
•
Auxiliary clock source: two ultralow-power clock sources that can be used to drive
the real-time clock:
–
32.768 kHz low-speed external crystal (LSE), supporting four drive capability
modes. The LSE can also be configured in bypass mode for an external clock.
–
32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock accuracy is ±5% accuracy.
•
Peripheral clock sources: Several peripherals (USB, RNG, SAI, USARTs, I2Cs,
LPTimers, ADC, SWPMI) have their own independent clock whatever the system clock.
Two PLLs, each having three independent outputs allowing the highest flexibility, can
generate independent clocks for the ADC, the USB/RNG and the SAI.
•
Startup clock: after reset, the microcontroller restarts by default with an internal 4 MHz
clock (MSI). The prescaler ratio and clock source can be changed by the application
program as soon as the code execution starts.
•
Clock security system (CSS): this feature can be enabled by software. If a HSE clock
failure occurs, the master clock is automatically switched to HSI16 and a software
DS11451 Rev 4
STM32L432KB STM32L432KC
Functional overview
interrupt is generated if enabled. LSE failure can also be detected and generated an
interrupt.
•
Clock-out capability:
–
MCO: microcontroller clock output: it outputs one of the internal clocks for
external use by the application. Low frequency clocks (LSI, LSE) are available
down to Stop 1 low power state.
–
LSCO: low speed clock output: it outputs LSI or LSE in all low-power
modesdown to Standby mode. LSE can also be output on LSCO in Shutdown
mode. LSCO is not available in VBAT mode.
Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and
the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB
domains is 80 MHz.
DS11451 Rev 4
31/156
50
Functional overview
STM32L432KB STM32L432KC
Figure 4. Clock tree
to IWDG
LSI RC 32 kHz
LSCO
to RTC
OSC32_OUT
LSE OSC
32.768 kHz
/32
OSC32_IN
LSE
LSI
HSE
to PWR
SYSCLK
MCO
/ 1䊻㻝㻢
MSI
HSI16
Clock
source
control
HSI48
PLLCLK
CK_IN
to AHB bus, core, memory and DMA
AHB PRESC
/ 1,2,..512
HCLK
to Cortex system timer
HSE
Clock detector
FCLK Cortex free running clock
/8
MSI
SYSCLK
APB1 PRESC
/ 1,2,4,8,16
HSI16
PCLK1
to APB1 peripherals
x1 or x2
HSI RC
16 MHz
LSE
HSI16
SYSCLK
to USARTx
x=2..3
to LPUART1
HSI16
SYSCLK
MSI RC
100 kHz – 48 MHz
to TIMx
x=2,6,7
to I2Cx
x=1,2,3
LSI
LSE
HSI16
to LPTIMx
x=1,2
HSI16
to SWPMI
MSI
PLL
/M
VCO FVCO
PLLSAI1
VCO FVCO
/P
PLLSAI1CLK
/Q
PLL48M1CLK
/R
PLLCLK
/P
PLLSAI2CLK
/Q
PLL48M2CLK
/R
PLLADC1CLK
PCLK2
HSI16
APB2 PRESC
/ 1,2,4,8,16
HSE
to APB2 peripherals
x1 or x2
LSE
HSI16
SYSCLK
SYSCLK
HSI RC
48 MHz
HSI16
to TIMx
x=1,15,16
to USART1
to ADC
MSI
CRS
48 MHz clock to USB, RNG
HSI16
to SAI1
SAI1_EXTCLK
MSv39217V4
32/156
DS11451 Rev 4
STM32L432KB STM32L432KC
3.12
Functional overview
General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be
achieved thanks to their mapping on the AHB2 bus.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
3.13
Direct memory access controller (DMA)
The device embeds 2 DMAs. Refer to Table 6: DMA implementation for the features
implementation.
Direct memory access (DMA) is used in order to provide high-speed data transfer between
peripherals and memory as well as memory to memory. Data can be quickly moved by DMA
without any CPU actions. This keeps CPU resources free for other operations.
The two DMA controllers have 14 channels in total, each dedicated to managing memory
access requests from one or more peripherals. Each has an arbiter for handling the priority
between DMA requests.
The DMA supports:
•
14 independently configurable channels (requests)
•
Each channel is connected to dedicated hardware DMA requests, software trigger is
also supported on each channel. This configuration is done by software.
•
Priorities between requests from channels of one DMA are software programmable (4
levels consisting of very high, high, medium, low) or hardware in case of equality
(request 1 has priority over request 2, etc.)
•
Independent source and destination transfer size (byte, half word, word), emulating
packing and unpacking. Source/destination addresses must be aligned on the data
size.
•
Support for circular buffer management
•
3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error)
logically ORed together in a single interrupt request for each channel
•
Memory-to-memory transfer
•
Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral
transfers
•
Access to Flash, SRAM, APB and AHB peripherals as source and destination
•
Programmable number of data to be transferred: up to 65536.
Table 6. DMA implementation
DMA features
DMA1
DMA2
Number of regular channels
7
7
DS11451 Rev 4
33/156
50
Functional overview
STM32L432KB STM32L432KC
3.14
Interrupts and events
3.14.1
Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 61 maskable interrupt channels plus the 16 interrupt lines of the Cortex®M4.
The NVIC benefits are the following:
•
Closely coupled NVIC gives low latency interrupt processing
•
Interrupt entry vector table address passed directly to the core
•
Allows early processing of interrupts
•
Processing of late arriving higher priority interrupts
•
Support for tail chaining
•
Processor state automatically saved on interrupt entry, and restored on interrupt exit,
with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal
interrupt latency.
3.14.2
Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 34 edge detector lines used to generate
interrupt/event requests and wake-up the system from Stop mode. Each external line can be
independently configured to select the trigger event (rising edge, falling edge, both) and can
be masked independently. A pending register maintains the status of the interrupt requests.
The internal lines are connected to peripherals with wakeup from Stop mode capability. The
EXTI can detect an external line with a pulse width shorter than the internal clock period. Up
to 26 GPIOs can be connected to the 16 external interrupt lines.
34/156
DS11451 Rev 4
STM32L432KB STM32L432KC
3.15
Functional overview
Analog to digital converter (ADC)
The device embeds a successive approximation analog-to-digital converter with the
following features:
•
12-bit native resolution, with built-in calibration
•
5.33 Msps maximum conversion rate with full resolution
Down to 18.75 ns sampling time
–
Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit
resolution)
•
Up to 10 external channels.
•
4 internal channels: internal reference voltage, temperature sensor, DAC1_OUT1 and
DAC1_OUT2.
•
Single-ended and differential mode inputs
•
Low-power design
•
3.15.1
–
–
Capable of low-current operation at low conversion rate (consumption decreases
linearly with speed)
–
Dual clock domain architecture: ADC speed independent from CPU frequency
Highly versatile digital interface
–
Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups
of analog signals conversions can be programmed to differentiate background and
high-priority real-time conversions
–
ADC supports multiple trigger inputs for synchronization with on-chip timers and
external signals
–
Results stored into data register or in RAM with DMA controller support
–
Data pre-processing: left/right alignment and per channel offset compensation
–
Built-in oversampling unit for enhanced SNR
–
Channel-wise programmable sampling time
–
Three analog watchdog for automatic voltage monitoring, generating interrupts
and trigger for selected timers
–
Hardware assistant to prepare the context of the injected channels to allow fast
context switching
Temperature sensor
The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature.
The temperature sensor is internally connected to the ADC1_IN17 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
DS11451 Rev 4
35/156
50
Functional overview
STM32L432KB STM32L432KC
Table 7. Temperature sensor calibration values
3.15.2
Calibration value name
Description
Memory address
TS_CAL1
TS ADC raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75A8 - 0x1FFF 75A9
TS_CAL2
TS ADC raw data acquired at a
temperature of 130 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75CA - 0x1FFF 75CB
Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for
the ADC and Comparators. VREFINT is internally connected to the ADC1_IN0 input
channel. The precise voltage of VREFINT is individually measured for each part by ST
during production test and stored in the system memory area. It is accessible in read-only
mode.
Table 8. Internal voltage reference calibration values
3.16
Calibration value name
Description
Memory address
VREFINT
Raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75AA - 0x1FFF 75AB
Digital to analog converter (DAC)
Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage
signal outputs. The chosen design structure is composed of integrated resistor strings and
an amplifier in inverting configuration.
This digital interface supports the following features:
•
Up to two DAC output channels
•
8-bit or 12-bit output mode
•
Buffer offset calibration (factory and user trimming)
•
Left or right data alignment in 12-bit mode
•
Synchronized update capability
•
Noise-wave generation
•
Triangular-wave generation
•
Dual DAC channel independent or simultaneous conversions
•
DMA capability for each channel
•
External triggers for conversion
•
Sample and hold low-power mode, with internal or external capacitor
The DAC channels are triggered through the timer update outputs that are also connected
to different DMA channels.
36/156
DS11451 Rev 4
STM32L432KB STM32L432KC
3.17
Functional overview
Comparators (COMP)
The STM32L432xx devices embed two rail-to-rail comparators with programmable
reference voltage (internal or external), hysteresis and speed (low speed for low-power) and
with selectable output polarity.
The reference voltage can be one of the following:
•
External I/O
•
DAC output channels
•
Internal reference voltage or submultiple (1/4, 1/2, 3/4).
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers
and can be also combined into a window comparator.
3.18
Operational amplifier (OPAMP)
The STM32L432xx embeds one operational amplifier with external or internal follower
routing and PGA capability.
The operational amplifier features:
3.19
•
Low input bias current
•
Low offset voltage
•
Low-power mode
•
Rail-to-rail input
Touch sensing controller (TSC)
The touch sensing controller provides a simple solution for adding capacitive sensing
functionality to any application. Capacitive sensing technology is able to detect finger
presence near an electrode which is protected from direct touch by a dielectric (glass,
plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is
measured using a proven implementation based on a surface charge transfer acquisition
principle.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware
library which is free to use and allows touch sensing functionality to be implemented reliably
in the end application.
DS11451 Rev 4
37/156
50
Functional overview
STM32L432KB STM32L432KC
The main features of the touch sensing controller are the following:
•
Proven and robust surface charge transfer acquisition principle
•
Supports up to 3 capacitive sensing channels
•
Up to 3 capacitive sensing channels can be acquired in parallel offering a very good
response time
•
Spread spectrum feature to improve system robustness in noisy environments
•
Full hardware management of the charge transfer acquisition sequence
•
Programmable charge transfer frequency
•
Programmable sampling capacitor I/O pin
•
Programmable channel I/O pin
•
Programmable max count value to avoid long acquisition when a channel is faulty
•
Dedicated end of acquisition and max count error flags with interrupt capability
•
One sampling capacitor for up to 3 capacitive sensing channels to reduce the system
components
•
Compatible with proximity, touchkey, linear and rotary touch sensor implementation
•
Designed to operate with STMTouch touch sensing firmware library
Note:
The number of capacitive sensing channels is dependent on the size of the packages and
subject to I/O availability.
3.20
Random number generator (RNG)
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated
analog circuit.
3.21
Timers and watchdogs
The STM32L432xx includes one advanced control timers, up to five general-purpose timers,
two basic timers, two low-power timers, two watchdog timers and a SysTick timer. The table
below compares the features of the advanced control, general purpose and basic timers.
Table 9. Timer feature comparison
Timer type
Timer
Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
outputs
Advanced
control
TIM1
16-bit
Up, down,
Up/down
Any integer
between 1
and 65536
Yes
4
3
Generalpurpose
TIM2
32-bit
Up, down,
Up/down
Any integer
between 1
and 65536
Yes
4
No
Generalpurpose
TIM15
16-bit
Up
Any integer
between 1
and 65536
Yes
2
1
38/156
DS11451 Rev 4
STM32L432KB STM32L432KC
Functional overview
Table 9. Timer feature comparison (continued)
Timer type
Timer
Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
outputs
Generalpurpose
TIM16
16-bit
Up
Any integer
between 1
and 65536
Yes
1
1
Basic
TIM6, TIM7
16-bit
Up
Any integer
between 1
and 65536
Yes
0
No
3.21.1
Advanced-control timer (TIM1)
The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6
channels. They have complementary PWM outputs with programmable inserted deadtimes. They can also be seen as complete general-purpose timers. The 4 independent
channels can be used for:
•
Input capture
•
Output compare
•
PWM generation (edge or center-aligned modes) with full modulation capability (0100%)
•
One-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs
disabled to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIMx timers (described in
Section 3.21.2) using the same architecture, so the advanced-control timer can work
together with the TIMx timers via the Timer Link feature for synchronization or event
chaining.
DS11451 Rev 4
39/156
50
Functional overview
3.21.2
STM32L432KB STM32L432KC
General-purpose timers (TIM2, TIM15, TIM16)
There are up to three synchronizable general-purpose timers embedded in the
STM32L432xx (see Table 9 for differences). Each general-purpose timer can be used to
generate PWM outputs, or act as a simple time base.
•
TIM2
It is a full-featured general-purpose timer:
TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler.
This timer features 4 independent channels for input capture/output compare, PWM or
one-pulse mode output. It can work with the other general-purpose timers via the Timer
Link feature for synchronization or event chaining.
The counter can be frozen in debug mode.
It has independent DMA request generation and support quadrature encoder.
•
TIM15 and 16
They are general-purpose timers with mid-range features:
They have 16-bit auto-reload upcounters and 16-bit prescalers.
–
TIM15 has 2 channels and 1 complementary channel
–
TIM16 has 1 channel and 1 complementary channel
All channels can be used for input capture/output compare, PWM or one-pulse mode
output.
The timers can work together via the Timer Link feature for synchronization or event
chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.
3.21.3
Basic timers (TIM6 and TIM7)
The basic timers are mainly used for DAC trigger generation. They can also be used as
generic 16-bit timebases.
3.21.4
Low-power timer (LPTIM1 and LPTIM2)
The devices embed two low-power timers. These timers have an independent clock and are
running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to
wakeup the system from Stop mode.
LPTIM1 is active in Stop 0, Stop 1 and Stop 2 modes.
LPTIM2 is active in Stop 0 and Stop 1 mode.
40/156
DS11451 Rev 4
STM32L432KB STM32L432KC
Functional overview
This low-power timer supports the following features:
3.21.5
•
16-bit up counter with 16-bit autoreload register
•
16-bit compare register
•
Configurable output: pulse, PWM
•
Continuous/ one shot mode
•
Selectable software/hardware input trigger
•
Selectable clock source
–
Internal clock sources: LSE, LSI, HSI16 or APB clock
–
External clock source over LPTIM input (working even with no internal clock
source running, used by pulse counter application).
•
Programmable digital glitch filter
•
Encoder mode (LPTIM1 only)
Infrared interface (IRTIM)
The STM32L432xx includes one infrared interface (IRTIM). It can be used with an infrared
LED to perform remote control functions. It uses TIM15 and TIM16 output channels to
generate output signal waveforms on IR_OUT pin.
3.21.6
Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC (LSI) and as it operates independently
from the main clock, it can operate in Stop and Standby modes. It can be used either as a
watchdog to reset the device when a problem occurs, or as a free running timer for
application timeout management. It is hardware or software configurable through the option
bytes. The counter can be frozen in debug mode.
