STM32L452xx
Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100DMIPS,
up to 512KB Flash, 160KB SRAM, analog, audio, ext. SMPS
Datasheet - production data
Features
• Ultra-low-power with FlexPowerControl
– 1.71 V to 3.6 V power supply
– -40 °C to 85/125 °C temperature range
– 145 nA in VBAT mode: supply for RTC and
32x32-bit backup registers
– 22 nA Shutdown mode (5 wakeup pins)
– 106 nA Standby mode (5 wakeup pins)
– 375 nA Standby mode with RTC
– 2.05 µA Stop 2 mode, 2.40 µA with RTC
– 84 µA/MHz run mode (LDO Mode)
– 36 μA/MHz run mode (@3.3 V SMPS
Mode)
– Batch acquisition mode (BAM)
– 4 µs wakeup from Stop mode
– Brown out reset (BOR)
– Interconnect matrix
• Core: Arm® 32-bit Cortex®-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait-state execution
from Flash memory, frequency up to 80 MHz,
MPU, 100DMIPS and DSP instructions
• Performance benchmark
– 1.25 DMIPS/MHz (Drystone 2.1)
– 273.55 CoreMark® (3.42 CoreMark/MHz @
80 MHz)
• Energy benchmark
– 335 ULPMark™ CP score
– 104 ULPMark™ PP score
• Clock Sources
– 4 to 48 MHz crystal oscillator
– 32 kHz crystal oscillator for RTC (LSE)
– Internal 16 MHz factory-trimmed RC (±1%)
– Internal low-power 32 kHz RC (±5%)
– Internal multispeed 100 kHz to 48 MHz
oscillator, auto-trimmed by LSE (better than
±0.25 % accuracy)
– Internal 48 MHz with clock recovery
October 2020
This is information on a product in full production.
LQFP100 (14×14) UFBGA100 (7×7) WLCSP64 UFQFPN48 (7×7)
LQFP64 (10×10) UFBGA64 (5×5) (3.36×3.66)
LQFP48 (7×7)
– 2 PLLs for system clock, audio, ADC
• Up to 83 fast I/Os, most 5 V-tolerant
• RTC with HW calendar, alarms and calibration
• Up to 21 capacitive sensing channels: support
touchkey, linear and rotary touch sensors
• 12x timers: 1x 16-bit advanced motor-control,
1x 32-bit and 3x 16-bit general purpose, 2x 16bit basic, 2x low-power 16-bit timers (available
in Stop mode), 2x watchdogs, SysTick timer
• Memories
– Up to 512 KB single bank Flash,
proprietary code readout protection
– 160 KB of SRAM including 32 KB with
hardware parity check
– Quad SPI memory interface
• Rich analog peripherals (independent supply)
– 1x 12-bit ADC 5 Msps, up to 16-bit with
hardware oversampling, 200 µA/Msps
– 1x 12-bit DAC output channels, low-power
sample and hold
– 1x operational amplifier with built-in PGA
– 2x ultra-low-power comparators
– Accurate 2.5 V or 2.048 V reference
voltage buffered output
• 17x communication interfaces
– USB 2.0 full-speed crystal less solution
with LPM and BCD
– 1x SAI (serial audio interface)
– 4x I2C FM+(1 Mbit/s), SMBus/PMBus
– 3x USARTs (ISO 7816, LIN, IrDA, modem)
– 1x UART (LIN, IrDA, modem)
– 1x LPUART (Stop 2 wake-up)
– 3x SPIs (and 1x Quad SPI)
DS11912 Rev 7
1/221
www.st.com
STM32L452xx
– CAN (2.0B Active) and SDMMC interface
– IRTIM (Infrared interface)
• 14-channel DMA controller
• True random number generator
Reference
STM32L452xx
2/221
• CRC calculation unit, 96-bit unique ID
• Development support: serial wire debug
(SWD), JTAG, Embedded Trace Macrocell™
• All packages are ECOPACK2® compliant
Table 1. Device summary
Part numbers
STM32L452CC, STM32L452RC, STM32L452VC, STM32L452CE, STM32L452RE,
STM32L452VE
DS11912 Rev 7
STM32L452xx
Contents
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1
Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 17
3.3
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6
Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 20
3.9
Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9.1
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9.4
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9.5
Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.9.6
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.10
Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.11
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.12
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.13
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.14
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.15
3.16
3.14.1
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 38
3.14.2
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 38
Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.15.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.15.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.15.3
VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
DS11912 Rev 7
3/221
6
Contents
STM32L452xx
3.17
Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.18
Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.19
Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.20
Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.21
Digital filter for Sigma-Delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 43
3.22
Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.23
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.23.1
Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.23.2
General-purpose timers (TIM2, TIM3, TIM15, TIM16) . . . . . . . . . . . . . . 46
3.23.3
Basic timer (TIM6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.23.4
Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 47
3.23.5
Infrared interface (IRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.23.6
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.23.7
System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.23.8
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.24
Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 48
3.25
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.26
Universal synchronous/asynchronous receiver transmitter (USART) . . . 50
3.27
Low-power universal asynchronous receiver transmitter (LPUART) . . . . 51
3.28
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.29
Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.30
Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.31
Secure digital input/output and MultiMediaCards Interface (SDMMC) . . . 53
3.32
Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.33
Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.34
Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.35
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.35.1
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.35.2
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4/221
DS11912 Rev 7
STM32L452xx
6.1
Contents
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.2
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 98
6.3.3
Embedded reset and power control block characteristics . . . . . . . . . . . 98
6.3.4
Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.5
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.6
Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.7
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.8
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3.9
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3.10
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3.11
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.3.12
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.3.13
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.3.14
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.3.15
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.3.16
Extended interrupt and event controller input (EXTI) characteristics . . 153
6.3.17
Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.18
Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . 154
6.3.19
Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 167
6.3.20
Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 172
6.3.21
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.3.22
Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.3.23
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.3.24
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.3.25
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.3.26
Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 180
DS11912 Rev 7
5/221
6
Contents
7
STM32L452xx
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.1
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.2
UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
7.3
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.4
UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.5
WLCSP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.6
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
7.7
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
7.8
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
7.8.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
7.8.2
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 215
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
6/221
DS11912 Rev 7
STM32L452xx
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
STM32L452xx family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . 14
Access status versus readout protection level and execution modes. . . . . . . . . . . . . . . . . 18
STM32L452xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
STM32L452xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
DFSDM1 implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
STM32L452xx USART/UART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
SAI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
STM32L452xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Alternate function AF0 to AF7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Alternate function AF8 to AF15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
STM32L452xx memory map and peripheral register boundary addresses . . . . . . . . . . . . 89
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 98
Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . 104
Current consumption in Run modes, code with data processing running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Current consumption in Run modes, code with data processing running from Flash,
ART disable and power supplied by external SMPS (VDD12 = 1.10 V). . . . . . . . . . . . . . 107
Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Current consumption in Run, code with data processing running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . 109
Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . 110
Typical current consumption in Run, with different codes running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Typical current consumption in Run, with different codes running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.05 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Typical current consumption in Run and Low-power run modes, with different codes
DS11912 Rev 7
7/221
9
List of tables
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
8/221
STM32L452xx
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Typical current consumption in Run modes, with different codes running from
Flash, ART disable and power supplied by external SMPS (VDD12 = 1.10 V) . . . . . . . . 112
Typical current consumption in Run modes, with different codesrunning from
Flash, ART disable and power supplied by external SMPS (VDD12 = 1.05 V) . . . . . . . . 113
Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Typical current consumption in Run, with different codesrunning from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . 114
Typical current consumption in Run, with different codesrunning from
SRAM1 and power supplied by external SMPS (VDD12 = 1.05 V) . . . . . . . . . . . . . . . . . 114
Current consumption in Sleep and Low-power sleep modes, Flash ON . . . . . . . . . . . . . 115
Current consumption in Sleep, Flash ON and power supplied by external SMPS
(VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Current consumption in Low-power sleep modes, Flash in power-down . . . . . . . . . . . . . 116
Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Current consumption in Stop 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Wakeup time using USART/LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
PLL, PLLSAI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
EXTI Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
DS11912 Rev 7
STM32L452xx
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.
Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.
Table 107.
Table 108.
Table 109.
Table 110.
Table 111.
Table 112.
Table 113.
Table 114.
List of tables
ADC accuracy - limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
WWDG min/max timeout value at 80 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Quad SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
SD / MMC dynamic characteristics, VDD=2.7 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . 190
eMMC dynamic characteristics, VDD = 1.71 V to 1.9 V . . . . . . . . . . . . . . . . . . . . . . . . . . 191
USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
LQFP100 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
UFBGA100 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
UFBGA100 - Recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . 197
LQFP64 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
UFBGA64 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
UFBGA64 - Recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . . 203
WLCSP64 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
WLCSP64 - Recommended PCB design rules (0.4 mm pitch). . . . . . . . . . . . . . . . . . . . . 207
LQFP48 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
UFQFPN48 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
STM32L452xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
DS11912 Rev 7
9/221
9
List of figures
STM32L452xx
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
10/221
STM32L452xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Voltage reference buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
STM32L452Vx LQFP100 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
STM32L452Vx UFBGA100 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
STM32L452Rx LQFP64 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
STM32L452Rx, external SMPS device, LQFP64 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . 59
STM32L452Rx UFBGA64 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
STM32L452Rx WLCSP64 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
STM32L452Rx, external SMPS device, WLCSP64 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . 60
STM32L452Cx LQFP48 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
STM32L452Cx UFQFPN48 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
STM32L452xx memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Current consumption measurement scheme with and without external
SMPS power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Typical current consumption versus MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
HSI48 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
I/O AC characteristics definition(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Quad SPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Quad SPI timing diagram - DDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
LQFP100 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
LQFP100 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
LQFP100 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
UFBGA100 -Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
UFBGA100 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
DS11912 Rev 7
STM32L452xx
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
List of figures
UFBGA100 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
LQFP64 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
LQFP64 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
LQFP64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
UFBGA64 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
UFBGA64 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
UFBGA64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
WLCSP64 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
WLCSP64 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
WLCSP64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
WLCSP64, external SMPS device, marking (package top view) . . . . . . . . . . . . . . . . . . . 208
LQFP48 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
LQFP48 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
LQFP48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
UFQFPN48 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
UFQFPN48 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
UFQFPN48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
LQFP64 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
DS11912 Rev 7
11/221
11
Introduction
1
STM32L452xx
Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32L452xx microcontrollers.
This document should be read in conjunction with the STM32L41x, STM32L42x,
STM32L43x, STM32L44x, STM32L45x, STM32L46x reference manual (RM0394), available
from the STMicroelectronics website www.st.com.
For information on the Arm®(a) Cortex®-M4 core, refer to the Cortex®-M4 Technical
Reference Manual, available from the www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
12/221
DS11912 Rev 7
STM32L452xx
2
Description
Description
The STM32L452xx devices are ultra-low-power microcontrollers based on the
high-performance Arm® Cortex®-M4 32-bit RISC core operating at a frequency of up to
80 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision that
supports all Arm® single-precision data-processing instructions and data types. It also
implements a full set of DSP instructions and a memory protection unit (MPU) which
enhances application security.
The STM32L452xx devices embed high-speed memories (Flash memory up to 512 Kbyte,
160 Kbyte of SRAM), a Quad SPI Flash memories interface (available on all packages) and
an extensive range of enhanced I/Os and peripherals connected to two APB buses, two
AHB buses and a 32-bit multi-AHB bus matrix.
The STM32L452xx devices embed several protection mechanisms for embedded Flash
memory and SRAM: readout protection, write protection, proprietary code readout
protection and Firewall.
The devices offer a fast 12-bit ADC (5 Msps), two comparators, one operational amplifier,
one DAC channel, an internal voltage reference buffer, a low-power RTC, one generalpurpose 32-bit timer, one 16-bit PWM timer dedicated to motor control, four general-purpose
16-bit timers, and two 16-bit low-power timers.
In addition, up to 21 capacitive sensing channels are available.
They also feature standard and advanced communication interfaces, namely four I2Cs,
three SPIs, three USARTs, one UART and one Low-Power UART, one SAI, one SDMMC,
one CAN, one USB full-speed device crystal less.
The STM32L452xx operates in the -40 to +85 °C (+105 °C junction) and -40 to +125 °C
(+130 °C junction) temperature ranges from a 1.71 to 3.6 V VDD power supply when using
internal LDO regulator and a 1.05 to 1.32V VDD12 power supply when using external SMPS
supply. A comprehensive set of power-saving modes makes possible the design of lowpower applications.
Some independent power supplies are supported: analog independent supply input for
ADC, DAC, OPAMP and comparators. A VBAT input makes it possible to backup the RTC
and backup registers. Dedicated VDD12 power supplies can be used to bypass the internal
LDO regulator when connected to an external SMPS.
The STM32L452xx family offers seven packages from 48 to 100-pin packages.
DS11912 Rev 7
13/221
56
Description
STM32L452xx
Table 2. STM32L452xx family device features and peripheral counts
Peripheral
Flash memory
STM32L452Vx
256KB
STM32L452Rx
512KB
256KB
SRAM
512KB
256KB
512KB
160KB
Quad SPI
Timers
Comm.
interfaces
Yes
Advanced
control
1 (16-bit)
General
purpose
2 (16-bit)
1 (32-bit)
Basic
2 (16-bit)
Low -power
2 (16-bit)
SysTick timer
1
Watchdog
timers
(independent,
window)
2
SPI
3
I2C
4
USART
UART
LPUART
3
1
1
SAI
1
CAN
1
USB FS
Yes
SDMMC
Yes
RTC
(1)
No
Yes
Tamper pins
3
Random generator
(2)
2
2
Yes
GPIOs
Wakeup pins
83
5
52
4(1)
38
3
Capacitive sensing
Number of channels
21
12
6
12-bit ADC
Number of channels
1
16
1
16(1)
1
10
12-bit DAC channels
Internal voltage reference
buffer
14/221
STM32L452Cx
1
No
Yes
Analog comparator
2
Operational amplifiers
1
Max. CPU frequency
80 MHz
DS11912 Rev 7
STM32L452xx
Description
Table 2. STM32L452xx family device features and peripheral counts (continued)
Peripheral
STM32L452Vx
STM32L452Rx
Operating voltage
1.71 to 3.6 V
Ambient operating temperature:
-40 to 85 °C / -40 to 125 °C
Junction temperature:
-40 to 105 °C / -40 to 130 °C
Operating temperature
Packages
1.
STM32L452Cx
LQFP100
UFBGA100
WLCSP64
LQFP64
UFBGA64
LQFP48
UFQFPN48
WKUP5, ADC1_IN14 and SDMMC interface are not supported by 64-pin packages with SMPS option.
2. In case external SMPS package type is used, 2 GPIO's are replaced by VDD12 pins to connect the SMPS
power supplies hence reducing the number of available GPIO's by 2.
DS11912 Rev 7
15/221
56
Description
STM32L452xx
Figure 1. STM32L452xx block diagram
D0[3:0],
D1[3:0],
CLK0,
CLK1
CS
NJTRST, JTDI,
JTCK/SWCLK
Quad SPI memory interface
JTAG & SW
MPU
ETM
NVIC
JTDO/SWD, JTDO
TRACECLK
D-BUS
TRACED[3:0]
ARM Cortex-M4
80 MHz
FPU
I-BUS
ART
ACCEL/
CACHE
RNG
Flash
up to
512 KB
AHB bus-matrix
S-BUS
SRAM2 32 KB
SRAM1 128 KB
VDD
AHB2 80 MHz
DMA2
VDD12
Power management
Voltage
regulator
3.3 to 1.2 V
VDD = 1.71 to 3.6 V
VDD12 = 1.05 to 1.32 V(1)
VSS
DMA1
@ VDD
@ VDD
7 Groups of
4 channels max as AF
supervision
RC HSI
Touch sensing controller
Supply
reset
MSI
VDDUSB
Int
BOR
VDDA, VSSA
RC LSI
PA[15:0]
VDD, VSS, NRST
GPIO PORT A
GPIO PORT B
GPIO PORT C
PLL 1&2
AHB1 80 MHz
PB[15:0]
PC[15:0]
PVD, PVM
@VDD
HSI48
OSC_IN
XTAL OSC
OSC_OUT
4- 16MHz
IWDG
PD[15:0]
GPIO PORT D
PE[15:0]
GPIO PORT E
VBAT = 1.55 to 3.6 V
Standby
PH[1:0],
PH[3]
interface
Reset & clock
M AN
AGT
control
@VBAT
GPIO PORT H
XTAL 32 kHz
OSC32_IN
OSC32_OUT
PCLKx
HCLKx
FCLK
RTC
RTC_TS
AWU
Backup register
RTC_TAMPx
RTC_OUT
@ VDD
TIM2
U STemperature
AR T 2 M sensor
Bps
32b
CRC
4 channels, ETR as AF
FIFO
@ VDDA
ADC1
16 external analog inputs
USB FS
PHY
@ VDDUSB
ITF
CRS_SYNC
CRS
@ VDDA
USART2
VREF+
VREF Buffer
83 AF
DP
DM
NOE
AHB/APB2
AHB/APB1
USART3
D[7:0]
CMD, CK as AF
SDIO / MMC
FIFO
EXT IT. WKUP
3 compl. channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),
ETR, BKIN, BKIN2 as AF
TIM1 / PWM
16b
UART4
smcard
IrDA
smcard
RX, TX, CK, CTS, RTS as AF
RX, TX, CK, CTS, RTS as AF
IrDA
RX, TX, CTS, RTS as AF
IrDA
SPI2
MOSI, MISO, SCK, NSS as AF
SPI3
MOSI, MISO, SCK, NSS as AF
WWDG
TIM16
smcard
USART1
IrDA
MOSI, MISO,
SCK, NSS as AF
TIM6
16b
SPI1
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK
MCLK_B, SD_B, FS_B, SCK_B as AF
SAI1
SDCKIN[3:0], SDDATIN[3:0],
SDCKOUT, SDTRIG as AF
DFSDM
A
60PM
B Hz
2
RX, TX, CK,CTS,
RTS as AF
16b
SCL, SDA, SMBA as AF
I2C3/SMBUS
SCL, SDA, SMBA as AF
I2C4/SMBUS
SCL, SDA, SMBA as AF
@ VDDA
bxCAN1
FIFO
1 channel,
1 compl. channel, BKIN as AF
SCL, SDA, SMBA as AF
I2C2/SMBUS
16b
A P B(max)
1 3 0 M Hz
APB1 80 MHz
TIM15
APB2 80MHz
2 channels,
1 compl. channel, BKIN as AF
I2C1/SMBUS
TX, RX as AF
@VDDA
OpAmp1
VOUT, VINM, VINP
LPUART1
RX, TX, CTS, RTS as AF
SWPMI1
IO
RX, TX, SUSPEND as AF
LPTIM1
IN1, IN2, OUT, ETR as AF
LPTIM2
IN1, OUT, ETR as AF
@ VDDA
INP, INM, OUT
COMP1
INP, INM, OUT
COMP2
DAC1
ITF
FIREWALL
1. Only available when using external SMPS supply mode.
Note:
16/221
OUT1
AF: alternate function on I/O pins.
DS11912 Rev 7
MSv40938V2
STM32L452xx
Functional overview
3
Functional overview
3.1
Arm® Cortex®-M4 core with FPU
The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm® processors for
embedded systems, developed to provide a low-cost platform that meets the needs of MCU
implementation with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced response to interrupts.
The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an Arm® core in the memory size
usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions enabling efficient signal processing and
complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage
development tools, while avoiding saturation.
With its embedded Arm® core, the STM32L452xx family is compatible with all Arm® tools
and software.
Figure 1 shows the general block diagram of the STM32L452xx family devices.
3.2
Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator optimized for STM32 industry-standard
Arm® Cortex®-M4 processors. It balances the inherent performance advantage of the Arm®
Cortex®-M4 over Flash memory technologies, which normally requires the processor to wait
for the Flash memory at higher frequencies.
To release the processor near 100 DMIPS performance at 80 MHz, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 80 MHz.
3.3
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole
4 Gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
DS11912 Rev 7
17/221
56
Functional overview
3.4
STM32L452xx
Embedded Flash memory
STM32L452xx devices feature up to 512 Kbyte of embedded Flash memory available for
storing programs and data in single bank architecture. The Flash memory contains 256
pages of 2 Kbyte.
Flexible protections can be configured thanks to option bytes:
•
Readout protection (RDP) to protect the whole memory. Three levels are available:
–
Level 0: no readout protection
–
Level 1: memory readout protection: the Flash memory cannot be read from or
written to if either debug features are connected, boot in RAM or bootloader is
selected
–
Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial
wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This
selection is irreversible.
Table 3. Access status versus readout protection level and execution modes
Area
Debug, boot from RAM or boot
from system memory (loader)
User execution
Protection
level
Read
Write
Erase
Read
Write
Erase
Main
memory
1
Yes
Yes
Yes
No
No
No
2
Yes
Yes
Yes
N/A
N/A
N/A
System
memory
1
Yes
No
No
Yes
No
No
2
Yes
No
No
N/A
N/A
N/A
Option
bytes
1
Yes
Yes
Yes
Yes
Yes
Yes
2
Yes
No
No
N/A
N/A
N/A
No
No
N/A(1)
Backup
registers
SRAM2
(1)
1
Yes
Yes
N/A
2
Yes
Yes
N/A
N/A
N/A
N/A
1
Yes
Yes
Yes(1)
No
No
No(1)
2
Yes
Yes
Yes
N/A
N/A
N/A
1. Erased when RDP change from Level 1 to Level 0.
•
Write protection (WRP): the protected area is protected against erasing and
programming. Two areas can be selected, with 2-Kbyte granularity.
•
Proprietary code readout protection (PCROP): a part of the flash memory can be
protected against read and write from third parties. The protected area is execute-only:
it can only be reached by the STM32 CPU, as an instruction code, while all other
accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited.
The PCROP area granularity is 64-bit wide. An additional option bit (PCROP_RDP)
allows the user to select if the PCROP area is erased or not when the RDP protection
is changed from Level 1 to Level 0.
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
18/221
•
single error detection and correction
•
double error detection.
DS11912 Rev 7
STM32L452xx
Functional overview
The address of the ECC fail can be read in the ECC register.
3.5
Embedded SRAM
STM32L452xx devices feature 160 Kbyte of embedded SRAM, split into two blocks:
•
128 Kbyte mapped at address 0x2000 0000 (SRAM1)
•
32 Kbyte located at address 0x1000 0000 with hardware parity check (SRAM2).
This memory is also mapped at address 0x2002 0000, offering a contiguous address
space with the SRAM1 (32 Kbyte aliased by bit band)
This block is accessed through the ICode/DCode buses for maximum performance.
These 32 Kbyte SRAM can also be retained in Standby mode.
The SRAM2 can be write-protected with 1 Kbyte granularity.
The memory can be accessed in read/write at CPU clock speed with 0 wait states.
3.6
Firewall
The device embeds a Firewall which protects code sensitive and secure data from any
access performed by a code executed outside of the protected areas.
Each illegal access generates a reset which kills immediately the detected intrusion.
The Firewall main features are the following:
•
Three segments can be protected and defined thanks to the Firewall registers:
–
Code segment (located in Flash or SRAM1 if defined as executable protected
area)
–
Non-volatile data segment (located in Flash)
–
Volatile data segment (located in SRAM1)
•
The start address and the length of each segments are configurable:
–
Code segment: up to 1024 Kbyte with granularity of 256 bytes
–
Non-volatile data segment: up to 1024 Kbyte with granularity of 256 bytes
–
Volatile data segment: up to 128 Kbyte with a granularity of 64 bytes
•
Specific mechanism implemented to open the Firewall to get access to the protected
areas (call gate entry sequence)
•
Volatile data segment can be shared or not with the non-protected code
•
Volatile data segment can be executed or not depending on the Firewall configuration
The Flash readout protection must be set to level 2 in order to reach the expected level of
protection.
3.7
Boot modes
At startup, BOOT0 pin or nSWBOOT0 option bit, and BOOT1 option bit are used to select
one of three boot options:
•
Boot from user Flash
•
Boot from system memory
•
Boot from embedded SRAM
DS11912 Rev 7
19/221
56
Functional overview
STM32L452xx
BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the
value of a user option bit to free the GPIO pad if needed.
A Flash empty check mechanism is implemented to force the boot from system flash if the
first flash memory location is not programmed and if the boot selection is configured to boot
from main flash.
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART, I2C, SPI, CAN or USB FS in Device mode through DFU (device firmware
upgrade).
3.8
Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.
3.9
Power supply management
3.9.1
Power supply schemes
•
VDD = 1.71 to 3.6 V: external power supply for I/Os (VDDIO1), the internal regulator and
the system analog such as reset, power management and internal clocks. It is provided
externally through VDD pins.
•
VDD12 = 1.05 to 1.32 V: external power supply bypassing internal regulator when
connected to an external SMPS. It is provided externally through VDD12 pins and only
available on packages with the external SMPS supply option. VDD12 does not require
any external decoupling capacitance and cannot support any external load.
•
VDDA = 1.62 V (ADC/COMPs) / 1.8 (DAC/OPAMP) / 2.4 V (VREFBUF) to 3.6 V:
external analog power supply for ADC, DAC, OPAMP, Comparators and Voltage
reference buffer. The VDDA voltage level is independent from the VDD voltage.
•
VDDUSB = 3.0 to 3.6 V: external independent power supply for USB transceivers. The
VDDUSB voltage level is independent from the VDD voltage.
•
VBAT = 1.55 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Note:
When the functions supplied by VDDA are not used, this supply should preferably be shorted
to VDD.
Note:
If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V
tolerant.
Note:
VDDIOx is the I/Os general purpose digital functions supply. VDDIOx represents VDDIO1, with
VDDIO1 = VDD.
20/221
DS11912 Rev 7
STM32L452xx
Functional overview
Figure 2. Power supply overview
VDDA domain
VDDA
VSSA
A/D converters
Comparators
D/A converters
Operational amplifiers
Voltage reference buffer
VDDUSB
VSS
USB transceivers
VDD domain
VDD
VDDIO1
I/O ring
Reset block
Temp. sensor
PLL, HSI, MSI, HSI48
VSS
Standby circuitry
(Wakeup logic, IWDG)
Voltage regulator
VCORE
VCORE domain
Core
Memories
Digital peripherals
VDD12
Low voltage detector
Backup domain
VBAT
LSE crystal 32 K osc
BKP registers
RCC BDCR register
RTC
MSv45727V1
During power-up and power-down phases, the following power sequence requirements
must be respected:
•
When VDD is below 1 V, other power supplies (VDDA) must remain below VDD +
300 mV.
•
When VDD is above 1 V, all power supplies are independent.
During the power-down phase, VDD can temporarily become lower than other supplies only
if the energy provided to the MCU remains below 1 mJ; this allows external decoupling
capacitors to be discharged with different time constants during the power-down transient
phase.
DS11912 Rev 7
21/221
56
Functional overview
STM32L452xx
Figure 3. Power-up/down sequence
V
3.6
VDDX(1)
VDD
VBOR0
1
0.3
Power-on
Invalid supply area
Operating mode
VDDX < VDD + 300 mV
Power-down
time
VDDX independent from VDD
MSv47490V1
1. VDDX refers to VDDA.
3.9.2
Power supply supervisor
The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes
except Shutdown and ensuring proper operation after power-on and during power down.
The device remains in reset mode when the monitored supply voltage VDD is below a
specified threshold, without the need for an external reset circuit.
The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected
through option bytes.The device features an embedded programmable voltage detector
(PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An
interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
In addition, the device embeds a Peripheral Voltage Monitor which compares the
independent supply voltage VDDA with a fixed threshold in order to ensure that the
peripheral is in its functional supply range.
22/221
DS11912 Rev 7
STM32L452xx
3.9.3
Functional overview
Voltage regulator
Two embedded linear voltage regulators supply most of the digital circuitries: the main
regulator (MR) and the low-power regulator (LPR).
•
The MR is used in the Run and Sleep modes and in the Stop 0 mode.
•
The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is
also used to supply the 32 Kbyte SRAM2 in Standby with SRAM2 retention.
•
Both regulators are in power-down in Standby and Shutdown modes: the regulator
output is in high impedance, and the kernel circuitry is powered down thus inducing
zero consumption.
