STM32L4A6xG
Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100DMIPS, 1MB
flash, 320KB SRAM, USB OTG FS, audio, AES+HASH, ext. SMPS
Datasheet - production data
Features
Includes ST state-of-the-art patented
technology
LQFP144 (20 × 20)
LQFP100 (14 x 14)
LQFP64 (10 x 10)
• Ultra-low-power with FlexPowerControl
– 1.71 V to 3.6 V power supply
– -40 °C to 85/125 °C temperature range
– 320 nA in VBAT mode: supply for RTC and
32x32-bit backup registers
– 25 nA Shutdown mode (5 wakeup pins)
– 108 nA Standby mode (5 wakeup pins)
– 426 nA Standby mode with RTC
– 2.57 µA Stop 2 mode, 2.86 µA Stop 2 with
RTC
– 91 µA/MHz run mode (LDO mode)
– 37 μA/MHz run mode (at 3.3 V SMPS
mode)
– Batch acquisition mode (BAM)
– 5 µs wakeup from Stop mode
– Brown out reset (BOR) in all modes except
shutdown
– Interconnect matrix
• Core: Arm® 32-bit Cortex®-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait-state execution
from flash memory, frequency up to 80 MHz,
MPU, 100 DMIPS and DSP instructions
• Performance benchmark
– 1.25 DMIPS/MHz (Drystone 2.1)
– 273.55 Coremark® (3.42 Coremark/MHz at
80 MHz)
• Energy benchmark
– 279 ULPMark™ CP score
– 80.2 ULPMark™ PP score
This is information on a product in full production.
WLCSP100L
• RTC with HW calendar, alarms and calibration
• Up to 136 fast I/Os, most 5 V-tolerant, up to 14
I/Os with independent supply down to 1.08 V
• Dedicated Chrom-ART Accelerator for
enhanced graphic content creation (DMA2D)
• 8- to 14-bit camera interface up to 32 MHz
(black & white) or 10 MHz (color)
• Encryption hardware accelerator: AES
(128/256-bit key), HASH (SHA-256)
• Memories
– 1 MB flash, 2 banks read-while-write,
proprietary code readout protection
– 320 KB of SRAM including 64 KB with
hardware parity check
– External memory interface for static
memories supporting SRAM, PSRAM,
NOR and NAND memories
– Dual-flash Quad SPI memory interface
• Clock sources
– 4 to 48 MHz crystal oscillator
– 32 kHz crystal oscillator for RTC (LSE)
– Internal 16 MHz factory-trimmed RC (±1%)
– Internal low-power 32 kHz RC (±5%)
– Internal multispeed 100 kHz to 48 MHz
oscillator, auto-trimmed by LSE (better than
±0.25% accuracy)
– Internal 48 MHz with clock recovery
– 3 PLLs for system clock, USB, audio, ADC
• LCD 8× 40 or 4× 44 with step-up converter
• 16 timers: 2x 16-bit advanced motor-control, 2x
32-bit and 5x 16-bit general purpose, 2x 16-bit
basic, 2x low-power 16-bit timers (available in
Stop mode), 2x watchdogs, SysTick timer
July 2022
UFBGA169 (7 x 7)
UFBGA132 (7 × 7)
• Up to 24 capacitive sensing channels: support
touchkey, linear and rotary touch sensors
• 4x digital filters for sigma delta modulator
DS11584 Rev 14
1/281
www.st.com
STM32L4A6xG
• Rich analog peripherals (independent supply)
– 3× 12-bit ADCs 5 Msps, up to 16-bit with
hardware oversampling, 200 µA/Msps
– 2x 12-bit DAC output channels, low-power
sample and hold
– 2x operational amplifiers with built-in PGA
– 2x ultra-low-power comparators
–
–
–
–
–
1x LPUART
3x SPIs (4x SPIs with the Quad SPI)
2x CANs (2.0B Active) and SDMMC
SWPMI single wire protocol master I/F
IRTIM (Infrared interface)
• 14-channel DMA controller
• True random number generator
• 20x communication interfaces
• CRC calculation unit, 96-bit unique ID
– USB OTG 2.0 full-speed, LPM and BCD
• Development support: serial wire debug
– 2x SAIs (serial audio interface)
(SWD), JTAG, Embedded Trace Macrocell™
– 4x I2C FM+(1 Mbit/s), SMBus/PMBus
– 5x U(S)ARTs (ISO 7816, LIN, IrDA,
modem)
Table 1. Device summary
•
2/281
Reference
Part numbers
STM32L4A6xG
STM32L4A6AG, STM32L4A6QG, STM32L4A6RG, STM32L4A6VG, STM32L4A6ZG
DS11584 Rev 14
STM32L4A6xG
Contents
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1
Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 18
3.3
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4
Embedded flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7
Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.8
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 22
3.10
Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.10.1
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.10.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.10.4
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.10.5
Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.10.6
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.11
Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.12
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.13
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.14
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.15
Chrom-ART Accelerator™ (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.16
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.17
3.16.1
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 41
3.16.2
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 41
Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.17.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.17.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 43
DS11584 Rev 14
3/281
6
Contents
STM32L4A6xG
3.17.3
4/281
VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.18
Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.19
Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.20
Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.21
Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.22
Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.23
Liquid crystal display controller (LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.24
Digital filter for Sigma-Delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 46
3.25
True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.26
Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.27
Advanced encryption standard hardware accelerator (AES) . . . . . . . . . . 48
3.28
HASH hardware accelerator (HASH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.29
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.29.1
Advanced-control timer (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.29.2
General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16,
TIM17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.29.3
Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.29.4
Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 51
3.29.5
Infrared interface (IRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.29.6
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.29.7
System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.29.8
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.30
Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 52
3.31
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.32
Universal synchronous/asynchronous receiver transmitter (USART) . . . 54
3.33
Low-power universal asynchronous receiver transmitter (LPUART) . . . . 55
3.34
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.35
Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.36
Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 57
3.37
Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.38
Secure digital input/output and MultiMediaCards interface (SDMMC) . . . 58
3.39
Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 58
3.40
Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.41
Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 59
DS11584 Rev 14
STM32L4A6xG
Contents
3.42
Dual-flash Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . 60
3.43
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.43.1
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.43.2
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.2
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . 125
6.3.3
Embedded reset and power control block characteristics . . . . . . . . . . 126
6.3.4
Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.5
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.6
Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.3.7
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.3.8
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.3.9
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.3.10
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.3.11
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.3.12
+Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.3.13
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.3.14
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.3.15
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.3.16
Extended interrupt and event controller input (EXTI) characteristics . . 182
DS11584 Rev 14
5/281
6
Contents
7
STM32L4A6xG
6.3.17
Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.3.18
Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . 183
6.3.19
Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 196
6.3.20
Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 201
6.3.21
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.3.22
Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 204
6.3.23
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
6.3.24
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
6.3.25
LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
6.3.26
DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.3.27
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.3.28
Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 213
6.3.29
FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
6.3.30
Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 242
6.3.31
SWPMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
6.3.32
SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 243
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
7.1
UFBGA169 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
7.2
LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
7.3
UFBGA132 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
7.4
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
7.5
WLCSP100L package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
7.6
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
7.7
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
7.7.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
7.7.2
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 272
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
9
Important security notice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
10
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
6/281
DS11584 Rev 14
STM32L4A6xG
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
STM32L4A6xG family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . 15
Access status versus readout protection level and execution modes. . . . . . . . . . . . . . . . . 19
STM32L4A6xG modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
STM32L4A6xG peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
STM32L4A6xG USART/UART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
SAI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
STM32L4A6xG pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Alternate function AF0 to AF7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Alternate function AF8 to AF15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
STM32L4A6xG memory map and peripheral register boundary
addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 126
Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Current consumption in Run and Low-power run modes, code with data processing
running from flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 130
Current consumption in Run modes, code with data processing running from flash,
(ART enable Cache ON Prefetch OFF) and power supplied
(by external SMPS (VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Current consumption in Run and Low-power run modes, code with data processing
running from flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Current consumption in Run modes, code with data processing running from flash,
ART disable and power supplied by external SMPS (VDD12 = 1.10 V). . . . . . . . . . . . . . 133
Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Current consumption in Run, code with data processing running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . 135
Typical current consumption in Run and Low-power run modes, with different codes
running from flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 136
Typical current consumption in Run, with different codes running from flash, ART
enable (Cache ON Prefetch OFF) and power supplied
(by external SMPS (VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Typical current consumption in Run, with different codes running from flash, ART
enable (Cache ON Prefetch OFF) and power supplied
(by external SMPS (VDD12 = 1.05 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Typical current consumption in Run and Low-power run modes, with different codes
DS11584 Rev 14
7/281
10
List of tables
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
8/281
STM32L4A6xG
running from flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Typical current consumption in Run modes, with different codes running from
flash, ART disable and power supplied by external SMPS (VDD12 = 1.10 V) . . . . . . . . 138
Typical current consumption in Run modes, with different codes running from
flash, ART disable and power supplied by external SMPS (VDD12 = 1.05 V) . . . . . . . . 138
Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Typical current consumption in Run, with different codes running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . 139
Typical current consumption in Run, with different codes running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.05 V) . . . . . . . . . . . . . . . . . 140
Current consumption in Sleep and Low-power sleep modes, flash ON . . . . . . . . . . . . . . 141
Current consumption in Sleep, flash ON and power supplied
by external SMPS (VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Current consumption in Low-power sleep modes, flash in power-down. . . . . . . . . . . . . . 143
Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Wakeup time using USART/LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
PLL, PLLSAI1, PLLSAI2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
EMI characteristics for fHSE = 8 MHz and fHCLK = 80 MHz . . . . . . . . . . . . . . . . . . . . . 173
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
EXTI Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
DS11584 Rev 14
STM32L4A6xG
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.
Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.
Table 107.
Table 108.
Table 109.
Table 110.
Table 111.
Table 112.
Table 113.
Table 114.
Table 115.
Table 116.
Table 117.
Table 118.
Table 119.
Table 120.
Table 121.
Table 122.
Table 123.
Table 124.
Table 125.
Table 126.
Table 127.
Table 128.
Table 129.
Table 130.
Table 131.
Table 132.