3.21.7
System window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.21.8
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
•
A 24-bit down counter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0.
•
Programmable clock source
DS11451 Rev 4
41/156
50
Functional overview
3.22
STM32L432KB STM32L432KC
Real-time clock (RTC) and backup registers
The RTC is an independent BCD timer/counter. It supports the following features:
•
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
•
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
•
Two programmable alarms.
•
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
•
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
•
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy.
•
One anti-tamper detection pin with programmable filter.
•
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event.
•
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable
resolution and period.
The RTC and the 32 backup registers are supplied through a switch that takes power from
the VDD supply.
The backup registers are 32-bit registers used to store 128 bytes of user application data
when VDD power is not present. They are not reset by a system or power reset, or when the
device wakes up from Standby or Shutdown mode.
The RTC clock sources can be:
•
A 32.768 kHz external crystal (LSE)
•
An external resonator or oscillator (LSE)
•
The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
•
The high-speed external clock (HSE) divided by 32.
The RTC is functional in all low-power modes when it is clocked by the LSE. When clocked
by the LSI, the RTC is functional in all low-power modes except Shutdown mode.
All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt
and wakeup the device from the low-power modes.
42/156
DS11451 Rev 4
STM32L432KB STM32L432KC
3.23
Functional overview
Inter-integrated circuit interface (I2C)
The device embeds two I2C. Refer to Table 10: I2C implementation for the features
implementation.
The I2C bus interface handles communications between the microcontroller and the serial
I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
•
•
I2C-bus specification and user manual rev. 5 compatibility:
–
Slave and master modes, multimaster capability
–
Standard-mode (Sm), with a bitrate up to 100 kbit/s
–
Fast-mode (Fm), with a bitrate up to 400 kbit/s
–
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
–
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
–
Programmable setup and hold times
–
Optional clock stretching
System Management Bus (SMBus) specification rev 2.0 compatibility:
–
Hardware PEC (Packet Error Checking) generation and verification with ACK
control
–
Address resolution protocol (ARP) support
–
SMBus alert
•
Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
•
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming. Refer to
Figure 4: Clock tree.
•
Wakeup from Stop mode on address match
•
Programmable analog and digital noise filters
•
1-byte buffer with DMA capability
Table 10. I2C implementation
I2C features(1)
I2C1
I2C3
Standard-mode (up to 100 kbit/s)
X
X
Fast-mode (up to 400 kbit/s)
X
X
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)
X
X
Programmable analog and digital noise filters
X
X
SMBus/PMBus hardware support
X
X
Independent clock
X
X
Wakeup from Stop 0 / Stop 1 mode on address match
X
X
Wakeup from Stop 2 mode on address match
-
X
1. X: supported
DS11451 Rev 4
43/156
50
Functional overview
3.24
STM32L432KB STM32L432KC
Universal synchronous/asynchronous receiver transmitter
(USART)
The STM32L432xx devices have two embedded universal synchronous receiver
transmitters (USART1 and USART2).
These interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. They provide hardware management of the CTS and RTS
signals, and RS485 Driver Enable. They are able to communicate at speeds of up to
10Mbit/s.
USART1 and USART2 also provide Smart Card mode (ISO 7816 compliant) and SPI-like
communication capability.
All USART have a clock domain independent from the CPU clock, allowing the USARTx
(x=1,2) to wake up the MCU from Stop mode using baudrates up to 204 Kbaud. The wake
up events from Stop mode are programmable and can be:
•
Start bit detection
•
Any received data frame
•
A specific programmed data frame
All USART interfaces can be served by the DMA controller.
Table 11. STM32L432xx USART/LPUART features
USART modes/features(1)
USART1
USART2
LPUART1
Hardware flow control for modem
X
X
X
Continuous communication using DMA
X
X
X
Multiprocessor communication
X
X
X
Synchronous mode
X
X
-
Smartcard mode
X
X
-
Single-wire half-duplex communication
X
X
X
IrDA SIR ENDEC block
X
X
-
LIN mode
X
X
-
Dual clock domain
X
X
X
Wakeup from Stop 0 / Stop 1 modes
X
X
X
Wakeup from Stop 2 mode
-
-
X
Receiver timeout interrupt
X
X
-
Modbus communication
X
X
-
Auto baud rate detection
X (4 modes)
Driver Enable
X
LPUART/USART data length
X
7, 8 and 9 bits
1. X = supported.
44/156
-
DS11451 Rev 4
X
STM32L432KB STM32L432KC
3.25
Functional overview
Low-power universal asynchronous receiver transmitter
(LPUART)
The device embeds one Low-Power UART. The LPUART supports asynchronous serial
communication with minimum power consumption. It supports half duplex single wire
communication and modem operations (CTS/RTS). It allows multiprocessor
communication.
The LPUART has a clock domain independent from the CPU clock, and can wakeup the
system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop
mode are programmable and can be:
•
Start bit detection
•
Any received data frame
•
A specific programmed data frame
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600
baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while
having an extremely low energy consumption. Higher speed clock can be used to reach
higher baudrates.
LPUART interface can be served by the DMA controller.
DS11451 Rev 4
45/156
50
Functional overview
3.26
STM32L432KB STM32L432KC
Serial peripheral interface (SPI)
Two SPI interfaces allow communication up to 40 Mbits/s in master and up to 24 Mbits/s
slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8
master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI
interfaces support NSS pulse mode, TI mode and Hardware CRC calculation.
All SPI interfaces can be served by the DMA controller.
3.27
Serial audio interfaces (SAI)
The device embeds 1 SAI. Refer to Table 12: SAI implementation for the features
implementation. The SAI bus interface handles communications between the
microcontroller and the serial audio protocol.
The SAI peripheral supports:
•
Two independent audio sub-blocks which can be transmitters or receivers with their
respective FIFO.
•
8-word integrated FIFOs for each audio sub-block.
•
Synchronous or asynchronous mode between the audio sub-blocks.
•
Master or slave configuration independent for both audio sub-blocks.
•
Clock generator for each audio block to target independent audio frequency sampling
when both audio sub-blocks are configured in master mode.
•
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.
•
Peripheral with large configurability and flexibility allowing to target as example the
following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF
out.
•
Up to 16 slots available with configurable size and with the possibility to select which
ones are active in the audio frame.
•
Number of bits by frame may be configurable.
•
Frame synchronization active level configurable (offset, bit length, level).
•
First active bit position in the slot is configurable.
•
LSB first or MSB first for data transfer.
•
Mute mode.
•
Stereo/Mono audio frame capability.
•
Communication clock strobing edge configurable (SCK).
•
Error flags with associated interrupts if enabled respectively.
•
•
46/156
–
Overrun and underrun detection.
–
Anticipated frame synchronization signal detection in slave mode.
–
Late frame synchronization signal detection in slave mode.
–
Codec not ready for the AC’97 mode in reception.
Interruption sources when enabled:
–
Errors.
–
FIFO requests.
DMA interface with 2 dedicated channels to handle access to the dedicated integrated
FIFO of each SAI audio sub-block.
DS11451 Rev 4
STM32L432KB STM32L432KC
Functional overview
Table 12. SAI implementation
SAI features
Support(1)
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97
X
Mute mode
X
Stereo/Mono audio frame capability.
X
16 slots
X
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit
X
FIFO Size
X (8 Word)
SPDIF
X
1. X: supported
3.28
Single wire protocol master interface (SWPMI)
The Single wire protocol master interface (SWPMI) is the master interface corresponding to
the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The
main features are:
•
full-duplex communication mode
•
automatic SWP bus state management (active, suspend, resume)
•
configurable bitrate up to 2 Mbit/s
•
automatic SOF, EOF and CRC handling
SWPMI can be served by the DMA controller.
3.29
Controller area network (CAN)
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It
can receive and transmit standard frames with 11-bit identifiers as well as extended frames
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and
14 scalable filter banks.
DS11451 Rev 4
47/156
50
Functional overview
STM32L432KB STM32L432KC
The CAN peripheral supports:
•
Supports CAN protocol version 2.0 A, B Active
•
Bit rates up to 1 Mbit/s
•
Transmission
•
•
•
3.30
–
Three transmit mailboxes
–
Configurable transmit priority
Reception
–
Two receive FIFOs with three stages
–
14 Scalable filter banks
–
Identifier list feature
–
Configurable FIFO overrun
Time-triggered communication option
–
Disable automatic retransmission mode
–
16-bit free running timer
–
Time Stamp sent in last two data bytes
Management
–
Maskable interrupts
–
Software-efficient mailbox mapping at a unique address space
Universal serial bus (USB)
The STM32L432xx devices embed a full-speed USB device peripheral compliant with the
USB specification version 2.0. The internal USB PHY supports USB FS signaling,
embedded DP pull-up and also battery charging detection according to Battery Charging
Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function
interface with added support for USB 2.0 Link Power Management. It has softwareconfigurable endpoint setting with packet memory up-to 1 KB and suspend/resume support.
It requires a precise 48 MHz clock which can be generated from the internal main PLL or by
the internal 48 MHz oscillator in automatic trimming mode. The synchronization for this
oscillator can be taken from the USB data stream itself (SOF signalization) which allows
crystal less operation.
3.31
Clock recovery system (CRS)
The STM32L432xx devices embed a special block which allows automatic trimming of the
internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device
operational range. This automatic trimming is based on the external synchronization signal,
which could be either derived from USB SOF signalization, from LSE oscillator, from an
external signal on CRS_SYNC pin or generated by user software. For faster lock-in during
startup it is also possible to combine automatic trimming with manual trimming action.
48/156
DS11451 Rev 4
STM32L432KB STM32L432KC
3.32
Functional overview
Quad SPI memory interface (QUADSPI)
The Quad SPI is a specialized communication interface targeting single, dual or quad SPI
flash memories. It can operate in any of the three following modes:
•
Indirect mode: all the operations are performed using the QUADSPI registers
•
Status polling mode: the external flash status register is periodically read and an
interrupt can be generated in case of flag setting
•
Memory-mapped mode: the external Flash is memory mapped and is seen by the
system as if it were an internal memory
Both throughput and capacity can be increased two-fold using dual-flash mode, where two
Quad SPI flash memories are accessed simultaneously.
The Quad SPI interface supports:
•
Three functional modes: indirect, status-polling, and memory-mapped
•
SDR and DDR support
•
Fully programmable opcode for both indirect and memory mapped mode
•
Fully programmable frame format for both indirect and memory mapped mode
•
Each of the 5 following phases can be configured independently (enable, length,
single/dual/quad communication)
–
Instruction phase
–
Address phase
–
Alternate bytes phase
–
Dummy cycles phase
–
Data phase
•
Integrated FIFO for reception and transmission
•
8, 16, and 32-bit data accesses are allowed
•
DMA channel for indirect mode operations
•
Programmable masking for external flash flag management
•
Timeout management
•
Interrupt generation on FIFO threshold, timeout, status match, operation complete, and
access error
DS11451 Rev 4
49/156
50
Functional overview
STM32L432KB STM32L432KC
3.33
Development support
3.33.1
Serial wire JTAG debug port (SWJ-DP)
The Arm® SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
3.33.2
Embedded Trace Macrocell™
The Arm® Embedded Trace Macrocell™ provides a greater visibility of the instruction and
data flow inside the CPU core by streaming compressed data at a very high rate from the
STM32L432xx through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then
formatted for display on the host computer that runs the debugger software. TPA hardware
is commercially available from common development tool vendors.
The Embedded Trace Macrocell™ operates with third party debugger software tools.
50/156
DS11451 Rev 4
STM32L432KB STM32L432KC
4
Pinouts and pin description
Pinouts and pin description
VSS
PH3/BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
32
31
30
29
28
27
26
25
Figure 5. STM32L432Kx UFQFPN32 pinout(1)
VDD
1
24
PA14
PC14-OSC32_IN
2
23
PA13
PC15-OSC32_OUT
3
22
PA12
NRST
4
21
PA11
VDDA/VREF+
5
20
PA10
PA0/CK_IN
6
19
PA9
PA1
7
18
PA8
PA2
8
17
VDD
9
10
11
12
13
14
15
16
PA3
PA4
PA5
PA6
PA7
PB0
PB1
VSS
UFQFPN32
MSv37605V2
1. The above figure shows the package top view.
Table 13. Legend/abbreviations used in the pinout table
Name
Pin name
Pin type
Abbreviation
Definition
Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
TT
3.6 V tolerant I/O
RST
Bidirectional reset pin with embedded weak pull-up resistor
I/O structure
Option for TT or FT I/Os
_f (1)
I/O, Fm+ capable
_u (2)
I/O, with USB function supplied by VDDUSB
_a
Notes
(3)
I/O, with Analog switch function supplied by VDDA
Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.
