STM32L476xx
Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100DMIPS,
up to 1MB Flash, 128 KB SRAM, USB OTG FS, LCD, ext. SMPS
Datasheet - production data
Features
• Ultra-low-power with FlexPowerControl
– 1.71 V to 3.6 V power supply
– -40 °C to 85/105/125 °C temperature range
– 300 nA in VBAT mode: supply for RTC and
32x32-bit backup registers
– 30 nA Shutdown mode (5 wakeup pins)
– 120 nA Standby mode (5 wakeup pins)
– 420 nA Standby mode with RTC
– 1.1 µA Stop 2 mode, 1.4 µA with RTC
– 100 µA/MHz run mode (LDO Mode)
– 39 μA/MHz run mode (@3.3 V SMPS
Mode)
– Batch acquisition mode (BAM)
– 4 µs wakeup from Stop mode
– Brown out reset (BOR)
– Interconnect matrix
• Core: Arm® 32-bit Cortex®-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait-state execution
from Flash memory, frequency up to 80 MHz,
MPU, 100DMIPS and DSP instructions
• Performance benchmark
– 1.25 DMIPS/MHz (Drystone 2.1)
– 273.55 CoreMark® (3.42 CoreMark/MHz @
80 MHz)
• Energy benchmark
– 294 ULPMark™ CP score
– 106 ULPMark™ PP score
• Clock Sources
– 4 to 48 MHz crystal oscillator
– 32 kHz crystal oscillator for RTC (LSE)
– Internal 16 MHz factory-trimmed RC (±1%)
– Internal low-power 32 kHz RC (±5%)
– Internal multispeed 100 kHz to 48 MHz
oscillator, auto-trimmed by LSE (better than
±0.25 % accuracy)
– 3 PLLs for system clock, USB, audio, ADC
June 2019
This is information on a product in full production.
LQFP144 (20 × 20)
LQFP100 (14 × 14) UFBGA132 (7 × 7) WLCSP72
LQFP64 (10 × 10) UFBGA144 (10 × 10) WLCSP81
• Up to 114 fast I/Os, most 5 V-tolerant, up to 14
I/Os with independent supply down to 1.08 V
• RTC with HW calendar, alarms and calibration
• LCD 8× 40 or 4× 44 with step-up converter
• Up to 24 capacitive sensing channels: support
touchkey, linear and rotary touch sensors
• 16x timers: 2x 16-bit advanced motor-control,
2x 32-bit and 5x 16-bit general purpose, 2x 16bit basic, 2x low-power 16-bit timers (available
in Stop mode), 2x watchdogs, SysTick timer
• Memories
– Up to 1 MB Flash, 2 banks read-whilewrite, proprietary code readout protection
– Up to 128 KB of SRAM including 32 KB
with hardware parity check
– External memory interface for static
memories supporting SRAM, PSRAM,
NOR and NAND memories
– Quad SPI memory interface
• 4x digital filters for sigma delta modulator
• Rich analog peripherals (independent supply)
– 3x 12-bit ADC 5 Msps, up to 16-bit with
hardware oversampling, 200 µA/Msps
– 2x 12-bit DAC output channels, low-power
sample and hold
– 2x operational amplifiers with built-in PGA
– 2x ultra-low-power comparators
• 20x communication interfaces
– USB OTG 2.0 full-speed, LPM and BCD
– 2x SAIs (serial audio interface)
– 3x I2C FM+(1 Mbit/s), SMBus/PMBus
– 5x USARTs (ISO 7816, LIN, IrDA, modem)
– 1x LPUART (Stop 2 wake-up)
DS10198 Rev 8
1/270
www.st.com
STM32L476xx
–
–
–
–
3x SPIs (and 1x Quad SPI)
CAN (2.0B Active) and SDMMC interface
SWPMI single wire protocol master I/F
IRTIM (Infrared interface)
• 14-channel DMA controller
Reference
STM32L476xx
2/270
• True random number generator
• CRC calculation unit, 96-bit unique ID
• Development support: serial wire debug
(SWD), JTAG, Embedded Trace Macrocell™
• All packages are ECOPACK2® compliant
Table 1. Device summary
Part numbers
STM32L476RG, STM32L476JG, STM32L476MG, STM32L476ME, STM32L476VG,
STM32L476QG, STM32L476ZG, STM32L476RE, STM32L476JE, STM32L476VE,
STM32L476QE, STM32L476ZE, STM32L476RC, STM32L476VC
DS10198 Rev 8
STM32L476xx
Contents
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1
Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 18
3.3
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6
Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.8
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 21
3.9
Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9.1
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.9.4
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.9.5
Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.9.6
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.10
Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.11
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.12
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.13
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.14
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.15
3.16
3.14.1
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 40
3.14.2
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 40
Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.15.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.15.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.15.3
VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
DS10198 Rev 8
3/270
6
Contents
4
4/270
STM32L476xx
3.17
Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.18
Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.19
Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.20
Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.21
Liquid crystal display controller (LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.22
Digital filter for Sigma-Delta Modulators (DFSDM) . . . . . . . . . . . . . . . . . . 45
3.23
Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.24
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.24.1
Advanced-control timer (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.24.2
General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16,
TIM17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.24.3
Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.24.4
Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 49
3.24.5
Infrared interface (IRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.24.6
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.24.7
System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.24.8
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.25
Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 51
3.26
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.27
Universal synchronous/asynchronous receiver transmitter (USART) . . . 53
3.28
Low-power universal asynchronous receiver transmitter (LPUART) . . . . 54
3.29
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.30
Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.31
Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 56
3.32
Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.33
Secure digital input/output and MultiMediaCards Interface (SDMMC) . . . 57
3.34
Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 57
3.35
Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 58
3.36
Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.37
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.37.1
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.37.2
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
DS10198 Rev 8
STM32L476xx
Contents
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.2
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . 119
6.3.3
Embedded reset and power control block characteristics . . . . . . . . . . 120
6.3.4
Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.5
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.6
Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.3.7
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.8
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.3.9
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.3.10
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.3.11
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.3.12
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.3.13
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.3.14
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.3.15
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.3.16
Extended interrupt and event controller input (EXTI) characteristics . . 176
6.3.17
Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.3.18
Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . 177
6.3.19
Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 190
6.3.20
Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 195
6.3.21
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
6.3.22
Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.3.23
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
DS10198 Rev 8
5/270
6
Contents
7
STM32L476xx
6.3.24
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.3.25
LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.3.26
DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
6.3.27
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.3.28
Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 208
6.3.29
FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
6.3.30
SWPMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
7.1
LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
7.2
UFBGA144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
7.3
UFBGA132 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
7.4
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.5
WLCSP81 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7.6
WLCSP72 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
7.7
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
7.8
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
7.8.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
7.8.2
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 261
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
6/270
DS10198 Rev 8
STM32L476xx
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
STM32L476xx family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . 15
Access status versus readout protection level and execution modes. . . . . . . . . . . . . . . . . 19
STM32L476xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
STM32L476xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
DFSDM1 implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
STM32L476xx USART/UART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
SAI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
STM32L476xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Alternate function AF0 to AF7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Alternate function AF8 to AF15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
STM32L476xx memory map and peripheral register boundary addresses . . . . . . . . . . . 108
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 120
Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . 125
Current consumption in Run modes, code with data processing running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Current consumption in Run modes, code with data processing running from Flash,
ART disable and power supplied by external SMPS (VDD12 = 1.10 V). . . . . . . . . . . . . . 128
Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Current consumption in Run, code with data processing running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . 130
Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . 131
Typical current consumption in Run, with different codes running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Typical current consumption in Run, with different codes running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.05 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Typical current consumption in Run and Low-power run modes, with different codes
DS10198 Rev 8
7/270
10
List of tables
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
8/270
STM32L476xx
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Typical current consumption in Run modes, with different codes running from
Flash, ART disable and power supplied by external SMPS (VDD12 = 1.10 V) . . . . . . . . 133
Typical current consumption in Run modes, with different codes running
from Flash, ART disable and power supplied by external SMPS (VDD12 = 1.05 V) . . . . 133
Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Typical current consumption in Run mode, with different codes running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . 134
Typical current consumption in Run mode, with different codes running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.05 V) . . . . . . . . . . . . . . . . . 135
Current consumption in Sleep and Low-power sleep modes, Flash ON . . . . . . . . . . . . . 136
Current consumption in Sleep, Flash ON and power supplied by external SMPS
(VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Current consumption in Low-power sleep modes, Flash in power-down . . . . . . . . . . . . . 137
Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Wakeup time using USART/LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
PLL, PLLSAI1, PLLSAI2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
EXTI input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
ADC accuracy - limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
DS10198 Rev 8
STM32L476xx
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.
Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.
Table 107.
Table 108.
Table 109.
Table 110.
Table 111.
Table 112.
Table 113.
Table 114.
Table 115.
Table 116.
Table 117.
Table 118.
Table 119.
Table 120.
Table 121.
Table 122.
Table 123.
Table 124.
Table 125.
Table 126.
Table 127.
Table 128.
List of tables
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
WWDG min/max timeout value at 80 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Quad SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
SD / MMC dynamic characteristics, VDD=2.7 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . 216
eMMC dynamic characteristics, VDD = 1.71 V to 1.9 V . . . . . . . . . . . . . . . . . . . . . . . . . . 217
USB OTG DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
USB OTG electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
USB BCD DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 223
Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . 223
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 224
Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 225
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 226
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 228
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 233
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 237
SWPMI electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
LQFP - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
UFBGA - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
UFBGA144 recommended PCB design rules (0.80 mm pitch BGA) . . . . . . . . . . . . . . . . 244
UFBGA - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
UFBGA132 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 247
LQFP - 100 pins, 14 x 14 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
WLCSP- 81-ball, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
WLCSP81 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 253
WLCSP - 72-ball, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip
DS10198 Rev 8
9/270
10
List of tables
STM32L476xx
scale package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Table 129. WLCSP72 recommended PCB design rules (0.4 mm pitch BGA) . . . . . . . . . . . . . . . . . . 256
Table 130. LQFP - 64 pins, 10 x 10 mm low-profile quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Table 131. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Table 132. STM32L476xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Table 133. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
10/270
DS10198 Rev 8
STM32L476xx
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
STM32L476xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Voltage reference buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
STM32L476Zx LQFP144 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
STM32L476Zx, external SMPS device, LQFP144 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . 62
STM32L476Zx UFBGA144 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
STM32L476Qx UFBGA132 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
STM32L476Qx, external SMPS device, UFBGA132 ballout . . . . . . . . . . . . . . . . . . . . . . . 64
STM32L476Vx LQFP100 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
STM32L476Mx WLCSP81 ballout(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
STM32L476Jx WLCSP72 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
STM32L476Jx, external SMPS device, WLCSP72 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . 66
STM32L476Rx LQFP64 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
STM32L476Rx, external SMPS device, LQFP64 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . 67
STM32L476xx memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Current consumption measurement scheme with and without external
SMPS power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Typical current consumption versus MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
I/O AC characteristics definition(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Quad SPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Quad SPI timing diagram - DDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
USB OTG timings – definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . 219
Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 222
Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 224
Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 225
DS10198 Rev 8
11/270
12
List of figures
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
12/270
STM32L476xx
Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 227
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 233
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 236
NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 237
LQFP - 144-pin, 20 x 20 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . 239
LQFP - 144-pin,20 x 20 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
LQFP144 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
UFBGA - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
UFBGA - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
UFBGA144 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
UFBGA - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
UFBGA - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
UFBGA132 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
LQFP - 100 pins, 14 x 14 mm low-profile quad flat package outline. . . . . . . . . . . . . . . . . 249
LQFP - 100 pins, 14 x 14 mm low-profile quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
LQFP100 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
WLCSP - 81-ball, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level
chip scale package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
WLCSP81- 81-ball, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
WLCSP81 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
WLCSP - 72-ball, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip
scale package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
WLCSP72 - 72-ball, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level
chip scale package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
WLCSP72 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
LQFP - 64 pins, 10 x 10 mm low-profile quad flat package outline. . . . . . . . . . . . . . . . . . 258
LQFP - 64 pins, 10 x 10 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
LQFP64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
LQFP64 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
DS10198 Rev 8
STM32L476xx
1
Introduction
Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32L476xx microcontrollers.
This document should be read in conjunction with the STM32L4x6 reference manual
(RM0351). The reference manual is available from the STMicroelectronics website
www.st.com.
For information on the Arm®(a) Cortex®-M4 core, please refer to the Cortex®-M4 Technical
Reference Manual, available from the www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS10198 Rev 8
13/270
60
Description
2
STM32L476xx
Description
The STM32L476xx devices are the ultra-low-power microcontrollers based on the highperformance Arm® Cortex®-M4 32-bit RISC core operating at a frequency of up to 80 MHz.
The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all
Arm® single-precision data-processing instructions and data types. It also implements a full
set of DSP instructions and a memory protection unit (MPU) which enhances application
security.
The STM32L476xx devices embed high-speed memories (Flash memory up to 1 Mbyte, up
to 128 Kbyte of SRAM), a flexible external memory controller (FSMC) for static memories
(for devices with packages of 100 pins and more), a Quad SPI flash memories interface
(available on all packages) and an extensive range of enhanced I/Os and peripherals
connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.
The STM32L476xx devices embed several protection mechanisms for embedded Flash
memory and SRAM: readout protection, write protection, proprietary code readout
protection and Firewall.
The devices offer up to three fast 12-bit ADCs (5 Msps), two comparators, two operational
amplifiers, two DAC channels, an internal voltage reference buffer, a low-power RTC, two
general-purpose 32-bit timer, two 16-bit PWM timers dedicated to motor control, seven
general-purpose 16-bit timers, and two 16-bit low-power timers. The devices support four
digital filters for external sigma delta modulators (DFSDM).
In addition, up to 24 capacitive sensing channels are available. The devices also embed an
integrated LCD driver 8x40 or 4x44, with internal step-up converter.
They also feature standard and advanced communication interfaces.
•
Three I2Cs
•
Three SPIs
•
Three USARTs, two UARTs and one Low-Power UART.
•
Two SAIs (Serial Audio Interfaces)
•
One SDMMC
•
One CAN
•
One USB OTG full-speed
•
One SWPMI (Single Wire Protocol Master Interface)
The STM32L476xx operates in the -40 to +85 °C (+105 °C junction), -40 to +105 °C
(+125 °C junction) and -40 to +125 °C (+130 °C junction) temperature ranges from a 1.71 to
3.6 V VDD power supply when using internal LDO regulator and a 1.05 to 1.32V VDD12
power supply when using external SMPS supply. A comprehensive set of power-saving
modes allows the design of low-power applications.
Some independent power supplies are supported: analog independent supply input for
ADC, DAC, OPAMPs and comparators, 3.3 V dedicated supply input for USB and up to 14
I/Os can be supplied independently down to 1.08V. A VBAT input allows to backup the RTC
and backup registers. Dedicated VDD12 power supplies can be used to bypass the internal
LDO regulator when connected to an external SMPS.
The STM32L476xx family offers six packages from 64-pin to 144-pin packages.
14/270
DS10198 Rev 8
STM32L476xx
Description
Table 2. STM32L476xx family device features and peripheral counts
Peripheral
Flash memory
STM32
L476Zx
STM32
L476Qx
STM32
L476Vx
STM32
L476Mx
STM32
L476Rx
512K
512K
256K 512K
512K
512K
256K 512K
1MB
1MB
1MB
1MB
1MB
1MB
B
B
B
B
B
B
B
B
SRAM
128KB
External memory
controller for static
memories
Yes
Yes(1)
Yes
No
Quad SPI
Timers
STM32
L476Jx
No
No
2
2
2
Yes
8x30 or
4x32
Yes
8x28 or
4x32
Yes
8x28 or 4x32
Yes
Advanced
control
2 (16-bit)
General
purpose
5 (16-bit)
2 (32-bit)
Basic
2 (16-bit)
Low -power
2 (16-bit)
SysTick
timer
1
Watchdog
timers
(independent,
window)
2
SPI
3
2C
3
I
USART
UART
LPUART
3
2
1
Comm.
SAI
interfaces
CAN
2
1
USB OTG
FS
Yes
SDMMC
Yes
SWPMI
Yes
Digital filters for sigmadelta modulators
Yes (4 filters)
Number of channels
8
RTC
Yes
Tamper pins
LCD
COM x SEG
3
Yes
8x40 or
4x44
Yes
8x40 or
4x44
Yes
8x40 or 4x44
DS10198 Rev 8
15/270
60
Description
STM32L476xx
Table 2. STM32L476xx family device features and peripheral counts (continued)
Peripheral
STM32
L476Zx
STM32
L476Qx
STM32
L476Vx
Random generator
(2)
GPIOs
Wakeup pins
Nb of I/Os down to
1.08 V
STM32
L476Mx
STM32
L476Jx
STM32
L476Rx
Yes
114
5
14
109
5
14
82
5
0
65
4
6
57
4
6
51
4
0
Capacitive sensing
Number of channels
24
24
21
12
12
12
12-bit ADCs
Number of channels
3
24
3
19
3
16
3
16
3
16
3
16
12-bit DAC channels
2
Internal voltage
reference buffer
Yes
No
Analog comparator
2
Operational amplifiers
2
Max. CPU frequency
80 MHz
Operating voltage (VDD)
1.71 to 3.6 V
Operating voltage
(VDD12)
1.05 to 1.32 V
Operating temperature
Packages
Ambient operating temperature: -40 to 85 °C / -40 to 105 °C / -40 to 125 °C
Junction temperature: -40 to 105 °C / -40 to 125 °C / -40 to 130 °C
LQFP144
UFBGA144
UFBGA
132
LQFP100
WLCSP81
WLCSP72
LQFP64
1. For the LQFP100 package, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory
using the NE1 Chip Select.
2. In case external SMPS package type is used, 2 GPIO's are replaced by VDD12 pins to connect the SMPS power supplies
hence reducing the number of available GPIO's by 2.
16/270
DS10198 Rev 8
STM32L476xx
Description
Figure 1. STM32L476xx block diagram
JTCK/SWCLK
JTAG & SW
MPU
ETM
NVIC
JTDO/SWD, JTDO
CLK, NE[4:1], NL, NBL[1:0],
A[25:0], D[15:0], NOE, NWE,
NWAIT, NCE3, INT3 as AF
Flexible static memory controller (FSMC):
SRAM, PSRAM, NOR Flash,
NAND Flash
NJTRST, JTDI,
TRACECLK
D-BUS
TRACED[3:0]
ARM Cortex-M4
80 MHz
FPU
BK1_IO[3:0]
CLK
NCS
Quad SPI memory interface
I-BUS
Flash
up to
1 MB
AHB bus-matrix
FIFO
@ VDDUSB
USB
OTG
PHY
ART
ACCEL/
CACHE
RNG
S-BUS
SRAM 96 KB
DP
DM
SCL, SDA, INTN, ID, VBUS, SOF
SRAM 32 KB
VDD
AHB2 80 MHz
DMA2
VDD12
Power management
Voltage
regulator
3.3 to 1.2 V
VDD = 1.71 to 3.6 V
VDD12 = 1.05 to 1.32 V(1)
VSS
DMA1
@ VDD
@ VDD
8 Groups of
3 channels max as AF
supervision
RC HSI
Touch sensing controller
Supply
reset
MSI
VDDIO2, VDDUSB
Int
BOR
VDDA, VSSA
RC LSI
PA[15:0]
VDD, VSS, NRST
GPIO PORT A
GPIO PORT B
PC[15:0]
GPIO PORT C
PLL 1&2&3
AHB1 80 MHz
PB[15:0]
PVD, PVM
@VDD
OSC_IN
XTAL OSC
OSC_OUT
4- 16MHz
IWDG
PD[15:0]
GPIO PORT D
PE[15:0]
GPIO PORT E
VBAT = 1.55 to 3.6 V
Standby
PF[15:0]
interface
Reset & clock
M AN
AGT
control
@VBAT
GPIO PORT F
XTAL 32 kHz
OSC32_IN
OSC32_OUT
PG[15:0]
GPIO PORT G
PCLKx
FCLK
GPIO PORT H
HCLKx
PH[1:0]
RTC
RTC_TS
AWU
Backup register
RTC_TAMPx
RTC_OUT
@ VDD
U STemperature
AR T 2 M sensor
Bps
TIM2
32b
4 channels, ETR as AF
TIM3
16b
4 channels, ETR as AF
TIM4
16b
4 channels, ETR as AF
TIM5
32b
4 channels, ETR as AF
CRC
@ VDDA
8 analog inputs common
to the 3 ADCs
ADC1
8 analog inputs common
to the ADC1 & 2
ADC2
8 analog inputs for ADC3
ADC3
IF
ITF
USART2
@ VDDA
VREF+
VREF Buffer
114 AF
AHB/APB2
AHB/APB1
EXT IT. WKUP
SDIO / MMC
3 compl. channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),
ETR, BKIN, BKIN2 as AF
TIM1 / PWM
16b
3 compl. channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),
ETR, BKIN, BKIN2 as AF
TIM8 / PWM
16b
FIFO
D[7:0]
CMD, CK as AF
IrDA
smcard
UART4
RX, TX, CTS, RTS as AF
UART5
RX, TX, CTS, RTS as AF
SP2
MOSI, MISO, SCK, NSS as AF
SP3
MOSI, MISO, SCK, NSS as AF
16b
TIM17
16b
smcard
USART1
SAI1
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK
MCLK_B, SD_B, FS_B, SCK_B as AF
SAI2
SDCKIN[7:0], SDDATIN[7:0],
SDCKOUT,SDTRIG as AF
DFSDM
@ VDDA
INP, INM, OUT
INP, INM, OUT
TIM6
16b
TIM7
16b
A
60PM
B Hz
2
SPI1
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK
MCLK_B, SD_B, FS_B, SCK_B as AF
SCL, SDA, SMBA as AF
I2C3/SMBUS
SCL, SDA, SMBA as AF
bxCAN1
IrDA
MOSI, MISO,
SCK, NSS as AF
SCL, SDA, SMBA as AF
I2C2/SMBUS
@ VDDA
DAC1
COMP2
TX, RX as AF
@VDDA
OpAmp1
VOUT, VINM, VINP
OpAmp2
VOUT, VINM, VINP
LCD Booster
VLCD = 2.5V to 3.6V
LCD 8x40
SEGx, COMx as AF
LPUART1
RX, TX, CTS, RTS as AF
SWPMI1
IO
RX, TX, SUSPEND as AF
LPTIM1
IN1, IN2, OUT, ETR as AF
LPTIM2
IN1, OUT, ETR as AF
COMP1
ITF
FIFO
TIM16
1 channel,
1 compl. channel, BKIN as AF
VLCD
1 channel,
1 compl. channel, BKIN as AF
A P B(max)
1 3 0 M Hz
APB1 80 MHz
16b
RX, TX, CK, CTS, RTS as AF
WWDG
APB2 80MHz
TIM15
RX, TX, CK, CTS, RTS as AF
IrDA
I2C1/SMBUS
2 channels,
1 compl. channel, BKIN as AF
RX, TX, CK,CTS,
RTS as AF
USART3
smcard
Firewall
1. Only available when using external SMPS supply mode.
Note:
DAC1_OUT1
DAC1_OUT2
MS31263V8
AF: alternate function on I/O pins.
DS10198 Rev 8
17/270
60
Functional overview
STM32L476xx
3
Functional overview
3.1
Arm® Cortex®-M4 core with FPU
The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm® processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an Arm® core in the memory size
usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage
development tools, while avoiding saturation.
With its embedded Arm® core, the STM32L476xx family is compatible with all Arm® tools
and software.
Figure 1 shows the general block diagram of the STM32L476xx family devices.
3.2
Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard Arm® Cortex®-M4 processors. It balances the inherent performance advantage of
the Arm® Cortex®-M4 over Flash memory technologies, which normally requires the
processor to wait for the Flash memory at higher frequencies.
To release the processor near 100 DMIPS performance at 80MHz, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 80 MHz.
3.3
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
18/270
DS10198 Rev 8
STM32L476xx
3.4
Functional overview
Embedded Flash memory
STM32L476xx devices feature up to 1 Mbyte of embedded Flash memory available for
storing programs and data. The Flash memory is divided into two banks allowing readwhile-write operations. This feature allows to perform a read operation from one bank while
an erase or program operation is performed to the other bank. The dual bank boot is also
supported. Each bank contains 256 pages of 2 Kbyte.
Flexible protections can be configured thanks to option bytes:
•
Readout protection (RDP) to protect the whole memory. Three levels are available:
–
Level 0: no readout protection
–
Level 1: memory readout protection: the Flash memory cannot be read from or
written to if either debug features are connected, boot in RAM or bootloader is
selected
–
Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial
wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This
selection is irreversible.
Table 3. Access status versus readout protection level and execution modes
Area
Debug, boot from RAM or boot
from system memory (loader)
User execution
Protection
level
Read
Write
Erase
Read
Write
Erase
Main
memory
1
Yes
Yes
Yes
No
No
No
2
Yes
Yes
Yes
N/A
N/A
N/A
System
memory
1
Yes
No
No
Yes
No
No
2
Yes
No
No
N/A
N/A
N/A
Option
bytes
1
Yes
Yes
Yes
Yes
Yes
Yes
2
Yes
No
No
N/A
N/A
N/A
No
No
N/A(1)
Backup
registers
SRAM2
(1)
1
Yes
Yes
N/A
2
Yes
Yes
N/A
N/A
N/A
N/A
1
Yes
Yes
Yes(1)
No
No
No(1)
2
Yes
Yes
Yes
N/A
N/A
N/A
1. Erased when RDP change from Level 1 to Level 0.
•
Write protection (WRP): the protected area is protected against erasing and
programming. Two areas per bank can be selected, with 2-Kbyte granularity.
•
Proprietary code readout protection (PCROP): a part of the flash memory can be
protected against read and write from third parties. The protected area is execute-only:
it can only be reached by the STM32 CPU, as an instruction code, while all other
accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited.
One area per bank can be selected, with 64-bit granularity. An additional option bit
(PCROP_RDP) allows to select if the PCROP area is erased or not when the RDP
protection is changed from Level 1 to Level 0.
DS10198 Rev 8
19/270
60
Functional overview
STM32L476xx
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
3.5
•
single error detection and correction
•
double error detection.
•
The address of the ECC fail can be read in the ECC register
Embedded SRAM
STM32L476xx devices feature up to 128 Kbyte of embedded SRAM. This SRAM is split into
two blocks:
•
96 Kbyte mapped at address 0x2000 0000 (SRAM1)
•
32 Kbyte located at address 0x1000 0000 with hardware parity check (SRAM2).
This block is accessed through the ICode/DCode buses for maximum performance.
These 32 Kbyte SRAM can also be retained in Standby mode.
The SRAM2 can be write-protected with 1 Kbyte granularity.
The memory can be accessed in read/write at CPU clock speed with 0 wait states.
3.6
Firewall
The device embeds a Firewall which protects code sensitive and secure data from any
access performed by a code executed outside of the protected areas.
Each illegal access generates a reset which kills immediately the detected intrusion.
The Firewall main features are the following:
•
Three segments can be protected and defined thanks to the Firewall registers:
–
Code segment (located in Flash or SRAM1 if defined as executable protected
area)
–
Non-volatile data segment (located in Flash)
–
Volatile data segment (located in SRAM1)
•
The start address and the length of each segments are configurable:
–
Code segment: up to 1024 Kbyte with granularity of 256 bytes
–
Non-volatile data segment: up to 1024 Kbyte with granularity of 256 bytes
–
Volatile data segment: up to 96 Kbyte with a granularity of 64 bytes
•
Specific mechanism implemented to open the Firewall to get access to the protected
areas (call gate entry sequence)
•
Volatile data segment can be shared or not with the non-protected code
•
Volatile data segment can be executed or not depending on the Firewall configuration
The Flash readout protection must be set to level 2 in order to reach the expected level of
protection.
20/270
DS10198 Rev 8
STM32L476xx
3.7
Functional overview
Boot modes
At startup, BOOT0 pin and BOOT1 option bit are used to select one of three boot options:
•
Boot from user Flash
•
Boot from system memory
•
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART, I2C, SPI, CAN or USB OTG FS in Device mode through DFU (device
firmware upgrade).
3.8
Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.
3.9
Power supply management
3.9.1
Power supply schemes
Note:
•
VDD = 1.71 to 3.6 V: external power supply for I/Os (VDDIO1), the internal regulator and
the system analog such as reset, power management and internal clocks. It is provided
externally through VDD pins.
•
VDD12 = 1.05 to 1.32 V: external power supply bypassing internal regulator when
connected to an external SMPS. It is provided externally through VDD12 pins and only
available on packages with the external SMPS supply option. VDD12 does not require
any external decoupling capacitance and cannot support any external load.
•
VDDA = 1.62 V (ADCs/COMPs) / 1.8 (DAC/OPAMPs) to 3.6 V: external analog power
supply for ADCs, DAC, OPAMPs, Comparators and Voltage reference buffer. The VDDA
voltage level is independent from the VDD voltage.
•
VDDUSB = 3.0 to 3.6 V: external independent power supply for USB transceivers. The
VDDUSB voltage level is independent from the VDD voltage.
•
VDDIO2 = 1.08 to 3.6 V: external power supply for 14 I/Os (PG[15:2]). The VDDIO2
voltage level is independent from the VDD voltage.
•
VLCD = 2.5 to 3.6 V: the LCD controller can be powered either externally through VLCD
pin, or internally from an internal voltage generated by the embedded step-up
converter.
•
VBAT = 1.55 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
When the functions supplied by VDDA, VDDUSB or VDDIO2 are not used, these supplies
should preferably be shorted to VDD.
DS10198 Rev 8
21/270
60
Functional overview
STM32L476xx
Note:
If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V
tolerant (refer to Table 20: Voltage characteristics).
Note:
VDDIOx is the I/Os general purpose digital functions supply. VDDIOx represents VDDIO1 or
VDDIO2, with VDDIO1 = VDD. VDDIO2 supply voltage level is independent from VDDIO1.
Figure 2. Power supply overview
VDDA domain
VDDA
VSSA
3 x A/D converters
2 x comparators
2 x D/A converters
2 x operational amplifiers
Voltage reference buffer
VLCD
VDDUSB
VSS
LCD
USB transceivers
VDDIO2 domain
VDDIO2
VSS
I/O ring
PG[15:2]
VDD domain
VDD
VDDIO1
I/O ring
Reset block
Temp. sensor
3 x PLL, HSI, MSI
VSS
Standby circuitry
(Wakeup logic, IWDG)
Voltage regulator
VDD12
VCORE domain
VCORE
Core
SRAM1
SRAM2
Digital peripherals
Flash memory
Low voltage detector
Backup domain
VBAT
LSE crystal 32 K osc
BKP registers
RCC BDCR register
RTC
MSv45700V1
During power-up and power-down phases, the following power sequence requirements
must be respected:
•
When VDD is below 1 V, other power supplies (VDDA, VDDUSB, VDDIO2, VLCD) must
remain below VDD + 300 mV.
•
When VDD is above 1 V, all power supplies are independent.
During the power-down phase, VDD can temporarily become lower than other supplies only
if the energy provided to the MCU remains below 1 mJ; this allows external decoupling
capacitors to be discharged with different time constants during the power-down transient
phase.
22/270
DS10198 Rev 8
STM32L476xx
Functional overview
Figure 3. Power-up/down sequence
V
3.6
VDDX(1)
VDD
VBOR0
1
0.3
Power-on
Invalid supply area
Operating mode
VDDX < VDD + 300 mV
Power-down
VDDX independent from VDD
time
MSv47490V1
1. VDDX refers to any power supply among VDDA, VDDUSB, VDDIO2, VLCD.
3.9.2
Power supply supervisor
The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes
except Shutdown and ensuring proper operation after power-on and during power down.
The device remains in reset mode when the monitored supply voltage VDD is below a
specified threshold, without the need for an external reset circuit.
The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected
through option bytes.The device features an embedded programmable voltage detector
(PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An
interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
In addition, the device embeds a Peripheral Voltage Monitor which compares the
independent supply voltages VDDA, VDDUSB, VDDIO2 with a fixed threshold in order to ensure
that the peripheral is in its functional supply range.
DS10198 Rev 8
23/270
60
Functional overview
3.9.3
STM32L476xx
Voltage regulator
Two embedded linear voltage regulators supply most of the digital circuitries: the main
regulator (MR) and the low-power regulator (LPR).
•
The MR is used in the Run and Sleep modes and in the Stop 0 mode.
•
The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is
also used to supply the 32 Kbyte SRAM2 in Standby with SRAM2 retention.
•
Both regulators are in power-down in Standby and Shutdown modes: the regulator
output is in high impedance, and the kernel circuitry is powered down thus inducing
zero consumption.
The ultralow-power STM32L476xx supports dynamic voltage scaling to optimize its power
consumption in run mode. The voltage from the Main Regulator that supplies the logic
(VCORE) can be adjusted according to the system’s maximum operating frequency.
There are two power consumption ranges:
•
Range 1 with the CPU running at up to 80 MHz.
•
Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also
limited to 26 MHz.
The VCORE can be supplied by the low-power regulator, the main regulator being switched
off. The system is then in Low-power run mode.
•
Low-power run mode with the CPU running at up to 2 MHz. Peripherals with
independent clock can be clocked by HSI16.