List of tables
ADC accuracy - limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
WWDG min/max timeout value at 80 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Quad SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
SD / MMC dynamic characteristics, VDD=2.7 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . 222
eMMC dynamic characteristics, VDD = 1.71 V to 1.9 V . . . . . . . . . . . . . . . . . . . . . . . . . . 222
USB OTG DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
USB OTG electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
USB BCD DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 227
Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . 227
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 228
Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 229
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 230
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 232
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 237
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Switching characteristics for NAND flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Switching characteristics for NAND flash write cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
SWPMI electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
SD / MMC dynamic characteristics, VDD=2.7 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . 244
SD / MMC dynamic characteristics, VDD=1.71 V to 1.9 V . . . . . . . . . . . . . . . . . . . . . . . . 245
UFBGA169 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
UFBGA169 - Recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . 247
LQFP144 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
UFBGA132 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
UFBGA132 - Recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . 257
LQFP100 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
WLCSP100L - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
WLCSP100L - Recommended PCB design rules (0.4 mm pitch). . . . . . . . . . . . . . . . . . . 265
LQFP64 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
DS11584 Rev 14
9/281
10
List of tables
STM32L4A6xG
Table 133. STM32L4A6xG ordering information scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Table 134. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
10/281
DS11584 Rev 14
STM32L4A6xG
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
STM32L4A6xG block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Voltage reference buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
STM32L4A6Ax UFBGA169 pinout(1) (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
STM32L4A6Ax, external SMPS device, UFBGA169 pinout(1) (2) . . . . . . . . . . . . . . . . . . . . 63
STM32L4A6Zx LQFP144 pinout(1) (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
STM32L4A6Zx, external SMPS device, LQFP144 pinout(1) (2). . . . . . . . . . . . . . . . . . . . . . 65
STM32L4A6Qx UFBGA132 ballout(1) (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
STM32L4A6Qx, external SMPS device, UFBGA132 ballout(1) (2). . . . . . . . . . . . . . . . . . . . 66
STM32L4A6Vx LQFP100 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
STM32L4A6Vx, external SMPS device, LQFP100 pinout(1). . . . . . . . . . . . . . . . . . . . . . . . 68
STM32L4A6Vx WLCSP100L pinout(1) (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
STM32L4A6Vx, external SMPS device, WLCSP100L pinout(1) (2) . . . . . . . . . . . . . . . . . . . 69
STM32L4A6Rx LQFP64 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
STM32L4A6Rx, external SMPS, LQFP64 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
STM32L4A6xG memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Current consumption measurement scheme with and without external
SMPS power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Typical current consumption versus MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
HSI48 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
I/O AC characteristics definition(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Typical connection diagram when using the ADC with FT/TT pins featuring
analog switch function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Quad SPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Quad SPI timing diagram - DDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
DS11584 Rev 14
11/281
12
List of figures
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
12/281
STM32L4A6xG
USB OTG timings – Definition of data signal rise and fall time. . . . . . . . . . . . . . . . . . . . . 224
Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 226
Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 228
Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 229
Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 231
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 237
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 240
NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 241
DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
UFBGA169 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
UFBGA169 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
UFBGA169 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
UFBGA169 (external SMPS device) marking (package top view . . . . . . . . . . . . . . . . . . . 249
LQFP144 - Outline(15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
LQFP144 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
LQFP144 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
LQFP144 (external SMPS device) marking (package top view). . . . . . . . . . . . . . . . . . . . 255
UFBGA132 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
UFBGA132 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
UFBGA132 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
UFBGA132 (external SMPS device) marking (package top view) . . . . . . . . . . . . . . . . . . 258
LQFP100 - Outline(15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
LQFP100 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
LQFP100 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
LQFP100 (external SMPS device) marking (package top view). . . . . . . . . . . . . . . . . . . . 262
WLCSP100L - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
WLCSP100L - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
WLCSP100L marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
WLCSP100L (external SMPS device) marking (package top view) . . . . . . . . . . . . . . . . . 266
LQFP64 - Outline(15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
LQFP64 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
LQFP64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
LQFP64 (external SMPS device) marking (package top view). . . . . . . . . . . . . . . . . . . . . 270
DS11584 Rev 14
STM32L4A6xG
1
Introduction
Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32L4A6xG microcontrollers.
This document must be read in conjunction with the STM32L47x, STM32L48x, STM32L49x
and STM32L4Ax reference manual (RM0351), available from the STMicroelectronics
website www.st.com.
For information on the Arm®(a) Cortex®-M4 core, refer to the Cortex®-M4 Technical
Reference Manual, available from the www.arm.com website.
For information on the device errata with respect to the datasheet and reference manual,
refer to the STM32L4A6xG errata sheet (ES0335), available on the STMicroelectronics
website www.st.com.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS11584 Rev 14
13/281
61
Description
2
STM32L4A6xG
Description
The STM32L4A6xG devices are ultra-low-power microcontrollers based on the
high-performance Arm® Cortex®-M4 32-bit RISC core operating at a frequency of up to
80 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision that
supports all Arm® single-precision data-processing instructions and data types. It also
implements a full set of DSP instructions and a memory protection unit (MPU) which
enhances application security.
The STM32L4A6xG devices embed high-speed memories (1 Mbyte of flash memory,
320 Kbyte of SRAM), a flexible external memory controller (FSMC) for static memories (for
devices with packages of 100 pins and more), a Quad SPI flash memories interface
(available on all packages) and an extensive range of enhanced I/Os and peripherals
connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.
The STM32L4A6xG devices embed several protection mechanisms for embedded flash
memory and SRAM: readout protection, write protection, proprietary code readout
protection and Firewall.
The devices offer up to three fast 12-bit ADCs (5 Msps), two comparators, two operational
amplifiers, two DAC channels, an internal voltage reference buffer, a low-power RTC, two
general-purpose 32-bit timer, two 16-bit PWM timers dedicated to motor control, seven
general-purpose 16-bit timers, and two 16-bit low-power timers. The devices support four
digital filters for external sigma delta modulators (DFSDM).
In addition, up to 24 capacitive sensing channels are available. The devices also embed an
integrated LCD driver 8x40 or 4x44, with internal step-up converter.
They also feature standard and advanced communication interfaces, namely four I2Cs,
three SPIs, three USARTs, two UARTs and one Low-Power UART, two SAIs, one SDMMC,
two CANs, one USB OTG full-speed, one SWPMI (single wire protocol master interface), a
camera interface and a DMA2D controller.
The STM32L4A6xG devices embed AES and HASH hardware accelerators.
The STM32L4A6xG operates in the -40 to +85 °C (+105 °C junction), -40 to +125 °C
(+130 °C junction) temperature ranges from a 1.71 to 3.6 V VDD power supply when using
internal LDO regulator and a 1.05 to 1.32V VDD12 power supply when using external SMPS
supply. A comprehensive set of power-saving modes makes possible the design of lowpower applications.
Some independent power supplies are supported: analog independent supply input for
ADC, DAC, OPAMPs and comparators, 3.3 V dedicated supply input for USB and up to 14
I/Os can be supplied independently down to 1.08 V. A VBAT input makes it possible to
backup the RTC and backup registers. Dedicated VDD12 power supplies can be used to
bypass the internal LDO regulator when connected to an external SMPS.
The STM32L4A6xG family offers six packages from 64-pin to 169-pin packages.
14/281
DS11584 Rev 14
STM32L4A6xG
Description
Table 2. STM32L4A6xG family device features and peripheral counts
Peripheral
STM32L4A6AG STM32L4A6ZG STM32L4A6QG STM32L4A6VG STM32L4A6RG
Flash memory
1 MB
SRAM
320 KB
External memory
controller for static
memories
Yes
Yes
Yes
Quad SPI
Timers
Yes(1)
No
Yes
Advanced
control
2 (16-bit)
General
purpose
5 (16-bit)
2 (32-bit)
Basic
2 (16-bit)
Low power
2 (16-bit)
SysTick timer
1
Watchdog
timers
(independent
window)
2
SPI
3
2C
4
I
USART
UART
LPUART
3
2
1
Comm.
interfaces SAI
2
CAN
2
USB OTG FS
Yes
SDMMC
Yes
SWPMI
Yes
Digital filters for sigmadelta modulators
Yes (4 filters)
Number of channels
8
RTC
Yes
Tamper pins
Camera interface
3
Yes(2)
Yes
Chrom-ART
Accelerator™
Yes
LCD
COM x SEG
Yes
8x40 or 4x44
Random generator
Yes
DS11584 Rev 14
15/281
61
Description
STM32L4A6xG
Table 2. STM32L4A6xG family device features and peripheral counts (continued)
Peripheral
STM32L4A6AG STM32L4A6ZG STM32L4A6QG STM32L4A6VG STM32L4A6RG
AES + HASH
GPIOs(3)
Wakeup pins
Nb of I/Os down to
1.08 V(4)
Yes
136
5
14
115
5
14
110
5
14
83
5
0
52
4
0
Capacitive sensing
Number of channels
24
24
24
21
21
12-bit ADCs
Number of channels
3
24
3
24
3
19
3
16
3
16
12-bit DAC channels
2
Internal voltage
reference buffer
Yes
Analog comparator
2
Operational amplifiers
2
Max. CPU frequency
80 MHz
Operating voltage (VDD)
1.71 to 3.6 V
Operating voltage
(VDD12)
1.05 to 1.32 V
Ambient operating temperature: -40 to 85 °C / -40 to 125 °C
Junction temperature: -40 to 105 °C / -40 to 130 °C
Operating temperature
Packages
UFBGA169
LQFP144
UFBGA132
LQFP100
WLCSP100L
LQFP64
1. For the LQFP100 and WLCSP100L packages, only FMC Bank1 is available. Bank1 can only support a multiplexed
NOR/PSRAM memory using the NE1 Chip Select.
2. Only up to 13 data bits.
3. In case external SMPS package type is used, two GPIOs are replaced by VDD12 pins to connect the SMPS power
supplies hence reducing the number of available GPIOs by two.
4. These GPIOs are supplied by VDDIO2.
16/281
DS11584 Rev 14
STM32L4A6xG
Description
Figure 1. STM32L4A6xG block diagram
Flexible static memory controller (FSMC):
SRAM, PSRAM, NOR flash,
NAND flash
JTAG & SW
MPU
ETM
NVIC
TRACECLK
TRACED[3:0]
CLK, NE[4:1], NL, NBL[1:0],
A[25:0], D[15:0], NOE, NWE,
NWAIT, NCE3, INT3 as AF
D0[3:0], D1[3:0],
CLK0, CLK1, CS
Quad SPI memory interface
D-BUS
ARM Cortex-M4
80 MHz
FPU
RNG
AES
ART
ACCEL/
CACHE
I-BUS
FIFO
HSYNC, VSYNC,
PIXCLK, D[13:0]
Camera Interface
@ VDDUSB
SRAM 256 KB
FIFO
FIFO
CHROM-ART
DMA2D
Flash
up to
1 MB
AHB bus-matrix
S-BUS
HASH
SRAM 64 KB
DMA2
Voltage
regulator
3.3 to 1.2 V
VDD12
VDD = 1.71 to 3.6 V
VDD12 = 1.0.5 to 1.32 V(1)
VSS
DMA1
@ VDD
@ VDD
8 Groups of 4 channels max as AF
RC HSI
PA[15:0]
Supply
supervision
reset
MSI
Touch sensing controller
VDDIO, VDDUSB
Int
BOR
GPIO PORT A
VDDA, VSSA
RC LSI
GPIO PORT B
PC[15:0]
GPIO PORT C
PD[15:0]
GPIO PORT D
PE[15:0]
GPIO PORT E
PF[15:0]
GPIO PORT F
PG[15:0]
GPIO PORT G
PH[15:0]
GPIO PORT H
PI[11:0]
GPIO PORT I
VDD, VSS, NRST
PVD, PVM
PLL 1&2&3
AHB1 80 MHz
PB[15:0]
DP
DM
SCL, SDA, INTN, ID, VBUS, SOF
Power management
VDD
AHB2 80 MHz
USB
OTG
PHY
NJTRST, JTDI,
JTCK/SWCLK
JTDO/SWD, JTDO
@VDD
HSI48
OSC_IN
OSC_OUT
XTAL OSC
4- 48MHz
IWDG
Standby
interface
Reset & clock
M AN
AGT
control
@VBAT
XTAL 32 kHz
OSC32_IN
OSC32_OUT
PCLKx
FCLK
HCLKx
RTC
RTC_TS
RTC_TAMPx
RTC_OUT
AWU
Backup register
VBAT = 1.55 to 3.6 V
@ VDD
U STemperature
AR T 2 M B
ps
sensor
TIM2
32b
4 channels, ETR as AF
TIM3
16b
4 channels, ETR as AF
TIM4
16b
4 channels, ETR as AF
TIM5
32b
CRC
@ VDDA
ADC1
8 analog inputs common to the 3 ADCs
8 analog inputs common to the ADC1 & 2
ADC2
IF
ITF
ADC3
8 analog inputs for ADC3
@ VDDA
smcard
IrDA
RX, TX, CK, CTS, RTS as AF
USART3
smcard
IrDA
RX, TX, CK, CTS, RTS as AF
VREF+
VREF Buffer
AHB/APB2
114 AF
SDIO / MMC
FIFO
EXT IT. WKUP
D[7:0]
CMD, CK as AF
UART4
RX, TX, CTS, RTS as AF
UART5
RX, TX, CTS, RTS as AF
SP2
3 compl. channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),
ETR, BKIN, BKIN2 as AF
3 compl. Channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),
ETR, BKIN, BKIN2 as AF
2 channels,
1 compl. channel, BKIN as
AF
1 channel,
1 compl. channel, BKIN as AF
TIM1 / PWM
16b
TIM8 / PWM
16b
TIM15
16b
MOSI, MISO, SCK, NSS as AF
SP3
MOSI, MISO, SCK, NSS as AF
I2C1/SMBUS
SCL, SDA, SMBA as AF
I2C2/SMBUS
SCL, SDA, SMBA as AF
I2C3/SMBUS
SCL, SDA, SMBA as AF
I2C4/SMBUS
SCL, SDA, SMBA as AF
smcard
IrDA
MOSI, MISO,
SCK, NSS as AF
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK
MCLK_B, SD_B, FS_B, SCK_B as AF
16b
USART1
TIM6
16b
TIM7
16b
SAI1
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK
MCLK_B, SD_B, FS_B, SCK_B as AF
SAI2
SDCKIN[7:0], SDDATIN[7:0],
SDCKOUT,SDTRIG as AF
A
60PM
B Hz
2
SPI1
bxCAN1
bxCAN1
TX, RX as AF
TX, RX as AF
@VDDA
VLCD
DFSDM
@ VDDA
FIFO
TIM17
16b
P B (max)
1 3 0 M Hz
APB1 80 A
MHz
TIM16
APB2 80MHz
WWDG
1 channel,
1 compl. channel, BKIN as AF
RX, TX, CK,CTS,
RTS as AF
AHB/APB1
4 channels, ETR as AF
USART2
OpAmp1
OUT, INN, INP
OpAmp2
OUT, INN, INP
LCD Booster
VLCD = 2.5V to 3.6V
SEGx, COMx as AF
INP, INN, OUT
COMP1
LCD 8x40
INP, INN, OUT
COMP2
LPUART1
RX, TX, CTS, RTS as AF
@ VDDA
Firewall
DAC1
DAC1
ITF
SWPMI
SWP
LPTIM1
IN1, IN2, OUT, ETR as AF
LPTIM2
IN1, OUT, ETR as AF
DAC2
CRS
DAC2_OUT
DAC1_OUT DAC1_OUT2
DAC1_OUT1
1. Only available when using external SMPS supply mode
Note:
CRS_SYNC
MSv38029V4
MS50054V1
AF: alternate function on I/O pins.