Alternate
Functions selected through GPIOx_AFR registers
functions
Pin
functions Additional
Functions directly selected/enabled through peripheral registers
functions
1. The related I/O structures in Table 14 are: FT_f, FT_fa.
2. The related I/O structures in Table 14 is: FT_u.
3. The related I/O structures in Table 14 are: FT_a, FT_fa, TT_a.
DS11451 Rev 4
51/156
62
Pinouts and pin description
STM32L432KB STM32L432KC
I/O structure
PC14OSC32_I
N (PC14)
I/O
FT
3
PC15OSC32_
OUT
(PC15)
I/O
FT
4
NRST
I/O
RST
-
-
-
5
VDDA/VR
EF+
S
-
-
-
-
6
PA0/
CK_IN
-
TIM2_CH1, USART2_CTS,
COMP1_OUT, SAI1_EXTCLK,
TIM2_ETR, EVENTOUT
OPAMP1_VINP,
COMP1_INM, ADC1_IN5,
RTC_TAMP2, WKUP1,
CK_IN
-
TIM2_CH2, I2C1_SMBA,
SPI1_SCK,
USART2_RTS_DE,
TIM15_CH1N, EVENTOUT
OPAMP1_VINM,
COMP1_INP, ADC1_IN6
-
TIM2_CH3, USART2_TX,
LPUART1_TX,
QUADSPI_BK1_NCS,
COMP2_OUT, TIM15_CH1,
EVENTOUT
COMP2_INM, ADC1_IN7,
WKUP4, LSCO
OPAMP1_VOUT,
COMP2_INP, ADC1_IN8
8
PA1
PA2
I/O
I/O
I/O
FT_a
FT_a
FT_a
Alternate functions
Additional functions
EVENTOUT
OSC32_IN
(2)
EVENTOUT
OSC32_OUT
Notes
UFQFPN32
Pin type
Pin functions
2
7
(1)
(2)
(1)
9
PA3
I/O
TT_a
-
TIM2_CH4, USART2_RX,
LPUART1_RX,
QUADSPI_CLK,
SAI1_MCLK_A, TIM15_CH2,
EVENTOUT
10
PA4
I/O
TT_a
-
SPI1_NSS, SPI3_NSS,
USART2_CK, SAI1_FS_B,
LPTIM2_OUT, EVENTOUT
COMP1_INM,
COMP2_INM, ADC1_IN9,
DAC1_OUT1
11
PA5
I/O
TT_a
-
TIM2_CH1, TIM2_ETR,
SPI1_SCK, LPTIM2_ETR,
EVENTOUT
COMP1_INM,
COMP2_INM, ADC1_IN10,
DAC1_OUT2
-
TIM1_BKIN, SPI1_MISO,
COMP1_OUT, USART3_CTS,
LPUART1_CTS,
QUADSPI_BK1_IO3,
TIM1_BKIN_COMP2,
TIM16_CH1, EVENTOUT
ADC1_IN11
12
52/156
Pin name
(function after
reset)
Table 14. STM32L432xx pin definitions
Pin
Number
PA6
I/O
FT_a
DS11451 Rev 4
STM32L432KB STM32L432KC
Pinouts and pin description
13
14
PA7
PB0
I/O
I/O
FT_fa
FT_a
Alternate functions
Additional functions
-
TIM1_CH1N, I2C3_SCL,
SPI1_MOSI,
QUADSPI_BK1_IO2,
COMP2_OUT, EVENTOUT
ADC1_IN12
-
TIM1_CH2N, SPI1_NSS,
USART3_CK,
QUADSPI_BK1_IO1,
COMP1_OUT, SAI1_EXTCLK,
EVENTOUT
ADC1_IN15
COMP1_INM, ADC1_IN16
Notes
I/O structure
Pin functions
Pin type
UFQFPN32
Pin
Number
Pin name
(function after
reset)
Table 14. STM32L432xx pin definitions (continued)
15
PB1
I/O
FT_a
-
TIM1_CH3N,
USART3_RTS_DE,
LPUART1_RTS_DE,
QUADSPI_BK1_IO0,
LPTIM2_IN1, EVENTOUT
16
VSS
S
-
-
-
-
17
VDD
S
-
-
-
-
-
18
PA8
I/O
FT
-
MCO, TIM1_CH1,
USART1_CK, SWPMI1_IO,
SAI1_SCK_A, LPTIM2_OUT,
EVENTOUT
19
PA9
I/O
FT_f
-
TIM1_CH2, I2C1_SCL,
USART1_TX, SAI1_FS_A,
TIM15_BKIN, EVENTOUT
-
-
TIM1_CH3, I2C1_SDA,
USART1_RX,
USB_CRS_SYNC,
SAI1_SD_A, EVENTOUT
-
-
TIM1_CH4, TIM1_BKIN2,
SPI1_MISO, COMP1_OUT,
USART1_CTS, CAN1_RX,
USB_DM,
TIM1_BKIN2_COMP1,
EVENTOUT
-
-
-
20
21
PA10
PA11
I/O
I/O
FT_f
FT_u
22
PA12
I/O
FT_u
-
TIM1_ETR, SPI1_MOSI,
USART1_RTS_DE,
CAN1_TX, USB_DP,
EVENTOUT
23
PA13
(JTMSSWDIO)
I/O
FT
(3)
JTMS-SWDIO, IR_OUT,
USB_NOE, SWPMI1_TX,
SAI1_SD_B, EVENTOUT
DS11451 Rev 4
53/156
62
Pinouts and pin description
STM32L432KB STM32L432KC
PA14
(JTCKSWCLK)
25
PA15
(JTDI)
26
PB3
(JTDOTRACE
SWO)
27
PB4
(NJTRST)
28
PB5
I/O
FT
(3)
JTCK-SWCLK, LPTIM1_OUT,
I2C1_SMBA, SWPMI1_RX,
SAI1_FS_B, EVENTOUT
-
FT
JTDI, TIM2_CH1, TIM2_ETR,
USART2_RX, SPI1_NSS,
SPI3_NSS,
(3)
USART3_RTS_DE,
TSC_G3_IO1,
SWPMI1_SUSPEND,
EVENTOUT
-
I/O
Notes
I/O structure
24
Pin functions
Pin type
UFQFPN32
Pin
Number
Pin name
(function after
reset)
Table 14. STM32L432xx pin definitions (continued)
Alternate functions
Additional functions
JTDO-TRACESWO,
TIM2_CH2, SPI1_SCK,
SPI3_SCK,
USART1_RTS_DE,
SAI1_SCK_B, EVENTOUT
COMP2_INM
I/O
FT_a (3)
I/O
(3)
NJTRST, I2C3_SDA,
SPI1_MISO, SPI3_MISO,
USART1_CTS, TSC_G2_IO1,
SAI1_MCLK_B, EVENTOUT
COMP2_INP
-
LPTIM1_IN1, I2C1_SMBA,
SPI1_MOSI, SPI3_MOSI,
USART1_CK, TSC_G2_IO2,
COMP2_OUT, SAI1_SD_B,
TIM16_BKIN, EVENTOUT
-
COMP2_INP
I/O
FT_fa
FT
29
PB6
I/O
FT_fa
-
LPTIM1_ETR, I2C1_SCL,
USART1_TX, TSC_G2_IO3,
SAI1_FS_B, TIM16_CH1N,
EVENTOUT
30
PB7
I/O
FT_fa
-
LPTIM1_IN2, I2C1_SDA,
USART1_RX, TSC_G2_IO4,
EVENTOUT
COMP2_INM, PVD_IN
31
PH3/
BOOT0
I/O
FT
-
EVENTOUT
BOOT0
32
VSS
S
-
-
-
-
1
VDD
S
-
-
-
-
1. PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of
current (3 mA), the use of GPIOs PC14 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (e.g. to drive an LED).
2. After a Backup domain power-up, PC14 and PC15 operate as GPIOs. Their function then depends on the
content of the RTC registers which are not reset by the system reset. For details on how to manage these
GPIOs, refer to the Backup domain and RTC register descriptions in the RM0394 reference manual.
3. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on
PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated.
54/156
DS11451 Rev 4
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/TIM2/
LPTIM1
TIM1/TIM2
USART2
I2C1/I2C2/I2C3
SPI1/SPI2
SPI3
USART1/
USART2/
USART3
PA0
-
TIM2_CH1
-
-
-
-
-
USART2_CTS
PA1
-
TIM2_CH2
-
-
I2C1_SMBA
SPI1_SCK
-
USART2_RTS_
DE
PA2
-
TIM2_CH3
-
-
-
-
-
USART2_TX
PA3
-
TIM2_CH4
-
-
-
-
-
USART2_RX
PA4
-
-
-
-
-
SPI1_NSS
SPI3_NSS
USART2_CK
PA5
-
TIM2_CH1
TIM2_ETR
-
-
SPI1_SCK
-
-
PA6
-
TIM1_BKIN
-
-
-
SPI1_MISO
COMP1_OUT
USART3_CTS
PA7
-
TIM1_CH1N
-
-
I2C3_SCL
SPI1_MOSI
-
-
PA8
MCO
TIM1_CH1
-
-
-
-
-
USART1_CK
PA9
-
TIM1_CH2
-
-
I2C1_SCL
-
-
USART1_TX
PA10
-
TIM1_CH3
-
-
I2C1_SDA
-
-
USART1_RX
PA11
-
TIM1_CH4
TIM1_BKIN2
-
-
SPI1_MISO
COMP1_OUT
USART1_CTS
PA12
-
TIM1_ETR
-
-
-
SPI1_MOSI
-
USART1_RTS_
DE
PA13
JTMS-SWDIO
IR_OUT
-
-
-
-
-
-
PA14
JTCK-SWCLK
LPTIM1_OUT
-
-
I2C1_SMBA
-
-
-
PA15
JTDI
TIM2_CH1
TIM2_ETR
USART2_RX
-
SPI1_NSS
SPI3_NSS
USART3_RTS_
DE
Port
DS11451 Rev 4
Port A
55/156
Pinouts and pin description
AF0
STM32L432KB STM32L432KC
Table 15. Alternate function AF0 to AF7(1)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/TIM2/
LPTIM1
TIM1/TIM2
USART2
I2C1/I2C2/I2C3
SPI1/SPI2
SPI3
USART1/
USART2/
USART3
PB0
-
TIM1_CH2N
-
-
-
SPI1_NSS
-
USART3_CK
PB1
-
TIM1_CH3N
-
-
-
-
-
USART3_RTS_
DE
PB3
JTDOTRACESWO
TIM2_CH2
-
-
-
SPI1_SCK
SPI3_SCK
USART1_RTS_
DE
PB4
NJTRST
-
-
-
I2C3_SDA
SPI1_MISO
SPI3_MISO
USART1_CTS
PB5
-
LPTIM1_IN1
-
-
I2C1_SMBA
SPI1_MOSI
SPI3_MOSI
USART1_CK
PB6
-
LPTIM1_ETR
-
-
I2C1_SCL
-
-
USART1_TX
PB7
-
LPTIM1_IN2
-
-
I2C1_SDA
-
-
USART1_RX
PC14
-
-
-
-
-
-
-
-
PC15
-
-
-
-
-
-
-
-
PH3
-
-
-
-
-
-
-
-
Port
Port B
DS11451 Rev 4
Port C
Port H
Pinouts and pin description
56/156
Table 15. Alternate function AF0 to AF7(1) (continued)
1. Please refer to Table 16 for AF8 to AF15.
STM32L432KB STM32L432KC
AF9
AF10
AF11
AF12
AF13
AF14
AF15
LPUART1
CAN1/TSC
USB/QUADSPI
-
COMP1/
COMP2/
SWPMI1
SAI1
TIM2/TIM15/
TIM16/LPTIM2
EVENTOUT
PA0
-
-
-
-
COMP1_OUT
SAI1_EXTCLK
TIM2_ETR
EVENTOUT
PA1
-
-
-
-
-
-
TIM15_CH1N
EVENTOUT
PA2
LPUART1_TX
-
QUADSPI_
BK1_NCS
-
COMP2_OUT
-
TIM15_CH1
EVENTOUT
PA3
LPUART1_RX
-
QUADSPI_CLK
-
-
SAI1_MCLK_A
TIM15_CH2
EVENTOUT
PA4
-
-
-
-
-
SAI1_FS_B
LPTIM2_OUT
EVENTOUT
PA5
-
-
-
-
-
-
LPTIM2_ETR
EVENTOUT
PA6
LPUART1_CTS
-
QUADSPI_
BK1_IO3
-
TIM1_BKIN_
COMP2
-
TIM16_CH1
EVENTOUT
PA7
-
-
QUADSPI_
BK1_IO2
-
COMP2_OUT
-
-
EVENTOUT
PA8
-
-
-
-
SWPMI1_IO
SAI1_SCK_A
LPTIM2_OUT
EVENTOUT
PA9
-
-
-
-
-
SAI1_FS_A
TIM15_BKIN
EVENTOUT
PA10
-
-
USB_CRS_
SYNC
-
-
SAI1_SD_A
-
EVENTOUT
PA11
-
CAN1_RX
USB_DM
-
TIM1_BKIN2_
COMP1
-
-
EVENTOUT
PA12
-
CAN1_TX
USB_DP
-
-
-
-
EVENTOUT
PA13
-
-
USB_NOE
-
SWPMI1_TX
SAI1_SD_B
-
EVENTOUT
PA14
-
-
-
-
SWPMI1_RX
SAI1_FS_B
-
EVENTOUT
PA15
-
TSC_G3_IO1
-
-
SWPMI1_
SUSPEND
-
-
EVENTOUT
Port
DS11451 Rev 4
Port A
57/156
Pinouts and pin description
AF8
STM32L432KB STM32L432KC
Table 16. Alternate function AF8 to AF15(1)
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
LPUART1
CAN1/TSC
USB/QUADSPI
-
COMP1/
COMP2/
SWPMI1
SAI1
TIM2/TIM15/
TIM16/LPTIM2
EVENTOUT
PB0
-
-
QUADSPI_
BK1_IO1
-
COMP1_OUT
SAI1_EXTCLK
-
EVENTOUT
PB1
LPUART1_RTS
_DE
-
QUADSPI_
BK1_IO0
-
-
-
LPTIM2_IN1
EVENTOUT
PB3
-
-
-
-
-
SAI1_SCK_B
-
EVENTOUT
PB4
-
TSC_G2_IO1
-
-
-
SAI1_MCLK_B
-
EVENTOUT
PB5
-
TSC_G2_IO2
-
-
COMP2_OUT
SAI1_SD_B
TIM16_BKIN
EVENTOUT
PB6
-
TSC_G2_IO3
-
-
-
SAI1_FS_B
TIM16_CH1N
EVENTOUT
PB7
-
TSC_G2_IO4
-
-
-
-
-
EVENTOUT
PC14
-
-
-
-
-
-
-
EVENTOUT
PC15
-
-
-
-
-
-
-
EVENTOUT
PH3
-
-
-
-
-
-
-
EVENTOUT
Port
Port B
DS11451 Rev 4
Port C
Port H
Pinouts and pin description
58/156
Table 16. Alternate function AF8 to AF15(1) (continued)