When the MR is in use, the STM32L476xx with the external SMPS option allows to force an
external VCORE supply on the VDD12 supply pins.
When VDD12 is forced by an external source and is higher than the output of the internal
LDO, the current is taken from this external supply and the overall power efficiency is
significantly improved if using an external step down DC/DC converter.
3.9.4
Low-power modes
The ultra-low-power STM32L476xx supports seven low-power modes to achieve the best
compromise between low-power consumption, short startup time, available peripherals and
available wakeup sources.
24/270
DS10198 Rev 8
Mode
Regulator
(1)
CPU
Flash
SRAM
Clocks
DMA & Peripherals(2)
Wakeup source
MR
range 1
Run
SMPS
range 2
High
MR
range2
DS10198 Rev 8
LPR
All
40 µA/MHz(5)
Yes
ON(4)
ON
Any
N/A
Sleep
MR
range2
All except OTG_FS, RNG
39 µA/MHz(6)
Yes
ON(4)
ON
Any
except
PLL
All except OTG_FS, RNG
N/A
to Range 1: 4 µs
to Range 2: 64 µs
All
6 cycles
13 µA/MHz(5)
No
ON(4)
ON(7)
Any interrupt or
event
Any
35 µA/MHz
All except OTG_FS, RNG
6 cycles
15 µA/MHz(6)
No
ON(4)
ON(7)
Any
except
PLL
All except OTG_FS, RNG
Any interrupt or
event
40 µA/MHz
6 cycles
25/270
Functional overview
LPR
136 µA/MHz
37 µA/MHz
SMPS
range 2
Low
LPSleep
N/A
100 µA/MHz
MR range
1
SMPS
range 2
High
Wakeup time
112 µA/MHz
SMPS
range 2
Low
LPRun
Consumption(3)
STM32L476xx
Table 4. STM32L476xx modes overview
Mode
Regulator
(1)
CPU
Flash
SRAM
Clocks
DMA & Peripherals(2)
Wakeup source
Consumption(3)
Wakeup time
LSE
LSI
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1,2)
USARTx (x=1...5)(9)
LPUART1(9)
I2Cx (x=1...3)(10)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1..2)
USARTx (x=1...5)(9)
LPUART1(9)
I2Cx (x=1...3)(10)
LPTIMx (x=1,2)
OTG_FS(11)
SWPMI1(12)
108 µA
0.7 µs in SRAM
4.5 µs in Flash
LSE
LSI
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1,2)
USARTx (x=1...5)(9)
LPUART1(9)
I2Cx (x=1...3)(10)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1..2)
USARTx (x=1...5)(9)
LPUART1(9)
I2Cx (x=1...3)(10)
LPTIMx (x=1,2)
OTG_FS(11)
SWPMI1(12)
6.6 µA w/o RTC
6.9 µA w RTC
4 µs in SRAM
6 µs in Flash
Range 1(8)
Stop 0
No
Off
ON
Range 2(8)
DS10198 Rev 8
Stop 1
LPR
No
Off
ON
Functional overview
26/270
Table 4. STM32L476xx modes overview (continued)
STM32L476xx
Mode
Stop 2
Regulator
(1)
LPR
CPU
No
Flash
Off
DS10198 Rev 8
OFF
Shutdown
OFF
ON
Clocks
DMA & Peripherals(2)
Wakeup source
Consumption(3)
LSE
LSI
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1..2)
I2C3(10)
LPUART1(9)
LPTIM1
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1..2)
I2C3(10)
LPUART1(9)
LPTIM1
1.1 µA w/o RTC
1.4 µA w/RTC
LSE
LSI
BOR, RTC, IWDG
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pull-down
Reset pin
5 I/Os (WKUPx)(13)
BOR, RTC, IWDG
LSE
RTC
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pulldown(14)
Reset pin
5 I/Os (WKUPx)(13)
RTC
SRAM2
ON
LPR
Standby
SRAM
Powered
Off
Powered
Off
Off
Off
Powered
Off
Powered
Off
Wakeup time
5 µs in SRAM
7 µs in Flash
0.35 µA w/o RTC
0.65 µA w/ RTC
14 µs
0.12 µA w/o RTC
0.42 µA w/ RTC
0.03 µA w/o RTC
0.33 µA w/ RTC
256 µs
2. All peripherals can be active or clock gated to save power consumption.
3. Typical current at VDD = 1.8 V, 25°C. Consumptions values provided running from SRAM, Flash memory Off, 80 MHz in Range 1, 26 MHz in Range 2, 2 MHz in
LPRun/LPSleep.
5. Theoretical value based on VDD = 3.3 V, DC/DC Efficiency of 85%, VCORE = 1.10 V
27/270
6. Theoretical value based on VDD = 3.3 V, DC/DC Efficiency of 85%, VCORE = 1.05 V
7. The SRAM1 and SRAM2 clocks can be gated on or off independently.
Functional overview
1. LPR means Main regulator is OFF and Low-power regulator is ON.
4. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM.
STM32L476xx
Table 4. STM32L476xx modes overview (continued)
9. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
10. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
11. OTG_FS wakeup by resume from suspend and attach detection protocol event.
12. SWPMI1 wakeup by resume from suspend.
13. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
14. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.
Functional overview
28/270
8. SMPS mode can be used in STOP0 Mode, but no significant power gain can be expected.
DS10198 Rev 8
STM32L476xx
STM32L476xx
Functional overview
By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the
user to select one of the low-power modes described below:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
•
Low-power run mode
This mode is achieved with VCORE supplied by the low-power regulator to minimize the
regulator's operating current. The code can be executed from SRAM or from Flash,
and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can
be clocked by HSI16.
•
Low-power sleep mode
This mode is entered from the low-power run mode. Only the CPU clock is stopped.
When wakeup is triggered by an event or an interrupt, the system reverts to the lowpower run mode.
•
Stop 0, Stop 1 and Stop 2 modes
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI
RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still
running.
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).
Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode
to detect their wakeup condition.
Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode,
most of the VCORE domain is put in a lower leakage mode.
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller
wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator
remains ON, allowing a very fast wakeup time but with much higher consumption.
The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI
up to 48 MHz or HSI16, depending on software configuration.
•
Standby mode
The Standby mode is used to achieve the lowest power consumption with BOR. The
internal regulator is switched off so that the VCORE domain is powered off. The PLL, the
MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.
The RTC can remain active (Standby mode with RTC, Standby mode without RTC).
The brown-out reset (BOR) always remains active in Standby mode.
The state of each I/O during standby mode can be selected by software: I/O with
internal pull-up, internal pull-down or floating.
After entering Standby mode, SRAM1 and register contents are lost except for registers
in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in
Standby mode, supplied by the low-power Regulator (Standby with SRAM2 retention
mode).
The device exits Standby mode when an external reset (NRST pin), an IWDG reset,
WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm,
periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).
The system clock after wakeup is MSI up to 8 MHz.
DS10198 Rev 8
29/270
60
Functional overview
•
STM32L476xx
Shutdown mode
The Shutdown mode allows to achieve the lowest power consumption. The internal
regulator is switched off so that the VCORE domain is powered off. The PLL, the HSI16,
the MSI, the LSI and the HSE oscillators are also switched off.
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).
The BOR is not available in Shutdown mode. No power voltage monitoring is possible
in this mode, therefore the switch to Backup domain is not supported.
SRAM1, SRAM2 and register contents are lost except for registers in the Backup
domain.
The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin
event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic
wakeup, timestamp, tamper).
The system clock after wakeup is MSI at 4 MHz.
30/270
DS10198 Rev 8
STM32L476xx
Functional overview
Table 5. Functionalities depending on the working mode(1)
-
-
Y
-
Y
-
-
-
-
-
-
-
-
-
-
O(2)
O(2)
O(2)
O(2)
-
-
-
-
-
-
-
-
-
SRAM1 (up to
96 KB)
Y
Y(3)
Y
Y(3)
Y
-
Y
-
-
-
-
-
-
SRAM2 (32 KB)
Y
Y(3)
Y
Y(3)
Y
-
Y
-
O(4)
-
-
-
-
FSMC
O
O
O
O
-
-
-
-
-
-
-
-
-
Quad SPI
O
O
O
O
-
-
-
-
-
-
-
-
-
Backup Registers
Y
Y
Y
Y
Y
-
Y
-
Y
-
Y
-
Y
Brown-out reset
(BOR)
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
-
-
Programmable
Voltage Detector
(PVD)
O
O
O
O
O
O
O
O
-
-
-
-
-
Peripheral Voltage
Monitor (PVMx;
x=1,2,3,4)
O
O
O
O
O
O
O
O
-
-
-
-
-
DMA
O
O
O
O
-
-
-
-
-
-
-
-
-
High Speed Internal
(HSI16)
O
O
O
O
(5)
-
(5)
-
-
-
-
-
-
High Speed External
(HSE)
O
O
O
O
-
-
-
-
-
-
-
-
-
Low Speed Internal
(LSI)
O
O
O
O
O
-
O
-
O
-
-
-
-
Low Speed External
(LSE)
O
O
O
O
O
-
O
-
O
-
O
-
O
Multi-Speed Internal
(MSI)
O
O
O
O
-
-
-
-
-
-
-
-
-
Clock Security
System (CSS)
O
O
O
O
-
-
-
-
-
-
-
-
-
Clock Security
System on LSE
O
O
O
O
O
O
O
O
O
O
-
-
-
RTC / Auto wakeup
O
O
O
O
O
O
O
O
O
O
O
O
O
Number of RTC
Tamper pins
3
3
3
3
3
O
3
O
3
O
3
O
3
Peripheral
CPU
Flash memory (up to
1 MB)
Run
Sleep
Lowpower
run
Lowpower
sleep
-
DS10198 Rev 8
Wakeup capability
-
Wakeup capability
Standby Shutdown
Wakeup capability
Stop 2
Wakeup capability
Stop 0/1
VBAT
31/270
60
Functional overview
STM32L476xx
Table 5. Functionalities depending on the working mode(1) (continued)
O
(8)
O
O
(8)
Lowpower
run
Lowpower
sleep
-
O
O
O
-
-
-
-
O
O
O
-
Wakeup capability
USB OTG FS
O
Sleep
Wakeup capability
LCD
Run
Standby Shutdown
Wakeup capability
Peripheral
Stop 2
Wakeup capability
Stop 0/1
-
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VBAT
USARTx
(x=1,2,3,4,5)
O
O
O
O
O(6) O(6)
Low-power UART
(LPUART)
O
O
O
O
O(6) O(6) O(6) O(6)
-
-
-
-
-
I2Cx (x=1,2)
O
O
O
O
O(7) O(7)
(7)
-
-
-
-
-
-
-
O(7)
O(7)
O(7)
-
-
-
-
-
I2C3
O
O
O
O
O
SPIx (x=1,2,3)
O
O
O
O
-
-
-
-
-
-
-
-
-
CAN
O
O
O
O
-
-
-
-
-
-
-
-
-
SDMMC1
O
O
O
O
-
-
-
-
-
-
-
-
-
SWPMI1
O
O
O
O
-
O
-
-
-
-
-
-
-
SAIx (x=1,2)
O
O
O
O
-
-
-
-
-
-
-
-
-
DFSDM1
O
O
O
O
-
-
-
-
-
-
-
-
-
ADCx (x=1,2,3)
O
O
O
O
-
-
-
-
-
-
-
-
-
DAC1
O
O
O
O
O
-
-
-
-
-
-
-
-
VREFBUF
O
O
O
O
O
-
-
-
-
-
-
-
-
OPAMPx (x=1,2)
O
O
O
O
O
-
-
-
-
-
-
-
-
COMPx (x=1,2)
O
O
O
O
O
O
O
O
-
-
-
-
-
Temperature sensor
O
O
O
O
-
-
-
-
-
-
-
-
-
Timers (TIMx)
O
O
O
O
-
-
-
-
-
-
-
-
-
Low-power timer 1
(LPTIM1)
O
O
O
O
O
O
O
O
-
-
-
-
-
Low-power timer 2
(LPTIM2)
O
O
O
O
O
O
-
-
-
-
-
-
-
Independent
watchdog (IWDG)
O
O
O
O
O
O
O
O
O
O
-
-
-
Window watchdog
(WWDG)
O
O
O
O
-
-
-
-
-
-
-
-
-
SysTick timer
O
O
O
O
-
-
-
-
-
-
-
-
-
Touch sensing
controller (TSC)
O
O
O
O
-
-
-
-
-
-
-
-
-
32/270
DS10198 Rev 8
STM32L476xx
Functional overview
Table 5. Functionalities depending on the working mode(1) (continued)
-
-
O(8)
O(8)
-
-
-
-
-
-
-
-
-
-
-
CRC calculation unit
O
O
O
O
-
-
-
-
-
-
-
-
-
GPIOs
O
O
O
O
O
O
O
O
(9)
5
pins
(11)
5
pins
-
Peripheral
Random number
generator (RNG)
Run
Sleep
Lowpower
run
Lowpower
sleep
-
(10)
Wakeup capability
-
Wakeup capability
Standby Shutdown
Wakeup capability
Stop 2
Wakeup capability
Stop 0/1
VBAT
(10)
1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). - = Not available.
2. The Flash can be configured in power-down mode. By default, it is not in power-down mode.
3. The SRAM clock can be gated on or off.
4. SRAM2 content is preserved when the bit RRS is set in PWR_CR3 register.
5. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by
the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not
need it anymore.
6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or
received frame event.
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
8. Voltage scaling Range 1 only.
9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when
exiting the Shutdown mode.
3.9.5
Reset mode
In order to improve the consumption under reset, the I/Os state under and after reset is
“analog state” (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is
deactivated when the reset source is internal.
3.9.6
VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
supercapacitor, or from VDD when no external battery and an external supercapacitor are
present. The VBAT pin supplies the RTC with LSE and the backup registers. Three antitamper detection pins are available in VBAT mode.
VBAT operation is automatically activated when VDD is not present.
An internal VBAT battery charging circuit is embedded and can be activated when VDD is
present.
Note:
When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
DS10198 Rev 8
33/270
60
Functional overview
3.10
STM32L476xx
Interconnect matrix
Several peripherals have direct connections between them. This allows autonomous
communication between peripherals, saving CPU resources thus power supply
consumption. In addition, these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run
and sleep, Stop 0, Stop 1 and Stop 2 modes.
Run
Sleep
Low-power run
Low-power sleep
Stop 0 / Stop 1
Stop 2
Table 6. STM32L476xx peripherals interconnect matrix
TIMx
Timers synchronization or chaining
Y
Y
Y
Y
-
-
ADCx
DAC1
DFSDM1
Conversion triggers
Y
Y
Y
Y
-
-
DMA
Memory to memory transfer trigger
Y
Y
Y
Y
-
-
COMPx
Comparator output blanking
Y
Y
Y
Y
-
-
IRTIM
Infrared interface output generation
Y
Y
Y
Y
-
-
TIM1, 8
TIM2, 3
Timer input channel, trigger, break from
analog signals comparison
Y
Y
Y
Y
-
-
LPTIMERx
Low-power timer triggered by analog
signals comparison
Y
Y
Y
Y
Y
(1)
TIM1, 8
Timer triggered by analog watchdog
Y
Y
Y
Y
-
-
TIM16
Timer input channel from RTC events
Y
Y
Y
Y
-
-
LPTIMERx
Low-power timer triggered by RTC alarms
or tampers
Y
Y
Y
Y
Y
(1)
All clocks sources (internal TIM2
and external)
TIM15, 16, 17
Clock source used as input channel for
RC measurement and trimming
Y
Y
Y
Y
-
-
USB
Timer triggered by USB SOF
Y
Y
-
-
-
-
Timer break
Y
Y
Y
Y
-
-
Interconnect source
TIMx
TIM16/TIM17
COMPx
ADCx
RTC
Interconnect
destination
TIM2
CSS
CPU (hard fault)
RAM (parity error)
Flash memory (ECC error)
TIM1,8
COMPx
TIM15,16,17
PVD
DFSDM1 (analog
watchdog, short circuit
detection)
34/270
Interconnect action
DS10198 Rev 8
Y
Y
STM32L476xx
Functional overview
Low-power run
Low-power sleep
Stop 0 / Stop 1
Stop 2
GPIO
Sleep
Interconnect source
Run
Table 6. STM32L476xx peripherals interconnect matrix (continued)
TIMx
External trigger
Y
Y
Y
Y
-
-
LPTIMERx
External trigger
Y
Y
Y
Y
Y
(1)
ADCx
DAC1
DFSDM1
Conversion external trigger
Y
Y
Y
Y
-
-
Interconnect
destination
Interconnect action
Y
1. LPTIM1 only.
DS10198 Rev 8
35/270
60
Functional overview
3.11
STM32L476xx
Clocks and startup
The clock controller (see Figure 4) distributes the clocks coming from different oscillators to
the core and the peripherals. It also manages clock gating for low-power modes and
ensures clock robustness. It features:
•
Clock prescaler: to get the best trade-off between speed and current consumption,
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler
•
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
•
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
•
System clock source: four different clock sources can be used to drive the master
clock SYSCLK:
•
36/270
–
4-48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply
a PLL. The HSE can also be configured in bypass mode for an external clock.
–
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can
supply a PLL
–
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate
12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is
available in the system (LSE), the MSI frequency can be automatically trimmed by
hardware to reach better than ±0.25% accuracy. In this mode the MSI can feed the
USB device, saving the need of an external high-speed crystal (HSE). The MSI
can supply a PLL.
–
System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency
at 80 MHz.
Auxiliary clock source: two ultralow-power clock sources that can be used to drive
the LCD controller and the real-time clock:
–
32.768 kHz low-speed external crystal (LSE), supporting four drive capability
modes. The LSE can also be configured in bypass mode for an external clock.
–
32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock accuracy is ±5% accuracy.
•
Peripheral clock sources: Several peripherals (USB, SDMMC, RNG, SAI, USARTs,
I2Cs, LPTimers, ADC, SWPMI) have their own independent clock whatever the system
clock. Three PLLs, each having three independent outputs allowing the highest
flexibility, can generate independent clocks for the ADC, the USB/SDMMC/RNG and
the two SAIs.
•
Startup clock: after reset, the microcontroller restarts by default with an internal 4 MHz
clock (MSI). The prescaler ratio and clock source can be changed by the application
program as soon as the code execution starts.
•
Clock security system (CSS): this feature can be enabled by software. If a HSE clock
failure occurs, the master clock is automatically switched to HSI16 and a software
DS10198 Rev 8
STM32L476xx
Functional overview
interrupt is generated if enabled. LSE failure can also be detected and generated an
interrupt.
•
Clock-out capability:
–
MCO: microcontroller clock output: it outputs one of the internal clocks for
external use by the application. Low frequency clocks (LSI, LSE) are available
down to Stop 1 low power state.
–
LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes
down to Standby mode. LSE can also be output on LSCO in Shutdown mode.
LSCO is not available in VBAT mode.
Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and
the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB
domains is 80 MHz.
DS10198 Rev 8
37/270
60
Functional overview
STM32L476xx
Figure 4. Clock tree
to IWDG
LSI RC 32 kHz
LSCO
to RTC and LCD
OSC32_OUT
LSE OSC
32.768 kHz
/32
OSC32_IN
LSE
LSI
MSI
HSE
MCO
/ 1→16
to PWR
SYSCLK
HSI16
OSC_OUT
HSE OSC
4-48 MHz
OSC_IN
to AHB bus, core, memory and DMA
Clock
source
control
PLLCLK
AHB
PRESC
/ 1,2,..512
HCLK
HSE
Clock
detector
FCLK Cortex free running clock
to Cortex system timer
/8
MSI
SYSCLK
APB1
PRESC
/ 1,2,4,8,16
HSI16
PCLK1
to APB1 peripherals
x1 or x2
HSI RC
16 MHz
LSE
HSI16
SYSCLK
to USARTx
x=2..5
to LPUART1
HSI16
SYSCLK
MSI RC
100 kHz – 48 MHz
to TIMx
x=2..7
to I2Cx
x=1,2,3
LSI
LSE
HSI16
to LPTIMx
x=1,2
HSI16
to SWPMI
MSI
PLL
/M
VCO FVCO / P
APB2
PRESC
/ 1,2,4,8,16
HSE
PLLSAI3CLK
/Q
PLL48M1CLK
/R
PLLCLK
PLLSAI1
VCO FVCO / P
HSI16
PLL48M2CLK
/R
PLLADC1CLK
to TIMx
x=1,8,15,16,17
LSE
HSI16
SYSCLK
MSI
to ADC
PLLSAI2CLK
/Q
/R
to
USART1
48 MHz clock to USB, RNG, SDMMC
SYSCLK
PLLSAI2
VCO FVCO / P
to APB2 peripherals
x1 or x2
PLLSAI1CLK
/Q
PCLK2
to SAI1
PLLADC2CLK
SAI1_EXTCLK
to SAI2
SAI2_EXTCLK
MS32440V3
38/270
DS10198 Rev 8
STM32L476xx
3.12
Functional overview
General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be
achieved thanks to their mapping on the AHB2 bus.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
3.13
Direct memory access controller (DMA)
The device embeds 2 DMAs. Refer to Table 7: DMA implementation for the features
implementation.
Direct memory access (DMA) is used in order to provide high-speed data transfer between
peripherals and memory as well as memory to memory. Data can be quickly moved by DMA
without any CPU actions. This keeps CPU resources free for other operations.
The two DMA controllers have 14 channels in total, each dedicated to managing memory
access requests from one or more peripherals. Each has an arbiter for handling the priority
between DMA requests.
The DMA supports:
•
14 independently configurable channels (requests)
•
Each channel is connected to dedicated hardware DMA requests, software trigger is
also supported on each channel. This configuration is done by software.
•
Priorities between requests from channels of one DMA are software programmable (4
levels consisting of very high, high, medium, low) or hardware in case of equality
(request 1 has priority over request 2, etc.)
•
Independent source and destination transfer size (byte, half word, word), emulating
packing and unpacking. Source/destination addresses must be aligned on the data
size.
•
Support for circular buffer management
•
3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error)
logically ORed together in a single interrupt request for each channel
•
Memory-to-memory transfer
•
Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral
transfers
•
Access to Flash, SRAM, APB and AHB peripherals as source and destination
•
Programmable number of data to be transferred: up to 65536.
Table 7. DMA implementation
DMA features
DMA1
DMA2
Number of regular channels
7
7
DS10198 Rev 8
39/270
60
Functional overview
STM32L476xx
3.14
Interrupts and events
3.14.1
Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 81 maskable interrupt channels plus the 16 interrupt lines of the Cortex®M4.
The NVIC benefits are the following:
•
Closely coupled NVIC gives low latency interrupt processing
•
Interrupt entry vector table address passed directly to the core
•
Allows early processing of interrupts
•
Processing of late arriving higher priority interrupts
•
Support for tail chaining
•
Processor state automatically saved on interrupt entry, and restored on interrupt exit,
with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal
interrupt latency.
3.14.2
Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 40 edge detector lines used to generate
interrupt/event requests and wake-up the system from Stop mode. Each external line can be
independently configured to select the trigger event (rising edge, falling edge, both) and can
be masked independently. A pending register maintains the status of the interrupt requests.
The internal lines are connected to peripherals with wakeup from Stop mode capability. The
EXTI can detect an external line with a pulse width shorter than the internal clock period. Up
to 114 GPIOs can be connected to the 16 external interrupt lines.
40/270
DS10198 Rev 8
STM32L476xx
3.15
Functional overview
Analog to digital converter (ADC)
The device embeds 3 successive approximation analog-to-digital converters with the
following features:
•
12-bit native resolution, with built-in calibration
•
5.33 Msps maximum conversion rate with full resolution
Down to 18.75 ns sampling time
–
Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit
resolution)
•
Up to 24 external channels, some of them shared between ADC1 and ADC2, or ADC1,
ADC2 and ADC3.
•
5 internal channels: internal reference voltage, temperature sensor, VBAT/3,
DAC1_OUT1 and DAC1_OUT2.
•
One external reference pin is available on some package, allowing the input voltage
range to be independent from the power supply
•
Single-ended and differential mode inputs
•
Low-power design
•
3.15.1
–
–
Capable of low-current operation at low conversion rate (consumption decreases
linearly with speed)
–
Dual clock domain architecture: ADC speed independent from CPU frequency
Highly versatile digital interface
–
Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups
of analog signals conversions can be programmed to differentiate background and
high-priority real-time conversions
–
Handles two ADC converters for dual mode operation (simultaneous or
interleaved sampling modes)
–
Each ADC support multiple trigger inputs for synchronization with on-chip timers
and external signals
–
Results stored into 3 data register or in RAM with DMA controller support
–
Data pre-processing: left/right alignment and per channel offset compensation
–
Built-in oversampling unit for enhanced SNR
–
Channel-wise programmable sampling time
–
Three analog watchdog for automatic voltage monitoring, generating interrupts
and trigger for selected timers
–
Hardware assistant to prepare the context of the injected channels to allow fast
context switching
Temperature sensor
The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature.
The temperature sensor is internally connected to the ADC1_IN17 and ADC3_IN17 input
channels which is used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
DS10198 Rev 8
41/270
60
Functional overview
STM32L476xx
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
Table 8. Temperature sensor calibration values
3.15.2
Calibration value name
Description
Memory address
TS_CAL1
TS ADC raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75A8 - 0x1FFF 75A9
TS_CAL2
TS ADC raw data acquired at a
temperature of 110 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75CA - 0x1FFF 75CB
Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for
the ADC and Comparators. VREFINT is internally connected to the ADC1_IN0 input
channel. The precise voltage of VREFINT is individually measured for each part by ST
during production test and stored in the system memory area. It is accessible in read-only
mode.
Table 9. Internal voltage reference calibration values
3.15.3
Calibration value name
Description
Memory address
VREFINT
Raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75AA - 0x1FFF 75AB
VBAT battery voltage monitoring
This embedded hardware feature allows the application to measure the VBAT battery voltage
using the internal ADC channel ADC1_IN18 or ADC3_IN18. As the VBAT voltage may be
higher than VDDA, and thus outside the ADC input range, the VBAT pin is internally
connected to a bridge divider by 3. As a consequence, the converted digital value is one
third the VBAT voltage.
3.16
Digital to analog converter (DAC)
Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage
signal outputs. The chosen design structure is composed of integrated resistor strings and
an amplifier in inverting configuration.
42/270
DS10198 Rev 8
STM32L476xx
Functional overview
This digital interface supports the following features:
•
Up to two DAC output channels
•
8-bit or 12-bit output mode
•
Buffer offset calibration (factory and user trimming)
•
Left or right data alignment in 12-bit mode
•
Synchronized update capability
•
Noise-wave generation
•
Triangular-wave generation
•
Dual DAC channel independent or simultaneous conversions
•
DMA capability for each channel
•
External triggers for conversion
•
Sample and hold low-power mode, with internal or external capacitor
The DAC channels are triggered through the timer update outputs that are also connected
to different DMA channels.
3.17
Voltage reference buffer (VREFBUF)
The STM32L476xx devices embed an voltage reference buffer which can be used as
voltage reference for ADCs, DAC and also as voltage reference for external components
through the VREF+ pin.
The internal voltage reference buffer supports two voltages:
•
2.048 V
•
2.5 V
An external voltage reference can be provided through the VREF+ pin when the internal
voltage reference buffer is off.
The VREF+ pin is double-bonded with VDDA on some packages. In these packages the
internal voltage reference buffer is not available.
Figure 5. Voltage reference buffer
VREFBUF
VDDA
Bandgap
+
DAC, ADC
VREF+
Low frequency
cut-off capacitor
100 nF
MSv40197V1
DS10198 Rev 8
43/270
60
Functional overview
3.18
STM32L476xx
Comparators (COMP)
The STM32L476xx devices embed two rail-to-rail comparators with programmable
reference voltage (internal or external), hysteresis and speed (low speed for low-power) and
with selectable output polarity.
The reference voltage can be one of the following:
•
External I/O
•
DAC output channels
•
Internal reference voltage or submultiple (1/4, 1/2, 3/4).
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers
and can be also combined into a window comparator.
3.19
Operational amplifier (OPAMP)
The STM32L476xx embeds two operational amplifiers with external or internal follower
routing and PGA capability.
The operational amplifier features:
3.20
•
Low input bias current
•
Low offset voltage
•
Low-power mode
•
Rail-to-rail input
Touch sensing controller (TSC)
The touch sensing controller provides a simple solution for adding capacitive sensing
functionality to any application. Capacitive sensing technology is able to detect finger
presence near an electrode which is protected from direct touch by a dielectric (glass,
plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is
measured using a proven implementation based on a surface charge transfer acquisition
principle.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware
library which is free to use and allows touch sensing functionality to be implemented reliably
in the end application.
44/270
DS10198 Rev 8
STM32L476xx
Functional overview
The main features of the touch sensing controller are the following:
•
Proven and robust surface charge transfer acquisition principle
•
Supports up to 24 capacitive sensing channels
•
Up to 3 capacitive sensing channels can be acquired in parallel offering a very good
response time
•
Spread spectrum feature to improve system robustness in noisy environments
•
Full hardware management of the charge transfer acquisition sequence
•
Programmable charge transfer frequency
•
Programmable sampling capacitor I/O pin
•
Programmable channel I/O pin
•
Programmable max count value to avoid long acquisition when a channel is faulty
•
Dedicated end of acquisition and max count error flags with interrupt capability
•
One sampling capacitor for up to 3 capacitive sensing channels to reduce the system
components
•
Compatible with proximity, touchkey, linear and rotary touch sensor implementation
•
Designed to operate with STMTouch touch sensing firmware library
Note:
The number of capacitive sensing channels is dependent on the size of the packages and
subject to I/O availability.
3.21
Liquid crystal display controller (LCD)
The LCD drives up to 8 common terminals and 44 segment terminals to drive up to 320
pixels.
3.22
•
Internal step-up converter to guarantee functionality and contrast control irrespective of
VDD. This converter can be deactivated, in which case the VLCD pin is used to provide
the voltage to the LCD
•
Supports static, 1/2, 1/3, 1/4 and 1/8 duty
•
Supports static, 1/2, 1/3 and 1/4 bias
•
Phase inversion to reduce power consumption and EMI
•
Integrated voltage output buffers for higher LCD driving capability
•
Up to 8 pixels can be programmed to blink
•
Unneeded segments and common pins can be used as general I/O pins
•
LCD RAM can be updated at any time owing to a double-buffer
•
The LCD controller can operate in Stop mode
Digital filter for Sigma-Delta Modulators (DFSDM)
The device embeds one DFSDM with 4 digital filters modules and 8 external input serial
channels (transceivers) or alternately 8 internal parallel inputs support.
The DFSDM peripheral is dedicated to interface the external Σ∆ modulators to
microcontroller and then to perform digital filtering of the received data streams (which
represent analog value on Σ∆ modulators inputs). DFSDM can also interface PDM (Pulse
Density Modulation) microphones and perform PDM to PCM conversion and filtering in
DS10198 Rev 8
45/270
60
Functional overview
STM32L476xx
hardware. DFSDM features optional parallel data stream inputs from microcontrollers
memory (through DMA/CPU transfers into DFSDM).
DFSDM transceivers support several serial interface formats (to support various Σ∆
modulators). DFSDM digital filter modules perform digital processing according user
selected filter parameters with up to 24-bit final ADC resolution.
The DFSDM peripheral supports:
•
•
8 multiplexed input digital serial channels:
–
configurable SPI interface to connect various SD modulator(s)
–
configurable Manchester coded 1 wire interface support
–
PDM (Pulse Density Modulation) microphone input support
–
maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
–
clock output for SD modulator(s): 0..20 MHz
alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution):
–
•
4 digital filter modules with adjustable digital signal processing:
–
Sincx filter: filter order/type (1..5), oversampling ratio (up to 1..1024)
–
integrator: oversampling ratio (1..256)
•
up to 24-bit output data resolution, signed output data format
•
automatic data offset correction (offset stored in register by user)
•
continuous or single conversion
•
start-of-conversion triggered by:
•
•
–
software trigger
–
internal timers
–
external events
–
start-of-conversion synchronously with first digital filter module (DFSDM1_FLT0)
analog watchdog feature:
–
low value and high value data threshold registers
–
dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
–
input from final output data or from selected input digital serial channels
–
continuous monitoring independently from standard conversion
short circuit detector to detect saturated analog input values (bottom and top range):
–
up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on serial data stream
–
monitoring continuously each input serial channel
•
break signal generation on analog watchdog event or on short circuit detector event
•
extremes detector:
–
storage of minimum and maximum values of final conversion data
–
refreshed by software
•
DMA capability to read the final conversion data
•
interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial
channel clock absence
•
“regular” or “injected” conversions:
–
46/270
internal sources: device memory data streams (DMA)
“regular” conversions can be requested at any time or even in continuous mode
DS10198 Rev 8
STM32L476xx
Functional overview
without having any impact on the timing of “injected” conversions
–
“injected” conversions for precise timing and with high conversion priority
Table 10. DFSDM1 implementation
DFSDM features
DFSDM1
Number of channels
8
Number of filters
4
Input from internal ADC
-
Supported trigger sources
3.23
10
Pulses skipper
-
ID registers support
-
Random number generator (RNG)
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated
analog circuit.