The ultralow-power STM32L452xx supports dynamic voltage scaling to optimize its power
consumption in run mode. The voltage from the Main Regulator that supplies the logic
(VCORE) can be adjusted according to the system’s maximum operating frequency.
There are two power consumption ranges:
•
Range 1 with the CPU running at up to 80 MHz.
•
Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also
limited to 26 MHz.
The VCORE can be supplied by the low-power regulator, the main regulator being switched
off. The system is then in Low-power run mode.
•
Low-power run mode with the CPU running at up to 2 MHz. Peripherals with
independent clock can be clocked by HSI16.
When the MR is in use, the STM32L452xx with the external SMPS option permits to force
an external VCORE supply on the VDD12 supply pins.
When VDD12 is forced by an external source and is higher than the output of the internal
LDO, the current is taken from this external supply and the overall power efficiency is
significantly improved if using an external step down DC/DC converter.
3.9.4
Low-power modes
The ultra-low-power STM32L452xx supports seven low-power modes to achieve the best
compromise between low-power consumption, short startup time, available peripherals and
available wakeup sources.
DS11912 Rev 7
23/221
56
Mode
Regulator(1)
CPU
Flash SRAM Clocks
MR range 1
Run
SMPS range 2 High
MR range2
LPR
Yes
ON(6)
ON
Any
Yes
ON(6)
ON
Any
except
PLL
SMPS range 2 High
MR range2
No
ON(6)
ON(7)
DS11912 Rev 7
LPR
No
ON(6)
ON(7)
No
ON
85 µA/MHz
N/A
95 µA/MHz
to Range 1: 4 µs
to Range 2: 64 µs
10 µA/MHz(4)
27 µA/MHz
6 cycles
11 µA/MHz(5)
Any
except
PLL
All except USB_FS, RNG
Any interrupt or
event
LSE
LSI
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1)
USARTx (x=1...3)(9)
UART4(9)
LPUART1(9)
I2Cx (x=1...4)(10)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
USARTx (x=1...3)(9)
UART4(9)
LPUART1(9)
I2Cx (x=1...4)(10)
LPTIMx (x=1,2)
USB_FS(11)
38 µA/MHz
6 cycles
125 µA
2.47 µs in SRAM
4.1 µs in Flash
125 µA
STM32L452xx
MR Range 2(8)
OFF
34 µA/MHz(4)
27 µA/MHz
All except USB_FS, RNG
MR Range 1(8)
Stop 0
N/A
Any interrupt or
event
Any
Wakeup time
37 µA/MHz(5)
All
SMPS range 2 Low
LPSleep
N/A
All except USB_FS, RNG
Consumption(3)
94 µA/MHz
All except USB_FS, RNG
MR range 1
Sleep
Wakeup source
All
SMPS range 2 Low
LPRun
DMA and Peripherals(2)
Functional overview
24/221
Table 4. STM32L452xx modes overview
Mode
Stop 1
DS11912 Rev 7
Stop 2
Regulator
LPR
LPR
CPU
No
No
DMA and Peripherals(2)
Wakeup source
Consumption(3)
Wakeup time
LSE
LSI
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1)
USARTx (x=1...3)(9)
UART4(9)
LPUART1(9)
I2Cx (x=1...4)(10)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
USARTx (x=1...3)(9)
UART4(9)
LPUART1(9)
I2Cx (x=1...4)(10)
LPTIMx (x=1,2)
USB_FS(11)
9.85 µA w/o RTC
10.5 µA w RTC
5.7 µs in SRAM
7 µs in Flash
LSE
LSI
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
I2C3(10)
LPUART1(9)
LPTIM1
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
I2C3(10)
LPUART1(9)
LPTIM1
2.05 µA w/o RTC
2.30 µA w/RTC
5.8 µs in SRAM
8.3 µs in Flash
Flash SRAM Clocks
Off
Off
ON
ON
STM32L452xx
Table 4. STM32L452xx modes overview (continued)
(1)
Functional overview
25/221
Mode
Regulator
CPU
Flash SRAM Clocks
Standby
OFF
Shutdown
OFF
Power
ed Off
Power
ed Off
Off
Off
Power
ed
Off
Power
ed
Off
Wakeup source
Consumption(3)
Wakeup time
0.35 µA w/o RTC
0.52 µA w/ RTC
DS11912 Rev 7
LSE
LSI
BOR, RTC, IWDG
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pull-down
Reset pin
5 I/Os (WKUPx)(12)
BOR, RTC, IWDG
LSE
RTC
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pulldown(13)
Reset pin
5 I/Os (WKUPx)(12)
RTC
SRAM
2 ON
LPR
DMA and Peripherals(2)
0.10 µA w/o RTC
0.27 µA w/ RTC
0.02 µA w/o RTC
0.17 µA w/ RTC
16.1 µs
Functional overview
26/221
Table 4. STM32L452xx modes overview (continued)
(1)
256 µs
1. LPR means Main regulator is OFF and Low-power regulator is ON.
2. All peripherals can be active or clock gated to save power consumption.
3. Typical current at VDD = 1.8 V, 25°C. Consumptions values provided running from SRAM, Flash memory Off, 80 MHz in Range 1, 26 MHz in Range 2, 2 MHz in
LPRun/LPSleep.
4. Theoretical value based on VDD = 3.3 V, DC/DC Efficiency of 85%, VCORE = 1.10 V
5. Theoretical value based on VDD = 3.3 V, DC/DC Efficiency of 85%, VCORE = 1.05 V
6. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM.
7. The SRAM1 and SRAM2 clocks can be gated on or off independently.
8. SMPS mode can be used in STOP0 Mode, but no significant power gain can be expected.
9. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
10. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
11. USB_FS wakeup by resume from suspend and attach detection protocol event.
13. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.
STM32L452xx
12. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
STM32L452xx
Functional overview
By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the
user to select one of the low-power modes described below:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
•
Low-power run mode
This mode is achieved with VCORE supplied by the low-power regulator to minimize the
regulator's operating current. The code can be executed from SRAM or from Flash,
and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can
be clocked by HSI16.
•
Low-power sleep mode
This mode is entered from the low-power run mode. Only the CPU clock is stopped.
When wakeup is triggered by an event or an interrupt, the system reverts to the lowpower run mode.
•
Stop 0, Stop 1 and Stop 2 modes
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI
RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still
running.
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).
Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode
to detect their wakeup condition.
Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode,
most of the VCORE domain is put in a lower leakage mode.
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller
wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator
remains ON, allowing a very fast wakeup time but with much higher consumption.
The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI
up to 48 MHz or HSI16, depending on software configuration.
•
Standby mode
The Standby mode is used to achieve the lowest power consumption with BOR. The
internal regulator is switched off so that the VCORE domain is powered off. The PLL, the
MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.
The RTC can remain active (Standby mode with RTC, Standby mode without RTC).
The brown-out reset (BOR) always remains active in Standby mode.
The state of each I/O during standby mode can be selected by software: I/O with
internal pull-up, internal pull-down or floating.
After entering Standby mode, SRAM1 and register contents are lost except for registers
in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in
Standby mode, supplied by the low-power Regulator (Standby with SRAM2 retention
mode).
The device exits Standby mode when an external reset (NRST pin), an IWDG reset,
WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm,
periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).
The system clock after wakeup is MSI up to 8 MHz.
DS11912 Rev 7
27/221
56
Functional overview
•
STM32L452xx
Shutdown mode
The Shutdown mode permits to achieve the lowest power consumption. The internal
regulator is switched off so that the VCORE domain is powered off. The PLL, the HSI16,
the MSI, the LSI and the HSE oscillators are also switched off.
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).
The BOR is not available in Shutdown mode. No power voltage monitoring is possible
in this mode, therefore the switch to Backup domain is not supported.
SRAM1, SRAM2 and register contents are lost except for registers in the Backup
domain.
The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin
event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic
wakeup, timestamp, tamper).
The system clock after wakeup is MSI at 4 MHz.
28/221
DS11912 Rev 7
STM32L452xx
Functional overview
Table 5. Functionalities depending on the working mode(1)
-
-
Y
-
Y
-
-
-
-
-
-
-
-
-
-
O(2)
O(2)
O(2)
O(2)
-
-
-
-
-
-
-
-
-
SRAM1 (128 KB)
Y
Y(3)
Y
Y(3)
Y
-
Y
-
-
-
-
-
-
SRAM2 (32 KB)
Y
Y(3)
Y
Y(3)
Y
-
Y
-
O(4)
-
-
-
-
Quad SPI
O
O
O
O
-
-
-
-
-
-
-
-
-
Backup registers
Y
Y
Y
Y
Y
-
Y
-
Y
-
Y
-
Y
Brown-out reset
(BOR)
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
-
-
Programmable
voltage detector
(PVD)
O
O
O
O
O
O
O
O
-
-
-
-
-
Peripheral voltage
monitor (PVMx;
x=1,3,4)
O
O
O
O
O
O
O
O
-
-
-
-
-
DMA
O
O
O
O
-
-
-
-
-
-
-
-
-
High speed Internal
(HSI16)
O
O
O
O
(5)
-
(5)
-
-
-
-
-
-
Oscillator RC48
O
O
-
-
-
-
-
-
-
-
-
-
-
High speed external
(HSE)
O
O
O
O
-
-
-
-
-
-
-
-
-
Low speed internal
(LSI)
O
O
O
O
O
-
O
-
O
-
-
-
-
Low speed external
(LSE)
O
O
O
O
O
-
O
-
O
-
O
-
O
Multi-Speed internal
(MSI)
O
O
O
O
-
-
-
-
-
-
-
-
-
Clock security
system (CSS)
O
O
O
O
-
-
-
-
-
-
-
-
-
Clock security
system on LSE
O
O
O
O
O
O
O
O
O
O
-
-
-
RTC / Auto wakeup
O
O
O
O
O
O
O
O
O
O
O
O
O
Number of RTC
Tamper pins
3
3
3
3
3
O
3
O
3
O
3
O
3
Peripheral
CPU
Flash memory (up to
512 KB)
Run
Sleep
Lowpower
run
Lowpower
sleep
-
DS11912 Rev 7
Wakeup capability
-
Wakeup capability
Standby Shutdown
Wakeup capability
Stop 2
Wakeup capability
Stop 0/1
VBAT
29/221
56
Functional overview
STM32L452xx
Table 5. Functionalities depending on the working mode(1) (continued)
Lowpower
run
Lowpower
sleep
-
-
-
-
-
-
-
Wakeup capability
Sleep
Standby Shutdown
Wakeup capability
Run
Stop 2
Wakeup capability
Peripheral
Wakeup capability
Stop 0/1
-
-
-
-
VBAT
USARTx (x=1,2,3)
UART4
O
O
O
O
O(6) O(6)
Low-power UART
(LPUART)
O
O
O
O
O(6) O(6) O(6) O(6)
-
-
-
-
-
I2Cx (x=1,2,4)
O
O
O
O
O(7) O(7)
(7)
-
-
-
-
-
-
-
O(7)
O(7)
O(7)
-
-
-
-
-
I2C3
O
O
O
O
O
SPIx (x=1,2,3)
O
O
O
O
-
-
-
-
-
-
-
-
-
CAN
O
O
O
O
-
-
-
-
-
-
-
-
-
SDMMC1
O
O
O
O
-
-
-
-
-
-
-
-
-
SAIx (x=1)
O
O
O
O
-
-
-
-
-
-
-
-
-
DFSDM1
O
O
O
O
-
-
-
-
-
-
-
-
-
ADCx (x=1)
O
O
O
O
-
-
-
-
-
-
-
-
-
DAC1
O
O
O
O
O
-
-
-
-
-
-
-
-
VREFBUF
O
O
O
O
O
-
-
-
-
-
-
-
-
OPAMPx (x=1)
O
O
O
O
O
-
-
-
-
-
-
-
-
COMPx (x=1,2)
O
O
O
O
O
O
O
O
-
-
-
-
-
Temperature sensor
O
O
O
O
-
-
-
-
-
-
-
-
-
Timers (TIMx)
O
O
O
O
-
-
-
-
-
-
-
-
-
Low-power timer 1
(LPTIM1)
O
O
O
O
O
O
O
O
-
-
-
-
-
Low-power timer 2
(LPTIM2)
O
O
O
O
O
O
-
-
-
-
-
-
-
Independent
watchdog (IWDG)
O
O
O
O
O
O
O
O
O
O
-
-
-
Window watchdog
(WWDG)
O
O
O
O
-
-
-
-
-
-
-
-
-
SysTick timer
O
O
O
O
-
-
-
-
-
-
-
-
-
Touch sensing
controller (TSC)
O
O
O
O
-
-
-
-
-
-
-
-
-
Random number
generator (RNG)
O(8)
O(8)
-
-
-
-
-
-
-
-
-
-
-
30/221
DS11912 Rev 7
STM32L452xx
Functional overview
Table 5. Functionalities depending on the working mode(1) (continued)
-
-
CRC calculation unit
O
O
O
O
-
-
-
-
-
-
-
-
-
GPIOs
O
O
O
O
O
O
O
O
(9)
5
pins
(11)
5
pins
-
Peripheral
Run
Sleep
Lowpower
run
Lowpower
sleep
-
(10)
Wakeup capability
-
Wakeup capability
Standby Shutdown
Wakeup capability
Stop 2
Wakeup capability
Stop 0/1
VBAT
(10)
1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). - = Not available.
2. The Flash can be configured in power-down mode. By default, it is not in power-down mode.
3. The SRAM clock can be gated on or off.
4. SRAM2 content is preserved when the bit RRS is set in PWR_CR3 register.
5. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by
the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not
need it anymore.
6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or
received frame event.
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
8. Voltage scaling Range 1 only.
9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when
exiting the Shutdown mode.
3.9.5
Reset mode
In order to improve the consumption under reset, the I/Os state under and after reset is
“analog state” (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is
deactivated when the reset source is internal.
3.9.6
VBAT operation
The VBAT pin permits to power the device VBAT domain from an external battery, an
external supercapacitor, or from VDD when no external battery and an external
supercapacitor are present. The VBAT pin supplies the RTC with LSE and the backup
registers. Three anti-tamper detection pins are available in VBAT mode.
VBAT operation is automatically activated when VDD is not present.
An internal VBAT battery charging circuit is embedded and can be activated when VDD is
present.
Note:
When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
DS11912 Rev 7
31/221
56
Functional overview
3.10
STM32L452xx
Interconnect matrix
Several peripherals have direct connections between them. This allows autonomous
communication between peripherals, saving CPU resources thus power supply
consumption. In addition, these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run
and sleep, Stop 0, Stop 1 and Stop 2 modes.
Run
Sleep
Low-power run
Low-power sleep
Stop 0 / Stop 1
Stop 2
Table 6. STM32L452xx peripherals interconnect matrix
TIMx
Timers synchronization or chaining
Y
Y
Y
Y
-
-
ADCx
DAC1
DFSDM1
Conversion triggers
Y
Y
Y
Y
-
-
DMA
Memory to memory transfer trigger
Y
Y
Y
Y
-
-
COMPx
Comparator output blanking
Y
Y
Y
Y
-
-
IRTIM
Infrared interface output generation
Y
Y
Y
Y
-
-
TIM1
TIM2
Timer input channel, trigger, break from
analog signals comparison
Y
Y
Y
Y
-
-
LPTIMERx
Low-power timer triggered by analog
signals comparison
Y
Y
Y
Y
Y
(1)
TIM1
Timer triggered by analog watchdog
Y
Y
Y
Y
-
-
TIM16
Timer input channel from RTC events
Y
Y
Y
Y
-
-
LPTIMERx
Low-power timer triggered by RTC alarms
or tampers
Y
Y
Y
Y
Y
(1)
All clocks sources (internal TIM2
and external)
TIM15, 16
Clock source used as input channel for
RC measurement and trimming
Y
Y
Y
Y
-
-
CSS
CPU (hard fault)
RAM (parity error)
Flash memory (ECC error)
TIM1
COMPx
TIM15,16
PVD
DFSDM1 (analog
watchdog, short circuit
detection)
Timer break
Y
Y
Y
Y
-
-
Interconnect source
TIMx
TIM15/TIM16
COMPx
ADCx
RTC
32/221
Interconnect
destination
Interconnect action
DS11912 Rev 7
Y
Y
STM32L452xx
Functional overview
Low-power run
Low-power sleep
Stop 0 / Stop 1
Stop 2
GPIO
Sleep
Interconnect source
Run
Table 6. STM32L452xx peripherals interconnect matrix (continued)
TIMx
External trigger
Y
Y
Y
Y
-
-
LPTIMERx
External trigger
Y
Y
Y
Y
Y
(1)
ADCx
DAC1
DFSDM1
Conversion external trigger
Y
Y
Y
Y
-
-
Interconnect
destination
Interconnect action
Y
1. LPTIM1 only.
DS11912 Rev 7
33/221
56
Functional overview
3.11
STM32L452xx
Clocks and startup
The clock controller (see Figure 4) distributes the clocks coming from different oscillators to
the core and the peripherals. It also manages clock gating for low-power modes and
ensures clock robustness. It features:
34/221
•
Clock prescaler: to get the best trade-off between speed and current consumption,
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler
•
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
•
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
•
System clock source: four different clock sources can be used to drive the master
clock SYSCLK:
–
4-48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply
a PLL. The HSE can also be configured in bypass mode for an external clock.
–
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can
supply a PLL
–
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate
12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is
available in the system (LSE), the MSI frequency can be automatically trimmed by
hardware to reach better than ±0.25% accuracy. The MSI can supply a PLL.
–
System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency
at 80 MHz.
•
RC48 with clock recovery system (HSI48): internal RC48 MHz clock source can be
used to drive the SDMMC or the RNG peripherals. This clock can be output on the
MCO.
•
Auxiliary clock source: two ultralow-power clock sources that can be used to drive
the real-time clock:
–
32.768 kHz low-speed external crystal (LSE), supporting four drive capability
modes. The LSE can also be configured in bypass mode for an external clock.
–
32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock accuracy is ±5% accuracy.
•
Peripheral clock sources: Several peripherals (SDMMC, RNG, SAI, USARTs, I2Cs,
LPTimers, ADC) have their own independent clock whatever the system clock. Two
PLLs, each having three independent outputs allowing the highest flexibility, can
generate independent clocks for the ADC, the SDMMC/RNG and the SAI.
•
Startup clock: after reset, the microcontroller restarts by default with an internal 4 MHz
clock (MSI). The prescaler ratio and clock source can be changed by the application
program as soon as the code execution starts.
•
Clock security system (CSS): this feature can be enabled by software. If a HSE clock
failure occurs, the master clock is automatically switched to HSI16 and a software
DS11912 Rev 7
STM32L452xx
Functional overview
interrupt is generated if enabled. LSE failure can also be detected and generated an
interrupt.
•
Clock-out capability:
–
MCO: microcontroller clock output: it outputs one of the internal clocks for
external use by the application. Low frequency clocks (LSI, LSE) are available
down to Stop 1 low power state.
–
LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes
down to Standby mode. LSE can also be output on LSCO in Shutdown mode.
LSCO is not available in VBAT mode.
Several prescalers permit to configure the AHB frequency, the high speed APB (APB2) and
the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB
domains is 80 MHz.
DS11912 Rev 7
35/221
56
Functional overview
STM32L452xx
Figure 4. Clock tree
to IWDG
LSI RC 32 kHz
LSCO
to RTC
OSC32_OUT
LSE OSC
32.768 kHz
/32
OSC32_IN
LSE
LSI
HSE
to PWR
SYSCLK
MCO
/ 1→16
MSI
HSI16
Clock
source
control
HSI48
OSC_OUT
HSE OSC
4-48 MHz
OSC_IN
PLLCLK
to AHB bus, core, memory and DMA
AHB PRESC
/ 1,2,..512
HCLK
to Cortex system timer
HSE
Clock
detector
FCLK Cortex free running clock
/8
MSI
SYSCLK
APB1 PRESC
/ 1,2,4,8,16
HSI16
PCLK1
to APB1 peripherals
x1 or x2
HSI RC
16 MHz
LSE
HSI16
SYSCLK
to USARTx
x=2..3
to UART4
to LPUART1
HSI16
SYSCLK
MSI RC
100 kHz – 48 MHz
to I2Cx
x=1,2,3,4
LSI
LSE
HSI16
MSI
PLL
/M
/P
/Q
/R
/Q
/R
to LPTIMx
x=1,2
PCLK2
HSI16
APB2 PRESC
/ 1,2,4,8,16
HSE
PLLSAI1CLK
PLL48M1CLK
to APB2 peripherals
x1 or x2
PLLCLK
PLLSAI1
/P
to TIMx
x=2,6,7
PLLSAI2CLK
to TIMx
x=1,15,16
LSE
HSI16
SYSCLK
to USART1
SYSCLK
to DFSDM1
PLL48M2CLK
PLLADC1CLK
SYSCLK
HSI RC
48 MHz
HSI16
to ADC
MSI
CRS
48 MHz clock to USB, RNG, SDMMC
HSI16
to SAI1
SAI1_EXTCLK
MSv40980V2
36/221
DS11912 Rev 7
STM32L452xx
3.12
Functional overview
General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be
achieved thanks to their mapping on the AHB2 bus.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
3.13
Direct memory access controller (DMA)
The device embeds 2 DMAs. Refer to Table 7: DMA implementation for the features
implementation.
Direct memory access (DMA) is used in order to provide high-speed data transfer between
peripherals and memory as well as memory to memory. Data can be quickly moved by DMA
without any CPU actions. This keeps CPU resources free for other operations.
The two DMA controllers have 14 channels in total, each dedicated to managing memory
access requests from one or more peripherals. Each has an arbiter for handling the priority
between DMA requests.
The DMA supports:
•
14 independently configurable channels (requests)
•
Each channel is connected to dedicated hardware DMA requests, software trigger is
also supported on each channel. This configuration is done by software.
•
Priorities between requests from channels of one DMA are software programmable (4
levels consisting of very high, high, medium, low) or hardware in case of equality
(example: request 1 has priority over request 2)
•
Independent source and destination transfer size (byte, half word, word), emulating
packing and unpacking. Source/destination addresses must be aligned on the data
size.
•
Support for circular buffer management
•
3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error)
logically ORed together in a single interrupt request for each channel
•
Memory-to-memory transfer
•
Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral
transfers
•
Access to Flash, SRAM, APB and AHB peripherals as source and destination
•
Programmable number of data to be transferred: up to 65536.
Table 7. DMA implementation
DMA features
DMA1
DMA2
Number of regular channels
7
7
DS11912 Rev 7
37/221
56
Functional overview
STM32L452xx
3.14
Interrupts and events
3.14.1
Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 67 maskable interrupt channels plus the 16 interrupt lines of the Cortex®M4.
The NVIC benefits are the following:
•
Closely coupled NVIC gives low latency interrupt processing
•
Interrupt entry vector table address passed directly to the core
•
Allows early processing of interrupts
•
Processing of late arriving higher priority interrupts
•
Support for tail chaining
•
Processor state automatically saved on interrupt entry, and restored on interrupt exit,
with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal
interrupt latency.
3.14.2
Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 37 edge detector lines used to generate
interrupt/event requests and wake-up the system from Stop mode. Each external line can be
independently configured to select the trigger event (rising edge, falling edge, both) and can
be masked independently. A pending register maintains the status of the interrupt requests.
The internal lines are connected to peripherals with wakeup from Stop mode capability. The
EXTI can detect an external line with a pulse width shorter than the internal clock period. Up
to 83 GPIOs can be connected to the 16 external interrupt lines.
38/221
DS11912 Rev 7
STM32L452xx
3.15
Functional overview
Analog to digital converter (ADC)
The device embeds a successive approximation analog-to-digital converter with the
following features:
•
12-bit native resolution, with built-in calibration
•
5.33 Msps maximum conversion rate with full resolution
Down to 18.75 ns sampling time
–
Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit
resolution)
•
Up to 16 external channels.
•
4 internal channels: internal reference voltage, temperature sensor, VBAT/3 and
DAC1_OUT1.
•
One external reference pin is available on some package, allowing the input voltage
range to be independent from the power supply
•
Single-ended and differential mode inputs
•
Low-power design
•
3.15.1
–
–
Capable of low-current operation at low conversion rate (consumption decreases
linearly with speed)
–
Dual clock domain architecture: ADC speed independent from CPU frequency
Highly versatile digital interface
–
Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups
of analog signals conversions can be programmed to differentiate background and
high-priority real-time conversions
–
ADC supports multiple trigger inputs for synchronization with on-chip timers and
external signals
–
Results stored into data register or in RAM with DMA controller support
–
Data pre-processing: left/right alignment and per channel offset compensation
–
Built-in oversampling unit for enhanced SNR
–
Channel-wise programmable sampling time
–
Three analog watchdog for automatic voltage monitoring, generating interrupts
and trigger for selected timers
–
Hardware assistant to prepare the context of the injected channels to allow fast
context switching
Temperature sensor
The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature.
The temperature sensor is internally connected to the ADC1_IN17 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
DS11912 Rev 7
39/221
56
Functional overview
STM32L452xx
Table 8. Temperature sensor calibration values
3.15.2
Calibration value name
Description
Memory address
TS_CAL1
TS ADC raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75A8 - 0x1FFF 75A9
TS_CAL2
TS ADC raw data acquired at a
temperature of 130 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75CA - 0x1FFF 75CB
Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for
the ADC and Comparators. VREFINT is internally connected to the ADC1_IN0 input
channel. The precise voltage of VREFINT is individually measured for each part by ST
during production test and stored in the system memory area. It is accessible in read-only
mode.
Table 9. Internal voltage reference calibration values
3.15.3
Calibration value name
Description
Memory address
VREFINT
Raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75AA - 0x1FFF 75AB
VBAT battery voltage monitoring
This embedded hardware feature allows the application to measure the VBAT battery voltage
using the internal ADC channel ADC1_IN18 or ADC3_IN18. As the VBAT voltage may be
higher than VDDA, and thus outside the ADC input range, the VBAT pin is internally
connected to a bridge divider by 3. As a consequence, the converted digital value is one
third the VBAT voltage.
3.16
Digital to analog converter (DAC)
One 12-bit buffered DAC channel can be used to convert digital signals into analog voltage
signal outputs. The chosen design structure is composed of integrated resistor strings and
an amplifier in inverting configuration.
40/221
DS11912 Rev 7
STM32L452xx
Functional overview
This digital interface supports the following features:
•
Up to two DAC output channels
•
8-bit or 12-bit output mode
•
Buffer offset calibration (factory and user trimming)
•
Left or right data alignment in 12-bit mode
•
Synchronized update capability
•
Noise-wave generation
•
Triangular-wave generation
•
Dual DAC channel independent or simultaneous conversions
•
DMA capability for each channel
•
External triggers for conversion
•
Sample and hold low-power mode, with internal or external capacitor
The DAC channels are triggered through the timer update outputs that are also connected
to different DMA channels.
3.17
Voltage reference buffer (VREFBUF)
The STM32L452xx devices embed an voltage reference buffer which can be used as
voltage reference for ADCs, DAC and also as voltage reference for external components
through the VREF+ pin.
The internal voltage reference buffer supports two voltages:
•
2.048 V
•
2.5 V
An external voltage reference can be provided through the VREF+ pin when the internal
voltage reference buffer is off.
The VREF+ pin is double-bonded with VDDA on some packages. In these packages the
internal voltage reference buffer is not available.
Figure 5. Voltage reference buffer
VREFBUF
VDDA
Bandgap
+
DAC, ADC
VREF+
Low frequency
cut-off capacitor
100 nF
MSv40197V1
DS11912 Rev 7
41/221
56
Functional overview
3.18
STM32L452xx
Comparators (COMP)
The STM32L452xx devices embed two rail-to-rail comparators with programmable
reference voltage (internal or external), hysteresis and speed (low speed for low-power) and
with selectable output polarity.
The reference voltage can be one of the following:
•
External I/O
•
DAC output channels
•
Internal reference voltage or submultiple (1/4, 1/2, 3/4).
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers
and can be also combined into a window comparator.
3.19
Operational amplifier (OPAMP)
The STM32L452xx embeds one operational amplifier with external or internal follower
routing and PGA capability.