1. Please refer to Table 15 for AF0 to AF7.
STM32L432KB STM32L432KC
STM32L432KB STM32L432KC
5
Memory mapping
Memory mapping
Figure 6. STM32L432xx memory map
0xFFFF FFFF
0xBFFF FFFF
Reserved
Cortex™-M4
with FPU
Internal
Peripherals
7
0xA000 1400
QUADSPI registers
0xA000 1000
0xE000 0000
0x5FFF FFFF
Reserved
6
0x5006 0C00
AHB2
0x4800 0000
Reserved
0xC000 0000
0x4002 4400
QUADSPI
registers
5
AHB1
0x4002 0000
0xA000 1000
0x4001 5800
0xA000 0000
APB2
0x4001 0000
QUADSPI Flash
bank
4
Reserved
Reserved
0x4000 9800
0x9000 0000
APB1
0x4000 0000
0x1FFF FFFF
0x8000 0000
3
Reserved
0x6000 0000
0x1FFF 7810
Options Bytes
2
0x1FFF 7800
Reserved
0x1FFF 7400
Peripherals
OTP area
0x4000 0000
0x1FFF 7000
System memory
1
0x2000 C000
0x1FFF 0000
SRAM2
Reserved
0x1000 4000
SRAM1
SRAM2
0x2000 0000
0x1000 0000
Reserved
0
0x0804 0000
CODE
Flash memory
0x0800 0000
0x0000 0000
0x0004 0000
0x0000 0000
Reserved
Reserved
Flash, system memory
or SRAM, depending on
BOOT configuration
MSv36892V2
DS11451 Rev 4
59/156
62
Memory mapping
STM32L432KB STM32L432KC
Table 17. STM32L432xx memory map and peripheral register boundary addresses(1)
Bus
AHB2
-
AHB1
APB2
60/156
Boundary address
Size(bytes)
Peripheral
0x5006 0800 - 0x5006 0BFF
1 KB
0x5004 0400 - 0x5006 07FF
158 KB
0x5004 0000 - 0x5004 03FF
1 KB
ADC
0x5000 0000 - 0x5003 FFFF
16 KB
Reserved
0x4800 2000 - 0x4FFF FFFF
~127 MB
Reserved
0x4800 1C00 - 0x4800 1FFF
1 KB
GPIOH
0x4800 0C00 - 0x4800 1BFF
4 KB
Reserved
0x4800 0800 - 0x4800 0BFF
1 KB
GPIOC
0x4800 0400 - 0x4800 07FF
1 KB
GPIOB
0x4800 0000 - 0x4800 03FF
1 KB
GPIOA
0x4002 4400 - 0x47FF FFFF
~127 MB
0x4002 4000 - 0x4002 43FF
1 KB
TSC
0x4002 3400 - 0x4002 3FFF
1 KB
Reserved
0x4002 3000 - 0x4002 33FF
1 KB
CRC
0x4002 2400 - 0x4002 2FFF
3 KB
Reserved
0x4002 2000 - 0x4002 23FF
1 KB
FLASH registers
0x4002 1400 - 0x4002 1FFF
3 KB
Reserved
0x4002 1000 - 0x4002 13FF
1 KB
RCC
0x4002 0800 - 0x4002 0FFF
2 KB
Reserved
0x4002 0400 - 0x4002 07FF
1 KB
DMA2
0x4002 0000 - 0x4002 03FF
1 KB
DMA1
0x4001 5800 - 0x4001 FFFF
42 KB
Reserved
0x4001 5400 - 0x4000 57FF
1 KB
SAI1
0x4001 4800 - 0x4000 53FF
3 KB
Reserved
0x4001 4400 - 0x4001 47FF
1 KB
TIM16
0x4001 4000 - 0x4001 43FF
1 KB
TIM15
0x4001 3C00 - 0x4001 3FFF
1 KB
Reserved
0x4001 3800 - 0x4001 3BFF
1 KB
USART1
0x4001 3400 - 0x4001 37FF
1 KB
Reserved
0x4001 3000 - 0x4001 33FF
1 KB
SPI1
0x4001 2C00 - 0x4001 2FFF
1 KB
TIM1
0x4001 2000 - 0x4001 2BFF
3 KB
Reserved
DS11451 Rev 4
RNG
Reserved
Reserved
STM32L432KB STM32L432KC
Memory mapping
Table 17. STM32L432xx memory map and peripheral register boundary addresses(1)
(continued)
Bus
APB2
Boundary address
Size(bytes)
0x4001 1C00 - 0x4001 1FFF
1 KB
FIREWALL
0x4001 0800- 0x4001 1BFF
5 KB
Reserved
0x4001 0400 - 0x4001 07FF
1 KB
EXTI
0x4001 0200 - 0x4001 03FF
0x4001 0030 - 0x4001 01FF
COMP
1 KB
0x4001 0000 - 0x4001 002F
APB1
Peripheral
Reserved
SYSCFG
0x4000 9800 - 0x4000 FFFF
26 KB
Reserved
0x4000 9400 - 0x4000 97FF
1 KB
LPTIM2
0x4000 8C00 - 0x4000 93FF
2 KB
Reserved
0x4000 8800 - 0x4000 8BFF
1 KB
SWPMI1
0x4000 8400 - 0x4000 87FF
1 KB
Reserved
0x4000 8000 - 0x4000 83FF
1 KB
LPUART1
0x4000 7C00 - 0x4000 7FFF
1 KB
LPTIM1
0x4000 7800 - 0x4000 7BFF
1 KB
OPAMP
0x4000 7400 - 0x4000 77FF
1 KB
DAC1
0x4000 7000 - 0x4000 73FF
1 KB
PWR
0x4000 6C00 - 0x4000 6FFF
1 KB
USB SRAM
0x4000 6800 - 0x4000 6BFF
1 KB
USB FS
0x4000 6400 - 0x4000 67FF
1 KB
CAN1
0x4000 6000 - 0x4000 63FF
1 KB
CRS
0x4000 5C00- 0x4000 5FFF
1 KB
I2C3
0x4000 5800 - 0x4000 5BFF
1 KB
Reserved
0x4000 5400 - 0x4000 57FF
1 KB
I2C1
0x4000 4800 - 0x4000 53FF
3 KB
Reserved
0x4000 4400 - 0x4000 47FF
1 KB
USART2
0x4000 4000 - 0x4000 43FF
1 KB
Reserved
0x4000 3C00 - 0x4000 3FFF
1 KB
SPI3
0x4000 3400 - 0x4000 3BFF
2 KB
Reserved
0x4000 3000 - 0x4000 33FF
1 KB
IWDG
0x4000 2C00 - 0x4000 2FFF
1 KB
WWDG
0x4000 2800 - 0x4000 2BFF
1 KB
RTC
0x4000 1800 - 0x4000 27FF
4 KB
Reserved
0x4000 1400 - 0x4000 17FF
1 KB
TIM7
DS11451 Rev 4
61/156
62
Memory mapping
STM32L432KB STM32L432KC
Table 17. STM32L432xx memory map and peripheral register boundary addresses(1)
(continued)
Bus
APB1
Boundary address
Peripheral
0x4000 1000 - 0x4000 13FF
1 KB
TIM6
0x4000 0400- 0x4000 0FFF
3 KB
Reserved
0x4000 0000 - 0x4000 03FF
1 KB
TIM2
1. The gray color is used for reserved boundary addresses.
62/156
Size(bytes)
DS11451 Rev 4
STM32L432KB STM32L432KC
Electrical characteristics
6
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3σ).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2σ).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 7.
6.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 8.
Figure 7. Pin loading conditions
Figure 8. Pin input voltage
MCU pin
MCU pin
C = 50 pF
VIN
MS19210V1
DS11451 Rev 4
MS19211V1
63/156
148
Electrical characteristics
6.1.6
STM32L432KB STM32L432KC
Power supply scheme
Figure 9. Power supply scheme
Backup circuitry
(LSE, RTC,
Backup registers)
1.55 – 3.6 V
VDD
VCORE
n x VDD
Regulator
OUT
n x 100 nF
GPIOs
IN
+1 x 4.7 μF
Level shifter
VDDIO1
IO
logic
Kernel logic
(CPU, Digital
& Memories)
n x VSS
VDDA
VDDA
VREF
10 nF
+1 μF
VREF+
VREF-
100 nF +1 μF
ADCs/
DACs/
OPAMPs/
COMPs
VSSA
MSv40915V2
Caution:
64/156
Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure the good functionality of
the device.
DS11451 Rev 4
STM32L432KB STM32L432KC
6.1.7
Electrical characteristics
Current consumption measurement
Figure 10. Current consumption measurement scheme
IDD_USB
VDDUSB
IDD
VDD
IDDA
VDDA
MSv41630V1
The IDD_ALL parameters given in Table 25 to Table 37 represent the total MCU consumption
including the current supplying VDD, VDDA, VDDUSB and VBAT.
6.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 18: Voltage characteristics,
Table 19: Current characteristics and Table 20: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability. Device mission profile (application conditions)
is compliant with JEDEC JESD47 qualification standard, extended mission profiles are
available on demand.
Table 18. Voltage characteristics(1)
Symbol
VDDX - VSS
VIN(2)
|∆VDDx|
|VSSx-VSS|
Ratings
Min
Max
Unit
-0.3
4.0
V
Input voltage on FT_xxx pins
VSS-0.3
min (VDD, VDDA, VDDUSB)
+ 4.0(3)(4)
Input voltage on TT_xx pins
VSS-0.3
4.0
Input voltage on any other pins
VSS-0.3
4.0
Variations between different VDDX power
pins of the same domain
-
50
mV
Variations between all the different ground
pins(5)
-
50
mV
External main supply voltage (including
VDD, VDDA, VDDUSB)
DS11451 Rev 4
V
65/156
148
Electrical characteristics
STM32L432KB STM32L432KC
1. All main power (VDD, VDDA, VDDUSB,) and ground (VSS, VSSA) pins must always be connected to the external power supply,
in the permitted range.
2. VIN maximum must always be respected. Refer to Table 19: Current characteristics for the maximum allowed injected
current values.
3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table.
4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
5. Include VREF- pin.
Table 19. Current characteristics
Symbol
Ratings
Max
∑IVDD
Total current into sum of all VDD power lines (source)(1)
140
∑IVSS
(sink)(1)
140
Total current out of sum of all VSS ground lines
IVDD(PIN)
Maximum current into each VDD power pin (source)(1)
100
IVSS(PIN)
Maximum current out of each VSS ground pin (sink)(1)
100
Output current sunk by any I/O and control pin except FT_f
20
Output current sunk by any FT_f pin
20
Output current sourced by any I/O and control pin
20
IIO(PIN)
∑IIO(PIN)
IINJ(PIN)(3)
∑|IINJ(PIN)|
Total output current sunk by sum of all I/Os and control pins(2)
Unit
mA
100
(2)
Total output current sourced by sum of all I/Os and control pins
100
Injected current on FT_xxx, TT_xx, RST and B pins, except PA4,
PA5
-5/+0(4)
Injected current on PA4, PA5
-5/0
Total injected current (sum of all I/Os and control pins)(5)
25
1. All main power (VDD, VDDA, VDDUSB) and ground (VSS, VSSA) pins must always be connected to the external power
supplies, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
3. Positive injection (when VIN > VDDIOx) is not possible on these I/Os and does not occur for input voltages lower than the
specified maximum value.
4. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 18: Voltage
characteristics for the maximum allowed input voltage values.
5. When several inputs are submitted to a current injection, the maximum ∑|IINJ(PIN)| is the absolute sum of the negative
injected currents (instantaneous values).
Table 20. Thermal characteristics
Symbol
TSTG
TJ
66/156
Ratings
Storage temperature range
Maximum junction temperature
DS11451 Rev 4
Value
Unit
–65 to +150
°C
150
°C
STM32L432KB STM32L432KC
Electrical characteristics
6.3
Operating conditions
6.3.1
General operating conditions
Table 21. General operating conditions
Symbol
Parameter
Conditions
Min
Max
fHCLK
Internal AHB clock frequency
-
0
80
fPCLK1
Internal APB1 clock frequency
-
0
80
fPCLK2
Internal APB2 clock frequency
-
0
80
Standard operating voltage
-
VDD
VDDA
Analog supply voltage
1.71
(1)
ADC or COMP used
1.62
DAC or OPAMP used
1.8
ADC, DAC, OPAMP, COMP not
used
VDDUSB USB supply voltage
USB used
Unit
MHz
3.6
V
3.6
V
0
3.0
3.6
0
3.6
TT_xx I/O
-0.3
VDDIOx+0.3
All I/O except TT_xx
-0.3
Min(Min(VDD, VDDA,
VDDUSB)+3.6 V,
5.5 V)(2)(3)
V
USB not used
V
VIN
I/O input voltage
PD
Power dissipation at
TA = 125 °C for suffix 3(4)
UFQFPN32
-
128
mW
PD
Power dissipation at
TA = 85 °C for suffix 6
or
TA = 105 °C for suffix 7(4)
UFQFPN32
-
523
mW
–40
85
–40
105
–40
105
–40
125
–40
125
–40
130
Suffix 6 version
–40
105
Suffix 7 version
–40
125
Suffix 3 version
–40
130
TA
TJ
Ambient temperature for the
suffix 6 version
Maximum power dissipation
Ambient temperature for the
suffix 7 version
Maximum power dissipation
Ambient temperature for the
suffix 3 version
Maximum power dissipation
Junction temperature range
Low-power dissipation
Low-power dissipation
Low-power dissipation
(5)
(5)
(5)
°C
°C
1. When RESET is released functionality is guaranteed down to VBOR0 Min.
2. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table.
Maximum I/O input voltage is the smallest value between Min(VDD, VDDA, VDDUSB)+3.6 V and 5.5V.
3. For operation with voltage higher than Min (VDD, VDDA, VDDUSB) +0.3 V, the internal Pull-up and Pull-Down resistors must
be disabled.
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.2: Thermal characteristics).
DS11451 Rev 4
67/156
148
Electrical characteristics
STM32L432KB STM32L432KC
5. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.2:
Thermal characteristics).
6.3.2
Operating conditions at power-up / power-down
The parameters given in Table 22 are derived from tests performed under the ambient
temperature condition summarized in Table 21.
Table 22. Operating conditions at power-up / power-down
Symbol
Parameter
Conditions
VDD rise time rate
tVDD
VDDA rise time rate
0
∞
10
∞
0
∞
10
∞
0
∞
10
∞
-
VDDA fall time rate
VDDUSB rise time rate
tVDDUSB
Max
-
VDD fall time rate
tVDDA
Min
-
VDDUSB fall time rate
Unit
µs/V
The requirements for power-up/down sequence specified in Section 3.9.1: Power supply
schemes must be respected.
6.3.3
Embedded reset and power control block characteristics
The parameters given in Table 23 are derived from tests performed under the ambient
temperature conditions summarized in Table 21: General operating conditions.
Table 23. Embedded reset and power control block characteristics
Symbol
tRSTTEMPO(2)
68/156
Parameter
Reset temporization after
BOR0 is detected
VBOR0(2)
Brown-out reset threshold 0
VBOR1
Brown-out reset threshold 1
VBOR2
Brown-out reset threshold 2
VBOR3
Brown-out reset threshold 3
VBOR4
Brown-out reset threshold 4
VPVD0
Programmable voltage
detector threshold 0
Conditions(1)
Min
Typ
Max
Unit
-
250
400
μs
Rising edge
1.62
1.66
1.7
Falling edge
1.6
1.64
1.69
Rising edge
2.06
2.1
2.14
Falling edge
1.96
2
2.04
Rising edge
2.26
2.31
2.35
Falling edge
2.16
2.20
2.24
Rising edge
2.56
2.61
2.66
Falling edge
2.47
2.52
2.57
Rising edge
2.85
2.90
2.95
Falling edge
2.76
2.81
2.86
Rising edge
2.1
2.15
2.19
Falling edge
2
2.05
2.1
VDD rising
DS11451 Rev 4
V
V
V
V
V
V
STM32L432KB STM32L432KC
Electrical characteristics
Table 23. Embedded reset and power control block characteristics (continued)
Conditions(1)
Min
Typ
Max
Rising edge
2.26
2.31
2.36
Falling edge
2.15
2.20
2.25
Rising edge
2.41
2.46
2.51
Falling edge
2.31
2.36
2.41
Rising edge
2.56
2.61
2.66
Falling edge
2.47
2.52
2.57
Rising edge
2.69
2.74
2.79
Falling edge
2.59
2.64
2.69
Rising edge
2.85
2.91
2.96
Falling edge
2.75
2.81
2.86
Rising edge
2.92
2.98
3.04
Falling edge
2.84
2.90
2.96
Hysteresis in
continuous
Hysteresis voltage of BORH0 mode
-
20
-
Hysteresis in
other mode
-
30
-
Symbol
Parameter
VPVD1
PVD threshold 1
VPVD2
PVD threshold 2
VPVD3
PVD threshold 3
VPVD4
PVD threshold 4
VPVD5
PVD threshold 5
VPVD6
PVD threshold 6
Vhyst_BORH0
Unit
V
V
V
V
V
V
mV
Hysteresis voltage of BORH
(except BORH0) and PVD
-
-
100
-
mV
BOR(3) (except BOR0) and
IDD
(2)
(BOR_PVD)
PVD consumption from VDD
-
-
1.1
1.6
µA
-
1.18
1.22
1.26
V
Vhyst_BOR_PVD
VPVM1
VDDUSB peripheral voltage
monitoring
VPVM3
VDDA peripheral voltage
monitoring
Rising edge
1.61
1.65
1.69
Falling edge
1.6
1.64
1.68
VPVM4
VDDA peripheral voltage
monitoring
Rising edge
1.78
1.82
1.86
Falling edge
1.77
1.81
1.85
V
V
Vhyst_PVM3
PVM3 hysteresis
-
-
10
-
mV
Vhyst_PVM4
PVM4 hysteresis
-
-
10
-
mV
PVM1 consumption from VDD
-
-
0.2
-
µA
-
-
2
-
µA
IDD (PVM1)
(2)
IDD
PVM3 and PVM4
(PVM3/PVM4)
consumption from VDD
(2)
1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power
sleep modes.