3.24
Timers and watchdogs
The STM32L476xx includes two advanced control timers, up to nine general-purpose
timers, two basic timers, two low-power timers, two watchdog timers and a SysTick timer.
The table below compares the features of the advanced control, general purpose and basic
timers.
Table 11. Timer feature comparison
Timer type
Timer
Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
outputs
Advanced
control
TIM1, TIM8
16-bit
Up, down,
Up/down
Any integer
between 1
and 65536
Yes
4
3
Generalpurpose
TIM2, TIM5
32-bit
Up, down,
Up/down
Any integer
between 1
and 65536
Yes
4
No
Generalpurpose
TIM3, TIM4
16-bit
Up, down,
Up/down
Any integer
between 1
and 65536
Yes
4
No
Generalpurpose
TIM15
16-bit
Up
Any integer
between 1
and 65536
Yes
2
1
DS10198 Rev 8
47/270
60
Functional overview
STM32L476xx
Table 11. Timer feature comparison (continued)
Timer type
Timer
Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
outputs
Generalpurpose
TIM16, TIM17
16-bit
Up
Any integer
between 1
and 65536
Yes
1
1
Basic
TIM6, TIM7
16-bit
Up
Any integer
between 1
and 65536
Yes
0
No
3.24.1
Advanced-control timer (TIM1, TIM8)
The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6
channels. They have complementary PWM outputs with programmable inserted deadtimes. They can also be seen as complete general-purpose timers. The 4 independent
channels can be used for:
•
Input capture
•
Output compare
•
PWM generation (edge or center-aligned modes) with full modulation capability (0100%)
•
One-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs
disabled to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIMx timers (described in
Section 3.24.2) using the same architecture, so the advanced-control timers can work
together with the TIMx timers via the Timer Link feature for synchronization or event
chaining.
48/270
DS10198 Rev 8
STM32L476xx
3.24.2
Functional overview
General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16,
TIM17)
There are up to seven synchronizable general-purpose timers embedded in the
STM32L476xx (see Table 11 for differences). Each general-purpose timer can be used to
generate PWM outputs, or act as a simple time base.
•
TIM2, TIM3, TIM4 and TIM5
They are full-featured general-purpose timers:
–
TIM2 and TIM5 have a 32-bit auto-reload up/downcounter and 32-bit prescaler
–
TIM3 and TIM4 have 16-bit auto-reload up/downcounter and 16-bit prescaler.
These timers feature 4 independent channels for input capture/output compare, PWM
or one-pulse mode output. They can work together, or with the other general-purpose
timers via the Timer Link feature for synchronization or event chaining.
The counters can be frozen in debug mode.
All have independent DMA request generation and support quadrature encoders.
•
TIM15, 16 and 17
They are general-purpose timers with mid-range features:
They have 16-bit auto-reload upcounters and 16-bit prescalers.
–
TIM15 has 2 channels and 1 complementary channel
–
TIM16 and TIM17 have 1 channel and 1 complementary channel
All channels can be used for input capture/output compare, PWM or one-pulse mode
output.
The timers can work together via the Timer Link feature for synchronization or event
chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.
3.24.3
Basic timers (TIM6 and TIM7)
The basic timers are mainly used for DAC trigger generation. They can also be used as
generic 16-bit timebases.
3.24.4
Low-power timer (LPTIM1 and LPTIM2)
The devices embed two low-power timers. These timers have an independent clock and are
running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to
wakeup the system from Stop mode.
LPTIM1 is active in Stop 0, Stop 1 and Stop 2 modes.
LPTIM2 is active in Stop 0 and Stop 1 mode.
DS10198 Rev 8
49/270
60
Functional overview
STM32L476xx
This low-power timer supports the following features:
3.24.5
•
16-bit up counter with 16-bit autoreload register
•
16-bit compare register
•
Configurable output: pulse, PWM
•
Continuous/ one shot mode
•
Selectable software/hardware input trigger
•
Selectable clock source
–
Internal clock sources: LSE, LSI, HSI16 or APB clock
–
External clock source over LPTIM input (working even with no internal clock
source running, used by pulse counter application).
•
Programmable digital glitch filter
•
Encoder mode (LPTIM1 only)
Infrared interface (IRTIM)
The STM32L476xx includes one infrared interface (IRTIM). It can be used with an infrared
LED to perform remote control functions. It uses TIM16 and TIM17 output channels to
generate output signal waveforms on IR_OUT pin.
3.24.6
Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC (LSI) and as it operates independently
from the main clock, it can operate in Stop and Standby modes. It can be used either as a
watchdog to reset the device when a problem occurs, or as a free running timer for
application timeout management. It is hardware or software configurable through the option
bytes. The counter can be frozen in debug mode.
3.24.7
System window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.24.8
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
50/270
•
A 24-bit down counter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0.
•
Programmable clock source
DS10198 Rev 8
STM32L476xx
3.25
Functional overview
Real-time clock (RTC) and backup registers
The RTC is an independent BCD timer/counter. It supports the following features:
•
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
•
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
•
Two programmable alarms.
•
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
•
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
•
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy.
•
Three anti-tamper detection pins with programmable filter.
•
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to
VBAT mode.
•
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable
resolution and period.
The RTC and the 32 backup registers are supplied through a switch that takes power either
from the VDD supply when present or from the VBAT pin.
The backup registers are 32-bit registers used to store 128 bytes of user application data
when VDD power is not present. They are not reset by a system or power reset, or when the
device wakes up from Standby or Shutdown mode.
The RTC clock sources can be:
•
A 32.768 kHz external crystal (LSE)
•
An external resonator or oscillator (LSE)
•
The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
•
The high-speed external clock (HSE) divided by 32.
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the
LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in
all low-power modes except Shutdown mode.
All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt
and wakeup the device from the low-power modes.
DS10198 Rev 8
51/270
60
Functional overview
3.26
STM32L476xx
Inter-integrated circuit interface (I2C)
The device embeds three I2C. Refer to Table 12: I2C implementation for the features
implementation.
The I2C bus interface handles communications between the microcontroller and the serial
I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
•
•
I2C-bus specification and user manual rev. 5 compatibility:
–
Slave and master modes, multimaster capability
–
Standard-mode (Sm), with a bitrate up to 100 kbit/s
–
Fast-mode (Fm), with a bitrate up to 400 kbit/s
–
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
–
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
–
Programmable setup and hold times
–
Optional clock stretching
System Management Bus (SMBus) specification rev 2.0 compatibility:
–
Hardware PEC (Packet Error Checking) generation and verification with ACK
control
–
Address resolution protocol (ARP) support
–
SMBus alert
•
Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
•
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming. Refer to
Figure 4: Clock tree.
•
Wakeup from Stop mode on address match
•
Programmable analog and digital noise filters
•
1-byte buffer with DMA capability
Table 12. I2C implementation
I2C features(1)
I2C1
I2C2
I2C3
Standard-mode (up to 100 kbit/s)
X
X
X
Fast-mode (up to 400 kbit/s)
X
X
X
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)
X
X
X
Programmable analog and digital noise filters
X
X
X
SMBus/PMBus hardware support
X
X
X
Independent clock
X
X
X
Wakeup from Stop 0 / Stop 1 mode on address match
X
X
X
Wakeup from Stop 2 mode on address match
-
-
X
1. X: supported
52/270
DS10198 Rev 8
STM32L476xx
3.27
Functional overview
Universal synchronous/asynchronous receiver transmitter
(USART)
The STM32L476xx devices have three embedded universal synchronous receiver
transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver
transmitters (UART4, UART5).
These interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. They provide hardware management of the CTS and RTS
signals, and RS485 Driver Enable. They are able to communicate at speeds of up to
10Mbit/s.
USART1, USART2 and USART3 also provide Smart Card mode (ISO 7816 compliant) and
SPI-like communication capability.
All USART have a clock domain independent from the CPU clock, allowing the USARTx
(x=1,2,3,4,5) to wake up the MCU from Stop mode using baudrates up to 204 Kbaud. The
wake up events from Stop mode are programmable and can be:
•
Start bit detection
•
Any received data frame
•
A specific programmed data frame
All USART interfaces can be served by the DMA controller.
Table 13. STM32L476xx USART/UART/LPUART features
USART modes/features(1)
USART1 USART2 USART3
UART4
UART5
LPUART1
Hardware flow control for modem
X
X
X
X
X
X
Continuous communication using DMA
X
X
X
X
X
X
Multiprocessor communication
X
X
X
X
X
X
Synchronous mode
X
X
X
-
-
-
Smartcard mode
X
X
X
-
-
-
Single-wire half-duplex communication
X
X
X
X
X
X
IrDA SIR ENDEC block
X
X
X
X
X
-
LIN mode
X
X
X
X
X
-
Dual clock domain
X
X
X
X
X
X
Wakeup from Stop 0 / Stop 1 modes
X
X
X
X
X
X
Wakeup from Stop 2 mode
-
-
-
-
-
X
Receiver timeout interrupt
X
X
X
X
X
-
Modbus communication
X
X
X
X
X
-
Auto baud rate detection
Driver Enable
X (4 modes)
X
X
LPUART/USART data length
X
X
X
X
7, 8 and 9 bits
1. X = supported.
DS10198 Rev 8
53/270
60
Functional overview
3.28
STM32L476xx
Low-power universal asynchronous receiver transmitter
(LPUART)
The device embeds one Low-Power UART. The LPUART supports asynchronous serial
communication with minimum power consumption. It supports half duplex single wire
communication and modem operations (CTS/RTS). It allows multiprocessor
communication.
The LPUART has a clock domain independent from the CPU clock, and can wakeup the
system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop
mode are programmable and can be:
•
Start bit detection
•
Any received data frame
•
A specific programmed data frame
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600
baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while
having an extremely low energy consumption. Higher speed clock can be used to reach
higher baudrates.
LPUART interface can be served by the DMA controller.
54/270
DS10198 Rev 8
STM32L476xx
3.29
Functional overview
Serial peripheral interface (SPI)
Three SPI interfaces allow communication up to 40 Mbits/s in master and up to 24 Mbits/s
slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8
master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI
interfaces support NSS pulse mode, TI mode and Hardware CRC calculation.
All SPI interfaces can be served by the DMA controller.
3.30
Serial audio interfaces (SAI)
The device embeds 2 SAI. Refer to Table 14: SAI implementation for the features
implementation. The SAI bus interface handles communications between the
microcontroller and the serial audio protocol.
The SAI peripheral supports:
•
Two independent audio sub-blocks which can be transmitters or receivers with their
respective FIFO.
•
8-word integrated FIFOs for each audio sub-block.
•
Synchronous or asynchronous mode between the audio sub-blocks.
•
Master or slave configuration independent for both audio sub-blocks.
•
Clock generator for each audio block to target independent audio frequency sampling
when both audio sub-blocks are configured in master mode.
•
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.
•
Peripheral with large configurability and flexibility allowing to target as example the
following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF
out.
•
Up to 16 slots available with configurable size and with the possibility to select which
ones are active in the audio frame.
•
Number of bits by frame may be configurable.
•
Frame synchronization active level configurable (offset, bit length, level).
•
First active bit position in the slot is configurable.
•
LSB first or MSB first for data transfer.
•
Mute mode.
•
Stereo/Mono audio frame capability.
•
Communication clock strobing edge configurable (SCK).
•
Error flags with associated interrupts if enabled respectively.
•
•
–
Overrun and underrun detection.
–
Anticipated frame synchronization signal detection in slave mode.
–
Late frame synchronization signal detection in slave mode.
–
Codec not ready for the AC’97 mode in reception.
Interruption sources when enabled:
–
Errors.
–
FIFO requests.
DMA interface with 2 dedicated channels to handle access to the dedicated integrated
FIFO of each SAI audio sub-block.
DS10198 Rev 8
55/270
60
Functional overview
STM32L476xx
Table 14. SAI implementation
SAI features(1)
SAI1
SAI2
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97
X
X
Mute mode
X
X
Stereo/Mono audio frame capability.
X
X
16 slots
X
X
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit
X
X
X (8 Word)
X (8 Word)
X
X
FIFO Size
SPDIF
1. X: supported
3.31
Single wire protocol master interface (SWPMI)
The Single wire protocol master interface (SWPMI) is the master interface corresponding to
the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The
main features are:
•
full-duplex communication mode
•
automatic SWP bus state management (active, suspend, resume)
•
configurable bitrate up to 2 Mbit/s
•
automatic SOF, EOF and CRC handling
SWPMI can be served by the DMA controller.
3.32
Controller area network (CAN)
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It
can receive and transmit standard frames with 11-bit identifiers as well as extended frames
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and
14 scalable filter banks.
56/270
DS10198 Rev 8
STM32L476xx
Functional overview
The CAN peripheral supports:
•
Supports CAN protocol version 2.0 A, B Active
•
Bit rates up to 1 Mbit/s
•
Transmission
•
•
•
3.33
–
Three transmit mailboxes
–
Configurable transmit priority
Reception
–
Two receive FIFOs with three stages
–
14 Scalable filter banks
–
Identifier list feature
–
Configurable FIFO overrun
Time-triggered communication option
–
Disable automatic retransmission mode
–
16-bit free running timer
–
Time Stamp sent in last two data bytes
Management
–
Maskable interrupts
–
Software-efficient mailbox mapping at a unique address space
Secure digital input/output and MultiMediaCards Interface
(SDMMC)
The card host interface (SDMMC) provides an interface between the APB peripheral bus
and MultiMediaCards (MMCs), SD memory cards and SDIO cards.
The SDMMC features include the following:
3.34
•
Full compliance with MultiMediaCard System Specification Version 4.2. Card support
for three different databus modes: 1-bit (default), 4-bit and 8-bit
•
Full compatibility with previous versions of MultiMediaCards (forward compatibility)
•
Full compliance with SD Memory Card Specifications Version 2.0
•
Full compliance with SD I/O Card Specification Version 2.0: card support for two
different databus modes: 1-bit (default) and 4-bit
•
Data transfer up to 48 MHz for the 8 bit mode
•
Data write and read with DMA capability
Universal serial bus on-the-go full-speed (OTG_FS)
The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and
with the OTG 2.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that can be
provided by the internal multispeed oscillator (MSI) automatically trimmed by 32.768 kHz
external oscillator (LSE).This allows to use the USB device without external high speed
crystal (HSE).
DS10198 Rev 8
57/270
60
Functional overview
STM32L476xx
The major features are:
•
Combined Rx and Tx FIFO size of 1.25 KB with dynamic FIFO sizing
•
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
•
1 bidirectional control endpoint + 5 IN endpoints + 5 OUT endpoints
•
12 host channels with periodic OUT support
•
HNP/SNP/IP inside (no need for any external resistor)
•
USB 2.0 LPM (Link Power Management) support
•
Battery Charging Specification Revision 1.2 support
•
Internal FS OTG PHY support
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected.
3.35
Flexible static memory controller (FSMC)
The Flexible static memory controller (FSMC) includes two memory controllers:
•
The NOR/PSRAM memory controller
•
The NAND/memory controller
This memory controller is also named Flexible memory controller (FMC).
The main features of the FMC controller are the following:
•
Interface with static-memory mapped devices including:
–
Static random access memory (SRAM)
–
NOR Flash memory/OneNAND Flash memory
–
PSRAM (4 memory banks)
–
NAND Flash memory with ECC hardware to check up to 8 Kbyte of data
•
8-,16- bit data bus width
•
Independent Chip Select control for each memory bank
•
Independent configuration for each memory bank
•
Write FIFO
•
The Maximum FMC_CLK frequency for synchronous accesses is HCLK/2.
LCD parallel interface
The FMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost
effective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
58/270
DS10198 Rev 8
STM32L476xx
3.36
Functional overview
Quad SPI memory interface (QUADSPI)
The Quad SPI is a specialized communication interface targeting single, dual or quad SPI
flash memories. It can operate in any of the three following modes:
•
Indirect mode: all the operations are performed using the QUADSPI registers
•
Status polling mode: the external flash status register is periodically read and an
interrupt can be generated in case of flag setting
•
Memory-mapped mode: the external Flash is memory mapped and is seen by the
system as if it were an internal memory
The Quad SPI interface supports:
•
Three functional modes: indirect, status-polling, and memory-mapped
•
SDR and DDR support
•
Fully programmable opcode for both indirect and memory mapped mode
•
Fully programmable frame format for both indirect and memory mapped mode
•
Each of the 5 following phases can be configured independently (enable, length,
single/dual/quad communication)
–
Instruction phase
–
Address phase
–
Alternate bytes phase
–
Dummy cycles phase
–
Data phase
•
Integrated FIFO for reception and transmission
•
8, 16, and 32-bit data accesses are allowed
•
DMA channel for indirect mode operations
•
Programmable masking for external flash flag management
•
Timeout management
•
Interrupt generation on FIFO threshold, timeout, status match, operation complete, and
access error
DS10198 Rev 8
59/270
60
Functional overview
STM32L476xx
3.37
Development support
3.37.1
Serial wire JTAG debug port (SWJ-DP)
The Arm® SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
3.37.2
Embedded Trace Macrocell™
The Arm® Embedded Trace Macrocell™ provides a greater visibility of the instruction and
data flow inside the CPU core by streaming compressed data at a very high rate from the
STM32L476xx through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then
formatted for display on the host computer that runs the debugger software. TPA hardware
is commercially available from common development tool vendors.
The Embedded Trace Macrocell™ operates with third party debugger software tools.
60/270
DS10198 Rev 8
STM32L476xx
4
Pinouts and pin description
Pinouts and pin description
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
VDD
VSS
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4 (NJTRST)
PB3 (JTDO-TRACESWO)
PG15
VDDIO2
VSS
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
VDD
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15 (JTDI)
PA14 (JTCK-SWCLK)
Figure 6. STM32L476Zx LQFP144 pinout(1)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
LQFP144
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
VDD
VSS
VDDUSB
PA13 (JTMS-SWDIO)
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
VDDIO2
VSS
PG8
PG7
PG6
PG5
PG4
PG3
PG2
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VSS
VDD
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
PE2
PE3
PE4
PE5
PE6
VBAT
PC13
PC14-OSC32_IN (PC14)
PC15-OSC32_OUT (PC15)
PF0
PF1
PF2
PF3
PF4
PF5
VSS
VDD
PF6
PF7
PF8
PF9
PF10
PH0-OSC_IN (PH0)
PH1-OSC_OUT (PH1)
NRST
PC0
PC1
PC2
PC3
VSSA
VREFVREF+
VDDA
PA0
PA1
PA2
MS31270V5
1. The above figure shows the package top view.
DS10198 Rev 8
61/270
111
Pinouts and pin description
STM32L476xx
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
VDD
VSS
VDD12
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4 (NJTRST)
PB3 (JTDO-TRACESWO)
VDDIO2
VSS
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
VDD
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15 (JTDI)
PA14 (JTCK-SWCLK)
Figure 7. STM32L476Zx, external SMPS device, LQFP144 pinout(1)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
LQFP144
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
VDD
VSS
VDDUSB
PA13 (JTMS-SWDIO)
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
VDDIO2
VSS
PG8
PG7
PG6
PG5
PG4
PG3
PG2
PD15
PD14
VDD
VSS
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
VDD12
VSS
VDD
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
PE2
PE3
PE4
PE5
PE6
VBAT
PC13
PC14-OSC32_IN (PC14)
PC15-OSC32_OUT (PC15)
PF0
PF1
PF2
PF3
PF4
PF5
VSS
VDD
PF6
PF7
PF8
PF9
PF10
PH0-OSC_IN (PH0)
PH1-OSC_OUT (PH1)
NRST
PC0
PC1
PC2
PC3
VSSA
VREFVREF+
VDDA
PA0
PA1
PA2
1. The above figure shows the package top view.
62/270
DS10198 Rev 8
MSv43895V2
STM32L476xx
Pinouts and pin description
Figure 8. STM32L476Zx UFBGA144 ballout(1)
1
2
3
4
5
6
7
8
9
10
11
12
A
VSS
PE0
PB8
BOOT0
PB7
PG14
PG12
PD7
PD6
PD1
PD0
VSS
B
VBAT
PE4
PE3
PE1
PB6
PG15
PG11
PD5
PC12
PC10
PA12
PA11
C
PC15OSC32_OUT
PE5
PE2
PB9
PB5
PB3
PG9
PD4
PC11
PA14
PA13
PA10
D
PF4
PC14OSC32_IN
PE6
PC13
PB4
PG13
PG10
PD3
PD2
PA15
PA9
PA8
E
PF6
PF1
PF0
PF2
VSS
VDDIO2
VDD
VSS
VDDUSB
PC6
PC9
PC8
F
PF8
PF7
PF5
PF3
VDD
VSS
VSS
VDDIO2
PG7
PG6
PG8
PC7
G
PH1OSC_OUT
PH0-OSC_IN
PF10
PF9
VDD
VSS
VSS
VDD
PG4
PD13
PG3
PG5
H
PC2
PC0
PC1
NRST
VSS
VDD
VDD
VSS
PD12
PD11
PD14
PG2
J
VSSA
VREF-
PA0
PC3
PC4
PF11
PG1
PE9
PB13
PB14
PD10
PD15
K
VREF+
VDDA
PA1
PA6
PB2
PF12
PG0
PE11
PB11
PB12
PD8
PD9
L
OPAMP1
_VINM
PA2
PA4
OPAMP2
_VINM
PB0
PF13
PE8
PE12
PE13
PE14
PB10
PB15
M
VSS
PA3
PA5
PA7
PC5
PB1
PF14
PE7
PF15
PE10
PE15
VSS
MSv50902V1
1. The above figure shows the package top view.
Figure 9. STM32L476Qx UFBGA132 ballout(1)
1
2
3
4
5
6
7
8
9
10
11
12
A
PE3
PE1
PB8
BOOT0
PD7
PD5
PB4
PB3
PA15
PA14
PA13
PA12
B
PE4
PE2
PB9
PB7
PB6
PD6
PD4
PD3
PD1
PC12
PC10
PA11
C
PC13
PE5
PE0
VDD
PB5
PG14
PG13
PD2
PD0
PC11
VDDUSB
PA10
D
PC14OSC32_IN
PE6
VSS
PF2
PF1
PF0
PG12
PG10
PG9
PA9
PA8
PC9
E
PC15OSC32_OUT
VBAT
VSS
PF3
PG5
PC8
PC7
PC6
F
PH0-OSC_IN
VSS
PF4
PF5
VSS
VSS
PG3
PG4
VSS
VSS
G
PH1OSC_OUT
VDD
PG11
PG6
VDD
VDDIO2
PG1
PG2
VDD
VDD
H
PC0
NRST
VDD
PG7
PG0
PD15
PD14
PD13
J
VSSA/VREF-
PC1
PC2
PA4
PA7
PG8
PF12
PF14
PF15
PD12
PD11
PD10
K
PG15
PC3
PA2
PA5
PC4
PF11
PF13
PD9
PD8
PB15
PB14
PB13
L
VREF+
PA0
PA3
PA6
PC5
PB2
PE8
PE10
PE12
PB10
PB11
PB12
PA1
OPAMP1_
VINM
OPAMP2_
VINM
PB0
PB1
PE7
PE9
PE11
PE13
PE14
PE15
M
VDDA
MSv35003V7
1. The above figure shows the package top view.
DS10198 Rev 8
63/270
111
Pinouts and pin description
STM32L476xx
Figure 10. STM32L476Qx, external SMPS device, UFBGA132 ballout
1
2
3
4
5
6
7
8
9
10
11
12
A
PE3
PE1
PB8
BOOT0
PD7
PD5
PB4
PB3
PA15
PA14
PA13
PA12
B
PE4
PE2
PB9
PB7
PB6
PD6
PD4
PD3
PD1
PC12
PC10
PA11
C
PC13
PE5
PE0
VDD
PB5
VDD12
PG13
PD2
PD0
PC11
VDDUSB
PA10
D
PC14OSC32_IN
PE6
VSS
PF2
PF1
PF0
PG12
PG10
PG9
PA9
PA8
PC9
E
PC15OSC32_OUT
VBAT
VSS
PF3
PG5
PC8
PC7
PC6
F
PH0-OSC_IN
VSS
PF4
PF5
VSS
VSS
PG3
PG4
VSS
VSS
G
PH1OSC_OUT
VDD
PG11
PG6
VDD
VDDIO2
PG1
PG2
VDD
VDD
H
PC0
NRST
VDD
PG7
PG0
PD15
PD14
PD13
J
VSSA/VREF-
PC1
PC2
PA4
PA7
PG8
PF12
PF14
PF15
PD12
PD11
PD10
K
PG15
PC3
PA2
PA5
PC4
PF11
PF13
PD9
PD8
PB15
PB14
PB13
L
VREF+
PA0
PA3
PA6
PC5
PB2
PE8
PE10
PE12
PB10
VDD12
PB12
M
VDDA
PA1
OPAMP1_
VINM
OPAMP2_
VINM
PB0
PB1
PE7
PE9
PE11
PE13
PE14
PE15
MSv47486V1
1. The above figure shows the package top view.
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
VDD
VSS
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
Figure 11. STM32L476Vx LQFP100 pinout(1)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
LQFP100
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
VDD
VSS
VDDUSB
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VSS
VDD
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PE2
PE3
PE4
PE5
PE6
VBAT
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
VSS
VDD
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VREFVREF+
VDDA
PA0
PA1
PA2
MS31271V3
1. The above figure shows the package top view.
64/270
DS10198 Rev 8
STM32L476xx
Pinouts and pin description
Figure 12. STM32L476Mx WLCSP81 ballout(1)
1
2
3
4
5
6
7
8
9
A
VDDUSB
PA15
PD2
PG9
PG14
PB3
PB7
VSS
VDD
B
VSS
PA14
PC12
PG10
PG13
VDDIO2
PB6
PC13
VBAT
C
PA12
PA13
PC11
PG11
PG12
PB4
PB5
PC15OSC32_OUT
PC14OSC32_IN
D
PA11
PA10
PC10
PD5
PD6
PD7
BOOT0
PH1OSC_OUT
PH0-OSC_IN
E
PC9
PA8
PA9
VDD
PD4
PE7
PB8
PB9
NRST
F
PC7
PC8
PC6
PD9
PD8
PE8
PC2
PC1
PC0
G
PB15
PB14
PB11
PA1
PA4
PA2
PC3
VREF+
VSSA/VREF-
H
PB12
PB13
PB10
PA7
PA6
PA5
PA3
PA0
VDDA
J
VDD
VSS
PB2
PB1
PB0
PC5
PC4
VDD
VSS
MSv38020V3
1. The above figure shows the package top view.
Figure 13. STM32L476Jx WLCSP72 ballout(1)
1
2
3
4
5
6
7
8
9
A
VDDUSB
PA15
PD2
PG9
PG14
PB3
PB7
VSS
VDD
B
VSS
PA14
PC12
PG10
PG13
VDDIO2
PB6
PC13
VBAT
C
PA12
PA13
PC11
PG11
PG12
PB4
PB5
PC15OSC32_OUT
PC14OSC32_IN
D
PA11
PA10
PC10
BOOT0
PH1OSC_OUT
PH0-OSC_IN
E
PC9
PA8
PA9
PB8
PB9
NRST
F
PC7
PC8
PC6
PC2
PC1
PC0
G
PB15
PB14
PB11
PA1
PA4
PA2
PC3
VREF+
VSSA/VREF-
H
PB12
PB13
PB10
PA7
PA6
PA5
PA3
PA0
VDDA
J
VDD
VSS
PB2
PB1
PB0
PC5
PC4
VDD
VSS
WLCSP72
MSv35083V7
1. The above figure shows the package top view.
DS10198 Rev 8
65/270
111
Pinouts and pin description
STM32L476xx
Figure 14. STM32L476Jx, external SMPS device, WLCSP72 ballout(1)
1
2
3
4
5
6
7
8
9
A
VDDUSB
PC10
PD2
PG9
PG14
PB3
BOOT0
VSS
VDD
B
VSS
PA14
PC12
PG10
PG13
VDDIO2
PB7
VDD12
VBAT
C
PA12
PA13
PA15
PG12
PB4
PB8
PC13
PC15OSC32_OUT
PC14OSC32_IN
D
PA11
PA10
PC11
PB9
PH1OSC_OUT
PH0-OSC_IN
E
PC9
PA8
PA9
PB5
PB6
NRST
F
VDD
PC7
PC8
PC2
PC1
PC0
G
PB15
PC6
PB14
PA2
PA0
PA1
PC3
VREF+
VSSA/VREF-
H
PB12
PB13
PB11
PA7
PA5
PA4
PA3
VDD
VDDA
J
VDD12
VSS
PB10
PB0
PB1
PB2
PC4
PA6
VSS
WLCSP72
MSv43896V1
1. The above figure shows the package top view.
VDD
VSS
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4 (NJTRST)
PB3 (JTDO-TRACESWO)
PD2
PC12
PC11
PC10
PA15 (JTDI)
PA14 (JTCK-SWCLK)
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
Figure 15. STM32L476Rx LQFP64 pinout(1)
VBAT
1
48
VDDUSB
PC13
2
47
VSS
PC14-OSC32_IN (PC14)
3
46
PA13 (JTMS-SWDIO)
PC15-OSC32_OUT (PC15)
4
45
PA12
PH0-OSC_IN (PH0)
5
44
PA11
PH1-OSC_OUT (PH1)
6
43
PA10
NRST
7
42
PA9
PC0
8
41
PA8
PC1
9
40
PC9
PC2
10
39
PC8
PC3
11
38
PC7
VSSA/VREF-
12
37
PC6
VDDA/VREF+
13
36
PB15
PA0
14
35
PB14
PA1
15
34
PB13
PA2
16
33
PB12
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS
VDD
LQFP64
MS31272V5
1. The above figure shows the package top view.
66/270
DS10198 Rev 8
STM32L476xx
Pinouts and pin description
VDD
VSS
VDD12
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4 (NJTRST)
PB3 (JTDO-TRACESWO)
PC12
PC11
PC10
PA15 (JTDI)
PA14 (JTCK-SWCLK)
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
Figure 16. STM32L476Rx, external SMPS device, LQFP64 pinout(1)
VBAT
1
48
VDDUSB
PC13
2
47
VSS
PC14-OSC32_IN (PC14)
3
46
PA13 (JTMS-SWDIO)
PC15-OSC32_OUT (PC15)
4
45
PA12
PH0-OSC_IN (PH0)
5
44
PA11
PH1-OSC_OUT (PH1)
6
43
PA10
NRST
7
42
PA9
PC0
8
41
PA8
PC1
9
40
PC9
PC2
10
39
PC8
PC3
11
38
PC7
VSSA/VREF-
12
37
PC6
VDDA/VREF+
13
36
PB15
PA0
14
35
PB14
PA1
15
34
PB13
PA2
16
33
PB12
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PB0
PB1
PB2
PB10
PB11
VDD12
VSS
VDD
LQFP64
MSv45744V1
1. The above figure shows the package top view.
Table 15. Legend/abbreviations used in the pinout table
Name
Pin name
Abbreviation
Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
S
Supply pin
I
Input only pin
Pin type
I/O
Input / output pin
FT
5 V tolerant I/O
TT
3.6 V tolerant I/O
B
Dedicated BOOT0 pin
RST
I/O structure
Definition
Bidirectional reset pin with embedded weak pull-up resistor
Option for TT or FT I/Os
_f (1)
_l
(2)
_u (3)
_a
(4)
_s
(5)
I/O, Fm+ capable
I/O, with LCD function supplied by VLCD
I/O, with USB function supplied by VDDUSB
I/O, with Analog switch function supplied by VDDA
I/O supplied only by VDDIO2
DS10198 Rev 8
67/270
111
Pinouts and pin description
STM32L476xx
Table 15. Legend/abbreviations used in the pinout table (continued)
Name
Notes
Abbreviation
Definition
Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.