DS11584 Rev 14
17/281
61
Functional overview
STM32L4A6xG
3
Functional overview
3.1
Arm® Cortex®-M4 core with FPU
The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm® processors for
embedded systems, developed to provide a low-cost platform that meets the needs of MCU
implementation with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced response to interrupts.
The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an Arm® core in the memory size
usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions enabling efficient signal processing and
complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage
development tools, while avoiding saturation.
With its embedded Arm® core, the STM32L4A6xG family is compatible with all Arm® tools
and software.
Figure 1 shows the general block diagram of the STM32L4A6xG family devices.
3.2
Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator optimized for STM32 industry-standard
Arm® Cortex®-M4 processors. It balances the inherent performance advantage of the Arm®
Cortex®-M4 over flash memory technologies, which normally requires the processor to wait
for the flash memory at higher frequencies.
To release the processor near 100 DMIPS performance at 80 MHz, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 64-bit flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from flash memory at a CPU frequency up to 80 MHz.
3.3
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole
4 Gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
18/281
DS11584 Rev 14
STM32L4A6xG
3.4
Functional overview
Embedded flash memory
STM32L4A6xG devices feature 1 Mbyte of embedded flash memory available for storing
programs and data. The flash memory is divided into two banks allowing read-while-write
operations. This feature permits to perform a read operation from one bank while an erase
or program operation is performed to the other bank. The dual bank boot is also supported.
Each bank contains 256 pages of 2 Kbyte.
Flexible protections can be configured thanks to option bytes:
•
Readout protection (RDP) to protect the whole memory. Three levels are available:
–
Level 0: no readout protection
–
Level 1: memory readout protection: the flash memory cannot be read from or
written to if either debug features are connected, boot in RAM or bootloader is
selected
–
Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial
wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This
selection is irreversible.
Table 3. Access status versus readout protection level and execution modes
Area
Debug, boot from RAM or boot
from system memory (loader)
User execution
Protection
level
Read
Write
Erase
Read
Write
Erase
Main
memory
1
Yes
Yes
Yes
No
No
No
2
Yes
Yes
Yes
N/A
N/A
N/A
System
memory
1
Yes
No
No
Yes
No
No
2
Yes
No
No
N/A
N/A
N/A
Option
bytes
1
Yes
Yes
Yes
Yes
Yes
Yes
2
Yes
No
No
N/A
N/A
N/A
No
No
N/A(1)
Backup
registers
SRAM2
(1)
1
Yes
Yes
N/A
2
Yes
Yes
N/A
N/A
N/A
N/A
1
Yes
Yes
Yes(1)
No
No
No(1)
2
Yes
Yes
Yes
N/A
N/A
N/A
1. Erased when RDP change from Level 1 to Level 0.
•
Write protection (WRP): the protected area is protected against erasing and
programming. Two areas per bank can be selected, with 2-Kbyte granularity.
•
Proprietary code readout protection (PCROP): a part of the flash memory can be
protected against read and write from third parties. The protected area is execute-only:
it can only be reached by the STM32 CPU, as an instruction code, while all other
accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited.
One area per bank can be selected, with 64-bit granularity. An additional option bit
(PCROP_RDP) allows the user to select if the PCROP area is erased or not when the
RDP protection is changed from Level 1 to Level 0.
DS11584 Rev 14
19/281
61
Functional overview
STM32L4A6xG
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
•
single error detection and correction
•
double error detection.
The address of the ECC fail can be read in the ECC register.
3.5
Embedded SRAM
STM32L4A6xG devices feature 320 Kbyte of embedded SRAM, split into two blocks:
•
256 Kbyte mapped at address 0x2000 0000 (SRAM1)
•
64 Kbyte located at address 0x1000 0000 with hardware parity check (SRAM2).
This memory is also mapped at address 0x2004 0000, offering a contiguous address
space with the SRAM1.
This block is accessed through the ICode/DCode buses for maximum performance.
These 64 Kbyte SRAM can also be retained in Standby mode.
The SRAM2 can be write-protected with 1 Kbyte granularity.
The memory can be accessed in read/write at CPU clock speed with 0 wait states.
20/281
DS11584 Rev 14
STM32L4A6xG
3.6
Functional overview
Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs and the
DMA2D) and the slaves (flash memory, RAM, FMC, QUADSPI, AHB and APB peripherals)
and ensures a seamless and efficient operation even when several high speed peripherals
work simultaneously.
Figure 2. Multi-AHB bus matrix
ARM®
CORTEX®-M4 with FPU
S0
S1
S2
DMA1
DMA2
DMA2D
S3
S4
S5
M1
DCode
ACCEL
M0
ICode
FLASH
1 MB
SRAM1
128KB
M2
128KB
M3
SRAM2
M4
AHB1
peripherals
M5
AHB2
peripherals
M6
FMC
M7
QUADSPI
BusMatrix-S
MSv38030V3
3.7
Firewall
The device embeds a Firewall which protects code sensitive and secure data from any
access performed by a code executed outside of the protected areas.
Each illegal access generates a reset which kills immediately the detected intrusion.
DS11584 Rev 14
21/281
61
Functional overview
STM32L4A6xG
The Firewall main features are the following:
•
Three segments can be protected and defined thanks to the Firewall registers:
–
Code segment (located in flash or SRAM1 if defined as executable protected
area)
–
Non-volatile data segment (located in flash)
–
Volatile data segment (located in SRAM1)
•
The start address and the length of each segments are configurable:
–
Code segment: up to 1024 Kbyte with granularity of 256 bytes
–
Non-volatile data segment: up to 1024 Kbyte with granularity of 256 bytes
–
Volatile data segment: up to 256 Kbyte of SRAM1 with a granularity of 64 bytes
•
Specific mechanism implemented to open the Firewall to get access to the protected
areas (call gate entry sequence)
•
Volatile data segment can be shared or not with the non-protected code
•
Volatile data segment can be executed or not depending on the Firewall configuration
The flash readout protection must be set to level 2 in order to reach the expected level of
protection.
3.8
Boot modes
At startup, BOOT0 pin and nBOOT1 option bit are used to select one of three boot options:
•
Boot from user flash memory
•
Boot from system memory
•
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the flash memory by
using USART, I2C, SPI, CAN or USB OTG FS in Device mode through DFU (device
firmware upgrade).
BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the
value of a user option bit to free the GPIO pad if needed.
An empty check mechanism is implemented to force the boot from system flash if the first
memory location is not programmed and if the boot selection is configured to boot from main
flash. If the boot selection uses BOOT0 pin to boot from the main flash memory, but the first
flash memory location is found empty, the flash empty check mechanism forces boot from
the system memory (containing embedded bootloader). Then due to bootloader activation,
some of the GPIOs are reconfigured from the High-Z state. Please refer to AN2606 for more
details concerning the bootloader and GPIOs configuration in system memory boot mode.
It is possible to disable this feature by configuring the option bytes (instead of BOOT0 pin) to
force boot from the main flash memory (nSWBOOT0 = 0, nBOOT0 = 1).
3.9
Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the flash memory integrity. The CRC calculation unit helps compute a signature of
22/281
DS11584 Rev 14
STM32L4A6xG
Functional overview
the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.
3.10
Power supply management
3.10.1
Power supply schemes
•
VDD = 1.71 to 3.6 V: external power supply for I/Os (VDDIO1), the internal regulator and
the system analog such as reset, power management and internal clocks. It is provided
externally through VDD pins.
•
VDD12 = 1.05 to 1.32 V: external power supply bypassing internal regulator when
connected to an external SMPS. It is provided externally through VDD12 pins and only
available on packages with the external SMPS supply option. VDD12 does not require
any external decoupling capacitance and cannot support any external load.
•
VDDA = 1.62 V (ADCs/COMPs) / 1.8 (DAC/OPAMPs) to 3.6 V: external analog power
supply for ADCs, DAC, OPAMPs, Comparators and Voltage reference buffer. The VDDA
voltage level is independent from the VDD voltage.
•
VDDUSB = 3.0 to 3.6 V: external independent power supply for USB transceivers. The
VDDUSB voltage level is independent from the VDD voltage.
•
VDDIO2 = 1.08 to 3.6 V: external power supply for 14 I/Os (PG[15:2]). The VDDIO2
voltage level is independent from the VDD voltage.
•
VLCD = 2.5 to 3.6 V: the LCD controller can be powered either externally through VLCD
pin, or internally from an internal voltage generated by the embedded step-up
converter.
•
VBAT = 1.55 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Note:
When the functions supplied by VDDA, VDDUSB or VDDIO2 are not used, these supplies
should preferably be shorted to VDD.
Note:
If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V
tolerant (refer to Table 19: Voltage characteristics).
Note:
VDDIOx is the I/Os general purpose digital functions supply. VDDIOx represents VDDIO1 or
VDDIO2, with VDDIO1 = VDD. VDDIO2 supply voltage level is independent from VDDIO1.