2. Guaranteed by design.
3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply
current characteristics tables.
DS11451 Rev 4
69/156
148
Electrical characteristics
6.3.4
STM32L432KB STM32L432KC
Embedded voltage reference
The parameters given in Table 24 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions.
Table 24. Embedded internal voltage reference
Symbol
VREFINT
Parameter
Internal reference voltage
Conditions
–40 °C < TA < +130 °C
Min
Typ
Max
Unit
1.182
1.212
1.232
V
tS_vrefint (1)
ADC sampling time when
reading the internal reference
voltage
-
4(2)
-
-
µs
tstart_vrefint
Start time of reference voltage
buffer when ADC is enable
-
-
8
12(2)
µs
-
-
12.5
20(2)
µA
VREFINT buffer consumption
from VDD when converted by
IDD(VREFINTBUF)
ADC
∆VREFINT
TCoeff
Internal reference voltage
spread over the temperature
range
VDD = 3 V
-
5
7.5(2)
mV
Temperature coefficient
–40°C < TA < +130°C
-
30
50(2)
ppm/°C
ppm
ppm/V
ACoeff
Long term stability
1000 hours, T = 25°C
-
300
1000(2)
VDDCoeff
Voltage coefficient
3.0 V < VDD < 3.6 V
-
250
1200(2)
24
25
26
49
50
51
74
75
76
VREFINT_DIV1
1/4 reference voltage
VREFINT_DIV2
1/2 reference voltage
VREFINT_DIV3
3/4 reference voltage
-
1. The shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
70/156
DS11451 Rev 4
%
VREFINT
STM32L432KB STM32L432KC
Electrical characteristics
Figure 11. VREFINT versus temperature
V
1.235
1.23
1.225
1.22
1.215
1.21
1.205
1.2
1.195
1.19
1.185
-40
-20
0
20
40
Mean
60
Min
80
100
120
°C
Max
MSv40169V1
DS11451 Rev 4
71/156
148
Electrical characteristics
6.3.5
STM32L432KB STM32L432KC
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 10: Current consumption
measurement scheme.
Typical and maximum current consumption
The MCU is placed under the following conditions:
•
All I/O pins are in analog input mode
•
All peripherals are disabled except when explicitly mentioned
•
The Flash memory access time is adjusted with the minimum wait states number,
depending on the fHCLK frequency (refer to the table “Number of wait states according
to CPU clock (HCLK) frequency” available in the RM0394 reference manual).
•
When the peripherals are enabled fPCLK = fHCLK
The parameters given in Table 25 to Table 37 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 21: General
operating conditions.
72/156
DS11451 Rev 4
running from Flash, ART enable (Cache ON Prefetch OFF)
Conditions
Symbol
Parameter
-
Voltage
scaling
DS11451 Rev 4
85 °C
2.7
2.7
2.8
2.9
3.2
1.79
1.7
1.7
1.8
2.0
2.3
0.94
1.08
0.9
0.9
1.0
1.2
1.5
0.52
0.59
0.73
0.5
0.6
0.6
0.8
1.1
0.3
0.34
0.41
0.55
0.3
0.4
0.4
0.6
0.9
0.2
0.21
0.25
0.32
0.46
0.2
0.3
0.3
0.5
0.8
100 kHz
0.12
0.13
0.17
0.24
0.38
0.1
0.2
0.2
0.4
0.7
80 MHz
8.53
8.56
8.64
8.74
8.92
9.5
9.6
9.7
9.9
10.3
72 MHz
7.7
7.73
7.8
7.9
8.08
8.6
8.6
8.7
8.9
9.3
64 MHz
6.86
6.9
6.97
7.06
7.23
7.7
7.7
7.8
8.0
8.3
Range 1 48 MHz
5.13
5.16
5.23
5.32
5.49
5.8
5.8
6.0
6.1
6.5
32 MHz
3.46
3.48
3.55
3.64
3.8
3.9
4.0
4.1
4.2
4.6
24 MHz
2.63
2.64
2.71
2.79
2.96
3.0
3.0
3.1
3.3
3.6
16 MHz
1.8
1.81
1.87
1.96
2.12
2.0
2.1
2.2
2.3
2.7
2 MHz
211
230
280
355
506
273.8
301.1
360.4
502.7
815.9
1 MHz
117
134
179
254
404
154.7
184.6
249.6
398.4
712.4
400 kHz
58.5
70.4
116
189
338
80.2
111.5
179.7
330.8
643.4
100 kHz
30
41.1
85.2
159
308
46.5
76.6
147.1
299.1
611.2
fHCLK = fHSE up to
48MHz included,
Supply
bypass mode
current in
PLL ON above
Run mode
48 MHz all
peripherals disable
Supply
current in fHCLK = fMSI
Low-power all peripherals disable
run mode
25 °C 55 °C
85 °C
26 MHz
2.37
2.38
2.44
2.52
2.66
16 MHz
1.5
1.52
1.57
1.64
8 MHz
0.81
0.82
0.87
4 MHz
0.46
0.47
2 MHz
0.29
1 MHz
fHCLK
1. Guaranteed by characterization results, unless otherwise specified.
105 °C 125 °C 25 °C
105 °C 125 °C
mA
µA
73/156
Electrical characteristics
IDD_ALL
(LPRun)
Unit
55 °C
Range 2
IDD_ALL
(Run)
MAX(1)
TYP
STM32L432KB STM32L432KC
Table 25. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART disable
Conditions
Symbol
Parameter
-
Voltage
scaling
Range 2
IDD_ALL
(Run)
DS11451 Rev 4
Unit
25 °C 55 °C
85 °C
26 MHz
2.66
2.68
2.73
2.81
2.96
16 MHz
1.88
1.9
1.94
2.02
8 MHz
1.05
1.06
1.11
1.18
4 MHz
0.6
0.62
0.66
fHCLK
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
3.0
3.1
3.2
3.3
3.6
2.17
2.1
2.2
2.3
2.4
2.7
1.33
1.2
1.2
1.3
1.4
1.7
0.73
0.87
0.7
0.7
0.8
0.9
1.2
2 MHz
0.36
0.37
0.34
0.48
0.62
0.4
0.4
0.5
0.6
0.9
1 MHz
0.23
0.25
0.25
0.36
0.5
0.3
0.3
0.4
0.5
0.8
100 kHz
0.12
0.14
0.17
0.25
0.39
0.1
0.2
0.2
0.4
0.7
80 MHz
8.56
8.61
8.69
8.79
8.97
9.6
9.7
9.8
10.0
10.3
72 MHz
7.74
7.79
7.86
7.96
8.14
8.7
8.7
8.8
9.0
9.4
64 MHz
7.63
7.68
7.75
7.85
8.04
8.6
8.6
8.7
8.9
9.3
Range 1 48 MHz
6.36
6.4
6.48
6.58
6.76
7.2
7.3
7.4
7.6
7.9
32 MHz
4.56
4.6
4.66
4.76
4.93
5.2
5.2
5.3
5.5
5.8
24 MHz
3.45
3.48
3.54
3.64
3.8
3.9
4.0
4.1
4.2
4.6
16 MHz
2.48
2.51
2.56
2.65
2.82
2.8
2.9
3.0
3.1
3.5
2 MHz
310
317
364
440
593
375.3
400.9
456.7
595.3
909.6
1 MHz
157
173
226
296
448
204.8
234.2
298.2
445.8
758.9
400 kHz
72.6
89
130
206
356
99.7
131.2
199.7
349.3
663.7
100 kHz
32.3
46
89.7
164
314
52.4
82.1
153.3
301.2
616.9
Supply
current in fHCLK = fMSI
Low-power all peripherals disable
run
1. Guaranteed by characterization results, unless otherwise specified.
mA
µA
STM32L432KB STM32L432KC
IDD_ALL
(LPRun)
fHCLK = fHSE up to
48MHz included,
Supply
bypass mode
current in
PLL ON above
Run mode
48 MHz all
peripherals disable
MAX(1)
TYP
Electrical characteristics
74/156
Table 26. Current consumption in Run and Low-power run modes, code with data processing
Conditions
Symbol
Parameter
-
Voltage
scaling
Range 2
IDD_ALL
(Run)
Supply
current in
Run mode
DS11451 Rev 4
fHCLK = fHSE up to
48MHz included,
bypass mode
PLL ON above
48 MHz all
peripherals disable
Range 1
IDD_ALL
(LPRun)
Supply
current in
low-power
run mode
fHCLK = fMSI
all peripherals disable
FLASH in power-down
MAX(1)
TYP
fHCLK
25 °C
55 °C
85 °C
105
°C
125
°C
25 °C
26 MHz
2.42
2.43
2.49
16 MHz
1.54
1.55
1.6
2.56
2.71
2.7
1.67
1.82
1.7
85 °C
105
°C
2.7
2.8
3.0
3.3
1.7
1.8
2.0
2.3
55 °C
125
°C
8 MHz
0.82
0.84
0.88
0.95
1.1
0.9
1.0
1.0
1.2
1.5
4 MHz
0.47
0.48
0.52
0.59
0.73
0.5
0.6
0.6
0.8
1.1
2 MHz
0.29
0.3
0.34
0.41
0.55
0.3
0.4
0.4
0.6
0.9
1 MHz
0.2
0.21
0.25
0.32
0.46
0.2
0.3
0.3
0.5
0.8
100 kHz
0.12
0.13
0.17
0.24
0.38
0.1
0.2
0.2
0.4
0.7
80 MHz
8.63
8.68
8.74
8.84
9.01
9.5
9.6
9.7
9.9
10.2
72 MHz
7.79
7.83
7.9
7.99
8.17
8.6
8.6
8.8
8.9
9.3
64 MHz
6.95
6.99
7.05
7.15
7.32
7.7
7.7
7.9
8.0
8.4
48 MHz
5.19
5.22
5.29
5.38
5.55
5.8
5.8
5.9
6.1
6.5
32 MHz
3.51
3.53
3.6
3.68
3.85
3.9
4.0
4.1
4.2
4.6
24 MHz
2.66
2.68
2.74
2.83
2.99
3.0
3.0
3.1
3.3
3.6
16 MHz
1.82
1.84
1.89
1.98
2.14
2.0
2.1
2.2
2.3
2.7
2 MHz
205
228
275
352
501
276.5
302.3
358.4
502.5
816.4
1 MHz
111
126
175
248
397
151.3
180.9
245.3
390.7
703.4
400 kHz
49.2
62.7
108
181
330
73.3
104.0
170.8
321.0
632.4
100 kHz
21.5
33.3
76.6
151
299
36.4
67.7
137.2
287.8
600.8
mA
µA
75/156
Electrical characteristics
1. Guaranteed by characterization results, unless otherwise specified.
Unit
STM32L432KB STM32L432KC
Table 27. Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1
Electrical characteristics
STM32L432KB STM32L432KC
Table 28. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF)
Conditions
-
IDD_ALL
(Run)
Supply
current in
Run mode
fHCLK = fHSE up
to 48 MHz
included, bypass
mode PLL ON
above 48 MHz
all peripherals
disable
Voltage
scaling
Range 2
fHCLK = 26 MHz
Parameter
Supply
current in fHCLK = fMSI = 2 MHz
Low-power all peripherals disable
run
25 °C
Reduced code(1)
2.37
91
Coremark
2.69
103
Dhrystone 2.1
2.74
Fibonacci
2.58
99
2.30
88
Reduced code
8.53
107
Coremark
9.68
121
Dhrystone 2.1
9.76
Fibonacci
9.27
116
8.20
103
Reduced code
211
106
Coremark
251
126
Dhrystone 2.1
269
Fibonacci
230
115
While(1)
286
143
While(1)
While(1)
1. Reduced code used for characterization results provided in Table 25, Table 26, Table 27.
76/156
Unit
25 °C
(1)
IDD_ALL
(LPRun)
TYP
Unit
Code
(1)
Range 1
fHCLK = 80 MHz
Symbol
TYP
DS11451 Rev 4
mA
mA
µA
105
122
135
µA/MHz
µA/MHz
µA/MHz
STM32L432KB STM32L432KC
Electrical characteristics
Table 29. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART disable
Conditions
Parameter
-
IDD_ALL
(Run)
IDD_ALL
(LPRun)
Supply
current in
Run mode
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz
all peripherals
disable
Supply
current in fHCLK = fMSI = 2 MHz
Low-power all peripherals disable
run
TYP
Unit
Voltage
scaling
Range 1
Range 2
fHCLK = 80 MHz fHCLK = 26 MHz
Symbol
TYP
Code
Unit
25 °C
25 °C
Reduced code(1)
2.66
102
Coremark
2.44
94
Dhrystone 2.1
2.46
Fibonacci
2.27
87
While(1)
2.20
84.6
Reduced code(1)
8.56
107
Coremark
8.00
mA
95
µA/MHz
100
mA
Dhrystone 2.1
7.98
100
Fibonacci
7.41
While(1)
7.83
98
Reduced code(1)
310
155
µA/MHz
93
Coremark
342
Dhrystone 2.1
324
171
Fibonacci
324
162
While(1)
384
192
µA
162
µA/MHz
1. Reduced code used for characterization results provided in Table 25, Table 26, Table 27.
Table 30. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1
Conditions
Parameter
-
IDD_ALL
(Run)
IDD_ALL
(LPRun)
fHCLK = fHSE up to
48 MHz included,
bypass mode
Supply
current in PLL ON above
Run mode 48 MHz all
peripherals
disable
Voltage
scaling
Range 1
Range 2
fHCLK = 80 MHz fHCLK = 26 MHz
Symbol
Supply
current in fHCLK = fMSI = 2 MHz
Low-power all peripherals disable
run
TYP
TYP
Unit
Code
Unit
25 °C
25 °C
Reduced code(1)
2.42
93
Coremark
2.18
Dhrystone 2.1
2.40
84
mA
92
Fibonacci
2.40
92
While(1)
2.29
88
Reduced code(1)
8.63
108
Coremark
7.76
µA/MHz
97
mA
Dhrystone 2.1
8.55
107
Fibonacci
8.56
107
While(1)
8.12
102
Reduced code(1)
205
103
Coremark
188
µA/MHz
94
µA
Dhrystone 2.1
222
111
Fibonacci
204
102
While(1)