The operational amplifier features:
3.20
•
Low input bias current
•
Low offset voltage
•
Low-power mode
•
Rail-to-rail input
Touch sensing controller (TSC)
The touch sensing controller provides a simple solution for adding capacitive sensing
functionality to any application. Capacitive sensing technology is able to detect finger
presence near an electrode which is protected from direct touch by a dielectric (such as
glass or plastic). The capacitive variation introduced by the finger (or any conductive object)
is measured using a proven implementation based on a surface charge transfer acquisition
principle.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware
library which is free to use and allows touch sensing functionality to be implemented reliably
in the end application.
42/221
DS11912 Rev 7
STM32L452xx
Functional overview
The main features of the touch sensing controller are the following:
•
Proven and robust surface charge transfer acquisition principle
•
Supports up to 21 capacitive sensing channels
•
Up to 3 capacitive sensing channels can be acquired in parallel offering a very good
response time
•
Spread spectrum feature to improve system robustness in noisy environments
•
Full hardware management of the charge transfer acquisition sequence
•
Programmable charge transfer frequency
•
Programmable sampling capacitor I/O pin
•
Programmable channel I/O pin
•
Programmable max count value to avoid long acquisition when a channel is faulty
•
Dedicated end of acquisition and max count error flags with interrupt capability
•
One sampling capacitor for up to 3 capacitive sensing channels to reduce the system
components
•
Compatible with proximity, touchkey, linear and rotary touch sensor implementation
•
Designed to operate with STMTouch touch sensing firmware library
Note:
The number of capacitive sensing channels is dependent on the size of the packages and
subject to I/O availability.
3.21
Digital filter for Sigma-Delta modulators (DFSDM)
The device embeds one DFSDM with 2 digital filters modules and 4 external input serial
channels (transceivers) or alternately 4 internal parallel inputs support.
The DFSDM peripheral is dedicated to interface the external Σ∆ modulators to
microcontroller and then to perform digital filtering of the received data streams (which
represent analog value on Σ∆ modulators inputs). DFSDM can also interface PDM (Pulse
Density Modulation) microphones and perform PDM to PCM conversion and filtering in
DS11912 Rev 7
43/221
56
Functional overview
STM32L452xx
hardware. DFSDM features optional parallel data stream inputs from microcontrollers
memory (through DMA/CPU transfers into DFSDM).
DFSDM transceivers support several serial interface formats (to support various Σ∆
modulators). DFSDM digital filter modules perform digital processing according user
selected filter parameters with up to 24-bit final ADC resolution.
The DFSDM peripheral supports:
•
4 multiplexed input digital serial channels:
–
•
–
configurable Manchester coded 1 wire interface support
–
PDM (Pulse Density Modulation) microphone input support
–
maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
–
clock output for SD modulator(s): 0..20 MHz
alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution):
–
•
internal sources: device memory data streams (DMA)
2 digital filter modules with adjustable digital signal processing:
–
Sincx filter: filter order/type (1..5), oversampling ratio (up to 1..1024)
–
integrator: oversampling ratio (1..256)
•
up to 24-bit output data resolution, signed output data format
•
automatic data offset correction (offset stored in register by user)
•
continuous or single conversion
•
start-of-conversion triggered by:
•
•
–
software trigger
–
internal timers
–
external events
–
start-of-conversion synchronously with first digital filter module (DFSDM1_FLT0)
analog watchdog feature:
–
low value and high value data threshold registers
–
dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
–
input from final output data or from selected input digital serial channels
–
continuous monitoring independently from standard conversion
short circuit detector to detect saturated analog input values (bottom and top range):
–
up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on serial data stream
–
monitoring continuously each input serial channel
•
break signal generation on analog watchdog event or on short circuit detector event
•
extremes detector:
–
storage of minimum and maximum values of final conversion data
–
refreshed by software
•
DMA capability to read the final conversion data
•
interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial
channel clock absence
•
“regular” or “injected” conversions:
–
44/221
configurable SPI interface to connect various SD modulator(s)
“regular” conversions can be requested at any time or even in continuous mode
DS11912 Rev 7
STM32L452xx
Functional overview
without having any impact on the timing of “injected” conversions
–
“injected” conversions for precise timing and with high conversion priority
Table 10. DFSDM1 implementation
DFSDM features
DFSDM1
Number of channels
8
Number of filters
4
Input from internal ADC
-
Supported trigger sources
3.22
10
Pulses skipper
-
ID registers support
-
Random number generator (RNG)
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated
analog circuit.
3.23
Timers and watchdogs
The STM32L452xx includes one advanced control timers, up to five general-purpose timers,
two basic timers, two low-power timers, two watchdog timers and a SysTick timer. The table
below compares the features of the advanced control, general purpose and basic timers.
Table 11. Timer feature comparison
Timer type
Timer
Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
outputs
Advanced
control
TIM1
16-bit
Up, down,
Up/down
Any integer
between 1
and 65536
Yes
4
3
Generalpurpose
TIM2
32-bit
Up, down,
Up/down
Any integer
between 1
and 65536
Yes
4
No
Generalpurpose
TIM3
16-bit
Up, down,
Up/down
Any integer
between 1
and 65536
Yes
4
No
Generalpurpose
TIM15
16-bit
Up
Any integer
between 1
and 65536
Yes
2
1
Generalpurpose
TIM16
16-bit
Up
Any integer
between 1
and 65536
Yes
1
1
Basic
TIM6
16-bit
Up
Any integer
between 1
and 65536
Yes
0
No
DS11912 Rev 7
45/221
56
Functional overview
3.23.1
STM32L452xx
Advanced-control timer (TIM1)
The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6
channels. They have complementary PWM outputs with programmable inserted deadtimes. They can also be seen as complete general-purpose timers. The 4 independent
channels can be used for:
•
Input capture
•
Output compare
•
PWM generation (edge or center-aligned modes) with full modulation capability (0100%)
•
One-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs
disabled to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIMx timers (described in
Section 3.23.2) using the same architecture, so the advanced-control timer can work
together with the TIMx timers via the Timer Link feature for synchronization or event
chaining.
3.23.2
General-purpose timers (TIM2, TIM3, TIM15, TIM16)
There are up to three synchronizable general-purpose timers embedded in the
STM32L452xx (see Table 11 for differences). Each general-purpose timer can be used to
generate PWM outputs, or act as a simple time base.
•
TIM2, TIM3
They are full-featured general-purpose timers:
–
TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler.
–
TIM3 has 16-bit auto-reload up/downcounter and 16-bit prescaler.
These timers feature 4 independent channels for input capture/output compare, PWM
or one-pulse mode output. They can work with the other general-purpose timers via the
Timer Link feature for synchronization or event chaining.
The counters can be frozen in debug mode.
All have independent DMA request generation and support quadrature encoder.
•
TIM15 and 16
They are general-purpose timers with mid-range features:
They have 16-bit auto-reload upcounters and 16-bit prescalers.
–
TIM15 has 2 channels and 1 complementary channel
–
TIM16 has 1 channel and 1 complementary channel
All channels can be used for input capture/output compare, PWM or one-pulse mode
output.
The timers can work together via the Timer Link feature for synchronization or event
chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.
3.23.3
Basic timer (TIM6)
The basic timer is mainly used for DAC trigger generation. It can also be used as generic
16-bit timebase.
46/221
DS11912 Rev 7
STM32L452xx
3.23.4
Functional overview
Low-power timer (LPTIM1 and LPTIM2)
The devices embed two low-power timers. These timers have an independent clock and are
running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to
wakeup the system from Stop mode.
LPTIM1 is active in Stop 0, Stop 1 and Stop 2 modes.
LPTIM2 is active in Stop 0 and Stop 1 mode.
This low-power timer supports the following features:
3.23.5
•
16-bit up counter with 16-bit autoreload register
•
16-bit compare register
•
Configurable output: pulse, PWM
•
Continuous/ one shot mode
•
Selectable software/hardware input trigger
•
Selectable clock source
–
Internal clock sources: LSE, LSI, HSI16 or APB clock
–
External clock source over LPTIM input (working even with no internal clock
source running, used by pulse counter application).
•
Programmable digital glitch filter
•
Encoder mode (LPTIM1 only)
Infrared interface (IRTIM)
The STM32L452xx includes one infrared interface (IRTIM), which can be used with an
infrared LED to perform remote control functions. It uses TIM15 and TIM16 output channels
to generate output signal waveforms on IR_OUT pin.
3.23.6
Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC (LSI) and as it operates independently
from the main clock, it can operate in Stop and Standby modes. It can be used either as a
watchdog to reset the device when a problem occurs, or as a free running timer for
application timeout management. It is hardware or software configurable through the option
bytes. The counter can be frozen in debug mode.
3.23.7
System window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
DS11912 Rev 7
47/221
56
Functional overview
3.23.8
STM32L452xx
SysTick timer
This timer is dedicated to real-time operating systems, but can also be used as a standard
down counter. It features:
3.24
•
A 24-bit down counter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0
•
Programmable clock source
Real-time clock (RTC) and backup registers
The RTC is an independent BCD timer/counter. It supports the following features:
•
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
•
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
•
Two programmable alarms.
•
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
•
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
•
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy.
•
Three anti-tamper detection pins with programmable filter.
•
Timestamp feature, which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to
VBAT mode.
•
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable
resolution and period.
The RTC and the 32 backup registers are supplied through a switch that takes power either
from the VDD supply when present or from the VBAT pin.
The backup registers are 32-bit registers used to store 128 bytes of user application data
when VDD power is not present. They are not reset by a system or power reset, or when the
device wakes up from Standby or Shutdown mode.
The RTC clock sources can be:
•
A 32.768 kHz external crystal (LSE)
•
An external resonator or oscillator (LSE)
•
The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
•
The high-speed external clock (HSE) divided by 32.
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the
LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in
all low-power modes except Shutdown mode.
All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt
and wakeup the device from the low-power modes.
48/221
DS11912 Rev 7
STM32L452xx
3.25
Functional overview
Inter-integrated circuit interface (I2C)
The device embeds four I2C. Refer to Table 12 for the features implementation.
The I2C bus interface handles communications between the microcontroller and the serial
I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
•
•
I2C-bus specification and user manual rev. 5 compatibility:
–
Slave and master modes, multimaster capability
–
Standard-mode (Sm), with a bitrate up to 100 kbit/s
–
Fast-mode (Fm), with a bitrate up to 400 kbit/s
–
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
–
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
–
Programmable setup and hold times
–
Optional clock stretching
System Management Bus (SMBus) specification rev 2.0 compatibility:
–
Hardware PEC (Packet Error Checking) generation and verification with ACK
control
–
Address resolution protocol (ARP) support
–
SMBus alert
•
Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
•
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming. Refer to
Figure 4: Clock tree.
•
Wakeup from Stop mode on address match
•
Programmable analog and digital noise filters
•
1-byte buffer with DMA capability
Table 12. I2C implementation
I2C features(1)
I2C1
I2C2
I2C3
I2C4
Standard-mode (up to 100 kbit/s)
X
X
X
X
Fast-mode (up to 400 kbit/s)
X
X
X
X
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)
X
X
X
X
Programmable analog and digital noise filters
X
X
X
X
SMBus/PMBus hardware support
X
X
X
X
Independent clock
X
X
X
X
Wakeup from Stop 1 mode on address match
X
X
X
X
Wakeup from Stop 2 mode on address match
-
-
X
-
1. X: supported
DS11912 Rev 7
49/221
56
Functional overview
3.26
STM32L452xx
Universal synchronous/asynchronous receiver transmitter
(USART)
The STM32L452xx devices have three embedded universal synchronous receiver
transmitters (USART1, USART2 and USART3) and one universal asynchronous receiver
transmitters (UART4).
These interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. They provide hardware management of the CTS and RTS
signals, and RS485 Driver Enable, and are able to communicate at speeds of up to
10 Mbit/s.
USART1, USART2 and USART3 also provide Smart Card mode (ISO 7816 compliant) and
SPI-like communication capability.
All USART have a clock domain independent from the CPU clock, allowing the USARTx
(x=1,2,3,4) to wake up the MCU from Stop mode using baudrates up to 204 Kbaud. The
wake up events from Stop mode are programmable and can be:
•
Start bit detection
•
Any received data frame
•
A specific programmed data frame
All USART interfaces can be served by the DMA controller.
Table 13. STM32L452xx USART/UART/LPUART features
USART modes/features(1)
USART1 USART2 USART3
LPUART1
Hardware flow control for modem
X
X
X
X
X
Continuous communication using DMA
X
X
X
X
X
Multiprocessor communication
X
X
X
X
X
Synchronous mode
X
X
X
-
-
Smartcard mode
X
X
X
-
-
Single-wire half-duplex communication
X
X
X
X
X
IrDA SIR ENDEC block
X
X
X
X
-
LIN mode
X
X
X
X
-
Dual clock domain
X
X
X
X
X
Wakeup from Stop 0 / Stop 1 modes
X
X
X
X
X
Wakeup from Stop 2 mode
-
-
-
-
X
Receiver timeout interrupt
X
X
X
X
-
Modbus communication
X
X
X
X
-
Auto baud rate detection
Driver Enable
X (4 modes)
X
LPUART/USART data length
X
X
7, 8 and 9 bits
1. X = supported.
50/221
UART4
DS11912 Rev 7
X
X
STM32L452xx
3.27
Functional overview
Low-power universal asynchronous receiver transmitter
(LPUART)
The device embeds one Low-Power UART. The LPUART supports asynchronous serial
communication with minimum power consumption. It supports half duplex single wire
communication and modem operations (CTS/RTS). It allows multiprocessor
communication.
The LPUART has a clock domain independent from the CPU clock, and can wakeup the
system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop
mode are programmable and can be:
•
Start bit detection
•
Any received data frame
•
A specific programmed data frame
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600
baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while
having an extremely low energy consumption. Higher speed clock can be used to reach
higher baudrates.
LPUART interface can be served by the DMA controller.
DS11912 Rev 7
51/221
56
Functional overview
3.28
STM32L452xx
Serial peripheral interface (SPI)
Three SPI interfaces allow communication up to 40 Mbits/s in master and up to 24 Mbits/s
slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8
master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI
interfaces support NSS pulse mode, TI mode and Hardware CRC calculation.
All SPI interfaces can be served by the DMA controller.
3.29
Serial audio interfaces (SAI)
The device embeds 1 SAI. Refer to Table 14: SAI implementation for the features
implementation. The SAI bus interface handles communications between the
microcontroller and the serial audio protocol.
The SAI peripheral supports:
•
Two independent audio sub-blocks which can be transmitters or receivers with their
respective FIFO.
•
8-word integrated FIFOs for each audio sub-block.
•
Synchronous or asynchronous mode between the audio sub-blocks.
•
Master or slave configuration independent for both audio sub-blocks.
•
Clock generator for each audio block to target independent audio frequency sampling
when both audio sub-blocks are configured in master mode.
•
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.
•
Peripheral with large configurability and flexibility permitting to target as example the
following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF
out.
•
Up to 16 slots available with configurable size and with the possibility to select which
ones are active in the audio frame.
•
Number of bits by frame may be configurable.
•
Frame synchronization active level configurable (offset, bit length, level).
•
First active bit position in the slot is configurable.
•
LSB first or MSB first for data transfer.
•
Mute mode.
•
Stereo/Mono audio frame capability.
•
Communication clock strobing edge configurable (SCK).
•
Error flags with associated interrupts if enabled respectively.
•
•
52/221
–
Overrun and underrun detection.
–
Anticipated frame synchronization signal detection in slave mode.
–
Late frame synchronization signal detection in slave mode.
–
Codec not ready for the AC’97 mode in reception.
Interruption sources when enabled:
–
Errors.
–
FIFO requests.
DMA interface with 2 dedicated channels to handle access to the dedicated integrated
FIFO of each SAI audio sub-block.
DS11912 Rev 7
STM32L452xx
Functional overview
Table 14. SAI implementation
SAI features
Support(1)
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97
X
Mute mode
X
Stereo/Mono audio frame capability.
X
16 slots
X
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit
X
FIFO Size
X (8 Word)
SPDIF
X
1. X: supported
3.30
Controller area network (CAN)
The CAN is compliant with specifications 2.0A and B (active) with a bitrate up to 1 Mbit/s. It
can receive and transmit standard frames with 11-bit identifiers as well as extended frames
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and
14 scalable filter banks.
The CAN peripheral supports:
•
Supports CAN protocol version 2.0 A, B Active
•
Bit rates up to 1 Mbit/s
•
Transmission
•
•
•
3.31
–
Three transmit mailboxes
–
Configurable transmit priority
Reception
–
Two receive FIFOs with three stages
–
14 Scalable filter banks
–
Identifier list feature
–
Configurable FIFO overrun
Time-triggered communication option
–
Disable automatic retransmission mode
–
16-bit free running timer
–
Time Stamp sent in last two data bytes
Management
–
Maskable interrupts
–
Software-efficient mailbox mapping at a unique address space
Secure digital input/output and MultiMediaCards Interface
(SDMMC)
The card host interface (SDMMC) provides an interface between the APB peripheral bus
and MultiMediaCards (MMCs), SD memory cards and SDIO cards.
DS11912 Rev 7
53/221
56
Functional overview
STM32L452xx
The SDMMC features include the following:
3.32
•
Full compliance with MultiMediaCard System Specification Version 4.2. Card support
for three different databus modes: 1-bit (default), 4-bit and 8-bit
•
Full compatibility with previous versions of MultiMediaCards (forward compatibility)
•
Full compliance with SD Memory Card Specifications Version 2.0
•
Full compliance with SD I/O Card Specification Version 2.0: card support for two
different databus modes: 1-bit (default) and 4-bit
•
Data transfer up to 48 MHz for the 8 bit mode
•
Data write and read with DMA capability
Universal serial bus (USB)
The STM32L452xx devices embed a full-speed USB device peripheral compliant with the
USB specification version 2.0. The internal USB PHY supports USB FS signaling,
embedded DP pull-up and also battery charging detection according to Battery Charging
Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function
interface with added support for USB 2.0 Link Power Management. It has softwareconfigurable endpoint setting with packet memory up-to 1 KB and suspend/resume support.
It requires a precise 48 MHz clock which can be generated from the internal main PLL (the
clock source must use a HSE crystal oscillator) or by the internal 48 MHz oscillator in
automatic trimming mode. The synchronization for this oscillator can be taken from the USB
data stream itself (SOF signalization) which allows crystal less operation.
3.33
Clock recovery system (CRS)
The STM32L452xx devices embed a special block which allows automatic trimming of the
internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device
operational range. This automatic trimming is based on the external synchronization signal,
which could be either derived from LSE oscillator, from an external signal on CRS_SYNC
pin or generated by user software. For faster lock-in during startup it is also possible to
combine automatic trimming with manual trimming action.
3.34
Quad SPI memory interface (QUADSPI)
The Quad SPI is a specialized communication interface targeting single, dual or quad SPI
Flash memories. It can operate in any of the three following modes:
•
Indirect mode: all the operations are performed using the QUADSPI registers
•
Status polling mode: the external Flash memory status register is periodically read and
an interrupt can be generated in case of flag setting
•
Memory-mapped mode: the external Flash is memory mapped and is seen by the
system as if it were an internal memory
Both throughput and capacity can be increased two-fold using dual-flash mode, where two
Quad SPI flash memories are accessed simultaneously.
54/221
DS11912 Rev 7
STM32L452xx
Functional overview
The Quad SPI interface supports:
•
Three functional modes: indirect, status-polling, and memory-mapped
•
Dual-flash mode, where 8 bits can be sent/received simultaneously by accessing two
flash memories in parallel.
•
SDR and DDR support
•
Fully programmable opcode for both indirect and memory mapped mode
•
Fully programmable frame format for both indirect and memory mapped mode
•
Each of the five following phases can be configured independently (enable, length,
single/dual/quad communication)
–
Instruction phase
–
Address phase
–
Alternate bytes phase
–
Dummy cycles phase
–
Data phase
•
Integrated FIFO for reception and transmission
•
8, 16, and 32-bit data accesses are allowed
•
DMA channel for indirect mode operations
•
Programmable masking for external flash flag management
•
Timeout management
•
Interrupt generation on FIFO threshold, timeout, status match, operation complete, and
access error
DS11912 Rev 7
55/221
56
Functional overview
STM32L452xx
3.35
Development support
3.35.1
Serial wire JTAG debug port (SWJ-DP)
The Arm® SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using only two pins instead of the five required by the JTAG (JTAG pins
can be reused as GPIO with alternate function): the JTAG TMS and TCK pins are shared
with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
3.35.2
Embedded Trace Macrocell™
The Arm® Embedded Trace Macrocell™ provides a greater visibility of the instruction and
data flow inside the CPU core by streaming compressed data at a very high rate from the
STM32L452xx through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then
formatted for display on the host computer that runs the debugger software. TPA hardware
is commercially available from common development tool vendors.
The Embedded Trace Macrocell™ operates with third party debugger software tools.
56/221
DS11912 Rev 7
STM32L452xx
Pinouts and pin description
VDD
VSS
PE1
PE0
PB9
PB8
PH3-BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
Figure 6. STM32L452Vx LQFP100 pinout(1)
PE2
1
75
VDD
PE3
2
74
VSS
PE4
3
73
VDDUSB
PE5
4
72
PA13
PE6
5
71
PA12
VBAT
6
70
PA11
PC13
7
69
PA10
PC14-OSC32_IN
8
68
PA9
PC15-OSC32_OUT
9
67
PA8
VSS
10
66
PC9
VDD
11
65
PC8
PH0-OSC_IN
12
64
PC7
PH1-OSC_OUT
13
63
PC6
NRST
14
62
PD15
PC0
15
61
PD14
PC1
16
60
PD13
PC2
17
59
PD12
PC3
18
58
PD11
VSSA
19
57
PD10
VREF-
20
56
PD9
VREF+
21
55
PD8
VDDA
22
54
PB15
PA0
23
53
PB14
PA1
24
52
PB13
PA2
25
51
PB12
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PA3
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VSS
VDD
LQFP100
VSS
4
Pinouts and pin description
MSv40963V2
1. The above figure shows the package top view.
DS11912 Rev 7
57/221
91
Pinouts and pin description
STM32L452xx
Figure 7. STM32L452Vx UFBGA100 ballout(1)
1
2
3
4
5
6
7
8
9
10
11
12
A
PE3
PE1
PB8
PH3-BOOT0
PD7
PD5
PB4
PB3
PA15
PA14
PA13
PA12
B
PE4
PE2
PB9
PB7
PB6
PD6
PD4
PD3
PD1
PC12
PC10
PA11
C
PC13
PE5
PE0
VDD
PB5
PD2
PD0
PC11
VDDUSB
PA10
D
PC14OSC32_IN
PE6
VSS
PA9
PA8
PC9
E
PC15OSC32_OUT
VBAT
VSS
PC8
PC7
PC6
F
PH0-OSC_IN
VSS
VSS
VSS
VDD
VDD
UFBGA100
G
PH1OSC_OUT
VDD
H
PC0
NRST
VDD
PD15
PD14
PD13
J
VSSA
PC1
PC2
PD12
PD11
PD10
K
VREF-
PC3
PA2
PA5
PC4
L
VREF+
PA0
PA3
PA6
PC5
PB2
M
VDDA
PA1
PA4
PA7
PB0
PB1
PD9
PD8
PB15
PB14
PB13
PE8
PE10
PE12
PB10
PB11
PB12
PE7
PE9
PE11
PE13
PE14
PE15
MSv40961V2
1. The above figure shows the package top view.
VDD
VSS
PB9
PB8
PH3-BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
Figure 8. STM32L452Rx LQFP64 pinout(1)
VBAT
1
48
VDDUSB
PC13
2
47
VSS
PC14-OSC32_IN
3
46
PA13
PC15-OSC32_OUT
4
45
PA12
PH0-OSC_IN
5
44
PA11
PH1-OSC_OUT
6
43
PA10
NRST
7
42
PA9
PC0
8
41
PA8
PC1
9
40
PC9
PC2
10
39
PC8
PC3
11
38
PC7
VSSA/VREF-
12
37
PC6
VDDA/VREF+
13
36
PB15
PA0
14
35
PB14
PA1
15
34
PB13
PA2
16
33
PB12
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS
VDD
LQFP64
MSv40957V2
1. The above figure shows the package top view.
58/221
DS11912 Rev 7
STM32L452xx
Pinouts and pin description
VDD
VSS
VDD12
PB9
PB8
PH3-BOOT0
PB7
PB6
PB5
PB4
PB3
PC12
PC11
PC10
PA15
PA14
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
Figure 9. STM32L452Rx, external SMPS device, LQFP64 pinout(1)
VBAT
1
48
VDDUSB
PC13
2
47
VSS
PC14-OSC32_IN
3
46
PA13
PC15-OSC32_OUT
4
45
PA12
PH0-OSC_IN
5
44
PA11
PH1-OSC_OUT
6
43
PA10
NRST
7
42
PA9
PC0
8
41
PA8
PC1
9
40
PC9
PC2
10
39
PC8
PC3
11
38
PC7
VSSA/VREF-
12
37
PC6
VDDA/VREF+
13
36
PB15
PA0
14
35
PB14
PA1
15
34
PB13
PA2
16
33
PB12
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PB0
PB1
PB2
PB10
PB11
VDD12
VSS
VDD
LQFP64
MSv45728V2
1. The above figure shows the package top view.
Figure 10. STM32L452Rx UFBGA64 ballout(1)
1
2
3
4
5
6
7
8
A
PC14OSC32_IN
PC13
PB9
PB4
PB3
PA15
PA14
PA13
B
PC15OSC32_OUT
VBAT
PB8
PH3-BOOT0
PD2
PC11
PC10
PA12
C
PH0-OSC_IN
VSS
PB7
PB5
PC12
PA10
PA9
PA11
D
PH1OSC_OUT
VDD
PB6
VSS
VSS
VSS
PA8
PC9
E
NRST
PC1
PC0
VDD
VDDUSB
VDD
PC7
PC8
F
VSSA/VREF-
PC2
PA2
PA5
PB0
PC6
PB15
PB14
G
PC3
PA0
PA3
PA6
PB1
PB2
PB10
PB13
H
VDDA/VREF+
PA1
PA4
PA7
PC4
PC5
PB11
PB12
MSv40959V2
1. The above figure shows the package top view.
DS11912 Rev 7
59/221
91
Pinouts and pin description
STM32L452xx
Figure 11. STM32L452Rx WLCSP64 pinout(1)
1
2
3
4
5
6
7
8
A
VDDUSB
PA15
PC12
PB4
PB7
PB8
VSS
VDD
B
VSS
VDD
PC11
PB3
PB6
PH3-BOOT0
VBAT
PC13
C
PA10
PA13
PA14
PD2
PB5
PB9
PC15OSC32_OUT
PC14OSC32_IN
D
PA9
PA11
PA12
PC10
PC1
PC2
PC0
PH0-OSC_IN
E
PC7
PC9
PA8
PC4
PA7
PA1
PC3
PH1OSC_OUT
F
PB15
PC6
PC8
PB1
PA5
PA3
VDDA/VREF+
NRST
G
PB14
PB13
PB12
PB2
PC5
PA4
PA2
VSSA/VREF-
H
VDD
VSS
PB11
PB10
PB0
PA6
VDD
PA0
MSv40955V2
1. The above figure shows the package top view.
Figure 12. STM32L452Rx, external SMPS device, WLCSP64 pinout(1)
1
2
3
4
5
6
7
8
A
VDDUSB
PA14
PC12
PB4
PB7
PB8
VSS
VDD
B
VSS
VDD
PC11
PB3
PB6
PH3-BOOT0
VDD12
PC13
C
PA10
PA13
PA15
PB5
PB9
VBAT
PC15OSC32_OUT
PC14OSC32_IN
D
PA9
PA11
PA12
PC10
PC3
PC1
PC0
PH0-OSC_IN
E
PC6
PC7
PA8
PC4
PA7
PA1
PC2
PH1OSC_OUT
F
PB15
PB13
PC8
PB2
PA5
PA3
VDDA/VREF+
NRST
G
PB14
PB12
PC9
PB11
PB0
PA4
PA2
VSSA/VREF-
H
VDD
VSS
VDD12
PB10
PB1
PA6
VDD
PA0
MSv50990V1
1. The above figure shows the package top view.
60/221
DS11912 Rev 7
STM32L452xx
Pinouts and pin description
VDD
VSS
PB9
PB8
PH3-BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
48
47
46
45
44
43
42
41
40
39
38
37
Figure 13. STM32L452Cx LQFP48 pinout(1)
VBAT
1
36
VDDUSB
PC13
2
35
VSS
PC14-OSC32_IN
3
34
PA13
PC15-OSC32_OUT
4
33
PA12
PH0-OSC_IN
5
32
PA11
PH1-OSC_OUT
6
31
PA10
NRST
7
30
PA9
VSSA/VREF-
8
29
PA8
VDDA/VREF+
9
28
PB15
PA0
10
27
PB14
PA1
11
26
PB13
PA2
12
25
PB12
13
14
15
16
17
18
19
20
21
22
23
24
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
VSS
VDD
LQFP48
MSv36897V3
1. The above figure shows the package top view.
VDD
VSS
PB9
PB8
PH3-BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
48
47
46
45
44
43
42
41
40
39
38
37
Figure 14. STM32L452Cx UFQFPN48 pinout(1)
VBAT
1
36
VDDUSB
PC13
2
35
VSS
PC14-OSC32_IN
3
34
PA13
PC15-OSC32_OUT
4
33
PA12
PH0-OSC_IN
5
32
PA11
PH1-OSC_OUT
6
31
PA10
NRST
7
30
PA9
VSSA/VREF-
8
29
PA8
VDDA/VREF+
9
28
PB15
PA0
10
27
PB14
PA1
11
26
PB13
PA2
12
25
PB12
13
14
15
16
17
18
19
20
21
22
23
24
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
VSS
VDD
UFQFPN48
MSv40953V2
1. The above figure shows the package top view.
DS11912 Rev 7
61/221
91
Pinouts and pin description
STM32L452xx
Table 15. Legend/abbreviations used in the pinout table
Name
Pin name
Pin type
Abbreviation
Definition
Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
TT
3.6 V tolerant I/O
RST
Bidirectional reset pin with embedded weak pull-up resistor
I/O structure
Option for TT or FT I/Os
_f (1)
_u
I/O, Fm+ capable
(2)
I/O, with USB function supplied by VDDUSB
_a (3)
Notes
I/O, with Analog switch function supplied by VDDA
Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.