Alternate
Functions selected through GPIOx_AFR registers
functions
Pin
functions Additional
Functions directly selected/enabled through peripheral registers
functions
1. The related I/O structures in Table 16 are: FT_f, FT_fa, FT_fl, FT_fla.
2. The related I/O structures in Table 16 are: FT_l, FT_fl, FT_lu.
3. The related I/O structures in Table 16 are: FT_u, FT_lu.
4. The related I/O structures in Table 16 are: FT_a, FT_la, FT_fa, FT_fla, TT_a, TT_la.
5. The related I/O structures in Table 16 are: FT_s, FT_fs.
68/270
DS10198 Rev 8
STM32L476xx
Table 16. STM32L476xx pin definitions
-
DS10198 Rev 8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
2
3
B2
A1
B1
B2
A1
B1
1
2
3
1
2
3
C3
B3
B2
PE2
PE3
PE4
I/O
I/O
I/O
FT_l
FT_l
FT
Alternate functions
Additional functions
-
TRACECK, TIM3_ETR,
TSC_G7_IO1,
LCD_SEG38, FMC_A23,
SAI1_MCLK_A,
EVENTOUT
-
-
TRACED0, TIM3_CH1,
TSC_G7_IO2,
LCD_SEG39, FMC_A19,
SAI1_SD_B, EVENTOUT
-
-
TRACED1, TIM3_CH2,
DFSDM1_DATIN3,
TSC_G7_IO3, FMC_A20,
SAI1_FS_A, EVENTOUT
-
-
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
UFBGA144
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100
WLCSP81
WLCSP72_SMPS
WLCSP72
LQFP64_SMPS
LQFP64
Pin Number
-
-
-
-
4
C2
C2
4
4
C2
PE5
I/O
FT
-
-
-
-
-
-
5
D2
D2
5
5
D3
PE6
I/O
FT
-
TRACED3, TIM3_CH4,
FMC_A22, SAI1_SD_A,
EVENTOUT
RTC_TAMP3/WKUP3
1
1
B9 B9 B9
6
E2
E2
6
6
B1
VBAT
S
-
-
-
-
2
2
B8 C7 B8
7
C1
C1
7
7
D4
PC13
I/O
FT
EVENTOUT
RTC_TAMP1/RTC_TS/
RTC_OUT/WKUP2
(1)
(2)
69/270
Pinouts and pin description
-
TRACED2, TIM3_CH3,
DFSDM1_CKIN3,
TSC_G7_IO4, FMC_A21,
SAI1_SCK_A,
EVENTOUT
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
8
D1
D1
8
8
D2
PC14OSC32_ I/O
IN (PC14)
FT
Alternate functions
Additional functions
EVENTOUT
OSC32_IN
(2)
EVENTOUT
OSC32_OUT
Notes
LQFP100
C9 C9 C9
I/O structure
WLCSP81
3
Pin name
(function
after
reset)
Pin type
WLCSP72
3
WLCSP72_SMPS
LQFP64_SMPS
Pin functions
LQFP64
Pin Number
(1)
(2)
DS10198 Rev 8
E1
E1
9
9
C1
-
-
D6
D6
10
10
E3
PF0
I/O
FT_f
-
I2C2_SDA, FMC_A0,
EVENTOUT
-
-
-
-
D5
D5
11
11
E2
PF1
I/O
FT_f
-
I2C2_SCL, FMC_A1,
EVENTOUT
-
-
-
-
-
D4
D4
12
12
E4
PF2
I/O
FT
-
I2C2_SMBA, FMC_A2,
EVENTOUT
-
-
-
-
-
-
E4
E4
13
13
F4
PF3
I/O
FT_a
-
FMC_A3, EVENTOUT
ADC3_IN6
-
-
-
-
-
-
F3
F3
14
14
D1
PF4
I/O
FT_a
-
FMC_A4, EVENTOUT
ADC3_IN7
-
-
-
-
-
-
F4
F4
15
15
F3
PF5
I/O
FT_a
-
FMC_A5, EVENTOUT
ADC3_IN8
-
-
-
-
-
10
F2
F2
16
16
F6
VSS
S
-
-
-
-
-
-
-
-
-
11
G2
G2
17
17
G5
VDD
S
-
-
-
-
-
-
-
-
-
-
-
-
18
18
E1
PF6
I/O
FT_a
-
TIM5_ETR, TIM5_CH1,
SAI1_SD_B, EVENTOUT
ADC3_IN9
-
-
-
-
-
-
-
-
19
19
F2
PF7
I/O
FT_a
-
TIM5_CH2,
SAI1_MCLK_B,
EVENTOUT
ADC3_IN10
4
4
C8 C8 C8
-
-
-
-
-
-
-
-
-
-
I/O
FT
(1)
STM32L476xx
9
PC15OSC32_
OUT
(PC15)
Pinouts and pin description
70/270
Table 16. STM32L476xx pin definitions (continued)
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
Pin type
I/O structure
Notes
-
-
-
-
-
-
-
-
20
20
F1
PF8
I/O
FT_a
-
TIM5_CH3, SAI1_SCK_B,
EVENTOUT
ADC3_IN11
-
-
-
-
-
-
-
-
21
21
G4
PF9
I/O
FT_a
-
TIM5_CH4, SAI1_FS_B,
TIM15_CH1, EVENTOUT
ADC3_IN12
-
-
-
-
-
-
-
-
22
22
G3
PF10
I/O
FT_a
-
TIM15_CH2, EVENTOUT
ADC3_IN13
5
5
12
F1
F1
23
23
G2
PH0OSC_IN
(PH0)
I/O
FT
-
EVENTOUT
OSC_IN
I/O
FT
-
EVENTOUT
OSC_OUT
I/O
RST
-
-
-
-
LPTIM1_IN1, I2C3_SCL,
DFSDM1_DATIN4,
LPUART1_RX,
LCD_SEG18,
LPTIM2_IN1, EVENTOUT
ADC123_IN1
-
LPTIM1_OUT, I2C3_SDA,
DFSDM1_CKIN4,
LPUART1_TX,
LCD_SEG19,
EVENTOUT
ADC123_IN2
D9 D9 D9
Pin name
(function
after
reset)
6
6
D8 D8 D8
13
G1
G1
24
24
G1
PH1OSC_
OUT
(PH1)
7
7
E9 E9 E9
14
H2
H2
25
25
H4
NRST
8
9
8
9
F9
F8
F9
F8
F9
F8
15
16
H1
J2
H1
J2
26
27
26
27
H2
H3
PC0
PC1
I/O FT_fla
I/O FT_fla
Alternate functions
Additional functions
71/270
Pinouts and pin description
WLCSP72
DS10198 Rev 8
LQFP64_SMPS
Pin functions
LQFP64
Pin Number
STM32L476xx
Table 16. STM32L476xx pin definitions (continued)
10 10 F7
F7
F7
DS10198 Rev 8
11 11 G7 G7 G7
17
J3
J3
28
28
H1
PC2
I/O FT_la
Alternate functions
Additional functions
-
LPTIM1_IN2,
SPI2_MISO,
DFSDM1_CKOUT,
LCD_SEG20,
EVENTOUT
ADC123_IN3
ADC123_IN4
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
UFBGA144
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100
WLCSP81
WLCSP72_SMPS
WLCSP72
LQFP64_SMPS
LQFP64
Pin Number
18
K2
K2
29
29
J4
PC3
I/O
FT_a
-
LPTIM1_ETR,
SPI2_MOSI, LCD_VLCD,
SAI1_SD_A,
LPTIM2_ETR,
EVENTOUT
-
-
-
-
-
19
-
-
30
30
J1
VSSA
S
-
-
-
-
-
-
-
-
-
20
-
-
31
31
J2
VREF-
S
-
-
-
-
-
J1
J1
-
-
-
VSSA/
VREF-
S
-
-
-
-
12 12 G9 G9 G9
-
G8 G8 G8
21
L1
L1
32
32
K1
VREF+
S
-
-
-
VREFBUF_OUT
-
-
H9 H9 H9
22
M1
M1
33
33
K2
VDDA
S
-
-
-
-
-
-
-
-
-
-
VDDA/
VREF+
S
-
-
-
-
-
TIM2_CH1, TIM5_CH1,
TIM8_ETR,
USART2_CTS,
UART4_TX,
SAI1_EXTCLK,
TIM2_ETR, EVENTOUT
OPAMP1_VINP,
ADC12_IN5,
RTC_TAMP2/WKUP1
13 13
-
-
-
14 14 H8 G5 H8
23
L2
L2
34
34
J3
PA0
I/O
FT_a
STM32L476xx
-
Pinouts and pin description
72/270
Table 16. STM32L476xx pin definitions (continued)
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
-
-
-
-
M3
M3
-
-
L1
15 15 G4 G6 G4
DS10198 Rev 8
16 16 G6 G4 G6
24
25
M2
K3
M2
K3
35
36
35
36
K3
L2
OPAMP1
_VINM
PA1
PA2
Notes
WLCSP72_SMPS
-
I/O structure
WLCSP72
-
Pin name
(function
after
reset)
Pin type
LQFP64_SMPS
Pin functions
LQFP64
Pin Number
STM32L476xx
Table 16. STM32L476xx pin definitions (continued)
I
TT
-
I/O FT_la
I/O FT_la
Additional functions
-
-
(3)
TIM2_CH2, TIM5_CH2,
USART2_RTS_DE,
UART4_RX, LCD_SEG0,
TIM15_CH1N,
EVENTOUT
OPAMP1_VINM,
ADC12_IN6
-
TIM2_CH3, TIM5_CH3,
USART2_TX,
LCD_SEG1,
SAI2_EXTCLK,
TIM15_CH1, EVENTOUT
ADC12_IN7,
WKUP4/LSCO
-
TIM2_CH4, TIM5_CH4,
USART2_RX,
LCD_SEG2, TIM15_CH2,
EVENTOUT
OPAMP1_VOUT,
ADC12_IN8
26
L3
L3
37
37
M2
PA3
18 18
J9
J9
J9
27
E3
E3
38
38
F7
VSS
S
-
-
-
-
19 19
J8 H8
J8
28
H3
H3
39
39
G8
VDD
S
-
-
-
-
-
SPI1_NSS, SPI3_NSS,
USART2_CK,
SAI1_FS_B,
LPTIM2_OUT,
EVENTOUT
ADC12_IN9,
DAC1_OUT1
29
J4
J4
40
40
L3
PA4
I/O
TT_a
73/270
Pinouts and pin description
17 17 H7 H7 H7
20 20 G5 H6 G5
I/O TT_la
Alternate functions
21 21 H6 H5 H6
DS10198 Rev 8
22 22 H5
-
-
-
J8 H5
-
-
30
K4
K4
41
41
M3
PA5
31
L4
L4
42
42
K4
PA6
-
M4
M4
-
-
L4
OPAMP2
_VINM
I/O
TT_a
I/O FT_la
I
TT
Alternate functions
Additional functions
-
TIM2_CH1, TIM2_ETR,
TIM8_CH1N, SPI1_SCK,
LPTIM2_ETR,
EVENTOUT
ADC12_IN10,
DAC1_OUT2
-
TIM1_BKIN, TIM3_CH1,
TIM8_BKIN, SPI1_MISO,
USART3_CTS,
QUADSPI_BK1_IO3,
LCD_SEG3,
TIM1_BKIN_COMP2,
TIM8_BKIN_COMP2,
TIM16_CH1, EVENTOUT
OPAMP2_VINP,
ADC12_IN11
-
-
-
OPAMP2_VINM,
ADC12_IN12
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
UFBGA144
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100
WLCSP81
WLCSP72_SMPS
WLCSP72
LQFP64_SMPS
LQFP64
Pin Number
32
J5
J5
43
43
M4
PA7
I/O FT_la
(3)
24 24
J7
J7
J7
33
K5
K5
44
44
J5
PC4
I/O FT_la
-
USART3_TX,
LCD_SEG22,
EVENTOUT
COMP1_INM,
ADC12_IN13
25
J6
-
J6
34
L5
L5
45
45
M5
PC5
I/O FT_la
-
USART3_RX,
LCD_SEG23,
EVENTOUT
COMP1_INP,
ADC12_IN14, WKUP5
-
STM32L476xx
23 23 H4 H4 H4
TIM1_CH1N, TIM3_CH2,
TIM8_CH1N, SPI1_MOSI,
QUADSPI_BK1_IO2,
LCD_SEG4, TIM17_CH1,
EVENTOUT
Pinouts and pin description
74/270
Table 16. STM32L476xx pin definitions (continued)
26 25
DS10198 Rev 8
27 26
28 27
J5
J4
J4
J5
J5
J4
35
36
M5
M6
M5
M6
46
47
46
47
L5
M6
PB0
PB1
I/O TT_la
I/O FT_la
Alternate functions
Additional functions
-
TIM1_CH2N, TIM3_CH3,
TIM8_CH2N,
USART3_CK,
QUADSPI_BK1_IO1,
LCD_SEG5,
COMP1_OUT,
EVENTOUT
OPAMP2_VOUT,
ADC12_IN15
-
TIM1_CH3N, TIM3_CH4,
TIM8_CH3N,
DFSDM1_DATIN0,
USART3_RTS_DE,
QUADSPI_BK1_IO0,
LCD_SEG6, LPTIM2_IN1,
EVENTOUT
COMP1_INM,
ADC12_IN16
COMP1_INP
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
UFBGA144
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100
WLCSP81
WLCSP72_SMPS
WLCSP72
LQFP64_SMPS
LQFP64
Pin Number
STM32L476xx
Table 16. STM32L476xx pin definitions (continued)
J3
J6
J3
37
L6
L6
48
48
K5
PB2
I/O
FT_a
-
RTC_OUT, LPTIM1_OUT,
I2C3_SMBA,
DFSDM1_CKIN0,
EVENTOUT
-
-
-
-
-
K6
K6
49
49
J6
PF11
I/O
FT
-
EVENTOUT
-
-
-
-
-
-
-
J7
J7
50
50
K6
PF12
I/O
FT
-
FMC_A6, EVENTOUT
-
-
-
-
-
-
-
-
-
51
51
G6
VSS
S
-
-
-
-
-
-
-
-
-
-
-
-
52
52
H6
VDD
S
-
-
-
-
-
-
-
-
-
-
K7
K7
53
53
L6
PF13
I/O
FT
-
DFSDM1_DATIN6,
FMC_A7, EVENTOUT
-
75/270
Pinouts and pin description
-
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
Pin type
I/O structure
Notes
DS10198 Rev 8
LQFP64_SMPS
Pin functions
LQFP64
Pin Number
-
-
-
-
-
-
J8
J8
54
54
M7
PF14
I/O
FT
-
DFSDM1_CKIN6,
TSC_G8_IO1, FMC_A8,
EVENTOUT
-
-
-
-
-
-
-
J9
J9
55
55
M9
PF15
I/O
FT
-
TSC_G8_IO2, FMC_A9,
EVENTOUT
-
-
-
-
-
-
-
H9
H9
56
56
K7
PG0
I/O
FT
-
TSC_G8_IO3, FMC_A10,
EVENTOUT
-
-
-
-
-
-
-
G9
G9
57
57
J7
PG1
I/O
FT
-
TSC_G8_IO4, FMC_A11,
EVENTOUT
-
-
TIM1_ETR,
DFSDM1_DATIN2,
FMC_D4, SAI1_SD_B,
EVENTOUT
-
-
TIM1_CH1N,
DFSDM1_CKIN2,
FMC_D5, SAI1_SCK_B,
EVENTOUT
-
-
-
-
-
-
-
-
-
-
E6
F6
38
39
M7
L7
M7
L7
58
59
58
59
M8
L7
Pin name
(function
after
reset)
PE7
PE8
I/O
I/O
FT
FT
Alternate functions
Additional functions
-
-
-
-
40
M8
M8
60
60
J8
PE9
I/O
FT
-
-
-
-
-
-
-
F6
F6
61
61
G7
VSS
S
-
-
-
-
-
-
-
-
-
-
G6
G6
62
62
E7
VDD
S
-
-
-
-
STM32L476xx
-
TIM1_CH1,
DFSDM1_CKOUT,
FMC_D6, SAI1_FS_B,
EVENTOUT
Pinouts and pin description
76/270
Table 16. STM32L476xx pin definitions (continued)
-
DS10198 Rev 8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
41
42
43
44
45
L8
M9
L9
L8
M9
L9
63
64
65
M10 M10 66
M11 M11
67
63 M10
64
65
66
67
K8
L8
L9
L10
PE10
PE11
PE12
PE13
PE14
I/O
I/O
I/O
I/O
I/O
FT
FT
FT
FT
FT
Alternate functions
Additional functions
-
TIM1_CH2N,
DFSDM1_DATIN4,
TSC_G5_IO1,
QUADSPI_CLK,
FMC_D7, SAI1_MCLK_B,
EVENTOUT
-
-
TIM1_CH2,
DFSDM1_CKIN4,
TSC_G5_IO2,
QUADSPI_NCS,
FMC_D8, EVENTOUT
-
-
TIM1_CH3N, SPI1_NSS,
DFSDM1_DATIN5,
TSC_G5_IO3,
QUADSPI_BK1_IO0,
FMC_D9, EVENTOUT
-
-
TIM1_CH3, SPI1_SCK,
DFSDM1_CKIN5,
TSC_G5_IO4,
QUADSPI_BK1_IO1,
FMC_D10, EVENTOUT
-
-
TIM1_CH4, TIM1_BKIN2,
TIM1_BKIN2_COMP2,
SPI1_MISO,
QUADSPI_BK1_IO2,
FMC_D11, EVENTOUT
-
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
UFBGA144
LQFP144_SMPS
LQFP144
UFBGA132_SMPS
UFBGA132
LQFP100
WLCSP81
WLCSP72_SMPS
WLCSP72
-
Pin functions
77/270
Pinouts and pin description
-
LQFP64_SMPS
LQFP64
Pin Number
STM32L476xx
Table 16. STM32L476xx pin definitions (continued)
-
-
-
DS10198 Rev 8
29 28 H3
-
-
J3 H3
30 29 G3 H3 G3
30
46
47
M12 M12 68
L10 L10
69
68
69
M11
L11
PE15
PB10
I/O
I/O
FT
FT_fl
Alternate functions
Additional functions
-
TIM1_BKIN,
TIM1_BKIN_COMP1,
SPI1_MOSI,
QUADSPI_BK1_IO3,
FMC_D12, EVENTOUT
-
-
TIM2_CH3, I2C2_SCL,
SPI2_SCK,
DFSDM1_DATIN7,
USART3_TX,
LPUART1_RX,
QUADSPI_CLK,
LCD_SEG10,
COMP1_OUT,
SAI1_SCK_A,
EVENTOUT
-
-
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
UFBGA144
LQFP144_SMPS
LQFP144
UFBGA132_SMPS
UFBGA132
Pin functions
48
L11
-
70
-
K9
PB11
I/O
FT_fl
-
TIM2_CH4, I2C2_SDA,
DFSDM1_CKIN7,
USART3_RX,
LPUART1_TX,
QUADSPI_NCS,
LCD_SEG11,
COMP2_OUT,
EVENTOUT
-
L11
-
70
-
VDD12
S
-
-
-
-
-
B8
-
-
31 31
J2
J2
J2
49
F12 F12
71
71
H5
VSS
S
-
-
-
-
32 32
J1
F1
J1
50
G12 G12
72
72
-
VDD
S
-
-
-
-
STM32L476xx
-
LQFP100
WLCSP81
WLCSP72_SMPS
WLCSP72
LQFP64_SMPS
LQFP64
Pin Number
Pinouts and pin description
78/270
Table 16. STM32L476xx pin definitions (continued)
33 33 H1 H1 H1
51
L12 L12
73
73
K10
PB12
I/O
FT_l
Alternate functions
Additional functions
-
TIM1_BKIN,
TIM1_BKIN_COMP2,
I2C2_SMBA, SPI2_NSS,
DFSDM1_DATIN1,
USART3_CK,
LPUART1_RTS_DE,
TSC_G1_IO1,
LCD_SEG12,
SWPMI1_IO, SAI2_FS_A,
TIM15_BKIN, EVENTOUT
-
-
TIM1_CH1N, I2C2_SCL,
SPI2_SCK,
DFSDM1_CKIN1,
USART3_CTS,
LPUART1_CTS,
TSC_G1_IO2,
LCD_SEG13,
SWPMI1_TX,
SAI2_SCK_A,
TIM15_CH1N,
EVENTOUT
-
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
UFBGA144
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100
WLCSP81
WLCSP72_SMPS
WLCSP72
LQFP64_SMPS
LQFP64
Pin Number
DS10198 Rev 8
34 34 H2 H2 H2
52
STM32L476xx
Table 16. STM32L476xx pin definitions (continued)
K12 K12
74
74
J9
PB13
I/O
FT_fl
Pinouts and pin description
79/270
35 35 G2 G3 G2
53
K11 K11
75
75
J10
PB14
I/O
FT_fl
Alternate functions
Additional functions
-
TIM1_CH2N,
TIM8_CH2N, I2C2_SDA,
SPI2_MISO,
DFSDM1_DATIN2,
USART3_RTS_DE,
TSC_G1_IO3,
LCD_SEG14,
SWPMI1_RX,
SAI2_MCLK_A,
TIM15_CH1, EVENTOUT
-
-
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
UFBGA144
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100
WLCSP81
WLCSP72_SMPS
WLCSP72
LQFP64_SMPS
LQFP64
Pin Number
DS10198 Rev 8
36 36 G1 G1 G1
-
-
-
-
-
-
F5
F4
K10 K10
76
76
L12
PB15
I/O
FT_l
-
55
K9
77
77
K11
PD8
I/O
FT_l
-
USART3_TX,
LCD_SEG28, FMC_D13,
EVENTOUT
-
-
USART3_RX,
LCD_SEG29, FMC_D14,
SAI2_MCLK_A,
EVENTOUT
-
56
K8
K9
K8
78
78
K12
PD9
I/O
FT_l
STM32L476xx
-
-
54
RTC_REFIN,
TIM1_CH3N,
TIM8_CH3N, SPI2_MOSI,
DFSDM1_CKIN2,
TSC_G1_IO4,
LCD_SEG15,
SWPMI1_SUSPEND,
SAI2_SD_A, TIM15_CH2,
EVENTOUT
Pinouts and pin description
80/270
Table 16. STM32L476xx pin definitions (continued)
-
DS10198 Rev 8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
57
58
59
J12
J11
J10
-
-
-
-
60
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
61
J12
J11
J10
80
81
79
80
81
J11
H10
H9
PD10
PD11
PD12
I/O
I/O
I/O
FT_l
FT_l
FT_l
Alternate functions
Additional functions
-
USART3_CK,
TSC_G6_IO1,
LCD_SEG30, FMC_D15,
SAI2_SCK_A,
EVENTOUT
-
-
USART3_CTS,
TSC_G6_IO2,
LCD_SEG31, FMC_A16,
SAI2_SD_A,
LPTIM2_ETR,
EVENTOUT
-
-
TIM4_CH1,
USART3_RTS_DE,
TSC_G6_IO3,
LCD_SEG32, FMC_A17,
SAI2_FS_A, LPTIM2_IN1,
EVENTOUT
-
-
Notes
I/O structure
Pin type
UFBGA144
LQFP144_SMPS
LQFP144
79
Pin name
(function
after
reset)
82
82
G10
PD13
I/O
FT_l
-
TIM4_CH2,
TSC_G6_IO4,
LCD_SEG33, FMC_A18,
LPTIM2_OUT,
EVENTOUT
-
83
83
E5
VSS
S
-
-
-
-
-
84
84
F5
VDD
S
-
-
-
-
85
85
H11
PD14
I/O
FT_l
-
TIM4_CH3, LCD_SEG34,
FMC_D0, EVENTOUT
-
H12 H12
H11 H11
Pinouts and pin description
81/270
-
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100
WLCSP81
WLCSP72_SMPS
WLCSP72
LQFP64_SMPS
LQFP64
Pin Number
STM32L476xx
Table 16. STM32L476xx pin definitions (continued)
Pin functions
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
LQFP144
LQFP144_SMPS
UFBGA144
Pin type
I/O structure
Notes
DS10198 Rev 8
LQFP64
UFBGA132_SMPS
Pin Number
-
-
-
-
-
62
H10 H10
86
86
J12
PD15
I/O
FT_l
-
TIM4_CH4, LCD_SEG35,
FMC_D1, EVENTOUT
-
-
-
-
-
-
-
G10 G10
87
87
H12
PG2
I/O
FT_s
-
SPI1_SCK, FMC_A12,
SAI2_SCK_B,
EVENTOUT
-
-
-
-
-
-
-
F9
F9
88
88
G11
PG3
I/O
FT_s
-
SPI1_MISO, FMC_A13,
SAI2_FS_B, EVENTOUT
-
-
-
-
-
-
-
F10 F10
89
89
G9
PG4
I/O
FT_s
-
SPI1_MOSI, FMC_A14,
SAI2_MCLK_B,
EVENTOUT
-
-
Pin name
(function
after
reset)
Alternate functions
Additional functions
-
-
-
-
-
E9
E9
90
90
G12
PG5
I/O
FT_s
-
-
-
-
-
-
-
G4
G4
91
91
F10
PG6
I/O
FT_s
-
I2C3_SMBA,
LPUART1_RTS_DE,
EVENTOUT
-
-
-
-
-
-
-
H4
H4
92
92
F9
PG7
I/O FT_fs
-
I2C3_SCL,
LPUART1_TX, FMC_INT,
EVENTOUT
-
-
-
-
-
-
-
J6
J6
93
93
F11
PG8
I/O FT_fs
-
I2C3_SDA,
LPUART1_RX,
EVENTOUT
-
-
-
-
-
-
-
-
-
94
94 M12
VSS
S
-
-
-
-
-
-
-
-
-
-
-
-
95
95
VDDIO2
S
-
-
-
-
F8
STM32L476xx
-
SPI1_NSS,
LPUART1_CTS,
FMC_A15, SAI2_SD_B,
EVENTOUT
Pinouts and pin description
82/270
Table 16. STM32L476xx pin definitions (continued)
37 37 F3 G2 F3
DS10198 Rev 8
38 38 F1
39 39 F2
F2
F3
F1
F2
63
64
65
66
E12 E12
E11 E11
E10 E10
D12 D12
96
97
98
99
96
97
98
99
E10
F12
E12
E11
PC6
PC7
PC8
PC9
I/O
I/O
I/O
I/O
FT_l
FT_l
FT_l
FT_l
83/270
Alternate functions
Additional functions
-
TIM3_CH1, TIM8_CH1,
DFSDM1_CKIN3,
TSC_G4_IO1,
LCD_SEG24,
SDMMC1_D6,
SAI2_MCLK_A,
EVENTOUT
-
-
TIM3_CH2, TIM8_CH2,
DFSDM1_DATIN3,
TSC_G4_IO2,
LCD_SEG25,
SDMMC1_D7,
SAI2_MCLK_B,
EVENTOUT
-
-
TIM3_CH3, TIM8_CH3,
TSC_G4_IO3,
LCD_SEG26,
SDMMC1_D0,
EVENTOUT
-
-
TIM8_BKIN2, TIM3_CH4,
TIM8_CH4,
TSC_G4_IO4,
OTG_FS_NOE,
LCD_SEG27,
SDMMC1_D1,
SAI2_EXTCLK,
TIM8_BKIN2_COMP1,
EVENTOUT
-
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
UFBGA144
LQFP144_SMPS
LQFP144
UFBGA132_SMPS
UFBGA132
Pin functions
Pinouts and pin description
40 40 E1 E1 E1
LQFP100
WLCSP81
WLCSP72_SMPS
WLCSP72
LQFP64_SMPS
LQFP64
Pin Number
STM32L476xx
Table 16. STM32L476xx pin definitions (continued)
Alternate functions
Additional functions
-
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
UFBGA144
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100
WLCSP81
WLCSP72_SMPS
WLCSP72
LQFP64_SMPS
LQFP64
Pin Number
DS10198 Rev 8
41 41 E2 E2 E2
67
D11 D11 100 100 D12
PA8
I/O
FT_l
-
MCO, TIM1_CH1,
USART1_CK,
OTG_FS_SOF,
LCD_COM0,
LPTIM2_OUT,
EVENTOUT
42 42 E3 E3 E3
68
D10 D10 101 101 D11
PA9
I/O FT_lu
-
TIM1_CH2, USART1_TX,
LCD_COM1,
TIM15_BKIN, EVENTOUT
OTG_FS_VBUS
-
TIM1_CH3, USART1_RX,
OTG_FS_ID,
LCD_COM2,
TIM17_BKIN, EVENTOUT
-
-
TIM1_CH4, TIM1_BKIN2,
USART1_CTS,
CAN1_RX, OTG_FS_DM,
TIM1_BKIN2_COMP1,
EVENTOUT
-
-
43 43 D2 D2 D2
44 44 D1 D1 D1
69
70
C12 C12 102 102 C12
B12 B12 103 103 B12
PA10
PA11
I/O FT_lu
I/O
FT_u
71
A12 A12 104 104 B11
PA12
I/O
FT_u
-
46 46 C2 C2 C2
72
A11 A11 105 105 C11
PA13
(JTMSSWDIO)
I/O
FT
(4)
JTMS-SWDIO, IR_OUT,
OTG_FS_NOE,
EVENTOUT
-
47 47 B1 B1 B1
-
VSS
S
-
-
-
-
-
-
-
-
E8
STM32L476xx
45 45 C1 C1 C1
TIM1_ETR,
USART1_RTS_DE,
CAN1_TX, OTG_FS_DP,
EVENTOUT
Pinouts and pin description
84/270
Table 16. STM32L476xx pin definitions (continued)
I/O structure
Notes
E9
VDDUSB
S
-
-
-
-
UFBGA144
Pin type
LQFP144_SMPS
C11 C11 106 106
LQFP144
73
WLCSP72
48 48 A1 A1 A1
LQFP64
UFBGA132
Pin name
(function
after
reset)
LQFP100
UFBGA132_SMPS
Pin functions
WLCSP81
WLCSP72_SMPS
LQFP64_SMPS
Pin Number
STM32L476xx
Table 16. STM32L476xx pin definitions (continued)
Alternate functions
Additional functions
-
-
-
-
74
F11
F11 107 107
H8
VSS
S
-
-
-
-
-
-
-
-
-
75
G11 G11 108 108
H7
VDD
S
-
-
-
-
76
A10 A10 109 109 C10
PA14
(JTCKSWCLK)
I/O
FT
(4)
JTCK-SWCLK,
EVENTOUT
-
(4)
JTDI, TIM2_CH1,
TIM2_ETR, SPI1_NSS,
SPI3_NSS,
UART4_RTS_DE,
TSC_G3_IO1,
LCD_SEG17,
SAI2_FS_B, EVENTOUT
-
-
SPI3_SCK, USART3_TX,
UART4_TX,
TSC_G3_IO2,
LCD_COM4/LCD_SEG28
/LCD_SEG40,
SDMMC1_D2,
SAI2_SCK_B,
EVENTOUT
-
49 49 B2 B2 B2
DS10198 Rev 8
50 50 A2 C3 A2
51 51 D3 A2 D3
77
78
A9
A9
110 110 D10
B11 B11 111 111 B10
PA15
(JTDI)
PC10
I/O
I/O
FT_l
FT_l
85/270
Pinouts and pin description
-
52 52 C3 D3 C3
79
C10 C10 112 112
C9
PC11
I/O
FT_l
Additional functions
-
SPI3_MISO,
USART3_RX,
UART4_RX,
TSC_G3_IO3,
LCD_COM5/LCD_SEG29
/LCD_SEG41,
SDMMC1_D3,
SAI2_MCLK_B,
EVENTOUT
-
-
SPI3_MOSI,
USART3_CK,
UART5_TX,
TSC_G3_IO4,
LCD_COM6/LCD_SEG30
/LCD_SEG42,
SDMMC1_CK,
SAI2_SD_B, EVENTOUT
-
-
SPI2_NSS,
DFSDM1_DATIN7,
CAN1_RX, FMC_D2,
EVENTOUT
-
-
SPI2_SCK,
DFSDM1_CKIN7,
CAN1_TX, FMC_D3,
EVENTOUT
-
DS10198 Rev 8
53 53 B3 B3 B3
-
-
-
-
-
-
-
-
-
-
80
81
82
B10 B10 113 113
C9
B9
C9
B9
B9
114 114 A11
115 115 A10
PC12
PD0
PD1
I/O
I/O
I/O
FT_l
FT
FT
STM32L476xx
Alternate functions
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
UFBGA144
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100
WLCSP81
WLCSP72_SMPS
WLCSP72
LQFP64_SMPS
LQFP64
Pin Number
Pinouts and pin description
86/270
Table 16. STM32L476xx pin definitions (continued)
54
DS10198 Rev 8
-
-
-
A3 A3 A3
-
-
-
83
84
C8
B8
C8
B8
116 116
117 117
D9
D8
PD2
PD3
I/O
I/O
FT_l
FT
Alternate functions
Additional functions
-
TIM3_ETR,
USART3_RTS_DE,
UART5_RX, TSC_SYNC,
LCD_COM7/LCD_SEG31
/LCD_SEG43,
SDMMC1_CMD,
EVENTOUT
-
-
SPI2_MISO,
DFSDM1_DATIN0,
USART2_CTS,
FMC_CLK, EVENTOUT
-
-
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
UFBGA144
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100
WLCSP81
WLCSP72_SMPS
WLCSP72
LQFP64_SMPS
LQFP64
Pin Number
STM32L476xx
Table 16. STM32L476xx pin definitions (continued)
-
-
-
E5
85
B7
B7
118 118
C8
PD4
I/O
FT
-
-
-
-
-
D4
86
A6
A6
119 119
B8
PD5
I/O
FT
-
USART2_TX, FMC_NWE,
EVENTOUT
-
-
-
-
-
-
-
-
-
120 120
A1
VSS
S
-
-
-
-
-
-
-
-
E4
-
-
-
121 121
-
VDD
S
-
-
-
-
-
-
-
-
-
-
D5
87
B6
B6
122 122
A9
PD6
I/O
FT
-
DFSDM1_DATIN1,
USART2_RX,
FMC_NWAIT,
SAI1_SD_A, EVENTOUT
-
-
-
-
D6
88
A5
A5
123 123
A8
PD7
I/O
FT
-
DFSDM1_CKIN1,
USART2_CK, FMC_NE1,
EVENTOUT
Pinouts and pin description
87/270
-
SPI2_MOSI,
DFSDM1_CKIN0,
USART2_RTS_DE,
FMC_NOE, EVENTOUT
-
DS10198 Rev 8
-
-
-
-
-
A4 A4 A4
B4 B4 B4
C4
-
C4
-
-
-
D9
D8
G3
D9
D8
G3
124 124
125 125
126 126
C7
D7
B7
PG9
PG10
PG11
I/O
I/O
I/O
FT_s
FT_s
FT_s
Alternate functions
Additional functions
-
SPI3_SCK, USART1_TX,
FMC_NCE/FMC_NE2,
SAI2_SCK_A,
TIM15_CH1N,
EVENTOUT
-
-
LPTIM1_IN1,
SPI3_MISO,
USART1_RX, FMC_NE3,
SAI2_FS_A, TIM15_CH1,
EVENTOUT
-
-
LPTIM1_IN2,
SPI3_MOSI,
USART1_CTS,
SAI2_MCLK_A,
TIM15_CH2, EVENTOUT
-
-
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
UFBGA144
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100
WLCSP81
WLCSP72_SMPS
WLCSP72
LQFP64_SMPS
LQFP64
Pin Number
-
C5 C4 C5
-
D7
D7
127 127
A7
PG12
I/O
FT_s
-
-
-
B5 B5 B5
-
C7
C7
128 128
D6
PG13
I/O FT_fs
-
I2C1_SDA, USART1_CK,
FMC_A24, EVENTOUT
-
-
-
A5 A5 A5
-
C6
-
129 129
A6
PG14
I/O FT_fs
-
I2C1_SCL, FMC_A25,
EVENTOUT
-
-
-
-
F7
F7
130 130 A12
VSS
S
-
-
-
-
-
-
-
G7
G7
131 131
VDDIO2
S
-
-
-
-
-
-
-
B6 B6 B6
E6
STM32L476xx
-
LPTIM1_ETR, SPI3_NSS,
USART1_RTS_DE,
FMC_NE4, SAI2_SD_A,
EVENTOUT
Pinouts and pin description
88/270
Table 16. STM32L476xx pin definitions (continued)
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
-
-
-
-
K1
K1
132
-
B6
55 54 A6 A6 A6
89
A8
A8
133 132
C6
DS10198 Rev 8
56 55 C6 C5 C6
91
A7
C5
A7
C5
134 133
135 134
D5
C5
PB3
(JTDOTRACE
SWO)
I/O
FT_s
-
I/O FT_la
PB4
I/O FT_la
(NJTRST)
PB5
I/O FT_la
Alternate functions
Additional functions
LPTIM1_OUT,
I2C1_SMBA, EVENTOUT
-
(4)
JTDO-TRACESWO,
TIM2_CH2, SPI1_SCK,
SPI3_SCK,
USART1_RTS_DE,
LCD_SEG7,
SAI1_SCK_B,
EVENTOUT
COMP2_INM
(4)
NJTRST, TIM3_CH1,
SPI1_MISO, SPI3_MISO,
USART1_CTS,
UART5_RTS_DE,
TSC_G2_IO1,
LCD_SEG8,
SAI1_MCLK_B,
TIM17_BKIN, EVENTOUT
COMP2_INP
-
LPTIM1_IN1, TIM3_CH2,
I2C1_SMBA, SPI1_MOSI,
SPI3_MOSI,
USART1_CK,
UART5_CTS,
TSC_G2_IO2,
LCD_SEG9,
COMP2_OUT,
SAI1_SD_B,
TIM16_BKIN, EVENTOUT
-
89/270
Pinouts and pin description
57 56 C7 E7 C7
90
PG15
Notes
WLCSP72_SMPS
-
I/O structure
WLCSP72
-
Pin name
(function
after
reset)
Pin type
LQFP64_SMPS
Pin functions
LQFP64
Pin Number
STM32L476xx
Table 16. STM32L476xx pin definitions (continued)
58 57 B7 E8 B7
92
B5
B5
136 135
B5
PB6
I/O FT_fa
Additional functions
-
LPTIM1_ETR,
TIM4_CH1, TIM8_BKIN2,
I2C1_SCL,
DFSDM1_DATIN5,
USART1_TX,
TSC_G2_IO3,
TIM8_BKIN2_COMP2,
SAI1_FS_B,
TIM16_CH1N,
EVENTOUT
COMP2_INP
-
LPTIM1_IN2, TIM4_CH2,
TIM8_BKIN, I2C1_SDA,
DFSDM1_CKIN5,
USART1_RX,
UART4_CTS,
TSC_G2_IO4,
LCD_SEG21, FMC_NL,
TIM8_BKIN_COMP1,
TIM17_CH1N,
EVENTOUT
COMP2_INM, PVD_IN
-
-
-
-
TIM4_CH3, I2C1_SCL,
DFSDM1_DATIN6,
CAN1_RX, LCD_SEG16,
SDMMC1_D4,
SAI1_MCLK_A,
TIM16_CH1, EVENTOUT
-
DS10198 Rev 8
59 58 A7 B7 A7
93
B4
B4
137 136
A5
PB7
60 59 D7 A7 D7
94
A4
A4
138 137
A4
BOOT0
61 60 E7 C6 E7
95
A3
A3
139 138
A3
PB8
I/O FT_fla
I
I/O
-
FT_fl
STM32L476xx
Alternate functions
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
UFBGA144
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100
WLCSP81
WLCSP72_SMPS
WLCSP72
LQFP64_SMPS
LQFP64
Pin Number
Pinouts and pin description
90/270
Table 16. STM32L476xx pin definitions (continued)
62 61 E8 D7 E8
Alternate functions
Additional functions
-
Notes
I/O structure
Pin name
(function
after
reset)
Pin type
UFBGA144
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100
WLCSP81
WLCSP72_SMPS
WLCSP72
LQFP64_SMPS
LQFP64
Pin Number
STM32L476xx
Table 16. STM32L476xx pin definitions (continued)
96
B3
B3
140 139
C4
PB9
I/O
FT_fl
-
IR_OUT, TIM4_CH4,
I2C1_SDA, SPI2_NSS,
DFSDM1_CKIN6,
CAN1_TX, LCD_COM3,
SDMMC1_D5,
SAI1_FS_A, TIM17_CH1,
EVENTOUT
DS10198 Rev 8
-
-
-
-
-
97
C3
C3
141 140
A2
PE0
I/O
FT_l
-
TIM4_ETR, LCD_SEG36,
FMC_NBL0, TIM16_CH1,
EVENTOUT
-
-
-
-
-
-
98
A2
A2
142 141
B4
PE1
I/O
FT_l
-
LCD_SEG37,
FMC_NBL1, TIM17_CH1,
EVENTOUT
-
-
62
-
J1
-
-
-
C6
-
VDD12
S
-
-
-
-
99
D3
D3
143 143 M1
VSS
S
-
-
-
-
64 64 A9 A9 A9 100
C4
C4
144 144
VDD
S
-
-
-
-
63 63 A8 A8 A8
-
142
-
2. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not
reset by the system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the RM0351 reference
manual.