DS11584 Rev 14
23/281
61
Functional overview
STM32L4A6xG
Figure 3. Power supply overview
VDDA domain
VDDA
VSSA
A/D converters
comparators
D/A converters
operational amplifiers
Voltage reference buffer
VLCD
LCD
VDDUSB
VSS
USB transceivers
VDDIO2 domain
VDDIO2
VDDIO2
VSS
I/O ring
PG[15:2]
VDD domain
VDDIO1
I/O ring
VCORE domain
Reset block
Temp. sensor
PLL, HSI, MSI
VSS
VDD
Standby circuitry
(Wakeup logic,
IWDG)
Core
Memories
Digital
peripherals
VCORE
Voltage regulator
VDD12
Low voltage detector
Backup domain
VBAT
LSE crystal 32 K osc
BKP registers
RCC BDCR register
RTC
MSv43899V1
During power-up and power-down phases, the following power sequence requirements
must be respected:
•
When VDD is below 1 V, other power supplies (VDDA, VDDUSB, VDDIO2, VLCD) must
remain below VDD + 300 mV.
•
When VDD is above 1 V, all power supplies are independent.
During the power-down phase, VDD can temporarily become lower than other supplies only
if the energy provided to the MCU remains below 1 mJ; this allows external decoupling
capacitors to be discharged with different time constants during the power-down transient
phase.
24/281
DS11584 Rev 14
STM32L4A6xG
Functional overview
Figure 4. Power-up/down sequence
V
3.6
VDDX(1)
VDD
VBOR0
1
0.3
Power-on
Invalid supply area
Operating mode
VDDX < VDD + 300 mV
Power-down
time
VDDX independent from VDD
MSv47490V1
1. VDDX refers to any power supply among VDDA, VDDUSB, VDDIO2, VLCD.
3.10.2
Power supply supervisor
The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes
except Shutdown and ensuring proper operation after power-on and during power down.
The device remains in reset mode when the monitored supply voltage VDD is below a
specified threshold, without the need for an external reset circuit.
The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected
through option bytes.The device features an embedded programmable voltage detector
(PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An
interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
In addition, the device embeds a Peripheral Voltage Monitor which compares the
independent supply voltages VDDA, VDDUSB, VDDIO2 with a fixed threshold in order to ensure
that the peripheral is in its functional supply range.
DS11584 Rev 14
25/281
61
Functional overview
3.10.3
STM32L4A6xG
Voltage regulator
Two embedded linear voltage regulators supply most of the digital circuitries: the main
regulator (MR) and the low-power regulator (LPR).
•
The MR is used in the Run and Sleep modes and in the Stop 0 mode.
•
The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is
also used to supply the 64 Kbyte SRAM2 in Standby with SRAM2 retention.
•
Both regulators are in power-down in Standby and Shutdown modes: the regulator
output is in high impedance, and the kernel circuitry is powered down thus inducing
zero consumption.
The ultralow-power STM32L4A6xG supports dynamic voltage scaling to optimize its power
consumption in run mode. The voltage from the Main Regulator that supplies the logic
(VCORE) can be adjusted according to the system’s maximum operating frequency.
There are two power consumption ranges:
•
Range 1 with the CPU running at up to 80 MHz.
•
Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also
limited to 26 MHz.
The VCORE can be supplied by the low-power regulator, the main regulator being switched
off. The system is then in Low-power run mode.
•
Low-power run mode with the CPU running at up to 2 MHz. Peripherals with
independent clock can be clocked by HSI16.
When the MR is in use, the STM32L4A6xG with the external SMPS option permits to force
an external VCORE supply on the VDD12 supply pins.
When VDD12 is forced by an external source and is higher than the output of the internal
LDO, the current is taken from this external supply and the overall power efficiency is
significantly improved if using an external step down DC/DC converter.
3.10.4
Low-power modes
The ultra-low-power STM32L4A6xG supports seven low-power modes to achieve the best
compromise between low-power consumption, short startup time, available peripherals and
available wakeup sources.
26/281
DS11584 Rev 14
Mode
Regulator(1)
CPU
Flash SRAM Clocks
MR range 1
Run
SMPS range 2 High
MR range 2
LPR
Yes
ON(4)
ON
Any
Yes
ON(4)
ON
Any
except
PLL
SMPS range 2 High
MR range 2
No
ON(4)
ON(7)
DS11584 Rev 14
LPR
No
ON(4)
ON(7)
No
ON
93 µA/MHz
N/A
129 µA/MHz
to Range 1: 4 µs
to Range 2: 64 µs
11.5 µA/MHz(5)
30 µA/MHz
6 cycles
13 µA/MHz(6)
Any
except
PLL
All except OTG_FS, RNG
Any interrupt or
event
LSE
LSI
BOR, PVD, PVM
RTC,LCD, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1,2)
USARTx (x=1...5)(9)
LPUART1(9)
I2Cx (x=1...4)(10)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1..2)
USARTx (x=1...5)(9)
LPUART1(9)
I2Cx (x=1...4)(10)
LPTIMx (x=1,2)
OTG_FS(11)
SWPMI1(12)
51 µA/MHz
6 cycles
TBD
2.7 µs in SRAM
6.2 µs in flash
127 µA
27/281
Functional overview
MR Range 2(8)
OFF
40 µA/MHz(5)
32 µA/MHz
All except OTG_FS, RNG
MR Range 1(8)
Stop 0
N/A
Any interrupt or
event
Any
Wakeup time
39 µA/MHz(6)
All
SMPS range 2 Low
LPSleep
N/A
All except OTG_FS, RNG
Consumption(3)
108 µA/MHz
All except OTG_FS, RNG
MR range 1
Sleep
Wakeup source
All
SMPS range 2 Low
LPRun
DMA and peripherals(2)
STM32L4A6xG
Table 4. STM32L4A6xG modes overview
Mode
Stop 1
DS11584 Rev 14
Stop 2
Regulator
LPR
LPR
CPU
No
No
DMA and peripherals(2)
Wakeup source
Consumption(3)
Wakeup time
LSE
LSI
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1,2)
USARTx (x=1...5)(9)
LPUART1(9)
I2Cx (x=1...4)(10)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1..2)
USARTx (x=1...5)(9)
LPUART1(9)
I2Cx (x=1...4)(10)
LPTIMx (x=1,2)
OTG_FS(11)
SWPMI1(12)
11.2 µA w/o RTC
11.8 µA w RTC
6.6 µs in SRAM
7.8 µs in flash
LSE
LSI
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1..2)
I2C3(10)
LPUART1(9)
LPTIM1
***
All other peripherals are
frozen.
Reset pin, all I/Os
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1..2)
I2C3(10)
LPUART1(9)
LPTIM1
2.57 µA w/o RTC
2.86 µA w/RTC
Flash SRAM Clocks
Off
Off
ON
ON
Functional overview
28/281
Table 4. STM32L4A6xG modes overview (continued)
(1)
6.8 µs in SRAM
8.2 µs in flash
STM32L4A6xG
Mode
Regulator
CPU
Flash SRAM Clocks
Standby
OFF
Shutdown
OFF
Power
ed Off
Power
ed Off
Off
Off
Power
ed
Off
Power
ed
Off
Wakeup source
Consumption(3)
Wakeup time
0.48 µA w/o RTC
0.78 µA w/ RTC
DS11584 Rev 14
LSE
LSI
BOR, RTC, IWDG
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pull-down
Reset pin
5 I/Os (WKUPx)(13)
BOR, RTC, IWDG
LSE
RTC
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pulldown(14)
Reset pin
5 I/Os (WKUPx)(14)
RTC
SRAM
2 ON
LPR
DMA and peripherals(2)
0.11 µA w/o RTC
0.42 µA w/ RTC
0.03 µA w/o RTC
0.23 µA w/ RTC
STM32L4A6xG
Table 4. STM32L4A6xG modes overview (continued)
(1)
15.3 µs
306 µs
1. LPR means Main regulator is OFF and Low-power regulator is ON.
2. All peripherals can be active or clock gated to save power consumption.
3. Typical current at VDD = 1.8 V, 25°C. Consumptions values provided running from SRAM, flash memory Off, 80 MHz in Range 1, 26 MHz in Range 2, 2 MHz in
LPRun/LPSleep.
4. The flash memory can be put in power-down and its clock can be gated off when executing from SRAM.
5. Theoretical value based on VDD = 3.3 V, DC/DC Efficiency of 85%, VCORE = 1.10 V
6. Theoretical value based on VDD = 3.3 V, DC/DC Efficiency of 85%, VCORE = 1.05 V
7. The SRAM1 and SRAM2 clocks can be gated on or off independently.
8. SMPS mode can be used in STOP0 Mode, but no significant power gain can be expected.
9. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
11. OTG_FS wakeup by resume from suspend and attach detection protocol event.
12. SWPMI1 wakeup by resume from suspend.
13. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
14. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.
29/281
Functional overview
10. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
Functional overview
STM32L4A6xG
By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the
user to select one of the low-power modes described below:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
•
Low-power run mode
This mode is achieved with VCORE supplied by the low-power regulator to minimize the
regulator's operating current. The code can be executed from SRAM or from flash, and
the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be
clocked by HSI16.
•
Low-power sleep mode
This mode is entered from the low-power run mode. Only the CPU clock is stopped.
When wakeup is triggered by an event or an interrupt, the system reverts to the lowpower run mode.
•
Stop 0, Stop 1 and Stop 2 modes
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI
RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still
running.
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).
Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode
to detect their wakeup condition.
Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode,
most of the VCORE domain is put in a lower leakage mode.
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller
wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator
remains ON, allowing a very fast wakeup time but with much higher consumption.
The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI
up to 48 MHz or HSI16, depending on software configuration.
•
Standby mode
The Standby mode is used to achieve the lowest power consumption with BOR. The
internal regulator is switched off so that the VCORE domain is powered off. The PLL, the
MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.
The RTC can remain active (Standby mode with RTC, Standby mode without RTC).
The brown-out reset (BOR) always remains active in Standby mode.
The state of each I/O during standby mode can be selected by software: I/O with
internal pull-up, internal pull-down or floating.
After entering Standby mode, SRAM1 and register contents are lost except for registers
in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in
Standby mode, supplied by the low-power Regulator (Standby with SRAM2 retention
mode).
The device exits Standby mode when an external reset (NRST pin), an IWDG reset,
WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm,
periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).
The system clock after wakeup is MSI up to 8 MHz.
30/281
DS11584 Rev 14
STM32L4A6xG
•
Functional overview
Shutdown mode
The Shutdown mode permits to achieve the lowest power consumption. The internal
regulator is switched off so that the VCORE domain is powered off. The PLL, the HSI16,
the MSI, the LSI and the HSE oscillators are also switched off.
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).
The BOR is not available in Shutdown mode. No power voltage monitoring is possible
in this mode, therefore the switch to Backup domain is not supported.
SRAM1, SRAM2 and register contents are lost except for registers in the Backup
domain.
The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin
event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic
wakeup, timestamp, tamper).
The system clock after wakeup is MSI at 4 MHz.