Alternate
Functions selected through GPIOx_AFR registers
functions
Pin
functions Additional
Functions directly selected/enabled through peripheral registers
functions
1. The related I/O structures in Table 16 are: FT_f, FT_fa.
2. The related I/O structures in Table 16 are: FT_u, FT_fu.
3. The related I/O structures in Table 16 are: FT_a, FT_fa, TT_a.
62/221
DS11912 Rev 7
STM32L452xx
Table 16. STM32L452xx pin definitions
Pin functions
WLCSP64 SMPS
LQFP64
LQFP64 SMPS
UFBGA64
LQFP100
UFBGA100
Pin type
I/O structure
Notes
-
-
-
-
-
-
1
B2
PE2
I/O
FT
-
TRACECK, TIM3_ETR,
TSC_G7_IO1, SAI1_MCLK_A,
EVENTOUT
-
-
-
-
-
-
-
2
A1
PE3
I/O
FT
-
TRACED0, TIM3_CH1,
TSC_G7_IO2, SAI1_SD_B,
EVENTOUT
-
-
-
-
-
-
-
3
B1
PE4
I/O
FT
-
TRACED1, TIM3_CH2,
DFSDM1_DATIN3, TSC_G7_IO3,
SAI1_FS_A, EVENTOUT
-
-
-
-
-
-
-
4
C2
PE5
I/O
FT
-
TRACED2, TIM3_CH3,
DFSDM1_CKIN3, TSC_G7_IO4,
SAI1_SCK_A, EVENTOUT
-
-
-
-
-
-
-
5
D2
PE6
I/O
FT
-
TRACED3, TIM3_CH4, SAI1_SD_A,
EVENTOUT
RTC_TAMP3/WKUP3
-
-
-
EVENTOUT
RTC_TAMP1/RTC_TS/RTC_OUT/W
KUP2
EVENTOUT
OSC32_IN
EVENTOUT
OSC32_OUT
Pin name
(function
after
reset)
1
B7 C6
1
1
B2
6
E2
VBAT
S
-
2
B8 B8
2
2
A2
7
C1
PC13
I/O
FT
D1
PC14OSC32_
IN
(PC14)
I/O
FT
E1
PC15OSC32_
OUT
(PC15)
I/O
FT
3
63/221
4
C8 C8
C7 C7
3
4
3
4
A1
B1
8
9
(1)
(2)
(1)
(2)
(1)
(2)
Alternate functions
Additional functions
Pinouts and pin description
WLCSP64
DS11912 Rev 7
LQFP48, UFQFPN48
Pin Number
Pin functions
LQFP48, UFQFPN48
WLCSP64
WLCSP64 SMPS
LQFP64
LQFP64 SMPS
UFBGA64
LQFP100
UFBGA100
Pin type
I/O structure
Notes
Pin Number
-
-
-
-
-
-
10
F2
VSS
S
-
-
-
-
-
-
-
-
-
-
11
G2
VDD
S
-
-
-
-
5
5
C1
12
F1
PH0OSC_IN
(PH0)
I/O
FT
-
EVENTOUT
OSC_IN
I/O
FT
-
EVENTOUT
OSC_OUT
5
D8 D8
Pin name
(function
after
reset)
Alternate functions
Additional functions
DS11912 Rev 7
E8 E8
6
6
D1
13
G1
7
F8 F8
7
7
E1
14
H2
NRST
I/O
RST
-
-
-
-
D7 D7
8
8
E3
15
H1
PC0
I/O
FT_fa
-
LPTIM1_IN1, I2C4_SCL, I2C3_SCL,
LPUART1_RX, LPTIM2_IN1,
EVENTOUT
ADC1_IN1
-
D5 D6
9
9
E2
16
J2
PC1
I/O
FT_fa
-
TRACED0, LPTIM1_OUT,
I2C4_SDA, I2C3_SDA,
LPUART1_TX, EVENTOUT
ADC1_IN2
-
D6 E7 10 10 F2
17
J3
PC2
I/O
FT_a
-
LPTIM1_IN2, SPI2_MISO,
DFSDM1_CKOUT, EVENTOUT
ADC1_IN3
-
E7 D5 11 11 G1
18
K2
PC3
I/O
FT_a
-
LPTIM1_ETR, SPI2_MOSI,
SAI1_SD_A, LPTIM2_ETR,
EVENTOUT
ADC1_IN4
-
-
-
-
-
-
19
J1
VSSA
S
-
-
-
-
-
-
-
-
-
-
20
K1
VREF-
S
-
-
-
-
STM32L452xx
6
PH1OSC_
OUT
(PH1)
Pinouts and pin description
64/221
Table 16. STM32L452xx pin definitions (continued)
Pin functions
UFBGA100
Pin type
I/O structure
Notes
Pin name
(function
after
reset)
LQFP100
UFBGA64
LQFP64 SMPS
LQFP64
WLCSP64
G8 G8 12 12 F1
WLCSP64 SMPS
LQFP48, UFQFPN48
Pin Number
8
STM32L452xx
Table 16. STM32L452xx pin definitions (continued)
-
-
VSSA/
VREF-
S
-
-
-
-
Alternate functions
Additional functions
DS11912 Rev 7
-
-
-
-
-
21
L1
VREF+
S
-
-
-
VREFBUF_OUT
-
-
-
-
-
-
22
M1
VDDA
S
-
-
-
-
-
-
VDDA/
VREF+
S
-
-
-
-
-
TIM2_CH1, USART2_CTS,
UART4_TX, COMP1_OUT,
SAI1_EXTCLK, TIM2_ETR,
EVENTOUT
OPAMP1_VINP, COMP1_INM,
ADC1_IN5, RTC_TAMP2/WKUP1
-
TIM2_CH2, I2C1_SMBA,
SPI1_SCK, USART2_RTS_DE,
UART4_RX, TIM15_CH1N,
EVENTOUT
OPAMP1_VINM, COMP1_INP,
ADC1_IN6
-
TIM2_CH3, USART2_TX,
LPUART1_TX,
QUADSPI_BK1_NCS,
COMP2_OUT, TIM15_CH1,
EVENTOUT
COMP2_INM, ADC1_IN7,
WKUP4/LSCO
OPAMP1_VOUT, COMP2_INP,
ADC1_IN8
9
F7 F7 13 13 H1
10 H8 H8 14 14 G2
11 E6 E6 15 15 H2
12 G7 G7 16 16 F3
65/221
-
24
25
L2
M2
K3
PA0
PA1
PA2
I/O
I/O
I/O
FT_a
FT_a
FT_a
26
L3
PA3
I/O
TT_a
-
TIM2_CH4, USART2_RX,
LPUART1_RX, QUADSPI_CLK,
SAI1_MCLK_A, TIM15_CH2,
EVENTOUT
18 18 C2
27
E3
VSS
S
-
-
-
-
H7 H7 19 19 D2
28
H3
VDD
S
-
-
-
-
13 F6 F6 17 17 G3
-
23
-
-
Pinouts and pin description
-
Pin functions
Pin type
I/O structure
Notes
29
M3
PA4
I/O
TT_a
-
SPI1_NSS, SPI3_NSS,
USART2_CK, SAI1_FS_B,
LPTIM2_OUT, EVENTOUT
COMP1_INM, COMP2_INM,
ADC1_IN9, DAC1_OUT1
15 F5 F5 21 21 F4
30
K4
PA5
I/O
TT_a
-
TIM2_CH1, TIM2_ETR, SPI1_SCK,
DFSDM1_CKOUT, LPTIM2_ETR,
EVENTOUT
COMP1_INM, COMP2_INM,
ADC1_IN10
-
TIM1_BKIN, TIM3_CH1,
SPI1_MISO, COMP1_OUT,
USART3_CTS, LPUART1_CTS,
QUADSPI_BK1_IO3,
TIM1_BKIN_COMP2, TIM16_CH1,
EVENTOUT
ADC1_IN11
ADC1_IN12
LQFP64
14 G6 G6 20 20 H3
WLCSP64
UFBGA100
DS11912 Rev 7
LQFP100
Pin name
(function
after
reset)
UFBGA64
LQFP64 SMPS
WLCSP64 SMPS
LQFP48, UFQFPN48
Pin Number
16 H6 H6 22 22 G4
17 E5 E5 23 23 H4
31
L4
PA6
I/O
FT_a
Alternate functions
Additional functions
32
M4
PA7
I/O
FT_fa
-
TIM1_CH1N, TIM3_CH2,
I2C3_SCL, SPI1_MOSI,
DFSDM1_DATIN0,
QUADSPI_BK1_IO2, COMP2_OUT,
EVENTOUT
E4 E4 24 24 H5
33
K5
PC4
I/O
FT_a
-
USART3_TX, EVENTOUT
COMP1_INM, ADC1_IN13
-
G5
34
L5
PC5
I/O
FT_a
-
USART3_RX, EVENTOUT
COMP1_INP, ADC1_IN14, WKUP5
-
TIM1_CH2N, TIM3_CH3,
SPI1_NSS, DFSDM1_CKIN0,
USART3_CK, QUADSPI_BK1_IO1,
COMP1_OUT, SAI1_EXTCLK,
EVENTOUT
ADC1_IN15
-
25
-
H6
18 H5 G5 26 25 F5
35
M5
PB0
I/O
FT_a
STM32L452xx
-
Pinouts and pin description
66/221
Table 16. STM32L452xx pin definitions (continued)
Pin functions
Alternate functions
Additional functions
COMP1_INM, ADC1_IN16
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
UFBGA100
LQFP100
UFBGA64
LQFP64 SMPS
LQFP64
WLCSP64 SMPS
WLCSP64
Pin Number
LQFP48, UFQFPN48
STM32L452xx
Table 16. STM32L452xx pin definitions (continued)
DS11912 Rev 7
19 F4 H5 27 26 G5
36
M6
PB1
I/O
FT_a
-
TIM1_CH3N, TIM3_CH4,
DFSDM1_DATIN0,
USART3_RTS_DE,
LPUART1_RTS_DE,
QUADSPI_BK1_IO0, LPTIM2_IN1,
EVENTOUT
20 G4 F4 28 27 G6
37
L6
PB2
I/O
FT_a
-
RTC_OUT, LPTIM1_OUT,
I2C3_SMBA, DFSDM1_CKIN0,
EVENTOUT
COMP1_INP
-
-
-
-
-
38
M7
PE7
I/O
FT
-
TIM1_ETR, DFSDM1_DATIN2,
SAI1_SD_B, EVENTOUT
-
-
-
-
-
-
-
39
L7
PE8
I/O
FT
-
TIM1_CH1N, DFSDM1_CKIN2,
SAI1_SCK_B, EVENTOUT
-
-
-
-
-
-
-
40
M8
PE9
I/O
FT
-
TIM1_CH1, DFSDM1_CKOUT,
SAI1_FS_B, EVENTOUT
-
-
-
-
-
-
-
41
L8
PE10
I/O
FT
-
TIM1_CH2N, TSC_G5_IO1,
QUADSPI_CLK, SAI1_MCLK_B,
EVENTOUT
-
-
-
-
-
-
-
42
M9
PE11
I/O
FT
-
TIM1_CH2, TSC_G5_IO2,
QUADSPI_BK1_NCS, EVENTOUT
-
-
-
-
-
-
-
43
L9
PE12
I/O
FT
-
TIM1_CH3N, SPI1_NSS,
TSC_G5_IO3, QUADSPI_BK1_IO0,
EVENTOUT
-
67/221
Pinouts and pin description
-
Pin functions
LQFP64
LQFP64 SMPS
UFBGA64
Pin type
I/O structure
Notes
-
-
-
-
-
44 M10
PE13
I/O
FT
-
TIM1_CH3, SPI1_SCK,
TSC_G5_IO4, QUADSPI_BK1_IO1,
EVENTOUT
-
-
-
-
-
-
-
45
M11
PE14
I/O
FT
-
TIM1_CH4, TIM1_BKIN2,
TIM1_BKIN2_COMP2, SPI1_MISO,
QUADSPI_BK1_IO2, EVENTOUT
-
-
-
-
-
-
-
46 M12
PE15
I/O
FT
-
TIM1_BKIN, TIM1_BKIN_COMP1,
SPI1_MOSI, QUADSPI_BK1_IO3,
EVENTOUT
-
-
TIM2_CH3, I2C4_SCL, I2C2_SCL,
SPI2_SCK, USART3_TX,
LPUART1_RX, TSC_SYNC,
QUADSPI_CLK, COMP1_OUT,
SAI1_SCK_A, EVENTOUT
-
-
21 H4 H4 29 28 G7
47
UFBGA100
WLCSP64 SMPS
-
LQFP100
WLCSP64
DS11912 Rev 7
LQFP48, UFQFPN48
Pin Number
L10
Pin name
(function
after
reset)
PB10
I/O
FT_f
Alternate functions
Additional functions
L11
PB11
I/O
FT_f
-
-
-
VDD12
S
-
-
-
-
23 H2 H2 31 31 D6
49
F12
VSS
S
-
-
-
-
24 H1 H1 32 32 E6
50
G12
VDD
S
-
-
-
-
22 H3 G4 30 29 H7
-
-
H3
-
30
-
STM32L452xx
48
TIM2_CH4, I2C4_SDA, I2C2_SDA,
USART3_RX, LPUART1_TX,
QUADSPI_BK1_NCS,
COMP2_OUT, EVENTOUT
Pinouts and pin description
68/221
Table 16. STM32L452xx pin definitions (continued)
Pin functions
DS11912 Rev 7
26 G2 F2 34 34 G8
27 G1 G1 35 35 F8
51
52
53
K12
K11
PB12
PB13
PB14
I/O
I/O
I/O
FT
FT_f
FT_f
Alternate functions
Additional functions
-
TIM1_BKIN, TIM1_BKIN_COMP2,
I2C2_SMBA, SPI2_NSS,
DFSDM1_DATIN1, USART3_CK,
LPUART1_RTS_DE, TSC_G1_IO1,
CAN1_RX, SAI1_FS_A,
TIM15_BKIN, EVENTOUT
-
-
TIM1_CH1N, I2C2_SCL,
SPI2_SCK, DFSDM1_CKIN1,
USART3_CTS, LPUART1_CTS,
TSC_G1_IO2, CAN1_TX,
SAI1_SCK_A, TIM15_CH1N,
EVENTOUT
-
-
TIM1_CH2N, I2C2_SDA,
SPI2_MISO, DFSDM1_DATIN2,
USART3_RTS_DE, TSC_G1_IO3,
SAI1_MCLK_A, TIM15_CH1,
EVENTOUT
-
-
Notes
I/O structure
Pin type
UFBGA100
L12
Pin name
(function
after
reset)
54
K10
PB15
I/O
FT
-
RTC_REFIN, TIM1_CH3N,
SPI2_MOSI, DFSDM1_CKIN2,
TSC_G1_IO4, SAI1_SD_A,
TIM15_CH2, EVENTOUT
69/221
-
-
-
-
-
-
55
K9
PD8
I/O
FT
-
USART3_TX, EVENTOUT
-
-
-
-
-
-
-
56
K8
PD9
I/O
FT
-
USART3_RX, EVENTOUT
-
-
-
-
-
-
-
57
J12
PD10
I/O
FT
-
USART3_CK, TSC_G6_IO1,
EVENTOUT
-
Pinouts and pin description
28 F1 F1 36 36 F7
LQFP100
UFBGA64
LQFP64 SMPS
LQFP64
WLCSP64 SMPS
WLCSP64
LQFP48, UFQFPN48
Pin Number
25 G3 G2 33 33 H8
STM32L452xx
Table 16. STM32L452xx pin definitions (continued)
Pin functions
WLCSP64
WLCSP64 SMPS
LQFP64
LQFP64 SMPS
UFBGA64
LQFP100
UFBGA100
Pin type
I/O structure
Notes
DS11912 Rev 7
LQFP48, UFQFPN48
Pin Number
-
-
-
-
-
-
58
J11
PD11
I/O
FT
-
I2C4_SMBA, USART3_CTS,
TSC_G6_IO2, LPTIM2_ETR,
EVENTOUT
-
-
-
-
-
-
-
59
J10
PD12
I/O
FT
-
I2C4_SCL, USART3_RTS_DE,
TSC_G6_IO3, LPTIM2_IN1,
EVENTOUT
-
-
-
-
-
-
-
60
H12
PD13
I/O
FT
-
I2C4_SDA, TSC_G6_IO4,
LPTIM2_OUT, EVENTOUT
-
-
-
-
-
-
-
61
H11
PD14
I/O
FT
-
EVENTOUT
-
-
-
-
-
-
-
62
H10
PD15
I/O
FT
-
EVENTOUT
-
Pin name
(function
after
reset)
Alternate functions
Additional functions
F2 E1 37 37 F6
63
E12
PC6
I/O
FT
-
TIM3_CH1, DFSDM1_CKIN3,
TSC_G4_IO1, SDMMC1_D6,
EVENTOUT
-
-
E1 E2 38 38 E7
64
E11
PC7
I/O
FT
-
TIM3_CH2, DFSDM1_DATIN3,
TSC_G4_IO2, SDMMC1_D7,
EVENTOUT
-
-
F3 F3 39 39 E8
65
E10
PC8
I/O
FT
-
TIM3_CH3, TSC_G4_IO3,
SDMMC1_D0, EVENTOUT
-
-
E2 G3 40 40 D8
66
D12
PC9
I/O
FT
-
TIM3_CH4, TSC_G4_IO4,
USB_NOE, SDMMC1_D1,
EVENTOUT
-
29 E3 E3 41 41 D7
67
D11
PA8
I/O
FT
-
MCO, TIM1_CH1, DFSDM1_CKIN1,
USART1_CK, SAI1_SCK_A,
LPTIM2_OUT, EVENTOUT
-
STM32L452xx
-
Pinouts and pin description
70/221
Table 16. STM32L452xx pin definitions (continued)
Pin functions
Alternate functions
Additional functions
-
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
UFBGA100
LQFP100
UFBGA64
LQFP64 SMPS
LQFP64
WLCSP64 SMPS
WLCSP64
Pin Number
LQFP48, UFQFPN48
STM32L452xx
Table 16. STM32L452xx pin definitions (continued)
DS11912 Rev 7
30 D1 D1 42 42 C7
68
D10
PA9
I/O
FT_f
-
TIM1_CH2, I2C1_SCL,
DFSDM1_DATIN1, USART1_TX,
SAI1_FS_A, TIM15_BKIN,
EVENTOUT
31 C1 C1 43 43 C6
69
C12
PA10
I/O
FT_f
-
TIM1_CH3, I2C1_SDA,
USART1_RX, USB_CRS_SYNC,
SAI1_SD_A, EVENTOUT
-
-
70
B12
PA11
I/O
FT_u
-
33 D3 D3 45 45 B8
71
A12
PA12
I/O
FT_u
-
TIM1_ETR, SPI1_MOSI,
USART1_RTS_DE, CAN1_TX,
USB_DP, EVENTOUT
-
34 C2 C2 46 46 A8
72
A11
PA13
(JTMS/
SWDIO)
I/O
FT
(3)
JTMS/SWDAT, IR_OUT, USB_NOE,
SAI1_SD_B, EVENTOUT
-
35 B1 B1 47 47 D5
-
-
VSS
S
-
-
-
-
36 A1 A1 48 48 E5
73
C11 VDDUSB
S
-
-
-
-
-
-
-
B2 B2
71/221
-
-
-
74
F11
VSS
S
-
-
-
-
-
-
-
75
G11
VDD
S
-
-
-
-
76
A10
PA14
(JTCK/
SWCLK)
I/O
FT
(3)
JTCK/SWCLK, LPTIM1_OUT,
I2C1_SMBA, I2C4_SMBA,
SAI1_FS_B, EVENTOUT
-
37 C3 A2 49 49 A7
Pinouts and pin description
32 D2 D2 44 44 C8
TIM1_CH4, TIM1_BKIN2,
SPI1_MISO, COMP1_OUT,
USART1_CTS, CAN1_RX,
USB_DM, TIM1_BKIN2_COMP1,
EVENTOUT
Pin functions
38 A2 C3 50 50 A6
77
A9
PA15
(JTDI)
I/O
FT
DS11912 Rev 7
Alternate functions
Additional functions
(3)
JTDI, TIM2_CH1, TIM2_ETR,
USART2_RX, SPI1_NSS,
SPI3_NSS, USART3_RTS_DE,
UART4_RTS_DE, TSC_G3_IO1,
EVENTOUT
-
-
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
UFBGA100
LQFP100
UFBGA64
LQFP64 SMPS
LQFP64
WLCSP64 SMPS
WLCSP64
LQFP48, UFQFPN48
Pin Number
-
D4 D4 51 51 B7
78
B11
PC10
I/O
FT
-
TRACED1, SPI3_SCK,
USART3_TX, UART4_TX,
TSC_G3_IO2, SDMMC1_D2,
EVENTOUT
-
B3 B3 52 52 B6
79
C10
PC11
I/O
FT
-
SPI3_MISO, USART3_RX,
UART4_RX, TSC_G3_IO3,
SDMMC1_D3, EVENTOUT
-
-
A3 A3 53 53 C5
80
B10
PC12
I/O
FT
-
TRACED3, SPI3_MOSI,
USART3_CK, TSC_G3_IO4,
SDMMC1_CK, EVENTOUT
-
-
-
-
-
-
81
C9
PD0
I/O
FT
-
SPI2_NSS, CAN1_RX, EVENTOUT
-
-
-
-
-
-
-
82
B9
PD1
I/O
FT
-
SPI2_SCK, CAN1_TX, EVENTOUT
-
-
C4
-
54
-
B5
83
C8
PD2
I/O
FT
-
TRACED2, TIM3_ETR,
USART3_RTS_DE, TSC_SYNC,
SDMMC1_CMD, EVENTOUT
-
-
-
-
-
-
-
84
B8
PD3
I/O
FT
-
SPI2_MISO, DFSDM1_DATIN0,
USART2_CTS,
QUADSPI_BK2_NCS, EVENTOUT
-
STM32L452xx
-
Pinouts and pin description
72/221
Table 16. STM32L452xx pin definitions (continued)
STM32L452xx
Table 16. STM32L452xx pin definitions (continued)
Pin functions
WLCSP64 SMPS
LQFP64
LQFP64 SMPS
UFBGA64
LQFP100
UFBGA100
Pin type
I/O structure
Notes
-
-
-
-
-
-
85
B7
PD4
I/O
FT
-
SPI2_MOSI, DFSDM1_CKIN0,
USART2_RTS_DE,
QUADSPI_BK2_IO0, EVENTOUT
-
-
-
-
-
-
-
86
A6
PD5
I/O
FT
-
USART2_TX, QUADSPI_BK2_IO1,
EVENTOUT
-
-
-
-
-
-
-
87
B6
PD6
I/O
FT
-
DFSDM1_DATIN1, USART2_RX,
QUADSPI_BK2_IO2, SAI1_SD_A,
EVENTOUT
-
-
-
-
-
-
-
88
A5
PD7
I/O
FT
-
DFSDM1_CKIN1, USART2_CK,
QUADSPI_BK2_IO3, EVENTOUT
-
A8
PB3
(JTDO/
TRACE
SWO)
FT_a
(3)
JTDO/TRACESWO, TIM2_CH2,
SPI1_SCK, SPI3_SCK,
USART1_RTS_DE, SAI1_SCK_B,
EVENTOUT
COMP2_INM
A7
PB4
(NJTRST)
NJTRST, TIM3_CH1, I2C3_SDA,
SPI1_MISO, SPI3_MISO,
USART1_CTS, TSC_G2_IO1,
SAI1_MCLK_B, EVENTOUT
COMP2_INP
LPTIM1_IN1, TIM3_CH2,
CAN1_RX, I2C1_SMBA,
SPI1_MOSI, SPI3_MOSI,
USART1_CK, TSC_G2_IO2,
COMP2_OUT, SAI1_SD_B,
TIM16_BKIN, EVENTOUT
-
39 B4 B4 55 54 A5
40 A4 A4 56 55 A4
41 C5 C4 57 56 C4
89
90
91
C5
Pin name
(function
after
reset)
PB5
I/O
I/O
I/O
FT_fa (3)
FT
-
Alternate functions
Additional functions
73/221
Pinouts and pin description
WLCSP64
DS11912 Rev 7
LQFP48, UFQFPN48
Pin Number
Pin functions
42 B5 B5 58 57 D3
92
B5
PB6
I/O
FT_fa
DS11912 Rev 7
Alternate functions
Additional functions
-
LPTIM1_ETR, I2C1_SCL,
I2C4_SCL, USART1_TX, CAN1_TX,
TSC_G2_IO3, SAI1_FS_B,
TIM16_CH1N, EVENTOUT
COMP2_INP
COMP2_INM, PVD_IN
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
UFBGA100
LQFP100
UFBGA64
LQFP64 SMPS
LQFP64
WLCSP64 SMPS
WLCSP64
LQFP48, UFQFPN48
Pin Number
43 A5 A5 59 58 C3
93
B4
PB7
I/O
FT_fa
-
LPTIM1_IN2, I2C1_SDA,
I2C4_SDA, USART1_RX,
UART4_CTS, TSC_G2_IO4,
EVENTOUT
44 B6 B6 60 59 B4
94
A4
PH3BOOT0
(BOOT0)
I/O
FT
-
EVENTOUT
-
45 A6 A6 61 60 B3
95
A3
PB8
I/O
FT_f
-
I2C1_SCL, CAN1_RX,
SDMMC1_D4, SAI1_MCLK_A,
TIM16_CH1, EVENTOUT
-
46 C6 C5 62 61 A3
96
B3
PB9
I/O
FT_f
-
IR_OUT, I2C1_SDA, SPI2_NSS,
CAN1_TX, SDMMC1_D5,
SAI1_FS_A, EVENTOUT
-
-
B7
-
62
-
-
-
VDD12
S
-
-
-
-
-
-
-
-
-
-
97
C3
PE0
I/O
FT
-
TIM16_CH1, EVENTOUT
-
-
-
-
-
-
-
98
A2
PE1
I/O
FT
-
EVENTOUT
-
99
D3
VSS
S
-
-
-
-
48 A8 A8 64 64 E4 100
C4
VDD
S
-
-
-
-
47 A7 A7 63 63 D4
STM32L452xx
-
Pinouts and pin description
74/221
Table 16. STM32L452xx pin definitions (continued)
2. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not
reset by the system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the RM0394 reference
manual.