211
106
µA/MHz
1. Reduced code used for characterization results provided in Table 25, Table 26, Table 27.
DS11451 Rev 4
77/156
148
Conditions
Symbol
Parameter
-
Voltage
scaling
Unit
fHCLK
26 MHz
IDD_ALL
(Sleep)
DS11451 Rev 4
IDD_ALL
(LPSleep)
25 °C 55 °C
85 °C
0.68
0.74
0.69
105 °C 125 °C 25 °C
0.81
0.95
0.8
55 °C
85 °C
0.8
0.9
105 °C 125 °C
1.0
1.3
0.46
0.48
0.52
0.59
0.73
0.5
0.6
0.6
0.8
1.1
8 MHz
0.29
0.30
0.34
0.41
0.55
0.3
0.4
0.4
0.6
0.9
4 MHz
0.20
0.21
0.25
0.32
0.46
0.2
0.3
0.3
0.5
0.8
2 MHz
0.16
0.17
0.21
0.28
0.42
0.2
0.2
0.3
0.4
0.7
1 MHz
0.13
0.15
0.19
0.26
0.40
0.1
0.2
0.3
0.4
0.7
100 kHz
0.11
0.13
0.17
0.24
0.38
0.1
0.2
0.2
0.4
0.7
80 MHz
2.23
2.25
2.30
2.38
2.54
2.5
2.5
2.6
2.8
3.1
72 MHz
2.02
2.04
2.10
2.18
2.34
2.2
2.3
2.4
2.5
2.9
64 MHz
1.82
1.84
1.89
1.98
2.14
2.0
2.1
2.1
2.3
2.6
Range 1 48 MHz
1.34
1.36
1.42
1.50
1.66
1.5
1.6
1.7
1.8
2.2
32 MHz
0.93
0.95
1.01
1.09
1.25
1.1
1.1
1.2
1.4
1.7
24 MHz
0.73
0.75
0.80
0.88
1.04
0.8
0.9
1.0
1.1
1.4
16 MHz
0.53
0.55
0.60
0.68
0.84
0.6
0.6
0.7
0.9
1.2
2 MHz
71.8
80.7
125
200
350
91.1
122.7
191.3
341.5
653.5
1 MHz
45.0
57.3
101
176
325
63.2
95.4
165.4
316.5
628.7
400 kHz
27.0
40.7
84.6
158
308
43.9
75.8
147.2
297.6
609.2
100 kHz
22.8
30.9
63.3
113.2
207.7
35.2
67.9
140.9
290.8
602.4
fHCLK = fHSE up
to 48 MHz
included, bypass
mode
pll ON above
48 MHz all
peripherals
disable
Supply
current in
=f
f
low-power HCLK MSI
all peripherals disable
sleep
mode
1. Guaranteed by characterization results, unless otherwise specified.
mA
µA
STM32L432KB STM32L432KC
16 MHz
Range 2
Supply
current in
sleep
mode,
MAX(1)
TYP
Electrical characteristics
78/156
Table 31. Current consumption in Sleep and Low-power sleep modes, Flash ON
Conditions
Symbol
Parameter
Voltage
scaling
-
IDD_ALL
(LPSleep)
Supply current
in low-power
sleep mode
fHCLK = fMSI
all peripherals disable
MAX(1)
TYP
Unit
fHCLK
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
2 MHz
58.7
70.7
103.2
153.7
248.5
105 °C 125 °C
80
113
180
330
641
1 MHz
39.4
47.2
79.3
129.6
224.8
53
86
154
304
616
400 kHz
20.8
30.8
62.1
112.5
207.8
35
67
137
286
597
100 kHz
14.3
23.1
55.1
105.7
201.5
27
58
130
279
590
µA
1. Guaranteed by characterization results, unless otherwise specified.
STM32L432KB STM32L432KC
Table 32. Current consumption in Low-power sleep modes, Flash in power-down
Table 33. Current consumption in Stop 2 mode
DS11451 Rev 4
Symbol
Parameter
IDD_ALL
(Stop 2)
Supply current in
Stop 2 mode,
RTC disabled
Conditions
-
-
RTC clocked by LSI
Supply current in
RTC clocked by LSE
Stop 2 mode,
bypassed at 32768 Hz
RTC enabled
RTC clocked by LSE
quartz(2)
in low drive mode
VDD
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
1.8 V
1
2.54
8.74
19.8
43.4
2.0
5.6
21.1
50.8
116.0
2.4 V
1.02
2.59
8.89
20.2
44.3
2.1
5.8
21.6
52.3
119.6
3V
1.06
2.67
9.11
20.7
45.5
2.1
5.9
22.2
53.7
123.2
3.6 V
1.23
2.88
9.56
21.6
47.3
2.3
6.1
23.0
55.8
127.9
1.8 V
1.3
2.82
9.02
20.1
43.6
2.5
6.2
21.6
51.3
116.3
2.4 V
1.39
2.95
9.24
20.5
44.6
2.8
6.4
22.3
52.8
120.0
3V
1.5
3.11
9.55
21.1
45.8
3.0
6.8
23.0
54.5
123.8
3.6 V
1.76
3.42
10.1
22.1
47.8
3.3
7.2
24.1
56.7
128.7
1.8 V
1.36
2.9
9.1
20.1
43.7
-
-
-
-
-
2.4 V
1.48
3.09
9.44
20.8
45
-
-
-
-
-
3V
1.83
3.67
10.4
22.3
47.3
-
-
-
-
-
3.6 V
3.58
6.17
13.9
26.6
53
-
-
-
-
-
1.8 V
1.28
2.81
9.13
20.8
-
-
-
-
-
-
2.4 V
1.39
2.93
9.34
21.3
-
-
-
-
-
-
3V
1.59
3.1
9.64
21.8
-
-
-
-
-
-
3.6 V
1.86
3.45
10.2
22.8
-
-
-
-
-
-
Unit
µA
µA
79/156
Electrical characteristics
IDD_ALL
(Stop 2 with
RTC)
MAX(1)
TYP
Symbol
Parameter
Supply current
IDD_ALL
during wakeup
(wakeup from
from Stop 2
Stop2)
mode
Conditions
-
MAX(1)
TYP
VDD
25 °C 55 °C
Wakeup clock is
MSI = 48 MHz,
voltage Range 1.
See (3).
3V
1.85
-
-
-
-
Wakeup clock is
MSI = 4 MHz,
voltage Range 2.
See (3).
3V
1.52
-
-
-
Wakeup clock is
HSI16 = 16 MHz,
voltage Range 1.
See (3).
3V
1.54
-
-
-
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Unit
mA
Electrical characteristics
80/156
Table 33. Current consumption in Stop 2 mode (continued)
DS11451 Rev 4
1. Guaranteed based on test during characterization, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 39: Low-power mode wakeup timings.
STM32L432KB STM32L432KC
Symbol
Parameter
IDD_ALL
(Stop 1)
Supply
current in
Stop 1 mode,
RTC disabled
Conditions
-
-
RTC clocked by LSI
DS11451 Rev 4
Supply
IDD_ALL
current in stop RTC clocked by LSE
(Stop 1 with
1 mode,
bypassed, at 32768 Hz
RTC)
RTC enabled
RTC clocked by LSE quartz(2)
in low drive mode
Wakeup clock MSI = 48 MHz,
voltage Range 1.
See (3).
VDD
25 °C 55 °C 85 °C 105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
1.8 V
4.34
12.4
43.6
96.4
204
9.3
27.4
98.9
198.7
397.5
2.4 V
4.35
12.5
43.8
97
205
9.4
27.6
99.5
199.0
398.0
3V
4.41
12.6
44.1
97.7
207
9.5
27.8
100.3
200.4
400.8
3.6 V
4.56
12.9
44.8
98.9
210
9.7
28.3
101.7
202.1
404.2
1.8 V
4.63
12.7
43.9
96.8
205
9.9
28.0
99.5
198.9
397.8
2.4 V
4.78
12.8
44.2
97.4
206
10.1
28.3
100.3
199.5
399.0
3V
4.93
13
44.6
98.1
207
10.4
28.7
101.2
200.9
401.9
3.6 V
5.05
13.4
45.3
99.5
210
10.8
29.4
102.8
202.5
405.0
1.8 V
4.7
12.8
44
96.9
205
-
-
-
-
-
2.4 V
4.95
13
44.4
97.6
206
-
-
-
-
-
3V
5.33
13.6
45.4
99.1
209
-
-
-
-
-
3.6 V
6.91
16.1
48.8
103
216
-
-
-
-
-
1.8 V
4.76
12.3
43.7
99.1
-
-
-
-
-
-
2.4 V
4.95
12.4
43.8
99.3
-
-
-
-
-
-
3V
5.1
12.6
44.1
99.6
-
-
-
-
-
-
3.6 V
5.65
13
44.8
101
-
-
-
-
-
-
3V
1.14
-
-
-
-
-
-
-
-
-
3V
1.22
-
-
-
-
-
-
-
-
-
3V
1.20
-
-
-
-
-
-
-
-
-
1. Guaranteed based on test during characterization, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 39: Low-power mode wakeup timings.
Unit
µA
µA
mA
81/156
Electrical characteristics
Supply
Wakeup clock MSI = 4 MHz,
IDD_ALL
current during voltage Range 2.
(wakeup
wakeup from
from Stop1)
See (3).
Stop 1
Wakeup clock HSI16 =
16 MHz, voltage Range 1.
See (3).
MAX(1)
TYP
STM32L432KB STM32L432KC
Table 34. Current consumption in Stop 1 mode
Symbol
Parameter
IDD_ALL
(Stop 0)
Supply
current in
Stop 0 mode,
RTC disabled
Conditions
VDD
MAX(1)
TYP
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
1.8 V
108
119
158
221
347
133
158
244
395
704
2.4 V
110
121
160
223
349
136
161
248
399
710
3V
111
123
161
224
352
139
164
251
403
716
3.6 V
114
125
163
227
355
142
167
254
408
722(2)
1. Guaranteed by characterization results, unless otherwise specified.
Unit
µA
Electrical characteristics
82/156
Table 35. Current consumption in Stop 0
2. Guaranteed by test in production.
DS11451 Rev 4
STM32L432KB STM32L432KC
Symbol
IDD_ALL
(Standby)
Parameter
Supply current
in Standby
mode (backup
registers
retained),
RTC disabled
Conditions
-
no independent watchdog
with independent
watchdog
DS11451 Rev 4
RTC clocked by LSI, no
independent watchdog
IDD_ALL
(Standby
with RTC)
Supply current
in Standby
mode (backup
registers
retained),
RTC enabled
RTC clocked by LSI, with
independent watchdog
RTC clocked by LSE
bypassed at 32768Hz
MAX(1)
TYP
VDD
25 °C 55 °C
1.8 V
27.7
144
758
2 072
5 425
2.4 V
50.9
187
892
2 408
3V
90.2
253
1 090
3.6 V
253
459
1.8 V
216
-
2.4 V
342
3V
416
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
119
425
2866
7524
20510
6 247
183
564
3383
8778
23768
2 884
7 409
225
681
3912
10071
26976
1 474
3 575
8 836
292
877
4638
11659
30758
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3.6 V
551
-
-
-
-
-
-
-
-
-
1.8 V
287
407
989
2 230
5 396
585
944
3344
7866
20504
2.4 V
386
526
1 201
2 638
6 274
811
1230
4007
9246
23824
3V
513
679
1 478
3 167
7 414
1022
1521
4683
10671
27124
3.6 V
771
978
1 963
3 992
9 039
1284
1924
5577
12383
1.8 V
342
-
-
-
-
-
-
-
-
-
2.4 V
521
-
-
-
-
-
-
-
-
-
Unit
nA
STM32L432KB STM32L432KC
Table 36. Current consumption in Standby mode
30954
(2)
3V
655
-
-
-
-
-
-
-
-
-
3.6 V
865
-
-
-
-
-
-
-
-
-
1.8 V
142
126
865
2 220
5 650
-
-
-
-
-
2.4 V
249
219
1 090
2 660
6 600
-
-
-
-
-
404
364
1 410
3 260
7 850
-
-
-
-
-
742
670
2 000
4 230
9 700
-
-
-
-
-
1.8 V
281
423
1 046
2 410
5 700
-
-
-
-
-
2.4 V
RTC clocked by LSE
quartz (3) in low drive mode 3 V
388
548
1 268
2 847
6 564
-
-
-
-
-
535
715
1 565
3 420
7 694
-
-
-
-
-
3.6 V
836
1 048
2 081
4 311
9 338
-
-
-
-
-
nA
83/156
Electrical characteristics
3V
3.6 V
nA
Symbol
IDD_ALL
(SRAM2)(4)
IDD_ALL
(wakeup
from
Standby)
Conditions
Parameter
Supply current
to be added in
Standby mode
when SRAM2
is retained
Supply current
during wakeup
from Standby
mode
-
VDD
-
Wakeup clock is
MSI = 4 MHz.
See (5).
MAX(1)
TYP
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
1.8 V
173
349
1 009
2 158
4 542
249
527
1604
3402
6908
2.4 V
174
345
1 015
2 163
4 535
271
589
1623
3438
6924
3V
178
350
1 019
2 148
4 419
277
594
1628
3467
6935
3.6 V
184
352
1 033
2 208
4 610
293
611
1631
3480
6948
3V
1.23
-
-
-
-
-
-
-
-
-
Unit
nA
Electrical characteristics
84/156
Table 36. Current consumption in Standby mode (continued)
mA
1. Guaranteed by characterization results, unless otherwise specified.
2. Guaranteed by test in production.
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
DS11451 Rev 4
4. The supply current in Standby with SRAM2 mode is: IDD_ALL(Standby) + IDD_ALL(SRAM2). The supply current in Standby with RTC with SRAM2 mode is: IDD_ALL(Standby
+ RTC) + IDD_ALL(SRAM2).
5. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 39: Low-power mode wakeup timings.
Table 37. Current consumption in Shutdown mode
Symbol
Supply current
in Shutdown
mode
(backup
registers
retained) RTC
disabled
-
-
MAX(1)
TYP
VDD
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
1.8 V
7.82
190
386
1 286
3 854
2.4 V
23
229
485
1 517
3V
44.3
290
634
3.6 V
212
397
977
105 °C 125 °C
25.0
255
1721
5052
15543
4 431
34.9
270
2085
5878
17639
1 878
5 310
70.1
345
2454
6755
19984
2 516
6 656
119.1
496
2992
7939
22860
Unit
nA
STM32L432KB STM32L432KC
IDD_ALL
(Shutdown)
Parameter
Conditions
Symbol
IDD_ALL
(Shutdown
with RTC)
Parameter
Supply current
in Shutdown
mode
(backup
registers
retained) RTC
enabled
DS11451 Rev 4
Supply current
IDD_ALL
during wakeup
(wakeup from
from Shutdown
Shutdown)
mode
Conditions
-
RTC clocked by LSE
bypassed at 32768 Hz
RTC clocked by LSE
quartz (2) in low drive
mode
Wakeup clock is
MSI = 4 MHz.
See (3).
MAX(1)
TYP
VDD
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
1.8 V
63
133
522
1 490
4 270
-
-
-
-
-
2.4 V
165
253
710
1 830
4 980
-
-
-
-
-
3V
316
423
990
2 340
6 050
-
-
-
-
-
3.6 V
649
787
1 530
3 220
7 710
-
-
-
-
-
1.8 V
203
293
700
1 675
-
-
-
-
-
-
2.4 V
303
411
880
2 001
-
-
-
-
-
-
3V
448
567
1 136
2 479
-
-
-
-
-
-
3.6 V
744
887
1 609
3 256
-
-
-
-
-
-
3V
0.780
-
-
-
-
-
-
-
-
-
Unit
nA
STM32L432KB STM32L432KC
Table 37. Current consumption in Shutdown mode (continued)
mA
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 39: Low-power mode wakeup timings.