DS11584 Rev 14
31/281
61
Functional overview
STM32L4A6xG
Table 5. Functionalities depending on the working mode(1)
-
-
Y
-
Y
-
-
-
-
-
-
-
-
-
-
O(2)
O(2)
O(2)
O(2)
-
-
-
-
-
-
-
-
-
SRAM1 (256 KB)
Y
Y(3)
Y
Y(3)
Y
-
Y
-
-
-
-
-
-
SRAM2 (64 KB)
Y
Y(3)
Y
Y(3)
Y
-
Y
-
O(4)
-
-
-
-
FSMC
O
O
O
O
-
-
-
-
-
-
-
-
-
Quad SPI
O
O
O
O
-
-
-
-
-
-
-
-
-
Backup registers
Y
Y
Y
Y
Y
-
Y
-
Y
-
Y
-
Y
Brown-out reset
(BOR)
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
-
-
Programmable
voltage detector
(PVD)
O
O
O
O
O
O
O
O
-
-
-
-
-
Peripheral voltage
monitor (PVMx;
x=1,2,3,4)
O
O
O
O
O
O
O
O
-
-
-
-
-
DMA
O
O
O
O
-
-
-
-
-
-
-
-
-
DMA2D
O
O
O
O
-
-
-
-
-
-
-
-
-
High speed Internal
(HSI16)
O
O
O
O
(5)
-
(5)
-
-
-
-
-
-
Oscillator HSI48
O
O
-
-
-
-
-
-
-
-
-
-
-
High speed external
(HSE)
O
O
O
O
-
-
-
-
-
-
-
-
-
Low speed internal
(LSI)
O
O
O
O
O
-
O
-
O
-
-
-
-
Low speed external
(LSE)
O
O
O
O
O
-
O
-
O
-
O
-
O
Multi-Speed internal
(MSI)
O
O
O
O
-
-
-
-
-
-
-
-
-
Clock security
system (CSS)
O
O
O
O
-
-
-
-
-
-
-
-
-
Clock security
system on LSE
O
O
O
O
O
O
O
O
O
O
-
-
-
RTC / Auto wakeup
O
O
O
O
O
O
O
O
O
O
O
O
O
Peripheral
CPU
Flash memory
(1 MB)
32/281
Run
Sleep
Lowpower
run
Lowpower
sleep
-
DS11584 Rev 14
Wakeup capability
-
Wakeup capability
Standby Shutdown
Wakeup capability
Stop 2
Wakeup capability
Stop 0/1
VBAT
STM32L4A6xG
Functional overview
Table 5. Functionalities depending on the working mode(1) (continued)
-
-
Number of RTC
Tamper pins
3
3
3
3
3
O
3
O
3
O
3
O
3
Camera interface
O
O
O
O
-
-
-
-
-
-
-
-
-
LCD
O
O
O
O
O
O
O
O
-
-
-
-
-
-
-
-
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Peripheral
USB OTG FS
Run
O
(8)
Sleep
O
(8)
Lowpower
run
Lowpower
sleep
-
Wakeup capability
-
Wakeup capability
Standby Shutdown
Wakeup capability
Stop 2
Wakeup capability
Stop 0/1
VBAT
USARTx
(x=1,2,3,4,5)
O
O
O
O
O(6) O(6)
Low-power UART
(LPUART)
O
O
O
O
O(6) O(6) O(6) O(6)
-
-
-
-
-
I2Cx (x=1,2,4)
O
O
O
O
O(7) O(7)
-
-
-
-
-
I2C3
O
O
O
O
O(7) O(7) O(7) O(7)
-
-
-
-
-
SPIx (x=1,2,3)
O
O
O
O
-
-
-
-
-
-
-
-
-
CAN(x=1,2)
O
O
O
O
-
-
-
-
-
-
-
-
-
SDMMC1
O
O
O
O
-
-
-
-
-
-
-
-
-
SWPMI1
O
O
O
O
-
O
-
-
-
-
-
-
-
SAIx (x=1,2)
O
O
O
O
-
-
-
-
-
-
-
-
-
DFSDM1
O
O
O
O
-
-
-
-
-
-
-
-
-
ADCx (x=1,2,3)
O
O
O
O
-
-
-
-
-
-
-
-
-
DAC1
O
O
O
O
O
-
-
-
-
-
-
-
-
VREFBUF
O
O
O
O
O
-
-
-
-
-
-
-
-
OPAMPx (x=1,2)
O
O
O
O
O
-
-
-
-
-
-
-
-
COMPx (x=1,2)
O
O
O
O
O
O
O
O
-
-
-
-
-
Temperature sensor
O
O
O
O
-
-
-
-
-
-
-
-
-
Timers (TIMx)
O
O
O
O
-
-
-
-
-
-
-
-
-
Low-power timer 1
(LPTIM1)
O
O
O
O
O
O
O
O
-
-
-
-
-
Low-power timer 2
(LPTIM2)
O
O
O
O
O
O
-
-
-
-
-
-
-
Independent
watchdog (IWDG)
O
O
O
O
O
O
O
O
O
O
-
-
-
Window watchdog
(WWDG)
O
O
O
O
-
-
-
-
-
-
-
-
-
DS11584 Rev 14
-
-
33/281
61
Functional overview
STM32L4A6xG
Table 5. Functionalities depending on the working mode(1) (continued)
-
-
SysTick timer
O
O
O
O
-
-
-
-
-
-
-
-
-
Touch sensing
controller (TSC)
O
O
O
O
-
-
-
-
-
-
-
-
-
Random number
generator (RNG)
O(8)
O(8)
-
-
-
-
-
-
-
-
-
-
-
AES hardware
accelerator
O
O
O
O
-
-
-
-
-
-
-
-
-
HASH hardware
accelerator
O
O
O
O
-
-
-
-
-
-
-
-
-
CRC calculation unit
O
O
O
O
-
-
-
-
-
-
-
-
-
GPIOs
O
O
O
O
O
O
O
O
(9)
5
pins
(11)
5
pins
-
Peripheral
Run
Sleep
Lowpower
run
Lowpower
sleep
-
(10)
Wakeup capability
-
Wakeup capability
Standby Shutdown
Wakeup capability
Stop 2
Wakeup capability
Stop 0/1
VBAT
(10)
1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). - = Not available.
2. The flash can be configured in power-down mode. By default, it is not in power-down mode.
3. The SRAM clock can be gated on or off.
4. SRAM2 content is preserved when the bit RRS is set in PWR_CR3 register.
5. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by
the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not
need it anymore.
6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or
received frame event.
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
8. Voltage scaling Range 1 only.
9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when
exiting the Shutdown mode.
3.10.5
Reset mode
In order to improve the consumption under reset, the I/Os state under and after reset is
“analog state” (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is
deactivated when the reset source is internal.
3.10.6
VBAT operation
The VBAT pin permits to power the device VBAT domain from an external battery, an
external supercapacitor, or from VDD when no external battery and an external
34/281
DS11584 Rev 14
STM32L4A6xG
Functional overview
supercapacitor are present. The VBAT pin supplies the RTC with LSE and the backup
registers. Three anti-tamper detection pins are available in VBAT mode.
VBAT operation is automatically activated when VDD is not present.
An internal VBAT battery charging circuit is embedded and can be activated when VDD is
present.
Note:
When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
3.11
Interconnect matrix
Several peripherals have direct connections between them. This allows autonomous
communication between peripherals, saving CPU resources thus power supply
consumption. In addition, these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run
and sleep, Stop 0, Stop 1 and Stop 2 modes.
Run
Sleep
Low-power run
Low-power sleep
Stop 0 / Stop 1
Stop 2
Table 6. STM32L4A6xG peripherals interconnect matrix
TIMx
Timers synchronization or chaining
Y
Y
Y
Y
-
-
ADCx
DAC1
DFSDM1
Conversion triggers
Y
Y
Y
Y
-
-
DMA
Memory to memory transfer trigger
Y
Y
Y
Y
-
-
COMPx
Comparator output blanking
Y
Y
Y
Y
-
-
IRTIM
Infrared interface output generation
Y
Y
Y
Y
-
-
TIM1, 8
TIM2, 3
Timer input channel, trigger, break from
analog signals comparison
Y
Y
Y
Y
-
-
LPTIMERx
Low-power timer triggered by analog
signals comparison
Y
Y
Y
Y
Y
(1)
TIM1, 8
Timer triggered by analog watchdog
Y
Y
Y
Y
-
-
TIM16
Timer input channel from RTC events
Y
Y
Y
Y
-
-
LPTIMERx
Low-power timer triggered by RTC alarms
or tampers
Y
Y
Y
Y
Y
(1)
All clocks sources (internal TIM2
and external)
TIM15, 16, 17
Clock source used as input channel for
RC measurement and trimming
Y
Y
Y
Y
-
-
USB
Timer triggered by USB SOF
Y
Y
-
-
-
-
Interconnect source
TIMx
TIM16/TIM17
COMPx
ADCx
RTC
Interconnect
destination
TIM2
Interconnect action
DS11584 Rev 14
Y
Y
35/281
61
Functional overview
STM32L4A6xG
Sleep
Low-power run
Low-power sleep
Stop 0 / Stop 1
Stop 2
Interconnect source
Run
Table 6. STM32L4A6xG peripherals interconnect matrix (continued)
Timer break
Y
Y
Y
Y
-
-
TIMx
External trigger
Y
Y
Y
Y
-
-
LPTIMERx
External trigger
Y
Y
Y
Y
Y
(1)
ADCx
DAC1
DFSDM1
Conversion external trigger
Y
Y
Y
Y
-
-
Interconnect
destination
CSS
CPU (hard fault)
RAM (parity error)
Flash memory (ECC error)
TIM1,8
COMPx
TIM15,16,17
PVD
DFSDM1 (analog
watchdog, short circuit
detection)
GPIO
Interconnect action
1. LPTIM1 only.
36/281
DS11584 Rev 14
Y
STM32L4A6xG
3.12
Functional overview
Clocks and startup
The clock controller (see Figure 5) distributes the clocks coming from different oscillators to
the core and the peripherals. It also manages clock gating for low-power modes and
ensures clock robustness. It features:
•
Clock prescaler: to get the best trade-off between speed and current consumption,
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler
•
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
•
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
•
System clock source: four different clock sources can be used to drive the master
clock SYSCLK:
–
4-48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply
a PLL. The HSE can also be configured in bypass mode for an external clock.
–
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can
supply a PLL
–
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate
12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is
available in the system (LSE), the MSI frequency can be automatically trimmed by
hardware to reach better than ±0.25% accuracy. In this mode the MSI can feed the
USB device, saving the need of an external high-speed crystal (HSE). The MSI
can supply a PLL.
–
System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency
at 80 MHz.
•
RC48 with clock recovery system (HSI48): internal 48 MHz clock source (HSI48)can be
used to drive the USB, the SDMMC or the RNG peripherals. This clock can be output
on the MCO.
•
Auxiliary clock source: two ultralow-power clock sources that can be used to drive
the LCD controller and the real-time clock:
–
32.768 kHz low-speed external crystal (LSE), supporting four drive capability
modes. The LSE can also be configured in bypass mode for an external clock.
–
32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock accuracy is ±5% accuracy.
•
Peripheral clock sources: Several peripherals (USB, SDMMC, RNG, SAI, USARTs,
I2Cs, LPTimers, ADC, SWPMI) have their own independent clock whatever the system
clock. Three PLLs, each having three independent outputs allowing the highest
flexibility, can generate independent clocks for the ADC, the USB/SDMMC/RNG and
the two SAIs.
•
Startup clock: after reset, the microcontroller restarts by default with an internal 4 MHz
clock (MSI). The prescaler ratio and clock source can be changed by the application
program as soon as the code execution starts.
•
Clock security system (CSS): this feature can be enabled by software. If a HSE clock
failure occurs, the master clock is automatically switched to HSI16 and a software
DS11584 Rev 14
37/281
61
Functional overview
STM32L4A6xG
interrupt is generated if enabled. LSE failure can also be detected and generated an
interrupt.