STM32L452xx
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to
PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (e.g. to drive an LED).
3. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down
on PA14 pin are activated.
DS11912 Rev 7
Pinouts and pin description
75/221
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/TIM2
LPTIM1
I2C4/TIM1/
TIM2/TIM3
I2C4/USART2/
CAN1/TIM1
I2C1/I2C2/
I2C3/I2C4
SPI1/SPI2/I2C4
SPI3/DFSDM/
COMP1
USART1/
USART2/
USART3
PA0
-
TIM2_CH1
-
-
-
-
-
USART2_CTS
PA1
-
TIM2_CH2
-
-
I2C1_SMBA
SPI1_SCK
-
USART2_RTS_
DE
PA2
-
TIM2_CH3
-
-
-
-
-
USART2_TX
PA3
-
TIM2_CH4
-
-
-
-
-
USART2_RX
PA4
-
-
-
-
-
SPI1_NSS
SPI3_NSS
USART2_CK
PA5
-
TIM2_CH1
TIM2_ETR
-
-
SPI1_SCK
DFSDM1_
CKOUT
-
PA6
-
TIM1_BKIN
TIM3_CH1
-
-
SPI1_MISO
COMP1_OUT
USART3_CTS
PA7
-
TIM1_CH1N
TIM3_CH2
-
I2C3_SCL
SPI1_MOSI
DFSDM1_
DATIN0
-
PA8
MCO
TIM1_CH1
-
-
-
-
DFSDM1_
CKIN1
USART1_CK
PA9
-
TIM1_CH2
-
-
I2C1_SCL
-
DFSDM1_
DATIN1
USART1_TX
PA10
-
TIM1_CH3
-
-
I2C1_SDA
-
-
USART1_RX
PA11
-
TIM1_CH4
TIM1_BKIN2
-
-
SPI1_MISO
COMP1_OUT
USART1_CTS
PA12
-
TIM1_ETR
-
-
-
SPI1_MOSI
-
USART1_RTS_
DE
PA13
JTMS/SWDAT
IR_OUT
-
-
-
-
-
-
PA14
JTCK/SWCLK
LPTIM1_OUT
-
-
I2C1_SMBA
I2C4_SMBA
-
-
PA15
JTDI
TIM2_CH1
TIM2_ETR
USART2_RX
-
SPI1_NSS
SPI3_NSS
USART3_RTS_
DE
Port
DS11912 Rev 7
Port A
STM32L452xx
AF0
Pinouts and pin description
76/221
Table 17. Alternate function AF0 to AF7(1)
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/TIM2
LPTIM1
I2C4/TIM1/
TIM2/TIM3
I2C4/USART2/
CAN1/TIM1
I2C1/I2C2/
I2C3/I2C4
SPI1/SPI2/I2C4
SPI3/DFSDM/
COMP1
USART1/
USART2/
USART3
PB0
-
TIM1_CH2N
TIM3_CH3
-
-
SPI1_NSS
DFSDM1_
CKIN0
USART3_CK
PB1
-
TIM1_CH3N
TIM3_CH4
-
-
-
DFSDM1_
DATIN0
USART3_RTS_
DE
PB2
RTC_OUT
LPTIM1_OUT
-
-
I2C3_SMBA
-
DFSDM1_
CKIN0
-
PB3
JTDO/
TRACESWO
TIM2_CH2
-
-
-
SPI1_SCK
SPI3_SCK
USART1_RTS_
DE
PB4
NJTRST
-
TIM3_CH1
-
I2C3_SDA
SPI1_MISO
SPI3_MISO
USART1_CTS
PB5
-
LPTIM1_IN1
TIM3_CH2
CAN1_RX
I2C1_SMBA
SPI1_MOSI
SPI3_MOSI
USART1_CK
PB6
-
LPTIM1_ETR
-
-
I2C1_SCL
I2C4_SCL
-
USART1_TX
PB7
-
LPTIM1_IN2
-
-
I2C1_SDA
I2C4_SDA
-
USART1_RX
PB8
-
-
-
-
I2C1_SCL
-
-
-
PB9
-
IR_OUT
-
-
I2C1_SDA
SPI2_NSS
-
-
PB10
-
TIM2_CH3
-
I2C4_SCL
I2C2_SCL
SPI2_SCK
-
USART3_TX
PB11
-
TIM2_CH4
-
I2C4_SDA
I2C2_SDA
-
-
USART3_RX
PB12
-
TIM1_BKIN
-
TIM1_BKIN_C
OMP2
I2C2_SMBA
SPI2_NSS
DFSDM1_
DATIN1
USART3_CK
PB13
-
TIM1_CH1N
-
-
I2C2_SCL
SPI2_SCK
DFSDM1_
CKIN1
USART3_CTS
PB14
-
TIM1_CH2N
-
-
I2C2_SDA
SPI2_MISO
DFSDM1_
DATIN2
USART3_RTS_
DE
PB15
RTC_REFIN
TIM1_CH3N
-
-
-
SPI2_MOSI
DFSDM1_
CKIN2
-
Port
DS11912 Rev 7
Port B
77/221
Pinouts and pin description
AF0
STM32L452xx
Table 17. Alternate function AF0 to AF7(1) (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/TIM2
LPTIM1
I2C4/TIM1/
TIM2/TIM3
I2C4/USART2/
CAN1/TIM1
I2C1/I2C2/
I2C3/I2C4
SPI1/SPI2/I2C4
SPI3/DFSDM/
COMP1
USART1/
USART2/
USART3
PC0
-
LPTIM1_IN1
I2C4_SCL
-
I2C3_SCL
-
-
-
PC1
TRACED0
LPTIM1_OUT
I2C4_SDA
-
I2C3_SDA
-
-
-
PC2
-
LPTIM1_IN2
-
-
-
SPI2_MISO
DFSDM1_
CKOUT
-
PC3
-
LPTIM1_ETR
-
-
-
SPI2_MOSI
-
-
PC4
-
-
-
-
-
-
-
USART3_TX
PC5
-
-
-
-
-
-
-
USART3_RX
PC6
-
-
TIM3_CH1
-
-
-
DFSDM1_
CKIN3
-
PC7
-
-
TIM3_CH2
-
-
-
DFSDM1_
DATIN3
-
PC8
-
-
TIM3_CH3
-
-
-
-
-
PC9
-
-
TIM3_CH4
-
-
-
-
-
PC10
TRACED1
-
-
-
-
-
SPI3_SCK
USART3_TX
PC11
-
-
-
-
-
-
SPI3_MISO
USART3_RX
PC12
TRACED3
-
-
-
-
-
SPI3_MOSI
USART3_CK
PC13
-
-
-
-
-
-
-
-
PC14
-
-
-
-
-
-
-
-
PC15
-
-
-
-
-
-
-
-
Port
DS11912 Rev 7
Port C
Pinouts and pin description
78/221
Table 17. Alternate function AF0 to AF7(1) (continued)
STM32L452xx
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/TIM2
LPTIM1
I2C4/TIM1/
TIM2/TIM3
I2C4/USART2/
CAN1/TIM1
I2C1/I2C2/
I2C3/I2C4
SPI1/SPI2/I2C4
SPI3/DFSDM/
COMP1
USART1/
USART2/
USART3
PD0
-
-
-
-
-
SPI2_NSS
-
-
PD1
-
-
-
-
-
SPI2_SCK
-
-
PD2
TRACED2
-
TIM3_ETR
-
-
-
-
USART3_RTS_
DE
PD3
-
-
-
-
-
SPI2_MISO
DFSDM1_
DATIN0
USART2_CTS
PD4
-
-
-
-
-
SPI2_MOSI
DFSDM1_
CKIN0
USART2_RTS_
DE
PD5
-
-
-
-
-
-
-
USART2_TX
PD6
-
-
-
-
-
-
DFSDM1_
DATIN1
USART2_RX
PD7
-
-
-
-
-
-
DFSDM1_
CKIN1
USART2_CK
PD8
-
-
-
-
-
-
-
USART3_TX
PD9
-
-
-
-
-
-
-
USART3_RX
PD10
-
-
-
-
-
-
-
USART3_CK
PD11
-
-
-
-
I2C4_SMBA
-
-
USART3_CTS
PD12
-
-
-
-
I2C4_SCL
-
-
USART3_RTS_
DE
PD13
-
-
-
-
I2C4_SDA
-
-
-
PD14
-
-
-
-
-
-
-
-
PD15
-
-
-
-
-
-
-
-
Port
DS11912 Rev 7
Port D
79/221
Pinouts and pin description
AF0
STM32L452xx
Table 17. Alternate function AF0 to AF7(1) (continued)
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/TIM2
LPTIM1
I2C4/TIM1/
TIM2/TIM3
I2C4/USART2/
CAN1/TIM1
I2C1/I2C2/
I2C3/I2C4
SPI1/SPI2/I2C4
SPI3/DFSDM/
COMP1
USART1/
USART2/
USART3
PE0
-
-
-
-
-
-
-
-
PE1
-
-
-
-
-
-
-
-
PE2
TRACECK
-
TIM3_ETR
-
-
-
-
-
PE3
TRACED0
-
TIM3_CH1
-
-
-
-
-
PE4
TRACED1
-
TIM3_CH2
-
-
-
DFSDM1_
DATIN3
-
PE5
TRACED2
-
TIM3_CH3
-
-
-
DFSDM1_
CKIN3
-
PE6
TRACED3
-
TIM3_CH4
-
-
-
-
-
PE7
-
TIM1_ETR
-
-
-
-
DFSDM1_
DATIN2
-
PE8
-
TIM1_CH1N
-
-
-
-
DFSDM1_
CKIN2
-
PE9
-
TIM1_CH1
-
-
-
-
DFSDM1_
CKOUT
-
PE10
-
TIM1_CH2N
-
-
-
-
-
-
PE11
-
TIM1_CH2
-
-
-
-
-
-
PE12
-
TIM1_CH3N
-
-
-
SPI1_NSS
-
-
PE13
-
TIM1_CH3
-
-
-
SPI1_SCK
-
-
PE14
-
TIM1_CH4
TIM1_BKIN2
TIM1_BKIN2_
COMP2
-
SPI1_MISO
-
-
PE15
-
TIM1_BKIN
-
TIM1_BKIN_
COMP1
-
SPI1_MOSI
-
-
Port
DS11912 Rev 7
Port E
STM32L452xx
AF0
Pinouts and pin description
80/221
Table 17. Alternate function AF0 to AF7(1) (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/TIM2
LPTIM1
I2C4/TIM1/
TIM2/TIM3
I2C4/USART2/
CAN1/TIM1
I2C1/I2C2/
I2C3/I2C4
SPI1/SPI2/I2C4
SPI3/DFSDM/
COMP1
USART1/
USART2/
USART3
PH0
-
-
-
-
-
-
-
-
PH1
-
-
-
-
-
-
-
-
PH3
-
-
-
-
-
-
-
-
Port
Port H
STM32L452xx
Table 17. Alternate function AF0 to AF7(1) (continued)
1. Refer to Table 18 for AF8 to AF15.
DS11912 Rev 7
Pinouts and pin description
81/221
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4/
LPUART1/
CAN1
CAN1/TSC
CAN1/USB/
QUADSPI
-
SDMMC1/
COMP1/
COMP2
SAI1
TIM2/TIM15/
TIM16/LPTIM2
EVENTOUT
PA0
UART4_TX
-
-
-
COMP1_OUT
SAI1_EXTCLK
TIM2_ETR
EVENTOUT
PA1
UART4_RX
-
-
-
-
-
TIM15_CH1N
EVENTOUT
PA2
LPUART1_TX
-
QUADSPI_
BK1_NCS
-
COMP2_OUT
-
TIM15_CH1
EVENTOUT
PA3
LPUART1_RX
-
QUADSPI_CLK
-
-
SAI1_MCLK_A
TIM15_CH2
EVENTOUT
PA4
-
-
-
-
-
SAI1_FS_B
LPTIM2_OUT
EVENTOUT
PA5
-
-
-
-
-
-
LPTIM2_ETR
EVENTOUT
PA6
LPUART1_CTS
-
QUADSPI_
BK1_IO3
-
TIM1_BKIN_
COMP2
-
TIM16_CH1
EVENTOUT
PA7
-
-
QUADSPI_
BK1_IO2
-
COMP2_OUT
-
-
EVENTOUT
PA8
-
-
-
-
-
SAI1_SCK_A
LPTIM2_OUT
EVENTOUT
PA9
-
-
-
-
-
SAI1_FS_A
TIM15_BKIN
EVENTOUT
PA10
-
-
USBCRS_
SYNC
-
-
SAI1_SD_A
-
EVENTOUT
PA11
-
CAN1_RX
USBDM
-
TIM1_BKIN2_
COMP1
-
-
EVENTOUT
PA12
-
CAN1_TX
USBDP
-
-
-
-
EVENTOUT
PA13
-
-
USBNOE
-
-
SAI1_SD_B
-
EVENTOUT
PA14
-
-
-
-
-
SAI1_FS_B
-
EVENTOUT
PA15
UART4_RTS_
DE
TSC_G3_IO1
-
-
-
-
-
EVENTOUT
Port
DS11912 Rev 7
Port A
STM32L452xx
AF8
Pinouts and pin description
82/221
Table 18. Alternate function AF8 to AF15(1)
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4/
LPUART1/
CAN1
CAN1/TSC
CAN1/USB/
QUADSPI
-
SDMMC1/
COMP1/
COMP2
SAI1
TIM2/TIM15/
TIM16/LPTIM2
EVENTOUT
PB0
-
-
QUADSPI_
BK1_IO1
-
COMP1_OUT
SAI1_EXTCLK
-
EVENTOUT
PB1
LPUART1_RTS
_DE
-
QUADSPI_
BK1_IO0
-
-
-
LPTIM2_IN1
EVENTOUT
PB2
-
-
-
-
-
-
-
EVENTOUT
PB3
-
-
-
-
-
SAI1_SCK_B
-
EVENTOUT
PB4
-
TSC_G2_IO1
-
-
-
SAI1_MCLK_B
-
EVENTOUT
PB5
-
TSC_G2_IO2
-
-
COMP2_OUT
SAI1_SD_B
TIM16_BKIN
EVENTOUT
PB6
CAN1_TX
TSC_G2_IO3
-
-
-
SAI1_FS_B
TIM16_CH1N
EVENTOUT
PB7
UART4_CTS
TSC_G2_IO4
-
-
-
-
-
EVENTOUT
PB8
-
CAN1_RX
-
-
SDMMC1_D4
SAI1_MCLK_A
TIM16_CH1
EVENTOUT
PB9
-
CAN1_TX
-
-
SDMMC1_D5
SAI1_FS_A
-
EVENTOUT
PB10
LPUART1_RX
TSC_SYNC
QUADSPI_CLK
-
COMP1_OUT
SAI1_SCK_A
-
EVENTOUT
PB11
LPUART1_TX
-
QUADSPI_
BK1_NCS
-
COMP2_OUT
-
-
EVENTOUT
PB12
LPUART1_RTS
_DE
TSC_G1_IO1
CAN1_RX
-
-
SAI1_FS_A
TIM15_BKIN
EVENTOUT
PB13
LPUART1_CTS
TSC_G1_IO2
CAN1_TX
-
-
SAI1_SCK_A
TIM15_CH1N
EVENTOUT
PB14
-
TSC_G1_IO3
-
-
-
SAI1_MCLK_A
TIM15_CH1
EVENTOUT
PB15
-
TSC_G1_IO4
-
-
-
SAI1_SD_A
TIM15_CH2
EVENTOUT
Port
DS11912 Rev 7
Port B
83/221
Pinouts and pin description
AF8
STM32L452xx
Table 18. Alternate function AF8 to AF15(1) (continued)
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4/
LPUART1/
CAN1
CAN1/TSC
CAN1/USB/
QUADSPI
-
SDMMC1/
COMP1/
COMP2
SAI1
TIM2/TIM15/
TIM16/LPTIM2
EVENTOUT
PC0
LPUART1_RX
-
-
-
-
-
LPTIM2_IN1
EVENTOUT
PC1
LPUART1_TX
-
-
-
-
-
-
EVENTOUT
PC2
-
-
-
-
-
-
-
EVENTOUT
PC3
-
-
-
-
-
SAI1_SD_A
LPTIM2_ETR
EVENTOUT
PC4
-
-
-
-
-
-
-
EVENTOUT
PC5
-
-
-
-
-
-
-
EVENTOUT
PC6
-
TSC_G4_IO1
-
-
SDMMC1_D6
-
-
EVENTOUT
PC7
-
TSC_G4_IO2
-
-
SDMMC1_D7
-
-
EVENTOUT
PC8
-
TSC_G4_IO3
-
-
SDMMC1_D0
-
-
EVENTOUT
PC9
-
TSC_G4_IO4
USBNOE
-
SDMMC1_D1
-
-
EVENTOUT
PC10
UART4_TX
TSC_G3_IO2
-
-
SDMMC1_D2
-
-
EVENTOUT
PC11
UART4_RX
TSC_G3_IO3
-
-
SDMMC1_D3
-
-
EVENTOUT
PC12
-
TSC_G3_IO4
-
-
SDMMC1_CK
-
-
EVENTOUT
PC13
-
-
-
-
-
-
-
EVENTOUT
PC14
-
-
-
-
-
-
-
EVENTOUT
PC15
-
-
-
-
-
-
-
EVENTOUT
Port
DS11912 Rev 7
Port C
Pinouts and pin description
84/221
Table 18. Alternate function AF8 to AF15(1) (continued)
STM32L452xx
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4/
LPUART1/
CAN1
CAN1/TSC
CAN1/USB/
QUADSPI
-
SDMMC1/
COMP1/
COMP2
SAI1
TIM2/TIM15/
TIM16/LPTIM2
EVENTOUT
PD0
-
CAN1_RX
-
-
-
-
-
EVENTOUT
PD1
-
CAN1_TX
-
-
-
-
-
EVENTOUT
PD2
-
TSC_SYNC
-
-
SDMMC1_
CMD
-
-
EVENTOUT
PD3
-
-
QUADSPI_
BK2_NCS
-
-
-
-
EVENTOUT
PD4
-
-
QUADSPI_
BK2_IO0
-
-
-
-
EVENTOUT
PD5
-
-
QUADSPI_
BK2_IO1
-
-
-
-
EVENTOUT
PD6
-
-
QUADSPI_
BK2_IO2
-
-
SAI1_SD_A
-
EVENTOUT
PD7
-
-
QUADSPI_
BK2_IO3
-
-
-
-
EVENTOUT
PD8
-
-
-
-
-
-
-
EVENTOUT
PD9
-
-
-
-
-
-
-
EVENTOUT
PD10
-
TSC_G6_IO1
-
-
-
-
-
EVENTOUT
PD11
-
TSC_G6_IO2
-
-
-
-
LPTIM2_ETR
EVENTOUT
PD12
-
TSC_G6_IO3
-
-
-
-
LPTIM2_IN1
EVENTOUT
PD13
-
TSC_G6_IO4
-
-
-
-
LPTIM2_OUT
EVENTOUT
PD14
-
-
-
-
-
-
-
EVENTOUT
PD15
-
-
-
-
-
-
-
EVENTOUT
Port
DS11912 Rev 7
Port D
85/221
Pinouts and pin description
AF8
STM32L452xx
Table 18. Alternate function AF8 to AF15(1) (continued)
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4/
LPUART1/
CAN1
CAN1/TSC
CAN1/USB/
QUADSPI
-
SDMMC1/
COMP1/
COMP2
SAI1
TIM2/TIM15/
TIM16/LPTIM2
EVENTOUT
PE0
-
-
-
-
-
-
TIM16_CH1
EVENTOUT
PE1
-
-
-
-
-
-
-
EVENTOUT
PE2
-
TSC_G7_IO1
-
-
-
SAI1_MCLK_A
-
EVENTOUT
PE3
-
TSC_G7_IO2
-
-
-
SAI1_SD_B
-
EVENTOUT
PE4
-
TSC_G7_IO3
-
-
-
SAI1_FS_A
-
EVENTOUT
PE5
-
TSC_G7_IO4
-
-
-
SAI1_SCK_A
-
EVENTOUT
PE6
-
-
-
-
-
SAI1_SD_A
-
EVENTOUT
PE7
-
-
-
-
-
SAI1_SD_B
-
EVENTOUT
PE8
-
-
-
-
-
SAI1_SCK_B
-
EVENTOUT
PE9
-
-
-
-
-
SAI1_FS_B
-
EVENTOUT
PE10
-
TSC_G5_IO1
QUADSPI_CLK
-
-
SAI1_MCLK_B
-
EVENTOUT
PE11
-
TSC_G5_IO2
QUADSPI_
BK1_NCS
-
-
-
-
EVENTOUT
PE12
-
TSC_G5_IO3
QUADSPI_
BK1_IO0
-
-
-
-
EVENTOUT
PE13
-
TSC_G5_IO4
QUADSPI_
BK1_IO1
-
-
-
-
EVENTOUT
PE14
-
-
QUADSPI_
BK1_IO2
-
-
-
-
EVENTOUT
PE15
-
-
QUADSPI_
BK1_IO3
-
-
-
-
EVENTOUT
PH0
-
-
-
-
-
-
-
EVENTOUT
PH1
-
-
-
-
-
-
-
EVENTOUT
PH3
-
-
-
-
-
-
-
EVENTOUT
Port
DS11912 Rev 7
Port E
Port H
STM32L452xx
AF8
Pinouts and pin description
86/221
Table 18. Alternate function AF8 to AF15(1) (continued)
STM32L452xx
1. Refer to Table 17 for AF0 to AF7.
DS11912 Rev 7
Pinouts and pin description
87/221
Memory mapping
5
STM32L452xx
Memory mapping
Figure 15. STM32L452xx memory map
0xFFFF FFFF
0xBFFF FFFF
Reserved
Cortex™-M4
with FPU
Internal
Peripherals
7
0xA000 1400
QUADSPI registers
0xA000 1000
0xE000 0000
0x5FFF FFFF
Reserved
6
0x5006 0C00
AHB2
0x4800 0000
Reserved
0xC000 0000
0x4002 4400
QUADSPI
registers
5
AHB1
0x4002 0000
0xA000 1000
0x4001 5800
0xA000 0000
APB2
0x4001 0000
QUADSPI Flash
bank
4
Reserved
Reserved
0x4000 9800
0x9000 0000
APB1
0x4000 0000
0x1FFF FFFF
0x8000 0000
3
Reserved
0x6000 0000
0x1FFF 7810
Options Bytes
2
0x1FFF 7800
Reserved
0x1FFF 7400
Peripherals
OTP area
0x4000 0000
0x1FFF 7000
System memory
1
0x2002 7FFF
0x2002 0000
0x1FFF 0000
SRAM2
Reserved
0x1000 8000
SRAM1
SRAM2
0x2000 0000
0x1000 0000
Reserved
0
0x0808 0000
CODE
Flash memory
0x0800 0000
0x0000 0000
0x0008 0000
0x0000 0000
Reserved
Reserved
Flash, system memory
or SRAM, depending on
BOOT configuration
MSv40981V3
88/221
DS11912 Rev 7
STM32L452xx
Memory mapping
Table 19. STM32L452xx memory map and peripheral register boundary addresses(1)
Bus
AHB2
-
AHB1
APB2
Boundary address
Size(bytes)
Peripheral
0x5006 0800 - 0x5006 0BFF
1 KB
0x5004 0400 - 0x5006 07FF
158 KB
0x5004 0000 - 0x5004 03FF
1 KB
ADC
0x5000 0000 - 0x5003 FFFF
16 KB
Reserved
0x4800 2000 - 0x4FFF FFFF
~127 MB
Reserved
0x4800 1C00 - 0x4800 1FFF
1 KB
GPIOH
0x4800 1400 - 0x4800 1BFF
2 KB
Reserved
0x4800 1000 - 0x4800 13FF
1 KB
GPIOE
0x4800 0C00 - 0x4800 0FFF
1 KB
GPIOD
0x4800 0800 - 0x4800 0BFF
1 KB
GPIOC
0x4800 0400 - 0x4800 07FF
1 KB
GPIOB
0x4800 0000 - 0x4800 03FF
1 KB
GPIOA
0x4002 4400 - 0x47FF FFFF
~127 MB
0x4002 4000 - 0x4002 43FF
1 KB
TSC
0x4002 3400 - 0x4002 3FFF
1 KB
Reserved
0x4002 3000 - 0x4002 33FF
1 KB
CRC
0x4002 2400 - 0x4002 2FFF
3 KB
Reserved
0x4002 2000 - 0x4002 23FF
1 KB
FLASH registers
0x4002 1400 - 0x4002 1FFF
3 KB
Reserved
0x4002 1000 - 0x4002 13FF
1 KB
RCC
0x4002 0800 - 0x4002 0FFF
2 KB
Reserved
0x4002 0400 - 0x4002 07FF
1 KB
DMA2
0x4002 0000 - 0x4002 03FF
1 KB
DMA1
0x4001 6400 - 0x4001 FFFF
39 KB
Reserved
0x4001 6000 - 0x4000 63FF
1 KB
DFSDM1
0x4001 5800 - 0x4001 5FFF
2 KB
Reserved
0x4001 5400 - 0x4000 57FF
1 KB
SAI1
0x4001 4800 - 0x4000 53FF
3 KB
Reserved
0x4001 4400 - 0x4001 47FF
1 KB
TIM16
0x4001 4000 - 0x4001 43FF
1 KB
TIM15
0x4001 3C00 - 0x4001 3FFF
1 KB
Reserved
0x4001 3800 - 0x4001 3BFF
1 KB
USART1
0x4001 3400 - 0x4001 37FF
1 KB
Reserved
0x4001 3000 - 0x4001 33FF
1 KB
SPI1
DS11912 Rev 7
RNG
Reserved
Reserved
89/221
91
Memory mapping
STM32L452xx
Table 19. STM32L452xx memory map and peripheral register boundary addresses(1)
(continued)
Bus
APB2
Boundary address
Size(bytes)
0x4001 2C00 - 0x4001 2FFF
1 KB
TIM1
0x4001 2800 - 0x4001 2BFF
1 KB
SDMMC1
0x4001 2000 - 0x4001 27FF
2 KB
Reserved
0x4001 1C00 - 0x4001 1FFF
1 KB
FIREWALL
0x4001 0800- 0x4001 1BFF
5 KB
Reserved
0x4001 0400 - 0x4001 07FF
1 KB
EXTI
0x4001 0200 - 0x4001 03FF
0x4001 0030 - 0x4001 01FF
COMP
1 KB
0x4001 0000 - 0x4001 002F
APB1
90/221
Peripheral
VREFBUF
SYSCFG
0x4000 9800 - 0x4000 FFFF
26 KB
Reserved
0x4000 9400 - 0x4000 97FF
1 KB
LPTIM2
0x4000 8800 - 0x4000 93FF
3 KB
Reserved
0x4000 8400 - 0x4000 87FF
1 KB
I2C4
0x4000 8000 - 0x4000 83FF
1 KB
LPUART1
0x4000 7C00 - 0x4000 7FFF
1 KB
LPTIM1
0x4000 7800 - 0x4000 7BFF
1 KB
OPAMP
0x4000 7400 - 0x4000 77FF
1 KB
DAC1
0x4000 7000 - 0x4000 73FF
1 KB
PWR
0x4000 6C00 - 0x4000 6FFF
1 KB
USB SRAM
0x4000 6800 - 0x4000 6BFF
1 KB
USB FS
0x4000 6400 - 0x4000 67FF
1 KB
CAN1
0x4000 6000 - 0x4000 63FF
1 KB
CRS
0x4000 5C00- 0x4000 5FFF
1 KB
I2C3
0x4000 5800 - 0x4000 5BFF
1 KB
I2C2
0x4000 5400 - 0x4000 57FF
1 KB
I2C1
0x4000 5000 - 0x4000 53FF
1 KB
Reserved
0x4000 4C00 - 0x4000 4FFF
1 KB
UART4
0x4000 4800 - 0x4000 4BFF
1 KB
USART3
0x4000 4400 - 0x4000 47FF
1 KB
USART2
0x4000 4000 - 0x4000 43FF
1 KB
Reserved
0x4000 3C00 - 0x4000 3FFF
1 KB
SPI3
0x4000 3800 - 0x4000 3BFF
1 KB
SPI2
0x4000 3400 - 0x4000 37FF
1 KB
Reserved
DS11912 Rev 7
STM32L452xx
Memory mapping
Table 19. STM32L452xx memory map and peripheral register boundary addresses(1)
(continued)
Bus
APB1
Boundary address
Size(bytes)
Peripheral
0x4000 3000 - 0x4000 33FF
1 KB
IWDG
0x4000 2C00 - 0x4000 2FFF
1 KB
WWDG
0x4000 2800 - 0x4000 2BFF
1 KB
RTC
0x4000 1400 - 0x4000 27FF
5 KB
Reserved
0x4000 1000 - 0x4000 13FF
1 KB
TIM6
0x4000 0800- 0x4000 0FFF
2 KB
Reserved
0x4000 0400 - 0x4000 07FF
1 KB
TIM3
0x4000 0000 - 0x4000 03FF
1 KB
TIM2
1. The gray color is used for reserved boundary addresses.
DS11912 Rev 7
91/221
91
Electrical characteristics
STM32L452xx
6
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3σ).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2σ).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 16.