3. OPAMPx_VINM pins are not available as additional functions on pins PA1 and PA7 on UFBGA packages. On UFBGA packages, use the OPAMPx_VINM
dedicated pins.
91/270
4. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down
on PA14 pin are activated.
Pinouts and pin description
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to
PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (e.g. to drive an LED).
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/TIM2/
TIM5/TIM8/
LPTIM1
TIM1/TIM2/
TIM3/TIM4/
TIM5
TIM8
I2C1/I2C2/I2C3
SPI1/SPI2
SPI3/DFSDM
USART1/
USART2/
USART3
PA0
-
TIM2_CH1
TIM5_CH1
TIM8_ETR
-
-
-
USART2_CTS
PA1
-
TIM2_CH2
TIM5_CH2
-
-
-
-
USART2_RTS_
DE
PA2
-
TIM2_CH3
TIM5_CH3
-
-
-
-
USART2_TX
PA3
-
TIM2_CH4
TIM5_CH4
-
-
-
-
USART2_RX
PA4
-
-
-
-
-
SPI1_NSS
SPI3_NSS
USART2_CK
PA5
-
TIM2_CH1
TIM2_ETR
TIM8_CH1N
-
SPI1_SCK
-
-
PA6
-
TIM1_BKIN
TIM3_CH1
TIM8_BKIN
-
SPI1_MISO
-
USART3_CTS
PA7
-
TIM1_CH1N
TIM3_CH2
TIM8_CH1N
-
SPI1_MOSI
-
-
PA8
MCO
TIM1_CH1
-
-
-
-
-
USART1_CK
PA9
-
TIM1_CH2
-
-
-
-
-
USART1_TX
PA10
-
TIM1_CH3
-
-
-
-
-
USART1_RX
PA11
-
TIM1_CH4
TIM1_BKIN2
-
-
-
-
USART1_CTS
PA12
-
TIM1_ETR
-
-
-
-
-
USART1_RTS_
DE
PA13
JTMS-SWDIO
IR_OUT
-
-
-
-
-
-
PA14
JTCK-SWCLK
-
-
-
-
-
-
-
PA15
JTDI
TIM2_CH1
TIM2_ETR
-
-
SPI1_NSS
SPI3_NSS
-
Port
DS10198 Rev 8
Port A
STM32L476xx
AF0
Pinouts and pin description
92/270
Table 17. Alternate function AF0 to AF7(1)
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/TIM2/
TIM5/TIM8/
LPTIM1
TIM1/TIM2/
TIM3/TIM4/
TIM5
TIM8
I2C1/I2C2/I2C3
SPI1/SPI2
SPI3/DFSDM
USART1/
USART2/
USART3
PB0
-
TIM1_CH2N
TIM3_CH3
TIM8_CH2N
-
-
-
USART3_CK
PB1
-
TIM1_CH3N
TIM3_CH4
TIM8_CH3N
-
-
DFSDM1_
DATIN0
USART3_RTS_
DE
PB2
RTC_OUT
LPTIM1_OUT
-
-
I2C3_SMBA
-
DFSDM1_CKIN0
-
PB3
JTDOTRACESWO
TIM2_CH2
-
-
-
SPI1_SCK
SPI3_SCK
USART1_RTS_
DE
PB4
NJTRST
-
TIM3_CH1
-
-
SPI1_MISO
SPI3_MISO
USART1_CTS
PB5
-
LPTIM1_IN1
TIM3_CH2
-
I2C1_SMBA
SPI1_MOSI
SPI3_MOSI
USART1_CK
PB6
-
LPTIM1_ETR
TIM4_CH1
TIM8_BKIN2
I2C1_SCL
-
DFSDM1_
DATIN5
USART1_TX
PB7
-
LPTIM1_IN2
TIM4_CH2
TIM8_BKIN
I2C1_SDA
-
DFSDM1_CKIN5
USART1_RX
PB8
-
-
TIM4_CH3
-
I2C1_SCL
-
DFSDM1_
DATIN6
-
PB9
-
IR_OUT
TIM4_CH4
-
I2C1_SDA
SPI2_NSS
DFSDM1_CKIN6
-
PB10
-
TIM2_CH3
-
-
I2C2_SCL
SPI2_SCK
DFSDM1_
DATIN7
USART3_TX
PB11
-
TIM2_CH4
-
-
I2C2_SDA
-
DFSDM1_CKIN7
USART3_RX
PB12
-
TIM1_BKIN
-
TIM1_BKIN_
COMP2
I2C2_SMBA
SPI2_NSS
DFSDM1_
DATIN1
USART3_CK
PB13
-
TIM1_CH1N
-
-
I2C2_SCL
SPI2_SCK
DFSDM1_CKIN1
USART3_CTS
PB14
-
TIM1_CH2N
-
TIM8_CH2N
I2C2_SDA
SPI2_MISO
DFSDM1_
DATIN2
USART3_RTS_
DE
PB15
RTC_REFIN
TIM1_CH3N
-
TIM8_CH3N
-
SPI2_MOSI
DFSDM1_CKIN2
-
Port
DS10198 Rev 8
Port B
93/270
Pinouts and pin description
AF0
STM32L476xx
Table 17. Alternate function AF0 to AF7(1) (continued)
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/TIM2/
TIM5/TIM8/
LPTIM1
TIM1/TIM2/
TIM3/TIM4/
TIM5
TIM8
I2C1/I2C2/I2C3
SPI1/SPI2
SPI3/DFSDM
USART1/
USART2/
USART3
PC0
-
LPTIM1_IN1
-
-
I2C3_SCL
-
DFSDM1_
DATIN4
-
PC1
-
LPTIM1_OUT
-
-
I2C3_SDA
-
DFSDM1_CKIN4
-
PC2
-
LPTIM1_IN2
-
-
-
SPI2_MISO
DFSDM1_
CKOUT
-
PC3
-
LPTIM1_ETR
-
-
-
SPI2_MOSI
-
-
PC4
-
-
-
-
-
-
-
USART3_TX
PC5
-
-
-
-
-
-
-
USART3_RX
PC6
-
-
TIM3_CH1
TIM8_CH1
-
-
DFSDM1_CKIN3
-
PC7
-
-
TIM3_CH2
TIM8_CH2
-
-
DFSDM1_
DATIN3
-
PC8
-
-
TIM3_CH3
TIM8_CH3
-
-
-
-
PC9
-
TIM8_BKIN2
TIM3_CH4
TIM8_CH4
-
-
-
-
PC10
-
-
-
-
-
-
SPI3_SCK
USART3_TX
PC11
-
-
-
-
-
-
SPI3_MISO
USART3_RX
PC12
-
-
-
-
-
-
SPI3_MOSI
USART3_CK
PC13
-
-
-
-
-
-
-
-
PC14
-
-
-
-
-
-
-
-
PC15
-
-
-
-
-
-
-
-
Port
DS10198 Rev 8
Port C
STM32L476xx
AF0
Pinouts and pin description
94/270
Table 17. Alternate function AF0 to AF7(1) (continued)
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/TIM2/
TIM5/TIM8/
LPTIM1
TIM1/TIM2/
TIM3/TIM4/
TIM5
TIM8
I2C1/I2C2/I2C3
SPI1/SPI2
SPI3/DFSDM
USART1/
USART2/
USART3
PD0
-
-
-
-
-
SPI2_NSS
DFSDM1_
DATIN7
-
PD1
-
-
-
-
-
SPI2_SCK
DFSDM1_CKIN7
-
PD2
-
-
TIM3_ETR
-
-
-
-
USART3_RTS_
DE
PD3
-
-
-
-
-
SPI2_MISO
DFSDM1_
DATIN0
USART2_CTS
PD4
-
-
-
-
-
SPI2_MOSI
DFSDM1_CKIN0
USART2_RTS_
DE
PD5
-
-
-
-
-
-
-
USART2_TX
PD6
-
-
-
-
-
-
DFSDM1_
DATIN1
USART2_RX
PD7
-
-
-
-
-
-
DFSDM1_CKIN1
USART2_CK
PD8
-
-
-
-
-
-
-
USART3_TX
PD9
-
-
-
-
-
-
-
USART3_RX
PD10
-
-
-
-
-
-
-
USART3_CK
PD11
-
-
-
-
-
-
-
USART3_CTS
PD12
-
-
TIM4_CH1
-
-
-
-
USART3_RTS_
DE
PD13
-
-
TIM4_CH2
-
-
-
-
-
PD14
-
-
TIM4_CH3
-
-
-
-
-
PD15
-
-
TIM4_CH4
-
-
-
-
-
Port
DS10198 Rev 8
Port D
95/270
Pinouts and pin description
AF0
STM32L476xx
Table 17. Alternate function AF0 to AF7(1) (continued)
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/TIM2/
TIM5/TIM8/
LPTIM1
TIM1/TIM2/
TIM3/TIM4/
TIM5
TIM8
I2C1/I2C2/I2C3
SPI1/SPI2
SPI3/DFSDM
USART1/
USART2/
USART3
PE0
-
-
TIM4_ETR
-
-
-
-
-
PE1
-
-
-
-
-
-
-
-
PE2
TRACECK
-
TIM3_ETR
-
-
-
-
-
PE3
TRACED0
-
TIM3_CH1
-
-
-
-
-
PE4
TRACED1
-
TIM3_CH2
-
-
-
DFSDM1_
DATIN3
-
PE5
TRACED2
-
TIM3_CH3
-
-
-
DFSDM1_CKIN3
-
PE6
TRACED3
-
TIM3_CH4
-
-
-
-
-
PE7
-
TIM1_ETR
-
-
-
-
DFSDM1_
DATIN2
-
PE8
-
TIM1_CH1N
-
-
-
-
DFSDM1_CKIN2
-
PE9
-
TIM1_CH1
-
-
-
-
DFSDM1_
CKOUT
-
PE10
-
TIM1_CH2N
-
-
-
-
DFSDM1_
DATIN4
-
PE11
-
TIM1_CH2
-
-
-
-
DFSDM1_
CKIN4
-
PE12
-
TIM1_CH3N
-
-
-
SPI1_NSS
DFSDM1_
DATIN5
-
PE13
-
TIM1_CH3
-
-
-
SPI1_SCK
DFSDM1_CKIN5
-
PE14
-
TIM1_CH4
TIM1_BKIN2
TIM1_BKIN2_
COMP2
-
SPI1_MISO
-
-
PE15
-
TIM1_BKIN
-
TIM1_BKIN_
COMP1
-
SPI1_MOSI
-
-
Port
DS10198 Rev 8
Port E
STM32L476xx
AF0
Pinouts and pin description
96/270
Table 17. Alternate function AF0 to AF7(1) (continued)
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/TIM2/
TIM5/TIM8/
LPTIM1
TIM1/TIM2/
TIM3/TIM4/
TIM5
TIM8
I2C1/I2C2/I2C3
SPI1/SPI2
SPI3/DFSDM
USART1/
USART2/
USART3
PF0
-
-
-
-
I2C2_SDA
-
-
-
PF1
-
-
-
-
I2C2_SCL
-
-
-
PF2
-
-
-
-
I2C2_SMBA
-
-
-
PF3
-
-
-
-
-
-
-
-
PF4
-
-
-
-
-
-
-
-
PF5
-
-
-
-
-
-
-
-
PF6
-
TIM5_ETR
TIM5_CH1
-
-
-
-
-
PF7
-
-
TIM5_CH2
-
-
-
-
-
PF8
-
-
TIM5_CH3
-
-
-
-
-
PF9
-
-
TIM5_CH4
-
-
-
-
-
PF10
-
-
-
-
-
-
-
-
PF11
-
-
-
-
-
-
-
-
PF12
-
-
-
-
-
-
-
-
PF13
-
-
-
-
-
-
DFSDM1_
DATIN6
-
PF14
-
-
-
-
-
-
DFSDM1_CKIN6
-
PF15
-
-
-
-
-
-
-
-
Port
DS10198 Rev 8
Port F
97/270
Pinouts and pin description
AF0
STM32L476xx
Table 17. Alternate function AF0 to AF7(1) (continued)
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/TIM2/
TIM5/TIM8/
LPTIM1
TIM1/TIM2/
TIM3/TIM4/
TIM5
TIM8
I2C1/I2C2/I2C3
SPI1/SPI2
SPI3/DFSDM
USART1/
USART2/
USART3
PG0
-
-
-
-
-
-
-
-
PG1
-
-
-
-
-
-
-
-
PG2
-
-
-
-
-
SPI1_SCK
-
-
PG3
-
-
-
-
-
SPI1_MISO
-
-
PG4
-
-
-
-
-
SPI1_MOSI
-
-
PG5
-
-
-
-
-
SPI1_NSS
-
-
PG6
-
-
-
-
I2C3_SMBA
-
-
-
PG7
-
-
-
-
I2C3_SCL
-
-
-
PG8
-
-
-
-
I2C3_SDA
-
-
-
PG9
-
-
-
-
-
-
SPI3_SCK
USART1_TX
PG10
-
LPTIM1_IN1
-
-
-
-
SPI3_MISO
USART1_RX
PG11
-
LPTIM1_IN2
-
-
-
-
SPI3_MOSI
USART1_CTS
PG12
-
LPTIM1_ETR
-
-
-
-
SPI3_NSS
USART1_RTS_
DE
PG13
-
-
-
-
I2C1_SDA
-
-
USART1_CK
PG14
-
-
-
-
I2C1_SCL
-
-
-
PG15
-
LPTIM1_OUT
-
-
I2C1_SMBA
-
-
-
PH0
-
-
-
-
-
-
-
-
PH1
-
-
-
-
-
-
-
-
Port
DS10198 Rev 8
Port G
Port H
1. Please refer to Table 18 for AF8 to AF15.
STM32L476xx
AF0
Pinouts and pin description
98/270
Table 17. Alternate function AF0 to AF7(1) (continued)
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4,
UART5,
LPUART1
CAN1, TSC
OTG_FS, QUADSPI
LCD
SDMMC1, COMP1,
COMP2, FMC,
SWPMI1
SAI1, SAI2
TIM2, TIM15,
TIM16, TIM17,
LPTIM2
EVENTOUT
PA0
UART4_TX
-
-
-
-
SAI1_EXTCLK
TIM2_ETR
EVENTOUT
PA1
UART4_RX
-
-
LCD_SEG0
-
-
TIM15_CH1N
EVENTOUT
PA2
-
-
-
LCD_SEG1
-
SAI2_EXTCLK
TIM15_CH1
EVENTOUT
PA3
-
-
-
LCD_SEG2
-
-
TIM15_CH2
EVENTOUT
PA4
-
-
-
-
-
SAI1_FS_B
LPTIM2_OUT
EVENTOUT
PA5
-
-
-
-
-
-
LPTIM2_ETR
EVENTOUT
PA6
-
-
QUADSPI_BK1_IO3
LCD_SEG3
TIM1_BKIN_
COMP2
TIM8_BKIN_
COMP2
TIM16_CH1
EVENTOUT
PA7
-
-
QUADSPI_BK1_IO2
LCD_SEG4
-
-
TIM17_CH1
EVENTOUT
PA8
-
-
OTG_FS_SOF
LCD_COM0
-
-
LPTIM2_OUT
EVENTOUT
PA9
-
-
-
LCD_COM1
-
-
TIM15_BKIN
EVENTOUT
PA10
-
-
OTG_FS_ID
LCD_COM2
-
-
TIM17_BKIN
EVENTOUT
PA11
-
CAN1_RX
OTG_FS_DM
-
TIM1_BKIN2_
COMP1
-
-
EVENTOUT
PA12
-
CAN1_TX
OTG_FS_DP
-
-
-
-
EVENTOUT
PA13
-
-
OTG_FS_NOE
-
-
-
-
EVENTOUT
PA14
-
-
-
-
-
-
-
EVENTOUT
PA15
UART4_RTS
_DE
TSC_G3_IO1
-
LCD_SEG17
-
SAI2_FS_B
-
EVENTOUT
Port
DS10198 Rev 8
Port A
99/270
Pinouts and pin description
AF8
STM32L476xx
Table 18. Alternate function AF8 to AF15(1)
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4,
UART5,
LPUART1
CAN1, TSC
OTG_FS, QUADSPI
LCD
SDMMC1, COMP1,
COMP2, FMC,
SWPMI1
SAI1, SAI2
TIM2, TIM15,
TIM16, TIM17,
LPTIM2
EVENTOUT
PB0
-
-
QUADSPI_BK1_IO1
LCD_SEG5
COMP1_OUT
-
-
EVENTOUT
PB1
-
-
QUADSPI_BK1_IO0
LCD_SEG6
-
-
LPTIM2_IN1
EVENTOUT
PB2
-
-
-
-
-
-
-
EVENTOUT
PB3
-
-
-
LCD_SEG7
-
SAI1_SCK_B
-
EVENTOUT
PB4
UART5_RTS
_DE
TSC_G2_IO1
-
LCD_SEG8
-
SAI1_MCLK_
B
TIM17_BKIN
EVENTOUT
PB5
UART5_CTS
TSC_G2_IO2
-
LCD_SEG9
COMP2_OUT
SAI1_SD_B
TIM16_BKIN
EVENTOUT
PB6
-
TSC_G2_IO3
-
-
TIM8_BKIN2_
COMP2
SAI1_FS_B
TIM16_CH1N
EVENTOUT
PB7
UART4_CTS
TSC_G2_IO4
-
LCD_SEG21
FMC_NL
TIM8_BKIN_
COMP1
TIM17_CH1N
EVENTOUT
PB8
-
CAN1_RX
-
LCD_SEG16
SDMMC1_D4
SAI1_MCLK_
A
TIM16_CH1
EVENTOUT
PB9
-
CAN1_TX
-
LCD_COM3
SDMMC1_D5
SAI1_FS_A
TIM17_CH1
EVENTOUT
PB10
LPUART1_
RX
-
QUADSPI_CLK
LCD_SEG10
COMP1_OUT
SAI1_SCK_A
-
EVENTOUT
PB11
LPUART1_TX
-
QUADSPI_NCS
LCD_SEG11
COMP2_OUT
-
-
EVENTOUT
PB12
LPUART1_
RTS_DE
TSC_G1_IO1
-
LCD_SEG12
SWPMI1_IO
SAI2_FS_A
TIM15_BKIN
EVENTOUT
PB13
LPUART1_
CTS
TSC_G1_IO2
-
LCD_SEG13
SWPMI1_TX
SAI2_SCK_A
TIM15_CH1N
EVENTOUT
PB14
-
TSC_G1_IO3
-
LCD_SEG14
SWPMI1_RX
SAI2_MCLK_
A
TIM15_CH1
EVENTOUT
PB15
-
TSC_G1_IO4
-
LCD_SEG15
SWPMI1_SUSPEND
SAI2_SD_A
TIM15_CH2
EVENTOUT
Port
DS10198 Rev 8
Port B
STM32L476xx
AF8
Pinouts and pin description
100/270
Table 18. Alternate function AF8 to AF15(1) (continued)
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4,
UART5,
LPUART1
CAN1, TSC
OTG_FS, QUADSPI
LCD
SDMMC1, COMP1,
COMP2, FMC,
SWPMI1
SAI1, SAI2
TIM2, TIM15,
TIM16, TIM17,
LPTIM2
EVENTOUT
PC0
LPUART1_
RX
-
-
LCD_SEG18
-
-
LPTIM2_IN1
EVENTOUT
PC1
LPUART1_TX
-
-
LCD_SEG19
-
-
-
EVENTOUT
PC2
-
-
-
LCD_SEG20
-
-
-
EVENTOUT
PC3
-
-
-
LCD_VLCD
-
SAI1_SD_A
LPTIM2_ETR
EVENTOUT
PC4
-
-
-
LCD_SEG22
-
-
-
EVENTOUT
PC5
-
-
-
LCD_SEG23
-
-
-
EVENTOUT
PC6
-
TSC_G4_IO1
-
LCD_SEG24
SDMMC1_D6
SAI2_MCLK_
A
-
EVENTOUT
PC7
-
TSC_G4_IO2
-
LCD_SEG25
SDMMC1_D7
SAI2_MCLK_
B
-
EVENTOUT
PC8
-
TSC_G4_IO3
-
LCD_SEG26
SDMMC1_D0
-
-
EVENTOUT
PC9
-
TSC_G4_IO4
OTG_FS_NOE
LCD_SEG27
SDMMC1_D1
SAI2_EXTCLK
TIM8_BKIN2_
COMP1
EVENTOUT
PC10
UART4_TX
TSC_G3_IO2
-
LCD_COM4/
LCD_SEG28/
LCD_SEG40
SDMMC1_D2
SAI2_SCK_B
-
EVENTOUT
PC11
UART4_RX
TSC_G3_IO3
-
LCD_COM5/
LCD_SEG29/
LCD_SEG41
SDMMC1_D3
SAI2_MCLK_
B
-
EVENTOUT
PC12
UART5_TX
TSC_G3_IO4
-
LCD_COM6/
LCD_SEG30/
LCD_SEG42
SDMMC1_CK
SAI2_SD_B
-
EVENTOUT
PC13
-
-
-
-
-
-
-
EVENTOUT
PC14
-
-
-
-
-
-
-
EVENTOUT
PC15
-
-
-
-
-
-
-
EVENTOUT
Port
DS10198 Rev 8
Port C
101/270
Pinouts and pin description
AF8
STM32L476xx
Table 18. Alternate function AF8 to AF15(1) (continued)
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4,
UART5,
LPUART1
CAN1, TSC
OTG_FS, QUADSPI
LCD
SDMMC1, COMP1,
COMP2, FMC,
SWPMI1
SAI1, SAI2
TIM2, TIM15,
TIM16, TIM17,
LPTIM2
EVENTOUT
PD0
-
CAN1_RX
-
-
FMC_D2
-
-
EVENTOUT
PD1
-
CAN1_TX
-
-
FMC_D3
-
-
EVENTOUT
PD2
UART5_RX
TSC_SYNC
-
LCD_COM7/
LCD_SEG31/
LCD_SEG43
SDMMC1_CMD
-
-
EVENTOUT
PD3
-
-
-
-
FMC_CLK
-
-
EVENTOUT
PD4
-
-
-
-
FMC_NOE
-
-
EVENTOUT
PD5
-
-
-
-
FMC_NWE
-
-
EVENTOUT
PD6
-
-
-
-
FMC_NWAIT
SAI1_SD_A
-
EVENTOUT
PD7
-
-
-
-
FMC_NE1
-
-
EVENTOUT
PD8
-
-
-
LCD_SEG28
FMC_D13
-
-
EVENTOUT
PD9
-
-
-
LCD_SEG29
FMC_D14
SAI2_MCLK_
A
-
EVENTOUT
PD10
-
TSC_G6_IO1
-
LCD_SEG30
FMC_D15
SAI2_SCK_A
-
EVENTOUT
PD11
-
TSC_G6_IO2
-
LCD_SEG31
FMC_A16
SAI2_SD_A
LPTIM2_ETR
EVENTOUT
PD12
-
TSC_G6_IO3
-
LCD_SEG32
FMC_A17
SAI2_FS_A
LPTIM2_IN1
EVENTOUT
PD13
-
TSC_G6_IO4
-
LCD_SEG33
FMC_A18
-
LPTIM2_OUT
EVENTOUT
PD14
-
-
-
LCD_SEG34
FMC_D0
-
-
EVENTOUT
PD15
-
-
-
LCD_SEG35
FMC_D1
-
-
EVENTOUT
Port
DS10198 Rev 8
Port D
STM32L476xx
AF8
Pinouts and pin description
102/270
Table 18. Alternate function AF8 to AF15(1) (continued)
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4,
UART5,
LPUART1
CAN1, TSC
OTG_FS, QUADSPI
LCD
SDMMC1, COMP1,
COMP2, FMC,
SWPMI1
SAI1, SAI2
TIM2, TIM15,
TIM16, TIM17,
LPTIM2
EVENTOUT
PE0
-
-
-
LCD_SEG36
FMC_NBL0
-
TIM16_CH1
EVENTOUT
PE1
-
-
-
LCD_SEG37
FMC_NBL1
-
TIM17_CH1
EVENTOUT
PE2
-
TSC_G7_IO1
-
LCD_SEG38
FMC_A23
SAI1_MCLK_
A
-
EVENTOUT
PE3
-
TSC_G7_IO2
-
LCD_SEG39
FMC_A19
SAI1_SD_B
-
EVENTOUT
PE4
-
TSC_G7_IO3
-
-
FMC_A20
SAI1_FS_A
-
EVENTOUT
PE5
-
TSC_G7_IO4
-
-
FMC_A21
SAI1_SCK_A
-
EVENTOUT
PE6
-
-
-
-
FMC_A22
SAI1_SD_A
-
EVENTOUT
PE7
-
-
-
-
FMC_D4
SAI1_SD_B
-
EVENTOUT
PE8
-
-
-
-
FMC_D5
SAI1_SCK_B
-
EVENTOUT
PE9
-
-
-
-
FMC_D6
SAI1_FS_B
-
EVENTOUT
PE10
-
TSC_G5_IO1
QUADSPI_CLK
-
FMC_D7
SAI1_MCLK_
B
-
EVENTOUT
PE11
-
TSC_G5_IO2
QUADSPI_NCS
-
FMC_D8
-
-
EVENTOUT
PE12
-
TSC_G5_IO3
QUADSPI_BK1_IO0
-
FMC_D9
-
-
EVENTOUT
PE13
-
TSC_G5_IO4
QUADSPI_BK1_IO1
-
FMC_D10
-
-
EVENTOUT
PE14
-
-
QUADSPI_BK1_IO2
-
FMC_D11
-
-
EVENTOUT
PE15
-
-
QUADSPI_BK1_IO3
-
FMC_D12
-
-
EVENTOUT
Port
DS10198 Rev 8
Port E
103/270
Pinouts and pin description
AF8
STM32L476xx
Table 18. Alternate function AF8 to AF15(1) (continued)
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4,
UART5,
LPUART1
CAN1, TSC
OTG_FS, QUADSPI
LCD
SDMMC1, COMP1,
COMP2, FMC,
SWPMI1
SAI1, SAI2
TIM2, TIM15,
TIM16, TIM17,
LPTIM2
EVENTOUT
PF0
-
-
-
-
FMC_A0
-
-
EVENTOUT
PF1
-
-
-
-
FMC_A1
-
-
EVENTOUT
PF2
-
-
-
-
FMC_A2
-
-
EVENTOUT
PF3
-
-
-
-
FMC_A3
-
-
EVENTOUT
PF4
-
-
-
-
FMC_A4
-
-
EVENTOUT
PF5
-
-
-
-
FMC_A5
-
-
EVENTOUT
PF6
-
-
-
-
-
SAI1_SD_B
-
EVENTOUT
PF7
-
-
-
-
-
SAI1_MCLK_
B
-
EVENTOUT
PF8
-
-
-
-
-
SAI1_SCK_B
-
EVENTOUT
PF9
-
-
-
-
-
SAI1_FS_B
TIM15_CH1
EVENTOUT
PF10
-
-
-
-
-
-
TIM15_CH2
EVENTOUT
PF11
-
-
-
-
-
-
-
EVENTOUT
PF12
-
-
-
-
FMC_A6
-
-
EVENTOUT
PF13
-
-
-
-
FMC_A7
-
-
EVENTOUT
PF14
-
TSC_G8_IO1
-
-
FMC_A8
-
-
EVENTOUT
PF15
-
TSC_G8_IO2
-
-
FMC_A9
-
-
EVENTOUT
Port
DS10198 Rev 8
Port F
Pinouts and pin description
104/270
Table 18. Alternate function AF8 to AF15(1) (continued)
STM32L476xx
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4,
UART5,
LPUART1
CAN1, TSC
OTG_FS, QUADSPI
LCD
SDMMC1, COMP1,
COMP2, FMC,
SWPMI1
SAI1, SAI2
TIM2, TIM15,
TIM16, TIM17,
LPTIM2
EVENTOUT
PG0
-
TSC_G8_IO3
-
-
FMC_A10
-
-
EVENTOUT
PG1
-
TSC_G8_IO4
-
-
FMC_A11
-
-
EVENTOUT
PG2
-
-
-
-
FMC_A12
SAI2_SCK_B
-
EVENTOUT
PG3
-
-
-
-
FMC_A13
SAI2_FS_B
-
EVENTOUT
PG4
-
-
-
-
FMC_A14
SAI2_MCLK_
B
-
EVENTOUT
PG5
LPUART1_
CTS
-
-
-
FMC_A15
SAI2_SD_B
-
EVENTOUT
PG6
LPUART1_
RTS_DE
-
-
-
-
-
-
EVENTOUT
PG7
LPUART1_TX
-
-
-
FMC_INT
-
-
EVENTOUT
PG8
LPUART1_
RX
-
-
-
-
-
-
EVENTOUT
PG9
-
-
-
-
FMC_NCE/
FMC_NE2
SAI2_SCK_A
TIM15_CH1N
EVENTOUT
PG10
-
-
-
-
FMC_NE3
SAI2_FS_A
TIM15_CH1
EVENTOUT
PG11
-
-
-
-
-
SAI2_MCLK_
A
TIM15_CH2
EVENTOUT
PG12
-
-
-
-
FMC_NE4
SAI2_SD_A
-
EVENTOUT
PG13
-
-
-
-
FMC_A24
-
-
EVENTOUT
PG14
-
-
-
-
FMC_A25
-
-
EVENTOUT
PG15
-
-
-
-
-
-
-
EVENTOUT
Port
DS10198 Rev 8
Port G
105/270
Pinouts and pin description
AF8
STM32L476xx
Table 18. Alternate function AF8 to AF15(1) (continued)