Electrical characteristics
85/156
Electrical characteristics
STM32L432KB STM32L432KC
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 57: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 38: Peripheral current consumption), the I/Os used by an application also contribute
to the current consumption. When an I/O pin switches, it uses the current from the I/O
supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load
(internal or external) connected to the pin:
I SW = V DDIOx × f SW × C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDIOx is the I/O supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
86/156
DS11451 Rev 4
STM32L432KB STM32L432KC
Electrical characteristics
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 38. The MCU is placed
under the following conditions:
•
All I/O pins are in Analog mode
•
The given value is calculated by measuring the difference of the current consumptions:
–
when the peripheral is clocked on
–
when the peripheral is clocked off
•
Ambient operating temperature and supply voltage conditions summarized in Table 18:
Voltage characteristics
•
The power consumption of the digital part of the on-chip peripherals is given in
Table 38. The power consumption of the analog part of the peripherals (where
applicable) is indicated in each related section of the datasheet.
Table 38. Peripheral current consumption
Range 1
Range 2
Low-power run
and sleep
Bus Matrix(1)
3.2
2.9
3.1
ADC independent clock domain
0.4
0.1
0.2
ADC clock domain
2.1
1.9
1.9
CRC
0.4
0.2
0.3
DMA1
1.4
1.3
1.4
DMA2
1.5
1.3
1.4
6.2
5.2
5.8
1.7
1.4
1.6
Peripheral
FLASH
(2)
GPIOA
AHB
GPIOB(2))
1.6
1.3
1.6
(2)
GPIOC
1.7
1.5
1.6
GPIOH(2)
0.6
0.6
0.5
QSPI
7.0
5.8
7.3
RNG independent clock domain
2.2
N/A
N/A
RNG clock domain
0.5
N/A
N/A
SRAM1
0.8
0.9
0.7
SRAM2
1.0
0.8
0.8
TSC
1.6
1.3
1.3
21.7
18.5
20.3
AHB to APB1 bridge
0.9
0.7
0.9
CAN1
4.1
3.2
3.9
DAC1
2.4
1.8
2.2
RTCA
1.7
1.1
2.1
CRS
0.3
0.3
0.6
All AHB Peripherals
(3)
APB1
DS11451 Rev 4
Unit
µA/MHz
87/156
148
Electrical characteristics
STM32L432KB STM32L432KC
Table 38. Peripheral current consumption (continued)
Range 1
Range 2
Low-power run
and sleep
USB FS independent clock
domain
2.9
N/A
N/A
USB FS clock domain
2.3
N/A
N/A
I2C1 independent clock domain
3.5
2.8
3.4
I2C1 clock domain
1.1
0.9
1.0
I2C3 independent clock domain
2.9
2.3
2.5
I2C3 clock domain
0.9
0.4
0.8
LPUART1 independent clock
domain
1.9
1.6
1.8
LPUART1 clock domain
0.6
0.6
0.6
LPTIM1 independent clock
domain
2.9
2.4
2.8
LPTIM1 clock domain
0.8
0.4
0.7
LPTIM2 independent clock
domain
3.1
2.7
3.9
LPTIM2 clock domain
0.8
0.7
0.8
OPAMP
0.4
0.2
0.4
PWR
0.4
0.1
0.4
SPI3
1.7
1.3
1.6
SWPMI1 independent clock
domain
1.9
1.6
1.9
SWPMI1 clock domain
0.9
0.7
0.8
TIM2
6.2
5.0
5.9
TIM6
1.0
0.6
0.9
TIM7
1.0
0.6
0.6
USART2 independent clock
domain
4.1
3.6
3.8
USART2 clock domain
1.3
0.9
1.1
WWDG
0.5
0.5
0.5
All APB1 on
40.2
26.7
37.9
AHB to APB2(4)
1.0
0.9
0.9
FW
0.2
0.2
0.2
SAI1 independent clock domain
2.3
1.8
1.9
SAI1 clock domain
2.1
1.8
2.0
SPI1
1.8
1.6
1.7
SYSCFG/COMP
0.6
0.5
0.6
Peripheral
APB1
APB2
88/156
DS11451 Rev 4
Unit
µA/MHz
STM32L432KB STM32L432KC
Electrical characteristics
Table 38. Peripheral current consumption (continued)
Range 1
Range 2
Low-power run
and sleep
TIM1
8.1
6.5
7.6
TIM15
3.7
3.0
3.4
TIM16
2.7
2.1
2.6
USART1 independent clock
domain
4.8
4.2
4.6
USART1 clock domain
1.5
1.3
1.7
All APB2 on
24.2
19.9
22.6
86.1
65.1
80.9
Peripheral
APB2
ALL
Unit
µA/MHz
1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).
2. The GPIOx (x= A…H) dynamic current consumption is approximately divided by a factor two versus this table values when
the GPIO port is locked thanks to LCKK and LCKy bits in the GPIOx_LCKR register. In order to save the full GPIOx current
consumption, the GPIOx clock should be disabled in the RCC when all port I/Os are used in alternate function or analog
mode (clock is only required to read or write into GPIO registers, and is not used in AF or analog modes).
3. The AHB to APB1 Bridge is automatically active when at least one peripheral is ON on the APB1.
4. The AHB to APB2 Bridge is automatically active when at least one peripheral is ON on the APB2.
6.3.6
Wakeup time from low-power modes and voltage scaling
transition times
The wakeup times given in Table 39 are the latency between the event and the execution of
the first user instruction.
The device goes in low-power mode after the WFE (Wait For Event) instruction.
Table 39. Low-power mode wakeup timings(1)
Symbol
tWUSLEEP
Parameter
Conditions
Typ
Max
-
6
6
Wakeup time from Sleep
mode to Run mode
Wakeup time from LowtWULPSLEEP power sleep mode to Lowpower run mode
Wakeup in Flash with Flash in power-down
during low-power sleep mode (SLEEP_PD=1 in
FLASH_ACR) and with clock MSI = 2 MHz
DS11451 Rev 4
6
8.3
Unit
Nb of
CPU
cycles
89/156
148
Electrical characteristics
STM32L432KB STM32L432KC
Table 39. Low-power mode wakeup timings(1) (continued)
Symbol
Parameter
Conditions
Range 1
Wake up time from Stop 0
mode to Run mode in
Flash
Range 2
tWUSTOP0
Range 1
Wake up time from Stop 0
mode to Run mode in
SRAM1
Range 2
Range 1
Wake up time from Stop 1
mode to Run in Flash
Range 2
Range 1
tWUSTOP1
Wake up time from Stop 1
mode to Run mode in
SRAM1
Wake up time from Stop 1
mode to Low-power run
mode in Flash
Wake up time from Stop 1
mode to Low-power run
mode in SRAM1
90/156
Range 2
Regulator in
low-power
mode (LPR=1
in PWR_CR1)
Typ
Max
Wakeup clock MSI = 48 MHz
3.8
5.7
Wakeup clock HSI16 = 16 MHz
4.1
6.9
Wakeup clock MSI = 24 MHz
4.07
6.2
Wakeup clock HSI16 = 16 MHz
4.1
6.8
Wakeup clock MSI = 4 MHz
8.45
11.8
Wakeup clock MSI = 48 MHz
1.5
2.9
Wakeup clock HSI16 = 16 MHz
2.4
2.76
Wakeup clock MSI = 24 MHz
2.4
3.48
Wakeup clock HSI16 = 16 MHz
2.4
2.76
Wakeup clock MSI = 4 MHz
8.16 10.94
Wakeup clock MSI = 48 MHz
6.34
7.86
Wakeup clock HSI16 = 16 MHz
6.84
8.23
Wakeup clock MSI = 24 MHz
6.74
8.1
Wakeup clock HSI16 = 16 MHz
6.89
8.21
Wakeup clock MSI = 4 MHz
10.47 12.1
Wakeup clock MSI = 48 MHz
4.7
5.97
Wakeup clock HSI16 = 16 MHz
5.9
6.92
Wakeup clock MSI = 24 MHz
5.4
6.51
Wakeup clock HSI16 = 16 MHz
5.9
6.92
Wakeup clock MSI = 4 MHz
11.1
12.2
16.4 17.73
Wakeup clock MSI = 2 MHz
DS11451 Rev 4
17.3 18.82
Unit
µs
µs
STM32L432KB STM32L432KC
Electrical characteristics
Table 39. Low-power mode wakeup timings(1) (continued)
Symbol
Parameter
Conditions
Typ
Max
Wakeup clock MSI = 48 MHz
8.02
9.24
Wakeup clock HSI16 = 16 MHz
7.66
8.95
Wakeup clock MSI = 24 MHz
8.5
9.54
Wakeup clock HSI16 = 16 MHz
7.75
8.95
Wakeup clock MSI = 4 MHz
12.06 13.16
Wakeup clock MSI = 48 MHz
5.45
6.79
Wakeup clock HSI16 = 16 MHz
6.9
7.98
Wakeup clock MSI = 24 MHz
6.3
7.36
Wakeup clock HSI16 = 16 MHz
6.9
7.9
Wakeup clock MSI = 4 MHz
13.1 13.31
Wakeup time from Standby
Range 1
mode to Run mode
Wakeup clock MSI = 8 MHz
12.2 18.35
Wakeup clock MSI = 4 MHz
19.14 25.8
Wakeup time from Standby
Range 1
with SRAM2 to Run mode
Wakeup clock MSI = 8 MHz
12.1
Wakeup clock MSI = 4 MHz
19.2 25.87
Wakeup clock MSI = 4 MHz
261.5 315.7
Range 1
Wake up time from Stop 2
mode to Run mode in
Flash
Range 2
tWUSTOP2
Range 1
Wake up time from Stop 2
mode to Run mode in
SRAM1
tWUSTBY
tWUSTBY
SRAM2
tWUSHDN
Wakeup time from
Shutdown mode to Run
mode
Range 2
Range 1
18.3
Unit
µs
µs
µs
µs
1. Guaranteed by characterization results.
Table 40. Regulator modes transition times(1)
Symbol
tWULPRUN
tVOST
Parameter
Conditions
Typ
Max
Wakeup time from Low-power run mode to
Code run with MSI 2 MHz
Run mode(2)
5
7
Regulator transition time from Range 2 to
Range 1 or Range 1 to Range 2(3)
20
40
Typ
Max
Stop 0 mode
-
1.7
Stop 1 mode and Stop 2
mode
-
8.5
Code run with MSI 24 MHz
Unit
µs
1. Guaranteed by characterization results.
2. Time until REGLPF flag is cleared in PWR_SR2.
3. Time until VOSF flag is cleared in PWR_SR2.
Table 41. Wakeup time using USART/LPUART(1)
Symbol
tWUUSART
tWULPUART
Parameter
Conditions
Wakeup time needed to calculate the
maximum USART/LPUART baudrate
allowing to wakeup up from stop mode
when USART/LPUART clock source is
HSI16
Unit
µs
1. Guaranteed by design.
DS11451 Rev 4
91/156
148
Electrical characteristics
6.3.7
STM32L432KB STM32L432KC
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 12: High-speed external clock
source AC timing diagram.
Table 42. High-speed external user clock characteristics(1)
Symbol
fHSE_ext
Parameter
User external clock source frequency
Conditions
Min
Typ
Max
Voltage scaling
Range 1
-
8
48
Voltage scaling
Range 2
-
8
26
Unit
MHz
VHSEH
CK_IN input pin high level voltage
-
0.7 VDDIOx
-
VDDIOx
VHSEL
CK_IN input pin low level voltage
-
VSS
-
0.3 VDDIOx
Voltage scaling
Range 1
7
-
-
Voltage scaling
Range 2
18
tw(HSEH)
CK_IN high or low time
tw(HSEL)
V
ns
-
-
1. Guaranteed by design.
Figure 12. High-speed external clock source AC timing diagram
tw(HSEH)
VHSEH
90%
VHSEL
10%
tr(HSE)
tf(HSE)
tw(HSEL)
t
THSE
MS19214V2
92/156
DS11451 Rev 4
STM32L432KB STM32L432KC
Electrical characteristics
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 13.
Table 43. Low-speed external user clock characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
kHz
fLSE_ext
User external clock source frequency
-
-
32.768
1000
VLSEH
OSC32_IN input pin high level voltage
-
0.7 VDDIOx
-
VDDIOx
VLSEL
OSC32_IN input pin low level voltage
-
VSS
-
0.3 VDDIOx
-
250
-
-
tw(LSEH)
OSC32_IN high or low time
tw(LSEL)
V
ns
1. Guaranteed by design.
Figure 13. Low-speed external clock source AC timing diagram
tw(LSEH)
VLSEH
90%
VLSEL
10%
tr(LSE)
tf(LSE)
t
tw(LSEL)
TLSE
MS19215V2
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. All the information given in this paragraph are based on design simulation results
obtained with typical external components specified in Table 44. In the application, the
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
DS11451 Rev 4
93/156
148
Electrical characteristics
STM32L432KB STM32L432KC
Table 44. LSE oscillator characteristics (fLSE = 32.768 kHz)(1)
Symbol
IDD(LSE)
Conditions(2)
Parameter
LSE current consumption
Maximum critical crystal
Gmcritmax
gm
tSU(LSE)(3) Startup time
Min
Typ
Max
LSEDRV[1:0] = 00
Low drive capability
-
250
-
LSEDRV[1:0] = 01
Medium low drive capability
-
315
-
LSEDRV[1:0] = 10
Medium high drive capability
-
500
-
LSEDRV[1:0] = 11
High drive capability
-
630
-
LSEDRV[1:0] = 00
Low drive capability
-
-
0.5
LSEDRV[1:0] = 01
Medium low drive capability
-
-
0.75
LSEDRV[1:0] = 10
Medium high drive capability
-
-
1.7
LSEDRV[1:0] = 11
High drive capability
-
-
2.7
VDD is stabilized
-
2
-
Unit
nA
µA/V
s
1. Guaranteed by design.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
3.
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 14. Typical application with a 32.768 kHz crystal
Resonator with integrated
capacitors
CL1
OSC32_IN
fLSE
Drive
programmable
amplifier
32.768 kHz
resonator
OSC32_OUT
CL2
MS30253V2
Note:
94/156
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
DS11451 Rev 4
STM32L432KB STM32L432KC
6.3.8
Electrical characteristics
Internal clock source characteristics
The parameters given in Table 45 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions. The provided curves are characterization results, not tested in production.