6.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 17.
Figure 16. Pin loading conditions
Figure 17. Pin input voltage
MCU pin
MCU pin
C = 50 pF
VIN
MS19210V1
92/221
DS11912 Rev 7
MS19211V1
STM32L452xx
6.1.6
Electrical characteristics
Power supply scheme
Figure 18. Power supply scheme
VBAT
Backup circuitry
(LSE, RTC,
Backup registers)
1.55 – 3.6 V
Power switch
VDD
VCORE
n x VDD
Regulator
OUT
n x 100 nF
GPIOs
IN
+1 x 4.7 μF
Level shifter
VDDIO1
IO
logic
Kernel logic
(CPU, Digital
& Memories)
n x VSS
VDDA
VDDA
VREF
ADC/
VREF+ DAC/
OPAMP/
VREFCOMPs/
VREFBUF
10 nF
+1 μF
100 nF +1 μF
VSSA
MSv43827V2
Caution:
Each power supply pair (such as VDD/VSS, VDDA/VSSA) must be decoupled with filtering
ceramic capacitors as shown above. These capacitors must be placed as close as possible
to, or below, the appropriate pins on the underside of the PCB to ensure the good
functionality of the device.
DS11912 Rev 7
93/221
192
Electrical characteristics
6.1.7
STM32L452xx
Current consumption measurement
Figure 19. Current consumption measurement scheme with and without external
SMPS power supply
IDD_USB
IDD_USB
VDDUSB
VDDUSB
IDD_VBAT
IDD_VBAT
VBAT
VBAT
IDD
IDD
IDDA
SMPS
VDD
VDD12
VDD
IDDA
VDDA
VDDA
MSv45729V1
The IDD_ALL parameters given in Table 27 to Table 49 represent the total MCU consumption
including the current supplying VDD, VDDA, VDDUSB and VBAT.
6.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 20: Voltage characteristics,
Table 21: Current characteristics and Table 22: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability. Exposure to maximum rating conditions for
extended periods may affect device reliability. Device mission profile (application conditions)
is compliant with JEDEC JESD47 qualification standard, extended mission profiles are
available on demand.
Table 20. Voltage characteristics(1)
Symbol
Ratings
Min
Max
Unit
VDDX - VSS
External main supply voltage (including
VDD, VDDA, VDDUSB, VBAT)
-0.3
4.0
V
VDD12 - VSS
External SMPS supply voltage
-0.3
1.32
V
Input voltage on FT_xxx pins
VSS-0.3
min (VDD, VDDA, VDDUSB)
+ 4.0(3)(4)
Input voltage on TT_xx pins
VSS-0.3
4.0
Input voltage on any other pins
VSS-0.3
4.0
VIN(2)
94/221
DS11912 Rev 7
V
STM32L452xx
Electrical characteristics
Table 20. Voltage characteristics(1) (continued)
Symbol
|ΔVDDx|
|VSSx-VSS|
Ratings
Min
Max
Unit
Variations between different VDDX power
pins of the same domain
-
50
mV
Variations between all the different ground
pins(5)
-
50
mV
1. All main power (VDD, VDDA, VDDUSB, VBAT) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. VIN maximum must always be respected. Refer to Table 21: Current characteristics for the maximum allowed injected
current values.
3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table.
4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
5. Include VREF- pin.
Table 21. Current characteristics
Symbol
∑IVDD
Ratings
Max
Total current into sum of all VDD power lines (source)(1)(2)
140
(1)
∑IVSS
Total current out of sum of all VSS ground lines (sink)
IVDD(PIN)
Maximum current into each VDD power pin (source)(1)
100
IVSS(PIN)
Maximum current out of each VSS ground pin (sink)(1)
100
Output current sunk by any I/O and control pin except FT_f
20
Output current sunk by any FT_f pin
20
Output current sourced by any I/O and control pin
20
IIO(PIN)
∑IIO(PIN)
IINJ(PIN)(4)
∑|IINJ(PIN)|
140
Total output current sunk by sum of all I/Os and control pins(3)
Total output current sourced by sum of all I/Os and control pins
Unit
mA
100
(3)
Injected current on FT_xxx, TT_xx, RST and B pins, except PA4,
PA5
100
-5/+0(5)
Injected current on PA4, PA5
-5/0
Total injected current (sum of all I/Os and control pins)(6)
25
1. All main power (VDD, VDDA, VDDUSB, VBAT) and ground (VSS, VSSA) pins must always be connected to the external power
supplies, in the permitted range.
2. Valid also for VDD12 on SMPS packages.
3. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
4. Positive injection (when VIN > VDDIOx) is not possible on these I/Os and does not occur for input voltages lower than the
specified maximum value.
5. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 20: Voltage
characteristics for the maximum allowed input voltage values.
6. When several inputs are submitted to a current injection, the maximum ∑|IINJ(PIN)| is the absolute sum of the negative
injected currents (instantaneous values).
DS11912 Rev 7
95/221
192
Electrical characteristics
STM32L452xx
Table 22. Thermal characteristics
Symbol
TSTG
TJ
96/221
Ratings
Storage temperature range
Maximum junction temperature
DS11912 Rev 7
Value
Unit
–65 to +150
°C
150
°C
STM32L452xx
Electrical characteristics
6.3
Operating conditions
6.3.1
General operating conditions
Table 23. General operating conditions
Symbol
Parameter
Conditions
Min
Max
fHCLK
Internal AHB clock frequency
-
0
80
fPCLK1
Internal APB1 clock frequency
-
0
80
fPCLK2
Internal APB2 clock frequency
-
0
80
VDD
Standard operating voltage
-
VDD12
Standard operating voltage
VDDA
Analog supply voltage
V
1.32
V
3.6
V
1.55
3.6
V
3.0
3.6
0
3.6
TT_xx I/O
-0.3
VDDIOx+0.3
VIN
PD
PD
I/O input voltage
All I/O except TT_xx
-0.3
Min(Min(VDD, VDDA,
VDDUSB)+3.6 V,
5.5 V)(2)(3)
LQFP100
-
357
UFBGA100
-
267
Power dissipation at
TA = 85 °C for suffix 6
LQFP64
-
345
UFBGA64
-
308
WLCSP64
-
377
LQFP48
-
346
UFQFPN48
-
690
LQFP100
-
89
UFBGA100
-
67
Power dissipation at
TA = 125 °C for suffix 3(4)
LQFP64
-
86
UFBGA64
-
77
WLCSP64
-
94
LQFP48
-
86
UFQFPN48
-
172
(1)
Full frequency range
1.08
Up to 26 MHz
1.05
ADC or COMP used
1.62
DAC or OPAMP used
1.8
VREFBUF used
2.4
Backup operating voltage
VDDUSB USB supply voltage
MHz
3.6
ADC, DAC, OPAMP, COMP,
VREFBUF not used
VBAT
1.71
Unit
USB used
USB not used
DS11912 Rev 7
0
V
V
mW
mW
97/221
192
Electrical characteristics
STM32L452xx
Table 23. General operating conditions (continued)
Symbol
Parameter
Conditions
Max
Ambient temperature for the
suffix 6 version
Maximum power dissipation
–40
85
Low-power dissipation(5)
–40
105
Ambient temperature for the
suffix 3 version
Maximum power dissipation
–40
125
Low-power dissipation(5)
–40
130
Suffix 6 version
–40
105
Suffix 3 version
–40
130
TA
TJ
Min
Junction temperature range
Unit
°C
°C
1. When RESET is released functionality is guaranteed down to VBOR0 Min.
2. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table.
Maximum I/O input voltage is the smallest value between Min(VDD, VDDA, VDDUSB)+3.6 V and 5.5V.
3. For operation with voltage higher than Min (VDD, VDDA, VDDUSB) +0.3 V, the internal Pull-up and Pull-Down resistors must
be disabled.
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.8: Thermal characteristics).
5. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.8:
Thermal characteristics).
6.3.2
Operating conditions at power-up / power-down
The parameters given in Table 24 are derived from tests performed under the ambient
temperature condition summarized in Table 23.
Table 24. Operating conditions at power-up / power-down
Symbol
Parameter
Conditions
VDD rise time rate
tVDD
VDDA rise time rate
0
∞
10
∞
0
∞
10
∞
0
∞
10
∞
-
VDDA fall time rate
VDDUSB rise time rate
tVDDUSB
Max
-
VDD fall time rate
tVDDA
Min
-
VDDUSB fall time rate
Unit
µs/V
µs/V
µs/V
The requirements for power-up/down sequence specified in Section 3.9.1: Power supply
schemes must be respected.
6.3.3
Embedded reset and power control block characteristics
The parameters given in Table 25 are derived from tests performed under the ambient
temperature conditions summarized in Table 23: General operating conditions.
Table 25. Embedded reset and power control block characteristics
Symbol
tRSTTEMPO(2)
98/221
Parameter
Reset temporization after
BOR0 is detected
Conditions(1)
VDD rising
DS11912 Rev 7
Min
Typ
Max
Unit
-
250
400
μs
STM32L452xx
Electrical characteristics
Table 25. Embedded reset and power control block characteristics (continued)
Symbol
Conditions(1)
Min
Typ
Max
Rising edge
1.62
1.66
1.7
Falling edge
1.6
1.64
1.69
Rising edge
2.06
2.1
2.14
Falling edge
1.96
2
2.04
Rising edge
2.26
2.31
2.35
Falling edge
2.16
2.20
2.24
Rising edge
2.56
2.61
2.66
Falling edge
2.47
2.52
2.57
Rising edge
2.85
2.90
2.95
Falling edge
2.76
2.81
2.86
Rising edge
2.1
2.15
2.19
Falling edge
2
2.05
2.1
Rising edge
2.26
2.31
2.36
Falling edge
2.15
2.20
2.25
Rising edge
2.41
2.46
2.51
Falling edge
2.31
2.36
2.41
Rising edge
2.56
2.61
2.66
Falling edge
2.47
2.52
2.57
Rising edge
2.69
2.74
2.79
Falling edge
2.59
2.64
2.69
Rising edge
2.85
2.91
2.96
Falling edge
2.75
2.81
2.86
Rising edge
2.92
2.98
3.04
Falling edge
2.84
2.90
2.96
Hysteresis in
continuous
Hysteresis voltage of BORH0 mode
-
20
-
Hysteresis in
other mode
-
30
-
Parameter
VBOR0(2)
Brown-out reset threshold 0
VBOR1
Brown-out reset threshold 1
VBOR2
Brown-out reset threshold 2
VBOR3
Brown-out reset threshold 3
VBOR4
Brown-out reset threshold 4
VPVD0
Programmable voltage
detector threshold 0
VPVD1
PVD threshold 1
VPVD2
PVD threshold 2
VPVD3
PVD threshold 3
VPVD4
PVD threshold 4
VPVD5
PVD threshold 5
VPVD6
PVD threshold 6
Vhyst_BORH0
Unit
V
V
V
V
V
V
V
V
V
V
V
V
mV
Hysteresis voltage of BORH
(except BORH0) and PVD
-
-
100
-
mV
BOR(3) (except BOR0) and
IDD
(2)
(BOR_PVD)
PVD consumption from VDD
-
-
1.1
1.6
µA
-
1.18
1.22
1.26
V
Rising edge
1.61
1.65
1.69
Falling edge
1.6
1.64
1.68
Vhyst_BOR_PVD
VPVM1
VDDUSB peripheral voltage
monitoring
VPVM3
VDDA peripheral voltage
monitoring
DS11912 Rev 7
V
99/221
192
Electrical characteristics
STM32L452xx
Table 25. Embedded reset and power control block characteristics (continued)
Symbol
VPVM4
Parameter
VDDA peripheral voltage
monitoring
Conditions(1)
Min
Typ
Max
Rising edge
1.78
1.82
1.86
Falling edge
1.77
1.81
1.85
Unit
V
Vhyst_PVM3
PVM3 hysteresis
-
-
10
-
mV
Vhyst_PVM4
PVM4 hysteresis
-
-
10
-
mV
PVM1 consumption from VDD
-
-
0.2
-
µA
-
-
2
-
µA
IDD (PVM1)
(2)
IDD
PVM3 and PVM4
(PVM3/PVM4)
consumption from VDD
(2)
1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power
sleep modes.
2. Guaranteed by design.
3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply
current characteristics tables.
100/221
DS11912 Rev 7
STM32L452xx
6.3.4
Electrical characteristics
Embedded voltage reference
The parameters given in Table 26 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 23: General operating
conditions.
Table 26. Embedded internal voltage reference
Symbol
VREFINT
Parameter
Internal reference voltage
Conditions
–40 °C < TA < +130 °C
Min
Typ
Max
Unit
1.182
1.212
1.232
V
tS_vrefint (1)
ADC sampling time when
reading the internal reference
voltage
-
4(2)
-
-
µs
tstart_vrefint
Start time of reference voltage
buffer when ADC is enable
-
-
8
12(2)
µs
-
-
12.5
20(2)
µA
VREFINT buffer consumption
from VDD when converted by
IDD(VREFINTBUF)
ADC
∆VREFINT
TCoeff
Internal reference voltage
spread over the temperature
range
VDD = 3 V
-
5
7.5(2)
mV
Temperature coefficient
–40°C < TA < +130°C
-
30
50(2)
ppm/°C
ppm
ppm/V
ACoeff
Long term stability
1000 hours, T = 25°C
-
300
1000(2)
VDDCoeff
Voltage coefficient
3.0 V < VDD < 3.6 V
-
250
1200(2)
24
25
26
49
50
51
74
75
76
VREFINT_DIV1
1/4 reference voltage
VREFINT_DIV2
1/2 reference voltage
VREFINT_DIV3
3/4 reference voltage
-
%
VREFINT
1. The shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
DS11912 Rev 7
101/221
192
Electrical characteristics
STM32L452xx
Figure 20. VREFINT versus temperature
V
1.235
1.23
1.225
1.22
1.215
1.21
1.205
1.2
1.195
1.19
1.185
-40
-20
0
20
40
Mean
60
Min
80
100
120
°C
Max
MSv40169V1
102/221
DS11912 Rev 7
STM32L452xx
6.3.5
Electrical characteristics
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 19: Current consumption
measurement scheme with and without external SMPS power supply.
Typical and maximum current consumption
The MCU is placed under the following conditions:
•
All I/O pins are in analog input mode
•
All peripherals are disabled except when explicitly mentioned
•
The Flash memory access time is adjusted with the minimum wait states number,
depending on the fHCLK frequency (refer to the table “Number of wait states according
to CPU clock (HCLK) frequency” available in the RM0394 reference manual).
•
When the peripherals are enabled fPCLK = fHCLK
The parameters given in Table 27 to Table 50 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 23: General
operating conditions.
DS11912 Rev 7
103/221
192
running from Flash, ART enable (Cache ON Prefetch OFF)
Conditions
Symbol
Parameter
-
Voltage
scaling
DS11912 Rev 7
IDD_ALL
(LPRun)
Unit
55 °C
85 °C
2.65
2.75
2.90
3.20
3.75
2.15
1.70
1.75
1.95
2.20
2.80
1.10
1.45
0.95
1.00
1.15
1.45
2.00
0.595
0.760
1.10
0.55
0.60
0.75
1.05
1.60
0.295 0.320
0.420
0.580
0.910
0.35
0.40
0.55
0.85
1.40
0.205 0.235
0.330
0.495
0.825
0.25
0.30
0.45
0.75
1.30
100 kHz 0.130 0.155
0.250
0.415
0.745
0.15
0.25
0.40
0.65
1.25
80 MHz
8.45
8.50
8.65
8.90
9.25
9.45
9.50
9.75
10.10
10.75
72 MHz
7.65
7.70
7.85
8.05
8.45
8.50
8.60
8.80
9.15
9.85
64 MHz
6.80
6.85
7.00
7.20
7.60
7.60
7.70
7.90
8.25
8.90
Range 1 48 MHz
5.10
5.15
5.25
5.45
5.85
5.70
5.80
6.00
6.35
7.00
32 MHz
3.45
3.50
3.60
3.80
4.20
3.85
3.95
4.15
4.50
5.15
24 MHz
2.60
2.65
2.80
2.95
3.35
2.95
3.05
3.20
3.55
4.20
16 MHz
1.80
1.85
1.95
2.15
2.50
2.00
2.10
2.30
2.60
3.25
2 MHz
225
260
365
550
900
275
335
470
770
1400
1 MHz
130
160
270
450
800
170
225
375
670
1300
400 kHz
73.0
99.5
205
385
735
105
165
325
600
1250
100 kHz
38.0
71.0
175
355
705
70
140
315
565
1200
Range 2
IDD_ALL
(Run)
MAX(1)
TYP
fHCLK = fHSE up to
48MHz included,
Supply
bypass mode
current in
PLL ON above
Run mode
48 MHz all
peripherals disable
Supply
current in fHCLK = fMSI
Low-power all peripherals disable
run mode
25 °C 55 °C
85 °C
26 MHz
2.35
2.40
2.50
2.65
3.00
16 MHz
1.50
1.55
1.65
1.80
8 MHz
0.815 0.845
0.940
4 MHz
0.465 0.495
2 MHz
1 MHz
fHCLK
105 °C 125 °C
mA
µA
STM32L452xx
1. Guaranteed by characterization results, unless otherwise specified.
105 °C 125 °C 25 °C
Electrical characteristics
104/221
Table 27. Current consumption in Run and Low-power run modes, code with data processing
Conditions(1)
Symbol
Unit
-
IDD_ALL(Run)
TYP
Parameter
Supply current in Run
mode
fHCLK = fHSE up to 48MHz included, bypass mode
PLL ON above
48 MHz all peripherals disable
DS11912 Rev 7
fHCLK
25 °C
55 °C
85 °C
105 °C 125 °C
80 MHz
3.04
3.06
3.11
3.20
3.33
72 MHz
2.75
2.77
2.82
2.89
3.04
64 MHz
2.44
2.46
2.52
2.59
2.73
48 MHz
1.83
1.85
1.89
1.96
2.10
32 MHz
1.24
1.26
1.29
1.37
1.51
24 MHz
0.93
0.95
1.01
1.06
1.20
16 MHz
0.65
0.67
0.70
0.77
0.90
8 MHz
0.35
0.36
0.41
0.47
0.63
4 MHz
0.20
0.21
0.26
0.33
0.47
2 MHz
0.13
0.14
0.18
0.25
0.39
1 MHz
0.09
0.10
0.14
0.21
0.36
100 kHz
0.06
0.07
0.11
0.18
0.32
STM32L452xx
Table 28. Current consumption in Run modes, code with data processing running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.10 V)
mA
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%,
VDD12 = 1.10 V
Electrical characteristics
105/221
running from Flash, ART disable
Conditions
Symbol
Parameter
-
Voltage
scaling
Unit
25 °C 55 °C
85 °C
2.75
2.80
2.90
3.10
3.40
16 MHz
1.95
2.00
2.10
2.25
8 MHz
1.10
1.15
1.25
1.40
4 MHz
0.640 0.670
0.765
0.935
2 MHz
0.380 0.405
0.505
0.670
1.00
0.45
0.50
0.65
0.95
1.50
1 MHz
0.250 0.275
0.375
0.540
0.865
0.30
0.35
0.50
0.80
1.35
100 kHz 0.135 0.160
0.255
0.420
0.750
0.15
0.25
0.40
0.65
1.25
80 MHz
8.85
8.90
9.05
9.30
9.70
10.0
10.5
10.5
11.0
11.5
72 MHz
8.00
8.05
8.20
8.40
8.85
9.05
9.15
9.35
9.70
10.5
64 MHz
7.90
7.95
8.10
8.35
8.75
8.95
9.10
9.35
9.70
10.5
Range 1 48 MHz
6.60
6.65
6.80
7.05
7.45
7.55
7.65
7.90
8.30
9.00
32 MHz
4.75
4.80
4.95
5.15
5.55
5.40
5.50
5.75
6.10
6.80
24 MHz
3.60
3.65
3.80
4.00
4.35
4.10
4.20
4.40
4.75
5.40
16 MHz
2.60
2.65
2.75
2.95
3.35
3.00
3.05
3.25
3.60
4.25
2 MHz
340
360
470
650
1000
400
455
575
880
1550
1 MHz
175
215
320
500
855
225
285
420
720
1350
400 kHz
89.5
120
225
405
760
130
185
340
620
1250
100 kHz
42.5
75.5
180
360
715
75
145
320
575
1200
fHCLK
26 MHz
Range 2
IDD_ALL
(Run)
DS11912 Rev 7
IDD_ALL
(LPRun)
MAX(1)
TYP
fHCLK = fHSE up to
48MHz included,
Supply
bypass mode
current in
PLL ON above
Run mode
48 MHz all
peripherals disable
Supply
current in fHCLK = fMSI
Low-power all peripherals disable
run
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
3.15
3.25
3.40
3.70
4.30
2.60
2.25
2.30
2.50
2.75
3.35
1.75
1.25
1.35
1.50
1.75
2.35
1.25
0.75
0.80
0.95
1.25
1.80
Electrical characteristics
106/221
Table 29. Current consumption in Run and Low-power run modes, code with data processing
mA
µA
1. Guaranteed by characterization results, unless otherwise specified.
STM32L452xx
Conditions(1)
Symbol
-
IDD_ALL(Run)
TYP
Parameter
Supply current in Run
mode
fHCLK = fHSE up to 48MHz included, bypass mode
PLL ON above 48 MHz all peripherals disable
DS11912 Rev 7
fHCLK
25 °C
55 °C
85 °C 105 °C 125 °C
80 MHz
3.18
3.20
3.25
3.34
3.49
72 MHz
2.88
2.89
2.95
3.02
3.18
64 MHz
2.84
2.86
2.91
3.00
3.15
48 MHz
2.37
2.39
2.44
2.53
2.68
32 MHz
1.71
1.73
1.78
1.85
2.00
24 MHz
1.29
1.31
1.37
1.44
1.56
16 MHz
0.93
0.95
0.99
1.06
1.20
8 MHz
0.47
0.50
0.54
0.60
0.75
4 MHz
0.28
0.29
0.33
0.40
0.54
2 MHz
0.16
0.17
0.22
0.29
0.43
1 MHz
0.11
0.12
0.16
0.23
0.37
100 kHz
0.06
0.07
0.11
0.18
0.32
Uni
t
STM32L452xx
Table 30. Current consumption in Run modes, code with data processing running from Flash,
ART disable and power supplied by external SMPS (VDD12 = 1.10 V)
mA
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%,
VDD12 = 1.10 V
Electrical characteristics
107/221
Conditions
Symbol
Parameter
-
Voltage
scaling
Range 2
IDD_ALL
(Run)
Supply
current in
Run mode
DS11912 Rev 7
fHCLK = fHSE up to
48MHz included,
bypass mode
PLL ON above
48 MHz all
peripherals disable
Range 1
IDD_ALL
(LPRun)
Supply
current in
low-power
run mode
fHCLK = fMSI
all peripherals disable
FLASH in power-down
MAX(1)
TYP
fHCLK
25 °C
55 °C
85 °C
105
°C
125
°C
25 °C
55 °C
85 °C
105
°C
125
°C
26 MHz
2.40
2.40
2.55
2.70
3.05
2.70
2.75
2.90
3.20
3.80
16 MHz
1.50
1.55
1.65
1.80
2.15
1.70
1.80
1.95
2.25
2.80
8 MHz
0.820
0.850
0.950
1.10
1.45
0.95
1.00
1.15
1.45
2.00
4 MHz
0.470
0.500
0.600
0.765
1.10
0.55
0.60
0.75
1.05
1.60
2 MHz
0.295
0.325
0.420
0.585
0.915
0.35
0.40
0.55
0.85
1.40
1 MHz
0.210
0.235
0.330
0.495
0.825
0.25
0.30
0.45
0.75
1.30
100 kHz
0.130
0.155
0.250
0.415
0.750
0.15
0.25
0.35
0.65
1.25
80 MHz
8.55
8.60
8.75
8.95
9.35
9.55
9.65
9.85
10.5
11.0
72 MHz
7.70
7.80
7.90
8.15
8.50
8.60
8.70
8.90
9.25
9.95
64 MHz
6.90
6.95
7.10
7.30
7.70
7.70
7.75
7.95
8.35
9.00
48 MHz
5.15
5.20
5.30
5.55
5.90
5.75
5.85
6.05
6.40
7.05
32 MHz
3.45
3.50
3.65
3.85
4.25
3.90
4.00
4.20
4.50
5.15
24 MHz
2.65
2.70
2.80
3.00
3.40
3.00
3.05
3.25
3.55
4.20
16 MHz
1.80
1.85
1.95
2.15
2.55
2.05
2.10
2.30
2.60
3.25
2 MHz
220
255
360
540
895
270
330
460
760
1400
1 MHz
120
155
260
440
795
165
215
370
660
1300
400 kHz
60.0
92.0
195
375
730
100
160
330
585
1250
100 kHz
36.0
62.5
165
345
695
63.0
130
305
555
1200
Unit
Electrical characteristics
108/221
Table 31. Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1
mA
µA
1. Guaranteed by characterization results, unless otherwise specified.
STM32L452xx
Conditions(1)
Symbol
TYP
Parameter
Unit
-
fHCLK = fHSE up to 48MHz included, bypass mode
IDD_ALL(Run) Supply current in Run mode PLL ON above
48 MHz all peripherals disable
DS11912 Rev 7
25 °C 55 °C
85 °C
80 MHz
3.10
3.12
3.14
3.18
3.24
72 MHz
2.80
2.81
2.84
2.87
2.94
64 MHz
2.50
2.51
2.53
2.57
2.63
48 MHz
1.87
1.88
1.90
1.93
2.00
32 MHz
1.26
1.27
1.29
1.32
1.38
24 MHz
0.96
0.96
0.98
1.02
1.07
16 MHz
0.65
0.66
0.68
0.71
0.77
8 MHz
0.35
0.36
0.38
0.41
0.47
4 MHz
0.20
0.21
0.22
0.25
0.31
2 MHz
0.13
0.13
0.15
0.18
0.24
1 MHz
0.09
0.09
0.11
0.14
0.20
100 kHz
0.05
0.06
0.07
0.10
0.16
fHCLK
105 °C 125 °C
STM32L452xx
Table 32. Current consumption in Run, code with data processing running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V)
mA
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%,
VDD12 = 1.10 V
Electrical characteristics
109/221
Electrical characteristics
STM32L452xx
Table 33. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF)
Conditions
Parameter
Supply
current in
Run mode
Range 2
fHCLK = 26 MHz
IDD_ALL
(Run)
fHCLK = fHSE up
to 48 MHz
included, bypass
mode PLL ON
above 48 MHz
all peripherals
disable
Code
25 °C
Reduced code(1)
2.35
90
Coremark
2.65
102
Dhrystone 2.1
2.75
Fibonacci
2.60
100
2.35
90
Reduced code
8.45
106
Coremark
9.45
118
Dhrystone 2.1
9.85
Fibonacci
9.25
116
8.45
106
Reduced code
225
113
Coremark
260
130
Dhrystone 2.1
270
Fibonacci
245
123
While(1)
285
143
While(1)
(1)
Supply
current in fHCLK = fMSI = 2 MHz
Low-power all peripherals disable
run
Unit
25 °C
While(1)
(1)
IDD_ALL
(LPRun)