•
Clock-out capability:
–
MCO: microcontroller clock output: it outputs one of the internal clocks for
external use by the application. Low frequency clocks (LSI, LSE) are available
down to Stop 1 low power state.
–
LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes
down to Standby mode. LSE can also be output on LSCO in Shutdown mode.
LSCO is not available in VBAT mode.
Several prescalers permit to configure the AHB frequency, the high speed APB (APB2) and
the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB
domains is 80 MHz.
38/281
DS11584 Rev 14
STM32L4A6xG
Functional overview
Figure 5. Clock tree
to IWDG
LSI RC 32 kHz
LSCO
to RTC and LCD
OSC32_OUT
LSE OSC
32.768 kHz
/32
OSC32_IN
MCO
to PWR
LSE
LSI
MSI
HSI16
HSE
SYSCLK
ĺ
to AHB bus, core, memory and DMA
AHB PRESC
/ 1,2,..512
HCLK
PLLCLK
HSI48
to Cortex system timer
/8
Clock
source
control
OSC_OUT
HSE OSC
4-48 MHz
OSC_IN
Clock
detector
FCLK Cortex free running clock
APB1 PRESC
/ 1,2,4,8,16
PCLK1
to APB1 peripherals
HSE
x1 or x2
MSI
HSI16
SYSCLK
LSE
HSI16
SYSCLK
HSI RC
16 MHz
to USARTx
x=2..5
to LPUART1
HSI16
SYSCLK
to I2Cx
x=1,2,3,4
LSI
LSE
HSI16
MSI RC
100 kHz – 48 MHz
to TIMx
x=2..7
to LPTIMx
x=1,2
HSI16
to SWPMI
MSI
PLL
/M
VCO FVCO / P
APB2 PRESC
/ 1,2,4,8,16
HSE
PLLSAI3CLK
/Q
PLL48M1CLK
/R
PLLCLK
PLLSAI1
VCO FVCO / P
PCLK2
HSI16
x1 or x2
to TIMx
x=1,8,15,16,17
LSE
HSI16
SYSCLK
PLLSAI1CLK
/Q
PLL48M2CLK
/R
PLLADC1CLK
MSI
to
USART1
48 MHz clock to USB, RNG, SDMMC
SYSCLK
HSI RC 48MHz
SYSCLK
to DFSDM1
PLLSAI2CLK
/Q
/R
to ADC
HSI48
CRS
PLLSAI2
VCO FVCO / P
to APB2 peripherals
to SAI1
PLLADC2CLK
SAI1_EXTCLK
to SAI2
SAI2_EXTCLK
MS50063V1
DS11584 Rev 14
39/281
61
Functional overview
3.13
STM32L4A6xG
General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be
achieved thanks to their mapping on the AHB2 bus.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
3.14
Direct memory access controller (DMA)
The device embeds 2 DMAs. Refer to Table 7: DMA implementation for the features
implementation.
Direct memory access (DMA) is used in order to provide high-speed data transfer between
peripherals and memory as well as memory to memory. Data can be quickly moved by DMA
without any CPU actions. This keeps CPU resources free for other operations.
The two DMA controllers have 14 channels in total, each dedicated to managing memory
access requests from one or more peripherals. Each has an arbiter for handling the priority
between DMA requests.
The DMA supports:
•
14 independently configurable channels (requests)
•
Each channel is connected to dedicated hardware DMA requests, software trigger is
also supported on each channel. This configuration is done by software.
•
Priorities between requests from channels of one DMA are software programmable (4
levels consisting of very high, high, medium, low) or hardware in case of equality
(example: request 1 has priority over request 2)
•
Independent source and destination transfer size (byte, half word, word), emulating
packing and unpacking. Source/destination addresses must be aligned on the data
size.
•
Support for circular buffer management
•
3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error)
logically ORed together in a single interrupt request for each channel
•
Memory-to-memory transfer
•
Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral
transfers
•
Access to flash, SRAM, APB and AHB peripherals as source and destination
•
Programmable number of data to be transferred: up to 65536.
Table 7. DMA implementation
40/281
DMA features
DMA1
DMA2
Number of regular channels
7
7
DS11584 Rev 14
STM32L4A6xG
3.15
Functional overview
Chrom-ART Accelerator™ (DMA2D)
The Chrom-Art Accelerator™ (DMA2D) is a graphic accelerator which offers advanced bit
blitting, row data copy and pixel format conversion. It supports the following functions:
•
Rectangle filling with a fixed color
•
Rectangle copy
•
Rectangle copy with pixel format conversion
•
Rectangle composition with blending and pixel format conversion.
Various image format coding are supported, from indirect 4bpp color mode up to 32bpp
direct color. It embeds dedicated memory to store color lookup tables.
An interrupt can be generated when an operation is complete or at a programmed
watermark.
All the operations are fully automatized and are running independently from the CPU or the
DMAs.
3.16
Interrupts and events
3.16.1
Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 90 maskable interrupt channels plus the 16 interrupt lines of the Cortex®M4.
The NVIC benefits are the following:
•
Closely coupled NVIC gives low latency interrupt processing
•
Interrupt entry vector table address passed directly to the core
•
Allows early processing of interrupts
•
Processing of late arriving higher priority interrupts
•
Support for tail chaining
•
Processor state automatically saved on interrupt entry, and restored on interrupt exit,
with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal
interrupt latency.
3.16.2
Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 41 edge detector lines used to generate
interrupt/event requests and wake-up the system from Stop mode. Each external line can be
independently configured to select the trigger event (rising edge, falling edge, both) and can
be masked independently. A pending register maintains the status of the interrupt requests.
The internal lines are connected to peripherals with wakeup from Stop mode capability. The
EXTI can detect an external line with a pulse width shorter than the internal clock period. Up
to 136 GPIOs can be connected to the 16 external interrupt lines.
DS11584 Rev 14
41/281
61
Functional overview
3.17
STM32L4A6xG
Analog to digital converter (ADC)
The device embeds 3 successive approximation analog-to-digital converters with the
following features:
•
12-bit native resolution, with built-in calibration
•
5.33 Msps maximum conversion rate with full resolution
Down to 18.75 ns sampling time
–
Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit
resolution)
•
Up to 24 external channels, some of them shared between ADC1 and ADC2, or ADC1,
ADC2 and ADC3.
•
5 internal channels: internal reference voltage, temperature sensor, VBAT/3,
DAC1_OUT1 and DAC1_OUT2.
•
One external reference pin is available on some package, allowing the input voltage
range to be independent from the power supply
•
Single-ended and differential mode inputs
•
Low-power design
•
3.17.1
–
–
Capable of low-current operation at low conversion rate (consumption decreases
linearly with speed)
–
Dual clock domain architecture: ADC speed independent from CPU frequency
Highly versatile digital interface
–
Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups
of analog signals conversions can be programmed to differentiate background and
high-priority real-time conversions
–
Handles two ADC converters for dual mode operation (simultaneous or
interleaved sampling modes)
–
Each ADC support multiple trigger inputs for synchronization with on-chip timers
and external signals
–
Results stored into 3 data register or in RAM with DMA controller support
–
Data pre-processing: left/right alignment and per channel offset compensation
–
Built-in oversampling unit for enhanced SNR
–
Channel-wise programmable sampling time
–
Three analog watchdog for automatic voltage monitoring, generating interrupts
and trigger for selected timers
–
Hardware assistant to prepare the context of the injected channels to allow fast
context switching
Temperature sensor
The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature.
The temperature sensor is internally connected to the ADC1_IN17 and ADC3_IN17 input
channels which is used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
42/281
DS11584 Rev 14
STM32L4A6xG
Functional overview
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
Table 8. Temperature sensor calibration values
3.17.2
Calibration value name
Description
Memory address
TS_CAL1
TS ADC raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75A8 - 0x1FFF 75A9
TS_CAL2
TS ADC raw data acquired at a
temperature of 130 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75CA - 0x1FFF 75CB
Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for
the ADC and Comparators. VREFINT is internally connected to the ADC1_IN0 input
channel. The precise voltage of VREFINT is individually measured for each part by ST
during production test and stored in the system memory area. It is accessible in read-only
mode.
Table 9. Internal voltage reference calibration values
3.17.3
Calibration value name
Description
Memory address
VREFINT
Raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75AA - 0x1FFF 75AB
VBAT battery voltage monitoring
This embedded hardware feature allows the application to measure the VBAT battery voltage
using the internal ADC channel ADC1_IN18 or ADC3_IN18. As the VBAT voltage may be
higher than VDDA, and thus outside the ADC input range, the VBAT pin is internally
connected to a bridge divider by 3. As a consequence, the converted digital value is one
third the VBAT voltage.
3.18
Digital to analog converter (DAC)
Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage
signal outputs. The chosen design structure is composed of integrated resistor strings and
an amplifier in inverting configuration.
DS11584 Rev 14
43/281
61
Functional overview
STM32L4A6xG
This digital interface supports the following features:
•
Up to two DAC output channels
•
8-bit or 12-bit output mode
•
Buffer offset calibration (factory and user trimming)
•
Left or right data alignment in 12-bit mode
•
Synchronized update capability
•
Noise-wave generation
•
Triangular-wave generation
•
Dual DAC channel independent or simultaneous conversions
•
DMA capability for each channel
•
External triggers for conversion
•
Sample and hold low-power mode, with internal or external capacitor
The DAC channels are triggered through the timer update outputs that are also connected
to different DMA channels.
3.19
Voltage reference buffer (VREFBUF)
The STM32L4A6xG devices embed an voltage reference buffer which can be used as
voltage reference for ADCs, DAC and also as voltage reference for external components
through the VREF+ pin.
The internal voltage reference buffer supports two voltages:
•
2.048 V
•
2.5 V
An external voltage reference can be provided through the VREF+ pin when the internal
voltage reference buffer is off.
The VREF+ pin is double-bonded with VDDA on some packages. In these packages the
internal voltage reference buffer is not available.
Figure 6. Voltage reference buffer
VREFBUF
VDDA
Bandgap
+
DAC, ADC
VREF+
Low frequency
cut-off capacitor
100 nF
MSv40197V1
44/281
DS11584 Rev 14
STM32L4A6xG
3.20
Functional overview
Comparators (COMP)
The STM32L4A6xG devices embed two rail-to-rail comparators with programmable
reference voltage (internal or external), hysteresis and speed (low speed for low-power) and
with selectable output polarity.
The reference voltage can be one of the following:
•
External I/O
•
DAC output channels
•
Internal reference voltage or submultiple (1/4, 1/2, 3/4).
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers
and can be also combined into a window comparator.
3.21
Operational amplifier (OPAMP)
The STM32L4A6xG embeds two operational amplifiers with external or internal follower
routing and PGA capability.
The operational amplifier features:
3.22
•
Low input bias current
•
Low offset voltage
•
Low-power mode
•
Rail-to-rail input
Touch sensing controller (TSC)
The touch sensing controller provides a simple solution for adding capacitive sensing
functionality to any application. Capacitive sensing technology is able to detect finger
presence near an electrode which is protected from direct touch by a dielectric (such as
glass or plastic). The capacitive variation introduced by the finger (or any conductive object)
is measured using a proven implementation based on a surface charge transfer acquisition
principle.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware
library which is free to use and allows touch sensing functionality to be implemented reliably
in the end application.