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4,
UART5,
LPUART1
CAN1, TSC
OTG_FS, QUADSPI
LCD
SDMMC1, COMP1,
COMP2, FMC,
SWPMI1
SAI1, SAI2
TIM2, TIM15,
TIM16, TIM17,
LPTIM2
EVENTOUT
PH0
-
-
-
-
-
-
-
EVENTOUT
PH1
-
-
-
-
-
-
-
EVENTOUT
Port
Port H
1. Please refer to Table 17 for AF0 to AF7.
Pinouts and pin description
106/270
Table 18. Alternate function AF8 to AF15(1) (continued)
DS10198 Rev 8
STM32L476xx
STM32L476xx
5
Memory mapping
Memory mapping
Figure 17. STM32L476xx memory map
0xFFFF FFFF
0xBFFF FFFF
Cortex™-M4
with FPU
Internal
Peripherals
7
Reserved
0xA000 1400
QUADSPI registers
0xA000 1000
FMC registers
0xA000 0000
0xE000 0000
0x5FFF FFFF
Reserved
6
0x5006 0C00
AHB2
0x4800 0000
Reserved
0xC000 0000
0x4002 4400
FMC and
QUADSPI
registers
5
AHB1
0x4002 0000
0x4001 6400
0xA000 0000
4
QUADSPI Flash
bank
0x4001 0000
FMC bank 3
0x4000 0000
0x9000 0000
Reserved
APB2
Reserved
0x4000 9800
APB1
0x1FFF FFFF
0x8000 0000
Reserved
0x1FFF F810
FMC bank 1 &
bank 2
3
Option Bytes
0x1FFF F800
Reserved
0x1FFF F000
System memory
0x6000 0000
0x1FFF 8000
Reserved
0x1FFF 7810
Options Bytes
2
0x1FFF 7800
Reserved
0x1FFF 7400
Peripherals
0x4000 0000
OTP area
0x1FFF 7000
System memory
1
0x1FFF 0000
SRAM1
0x2000 0000
Reserved
0x1000 8000
SRAM2
0x1000 0000
Reserved
0
CODE
0x0810 0000
Flash memory
0x0800 0000
0x0000 0000
0x0010 0000
Reserved
0x0000 0000
Reserved
Flash, system memory
or SRAM, depending on
BOOT configuration
MS34100V3
DS10198 Rev 8
107/270
111
Memory mapping
STM32L476xx
Table 19. STM32L476xx memory map and peripheral register boundary addresses(1)
Bus
AHB3
AHB2
-
AHB1
108/270
Boundary address
Size
(bytes)
Peripheral
0xA000 1000 - 0xA000 13FF
1 KB
QUADSPI
0xA000 0000 - 0xA000 0FFF
4 KB
FMC
0x5006 0800 - 0x5006 0BFF
1 KB
RNG
0x5004 0400 - 0x5006 07FF
129 KB
0x5004 0000 - 0x5004 03FF
1 KB
ADC
0x5000 0000 - 0x5003 FFFF
16 KB
OTG_FS
0x4800 2000 - 0x4FFF FFFF
~127 MB
Reserved
0x4800 1C00 - 0x4800 1FFF
1 KB
GPIOH
0x4800 1800 - 0x4800 1BFF
1 KB
GPIOG
0x4800 1400 - 0x4800 17FF
1 KB
GPIOF
0x4800 1000 - 0x4800 13FF
1 KB
GPIOE
0x4800 0C00 - 0x4800 0FFF
1 KB
GPIOD
0x4800 0800 - 0x4800 0BFF
1 KB
GPIOC
0x4800 0400 - 0x4800 07FF
1 KB
GPIOB
0x4800 0000 - 0x4800 03FF
1 KB
GPIOA
0x4002 4400 - 0x47FF FFFF
~127 MB
0x4002 4000 - 0x4002 43FF
1 KB
TSC
0x4002 3400 - 0x4002 3FFF
1 KB
Reserved
0x4002 3000 - 0x4002 33FF
1 KB
CRC
0x4002 2400 - 0x4002 2FFF
3 KB
Reserved
0x4002 2000 - 0x4002 23FF
1 KB
FLASH registers
0x4002 1400 - 0x4002 1FFF
3 KB
Reserved
0x4002 1000 - 0x4002 13FF
1 KB
RCC
0x4002 0800 - 0x4002 0FFF
2 KB
Reserved
0x4002 0400 - 0x4002 07FF
1 KB
DMA2
0x4002 0000 - 0x4002 03FF
1 KB
DMA1
DS10198 Rev 8
Reserved
Reserved
STM32L476xx
Memory mapping
Table 19. STM32L476xx memory map and peripheral register boundary addresses(1)
(continued)
Bus
APB2
APB2
Boundary address
Size
(bytes)
Peripheral
0x4001 6400 - 0x4001 FFFF
39 KB
Reserved
0x4001 6000 - 0x4000 63FF
1 KB
DFSDM1
0x4001 5C00 - 0x4000 5FFF
1 KB
Reserved
0x4001 5800 - 0x4000 5BFF
1 KB
SAI2
0x4001 5400 - 0x4000 57FF
1 KB
SAI1
0x4001 4C00 - 0x4000 53FF
2 KB
Reserved
0x4001 4800 - 0x4001 4BFF
1 KB
TIM17
0x4001 4400 - 0x4001 47FF
1 KB
TIM16
0x4001 4000 - 0x4001 43FF
1 KB
TIM15
0x4001 3C00 - 0x4001 3FFF
1 KB
Reserved
0x4001 3800 - 0x4001 3BFF
1 KB
USART1
0x4001 3400 - 0x4001 37FF
1 KB
TIM8
0x4001 3000 - 0x4001 33FF
1 KB
SPI1
0x4001 2C00 - 0x4001 2FFF
1 KB
TIM1
0x4001 2800 - 0x4001 2BFF
1 KB
SDMMC1
0x4001 2000 - 0x4001 27FF
2 KB
Reserved
0x4001 1C00 - 0x4001 1FFF
1 KB
FIREWALL
0x4001 0800- 0x4001 1BFF
5 KB
Reserved
0x4001 0400 - 0x4001 07FF
1 KB
EXTI
0x4001 0200 - 0x4001 03FF
0x4001 0030 - 0x4001 01FF
0x4001 0000 - 0x4001 002F
DS10198 Rev 8
COMP
1 KB
VREFBUF
SYSCFG
109/270
111
Memory mapping
STM32L476xx
Table 19. STM32L476xx memory map and peripheral register boundary addresses(1)
(continued)
Bus
APB1
110/270
Boundary address
Size
(bytes)
Peripheral
0x4000 9800 - 0x4000 FFFF
26 KB
Reserved
0x4000 9400 - 0x4000 97FF
1 KB
LPTIM2
0x4000 8C00 - 0x4000 93FF
2 KB
Reserved
0x4000 8800 - 0x4000 8BFF
1 KB
SWPMI1
0x4000 8400 - 0x4000 87FF
1 KB
Reserved
0x4000 8000 - 0x4000 83FF
1 KB
LPUART1
0x4000 7C00 - 0x4000 7FFF
1 KB
LPTIM1
0x4000 7800 - 0x4000 7BFF
1 KB
OPAMP
0x4000 7400 - 0x4000 77FF
1 KB
DAC1
0x4000 7000 - 0x4000 73FF
1 KB
PWR
0x4000 6800 - 0x4000 6FFF
1 KB
Reserved
0x4000 6400 - 0x4000 67FF
1 KB
CAN1
0x4000 6000 - 0x4000 63FF
1 KB
Reserved
0x4000 5C00- 0x4000 5FFF
1 KB
I2C3
0x4000 5800 - 0x4000 5BFF
1 KB
I2C2
0x4000 5400 - 0x4000 57FF
1 KB
I2C1
0x4000 5000 - 0x4000 53FF
1 KB
UART5
0x4000 4C00 - 0x4000 4FFF
1 KB
UART4
0x4000 4800 - 0x4000 4BFF
1 KB
USART3
0x4000 4400 - 0x4000 47FF
1 KB
USART2
DS10198 Rev 8
STM32L476xx
Memory mapping
Table 19. STM32L476xx memory map and peripheral register boundary addresses(1)
(continued)
Bus
APB1
Boundary address
Size
(bytes)
Peripheral
0x4000 4000 - 0x4000 43FF
1 KB
Reserved
0x4000 3C00 - 0x4000 3FFF
1 KB
SPI3
0x4000 3800 - 0x4000 3BFF
1 KB
SPI2
0x4000 3400 - 0x4000 37FF
1 KB
Reserved
0x4000 3000 - 0x4000 33FF
1 KB
IWDG
0x4000 2C00 - 0x4000 2FFF
1 KB
WWDG
0x4000 2800 - 0x4000 2BFF
1 KB
RTC
0x4000 2400 - 0x4000 27FF
1 KB
LCD
0x4000 1800 - 0x4000 23FF
3 KB
Reserved
0x4000 1400 - 0x4000 17FF
1 KB
TIM7
0x4000 1000 - 0x4000 13FF
1 KB
TIM6
0x4000 0C00- 0x4000 0FFF
1 KB
TIM5
0x4000 0800 - 0x4000 0BFF
1 KB
TIM4
0x4000 0400 - 0x4000 07FF
1 KB
TIM3
0x4000 0000 - 0x4000 03FF
1 KB
TIM2
1. The gray color is used for reserved boundary addresses.
DS10198 Rev 8
111/270
111
Electrical characteristics
STM32L476xx
6
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3σ).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2σ).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 18.
6.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 19.
Figure 18. Pin loading conditions
Figure 19. Pin input voltage
MCU pin
MCU pin
C = 50 pF
VIN
MS19210V1
112/270
DS10198 Rev 8
MS19211V1
STM32L476xx
6.1.6
Electrical characteristics
Power supply scheme
Figure 20. Power supply scheme
VBAT
VBAT
1.55 – 3.6 V
1.55 – 3.6 V
Backup circuitry
Backup circuitry
(LSE, RTC,
(LSE, RTC,
Backup registers)
Backup
registers)
Backup circuitry
(LSE, RTC,
Backup registers)
VVCORE
CORE
VBAT
Power switch
Power switch
1.55 – 3.6 V
VVDD
DD
Power switch
nnx xVDD
VDD
Regulator
Regulator
2 x VDD12
OUT
OUT
nnxx100
100nF
nF
GPIOs
GPIOs
+1xx4.7
4.7μF
μF
+1
IN
IN
VDD
n x VDD
VSS
n nx xVSS
Level
shifter
Level shifter
VVDDIO1
DDIO1
1.05 – 1.32 V
IO
IO
logic
logic
Kernel
Kernellogic
logic
(CPU, Digital
(CPU,
Digital
& Memories)
Memories)
&
VCORE
IO
logic
Kernel logic
(CPU, Digital
& Memories)
Regulator
OUT
x VDDIO2
m xmVDDIO2
GPIOs
+1 x 4.7 μF
m x100 nF
m x100 nF
+4.7 μF
+4.7 μF
DDIO2
IN
VVDDIO2
OUT
OUT
GPIOs
nGPIOs
x VSS
VDDIO2
VDDA
VDDA
m x100 nF
10μF
nF
+4.7
+1nF
μF
10
+1 μF
IN
IN
m x VSS
m x VSS
m x VDDIO2
VDDA
VDDA
VREF
GPIOs
μF
100 nF
m x+1VSS
VSSA
VREF+
VVREF+
REFVREF-
OUT
ADCs/
DACs/
ADCs/
OPAMPs/
DACs/
IN
COMPs/
OPAMPs/
VREF
COMPs/
VREF
IO
logic
VSSA
VDDA
VDDA
MS35001V1
VREF
10 nF
+1 μF
IO
IO
logic
logic
VDDIO2
Level shifter
n x 100 nF
Level
shifter
Level
shifterLevel shifter
VDDIO1
DDIO2
VVDDIO2
100 nF +1 μF
VREF+
VREF-
ADCs/
DACs/
OPAMPs/
COMPs/
VREFBUF
MS35001V2
VSSA
MSv45701V1
Caution:
Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
DS10198 Rev 8
113/270
238
Electrical characteristics
STM32L476xx
below, the appropriate pins on the underside of the PCB to ensure the good functionality of
the device.
114/270
DS10198 Rev 8
STM32L476xx
6.1.7
Electrical characteristics
Current consumption measurement
Figure 21. Current consumption measurement scheme with and without external
SMPS power supply
IDD_USB
IDD_USB
VDDUSB
VDDUSB
IDD_VBAT
IDD_VBAT
VBAT
VBAT
IDD
IDD
IDDA
SMPS
VDD12
VDD
VDD
VDDIO2
VDDIO2
IDDA
VDDA
VDDA
MSv45730V1
6.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 20: Voltage characteristics,
Table 21: Current characteristics and Table 22: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability. Device mission profile (application conditions)
is compliant with JEDEC JESD47 qualification standard, extended mission profiles are
available on demand.
Table 20. Voltage characteristics(1)
Symbol
Ratings
Min
Max
Unit
VDDX - VSS
External main supply voltage (including
VDD, VDDA, VDDIO2, VDDUSB, VLCD, VBAT)
-0.3
4.0
V
VDD12 - VSS
External SMPS supply voltage
Range 1
-0.3
Range 2
-0.3
1.4
V
VIN(2)
Input voltage on FT_xxx pins
VSS-0.3
min (VDD, VDDA, VDDIO2, VDDUSB,
VLCD) + 4.0(3)(4)
Input voltage on TT_xx pins
VSS-0.3
4.0
Input voltage on BOOT0 pin
VSS
9.0
VSS-0.3
4.0
Input voltage on any other pins
DS10198 Rev 8
V
115/270
238
Electrical characteristics
STM32L476xx
Table 20. Voltage characteristics(1) (continued)
Symbol
|∆VDDx|
|VSSx-VSS|
Ratings
Min
Max
Unit
Variations between different VDDX power
pins of the same domain
-
50
mV
Variations between all the different ground
pins(5)
-
50
mV
1. All main power (VDD, VDDA, VDDIO2, VDDUSB, VLCD, VBAT) and ground (VSS, VSSA) pins must always be connected to the
external power supply, in the permitted range.
2. VIN maximum must always be respected. Refer to Table 21: Current characteristics for the maximum allowed injected
current values.
3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table.
4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
5. Include VREF- pin.
Table 21. Current characteristics
Symbol
∑IVDD
∑IVSS
Ratings
Max
Total current into sum of all VDD power lines (source)(1)(2)
Total current out of sum of all VSS ground lines (sink)
150
(1)
150
IVDD(PIN)
Maximum current into each VDD power pin (source)(1)(2)
100
IVSS(PIN)
Maximum current out of each VSS ground pin (sink)(1)
100
Output current sunk by any I/O and control pin except FT_f
20
Output current sunk by any FT_f pin
20
Output current sourced by any I/O and control pin
20
IIO(PIN)
∑IIO(PIN)
IINJ(PIN)(4)
∑|IINJ(PIN)|
Unit
Total output current sunk by sum of all I/Os and control pins(3)
mA
100
(3)
Total output current sourced by sum of all I/Os and control pins
Injected current on FT_xxx, TT_xx, RST and B pins, except PA4,
PA5
100
-5/+0(5)
Injected current on PA4, PA5
-5/0
Total injected current (sum of all I/Os and control pins)(6)
25
1. All main power (VDD, VDDA, VDDIO2, VDDUSB, VLCD, VBAT) and ground (VSS, VSSA) pins must always be connected to the
external power supplies, in the permitted range.
2. Valid also for VDD12 on SMPS packages.
3. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
4. Positive injection (when VIN > VDDIOx) is not possible on these I/Os and does not occur for input voltages lower than the
specified maximum value.
5. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 20: Voltage
characteristics for the minimum allowed input voltage values.
6. When several inputs are submitted to a current injection, the maximum ∑|IINJ(PIN)| is the absolute sum of the negative
injected currents (instantaneous values).
116/270
DS10198 Rev 8
STM32L476xx
Electrical characteristics
Table 22. Thermal characteristics
Symbol
TSTG
TJ
Ratings
Storage temperature range
Maximum junction temperature
DS10198 Rev 8
Value
Unit
–65 to +150
°C
150
°C
117/270
238
Electrical characteristics
STM32L476xx
6.3
Operating conditions
6.3.1
General operating conditions
Table 23. General operating conditions
Symbol
Parameter
Conditions
Min
Max
fHCLK
Internal AHB clock frequency
-
0
80
fPCLK1
Internal APB1 clock frequency
-
0
80
fPCLK2
Internal APB2 clock frequency
-
0
80
VDD
Standard operating voltage
-
VDD12
Standard operating voltage
VDDIO2 PG[15:2] I/Os supply voltage
VDDA
Analog supply voltage
1.71
(1)
At least one I/O in PG[15:2] used
1.08
3.6
0
3.6
1.62
DAC or OPAMP used
1.8
VREFBUF used
2.4
USB used
USB not used
TT_xx I/O
BOOT0
VIN
All I/O except BOOT0 and TT_xx
PD
118/270
V
1.55
3.6
V
3.0
3.6
0
3.6
-0.3
VDDIOx+0.3
0
9
-0.3
Min(Min(VDD, VDDA,
VDDIO2, VDDUSB,
VLCD)+3.6 V,
5.5 V)(2)(3)
0
LQFP144
-
-
625
LQFP100
-
-
476
LQFP64
-
-
444
UFBGA144
-
-
377
UFBGA132
-
-
363
WLCSP81
-
-
487
WLCSP72
-
-
434
DS10198 Rev 8
V
3.6
I/O input voltage
Power dissipation at
TA = 85 °C for suffix 6
or
TA = 105 °C for suffix 7(4)
V
1.05
Backup operating voltage
VDDUSB USB supply voltage
1.32
Up to 26 MHz
ADC, DAC, OPAMP, COMP,
VREFBUF not used
VBAT
V
1.08
ADC or COMP used
MHz
3.6
Full frequency range
PG[15:2] not used
Unit
V
V
mW
STM32L476xx
Electrical characteristics
Table 23. General operating conditions (continued)
Symbol
PD
TA
TJ
Parameter
Conditions
Power dissipation at TA =
125 °C for suffix 3(4)
Min
Max
LQFP144
-
-
156
LQFP100
-
-
119
LQFP64
-
-
111
UFBGA144
-
-
94
UFBGA132
-
-
90
WLCSP81
-
-
121
WLCSP72
-
-
108
–40
85
Ambient temperature for the
suffix 6 version
Maximum power dissipation
Low-power dissipation
–40
105
Ambient temperature for the
suffix 7 version
Maximum power dissipation
–40
105
–40
125
Ambient temperature for the
suffix 3 version
Maximum power dissipation
–40
125
–40
130
Suffix 6 version
–40
105
Suffix 7 version
–40
125
Suffix 3 version
–40
130
Junction temperature range
(5)
Low-power
Low-power
dissipation(5)
dissipation(5)
Unit
mW
°C
°C
1. When RESET is released functionality is guaranteed down to VBOR0 Min.
2. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table.
Maximum I/O input voltage is the smallest value between Min(VDD, VDDA, VDDIO2, VDDUSB, VLCD)+3.6 V and 5.5V.
3. For operation with voltage higher than Min (VDD, VDDA, VDDIO2, VDDUSB, VLCD) +0.3 V, the internal Pull-up and Pull-Down
resistors must be disabled.
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.8: Thermal characteristics).
5. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.8:
Thermal characteristics).
6.3.2
Operating conditions at power-up / power-down
The parameters given in Table 24 are derived from tests performed under the ambient
temperature condition summarized in Table 23.
Table 24. Operating conditions at power-up / power-down(1)
Symbol
tVDD
tVDDA
tVDDUSB
Parameter
Conditions
VDD rise time rate
-
VDD fall time rate
VDDA rise time rate
-
VDDA fall time rate
VDDUSB rise time rate
-
VDDUSB fall time rate
DS10198 Rev 8
Min
Max
0
∞
10
∞
0
∞
10
∞
0
∞
10
∞
Unit
µs/V
µs/V
µs/V
119/270
238
Electrical characteristics
STM32L476xx
Table 24. Operating conditions at power-up / power-down(1) (continued)
Symbol
Parameter
Conditions
VDDIO2 rise time rate
tVDDIO2
Min
Max
0
∞
10
∞
-
VDDIO2 fall time rate
Unit
µs/V
1. At power-up, the VDD12 voltage should not be forced externally.
The requirements for power-up/down sequence specified in Section 3.9.1: Power supply
schemes must be respected.
6.3.3
Embedded reset and power control block characteristics
The parameters given in Table 25 are derived from tests performed under the ambient
temperature conditions summarized in Table 23: General operating conditions.
Table 25. Embedded reset and power control block characteristics
Symbol
tRSTTEMPO(2)
120/270
Parameter
Reset temporization after
BOR0 is detected
VBOR0(2)
Brown-out reset threshold 0
VBOR1
Brown-out reset threshold 1
VBOR2
Brown-out reset threshold 2
VBOR3
Brown-out reset threshold 3
VBOR4
Brown-out reset threshold 4
VPVD0
Programmable voltage
detector threshold 0
VPVD1
PVD threshold 1
VPVD2
PVD threshold 2
VPVD3
PVD threshold 3
VPVD4
PVD threshold 4
VPVD5
PVD threshold 5
Conditions(1)
Min
Typ
Max
Unit
-
250
400
μs
Rising edge
1.62
1.66
1.7
Falling edge
1.6
1.64
1.69
Rising edge
2.06
2.1
2.14
Falling edge
1.96
2
2.04
Rising edge
2.26
2.31
2.35
Falling edge
2.16
2.20
2.24
Rising edge
2.56
2.61
2.66
Falling edge
2.47
2.52
2.57
Rising edge
2.85
2.90
2.95
Falling edge
2.76
2.81
2.86
Rising edge
2.1
2.15
2.19
Falling edge
2
2.05
2.1
Rising edge
2.26
2.31
2.36
Falling edge
2.15
2.20
2.25
Rising edge
2.41
2.46
2.51
Falling edge
2.31
2.36
2.41
Rising edge
2.56
2.61
2.66
Falling edge
2.47
2.52
2.57
Rising edge
2.69
2.74
2.79
Falling edge
2.59
2.64
2.69
Rising edge
2.85
2.91
2.96
Falling edge
2.75
2.81
2.86
VDD rising
DS10198 Rev 8
V
V
V
V
V
V
V
V
V
V
V
STM32L476xx
Electrical characteristics
Table 25. Embedded reset and power control block characteristics (continued)
Conditions(1)
Min
Typ
Max
Rising edge
2.92
2.98
3.04
Falling edge
2.84
2.90
2.96
Hysteresis in
continuous
Hysteresis voltage of BORH0 mode
-
20
-
Hysteresis in
other mode
-
30
-
Symbol
VPVD6
Vhyst_BORH0
Parameter
PVD threshold 6
Unit
V
mV
Hysteresis voltage of BORH
(except BORH0) and PVD
-
-
100
-
mV
BOR(3) (except BOR0) and
IDD
(BOR_PVD)(2) PVD consumption from VDD
-
-
1.1
1.6
µA
Vhyst_BOR_PVD
VPVM1
VDDUSB peripheral voltage
monitoring
-
1.18
1.22
1.26
V
VPVM2
VDDIO2 peripheral voltage
monitoring
-
0.92
0.96
1
V
VPVM3
VDDA peripheral voltage
monitoring
Rising edge
1.61
1.65
1.69
Falling edge
1.6
1.64
1.68
VPVM4
VDDA peripheral voltage
monitoring
Rising edge
1.78
1.82
1.86
Falling edge
1.77
1.81
1.85
V
V
Vhyst_PVM3
PVM3 hysteresis
-
-
10
-
mV
Vhyst_PVM4
PVM4 hysteresis
-
-
10
-
mV
IDD
PVM1 and PVM2
(PVM1/PVM2)
consumption from VDD
(2)
-
-
0.2
-
µA
IDD
PVM3 and PVM4
(PVM3/PVM4)
consumption from VDD
(2)
-
-
2
-
µA
1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power
sleep modes.
2. Guaranteed by design.
3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply
current characteristics tables.
DS10198 Rev 8
121/270
238
Electrical characteristics
6.3.4
STM32L476xx
Embedded voltage reference
The parameters given in Table 26 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 23: General operating
conditions.
Table 26. Embedded internal voltage reference
Symbol
VREFINT
Parameter
Internal reference voltage
Conditions
–40 °C < TA < +130 °C
Min
Typ
Max
Unit
1.182
1.212
1.232
V
tS_vrefint (1)
ADC sampling time when
reading the internal reference
voltage
-
4(2)
-
-
µs
tstart_vrefint
Start time of reference voltage
buffer when ADC is enable
-
-
8
12(2)
µs
-
-
12.5
20(2)
µA
VREFINT buffer consumption
from VDD when converted by
IDD(VREFINTBUF)
ADC
Internal reference voltage
spread over the temperature
range
VDD = 3 V
-
5
7.5(2)
mV
TCoeff
Average temperature
coefficient
–40°C < TA < +130°C
-
30
50(2)
ppm/°C
ACoeff
Long term stability
1000 hours, T = 25°C
-
300
1000(2)
ppm
-
250
1200(2)
ppm/V
24
25
26
49
50
51
74
75
76
∆VREFINT
VDDCoeff
Average voltage coefficient
VREFINT_DIV1
1/4 reference voltage
VREFINT_DIV2
1/2 reference voltage
VREFINT_DIV3
3/4 reference voltage
3.0 V < VDD < 3.6 V
-
1. The shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
122/270
DS10198 Rev 8
%
VREFINT
STM32L476xx
Electrical characteristics
Figure 22. VREFINT versus temperature
V
1.235
1.23
1.225
1.22
1.215
1.21
1.205
1.2
1.195
1.19
1.185
-40
-20
0
20
40
Mean
60
Min
80
100
120
°C
Max
MSv40169V1
DS10198 Rev 8
123/270
238
Electrical characteristics
6.3.5
STM32L476xx
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 21: Current consumption
measurement scheme with and without external SMPS power supply.
The IDD_ALL parameters given in Table 27 to Table 49 represent the total MCU consumption
including the current supplying VDD, VDD12, VDDIO2, VDDA, VLCD, VDDUSB and VBAT.
Typical and maximum current consumption
The MCU is placed under the following conditions:
•
All I/O pins are in analog input mode
•
All peripherals are disabled except when explicitly mentioned
•
The Flash memory access time is adjusted with the minimum wait states number,
depending on the fHCLK frequency (refer to the table “Number of wait states according
to CPU clock (HCLK) frequency” available in the RM0351 reference manual).
•
When the peripherals are enabled fPCLK = fHCLK
The parameters given in Table 27 to Table 50 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 23: General
operating conditions.