TYP
Unit
Voltage
scaling
-
Range 1
fHCLK = 80 MHz
Symbol
TYP
mA
mA
µA
106
123
135
µA/MHz
µA/MHz
µA/MHz
1. Reduced code used for characterization results provided in Table 27, Table 29, Table 31.
Table 34. Typical current consumption in Run, with different codes running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.10 V)
Conditions(1)
110/221
Supply
current in
Run mode
-
fHCLK = fHSE up to
48 MHz included,
bypass mode PLL
ON above
48 MHz
all peripherals
disable
Voltage
scaling
fHCLK = 26 MHz
IDD_ALL
(Run)
Parameter
fHCLK = 80 MHz
Symbol
TYP
TYP
Unit
Code
25 °C
Reduced code(2)
1.01
39
Coremark
1.14
44
Dhrystone 2.1
1.19
46
Fibonacci
1.12
43
While(1)
1.01
Reduced
code(2)
3.04
mA
25 °C
39
38
Coremark
3.40
42
Dhrystone 2.1
3.54
44
Fibonacci
3.33
42
While(1)
3.04
38
DS11912 Rev 7
Unit
µA/MHz
STM32L452xx
Electrical characteristics
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters:
SMPS input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.10 V
2. Reduced code used for characterization results provided in Table 27, Table 29, Table 31.
Table 35. Typical current consumption in Run, with different codes running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.05 V)
Conditions(1)
IDD_ALL
(Run)
Parameter
Supply
current in
Run mode
fHCLK = fHSE up to
48 MHz included,
bypass mode PLL
ON above
48 MHz
all peripherals
disable
Voltage
scaling
fHCLK = 26 MHz
Symbol
TYP
TYP
Unit
Code
25 °C
Reduced code(2)
0.92
36
Coremark
1.04
40
Dhrystone 2.1
1.08
Fibonacci
1.02
39
While(1)
0.92
36
mA
Unit
25 °C
42
µA/MHz
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters:
SMPS input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.05 V
2. Reduced code used for characterization results provided in Table 27, Table 29, Table 31.
DS11912 Rev 7
111/221
192
Electrical characteristics
STM32L452xx
Table 36. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART disable
Conditions
Parameter
IDD_ALL
(Run)
IDD_ALL
(LPRun)
Supply
current in
Run mode
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz
all peripherals
disable
Supply
current in fHCLK = fMSI = 2 MHz
Low-power all peripherals disable
run
TYP
Unit
Voltage
scaling
-
Range 1
Range 2
fHCLK = 80 MHz fHCLK = 26 MHz
Symbol
TYP
Code
Unit
25 °C
25 °C
Reduced code(1)
2.75
106
Coremark
2.50
96
Dhrystone 2.1
2.50
Fibonacci
2.30
88
While(1)
2.20
84.6
Reduced code(1)
8.85
111
Coremark
8.15
102
Dhrystone 2.1
8.15
Fibonacci
7.55
While(1)
7.95
99
Reduced code(1)
340
170
mA
mA
96
102
µA/MHz
µA/MHz
94
Coremark
380
Dhrystone 2.1
355
190
Fibonacci
355
178
While(1)
405
203
µA
178
µA/MHz
1. Reduced code used for characterization results provided in Table 27, Table 29, Table 31.
Table 37. Typical current consumption in Run modes, with different codes running from
Flash, ART disable and power supplied by external SMPS (VDD12 = 1.10 V)
Conditions(1)
IDD_ALL
(Run)
Parameter
Supply
current in
Run mode
-
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz
all peripherals
disable
Voltage
scaling
fHCLK = 80 MHz fHCLK = 26 MHz
Symbol
TYP
TYP
Unit
Code
25 °C
Reduced code(2)
1.19
46
Coremark
1.08
41
Dhrystone 2.1
1.08
41
Fibonacci
0.99
38
While(1)
0.95
Reduced code(2)
3.18
mA
25 °C
37
40
Coremark
2.93
37
Dhrystone 2.1
2.93
37
Fibonacci
2.71
34
While(1)
2.86
36
Unit
µA/MHz
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS
input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.10 V
2. Reduced code used for characterization results provided in Table 27, Table 29, Table 31.
112/221
DS11912 Rev 7
STM32L452xx
Electrical characteristics
Table 38. Typical current consumption in Run modes, with different codesrunning from
Flash, ART disable and power supplied by external SMPS (VDD12 = 1.05 V)
Conditions(1)
IDD_ALL
(Run)
Parameter
Supply
current in
Run mode
TYP
Voltage
scaling
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz
all peripherals
fHCLK = 26 MHz
Symbol
Code
25 °C
Reduced code(2)
1.08
TYP
Unit
25 °C
Unit
42
Coremark
0.98
Dhrystone 2.1
0.98
38
Fibonacci
0.90
35
While(1)
0.86
33
mA
38
µA/MHz
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS
input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.05 V
2. Reduced code used for characterization results provided in Table 27, Table 29, Table 31.
Table 39. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1
Conditions
Parameter
-
IDD_ALL
(Run)
IDD_ALL
(LPRun)
fHCLK = fHSE up to
48 MHz included,
Supply
bypass mode
current in PLL ON above
Run mode 48 MHz all
peripherals
disable
Voltage
scaling
Range 1
Range 2
fHCLK = 80 MHz fHCLK = 26 MHz
Symbol
Supply
current in fHCLK = fMSI = 2 MHz
Low-power all peripherals disable
run
TYP
TYP
Unit
Code
25 °C
Unit
25 °C
Reduced code(1)
2.40
92
Coremark
2.20
85
Dhrystone 2.1
2.35
mA
90
Fibonacci
2.20
85
While(1)
2.30
88
Reduced code(1)
8.55
107
Coremark
7.75
µA/MHz
97
mA
Dhrystone 2.1
8.45
106
Fibonacci
7.80
98
While(1)
8.75
109
Reduced code(1)
220
110
Coremark
190
Dhrystone 2.1
215
Fibonacci
200
100
While(1)
210
105
µA/MHz
95
µA
108
µA/MHz
1. Reduced code used for characterization results provided in Table 27, Table 29, Table 31.
DS11912 Rev 7
113/221
192
Electrical characteristics
STM32L452xx
Table 40. Typical current consumption in Run, with different codesrunning from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V)
Conditions(1)
IDD_ALL
(Run)
Parameter
Supply
current in
Run mode
TYP
Voltage
scaling
-
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz all
peripherals disable
fHCLK = 80 MHz fHCLK = 26 MHz
Symbol
Code
25 °C
Reduced code(2)
1.04
TYP
Unit
25 °C
Unit
40
Coremark
0.95
37
Dhrystone 2.1
1.01
39
Fibonacci
0.95
37
While(1)
0.99
Reduced code(2)
3.07
mA
38
38
Coremark
2.79
35
Dhrystone 2.1
3.04
38
Fibonacci
2.80
35
While(1)
3.15
39
µA/MHz
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS
input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.10 V
2. Reduced code used for characterization results provided in Table 27, Table 29, Table 31.
Table 41. Typical current consumption in Run, with different codesrunning from
SRAM1 and power supplied by external SMPS (VDD12 = 1.05 V)
Conditions(1)
IDD_ALL
(Run)
Parameter
Supply
current in
Run mode
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz all
peripherals disable
Voltage
scaling
fHCLK = 26 MHz
Symbol
TYP
Code
25 °C
Reduced code(2)
0.94
TYP
Unit
25 °C
Unit
36
Coremark
0.86
Dhrystone 2.1
0.92
33
Fibonacci
0.86
33
While(1)
0.90
35
mA
36
µA/MHz
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS
input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.05 V
2. Reduced code used for characterization results provided in Table 27, Table 29, Table 31.
114/221
DS11912 Rev 7
Conditions
Symbol
Parameter
-
Voltage
scaling
Range 2
IDD_ALL
(Sleep)
DS11912 Rev 7
IDD_ALL
(LPSleep)
Supply
current in
sleep
mode,
fHCLK = fHSE up
to 48 MHz
included, bypass
mode
pll ON above
48 MHz all
peripherals
disable
MAX(1)
TYP
Unit
fHCLK
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
26 MHz
0.700 0.730
0.830
1.00
16 MHz
0.475 0.505
0.605
0.775
1.10
0.55
0.65
0.80
1.05
1.65
8 MHz
0.300 0.325
0.425
0.590
0.920
0.35
0.45
0.60
0.85
1.45
4 MHz
0.210 0.235
0.335
0.500
0.830
0.25
0.30
0.45
0.75
1.35
2 MHz
0.165 0.190
0.290
0.455
0.785
0.20
0.25
0.40
0.70
1.25
1 MHz
0.145 0.170
0.265
0.430
0.760
0.15
0.25
0.40
0.65
1.25
100 kHz
0.125 0.150
0.245
0.410
0.740
0.15
0.20
0.35
0.65
1.20
80 MHz
2.30
2.35
2.45
2.65
3.05
2.55
2.65
2.85
3.15
3.80
72 MHz
2.10
2.15
2.25
2.45
2.80
2.35
2.40
2.60
2.90
3.55
64 MHz
1.90
1.90
2.05
2.25
2.60
2.10
2.20
2.35
2.70
3.35
1.35
0.80
55 °C
85 °C
0.90
1.05
105 °C 125 °C
1.30
1.90
Range 1 48 MHz
1.40
1.40
1.55
1.75
2.15
1.60
1.65
1.85
2.15
2.80
32 MHz
0.970
1.00
1.15
1.30
1.70
1.10
1.20
1.40
1.70
2.35
Supply
current in
=f
f
low-power HCLK MSI
all peripherals disable
sleep
mode
24 MHz
0.765 0.800
0.920
1.10
1.50
0.90
0.95
1.15
1.45
2.10
16 MHz
0.555 0.590
0.705
0.895
1.25
0.65
0.75
0.90
1.20
1.85
2 MHz
76.0
110
215
395
745
120
185
355
610
1250
1 MHz
54.0
86.5
195
370
725
88.5
160
335
585
1250
400 kHz
39.0
70.5
175
355
710
68.5
140
320
570
1200
100 kHz
35.5
75.0
195
345
715
66.0
130
305
560
1200
mA
µA
115/221
Electrical characteristics
1. Guaranteed by characterization results, unless otherwise specified.
STM32L452xx
Table 42. Current consumption in Sleep and Low-power sleep modes, Flash ON
Conditions(1)
Symbol
TYP
Parameter
Unit
fHCLK
25 °C
55 °C
85 °C
105 °C
125 °C
80 MHz
0.83
0.84
0.88
0.95
1.10
72 MHz
0.75
0.77
0.81
0.88
1.01
64 MHz
0.68
0.68
0.74
0.81
0.93
48 MHz
0.50
0.50
0.56
0.63
0.77
32 MHz
0.35
0.36
0.41
0.47
0.61
24 MHz
0.28
0.29
0.33
0.40
0.54
16 MHz
0.20
0.21
0.25
0.32
0.45
8 MHz
0.13
0.14
0.18
0.25
0.40
4 MHz
0.09
0.10
0.14
0.22
0.36
2 MHz
0.07
0.08
0.13
0.20
0.34
1 MHz
0.06
0.07
0.11
0.19
0.33
100 kHz
0.05
0.06
0.11
0.18
0.32
-
IDD_ALL(Sleep)
Supply current in sleep mode,
fHCLK = fHSE up to 48 MHz included, bypass
mode
pll ON above
48 MHz all peripherals disable
Electrical characteristics
116/221
Table 43. Current consumption in Sleep, Flash ON and power supplied by external SMPS
(VDD12 = 1.10 V)
mA
DS11912 Rev 7
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%,
VDD12 = 1.10 V
Table 44. Current consumption in Low-power sleep modes, Flash in power-down
Conditions
Symbol
Parameter
-
IDD_ALL
(LPSleep)
Supply current
in low-power
sleep mode
Voltage
scaling
fHCLK = fMSI
all peripherals disable
MAX(1)
TYP
Unit
fHCLK
25 °C 55 °C
2 MHz
76.5
105
85 °C
220
105 °C 125 °C 25 °C
410
740
110
55 °C
85 °C
175
350
105 °C 125 °C
600
1250
54.0
81.0
195
385
715
81.5
155
325
570
1200
28.0
64.5
175
370
695
60.5
130
305
555
1200
100 kHz
21.5
55.0
170
360
690
58.5
120
300
550
1200
1. Guaranteed by characterization results, unless otherwise specified.
µA
STM32L452xx
1 MHz
400 kHz
Symbol
Parameter
IDD_ALL
(Stop 2)
Supply current in
Stop 2 mode,
RTC disabled
Conditions
-
-
RTC clocked by LSI
DS11912 Rev 7
IDD_ALL
(Stop 2 with
RTC)
Supply current in
RTC clocked by LSE
Stop 2 mode,
bypassed at 32768 Hz
RTC enabled
RTC clocked by LSE
quartz(2)
in low drive mode
VDD
25 °C 55 °C
85 °C
1.8 V
2.05
19.0
5.40
105 °C 125 °C 25 °C
44.0
97.0
4.00
55 °C
85 °C
105 °C 125 °C
11.5
41.5
100
220
2.4 V
2.10
5.45
19.0
44.5
98.5
4.05
11.5
42.0
100
225
3V
2.05
5.55
19.5
45.0
100
4.10
12.0
43.0
105
230
3.6 V
2.05
5.65
20.0
46.5
105
4.20
12.0
44.0
105
235
1.8 V
2.30
5.65
19.0
44.0
97.0
4.50
12.0
42.0
100
220
2.4 V
2.35
5.80
19.5
44.5
99.0
4.65
12.0
42.5
100
225
3V
2.50
5.90
20.0
45.5
100
4.90
12.5
43.5
105
230
3.6 V
2.60
6.15
20.5
47.0
105
5.20
13.0
44.5
105
235
1.8 V
2.60
6.05
21.0
48.0
97.0
-
-
-
-
-
2.4 V
2.55
6.20
21.0
49.0
98.5
-
-
-
-
-
3V
2.80
6.35
21.5
49.5
100
-
-
-
-
-
3.6 V
2.85
6.60
22.5
51.5
105
-
-
-
-
-
1.8 V
2.40
5.70
19.0
44.5
98.0
-
-
-
-
-
2.4 V
2.50
5.85
19.5
45.0
99.5
-
-
-
-
-
3V
2.60
6.00
20.0
46.0
100
-
-
-
-
-
3.6 V
2.65
6.25
20.5
47.0
105
-
-
-
-
-
Wakeup clock is
MSI = 48 MHz,
voltage Range 1.
See (3).
3V
1.85
-
-
-
-
-
-
-
-
-
Wakeup clock is
MSI = 4 MHz,
voltage Range 2.
See (3).
3V
1.50
-
-
-
-
-
-
-
-
-
Wakeup clock is
HSI16 = 16 MHz,
voltage Range 1.
See (3).
3V
1.55
-
-
-
-
-
-
-
-
-
117/221
1. Guaranteed based on test during characterization, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
Unit
µA
µA
mA
Electrical characteristics
Supply current
IDD_ALL
during wakeup
(wakeup from
from Stop 2
Stop 2)
mode
MAX(1)
TYP
STM32L452xx
Table 45. Current consumption in Stop 2 mode
Electrical characteristics
118/221
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 52: Low-power mode wakeup timings.
DS11912 Rev 7
STM32L452xx
Symbol
Parameter
IDD_ALL
(Stop 1)
Supply
current in
Stop 1 mode,
RTC disabled
Conditions
-
-
RTC clocked by LSI
DS11912 Rev 7
Supply
IDD_ALL
current in stop RTC clocked by LSE
(Stop 1 with
1 mode,
bypassed, at 32768 Hz
RTC)
RTC enabled
RTC clocked by LSE quartz(2)
in low drive mode
Wakeup clock MSI = 48 MHz,
voltage Range 1.
See (3).
VDD
25 °C 55 °C 85 °C 105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
1.8 V
9.85
29.0
100
225
430
17.0
49.5
185
395
850
2.4 V
9.85
29.5
100
225
435
17.0
49.5
185
395
850
3V
9.90
29.5
100
225
435
17.5
50.0
185
400
850
3.6 V
10.0
28.0
105
230
410
17.5
50.5
190
405
860
1.8 V
10.5
29.5
100
225
430
17.0
50.0
185
395
840
2.4 V
10.5
29.5
100
225
435
17.0
50.5
185
395
845
3V
10.5
30.0
105
225
435
17.5
50.5
185
400
855
3.6 V
10.5
30.0
105
230
440
17.5
51.5
190
405
860
1.8 V
10.0
29.5
100
225
435
-
-
-
-
-
2.4 V
10.0
29.5
100
225
435
-
-
-
-
-
3V
10.5
30.0
105
225
440
-
-
-
-
-
3.6 V
11.0
30.5
105
230
440
-
-
-
-
-
1.8 V
10.0
29.0
99.5
220
435
-
-
-
-
-
2.4 V
10.0
29.0
99.5
220
435
-
-
-
-
-
3V
10.0
29.0
100
220
440
-
-
-
-
-
3.6 V
10.5
29.5
100
225
440
-
-
-
-
-
3V
1.15
-
-
-
-
-
-
-
-
-
3V
1.20
-
-
-
-
-
-
-
-
-
3V
1.20
-
-
-
-
-
-
-
-
-
1. Guaranteed based on test during characterization, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
119/221
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 52: Low-power mode wakeup timings.
Unit
µA
µA
mA
Electrical characteristics
Supply
Wakeup clock MSI = 4 MHz,
IDD_ALL
current during voltage Range 2.
(wakeup
wakeup from
from Stop1)
See (3).
Stop 1
Wakeup clock HSI16 =
16 MHz, voltage Range 1.
See (3).
MAX(1)
TYP
STM32L452xx
Table 46. Current consumption in Stop 1 mode
Symbol
Parameter
IDD_ALL
(Stop 0)
Supply
current in
Stop 0 mode,
RTC disabled
Conditions
VDD
MAX(1)
TYP
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
1.8 V
125
150
240
390
645
145
190
350
600
1150
2.4 V
125
150
240
390
645
150
195
355
605
1150
3V
125
150
245
395
650
155
195
360
610
1150
3.6 V
125
155
245
400
655
155
200
365
615
1150(2)
1. Guaranteed by characterization results, unless otherwise specified.
Unit
µA
Electrical characteristics
120/221
Table 47. Current consumption in Stop 0
2. Guaranteed by test in production.
DS11912 Rev 7
STM32L452xx
Symbol
IDD_ALL
(Standby)
Parameter
Supply current
in Standby
mode (backup
registers
retained),
RTC disabled
Conditions
-
no independent watchdog
with independent
watchdog
DS11912 Rev 7
RTC clocked by LSI, no
independent watchdog
IDD_ALL
(Standby
with RTC)
Supply current
in Standby
mode (backup
registers
retained),
RTC enabled
RTC clocked by LSI, with
independent watchdog
RTC clocked by LSE
bypassed at 32768Hz
MAX(1)
TYP
VDD
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
1.8 V
100
270
1200
3300
8650
205
650
3250
9250
25000
2.4 V
110
305
1400
3850
10000
225
750
3750
11000
29000
3V
125
360
1650
4550
12000
290
950
4450
13000
33500
3.6 V
160
445
2000
5500
14500
355
1150
5250
15000
38500
1.8 V
265
435
1350
3450
8700
-
-
-
-
-
2.4 V
335
540
1650
4100
10500
-
-
-
-
-
3V
420
655
1950
4850
12500
-
-
-
-
-
3.6 V
580
895
2450
5950
14500
-
-
-
-
-
1.8 V
345
505
1400
3450
8600
720
1150
3750
9550
25000
2.4 V
420
620
1650
4050
10000
875
1450
4400
11500
29000
3V
510
745
2000
4750
12000
1070
1700
5100
13500
34000
3.6 V
635
915
2450
5900
14500
1320
2100
6000
15500
39000
1.8 V
375
540
1450
3550
8800
-
-
-
-
-
2.4 V
490
690
1800
4250
10500
-
-
-
-
-
3V
620
860
2150
5100
12500
-
-
-
-
-
3.6 V
845
1150
2700
6200
15000
-
-
-
-
-
1.8 V
395
-
-
-
-
-
-
-
-
-
2.4 V
500
-
-
-
-
-
-
-
-
-
3V
625
-
-
-
-
-
-
-
-
-
795
-
-
-
-
-
-
-
-
-
1.8 V
375
550
1500
3550
8800
-
-
-
-
-
2.4 V
RTC clocked by LSE
quartz (2) in low drive mode 3 V
460
665
1750
4250
10500
-
-
-
-
-
565
810
2100
5050
12500
-
-
-
-
-
3.6 V
720
1000
2600
5900
15000
-
-
-
-
-
nA
nA
nA
121/221
Electrical characteristics
3.6 V
Unit
STM32L452xx
Table 48. Current consumption in Standby mode
Symbol
IDD_ALL
(SRAM2)(3)
IDD_ALL
(wakeup
from
Standby)
Parameter
Supply current
to be added in
Standby mode
when SRAM2
is retained
Supply current
during wakeup
from Standby
mode
Conditions
-
VDD
-
Wakeup clock is
MSI = 4 MHz.
See (4).
MAX(1)
TYP
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
1.8 V
250
730
2700
6350
13850
575
1800
6350
14500
32000
2.4 V
250
740
2700
6150
14000
620
1800
6450
14500
32000
3V
255
740
2700
6450
13500
645
1850
6500
15000
32500
3.6 V
255
755
2800
6500
13500
790
1950
6500
15000
33000
3V
2.00
-
-
-
-
-
-
-
-
-
Unit
nA
Electrical characteristics
122/221
Table 48. Current consumption in Standby mode (continued)
mA
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
DS11912 Rev 7
3. The supply current in Standby with SRAM2 mode is: IDD_ALL(Standby) + IDD_ALL(SRAM2). The supply current in Standby with RTC with SRAM2 mode is: IDD_ALL(Standby
+ RTC) + IDD_ALL(SRAM2).
4. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 52: Low-power mode wakeup timings.
Table 49. Current consumption in Shutdown mode
Symbol
IDD_ALL
(Shutdown)
Parameter
Supply current
in Shutdown
mode
(backup
registers
retained) RTC
disabled
Conditions
-
-
MAX(1)
TYP
VDD
25 °C 55 °C
1.8 V
19.0
120
2.4 V
26.0
3V
37.0
3.6 V
67.0
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
720
2200
6400
38.0
350
2050
6350
19500
145
855
2600
7450
62.0
400
2400
7450
22500
185
1050
3100
8700
105
500
2850
8750
26000
260
1350
3950
11000
160
650
3500
10500
30000
Unit
nA
STM32L452xx
Symbol
IDD_ALL
(Shutdown
with RTC)
Parameter
Supply current
in Shutdown
mode
(backup
registers
retained) RTC
enabled
DS11912 Rev 7
Supply current
IDD_ALL
during wakeup
(wakeup from
from Shutdown
Shutdown)
mode
Conditions
-
VDD
RTC clocked by LSE
bypassed at 32768 Hz
RTC clocked by LSE
quartz (2) in low drive
mode
Wakeup clock is
MSI = 4 MHz.
See (3).
MAX(1)
TYP
25 °C 55 °C
1.8 V
165
275
2.4 V
235
3V
325
3.6 V
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
950
2600
6550
-
-
-
-
-
370
1150
3100
7650
-
-
-
-
-
485
1450
3750
9050
-
-
-
-
-
445
655
1900
4800
11500
-
-
-
-
-
1.8 V
290
410
1050
2550
6700
-
-
-
-
-
2.4 V
375
515
1250
3050
7800
-
-
-
-
-
3V
480
645
1550
3700
8800
-
-
-
-
-
3.6 V
625
840
1950
4950
11500
-
-
-
-
-
3V
1.00
-
-
-
-
-
-
-
-
-
Unit
STM32L452xx
Table 49. Current consumption in Shutdown mode (continued)
nA
mA
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 52: Low-power mode wakeup timings.
Table 50. Current consumption in VBAT mode
Symbol
Parameter
Conditions
-
IDD_VBAT
(VBAT)
Backup domain
supply current
RTC enabled and
clocked by LSE
bypassed at 32768 Hz
123/221
VBAT
25 °C 55 °C
1.8 V
3.00
-
-
-
-
2.4 V
4.00
-
-
-
3V
5.00
-
-
-
3.6 V
11.0
-
-
-
-
-
-
-
-
-
1.8 V
145
165
285
550
-
-
-
-
-
-
2.4 V
205
235
370
670
-
-
-
-
-
-
3V
285
315
470
820
-
-
-
-
-
-
3.6 V
375
430
715
1350
-
-
-
-
-
-
1. Guaranteed by characterization results, unless otherwise specified.
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Unit
nA
Electrical characteristics
RTC disabled
MAX(1)
TYP
Electrical characteristics
STM32L452xx
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 71: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 51: Peripheral current consumption), the I/Os used by an application also contribute
to the current consumption. When an I/O pin switches, it uses the current from the I/O
supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load
(internal or external) connected to the pin:
I SW = V DDIOx × f SW × C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDIOx is the I/O supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
124/221
DS11912 Rev 7
STM32L452xx
Electrical characteristics
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 51. The MCU is placed
under the following conditions:
•
All I/O pins are in Analog mode
•
The given value is calculated by measuring the difference of the current consumptions:
–
when the peripheral is clocked on
–
when the peripheral is clocked off
•
Ambient operating temperature and supply voltage conditions summarized in Table 20:
Voltage characteristics
•
The power consumption of the digital part of the on-chip peripherals is given in
Table 51. The power consumption of the analog part of the peripherals (where
applicable) is indicated in each related section of the datasheet.
Table 51. Peripheral current consumption
Range 1
Range 2
Low-power run
and sleep
Bus Matrix(1)
3.2
2.9
3.1
ADC independent clock domain
0.4
0.1
0.2
ADC clock domain
2.1
1.9
1.9
CRC
0.4
0.2
0.3
DMA1
1.4
1.3
1.4
DMA2
1.5
1.3
1.4
6.2
5.2
5.8
1.7
1.4
1.6
Peripheral
FLASH
(2)
GPIOA
GPIOB(2))
AHB
APB1
1.6
1.3
1.6
(2)
GPIOC
1.7
1.5
1.6
GPIOD(2)
1.8
1.6
1.7
(2)
GPIOE
1.7
1.6
1.6
GPIOH(2)
0.6
0.6
0.5
QSPI
7.0
5.8
7.3
RNG independent clock domain
2.2
N/A
N/A
RNG clock domain
0.5
N/A
N/A
SRAM1
0.8
0.9
0.7
SRAM2
1.0
0.8
0.8
TSC
1.6
1.3
1.3
All AHB Peripherals
25.2
21.7
23.6
AHB to APB1 bridge(3)
0.9
0.7
0.9
CAN1
4.1
3.2
3.9
DAC1
2.4
1.8
2.2
DS11912 Rev 7
Unit
µA/MHz
125/221
192
Electrical characteristics
STM32L452xx
Table 51. Peripheral current consumption (continued)
Range 1
Range 2
Low-power run
and sleep
RTCA
1.7
1.1
2.1
CRS
0.3
0.3
0.6
USB FS independent clock
domain
2.9
N/A
N/A
USB FS clock domain
2.3
N/A
N/A
I2C1 independent clock domain
3.5
2.8
3.4
I2C1 clock domain
1.1
0.9
1.0
I2C2 independent clock domain
3.5
3.0
3.4
I2C2 clock domain
1.1
0.7
0.9
I2C3 independent clock domain
2.9
2.3
2.5
I2C3 clock domain
0.9
0.4
0.8
LPUART1 independent clock
domain
1.9
1.6
1.8
LPUART1 clock domain
0.6
0.6
0.6
LPTIM1 independent clock
domain
2.9
2.4
2.8
LPTIM1 clock domain
0.8
0.4
0.7
LPTIM2 independent clock
domain
3.1
2.7
3.9
LPTIM2 clock domain
0.8
0.7
0.8
OPAMP
0.4
0.2
0.4
PWR
0.4
0.1
0.4
SPI2
1.8
1.6
1.6
SPI3
1.7
1.3
1.6
TIM2
6.2
5.0
5.9
TIM6
1.0
0.6
0.9
USART2 independent clock
domain
4.1
3.6
3.8
USART2 clock domain
1.3
0.9
1.1
USART3 independent clock
domain
4.3
3.5
4.2
USART3 clock domain
1.5
1.1
1.3
WWDG
0.5
0.5
0.5
All APB1 on
51.5
35.5
48.6
Peripheral
APB1
126/221
DS11912 Rev 7
Unit
µA/MHz
STM32L452xx
Electrical characteristics
Table 51. Peripheral current consumption (continued)
Range 1
Range 2
Low-power run
and sleep
AHB to APB2(4)
1.0
0.9
0.9
FW
0.2
0.2
0.2
SAI1 independent clock domain
2.3
1.8
1.9
SAI1 clock domain
2.1
1.8
2.0
SDMMC1 independent clock
domain
4.7
3.9
3.9
SDMMC1 clock domain
2.5
1.9
1.9
SPI1
1.8
1.6
1.7
SYSCFG/VREFBUF/COMP
0.6
0.5
0.6
TIM1
8.1
6.5
7.6
TIM15
3.7
3.0
3.4
TIM16
2.7
2.1
2.6
USART1 independent clock
domain
4.8
4.2
4.6
USART1 clock domain
1.5
1.3
1.7
All APB2 on
24.2
19.9
22.6
100.9
77.1
94.8
Peripheral
APB2
ALL
Unit
µA/MHz
1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).