DS11584 Rev 14
45/281
61
Functional overview
STM32L4A6xG
The main features of the touch sensing controller are the following:
•
Proven and robust surface charge transfer acquisition principle
•
Supports up to 24 capacitive sensing channels
•
Up to 3 capacitive sensing channels can be acquired in parallel offering a very good
response time
•
Spread spectrum feature to improve system robustness in noisy environments
•
Full hardware management of the charge transfer acquisition sequence
•
Programmable charge transfer frequency
•
Programmable sampling capacitor I/O pin
•
Programmable channel I/O pin
•
Programmable max count value to avoid long acquisition when a channel is faulty
•
Dedicated end of acquisition and max count error flags with interrupt capability
•
One sampling capacitor for up to 3 capacitive sensing channels to reduce the system
components
•
Compatible with proximity, touchkey, linear and rotary touch sensor implementation
•
Designed to operate with STMTouch touch sensing firmware library
Note:
The number of capacitive sensing channels is dependent on the size of the packages and
subject to I/O availability.
3.23
Liquid crystal display controller (LCD)
The LCD drives up to 8 common terminals and 44 segment terminals to drive up to 320
pixels.
3.24
•
Internal step-up converter to guarantee functionality and contrast control irrespective of
VDD. This converter can be deactivated, in which case the VLCD pin is used to provide
the voltage to the LCD
•
Supports static, 1/2, 1/3, 1/4 and 1/8 duty
•
Supports static, 1/2, 1/3 and 1/4 bias
•
Phase inversion to reduce power consumption and EMI
•
Integrated voltage output buffers for higher LCD driving capability
•
Up to 8 pixels can be programmed to blink
•
Unneeded segments and common pins can be used as general I/O pins
•
LCD RAM can be updated at any time owing to a double-buffer
•
The LCD controller can operate in Stop mode
Digital filter for Sigma-Delta modulators (DFSDM)
The device embeds one DFSDM with 4 digital filters modules and 8 external input serial
channels (transceivers) or alternately 8 internal parallel inputs support.
The DFSDM peripheral is dedicated to interface the external Σ∆ modulators to
microcontroller and then to perform digital filtering of the received data streams (which
represent analog value on Σ∆ modulators inputs). DFSDM can also interface PDM (Pulse
Density Modulation) microphones and perform PDM to PCM conversion and filtering in
46/281
DS11584 Rev 14
STM32L4A6xG
Functional overview
hardware. DFSDM features optional parallel data stream inputs from microcontrollers
memory (through DMA/CPU transfers into DFSDM or from internal ADCs).
DFSDM transceivers support several serial interface formats (to support various Σ∆
modulators). DFSDM digital filter modules perform digital processing according user
selected filter parameters with up to 24-bit final ADC resolution.
The DFSDM peripheral supports:
•
•
8 multiplexed input digital serial channels:
–
configurable SPI interface to connect various SD modulator(s)
–
configurable Manchester coded 1 wire interface support
–
PDM (Pulse Density Modulation) microphone input support
–
maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
–
clock output for SD modulator(s): 0..20 MHz
alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution):
–
•
internal sources: ADCs data or device memory data streams (DMA)
4 digital filter modules with adjustable digital signal processing:
–
Sincx filter: filter order/type (1..5), oversampling ratio (up to 1..1024)
–
integrator: oversampling ratio (1..256)
•
up to 24-bit output data resolution, signed output data format
•
automatic data offset correction (offset stored in register by user)
•
continuous or single conversion
•
start-of-conversion triggered by:
•
•
–
software trigger
–
internal timers
–
external events
–
start-of-conversion synchronously with first digital filter module (DFSDM1_FLT0)
analog watchdog feature:
–
low value and high value data threshold registers
–
dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
–
input from final output data or from selected input digital serial channels
–
continuous monitoring independently from standard conversion
short circuit detector to detect saturated analog input values (bottom and top range):
–
up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on serial data stream
–
monitoring continuously each input serial channel
•
break signal generation on analog watchdog event or on short circuit detector event
•
extremes detector:
–
storage of minimum and maximum values of final conversion data
–
refreshed by software
•
DMA capability to read the final conversion data
•
interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial
channel clock absence
•
“regular” or “injected” conversions:
–
“regular” conversions can be requested at any time or even in continuous mode
DS11584 Rev 14
47/281
61
Functional overview
STM32L4A6xG
without having any impact on the timing of “injected” conversions
–
3.25
“injected” conversions for precise timing and with high conversion priority
True random number generator (RNG)
The RNG is a true random number generator that provides full entropy outputs to the
application as 32-bit samples. It is composed of a live entropy source (analog) and an
internal conditioning component.
3.26
Digital camera interface (DCMI)
The devices embed a camera interface that can connect with camera modules and CMOS
sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera
interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:
3.27
•
Programmable polarity for the input pixel clock and synchronization signals
•
Parallel data communication can be 8-, 10-, 12- or 14-bit
•
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2
progressive video, RGB 565 progressive video or compressed data (like JPEG)
•
Supports continuous mode or snapshot (a single frame) mode
•
Capability to automatically crop the image
Advanced encryption standard hardware accelerator (AES)
The devices embed an AES hardware accelerator can be used to both encipher and
decipher data using AES algorithm.
The AES peripheral supports:
48/281
•
Encryption/Decryption using AES Rijndael Block Cipher algorithm
•
NIST FIPS 197 compliant implementation of AES encryption/decryption algorithm
•
128-bit and 256-bit register for storing the encryption, decryption or derivation key (4x
32-bit registers)
•
Electronic codebook (ECB), Cipher block chaining (CBC), Counter mode (CTR), Galois
Counter Mode (GCM), Galois Message Authentication Code mode (GMAC) and Cipher
Message Authentication Code mode (CMAC) supported.
•
Key scheduler
•
Key derivation for decryption
•
128-bit data block processing
•
128-bit, 256-bit key length
•
1x32-bit INPUT buffer and 1x32-bit OUTPUT buffer.
•
Register access supporting 32-bit data width only.
•
One 128-bit Register for the initialization vector when AES is configured in CBC mode
or for the 32-bit counter initialization when CTR mode is selected, GCM mode or
CMAC mode.
•
Automatic data flow control with support of direct memory access (DMA) using 2
DS11584 Rev 14
STM32L4A6xG
Functional overview
channels, one for incoming data, and one for outcoming data.
•
3.28
Suspend a message if another message with a higher priority needs to be processed
HASH hardware accelerator (HASH)
The hash processor is a fully compliant implementation of the secure hash algorithm (SHA1, SHA-224, SHA-256), the MD5 (message-digest algorithm 5) hash algorithm and the
HMAC (keyed-hash message authentication code) algorithm suitable for a variety of
applications.
It computes a message digest (160 bits for the SHA-1 algorithm, 256 bits for the SHA-256
algorithm and 224 bits for the SHA-224 algorithm,128 bits for the MD5 algorithm) for
messages of up to (264 - 1) bits, while HMAC algorithms provide a way of authenticating
messages by means of hash functions. HMAC algorithms consist in calling the SHA-1,
SHA-224, SHA-256 or MD5 hash function twice.
3.29
Timers and watchdogs
The STM32L4A6xG includes two advanced control timers, up to nine general-purpose
timers, two basic timers, two low-power timers, two watchdog timers and a SysTick timer.
The table below compares the features of the advanced control, general purpose and basic
timers.
Table 10. Timer feature comparison
Timer type
Timer
Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
outputs
Advanced
control
TIM1, TIM8
16-bit
Up, down,
Up/down
Any integer
between 1
and 65536
Yes
4
3
Generalpurpose
TIM2, TIM5
32-bit
Up, down,
Up/down
Any integer
between 1
and 65536
Yes
4
No
Generalpurpose
TIM3, TIM4
16-bit
Up, down,
Up/down
Any integer
between 1
and 65536
Yes
4
No
Generalpurpose
TIM15
16-bit
Up
Any integer
between 1
and 65536
Yes
2
1
Generalpurpose
TIM16, TIM17
16-bit
Up
Any integer
between 1
and 65536
Yes
1
1
Basic
TIM6, TIM7
16-bit
Up
Any integer
between 1
and 65536
Yes
0
No
DS11584 Rev 14
49/281
61
Functional overview
3.29.1
STM32L4A6xG
Advanced-control timer (TIM1, TIM8)
The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6
channels. They have complementary PWM outputs with programmable inserted deadtimes. They can also be seen as complete general-purpose timers. The 4 independent
channels can be used for:
•
Input capture
•
Output compare
•
PWM generation (edge or center-aligned modes) with full modulation capability (0100%)
•
One-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs
disabled to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIMx timers (described in
Section 3.29.2) using the same architecture, so the advanced-control timers can work
together with the TIMx timers via the Timer Link feature for synchronization or event
chaining.
3.29.2
General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16,
TIM17)
There are up to seven synchronizable general-purpose timers embedded in the
STM32L4A6xG (see Table 10 for differences). Each general-purpose timer can be used to
generate PWM outputs, or act as a simple time base.
•
TIM2, TIM3, TIM4 and TIM5
They are full-featured general-purpose timers:
–
TIM2 and TIM5 have a 32-bit auto-reload up/downcounter and 32-bit prescaler
–
TIM3 and TIM4 have 16-bit auto-reload up/downcounter and 16-bit prescaler.
These timers feature 4 independent channels for input capture/output compare, PWM
or one-pulse mode output. They can work together, or with the other general-purpose
timers via the Timer Link feature for synchronization or event chaining.
The counters can be frozen in debug mode.
All have independent DMA request generation and support quadrature encoders.
•
TIM15, 16 and 17
They are general-purpose timers with mid-range features:
They have 16-bit auto-reload upcounters and 16-bit prescalers.
–
TIM15 has 2 channels and 1 complementary channel
–
TIM16 and TIM17 have 1 channel and 1 complementary channel
All channels can be used for input capture/output compare, PWM or one-pulse mode
output.
The timers can work together via the Timer Link feature for synchronization or event
chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.
50/281
DS11584 Rev 14
STM32L4A6xG
3.29.3
Functional overview
Basic timers (TIM6 and TIM7)
The basic timers are mainly used for DAC trigger generation. They can also be used as
generic 16-bit timebases.
3.29.4
Low-power timer (LPTIM1 and LPTIM2)
The devices embed two low-power timers. These timers have an independent clock and are
running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to
wakeup the system from Stop mode.
LPTIM1 is active in Stop 0, Stop 1 and Stop 2 modes.
LPTIM2 is active in Stop 0 and Stop 1 mode.
This low-power timer supports the following features:
3.29.5
•
16-bit up counter with 16-bit autoreload register
•
16-bit compare register
•
Configurable output: pulse, PWM
•
Continuous/ one shot mode
•
Selectable software/hardware input trigger
•
Selectable clock source
–
Internal clock sources: LSE, LSI, HSI16 or APB clock
–
External clock source over LPTIM input (working even with no internal clock
source running, used by pulse counter application).
•
Programmable digital glitch filter
•
Encoder mode (LPTIM1 only)
Infrared interface (IRTIM)
The STM32L4A6xG includes one infrared interface (IRTIM), which can be used with an
infrared LED to perform remote control functions. It uses TIM16 and TIM17 output channels
to generate output signal waveforms on IR_OUT pin.
3.29.6
Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC (LSI) and as it operates independently
from the main clock, it can operate in Stop and Standby modes. It can be used either as a
watchdog to reset the device when a problem occurs, or as a free running timer for
application timeout management. It is hardware or software configurable through the option
bytes. The counter can be frozen in debug mode.
3.29.7
System window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
DS11584 Rev 14
51/281
61
Functional overview
3.29.8
STM32L4A6xG
SysTick timer
This timer is dedicated to real-time operating systems, but can also be used as a standard
down counter. It features:
3.30
•
A 24-bit down counter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0
•
Programmable clock source
Real-time clock (RTC) and backup registers
The RTC is an independent BCD timer/counter. It supports the following features:
•
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
•
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
•
Two programmable alarms.