High-speed internal (HSI16) RC oscillator
Table 45. HSI16 oscillator characteristics(1)
Symbol
fHSI16
TRIM
Parameter
HSI16 Frequency
HSI16 user trimming step
DuCy(HSI16)(2) Duty Cycle
Conditions
Min
Typ
Max
Unit
15.88
-
16.08
MHz
Trimming code is not a
multiple of 64
0.2
0.3
0.4
Trimming code is a
multiple of 64
-4
-6
-8
45
-
55
%
-1
-
1
%
-2
-
1.5
%
-0.1
-
0.05
%
VDD=3.0 V, TA=30 °C
-
%
∆Temp(HSI16)
HSI16 oscillator frequency TA= 0 to 85 °C
drift over temperature
TA= -40 to 125 °C
∆VDD(HSI16)
HSI16 oscillator frequency
VDD=1.62 V to 3.6 V
drift over VDD
tsu(HSI16)(2)
HSI16 oscillator start-up
time
-
-
0.8
1.2
μs
tstab(HSI16)(2)
HSI16 oscillator
stabilization time
-
-
3
5
μs
IDD(HSI16)(2)
HSI16 oscillator power
consumption
-
-
155
190
μA
1. Guaranteed by characterization results.
2. Guaranteed by design.
DS11451 Rev 4
95/156
148
Electrical characteristics
STM32L432KB STM32L432KC
Figure 15. HSI16 frequency versus temperature
MHz
16.4
+2%
16.3
+1.5%
16.2
+1%
16.1
16
15.9
-1%
15.8
-1.5%
15.7
-2%
15.6
-40
-20
0
20
min
40
mean
60
80
100
120 °C
max
MSv39299V1
96/156
DS11451 Rev 4
STM32L432KB STM32L432KC
Electrical characteristics
Multi-speed internal (MSI) RC oscillator
Table 46. MSI oscillator characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Range 0
98.7
100
101.3
Range 1
197.4
200
202.6
Range 2
394.8
400
405.2
Range 3
789.6
800
810.4
Range 4
0.987
1
1.013
Range 5
1.974
2
2.026
Range 6
3.948
4
4.052
Range 7
7.896
8
8.104
Range 8
15.79
16
16.21
Range 9
23.69
24
24.31
Range 10
31.58
32
32.42
Range 11
47.38
48
48.62
Range 0
-
98.304
-
Range 1
-
196.608
-
Range 2
-
393.216
-
Range 3
-
786.432
-
Range 4
-
1.016
-
PLL mode Range 5
XTAL=
32.768 kHz Range 6
-
1.999
-
-
3.998
-
Range 7
-
7.995
-
Range 8
-
15.991
-
Range 9
-
23.986
-
Range 10
-
32.014
-
Range 11
-
48.005
-
-3.5
-
3
-8
-
6
MSI mode
fMSI
∆TEMP(MSI)(2)
MSI frequency
after factory
calibration, done
at VDD=3 V and
TA=30 °C
MSI oscillator
frequency drift
over temperature
MSI mode
TA= -0 to 85 °C
TA= -40 to 125 °C
DS11451 Rev 4
Unit
kHz
MHz
kHz
MHz
%
97/156
148
Electrical characteristics
STM32L432KB STM32L432KC
Table 46. MSI oscillator characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
VDD=1.62 V
to 3.6 V
-1.2
-
VDD=2.4 V
to 3.6 V
-0.5
-
VDD=1.62 V
to 3.6 V
-2.5
-
VDD=2.4 V
to 3.6 V
-0.8
-
VDD=1.62 V
to 3.6 V
-5
-
VDD=2.4 V
to 3.6 V
-1.6
-
TA= -40 to 85 °C
-
1
2
TA= -40 to 125 °C
-
2
4
Range 0 to 3
∆VDD(MSI)
(2)
MSI oscillator
frequency drift
MSI mode
over VDD
(reference is 3 V)
Range 4 to 7
Range 8 to 11
∆FSAMPLING
(MSI)(2)(6)
Frequency
variation in
MSI mode
sampling mode(3)
P_USB
Jitter(MSI)(6)
Period jitter for
USB clock(4)
MT_USB
Jitter(MSI)(6)
Medium term jitter PLL mode
for USB clock(5)
Range 11
CC jitter(MSI)(6)
P jitter(MSI)(6)
tSU(MSI)(6)
tSTAB(MSI)(6)
98/156
PLL mode
Range 11
Max
Unit
0.5
0.7
%
1
for next
transition
-
-
-
3.458
for paired
transition
-
-
-
3.916
for next
transition
-
-
-
2
for paired
transition
-
-
-
1
%
ns
ns
RMS cycle-tocycle jitter
PLL mode Range 11
-
-
60
-
ps
RMS Period jitter
PLL mode Range 11
-
-
50
-
ps
Range 0
-
-
10
20
Range 1
-
-
5
10
Range 2
-
-
4
8
Range 3
-
-
3
7
Range 4 to 7
-
-
3
6
Range 8 to 11
-
-
2.5
6
10 % of final
frequency
-
-
0.25
0.5
5 % of final
frequency
-
-
0.5
1.25
1 % of final
frequency
-
-
-
2.5
MSI oscillator
start-up time
MSI oscillator
stabilization time
PLL mode
Range 11
DS11451 Rev 4
us
ms
STM32L432KB STM32L432KC
Electrical characteristics
Table 46. MSI oscillator characteristics(1) (continued)
Symbol
IDD(MSI)(6)
Parameter
MSI oscillator
power
consumption
Conditions
MSI and
PLL mode
Min
Typ
Max
Range 0
-
-
0.6
1
Range 1
-
-
0.8
1.2
Range 2
-
-
1.2
1.7
Range 3
-
-
1.9
2.5
Range 4
-
-
4.7
6
Range 5
-
-
6.5
9
Range 6
-
-
11
15
Range 7
-
-
18.5
25
Range 8
-
-
62
80
Range 9
-
-
85
110
Range 10
-
-
110
130
Range 11
-
-
155
190
Unit
µA
1. Guaranteed by characterization results.
2. This is a deviation for an individual part once the initial frequency has been measured.
3. Sampling mode means Low-power run/Low-power sleep modes with Temperature sensor disable.
4. Average period of MSI @48 MHz is compared to a real 48 MHz clock over 28 cycles. It includes frequency tolerance + jitter
of MSI @48 MHz clock.
5. Only accumulated jitter of MSI @48 MHz is extracted over 28 cycles.
For next transition: min. and max. jitter of 2 consecutive frame of 28 cycles of the MSI @48 MHz, for 1000 captures over 28
cycles.
For paired transitions: min. and max. jitter of 2 consecutive frame of 56 cycles of the MSI @48 MHz, for 1000 captures over
56 cycles.
6. Guaranteed by design.
DS11451 Rev 4
99/156
148
Electrical characteristics
STM32L432KB STM32L432KC
Figure 16. Typical current consumption versus MSI frequency
High-speed internal 48 MHz (HSI48) RC oscillator
Table 47. HSI48 oscillator characteristics(1)
Symbol
Parameter
fHSI48
HSI48 Frequency
TRIM
HSI48 user trimming step
USER TRIM
COVERAGE
HSI48 user trimming coverage
DuCy(HSI48) Duty Cycle
Accuracy of the HSI48 oscillator
ACCHSI48_REL over temperature (factory
calibrated)
DVDD(HSI48)
HSI48 oscillator frequency drift
with VDD
Conditions
VDD=3.0V, TA=30°C
±32 steps
VDD = 3.0 V to 3.6 V,
TA = –15 to 85 °C
Min
Typ
Max
Unit
-
48
-
MHz
-
0.11(2)
0.18(2)
%
±3(3)
±3.5(3)
-
%
45(2)
-
55(2)
%
-
-
±3(3)
%
VDD = 1.65 V to 3.6 V,
TA = –40 to 125 °C
-
-
±4.5(3)
VDD = 3 V to 3.6 V
-
0.025(3)
0.05(3)
VDD = 1.65 V to 3.6 V
-
0.05(3)
0.1(3)
%
tsu(HSI48)
HSI48 oscillator start-up time
-
-
2.5(2)
6(2)
μs
IDD(HSI48)
HSI48 oscillator power
consumption
-
-
340(2)
380(2)
μA
100/156
DS11451 Rev 4
STM32L432KB STM32L432KC
Electrical characteristics
Table 47. HSI48 oscillator characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
NT jitter
Next transition jitter
Accumulated jitter on 28 cycles(4)
-
-
+/-0.15(2)
-
ns
PT jitter
Paired transition jitter
Accumulated jitter on 56 cycles(4)
-
-
+/-0.25(2)
-
ns
1. VDD = 3 V, TA = –40 to 125°C unless otherwise specified.
2. Guaranteed by design.
3. Guaranteed by characterization results.
4. Jitter measurement are performed without clock source activated in parallel.
Figure 17. HSI48 frequency versus temperature
%
6
4
2
0
-2
-4
-6
-50
-30
-10
Avg
10
30
50
70
90
min
110
130
°C
max
MSv40989V1
Low-speed internal (LSI) RC oscillator
Table 48. LSI oscillator characteristics(1)
Symbol
fLSI
tSU(LSI)(2)
tSTAB(LSI)(2)
IDD(LSI)(2)
Parameter
LSI Frequency
LSI oscillator startup time
LSI oscillator
stabilization time
LSI oscillator power
consumption
Conditions
Min
Typ
Max
Unit
VDD = 3.0 V, TA = 30 °C
31.04
-
32.96
VDD = 1.62 to 3.6 V, TA = -40 to 125 °C
29.5
-
34
-
-
80
130
μs
5% of final frequency
-
125
180
μs
-
-
110
180
nA
kHz
1. Guaranteed by characterization results.
2. Guaranteed by design.
DS11451 Rev 4
101/156
148
Electrical characteristics
6.3.9
STM32L432KB STM32L432KC
PLL characteristics
The parameters given in Table 49 are derived from tests performed under temperature and
VDD supply voltage conditions summarized in Table 21: General operating conditions.
Table 49. PLL, PLLSAI1 characteristics(1)
Symbol
fPLL_IN
Parameter
Conditions
Min
Typ
Max
Unit
PLL input clock(2)
-
4
-
16
MHz
PLL input clock duty cycle
-
45
-
55
%
Voltage scaling Range 1
3.0968
-
80
Voltage scaling Range 2
3.0968
-
26
Voltage scaling Range 1
12
-
80
Voltage scaling Range 2
12
-
26
Voltage scaling Range 1
12
-
80
Voltage scaling Range 2
12
-
26
Voltage scaling Range 1
96
-
344
Voltage scaling Range 2
96
-
128
-
15
40
-
40
-
-
30
-
VCO freq = 96 MHz
-
200
260
VCO freq = 192 MHz
-
300
380
VCO freq = 344 MHz
-
520
650
fPLL_P_OUT PLL multiplier output clock P
fPLL_Q_OUT PLL multiplier output clock Q
fPLL_R_OUT PLL multiplier output clock R
fVCO_OUT
tLOCK
Jitter
IDD(PLL)
PLL VCO output
PLL lock time
RMS cycle-to-cycle jitter
RMS period jitter
PLL power consumption on
VDD(1)
System clock 80 MHz
MHz
MHz
MHz
MHz
μs
±ps
1. Guaranteed by design.
2. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between the 2 PLLs.
102/156
DS11451 Rev 4
μA
STM32L432KB STM32L432KC
6.3.10
Electrical characteristics
Flash memory characteristics
Table 50. Flash memory characteristics(1)
Symbol
Parameter
Conditions
Typ
Max
Unit
tprog
64-bit programming time
-
81.69
90.76
µs
tprog_row
one row (32 double
word) programming time
normal programming
2.61
2.90
fast programming
1.91
2.12
tprog_page
one page (2 Kbyte)
programming time
normal programming
20.91
23.24
fast programming
15.29
16.98
22.02
24.47
normal programming
5.35
5.95
fast programming
3.91
4.35
22.13
24.59
Write mode
3.4
-
Erase mode
3.4
-
Write mode
7 (for 2 μs)
-
Erase mode
7 (for 41 μs)
-
tERASE
tprog_bank
tME
IDD
Page (2 KB) erase time
one bank (512 Kbyte)
programming time
-
Mass erase time
(one or two banks)
-
Average consumption
from VDD
Maximum current (peak)
ms
s
ms
mA
1. Guaranteed by design.
Table 51. Flash memory endurance and data retention
Symbol
NEND
tRET
Min(1)
Unit
TA = –40 to +105 °C
10
kcycles
1 kcycle(2) at TA = 85 °C
30
Parameter
Endurance
Data retention
Conditions
1 kcycle
(2)
1 kcycle
(2)
at TA = 105 °C
15
at TA = 125 °C
7
(2)
at TA = 55 °C
30
10 kcycles(2) at TA = 85 °C
15
10 kcycles
10 kcycles
(2)
at TA = 105 °C
Years
10
1. Guaranteed by characterization results.
2. Cycling performed over the whole temperature range.
DS11451 Rev 4
103/156
148
Electrical characteristics
6.3.11
STM32L432KB STM32L432KC
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 52. They are based on the EMS levels and classes
defined in application note AN1709.
Table 52. EMS characteristics
Conditions
Level/
Class
Symbol
Parameter
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 80 MHz,
conforming to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 80 MHz,
conforming to IEC 61000-4-4
5A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
104/156
•
Corrupted program counter
•
Unexpected reset
•
Critical Data corruption (control registers...)
DS11451 Rev 4
STM32L432KB STM32L432KC
Electrical characteristics
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 53. EMI characteristics
Symbol
Parameter
Max vs.
[fHSE/fHCLK]
Monitored
frequency band
Conditions
Unit
8 MHz/ 80 MHz
SEMI
Peak level
0.1 MHz to 30 MHz
1
VDD = 3.6 V, TA = 25 °C, 30 MHz to 130 MHz
UFQFPN32 package
130 MHz to 1 GHz
compliant with IEC
61967-2
1 GHz to 2 GHz
0
7
EMI Level
6.3.12
dBµV
-1
1
-
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the ANSI/JEDEC standard.
Table 54. ESD absolute maximum ratings
Symbol
VESD(HBM)
Ratings
Conditions
TA = +25 °C, conforming
Electrostatic discharge
to ANSI/ESDA/JEDEC
voltage (human body model)
JS-001
Electrostatic discharge
VESD(CDM) voltage (charge device
model)
TA = +25 °C,
conforming to ANSI/ESD
STM5.3.1
Class
Maximum
value(1)
2
2000
Unit
V
C3
250
1. Guaranteed by characterization results.
DS11451 Rev 4
105/156
148
Electrical characteristics
STM32L432KB STM32L432KC
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
•
A supply overvoltage is applied to each power supply pin.
•
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 55. Electrical sensitivities
Symbol
LU
6.3.13
Parameter
Static latch-up class
Conditions
Class
TA = +105 °C conforming to JESD78A
II
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal
product operation. However, in order to give an indication of the robustness of the
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests
are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or
oscillator frequency deviation).
The characterization results are given in Table 56.
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
Table 56. I/O current injection susceptibility(1)
Functional
susceptibility
Symbol
IINJ
Description
Positive
injection
Injected current on all pins except PA4, PA5
-5
N/A(2)
Injected current on PA4, PA5 pins
-5
0
1. Guaranteed by characterization results.
2. Injection is not possible.
106/156
Unit
Negative
injection
DS11451 Rev 4
mA
STM32L432KB STM32L432KC
6.3.14
Electrical characteristics
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 57 are derived from tests
performed under the conditions summarized in Table 21: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant.
Table 57. I/O static characteristics
Symbol
VIL(1)
VIH(1)
Vhys(3)
Parameter
Conditions
Min
Typ
Max
Unit
I/O input low level
voltage
1.62 V