124/270
DS10198 Rev 8
Conditions
Symbol
Parameter
-
Voltage
scaling
DS10198 Rev 8
85 °C
3.20
3.37
3.51
3.93
4.76
2.49
2.01
2.16
2.30
2.72
3.34
1.29
1.62
1.10
1.17
1.31
1.73
2.56
0.69
0.85
1.18
0.61
0.70
0.89
1.24
1.95
0.37
0.47
0.64
0.96
0.37
0.46
0.64
0.98
1.71
0.23
0.26
0.36
0.53
0.85
0.27
0.33
0.50
0.86
1.57
100 kHz
0.14
0.17
0.27
0.43
0.75
0.17
0.21
0.38
0.74
1.44
80 MHz
10.2
10.3
10.5
10.7
11.1
11.22
11.8
12.1
12.5
13.3
72 MHz
9.24
9.31
9.47
9.69
10.1
10.16
10.7
11.0
11.4
12.2
64 MHz
8.25
8.32
8.46
8.68
9.09
9.08
9.6
9.9
10.3
11.1
Range 1 48 MHz
6.28
6.35
6.5
6.72
7.11
6.91
7.3
7.6
8.0
8.8
32 MHz
4.24
4.30
4.44
4.65
5.04
4.66
4.97
5.26
5.67
6.51
24 MHz
3.21
3.27
3.4
3.61
3.98
3.53
3.76
4.05
4.46
5.30
16 MHz
2.19
2.24
2.36
2.56
2.94
2.41
2.66
2.95
3.16
3.99
2 MHz
272
303
413
592
958
330
393
579
954
1704
1 MHz
154
184
293
473
835
195
265
457
822
1572
400 kHz
78
108
217
396
758
110
180
380
755
1505
100 kHz
42
73
182
360
723
75
138
331
706
1456
fHCLK = fHSE up to
48MHz included,
Supply
bypass mode
current in
PLL ON above
Run mode
48 MHz all
peripherals disable
Supply
current in fHCLK = fMSI
Low-power all peripherals disable
run mode
25 °C 55 °C
85 °C
26 MHz
2.88
2.93
3.05
3.23
3.58
16 MHz
1.83
1.87
1.98
2.16
8 MHz
0.98
1.02
1.12
4 MHz
0.55
0.59
2 MHz
0.34
1 MHz
fHCLK
1. Guaranteed by characterization results, unless otherwise specified.
105 °C 125 °C 25 °C
105 °C 125 °C
mA
µA
125/270
Electrical characteristics
IDD_ALL
(LPRun)
Unit
55 °C
Range 2
IDD_ALL
(Run)
MAX(1)
TYP
STM32L476xx
Table 27. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART enable (Cache ON Prefetch OFF)
Conditions(1)
Symbol
Unit
-
IDD_ALL(Run)
TYP
Parameter
Supply current in Run
mode
fHCLK = fHSE up to 48MHz included, bypass mode
PLL ON above 48 MHz all peripherals disable
DS10198 Rev 8
fHCLK
25 °C
55 °C
85 °C
105 °C 125 °C
80 MHz
3.67
3.70
3.77
3.85
3.99
72 MHz
3.32
3.35
3.40
3.48
3.63
64 MHz
2.97
2.99
3.04
3.12
3.27
48 MHz
2.26
2.28
2.34
2.42
2.56
32 MHz
1.52
1.55
1.60
1.67
1.81
24 MHz
1.15
1.18
1.22
1.30
1.43
16 MHz
0.79
0.81
0.85
0.92
1.06
8 MHz
0.42
0.44
0.48
0.56
0.70
4 MHz
0.24
0.25
0.30
0.37
0.51
2 MHz
0.15
0.16
0.20
0.28
0.41
1 MHz
0.10
0.11
0.16
0.23
0.37
100 kHz
0.06
0.07
0.12
0.19
0.32
Electrical characteristics
126/270
Table 28. Current consumption in Run modes, code with data processing running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.10 V)
mA
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%,
VDD12 = 1.10 V
STM32L476xx
Conditions
Symbol
Parameter
-
Voltage
scaling
Range 2
IDD_ALL
(Run)
DS10198 Rev 8
IDD_ALL
(LPRun)
fHCLK = fHSE up to
48MHz included,
Supply
bypass mode
current in
PLL ON above
Run mode
48 MHz all
peripherals disable
MAX(1)
TYP
Unit
25 °C 55 °C
85 °C
26 MHz
3.15
3.19
3.31
3.50
3.85
16 MHz
2.24
2.28
2.39
2.57
8 MHz
1.26
1.29
1.40
1.57
4 MHz
0.71
0.75
0.85
2 MHz
0.42
0.45
1 MHz
0.27
0.30
100 kHz
0.14
80 MHz
10.0
fHCLK
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
3.47
3.70
3.84
4.26
4.88
2.90
2.46
2.60
2.74
3.16
3.78
1.89
1.40
1.50
1.64
2.06
2.68
1.02
1.34
0.79
0.88
1.06
1.38
2.21
0.55
0.72
1.04
0.46
0.55
0.73
1.09
1.88
0.40
0.57
0.89
0.30
0.38
0.57
0.90
1.61
0.17
0.27
0.43
0.75
0.17
0.22
0.40
0.74
1.44
10.1
10.3
10.6
11.0
11.00
11.35
11.64
12.26
13.10
72 MHz
9.06
9.13
9.28
9.51
9.92
9.97
10.36
10.65
11.06
11.69
64 MHz
8.96
9.04
9.22
9.48
9.92
9.86
10.25
10.54
10.95
11.79
Range 1 48 MHz
7.64
7.72
7.91
8.17
8.62
8.40
8.76
8.90
9.52
10.36
32 MHz
5.49
5.57
5.74
5.98
6.40
6.04
6.40
6.69
7.10
7.94
24 MHz
4.16
4.22
4.36
4.57
4.96
4.60
4.86
5.15
5.56
6.19
16 MHz
2.93
2.99
3.13
3.35
3.75
3.22
3.43
3.72
4.13
4.97
2 MHz
358
392
503
683
1050
435
501
694
1069
1819
1 MHz
197
230
340
519
880
245
312
512
887
1637
400 kHz
97
126
235
414
778
130
202
402
777
1527
100 kHz
47
77
186
365
726
85
147
347
711
1472
Supply
current in fHCLK = fMSI
Low-power all peripherals disable
run
mA
µA
127/270
Electrical characteristics
1. Guaranteed by characterization results, unless otherwise specified.
STM32L476xx
Table 29. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART disable
Conditions(1)
Symbol
Unit
-
IDD_ALL(Run)
TYP
Parameter
Supply current in Run
mode
fHCLK = fHSE up to 48MHz included, bypass mode
PLL ON above 48 MHz all peripherals disable
DS10198 Rev 8
fHCLK
25 °C
55 °C
85 °C
105 °C 125 °C
80 MHz
3.59
3.63
3.70
3.81
3.95
72 MHz
3.26
3.28
3.34
3.42
3.57
64 MHz
3.22
3.25
3.31
3.41
3.57
48 MHz
2.75
2.78
2.84
2.94
3.10
32 MHz
1.97
2.00
2.06
2.15
2.30
24 MHz
1.50
1.52
1.57
1.64
1.78
16 MHz
1.05
1.07
1.13
1.20
1.35
8 MHz
0.54
0.56
0.60
0.68
0.82
4 MHz
0.31
0.32
0.37
0.44
0.58
2 MHz
0.18
0.19
0.24
0.31
0.45
1 MHz
0.12
0.13
0.17
0.25
0.38
100 kHz
0.06
0.07
0.12
0.19
0.32
Electrical characteristics
128/270
Table 30. Current consumption in Run modes, code with data processing running from Flash,
ART disable and power supplied by external SMPS (VDD12 = 1.10 V)
mA
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%,
VDD12 = 1.10 V
STM32L476xx
Conditions
Symbol
Parameter
-
Voltage
scaling
Range 2
IDD_ALL
(Run)
Supply
current in
Run mode
DS10198 Rev 8
fHCLK = fHSE up to
48MHz included,
bypass mode
PLL ON above
48 MHz all
peripherals disable
Range 1
IDD_ALL
(LPRun)
Supply
current in
low-power
run mode
fHCLK = fMSI
all peripherals disable
FLASH in power-down
MAX(1)
TYP
fHCLK
25 °C
55 °C
85 °C
105
°C
125
°C
25 °C
55 °C
85 °C
105
°C
125
°C
26 MHz
2.88
2.94
3.05
3.23
3.58
3.18
3.26
3.40
4.02
4.65
16 MHz
1.83
1.87
1.98
2.15
2.50
2.01
2.16
2.30
2.72
3.34
8 MHz
0.97
1.00
1.11
1.27
1.62
1.07
1.16
1.32
1.73
2.36
4 MHz
0.54
0.57
0.67
0.84
1.18
0.59
0.69
0.88
1.23
1.96
2 MHz
0.33
0.36
0.46
0.62
0.96
0.37
0.45
0.63
0.98
1.70
1 MHz
0.22
0.25
0.35
0.51
0.85
0.25
0.33
0.50
0.86
1.57
100 kHz
0.12
0.15
0.25
0.41
0.75
0.15
0.21
0.39
0.74
1.45
80 MHz
10.2
10.3
10.5
10.7
11.1
11.22
11.57
11.86
12.07
13.11
72 MHz
9.25
9.31
9.46
9.68
10.1
10.18
10.41
10.55
10.76
11.80
64 MHz
8.25
8.31
8.46
8.67
9.08
9.08
9.37
9.66
9.87
10.91
48 MHz
6.26
6.33
6.48
6.69
7.11
6.89
7.11
7.25
7.67
8.50
32 MHz
4.22
4.28
4.42
4.63
5.03
4.64
4.86
5.15
5.56
6.19
24 MHz
3.20
3.25
3.38
3.59
3.99
3.52
3.70
3.84
4.26
5.09
16 MHz
2.18
2.22
2.35
2.55
2.94
2.40
2.55
2.84
3.25
4.09
2 MHz
242
275
384
562
924
300
380
573
927
1677
1 MHz
130
162
269
445
809
180
243
435
810
1560
400 kHz
61
90
197
374
734
95
160
353
728
1478
100 kHz
26
56
163
339
702
55
122
314
679
1429
mA
µA
129/270
Electrical characteristics
1. Guaranteed by characterization results, unless otherwise specified.
Unit
STM32L476xx
Table 31. Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1
Conditions(1)
Symbol
TYP
Parameter
Unit
-
IDD_ALL(Run) Supply current in Run mode
fHCLK = fHSE up to 48MHz included, bypass mode
PLL ON above 48 MHz all peripherals disable
DS10198 Rev 8
25 °C 55 °C
85 °C
80 MHz
3.67
3.70
3.77
3.85
3.99
72 MHz
3.33
3.35
3.40
3.48
3.63
64 MHz
2.97
2.99
3.04
3.12
3.26
48 MHz
2.25
2.28
2.33
2.40
2.56
32 MHz
1.52
1.54
1.59
1.66
1.81
24 MHz
1.15
1.17
1.22
1.29
1.43
16 MHz
0.78
0.80
0.84
0.92
1.06
8 MHz
0.42
0.43
0.48
0.55
0.70
4 MHz
0.23
0.25
0.29
0.36
0.51
2 MHz
0.14
0.16
0.20
0.27
0.41
1 MHz
0.09
0.11
0.15
0.22
0.37
100 kHz
0.05
0.06
0.11
0.18
0.32
fHCLK
105 °C 125 °C
Electrical characteristics
130/270
Table 32. Current consumption in Run, code with data processing running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V)
mA
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%,
VDD12 = 1.10 V
STM32L476xx
STM32L476xx
Electrical characteristics
Table 33. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF)
Conditions
Parameter
Supply
current in
Run mode
Range 2
fHCLK = 26 MHz
IDD_ALL
(Run)
fHCLK = fHSE up
to 48 MHz
included, bypass
mode PLL ON
above 48 MHz
all peripherals
disable
Code
25 °C
Reduced code(1)
2.9
111
Coremark
3.1
118
Dhrystone 2.1
3.1
Fibonacci
2.9
112
2.8
108
Reduced code
10.2
127
Coremark
10.9
136
Dhrystone 2.1
11.0
Fibonacci
10.5
131
9.9
124
Reduced code
272
136
Coremark
291
145
Dhrystone 2.1
302
Fibonacci
269
135
While(1)
269
135
While(1)
(1)
Supply
current in fHCLK = fMSI = 2 MHz
Low-power all peripherals disable
run
Unit
25 °C
While(1)
(1)
IDD_ALL
(LPRun)
TYP
Unit
Voltage
scaling
-
Range 1
fHCLK = 80 MHz
Symbol
TYP
mA
mA
µA
119
137
151
µA/MHz
µA/MHz
µA/MHz
1. Reduced code used for characterization results provided in Table 27, Table 29, Table 31.
Table 34. Typical current consumption in Run, with different codes running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.10 V)
Conditions(1)
Supply
current in
Run mode
-
fHCLK = fHSE up to
48 MHz included,
bypass mode PLL
ON above
48 MHz
all peripherals
disable
Voltage
scaling
fHCLK = 26 MHz
IDD_ALL
(Run)
Parameter
fHCLK = 80 MHz
Symbol
TYP
Code
25 °C
Reduced code(2)
1.25
TYP
Unit
25 °C
48
Coremark
1.34
51
Dhrystone 2.1
1.34
51
Fibonacci
1.25
48
While(1)
1.21
Reduced
code(2)
3.67
mA
46
46
Coremark
3.92
49
Dhrystone 2.1
3.95
49
Fibonacci
3.77
47
While(1)
3.56
44
DS10198 Rev 8
Unit
µA/MHz
131/270
238
Electrical characteristics
STM32L476xx
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters:
SMPS input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.10 V
2. Reduced code used for characterization results provided in Table 27, Table 29, Table 31.
Table 35. Typical current consumption in Run, with different codes running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.05 V)
Conditions(1)
IDD_ALL
(Run)
Parameter
Supply
current in
Run mode
-
Voltage
scaling
fHCLK = fHSE up to
48 MHz included,
bypass mode PLL
ON above
48 MHz
all peripherals
disable
fHCLK = 26 MHz
Symbol
TYP
TYP
Unit
Code
25 °C
Reduced code(2)
1.14
44
Coremark
1.22
47
Dhrystone 2.1
1.22
Fibonacci
1.14
44
While(1)
1.10
42
mA
Unit
25 °C
47
µA/MHz
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters:
SMPS input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.05 V
2. Reduced code used for characterization results provided in Table 27, Table 29, Table 31.
Table 36. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART disable
Conditions
Parameter
-
IDD_ALL
(Run)
Supply
current in
Run mode
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz
all peripherals
disable
Voltage
scaling
Range 1
Range 2
fHCLK = 80 MHz fHCLK = 26 MHz
Symbol
TYP
Code
IDD_ALL
(LPRun)
25 °C
Reduced code(1)
3.1
119
Coremark
2.9
Dhrystone 2.1
2.8
Fibonacci
2.7
104
While(1)
2.6
100
10.0
125
9.4
117
Reduced
code(1)
Coremark
111
mA
mA
111
Dhrystone 2.1
9.1
Fibonacci
9.0
112
While(1)
9.3
116
code(1)
114
358
179
Coremark
392
196
Dhrystone 2.1
390
Fibonacci
385
192
While(1)
385
192
1. Reduced code used for characterization results provided in Table 27, Table 29, Table 31.
132/270
Unit
25 °C
Reduced
Supply
current in fHCLK = fMSI = 2 MHz
Low-power all peripherals disable
run
TYP
Unit
DS10198 Rev 8
µA
195
µA/MHz
µA/MHz
µA/MHz
STM32L476xx
Electrical characteristics
Table 37. Typical current consumption in Run modes, with different codes running from
Flash, ART disable and power supplied by external SMPS (VDD12 = 1.10 V)
Conditions(1)
IDD_ALL
(Run)
Parameter
Supply
current in
Run mode
Voltage
scaling
-
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz
all peripherals
disable
fHCLK = 80 MHz fHCLK = 26 MHz
Symbol
TYP
Code
25 °C
Reduced code(2)
1.34
TYP
Unit
Unit
25 °C
51
Coremark
1.25
48
Dhrystone 2.1
1.21
46
Fibonacci
1.16
45
While(1)
1.12
Reduced code(2)
3.59
mA
43
45
Coremark
3.38
42
Dhrystone 2.1
3.27
41
Fibonacci
3.24
40
While(1)
3.34
42
µA/MHz
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS
input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.10 V
2. Reduced code used for characterization results provided in Table 27, Table 29, Table 31.
Table 38. Typical current consumption in Run modes, with different codes running
from Flash, ART disable and power supplied by external SMPS (VDD12 = 1.05 V)
Conditions(1)
IDD_ALL
(Run)
Parameter
Supply
current in
Run mode
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz
all peripherals
Voltage
scaling
fHCLK = 26 MHz
Symbol
TYP
Code
25 °C
Reduced code(2)
1.22
TYP
Unit
25 °C
Unit
47
Coremark
1.14
Dhrystone 2.1
1.10
44
Fibonacci
1.06
41
While(1)
1.02
39
mA
42
µA/MHz
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS
input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.05 V
2. Reduced code used for characterization results provided in Table 27, Table 29, Table 31.
DS10198 Rev 8
133/270
238
Electrical characteristics
STM32L476xx
Table 39. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1
Conditions
Parameter
IDD_ALL
(Run)
IDD_ALL
(LPRun)
fHCLK = fHSE up to
48 MHz included,
Supply
bypass mode
current in PLL ON above
Run mode 48 MHz all
peripherals
disable
Supply
current in fHCLK = fMSI = 2 MHz
Low-power all peripherals disable
run
TYP
Unit
Voltage
scaling
-
Range 1
Range 2
fHCLK = 80 MHz fHCLK = 26 MHz
Symbol
TYP
Code
Unit
25 °C
25 °C
Reduced code(1)
2.9
111
Coremark
2.9
111
mA
Dhrystone 2.1
2.9
Fibonacci
2.6
100
While(1)
2.6
100
Reduced code(1)
10.2
127
Coremark
10.4
Dhrystone 2.1
10.3
Fibonacci
9.6
111
130
mA
129
9.3
116
Reduced code(1)
242
121
242
Dhrystone 2.1
242
µA/MHz
120
While(1)
Coremark
µA/MHz
121
µA
121
Fibonacci
225
112
While(1)
242
121
µA/MHz
1. Reduced code used for characterization results provided in Table 27, Table 29, Table 31.
Table 40. Typical current consumption in Run mode, with different codes running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V)
Conditions(1)
IDD_ALL
(Run)
Parameter
Supply
current in
Run mode
-
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz all
peripherals disable
Voltage
scaling
fHCLK = 80 MHz fHCLK = 26 MHz
Symbol
TYP
Code
25 °C
Reduced code(2)
1.25
TYP
Unit
25 °C
Unit
48
Coremark
1.25
48
Dhrystone 2.1
1.25
48
Fibonacci
1.12
43
While(1)
1.12
Reduced code(2)
3.67
Coremark
3.74
47
Dhrystone 2.1
3.70
46
Fibonacci
3.45
43
While(1)
3.34
42
mA
43
46
µA/MHz
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS
input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.10 V
2. Reduced code used for characterization results provided in Table 27, Table 29, Table 31.
134/270
DS10198 Rev 8
STM32L476xx
Electrical characteristics
Table 41. Typical current consumption in Run mode, with different codes running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.05 V)
Conditions(1)
IDD_ALL
(Run)
Parameter
Supply
current in
Run mode
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz all
peripherals disable
Voltage
scaling
fHCLK = 26 MHz
Symbol
TYP
TYP
Unit
Code
25 °C
Reduced code(2)
1.14
44
Coremark
1.14
44
Dhrystone 2.1
1.14
Fibonacci
1.02
39
While(1)
1.02
39
mA
25 °C
44
Unit
µA/MHz
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS
input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.05 V
2. Reduced code used for characterization results provided in Table 27, Table 29, Table 31.
DS10198 Rev 8
135/270
238
Conditions
Symbol
Parameter
-
Voltage
scaling
Unit
fHCLK
26 MHz
IDD_ALL
(Sleep)
DS10198 Rev 8
IDD_ALL
(LPSleep)
25 °C 55 °C
85 °C
0.92
1.07
0.96
105 °C 125 °C 25 °C
1.25
1.59
1.012
55 °C
85 °C
1.14
1.36
105 °C 125 °C
1.77
2.40
16 MHz
0.61
0.65
0.75
0.92
1.27
0.69
0.78
0.97
1.32
2.04
8 MHz
0.36
0.40
0.50
0.66
1.01
0.42
0.50
0.68
1.03
1.75
4 MHz
0.24
0.27
0.37
0.53
0.87
0.28
0.36
0.54
0.89
1.60
2 MHz
0.18
0.20
0.30
0.47
0.81
0.215
0.29
0.46
0.82
1.53
1 MHz
0.15
0.17
0.27
0.43
0.77
0.18
0.25
0.44
0.78
1.49
100 kHz
0.12
0.14
0.24
0.41
0.74
0.15
0.21
0.39
0.74
1.44
80 MHz
2.96
3.00
3.13
3.33
3.73
3.26
3.43
3.72
4.13
4.97
72 MHz
2.69
2.73
2.85
3.05
3.45
2.96
3.21
3.50
3.71
4.54
64 MHz
2.41
2.45
2.58
2.77
3.17
2.65
2.88
3.17
3.58
4.21
Range 1 48 MHz
1.88
1.93
2.07
2.27
2.67
2.10
2.27
2.41
2.83
3.66
32 MHz
1.30
1.35
1.48
1.68
2.08
1.43
1.56
1.85
2.26
3.10
24 MHz
1.01
1.05
1.17
1.37
1.76
1.11
1.23
1.52
1.93
2.77
16 MHz
0.71
0.75
0.87
1.07
1.45
0.80
0.90
1.19
1.60
2.44
2 MHz
96
126
233
412
775
130
202
402
777
1527
1 MHz
65
94
202
381
742
95
166
358
733
1483
400 kHz
43
73
181
359
718
75
138
331
706
1456
100 kHz
33
63
171
348
708
65
128
322
691
1441
Range 2
Supply
current in
sleep
mode,
MAX(1)
TYP
fHCLK = fHSE up
to 48 MHz
included, bypass
mode
PLL ON above
48 MHz all
peripherals
disable
Supply
current in
=f
f
low-power HCLK MSI
all peripherals disable
sleep
mode
Electrical characteristics
136/270
Table 42. Current consumption in Sleep and Low-power sleep modes, Flash ON
mA
µA
1. Guaranteed by characterization results, unless otherwise specified.
STM32L476xx
Conditions(1)
Symbol
TYP
Parameter
Unit
fHCLK
25 °C
55 °C
85 °C
105 °C
125 °C
80 MHz
1.06
1.08
1.13
1.20
1.34
72 MHz
0.97
0.98
1.02
1.10
1.24
64 MHz
0.87
0.88
0.93
1.00
1.14
48 MHz
0.68
0.69
0.74
0.82
0.96
32 MHz
0.47
0.49
0.53
0.60
0.75
24 MHz
0.36
0.38
0.42
0.49
0.63
16 MHz
0.26
0.27
0.31
0.38
0.52
8 MHz
0.16
0.17
0.22
0.28
0.44
4 MHz
0.10
0.12
0.16
0.23
0.38
2 MHz
0.08
0.09
0.13
0.20
0.35
1 MHz
0.06
0.07
0.12
0.19
0.33
100 kHz
0.05
0.06
0.10
0.18
0.32
-
IDD_ALL(Sleep)
Supply current in sleep mode,
fHCLK = fHSE up to 48 MHz included, bypass
mode PLL ON above 48 MHz all peripherals
disable
STM32L476xx
Table 43. Current consumption in Sleep, Flash ON and power supplied by external SMPS
(VDD12 = 1.10 V)
mA
DS10198 Rev 8
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%,
VDD12 = 1.10 V
Table 44. Current consumption in Low-power sleep modes, Flash in power-down
Conditions
Symbol
Parameter
-
fHCLK = fMSI
all peripherals disable
Unit
fHCLK
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
2 MHz
81
110
217
395
754
115
182
375
750
1500
1 MHz
50
78
185
362
720
80
149
342
717
1456
400 kHz
28
57
163
340
698
60
122
314
689
1429
100 kHz
18
47
155
332
686
50
114
313
688
1438
1. Guaranteed by characterization results, unless otherwise specified.
µA
137/270
Electrical characteristics
IDD_ALL
(LPSleep)
Supply current
in low-power
sleep mode
Voltage
scaling
MAX(1)
TYP
Symbol
Parameter
Conditions
-
LCD disabled
IDD_ALL
(Stop 2)
Supply current in
Stop 2 mode,
RTC disabled
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
1.8 V
1.14
3.77
14.7
34.7
77
2.4 V
1.15
3.86
15
35.5
3V
1.18
3.97
15.4
36.4
105 °C 125 °C
2.7
9
37
87
193
79.1
2.7
10
38
89
198
81.3
2.8
10
39
91
203
(2)
16
38
85.1
3.0
10
40
1.8 V
1.43
3.98
15
35
77.3
3.2
10
38
2.4 V
1.49
4.07
15.3
35.8
79.4
3.2
10
38
90
199
3V
1.54
4.24
15.7
36.7
81.6
3.3
11
39
92
204
3.6 V
1.75
4.47
16.1
38.3
85.4
3.5
11
40
96
214
1.8 V
1.42
4.04
15
34.9
77.2
3.1
10
38
87
193
2.4 V
1.5
4.22
15.4
35.7
79.2
3.2
11
39
89
198
3V
1.64
4.37
15.8
36.7
81.4
3.4
11
40
92
204
3.6 V
1.79
4.65
16.6
38.4
85.4
3.6
12
42
96
214
1.8 V
1.53
4.07
15.1
35.1
77.4
3.3
10
38
88
194
2.4 V
1.62
4.32
15.5
35.9
79.5
3.4
11
39
90
199
3V
1.69
4.43
15.9
36.8
81.7
3.5
11
40
92
204
3.6 V
1.86
4.65
16.7
38.5
85.5
3.7
12
42
96
214
1.8 V
1.5
4.13
15.2
35.3
77.6
3.2
10
38
88
194
RTC clocked by LSE
2.4 V
bypassed at
32768Hz,LCD disabled 3 V
3.6 V
1.63
4.33
15.6
36
79.6
3.4
11
39
90
199
1.79
4.55
16.1
37
81.8
3.6
11
40
93
205
2.04
4.9
16.8
38.7
85.6
3.9
12
42
97
214
1.8 V
1.43
3.99
14.7
35
-
3.2
10
37
88
-
2.4 V
1.54
4.11
15
35.8
-
3.3
10
38
90
-
3V
1.67
4.29
15.5
36.7
-
3.4
11
39
92
-
3.6 V
1.87
4.57
16.2
38.3
-
3.7
11
41
96
-
DS10198 Rev 8
RTC clocked by LSE
quartz(4)
in low drive mode,
LCD disabled
88
193
Unit
µA
µA
STM32L476xx
4.11
RTC clocked by LSI,
LCD enabled(3)
95
213
1.26
RTC clocked by LSI,
LCD disabled
Supply current in
Stop 2 mode,
RTC enabled
VDD
3.6 V
LCD enabled(3)
clocked by LSI
IDD_ALL
(Stop 2 with
RTC)
MAX(1)
TYP
Electrical characteristics
138/270
Table 45. Current consumption in Stop 2 mode
Symbol
Parameter
Supply current
IDD_ALL
during wakeup
(wakeup from
from Stop 2
Stop 2)
mode
Conditions
-
MAX(1)
TYP
VDD
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
Wakeup clock is
MSI = 48 MHz,
voltage Range 1.
See (5).
3V
1.9
-
-
-
-
Wakeup clock is
MSI = 4 MHz,
voltage Range 2.
See (5).
3V
2.24
-
-
-
-
Wakeup clock is
HSI16 = 16 MHz,
voltage Range 1.
See (5).
3V
2.1
-
-
-
-
55 °C
85 °C
-
105 °C 125 °C
Unit
STM32L476xx
Table 45. Current consumption in Stop 2 mode (continued)
mA
DS10198 Rev 8
1. Guaranteed by characterization results, unless otherwise specified.
2. Guaranteed by test in production.
3. LCD enabled with external voltage source. Consumption from VLCD excluded. Refer to LCD controller characteristics for IVLCD.
4. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
5. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 52: Low-power mode wakeup timings.
Electrical characteristics
139/270
Symbol
Parameter
Conditions
-
IDD_ALL
(Stop 1)
Supply current
in Stop 1
mode,
RTC disabled
-
LCD
disabled
LCD
enabled(2)
clocked by
LSI
DS10198 Rev 8
LCD
disabled
RTC clocked by
LSI
Supply current
IDD_ALL
in stop 1
(Stop 1 with
mode,
RTC)
RTC enabled RTC clocked by
LSE bypassed
at 32768 Hz
RTC clocked by
LSE quartz(3) in
low drive mode
LCD
enabled(2)
LCD
disabled
LCD
disabled
MAX(1)
TYP
VDD
25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
1.8 V
6.59
24.7
92.7
208
437
16
62
232
520
1093
2.4 V
6.65
24.8
92.9
209
439
17
62
232
523
1098
3V
6.65
24.9
93.3
210
442
17
62
233
525
1105
3.6 V
6.70
25.1
93.8
212
447
17
63
235
530
1118
1.8 V
7.00
25.2
97.2
219
461
18
63
243
548
1153
2.4 V
7.14
25.4
97.5
220
463
18
64
244
550
1158
3V
7.24
25.7
97.7
221
465
18
64
244
553
1163
3.6 V
7.36
26.1
98.7
223
471
18
65
247
558
1178
1.8 V
6.88
25.0
93.1
209
439
17
63
233
523
1098
2.4 V
7.02
25.2
93.7
210
441
18
63
234
525
1103
3V
7.12
25.4
94.2
212
444
18
64
236
530
1110
3.6 V
7.25
25.7
95.2
214
449
18
64
238
535
1123
1.8 V
7.01
26.1
99.0
223
467
18
65
248
558
1168
2.4 V
7.14
26.3
99.6
225
470
18
66
249
563
1175
3V
7.31
26.6
100.0
226
474
18
67
250
565
1185
3.6 V
7.41
26.9
102.0
229
480
19
67
255
573
1200
1.8 V
6.91
25.2
93.4
210
440
17
63
234
525
1100
2.4 V
7.04
25.3
94.2
211
443
18
63
236
528
1108
3V
7.19
25.7
95.0
212
446
18
64
238
530
1115
3.6 V
7.97
26.0
96.1
215
451
20
65
240
538
1128
1.8 V
6.85
25.0
93.0
208.3
-
17
63
233
521
-
2.4 V
6.94
25.1
93.2
209.3
-
17
63
233
523
-
3V
7.10
25.2
93.6
210.3
-
18
63
234
526
-
3.6 V
7.34
25.4
94.1
212.3
-
18
64
235
531
-
Unit
µA
Electrical characteristics
140/270
Table 46. Current consumption in Stop 1 mode
µA
STM32L476xx
Symbol
Parameter
Conditions
-
-
Wakeup clock MSI = 48 MHz,
voltage Range 1.
See (4).
Supply current Wakeup clock MSI = 4 MHz,
IDD_ALL
voltage Range 2.
during
(wakeup
wakeup from See (4).
from Stop1)
Stop 1
Wakeup clock
HSI16 = 16 MHz,
voltage Range 1.
See (4).
MAX(1)
TYP
VDD
25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
3V
1.47
-
-
-
-
3V
1.7
-
-
-
-
3V
1.62
-
-
-
-
-
Unit
STM32L476xx
Table 46. Current consumption in Stop 1 mode (continued)
mA
1. Guaranteed by characterization results, unless otherwise specified.
DS10198 Rev 8
2. LCD enabled with external voltage source. Consumption from VLCD excluded. Refer to LCD controller characteristics for IVLCD.
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
4. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 52: Low-power mode wakeup timings.
Electrical characteristics
141/270
Symbol
Parameter
IDD_ALL
(Stop 0)
Supply
current in
Stop 0 mode,
RTC disabled
Conditions
VDD
MAX(1)
TYP
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
1.8 V
108
132
217
356
631
153
213
426
773
1461
2.4 V
110
134
219
358
634
158
218
431
778
1468
3V
111
135
220
360
637
161
221
433
783
1476
3.6 V
113
137
222
363
642
166
226
438
791(2)
1488
1. Guaranteed by characterization results, unless otherwise specified.
Unit
µA
Electrical characteristics
142/270
Table 47. Current consumption in Stop 0 mode
2. Guaranteed by test in production.
DS10198 Rev 8
STM32L476xx
Symbol
IDD_ALL
(Standby)
Parameter
Supply current
in Standby
mode (backup
registers
retained),
RTC disabled
Conditions
-
no independent watchdog
with independent
watchdog
DS10198 Rev 8
RTC clocked by LSI, no
independent watchdog
IDD_ALL
(Standby
with RTC)
Supply current
in Standby
mode (backup
registers
retained),
RTC enabled
RTC clocked by LSI, with
independent watchdog
RTC clocked by LSE
bypassed at 32768Hz
MAX(1)
TYP
VDD
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
1.8 V
114
355
1540
4146
10735
176
888
3850
10365
26838
2.4 V
138
407
1795
4828
12451
223
1018
4488
12070
31128
3V
150
486
2074
5589
14291
263
1215
5185
13973
35728
3.6 V
198
618
2608
6928
17499
383
1545
6520
1.8 V
317
-
-
-
-
-
-
2.4 V
391
-
-
-
-
-
-
17320
(2)
43748
-
-
-
-
-
-
3V
438
-
-
-
-
-
-
-
-
-
3.6 V
566
-
-
-
-
-
-
-
-
-
1.8 V
377
621
1873
4564
11318
491
1207
4250
10867
27537
2.4 V
464
756
2210
5348
13166
614
1436
4986
12694
31986
3V
572
913
2599
6219
15197
770
1727
5815
14729
36815
3.6 V
722
1144
3253
7724
18696
1012
2176
7294
18275
45184
1.8 V
456
-
-
-
-
-
-
-
-
-
2.4 V
557
-
-
-
-
-
-
-
-
-
3V
663
-
-
-
-
-
-
-
-
-
3.6 V
885
-
-
-
-
-
-
-
-
-
1.8 V
289
527
1747
4402
11009
-
-
-
-
-
2.4 V
396
671
2108
5202
12869
-
-
-
-
-
528
853
2531
6095
14915
-
-
-
-
-
710
1111
3115
7470
18221
-
-
-
-
-
1.8 V
416
640
1862
4479
11908
-
-
-
-
-
2.4 V
RTC clocked by LSE
quartz (3) in low drive mode 3 V
514
796
2193
5236
13689
-
-
-
-
-
652
961
2589
6103
15598
-
-
-
-
-
3.6 V
821
1226
3235
7551
17947
-
-
-
-
-
nA
nA
nA
143/270
Electrical characteristics
3V
3.6 V
Unit
STM32L476xx
Table 48. Current consumption in Standby mode
Symbol
IDD_ALL
(SRAM2)(4)
IDD_ALL
(wakeup
from
Standby)
Conditions
Parameter
Supply current
to be added in
Standby mode
when SRAM2
is retained
Supply current
during wakeup
from Standby
mode
-
VDD
-
Wakeup clock is
MSI = 4 MHz.
See (5).
MAX(1)
TYP
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
1.8 V
235
641
2293
5192
11213
588
1603
5733
12980
28033
2.4 V
237
645
2303
5213
11246
593
1613
5758
13033
28115
3V
236
647
2306
5221
11333
593
1618
5765
13053
28333
3.6 V
235
646
2308
5200
11327
595
1620
5770
13075
28350
3V
1.7
-
-
-
-
-
Unit
nA
Electrical characteristics
144/270
Table 48. Current consumption in Standby mode (continued)
mA
1. Guaranteed by characterization results, unless otherwise specified.
2. Guaranteed by test in production.
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
DS10198 Rev 8
4. The supply current in Standby with SRAM2 mode is: IDD_ALL(Standby) + IDD_ALL(SRAM2). The supply current in Standby with RTC with SRAM2 mode is: IDD_ALL(Standby
+ RTC) + IDD_ALL(SRAM2).
5. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 52: Low-power mode wakeup timings.