2. The GPIOx (x= A…H) dynamic current consumption is approximately divided by a factor two versus this table values when
the GPIO port is locked thanks to LCKK and LCKy bits in the GPIOx_LCKR register. In order to save the full GPIOx current
consumption, the GPIOx clock should be disabled in the RCC when all port I/Os are used in alternate function or analog
mode (clock is only required to read or write into GPIO registers, and is not used in AF or analog modes).
3. The AHB to APB1 Bridge is automatically active when at least one peripheral is ON on the APB1.
4. The AHB to APB2 Bridge is automatically active when at least one peripheral is ON on the APB2.
6.3.6
Wakeup time from low-power modes and voltage scaling
transition times
The wakeup times given in Table 52 are the latency between the event and the execution of
the first user instruction.
The device goes in low-power mode after the WFE (Wait For Event) instruction.
Table 52. Low-power mode wakeup timings(1)
Symbol
tWUSLEEP
Parameter
Conditions
Typ
Max
-
6
6
Wakeup time from Sleep
mode to Run mode
Wakeup time from LowWakeup in Flash with Flash in power-down
tWULPSLEEP power sleep mode to Low- during low-power sleep mode (SLEEP_PD=1
power run mode
in FLASH_ACR) and with clock MSI = 2 MHz
DS11912 Rev 7
6
9
Unit
Nb of
CPU
cycles
127/221
192
Electrical characteristics
STM32L452xx
Table 52. Low-power mode wakeup timings(1) (continued)
Symbol
Parameter
Conditions
Range 1
Wake up time from Stop 0
mode to Run mode in
Flash
Range 2
tWUSTOP0
Range 1
Wake up time from Stop 0
mode to Run mode in
SRAM1
Range 2
Range 1
Wake up time from Stop 1
mode to Run in Flash
Range 1
tWUSTOP1
Wake up time from Stop 1
mode to Low-power run
mode in Flash
Wake up time from Stop 1
mode to Low-power run
mode in SRAM1
128/221
Max
Wakeup clock MSI = 48 MHz
3.34
4.3
Wakeup clock HSI16 = 16 MHz
3.7
6.5
Wakeup clock MSI = 24 MHz
3.8
7.1
Wakeup clock HSI16 = 16 MHz
3.7
6.5
Wakeup clock MSI = 4 MHz
9.3
7.1
Wakeup clock MSI = 48 MHz
1.85
2.7
Wakeup clock HSI16 = 16 MHz
2.68
3
Wakeup clock MSI = 24 MHz
2.47
3.4
Wakeup clock HSI16 = 16 MHz
2.68
3
Wakeup clock MSI = 4 MHz
9.67
12.5
Wakeup clock MSI = 48 MHz
6.75
7.6
Wakeup clock HSI16 = 16 MHz
7.14
8
7
7.82
Wakeup clock HSI16 = 16 MHz
7.14
7.9
Wakeup clock MSI = 4 MHz
10.44
11.9
Wakeup clock MSI = 48 MHz
5.21
5.9
Wakeup clock HSI16 = 16 MHz
6.23
6.9
Wakeup clock MSI = 24 MHz
5.73
6.4
Wakeup clock HSI16 = 16 MHz
6.23
6.9
Wakeup clock MSI = 4 MHz
10.9
12.3
16.05
19.2
17.06
20.3
Wakeup clock MSI = 24 MHz
Range 2
Wake up time from Stop 1
mode to Run mode in
SRAM1
Typ
Range 2
Regulator in
low-power
Wakeup clock MSI = 2 MHz
mode (LPR=1
in PWR_CR1)
DS11912 Rev 7
Unit
µs
µs
STM32L452xx
Electrical characteristics
Table 52. Low-power mode wakeup timings(1) (continued)
Symbol
Parameter
Conditions
Typ
Max
Wakeup clock MSI = 48 MHz
7.93
9.1
Wakeup clock HSI16 = 16 MHz
7.32
8.5
Wakeup clock MSI = 24 MHz
8.25
9.4
Wakeup clock HSI16 = 16 MHz
7.32
8.4
Wakeup clock MSI = 4 MHz
11.43
13.3
Wakeup clock MSI = 48 MHz
5.23
6
Wakeup clock HSI16 = 16 MHz
6.33
7.1
Wakeup clock MSI = 24 MHz
5.78
6.5
Wakeup clock HSI16 = 16 MHz
6.33
7.1
Wakeup clock MSI = 4 MHz
11.37
12.9
Wakeup time from Standby
Range 1
mode to Run mode
Wakeup clock MSI = 8 MHz
16.13
18.2
Wakeup clock MSI = 4 MHz
24.06
26.6
Wakeup time from Standby
Range 1
with SRAM2 to Run mode
Wakeup clock MSI = 8 MHz
16.09
18.2
Wakeup clock MSI = 4 MHz
24
26.6
Range 1
Wake up time from Stop 2
mode to Run mode in
Flash
Range 2
tWUSTOP2
Range 1
Wake up time from Stop 2
mode to Run mode in
SRAM1
tWUSTBY
tWUSTBY
SRAM2
tWUSHDN
Wakeup time from
Shutdown mode to Run
mode
Range 2
Range 1
Wakeup clock MSI = 4 MHz
255.38 316.41
Unit
µs
µs
µs
µs
1. Guaranteed by characterization results.
Table 53. Regulator modes transition times(1)
Symbol
tWULPRUN
tVOST
Parameter
Conditions
Typ
Max
Wakeup time from Low-power run mode to
Code run with MSI 2 MHz
Run mode(2)
5
7
Regulator transition time from Range 2 to
Range 1 or Range 1 to Range 2(3)
20
40
Typ
Max
Stop 0 mode
-
1.7
Stop 1 mode and Stop 2
mode
-
8.5
Code run with MSI 24 MHz
Unit
µs
1. Guaranteed by characterization results.
2. Time until REGLPF flag is cleared in PWR_SR2.
3. Time until VOSF flag is cleared in PWR_SR2.
Table 54. Wakeup time using USART/LPUART(1)
Symbol
tWUUSART
tWULPUART
Parameter
Conditions
Wakeup time needed to calculate the
maximum USART/LPUART baudrate
permitting to wakeup up from stop mode
when USART/LPUART clock source is
HSI16
Unit
µs
1. Guaranteed by design.
DS11912 Rev 7
129/221
192
Electrical characteristics
6.3.7
STM32L452xx
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 21: High-speed external clock
source AC timing diagram.
Table 55. High-speed external user clock characteristics(1)
Symbol
fHSE_ext
Parameter
User external clock source frequency
Conditions
Min
Typ
Max
Voltage scaling
Range 1
-
8
48
Voltage scaling
Range 2
-
8
26
Unit
MHz
VHSEH
OSC_IN input pin high level voltage
-
0.7 VDDIOx
-
VDDIOx
VHSEL
OSC_IN input pin low level voltage
-
VSS
-
0.3 VDDIOx
Voltage scaling
Range 1
7
-
-
Voltage scaling
Range 2
18
tw(HSEH)
OSC_IN high or low time
tw(HSEL)
V
ns
-
-
1. Guaranteed by design.
Figure 21. High-speed external clock source AC timing diagram
tw(HSEH)
VHSEH
90%
VHSEL
10%
tr(HSE)
tf(HSE)
tw(HSEL)
t
THSE
MS19214V2
130/221
DS11912 Rev 7
STM32L452xx
Electrical characteristics
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 22.
Table 56. Low-speed external user clock characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
kHz
fLSE_ext
User external clock source frequency
-
-
32.768
1000
VLSEH
OSC32_IN input pin high level voltage
-
0.7 VDDIOx
-
VDDIOx
VLSEL
OSC32_IN input pin low level voltage
-
VSS
-
0.3 VDDIOx
-
250
-
-
tw(LSEH)
OSC32_IN high or low time
tw(LSEL)
V
ns
1. Guaranteed by design.
Figure 22. Low-speed external clock source AC timing diagram
tw(LSEH)
VLSEH
90%
VLSEL
10%
tr(LSE)
tf(LSE)
t
tw(LSEL)
TLSE
MS19215V2
DS11912 Rev 7
131/221
192
Electrical characteristics
STM32L452xx
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 57. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Table 57. HSE oscillator characteristics(1)
Symbol
fOSC_IN
RF
Conditions(2)
Min
Typ
Max
Unit
Oscillator frequency
-
4
8
48
MHz
Feedback resistor
-
-
200
-
kΩ
-
-
5.5
VDD = 3 V,
Rm = 30 Ω,
CL = 10 pF@8 MHz
-
0.44
-
VDD = 3 V,
Rm = 45 Ω,
CL = 10 pF@8 MHz
-
0.45
-
VDD = 3 V,
Rm = 30 Ω,
CL = 5 pF@48 MHz
-
0.68
-
VDD = 3 V,
Rm = 30 Ω,
CL = 10 pF@48 MHz
-
0.94
-
VDD = 3 V,
Rm = 30 Ω,
CL = 20 pF@48 MHz
-
1.77
-
Startup
-
-
1.5
mA/V
VDD is stabilized
-
2
-
ms
Parameter
(3)
During startup
IDD(HSE)
Gm
HSE current consumption
Maximum critical crystal
transconductance
tSU(HSE)(4) Startup time
mA
1. Guaranteed by design.
2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 23). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
132/221
DS11912 Rev 7
STM32L452xx
Note:
Electrical characteristics
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 23. Typical application with an 8 MHz crystal
Resonator with integrated
capacitors
CL1
OSC_IN
8 MHz
resonator
CL2
REXT (1)
fHSE
RF
Bias
controlled
gain
OSC_OUT
MS19876V1
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. All the information given in this paragraph are based on design simulation results
obtained with typical external components specified in Table 58. In the application, the
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Table 58. LSE oscillator characteristics (fLSE = 32.768 kHz)(1)
Symbol
IDD(LSE)
Parameter
LSE current consumption
Maximum critical crystal
Gmcritmax
gm
tSU(LSE)(3) Startup time
Conditions(2)
Min
Typ
Max
LSEDRV[1:0] = 00
Low drive capability
-
250
-
LSEDRV[1:0] = 01
Medium low drive capability
-
315
-
LSEDRV[1:0] = 10
Medium high drive capability
-
500
-
LSEDRV[1:0] = 11
High drive capability
-
630
-
LSEDRV[1:0] = 00
Low drive capability
-
-
0.5
LSEDRV[1:0] = 01
Medium low drive capability
-
-
0.75
LSEDRV[1:0] = 10
Medium high drive capability
-
-
1.7
LSEDRV[1:0] = 11
High drive capability
-
-
2.7
VDD is stabilized
-
2
-
DS11912 Rev 7
Unit
nA
µA/V
s
133/221
192
Electrical characteristics
STM32L452xx
1. Guaranteed by design.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
3.
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 24. Typical application with a 32.768 kHz crystal
Resonator with integrated
capacitors
CL1
OSC32_IN
fLSE
Drive
programmable
amplifier
32.768 kHz
resonator
OSC32_OUT
CL2
MS30253V2
Note:
134/221
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
DS11912 Rev 7
STM32L452xx
6.3.8
Electrical characteristics
Internal clock source characteristics
The parameters given in Table 59 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 23: General operating
conditions. The provided curves are characterization results, not tested in production.
High-speed internal (HSI16) RC oscillator
Table 59. HSI16 oscillator characteristics(1)
Symbol
fHSI16
TRIM
Parameter
HSI16 Frequency
HSI16 user trimming step
DuCy(HSI16)(2) Duty Cycle
Conditions
Min
Typ
Max
Unit
15.88
-
16.08
MHz
Trimming code is not a
multiple of 64
0.2
0.3
0.4
Trimming code is a
multiple of 64
-4
-6
-8
45
-
55
%
-1
-
1
%
-2
-
1.5
%
-0.1
-
0.05
%
VDD=3.0 V, TA=30 °C
-
%
∆Temp(HSI16)
HSI16 oscillator frequency TA= 0 to 85 °C
drift over temperature
TA= -40 to 125 °C
∆VDD(HSI16)
HSI16 oscillator frequency
VDD=1.62 V to 3.6 V
drift over VDD
tsu(HSI16)(2)
HSI16 oscillator start-up
time
-
-
0.8
1.2
μs
tstab(HSI16)(2)
HSI16 oscillator
stabilization time
-
-
3
5
μs
IDD(HSI16)(2)
HSI16 oscillator power
consumption
-
-
155
190
μA
1. Guaranteed by characterization results.
2. Guaranteed by design.
DS11912 Rev 7
135/221
192
Electrical characteristics
STM32L452xx
Figure 25. HSI16 frequency versus temperature
MHz
16.4
+2%
16.3
+1.5%
16.2
+1%
16.1
16
15.9
-1%
15.8
-1.5%
15.7
-2%
15.6
-40
-20
0
20
min
40
mean
60
80
100
120 °C
max
MSv39299V1
136/221
DS11912 Rev 7
STM32L452xx
Electrical characteristics
Multi-speed internal (MSI) RC oscillator
Table 60. MSI oscillator characteristics(1)
Symbol
Parameter
Conditions
MSI mode
fMSI
∆TEMP(MSI)(2)
MSI frequency
after factory
calibration, done
at VDD=3 V and
TA=30 °C
MSI oscillator
frequency drift
over temperature
Min
Typ
Max
Range 0
98.7
100
101.3
Range 1
197.4
200
202.6
Range 2
394.8
400
405.2
Range 3
789.6
800
810.4
Range 4
0.987
1
1.013
Range 5
1.974
2
2.026
Range 6
3.948
4
4.052
Range 7
7.896
8
8.104
Range 8
15.79
16
16.21
Range 9
23.69
24
24.31
Range 10
31.58
32
32.42
Range 11
47.38
48
48.62
Range 0
-
98.304
-
Range 1
-
196.608
-
Range 2
-
393.216
-
Range 3
-
786.432
-
Range 4
-
1.016
-
PLL mode Range 5
XTAL=
32.768 kHz Range 6
-
1.999
-
-
3.998
-
Range 7
-
7.995
-
Range 8
-
15.991
-
Range 9
-
23.986
-
Range 10
-
32.014
-
Range 11
-
48.005
-
-3.5
-
3
-8
-
6
MSI mode
TA= -0 to 85 °C
TA= -40 to 125 °C
DS11912 Rev 7
Unit
kHz
MHz
kHz
MHz
%
137/221
192
Electrical characteristics
STM32L452xx
Table 60. MSI oscillator characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
VDD=1.62 V
to 3.6 V
-1.2
-
VDD=2.4 V
to 3.6 V
-0.5
-
VDD=1.62 V
to 3.6 V
-2.5
-
VDD=2.4 V
to 3.6 V
-0.8
-
VDD=1.62 V
to 3.6 V
-5
-
VDD=2.4 V
to 3.6 V
-1.6
-
TA= -40 to 85 °C
-
1
2
TA= -40 to 125 °C
-
2
4
Range 0 to 3
∆VDD(MSI)(2)
MSI oscillator
frequency drift
MSI mode
over VDD
(reference is 3 V)
Range 4 to 7
Range 8 to 11
∆FSAMPLING
(MSI)(2)(6)
P_USB
Jitter(MSI)(6)
MT_USB
Jitter(MSI)(6)
CC jitter(MSI)(6)
P jitter(MSI)(6)
tSU(MSI)(6)
tSTAB(MSI)(6)
138/221
Frequency
MSI mode
variation in
sampling mode(3)
Period jitter for
USB clock(4)
PLL mode
Range 11
Medium term jitter PLL mode
for USB clock(5)
Range 11
Max
Unit
0.5
0.7
%
1.2
for next
transition
-
-
-
3.458
for paired
transition
-
-
-
3.916
for next
transition
-
-
-
2
for paired
transition
-
-
-
1
%
ns
ns
RMS cycle-tocycle jitter
PLL mode Range 11
-
-
60
-
ps
RMS Period jitter
PLL mode Range 11
-
-
50
-
ps
Range 0
-
-
10
20
Range 1
-
-
5
10
Range 2
-
-
4
8
Range 3
-
-
3
7
Range 4 to 7
-
-
3
6
Range 8 to 11
-
-
2.5
6
10 % of final
frequency
-
-
0.25
0.5
5 % of final
frequency
-
-
0.5
1.25
1 % of final
frequency
-
-
-
2.5
MSI oscillator
start-up time
MSI oscillator
stabilization time
PLL mode
Range 11
DS11912 Rev 7
us
ms
STM32L452xx
Electrical characteristics
Table 60. MSI oscillator characteristics(1) (continued)
Symbol
IDD(MSI)(6)
Parameter
MSI oscillator
power
consumption
Conditions
MSI and
PLL mode
Min
Typ
Max
Range 0
-
-
0.6
1
Range 1
-
-
0.8
1.2
Range 2
-
-
1.2
1.7
Range 3
-
-
1.9
2.5
Range 4
-
-
4.7
6
Range 5
-
-
6.5
9
Range 6
-
-
11
15
Range 7
-
-
18.5
25
Range 8
-
-
62
80
Range 9
-
-
85
110
Range 10
-
-
110
130
Range 11
-
-
155
190
Unit
µA
1. Guaranteed by characterization results.
2. This is a deviation for an individual part once the initial frequency has been measured.
3. Sampling mode means Low-power run/Low-power sleep modes with Temperature sensor disable.
4. Average period of MSI @48 MHz is compared to a real 48 MHz clock over 28 cycles. It includes frequency tolerance + jitter
of MSI @48 MHz clock.
5. Only accumulated jitter of MSI @48 MHz is extracted over 28 cycles.
For next transition: min. and max. jitter of 2 consecutive frame of 28 cycles of the MSI @48 MHz, for 1000 captures over 28
cycles.
For paired transitions: min. and max. jitter of 2 consecutive frame of 56 cycles of the MSI @48 MHz, for 1000 captures over
56 cycles.
6. Guaranteed by design.
DS11912 Rev 7
139/221
192
Electrical characteristics
STM32L452xx
Figure 26. Typical current consumption versus MSI frequency
High-speed internal 48 MHz (HSI48) RC oscillator
Table 61. HSI48 oscillator characteristics(1)
Symbol
Parameter
fHSI48
HSI48 Frequency
TRIM
HSI48 user trimming step
USER TRIM
COVERAGE
HSI48 user trimming coverage
DuCy(HSI48) Duty Cycle
Accuracy of the HSI48 oscillator
ACCHSI48_REL over temperature (factory
calibrated)
DVDD(HSI48)
HSI48 oscillator frequency drift
with VDD
Conditions
VDD=3.0V, TA=30°C
±32 steps
VDD = 3.0 V to 3.6 V,
TA = –15 to 85 °C
Min
Typ
Max
Unit
-
48
-
MHz
-
0.11(2)
0.18(2)
%
±3(3)
±3.5(3)
-
%
45(2)
-
55(2)
%
-
-
±3(3)
%
VDD = 1.65 V to 3.6 V,
TA = –40 to 125 °C
-
-
±4.5(3)
VDD = 3 V to 3.6 V
-
0.025(3)
0.05(3)
VDD = 1.65 V to 3.6 V
-
0.05(3)
0.1(3)
%
tsu(HSI48)
HSI48 oscillator start-up time
-
-
2.5(2)
6(2)
μs
IDD(HSI48)
HSI48 oscillator power
consumption
-
-
340(2)
380(2)
μA
140/221
DS11912 Rev 7
STM32L452xx
Electrical characteristics
Table 61. HSI48 oscillator characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
NT jitter
Next transition jitter
Accumulated jitter on 28 cycles(4)
-
-
+/-0.15(2)
-
ns
PT jitter
Paired transition jitter
Accumulated jitter on 56 cycles(4)
-
-
+/-0.25(2)
-
ns
1. VDD = 3 V, TA = –40 to 125°C unless otherwise specified.
2. Guaranteed by design.
3. Guaranteed by characterization results.
4. Jitter measurement are performed without clock source activated in parallel.
Figure 27. HSI48 frequency versus temperature
%
6
4
2
0
-2
-4
-6
-50
-30
-10
Avg
10
30
50
70
90
min
110
130
°C
max
MSv40989V1
Low-speed internal (LSI) RC oscillator
Table 62. LSI oscillator characteristics(1)
Symbol
fLSI
tSU(LSI)(2)
tSTAB(LSI)(2)
IDD(LSI)(2)
Parameter
LSI Frequency
LSI oscillator startup time
LSI oscillator
stabilization time
LSI oscillator power
consumption
Conditions
Min
Typ
Max
Unit
VDD = 3.0 V, TA = 30 °C
31.04
-
32.96
VDD = 1.62 to 3.6 V, TA = -40 to 125 °C
29.5
-
34
-
-
80
130
μs
5% of final frequency
-
125
180
μs
-
-
110
180
nA
kHz
1. Guaranteed by characterization results.
2. Guaranteed by design.
DS11912 Rev 7
141/221
192
Electrical characteristics
6.3.9
STM32L452xx
PLL characteristics
The parameters given in Table 63 are derived from tests performed under temperature and
VDD supply voltage conditions summarized in Table 23: General operating conditions.
Table 63. PLL, PLLSAI1 characteristics(1)
Symbol
fPLL_IN
Parameter
Conditions
Min
Typ
Max
Unit
PLL input clock(2)
-
4
-
16
MHz
PLL input clock duty cycle
-
45
-
55
%
Voltage scaling Range 1
3.0968
-
80
Voltage scaling Range 2
3.0968
-
26
Voltage scaling Range 1
12
-
80
Voltage scaling Range 2
12
-
26
Voltage scaling Range 1
12
-
80
Voltage scaling Range 2
12
-
26
Voltage scaling Range 1
96
-
344
Voltage scaling Range 2
96
-
128
-
15
40
-
40
-
-
30
-
VCO freq = 96 MHz
-
200
260
VCO freq = 192 MHz
-
300
380
VCO freq = 344 MHz
-
520
650
fPLL_P_OUT PLL multiplier output clock P
fPLL_Q_OUT PLL multiplier output clock Q
fPLL_R_OUT PLL multiplier output clock R
fVCO_OUT
tLOCK
Jitter
IDD(PLL)
PLL VCO output
PLL lock time
RMS cycle-to-cycle jitter
RMS period jitter
PLL power consumption on
VDD(1)
System clock 80 MHz
MHz
MHz
MHz
MHz
μs
±ps
1. Guaranteed by design.
2. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between the 2 PLLs.
142/221
DS11912 Rev 7
μA
STM32L452xx
6.3.10
Electrical characteristics
Flash memory characteristics
Table 64. Flash memory characteristics(1)
Symbol
Parameter
Conditions
Typ
Max
Unit
tprog
64-bit programming time
-
81.69
90.76
µs
tprog_row
one row (32 double
word) programming time
normal programming
2.61
2.90
fast programming
1.91
2.12
tprog_page
one page (2 Kbyte)
programming time
normal programming
20.91
23.24
fast programming
15.29
16.98
22.02
24.47
normal programming
5.35
5.95
fast programming
3.91
4.35
22.13
24.59
Write mode
3.4
-
Erase mode
3.4
-
Write mode
7 (for 2 μs)
-
Erase mode
7 (for 41 μs)
-
tERASE
tprog_bank
tME
IDD
Page (2 KB) erase time
one bank (512 Kbyte)
programming time
-
Mass erase time
(one or two banks)
-
Average consumption
from VDD
Maximum current (peak)
ms
s
ms
mA
1. Guaranteed by design.
Table 65. Flash memory endurance and data retention
Symbol
NEND
tRET
Min(1)
Unit
TA = –40 to +105 °C
10
kcycles
1 kcycle(2) at TA = 85 °C
30
Parameter
Endurance
Data retention
Conditions
1 kcycle
(2)
1 kcycle
(2)
at TA = 105 °C
15
at TA = 125 °C
7
(2)
at TA = 55 °C
30
10 kcycles(2) at TA = 85 °C
15
10 kcycles
10 kcycles
(2)
at TA = 105 °C
Years
10
1. Guaranteed by characterization results.
2. Cycling performed over the whole temperature range.
DS11912 Rev 7
143/221
192
Electrical characteristics
6.3.11
STM32L452xx
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 66. They are based on the EMS levels and classes
defined in application note AN1709.
Table 66. EMS characteristics
Conditions
Level/
Class
Symbol
Parameter
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 80 MHz,
conforming to IEC 61000-4-2
3B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 80 MHz,
conforming to IEC 61000-4-4
5A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
144/221
•
Corrupted program counter
•
Unexpected reset
•
Critical Data corruption (control registers...)
DS11912 Rev 7
STM32L452xx
Electrical characteristics
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 67. EMI characteristics
Symbol
Parameter
Max vs.
[fHSE/fHCLK]
Monitored
frequency band
Conditions
Unit
8 MHz/ 80 MHz
SEMI
Peak level
0.1 MHz to 30 MHz
-8
VDD = 3.6 V, TA = 25 °C, 30 MHz to 130 MHz
LQFP100 package
130 MHz to 1 GHz
compliant with IEC
61967-2
1 GHz to 2 GHz
2
8
EMI Level
6.3.12
dBµV
5
2.5
-
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the ANSI/JEDEC standard.
Table 68. ESD absolute maximum ratings
Symbol
VESD(HBM)
Ratings
Conditions
TA = +25 °C, conforming
Electrostatic discharge
to ANSI/ESDA/JEDEC
voltage (human body model)
JS-001
Electrostatic discharge
VESD(CDM) voltage (charge device
model)
TA = +25 °C,
conforming to ANSI/ESD
STM5.3.1
Class
Maximum
value(1)
2
2000
Unit
V
C3
250
1. Guaranteed by characterization results.
DS11912 Rev 7
145/221
192
Electrical characteristics
STM32L452xx
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
•
A supply overvoltage is applied to each power supply pin.
•
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 69. Electrical sensitivities
Symbol
LU
6.3.13
Parameter
Static latch-up class
Conditions
Class
TA = +105 °C conforming to JESD78A
II
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal
product operation. However, in order to give an indication of the robustness of the
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests
are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or
oscillator frequency deviation).
The characterization results are given in Table 70.
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
Table 70. I/O current injection susceptibility(1)
Functional
susceptibility
Symbol
IINJ
Description
Positive
injection
Injected current on all pins except PA4, PA5, PE8, PE9,
PE10, PE11, PE12
-5
N/A(2)
Injected current on PE8, PE9, PE10, PE11, PE12
-0
N/A(2)
Injected current on PA4, PA5 pins
-5
0
1. Guaranteed by characterization results.
2. Injection is not possible.
146/221
Unit
Negative
injection
DS11912 Rev 7
mA
STM32L452xx
6.3.14
Electrical characteristics
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 71 are derived from tests
performed under the conditions summarized in Table 23: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant.
Table 71. I/O static characteristics
Symbol
VIL(1)
VIH(1)
Vhys(3)
Parameter
Conditions
Min
Typ
Max
Unit
I/O input low level
voltage
1.62 V