Table 49. Current consumption in Shutdown mode
Symbol
IDD_ALL
(Shutdown)
Parameter
Supply current
in Shutdown
mode
(backup
registers
retained) RTC
disabled
Conditions
-
-
MAX(1)
TYP
VDD
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
1.8 V
29.8
194
1110
3250
9093
2.4 V
44.3
237
1310
3798
3V
64.1
293
1554
3.6 V
112
420
2041
105 °C 125 °C
75
485
2775
8125
22733
10473
111
593
3275
9495
26183
4461
12082
160
733
3885
11153
30205
5689
15186
280
1050
5103
14223
37965
Unit
nA
STM32L476xx
Symbol
IDD_ALL
(Shutdown
with RTC)
Parameter
Supply current
in Shutdown
mode
(backup
registers
retained) RTC
enabled
DS10198 Rev 8
Supply current
IDD_ALL
during wakeup
(wakeup from
from Shutdown
Shutdown)
mode
Conditions
-
RTC clocked by LSE
bypassed at 32768 Hz
RTC clocked by LSE
quartz (2) in low drive
mode
Wakeup clock is
MSI = 4 MHz.
See (3).
MAX(1)
TYP
VDD
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
1.8 V
210
378
1299
3437
9357
-
-
-
-
-
2.4 V
303
499
1577
4056
10825
-
-
-
-
-
3V
422
655
1925
4820
12569
-
-
-
-
-
3.6 V
584
888
2511
6158
15706
-
-
-
-
-
1.8 V
329
499
1408
3460
-
-
-
-
-
-
2.4 V
431
634
1688
4064
-
-
-
-
-
-
3V
554
791
2025
4795
-
-
-
-
-
-
3.6 V
729
1040
2619
6129
-
-
-
-
-
-
3V
0.6
-
-
-
-
-
-
-
-
-
Unit
STM32L476xx
Table 49. Current consumption in Shutdown mode (continued)
nA
mA
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 52: Low-power mode wakeup timings.
Electrical characteristics
145/270
Symbol
Parameter
Conditions
-
RTC disabled
IDD_VBAT
RTC enabled and
Backup domain
clocked by LSE
supply current
bypassed at 32768 Hz
DS10198 Rev 8
RTC enabled and
clocked by LSE
quartz(2)
MAX(1)
TYP
VBAT
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
73
490
1468
4158
1.8 V
4
29
196
587
1663
10.8
2.4 V
5.27
36
226
673
1884
13.2
90
565
1683
4710
3V
6
42
264
775
2147
15.5
106
660
1938
5368
3.6 V
10
58
323
919
2488
25.8
144
808
2298
6220
1.8 V
183
201
367
729
-
-
-
-
-
-
2.4 V
268
295
486
901
-
-
-
-
-
-
3V
376
412
602
1075
-
-
-
-
-
-
3.6 V
508
558
752
1299
-
-
-
-
-
-
1.8 V
302
344
521
915
1978
-
-
-
-
-
2.4 V
388
436
639
1091
2289
-
-
-
-
-
3V
494
549
784
1301
2656
-
-
-
-
-
3.6 V
630
692
971
1571
3115
-
-
-
-
-
Unit
Electrical characteristics
146/270
Table 50. Current consumption in VBAT mode
nA
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
STM32L476xx
STM32L476xx
Electrical characteristics
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 70: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 51: Peripheral current consumption), the I/Os used by an application also contribute
to the current consumption. When an I/O pin switches, it uses the current from the I/O
supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load
(internal or external) connected to the pin:
I SW = V DDIOx × f SW × C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDIOx is the I/O supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
DS10198 Rev 8
147/270
238
Electrical characteristics
STM32L476xx
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 51. The MCU is placed
under the following conditions:
•
All I/O pins are in Analog mode
•
The given value is calculated by measuring the difference of the current consumptions:
–
when the peripheral is clocked on
–
when the peripheral is clocked off
•
Ambient operating temperature and supply voltage conditions summarized in Table 20:
Voltage characteristics
•
The power consumption of the digital part of the on-chip peripherals is given in
Table 51. The power consumption of the analog part of the peripherals (where
applicable) is indicated in each related section of the datasheet.
Table 51. Peripheral current consumption
Range 1
Range 2
Low-power run
and sleep
Bus Matrix(1)
4.5
3.7
4.1
ADC independent clock domain
0.4
0.1
0.2
ADC AHB clock domain
5.5
4.7
5.5
CRC
0.4
0.2
0.3
DMA1
1.4
1.3
1.4
DMA2
1.5
1.3
1.4
FLASH
6.2
5.2
5.8
FMC
8.9
7.5
8.4
GPIOA(2)
4.8
3.8
4.4
(2)
4.8
4.0
4.6
GPIOC(2)
4.5
3.8
4.3
(2)
GPIOD
4.6
3.9
4.4
GPIOE(2)
5.2
4.5
4.9
GPIOF(2)
5.9
4.9
5.7
(2)
4.3
3.8
4.2
(2)
GPIOH
0.7
0.6
0.8
OTG_FS independent clock
domain
23.2
N/A
N/A
OTG_FS AHB clock domain
16.4
N/A
N/A
QUADSPI
7.8
6.7
7.3
RNG independent clock domain
2.2
N/A
N/A
RNG AHB clock domain
0.6
N/A
N/A
SRAM1
0.9
0.8
0.9
Peripheral
GPIOB
AHB
GPIOG
148/270
DS10198 Rev 8
Unit
µA/MHz
STM32L476xx
Electrical characteristics
Table 51. Peripheral current consumption (continued)
Range 1
Range 2
Low-power run
and sleep
SRAM2
1.6
1.4
1.6
TSC
1.8
1.4
1.6
118.5
77.3
87.6
AHB to APB1 bridge
0.9
0.7
0.9
CAN1
4.6
4.0
4.4
DAC1
2.4
1.9
2.2
I2C1 independent clock domain
3.7
3.1
3.2
I2C1 APB clock domain
1.3
1.1
1.5
I2C2 independent clock domain
3.7
3.0
3.2
I2C2 APB clock domain
1.4
1.1
1.5
I2C3 independent clock domain
2.9
2.3
2.5
I2C3 APB clock domain
0.9
0.9
1.1
LCD
1.0
0.8
0.9
LPUART1 independent clock
domain
2.1
1.6
2.0
LPUART1 APB clock domain
0.6
0.6
0.6
LPTIM1 independent clock
domain
3.3
2.6
2.9
LPTIM1 APB clock domain
0.9
0.8
1.0
LPTIM2 independent clock
domain
3.1
2.7
2.9
LPTIM2 APB clock domain
0.8
0.6
0.7
OPAMP
0.4
0.4
0.3
PWR
0.5
0.5
0.4
SPI2
1.8
1.6
1.6
SPI3
2.1
1.7
1.8
SWPMI1 independent clock
domain
2.3
1.8
2.2
SWPMI1 APB clock domain
1.1
1.1
1.0
TIM2
6.8
5.7
6.3
TIM3
5.4
4.6
5.0
TIM4
5.2
4.4
4.9
TIM5
6.5
5.5
6.1
TIM6
1.1
1.0
1.0
TIM7
1.1
0.9
1.0
Peripheral
AHB
All AHB Peripherals
(3)
APB1
DS10198 Rev 8
Unit
µA/MHz
µA/MHz
149/270
238
Electrical characteristics
STM32L476xx
Table 51. Peripheral current consumption (continued)
Range 1
Range 2
Low-power run
and sleep
USART2 independent clock
domain
4.1
3.6
3.8
USART2 APB clock domain
1.4
1.1
1.5
USART3 independent clock
domain
4.7
4.1
4.2
USART3 APB clock domain
1.5
1.3
1.7
UART4 independent clock
domain
3.9
3.2
3.5
UART4 APB clock domain
1.5
1.3
1.6
UART5 independent clock
domain
3.9
3.2
3.5
UART5 APB clock domain
1.3
1.2
1.4
WWDG
0.5
0.5
0.5
All APB1 on
84.2
70.7
80.2
AHB to APB2 bridge(4)
1.0
0.9
0.9
DFSDM1
5.6
4.6
5.3
FW
0.7
0.5
0.7
SAI1 independent clock domain
2.6
2.1
2.3
SAI1 APB clock domain
2.1
1.8
2.0
SAI2 independent clock domain
3.3
2.7
3.0
SAI2 APB clock domain
2.4
2.1
2.2
SDMMC1 independent clock
domain
4.7
3.9
4.2
SDMMC1 APB clock domain
2.5
1.9
2.1
SPI1
2.0
1.6
1.9
SYSCFG/VREFBUF/COMP
0.6
0.4
0.5
TIM1
8.3
6.9
7.9
TIM8
8.6
7.1
8.1
TIM15
4.1
3.4
3.9
TIM16
3.0
2.5
2.9
TIM17
3.0
2.4
2.9
USART1 independent clock
domain
4.9
4.0
4.4
USART1 APB clock domain
1.5
1.3
1.7
All APB2 on
56.8
43.3
48.2
256.8
189.6
215.5
Peripheral
APB1
APB2
ALL
150/270
DS10198 Rev 8
Unit
µA/MHz
STM32L476xx
Electrical characteristics
1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).
2. The GPIOx (x= A…H) dynamic current consumption is approximately divided by a factor two versus this table values when
the GPIO port is locked thanks to LCKK and LCKy bits in the GPIOx_LCKR register. In order to save the full GPIOx current
consumption, the GPIOx clock should be disabled in the RCC when all port I/Os are used in alternate function or analog
mode (clock is only required to read or write into GPIO registers, and is not used in AF or analog modes).
3. The AHB to APB1 Bridge is automatically active when at least one peripheral is ON on the APB1.
4. The AHB to APB2 Bridge is automatically active when at least one peripheral is ON on the APB2.
The consumption for the peripherals when using SMPS can be found using STM32CubeMX
PCC tool.
6.3.6
Wakeup time from low-power modes and voltage scaling
transition times
The wakeup times given in Table 52 are the latency between the event and the execution of
the first user instruction.
The device goes in low-power mode after the WFE (Wait For Event) instruction.
Table 52. Low-power mode wakeup timings(1)
Symbol
tWUSLEEP
Parameter
Conditions
Typ
Max
-
6
6
Wakeup time from Sleep
mode to Run mode
Wakeup time from LowtWULPSLEEP power sleep mode to Lowpower run mode
Wakeup in Flash with Flash in power-down during
low-power sleep mode (SLEEP_PD=1 in
FLASH_ACR) and with clock MSI = 2 MHz
Range 1
Wake up time from Stop 0
mode to Run mode in Flash
Range 2
tWUSTOP0
Range 1
Wake up time from Stop 0
mode to Run mode in
SRAM1
Range 2
6
9.3
Wakeup clock MSI = 48 MHz
5.6
10.9
Wakeup clock HSI16 = 16 MHz
4.7
10.4
Wakeup clock MSI = 24 MHz
5.7
11.1
Wakeup clock HSI16 = 16 MHz
4.5
10.5
Wakeup clock MSI = 4 MHz
6.6
14.2
Wakeup clock MSI = 48 MHz
0.7
2.05
Wakeup clock HSI16 = 16 MHz
1.7
2.8
Wakeup clock MSI = 24 MHz
0.8
2.72
Wakeup clock HSI16 = 16 MHz
1.7
2.8
Wakeup clock MSI = 4 MHz
2.4
11.32
DS10198 Rev 8
Unit
Nb of
CPU
cycles
µs
151/270
238
Electrical characteristics
STM32L476xx
Table 52. Low-power mode wakeup timings(1) (continued)
Symbol
Parameter
Conditions
Range 1
Wake up time from Stop 1
mode to Run mode in Flash
Range 2
Range 1
tWUSTOP1
Wake up time from Stop 1
mode to Run mode in
SRAM1
Wake up time from Stop 1
mode to Low-power run
mode in Flash
Wake up time from Stop 1
mode to Low-power run
mode in SRAM1
Range 2
Wake up time from Stop 2
mode to Run mode in Flash
Range 2
tWUSTOP2
Range 1
tWUSTBY
tWUSTBY
SRAM2
tWUSHDN
Max
Wakeup clock MSI = 48 MHz
6.2
10.2
Wakeup clock HSI16 = 16 MHz
6.3
8.99
Wakeup clock MSI = 24 MHz
6.3 10.46
Wakeup clock HSI16 = 16 MHz
6.3
Wakeup clock MSI = 4 MHz
8.0 13.23
Wakeup clock MSI = 48 MHz
4.5
5.78
Wakeup clock HSI16 = 16 MHz
5.5
7.1
Wakeup clock MSI = 24 MHz
5.0
6.5
Wakeup clock HSI16 = 16 MHz
5.5
7.1
Wakeup clock MSI = 4 MHz
8.2
13.5
12.7
20
Regulator in
low-power
Wakeup clock MSI = 2 MHz
mode (LPR=1 in
PWR_CR1)
Range 1
Wake up time from Stop 2
mode to Run mode in
SRAM1
Typ
Range 2
Wakeup time from Standby
mode to Run mode
Range 1
Wakeup time from Standby
with SRAM2 to Run mode
Range 1
Wakeup time from
Shutdown mode to Run
mode
Range 1
152/270
8.87
8.0
9.4
Wakeup clock HSI16 = 16 MHz
7.3
9.3
Wakeup clock MSI = 24 MHz
8.2
9.9
Wakeup clock HSI16 = 16 MHz
7.3
9.3
Wakeup clock MSI = 4 MHz
10.6 15.8
Wakeup clock MSI = 48 MHz
5.1
6.7
Wakeup clock HSI16 = 16 MHz
5.7
8
Wakeup clock MSI = 24 MHz
5.5
6.65
Wakeup clock HSI16 = 16 MHz
5.7
7.53
Wakeup clock MSI = 4 MHz
8.2
16.6
Wakeup clock MSI = 8 MHz
14.3 20.8
Wakeup clock MSI = 4 MHz
20.1 35.5
Wakeup clock MSI = 8 MHz
14.3 24.3
Wakeup clock MSI = 4 MHz
20.1 38.5
Wakeup clock MSI = 4 MHz
256 330.6
DS10198 Rev 8
µs
10.7 21.5
Wakeup clock MSI = 48 MHz
1. Guaranteed by characterization results.
Unit
µs
µs
µs
µs
STM32L476xx
Electrical characteristics
Table 53. Regulator modes transition times(1)
Symbol
Parameter
tWULPRUN
tVOST
Conditions
Typ
Max
Wakeup time from Low-power run mode to
Code run with MSI 2 MHz
Run mode(2)
5
7
Regulator transition time from Range 2 to
Range 1 or Range 1 to Range 2(3)
20
40
Typ
Max
Stop 0 mode
-
1.7
Stop 1 mode and Stop 2
mode
-
8.5
Unit
µs
Code run with MSI 24 MHz
1. Guaranteed by characterization results.
2. Time until REGLPF flag is cleared in PWR_SR2.
3. Time until VOSF flag is cleared in PWR_SR2.
Table 54. Wakeup time using USART/LPUART(1)
Symbol
Parameter
tWUUSART
tWULPUART
Conditions
Wakeup time needed to calculate the
maximum USART/LPUART baudrate
allowing to wakeup up from stop mode
when USART/LPUART clock source is
HSI16
Unit
µs
1. Guaranteed by design.
6.3.7
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 23: High-speed external clock
source AC timing diagram.
Table 55. High-speed external user clock characteristics(1)
Symbol
fHSE_ext
Parameter
User external clock source frequency
Conditions
Min
Typ
Max
Voltage scaling
Range 1
-
8
48
Voltage scaling
Range 2
-
8
26
MHz
VHSEH
OSC_IN input pin high level voltage
-
0.7 VDDIOx
-
VDDIOx
VHSEL
OSC_IN input pin low level voltage
-
VSS
-
0.3 VDDIOx
Voltage scaling
Range 1
7
-
-
Voltage scaling
Range 2
18
-
-
tw(HSEH)
OSC_IN high or low time
tw(HSEL)
Unit
V
ns
1. Guaranteed by design.
DS10198 Rev 8
153/270
238
Electrical characteristics
STM32L476xx
Figure 23. High-speed external clock source AC timing diagram
tw(HSEH)
VHSEH
90%
10%
VHSEL
tr(HSE)
tf(HSE)
t
tw(HSEL)
THSE
MS19214V2
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 24.
Table 56. Low-speed external user clock characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
kHz
fLSE_ext
User external clock source frequency
-
-
32.768
1000
VLSEH
OSC32_IN input pin high level voltage
-
0.7 VDDIOx
-
VDDIOx
VLSEL
OSC32_IN input pin low level voltage
-
VSS
-
0.3 VDDIOx
-
250
-
-
tw(LSEH)
OSC32_IN high or low time
tw(LSEL)
V
ns
1. Guaranteed by design.
Figure 24. Low-speed external clock source AC timing diagram
tw(LSEH)
VLSEH
90%
VLSEL
10%
tr(LSE)
tf(LSE)
t
tw(LSEL)
TLSE
MS19215V2
154/270
DS10198 Rev 8
STM32L476xx
Electrical characteristics
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 57. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Table 57. HSE oscillator characteristics(1)
Symbol
fOSC_IN
RF
Conditions(2)
Min
Typ
Max
Unit
Oscillator frequency
-
4
8
48
MHz
Feedback resistor
-
-
200
-
kΩ
-
-
5.5
VDD = 3 V,
Rm = 30 Ω,
CL = 10 pF@8 MHz
-
0.44
-
VDD = 3 V,
Rm = 45 Ω,
CL = 10 pF@8 MHz
-
0.45
-
VDD = 3 V,
Rm = 30 Ω,
CL = 5 pF@48 MHz
-
0.68
-
VDD = 3 V,
Rm = 30 Ω,
CL = 10 pF@48 MHz
-
0.94
-
VDD = 3 V,
Rm = 30 Ω,
CL = 20 pF@48 MHz
-
1.77
-
Startup
-
-
1.5
mA/V
VDD is stabilized
-
2
-
ms
Parameter
During startup
IDD(HSE)
Gm
HSE current consumption
Maximum critical crystal
transconductance
tSU(HSE)(4) Startup time
(3)
mA
1. Guaranteed by design.
2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 25). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
DS10198 Rev 8
155/270
238
Electrical characteristics
Note:
STM32L476xx
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 25. Typical application with an 8 MHz crystal
Resonator with integrated
capacitors
CL1
OSC_IN
8 MHz
resonator
CL2
REXT (1)
fHSE
RF
Bias
controlled
gain
OSC_OUT
MS19876V1
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. All the information given in this paragraph are based on design simulation results
obtained with typical external components specified in Table 58. In the application, the
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Table 58. LSE oscillator characteristics (fLSE = 32.768 kHz)(1)
Symbol
IDD(LSE)
Parameter
LSE current consumption
Maximum critical crystal
Gmcritmax
gm
tSU(LSE)(3) Startup time
156/270
Conditions(2)
Min
Typ
Max
LSEDRV[1:0] = 00
Low drive capability
-
250
-
LSEDRV[1:0] = 01
Medium low drive capability
-
315
-
LSEDRV[1:0] = 10
Medium high drive capability
-
500
-
LSEDRV[1:0] = 11
High drive capability
-
630
-
LSEDRV[1:0] = 00
Low drive capability
-
-
0.5
LSEDRV[1:0] = 01
Medium low drive capability
-
-
0.75
LSEDRV[1:0] = 10
Medium high drive capability
-
-
1.7
LSEDRV[1:0] = 11
High drive capability
-
-
2.7
VDD is stabilized
-
2
-
DS10198 Rev 8
Unit
nA
µA/V
s
STM32L476xx
Electrical characteristics
1. Guaranteed by design.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
3.
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 26. Typical application with a 32.768 kHz crystal
Resonator with integrated
capacitors
CL1
OSC32_IN
fLSE
Drive
programmable
amplifier
32.768 kHz
resonator
OSC32_OUT
CL2
MS30253V2
Note:
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
DS10198 Rev 8
157/270
238
Electrical characteristics
6.3.8
STM32L476xx
Internal clock source characteristics
The parameters given in Table 59 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 23: General operating
conditions. The provided curves are characterization results, not tested in production.
High-speed internal (HSI16) RC oscillator
Table 59. HSI16 oscillator characteristics(1)
Symbol
fHSI16
TRIM
Parameter
HSI16 Frequency
HSI16 user trimming step
DuCy(HSI16)(2) Duty Cycle
Conditions
Min
Typ
Max
Unit
15.88
-
16.08
MHz
Trimming code is not a
multiple of 64
0.2
0.3
0.4
Trimming code is a
multiple of 64
-4
-6
-8
45
-
55
%
-1
-
1
%
-2
-
1.5
%
-0.1
-
0.05
%
VDD=3.0 V, TA=30 °C
-
%
∆Temp(HSI16)
HSI16 oscillator frequency TA= 0 to 85 °C
drift over temperature
TA= -40 to 125 °C
∆VDD(HSI16)
HSI16 oscillator frequency
VDD=1.62 V to 3.6 V
drift over VDD
tsu(HSI16)(2)
HSI16 oscillator start-up
time
-
-
0.8
1.2
μs
tstab(HSI16)(2)
HSI16 oscillator
stabilization time
-
-
3
5
μs
IDD(HSI16)(2)
HSI16 oscillator power
consumption
-
-
155
190
μA
1. Guaranteed by characterization results.
2. Guaranteed by design.
158/270
DS10198 Rev 8
STM32L476xx
Electrical characteristics
Figure 27. HSI16 frequency versus temperature
MHz
16.4
+2 %
16.3
+1.5 %
16.2
+1 %
16.1
16
15.9
-1 %
15.8
-1.5 %
15.7
-2 %
15.6
-40
-20
0
Mean
20
40
60
min
80
100
120 °C
max
MSv39299V2
DS10198 Rev 8
159/270
238
Electrical characteristics
STM32L476xx
Multi-speed internal (MSI) RC oscillator
Table 60. MSI oscillator characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Range 0
99
100
101
Range 1
198
200
202
Range 2
396
400
404
Range 3
792
800
808
Range 4
0.99
1
1.01
Range 5
1.98
2
2.02
Range 6
3.96
4
4.04
Range 7
7.92
8
8.08
Range 8
15.8
16
16.16
Range 9
23.8
24
24.4
Range 10
31.7
32
32.32
Range 11
47.5
48
48.48
Range 0
-
98.304
-
Range 1
-
196.608
-
Range 2
-
393.216
-
Range 3
-
786.432
-
Range 4
-
1.016
-
PLL mode Range 5
XTAL=
32.768 kHz Range 6
-
1.999
-
-
3.998
-
Range 7
-
7.995
-
Range 8
-
15.991
-
Range 9
-
23.986
-
Range 10
-
32.014
-
Range 11
-
48.005
-
-3.5
-
3
-8
-
6
MSI mode
fMSI
∆TEMP(MSI)(2)
160/270
MSI frequency
after factory
calibration, done
at VDD=3 V and
TA=30 °C
MSI oscillator
frequency drift
over temperature
MSI mode
TA= -0 to 85 °C
TA= -40 to 125 °C
DS10198 Rev 8
Unit
kHz
MHz
kHz
MHz
%
STM32L476xx
Electrical characteristics
Table 60. MSI oscillator characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
VDD=1.62 V
to 3.6 V
-1.2
-
VDD=2.4 V
to 3.6 V
-0.5
-
VDD=1.62 V
to 3.6 V
-2.5
-
VDD=2.4 V
to 3.6 V
-0.8
-
VDD=1.62 V
to 3.6 V
-5
-
VDD=2.4 V
to 3.6 V
-1.6
-
TA= -40 to 85 °C
-
1
2
TA= -40 to 125 °C
-
2
4
Range 0 to 3
∆VDD(MSI)
(2)
MSI oscillator
frequency drift
MSI mode
over VDD
(reference is 3 V)
Range 4 to 7
Range 8 to 11
∆FSAMPLING
(MSI)(2)(6)
Frequency
variation in
MSI mode
sampling mode(3)
P_USB
Jitter(MSI)(6)
Period jitter for
USB clock(4)
MT_USB
Jitter(MSI)(6)
Medium term jitter PLL mode
for USB clock(5)
Range 11
CC jitter(MSI)(6)
P jitter(MSI)(6)
tSU(MSI)(6)
tSTAB(MSI)(6)
PLL mode
Range 11
Max
Unit
0.5
0.7
%
1
%
for next
transition
-
-
-
3.458
for paired
transition
-
-
-
3.916
for next
transition
-
-
-
2
for paired
transition
-
-
-
1
ns
ns
RMS cycle-tocycle jitter
PLL mode Range 11
-
-
60
-
ps
RMS Period jitter
PLL mode Range 11
-
-
50
-
ps
Range 0
-
-
10
20
Range 1
-
-
5
10
Range 2
-
-
4
8
Range 3
-
-
3
7
Range 4 to 7
-
-
3
6
Range 8 to 11
-
-
2.5
6
10 % of final
frequency
-
-
0.25
0.5
5 % of final
frequency
-
-
0.5
1.25
1 % of final
frequency
-
-
-
2.5
MSI oscillator
start-up time
MSI oscillator
stabilization time
PLL mode
Range 11
DS10198 Rev 8
us
ms
161/270
238
Electrical characteristics
STM32L476xx
Table 60. MSI oscillator characteristics(1) (continued)
Symbol
IDD(MSI)(6)
Parameter
MSI oscillator
power
consumption
Conditions
MSI and
PLL mode
Min
Typ
Max
Range 0
-
-
0.6
1
Range 1
-
-
0.8
1.2
Range 2
-
-
1.2
1.7
Range 3
-
-
1.9
2.5
Range 4
-
-
4.7
6
Range 5
-
-
6.5
9
Range 6
-
-
11
15
Range 7
-
-
18.5
25
Range 8
-
-
62
80
Range 9
-
-
85
110
Range 10
-
-
110
130
Range 11
-
-
155
190
Unit
µA
1. Guaranteed by characterization results.
2. This is a deviation for an individual part once the initial frequency has been measured.
3. Sampling mode means Low-power run/Low-power sleep modes with Temperature sensor disable.
4. Average period of MSI @48 MHz is compared to a real 48 MHz clock over 28 cycles. It includes frequency tolerance + jitter
of MSI @48 MHz clock.
5. Only accumulated jitter of MSI @48 MHz is extracted over 28 cycles.
For next transition: min. and max. jitter of 2 consecutive frame of 28 cycles of the MSI @48 MHz, for 1000 captures over 28
cycles.
For paired transitions: min. and max. jitter of 2 consecutive frame of 56 cycles of the MSI @48 MHz, for 1000 captures over
56 cycles.
6. Guaranteed by design.
162/270
DS10198 Rev 8
STM32L476xx
Electrical characteristics
Figure 28. Typical current consumption versus MSI frequency
Low-speed internal (LSI) RC oscillator
Table 61. LSI oscillator characteristics(1)
Symbol
fLSI
tSU(LSI)(2)
tSTAB(LSI)(2)
IDD(LSI)(2)
Parameter
LSI Frequency
Conditions
Min
Typ
Max
VDD = 3.0 V, TA = 30 °C
31.04
-
32.96
VDD = 1.62 to 3.6 V, TA = -40 to 125 °C
29.5
-
34
-
-
80
130
μs
5% of final frequency
-
125
180
μs
-
-
110
180
nA
LSI oscillator startup time
LSI oscillator
stabilization time
LSI oscillator power
consumption
Unit
kHz
1. Guaranteed by characterization results.
2. Guaranteed by design.
6.3.9
PLL characteristics
The parameters given in Table 62 are derived from tests performed under temperature and
VDD supply voltage conditions summarized in Table 23: General operating conditions.
DS10198 Rev 8
163/270
238
Electrical characteristics
STM32L476xx
Table 62. PLL, PLLSAI1, PLLSAI2 characteristics(1)
Symbol
fPLL_IN
Parameter
Conditions
Min
Typ
Max
Unit
PLL input clock(2)
-
4
-
16
MHz
PLL input clock duty cycle
-
45
-
55
%
Voltage scaling Range 1
2.0645
-
80
Voltage scaling Range 2
2.0645
-
26
Voltage scaling Range 1
8
-
80
Voltage scaling Range 2
8
-
26
Voltage scaling Range 1
8
-
80
Voltage scaling Range 2
8
-
26
Voltage scaling Range 1
64
-
344
Voltage scaling Range 2
64
-
128
-
15
40
-
40
-
-
30
-
VCO freq = 64 MHz
-
150
200
VCO freq = 96 MHz
-
200
260
VCO freq = 192 MHz
-
300
380
VCO freq = 344 MHz
-
520
650
fPLL_P_OUT PLL multiplier output clock P
fPLL_Q_OUT PLL multiplier output clock Q
fPLL_R_OUT PLL multiplier output clock R
fVCO_OUT
tLOCK
Jitter
IDD(PLL)
PLL VCO output
PLL lock time
-
RMS cycle-to-cycle jitter
System clock 80 MHz
RMS period jitter
PLL power consumption on
VDD(1)
MHz
MHz
MHz
MHz
μs
±ps
μA
1. Guaranteed by design.
2. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between the 3 PLLs.
6.3.10
Flash memory characteristics
Table 63. Flash memory characteristics(1)
Symbol
Parameter
Conditions
Typ
Max
Unit
tprog
64-bit programming time
-
81.69
90.76
µs
tprog_row
one row (32 double
word) programming time
normal programming
2.61
2.90
fast programming
1.91
2.12
tprog_page
one page (2 Kbyte)
programming time
normal programming
20.91
23.24
fast programming
15.29
16.98
22.02
24.47
normal programming
5.35
5.95
fast programming
3.91
4.35
22.13
24.59
tERASE
tprog_bank
tME
164/270
Page (2 KB) erase time
one bank (512 Kbyte)
programming time
-
Mass erase time
(one or two banks)
-
DS10198 Rev 8
ms
s
ms
STM32L476xx
Electrical characteristics
Table 63. Flash memory characteristics(1) (continued)
Symbol
IDD
Parameter
Conditions
Average consumption
from VDD
Maximum current (peak)
Typ
Max
Write mode
3.4
-
Erase mode
3.4
-
Write mode
7 (for 2 μs)
-
Erase mode
7 (for 41 μs)
-
Unit
mA
1. Guaranteed by design.
Table 64. Flash memory endurance and data retention
Symbol
NEND
Min(1)
Unit
TA = –40 to +105 °C
10
kcycles
1 kcycle(2) at TA = 85 °C
30
Parameter
Endurance
Conditions
1 kcycle
tRET
Data retention
1
(2)
kcycle(2)
at TA = 105 °C
15
at TA = 125 °C
7
(2)
at TA = 55 °C
30
10 kcycles(2) at TA = 85 °C
15
10 kcycles
10
kcycles(2)
at TA = 105 °C
Years
10
1. Guaranteed by characterization results.
2. Cycling performed over the whole temperature range.
DS10198 Rev 8
165/270
238
Electrical characteristics
6.3.11
STM32L476xx
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 65. They are based on the EMS levels and classes
defined in application note AN1709.
Table 65. EMS characteristics
Conditions
Level/
Class
Symbol
Parameter
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 80 MHz,
conforming to IEC 61000-4-2
3B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 80 MHz,
conforming to IEC 61000-4-4
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
166/270
•
Corrupted program counter
•
Unexpected reset
•
Critical Data corruption (control registers...)
DS10198 Rev 8
STM32L476xx
Electrical characteristics
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 66. EMI characteristics
Symbol
SEMI
6.3.12
Parameter
Monitored
frequency band
Conditions
Max vs. [fHSE/fHCLK]
Unit
fMSI = 24 MHz
8 MHz / 80 MHz
-9
2
-8
3
-10
14
1.5
3.5
0.1 MHz to 30 MHz
VDD = 3.6 V, TA = 25 °C,
30 MHz to 130 MHz
LQFP144 package
Peak level
compliant with
130 MHz to 1 GHz
IEC 61967-2
EMI Level
dBµV
-
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the ANSI/JEDEC standard.
Table 67. ESD absolute maximum ratings
Symbol
VESD(HBM)
Ratings
Conditions
TA = +25 °C, conforming
Electrostatic discharge
to ANSI/ESDA/JEDEC
voltage (human body model)
JS-001
Electrostatic discharge
VESD(CDM) voltage (charge device
model)
TA = +25 °C,
conforming to ANSI/ESD
STM5.3.1
Class
Maximum
value(1)
2
2000
Unit
V
C3
250
1. Guaranteed by characterization results.
DS10198 Rev 8
167/270
238
Electrical characteristics
STM32L476xx
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
•
A supply overvoltage is applied to each power supply pin.
•
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 68. Electrical sensitivities
Symbol
LU
Parameter
Static latch-up class
Conditions
Class
TA = +105 °C conforming to JESD78A
II level A(1)
1. Negative injection is limited to -30 mA for PF0, PF1, PG6, PG7, PG8, PG12, PG13, PG14.
6.3.13
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal
product operation. However, in order to give an indication of the robustness of the
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests
are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or
oscillator frequency deviation).
The characterization results are given in Table 69.
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
Table 69. I/O current injection susceptibility
Functional
susceptibility
Symbol
IINJ
Description
Positive
injection
Injected current on BOOT0 pin
-0
0
Injected current on pins except PA4, PA5, BOOT0
-5
N/A(1)
Injected current on PA4, PA5 pins
-5
0
1. Injection is not possible.
168/270
Unit
Negative
injection
DS10198 Rev 8
mA
STM32L476xx
6.3.14
Electrical characteristics
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 70 are derived from tests
performed under the conditions summarized in Table 23: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant (except BOOT0).
Table 70. I/O static characteristics
Symbol
VIL(1)
VIH
(1)
Parameter
Conditions
Typ
Max
Unit
I/O input low level
voltage except
BOOT0
1.62 V