•
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
•
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
•
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy.
•
Three anti-tamper detection pins with programmable filter.
•
Timestamp feature, which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to
VBAT mode.
•
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable
resolution and period.
The RTC and the 32 backup registers are supplied through a switch that takes power either
from the VDD supply when present or from the VBAT pin.
The backup registers are 32-bit registers used to store 128 bytes of user application data
when VDD power is not present. They are not reset by a system or power reset, or when the
device wakes up from Standby or Shutdown mode.
The RTC clock sources can be:
•
A 32.768 kHz external crystal (LSE)
•
An external resonator or oscillator (LSE)
•
The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
•
The high-speed external clock (HSE) divided by 32.
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the
LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in
all low-power modes except Shutdown mode.
All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt
and wakeup the device from the low-power modes.
52/281
DS11584 Rev 14
STM32L4A6xG
3.31
Functional overview
Inter-integrated circuit interface (I2C)
The device embeds four I2C. Refer to Table 11 for the features implementation.
The I2C bus interface handles communications between the microcontroller and the serial
I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
•
•
I2C-bus specification and user manual rev. 5 compatibility:
–
Slave and master modes, multimaster capability
–
Standard-mode (Sm), with a bitrate up to 100 kbit/s
–
Fast-mode (Fm), with a bitrate up to 400 kbit/s
–
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
–
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
–
Programmable setup and hold times
–
Optional clock stretching
System Management Bus (SMBus) specification rev 2.0 compatibility:
–
Hardware PEC (Packet Error Checking) generation and verification with ACK
control
–
Address resolution protocol (ARP) support
–
SMBus alert
•
Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
•
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming. Refer to
Figure 5: Clock tree.
•
Wakeup from Stop mode on address match
•
Programmable analog and digital noise filters
•
1-byte buffer with DMA capability
Table 11. I2C implementation
I2C features(1)
I2C1
I2C2
I2C3
I2C4
Standard-mode (up to 100 kbit/s)
X
X
X
X
Fast-mode (up to 400 kbit/s)
X
X
X
X
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)
X
X
X
X
Programmable analog and digital noise filters
X
X
X
X
SMBus/PMBus hardware support
X
X
X
X
Independent clock
X
X
X
X
Wakeup from Stop0, Stop 1 mode on address match
X
X
X
X
Wakeup from Stop 2 mode on address match
-
-
X
-
1. X: supported
DS11584 Rev 14
53/281
61
Functional overview
3.32
STM32L4A6xG
Universal synchronous/asynchronous receiver transmitter
(USART)
The STM32L4A6xG devices have three embedded universal synchronous receiver
transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver
transmitters (UART4, UART5).
These interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. They provide hardware management of the CTS and RTS
signals, and RS485 Driver Enable, and are able to communicate at speeds of up to
10 Mbit/s.
USART1, USART2 and USART3 also provide Smart Card mode (ISO 7816 compliant) and
SPI-like communication capability.
All USART have a clock domain independent from the CPU clock, allowing the USARTx
(x=1,2,3,4,5) to wake up the MCU from Stop mode using baudrates up to 204 Kbaud. The
wake up events from Stop mode are programmable and can be:
•
Start bit detection
•
Any received data frame
•
A specific programmed data frame
All USART interfaces can be served by the DMA controller.
Table 12. STM32L4A6xG USART/UART/LPUART features
USART modes/features(1)
USART1 USART2 USART3
UART4
UART5
LPUART1
Hardware flow control for modem
X
X
X
X
X
X
Continuous communication using DMA
X
X
X
X
X
X
Multiprocessor communication
X
X
X
X
X
X
Synchronous mode
X
X
X
-
-
-
Smartcard mode
X
X
X
-
-
-
Single-wire half-duplex communication
X
X
X
X
X
X
IrDA SIR ENDEC block
X
X
X
X
X
-
LIN mode
X
X
X
X
X
-
Dual clock domain
X
X
X
X
X
X
Wakeup from Stop 0 / Stop 1 modes
X
X
X
X
X
X
Wakeup from Stop 2 mode
-
-
-
-
-
X
Receiver timeout interrupt
X
X
X
X
X
-
Modbus communication
X
X
X
X
X
-
Auto baud rate detection
Driver Enable
X (4 modes)
X
X
LPUART/USART data length
X
7, 8 and 9 bits
1. X = supported.
54/281
X
-
DS11584 Rev 14
X
X
STM32L4A6xG
3.33
Functional overview
Low-power universal asynchronous receiver transmitter
(LPUART)
The device embeds one Low-Power UART. The LPUART supports asynchronous serial
communication with minimum power consumption. It supports half duplex single wire
communication and modem operations (CTS/RTS). It allows multiprocessor
communication.
The LPUART has a clock domain independent from the CPU clock, and can wakeup the
system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop
mode are programmable and can be:
•
Start bit detection
•
Any received data frame
•
A specific programmed data frame
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600
baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while
having an extremely low energy consumption. Higher speed clock can be used to reach
higher baudrates.
LPUART interface can be served by the DMA controller.
DS11584 Rev 14
55/281
61
Functional overview
3.34
STM32L4A6xG
Serial peripheral interface (SPI)
Three SPI interfaces allow communication up to 40 Mbits/s in master and slave modes, in
half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI interfaces
support NSS pulse mode, TI mode and Hardware CRC calculation.
All SPI interfaces can be served by the DMA controller.
3.35
Serial audio interfaces (SAI)
The device embeds 2 SAI. Refer to Table 13 for the features implementation. The SAI bus
interface handles communications between the microcontroller and the serial audio
protocol.
The SAI peripheral supports:
•
Two independent audio sub-blocks which can be transmitters or receivers with their
respective FIFO.
•
8-word integrated FIFOs for each audio sub-block.
•
Synchronous or asynchronous mode between the audio sub-blocks.
•
Master or slave configuration independent for both audio sub-blocks.
•
Clock generator for each audio block to target independent audio frequency sampling
when both audio sub-blocks are configured in master mode.
•
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.
•
Peripheral with large configurability and flexibility permitting to target as example the
following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF
out.
•
Up to 16 slots available with configurable size and with the possibility to select which
ones are active in the audio frame.
•
Number of bits by frame may be configurable.
•
Frame synchronization active level configurable (offset, bit length, level).
•
First active bit position in the slot is configurable.
•
LSB first or MSB first for data transfer.
•
Mute mode.
•
Stereo/Mono audio frame capability.
•
Communication clock strobing edge configurable (SCK).
•
Error flags with associated interrupts if enabled respectively.
•
•
56/281
–
Overrun and underrun detection.
–
Anticipated frame synchronization signal detection in slave mode.
–
Late frame synchronization signal detection in slave mode.
–
Codec not ready for the AC’97 mode in reception.
Interruption sources when enabled:
–
Errors.
–
FIFO requests.
DMA interface with 2 dedicated channels to handle access to the dedicated integrated
FIFO of each SAI audio sub-block.
DS11584 Rev 14
STM32L4A6xG
Functional overview
Table 13. SAI implementation
SAI features(1)
SAI1
SAI2
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97
X
X
Mute mode
X
X
Stereo/Mono audio frame capability.
X
X
16 slots
X
X
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit
X
X
X (8 words)
X (8 words)
X
X
FIFO size
SPDIF
1. X: supported
3.36
Single wire protocol master interface (SWPMI)
The Single wire protocol master interface (SWPMI) is the master interface corresponding to
the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The
main features are:
•
full-duplex communication mode
•
automatic SWP bus state management (active, suspend, resume)
•
configurable bitrate up to 2 Mbit/s
•
automatic SOF, EOF and CRC handling
SWPMI can be served by the DMA controller.
3.37
Controller area network (CAN)
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to
1Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
CAN is used). 256 bytes of SRAM are allocated for each CAN.
DS11584 Rev 14
57/281
61
Functional overview
STM32L4A6xG
Dual CAN peripheral configuration is available. The CAN peripheral supports:
•
Supports CAN protocol version 2.0 A, B Active
•
Bit rates up to 1 Mbit/s
•
Transmission
•
•
•
3.38
–
Three transmit mailboxes
–
Configurable transmit priority
Reception
–
Two receive FIFOs with three stages
–
Scalable filter banks: 28 filter banks shared between CAN1 and CAN2
–
Identifier list feature
–
Configurable FIFO overrun
Time-triggered communication option
–
Disable automatic retransmission mode
–
16-bit free running timer
–
Time Stamp sent in last two data bytes
Management
–
Maskable interrupts
–
Software-efficient mailbox mapping at a unique address space
Secure digital input/output and MultiMediaCards interface
(SDMMC)
The card host interface (SDMMC) provides an interface between the APB peripheral bus
and MultiMediaCards (MMCs), SD memory cards and SDIO cards.
The SDMMC features include the following:
3.39
•
Full compliance with MultiMediaCard System Specification Version 4.2. Card support
for three different databus modes: 1-bit (default), 4-bit and 8-bit
•
Full compatibility with previous versions of MultiMediaCards (forward compatibility)
•
Full compliance with SD Memory Card Specifications Version 2.0
•
Full compliance with SD I/O Card Specification Version 2.0: card support for two
different databus modes: 1-bit (default) and 4-bit
•
Data transfer up to 48 MHz for the 8 bit mode
•
Data write and read with DMA capability
Universal serial bus on-the-go full-speed (OTG_FS)
The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and
with the OTG 2.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that can be
provided by the internal multispeed oscillator (MSI) automatically trimmed by 32.768 kHz
external oscillator (LSE).This permits to use the USB device without external high speed
crystal (HSE).
58/281
DS11584 Rev 14
STM32L4A6xG
Functional overview
The synchronization for this oscillator can also be taken from the USB data stream itself
(SOF signalization) which allows crystal less operation.
The major features are:
•
Combined Rx and Tx FIFO size of 1.25 KB with dynamic FIFO sizing
•
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
•
1 bidirectional control endpoint + 5 IN endpoints + 5 OUT endpoints
•
12 host channels with periodic OUT support
•
HNP/SNP/IP inside (no need for any external resistor)
•
USB 2.0 LPM (Link Power Management) support
•
Battery Charging Specification Revision 1.2 support
•
Internal FS OTG PHY support
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected.
3.40
Clock recovery system (CRS)
The STM32L4A6xG devices embed a special block which allows automatic trimming of the
internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device
operational range. This automatic trimming is based on the external synchronization signal,
which could be either derived from USB SOF signalization, from LSE oscillator, from an
external signal on CRS_SYNC pin or generated by user software. For faster lock-in during
startup it is also possible to combine automatic trimming with manual trimming action.
3.41
Flexible static memory controller (FSMC)
The Flexible static memory controller (FSMC) includes two memory controllers:
•
The NOR/PSRAM memory controller
•
The NAND/memory controller
This memory controller is also named Flexible memory controller (FMC).
The main features of the FMC controller are the following:
•
Interface with static-memory mapped devices including:
–
Static random access memory (SRAM)
–
NOR flash memory/OneNAND flash memory
–
PSRAM (4 memory banks)
–
NAND flash memory with ECC hardware to check up to 8 Kbyte of data
•
8-,16- bit data bus width
•
Independent Chip Select control for each memory bank
•
Independent configuration for each memory bank
•
Write FIFO
•
The Maximum FMC_CLK frequency for synchronous accesses is HCLK/2.
DS11584 Rev 14
59/281
61
Functional overview
STM32L4A6xG
LCD parallel interface
The FMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost
effective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
For WLCSP100L package, address lines [A18:A16] are missing versus other 100 pin
packages, thus FMC provides only 2MB of addressable space, split into 64K blocks. The
main usage of the FMC in this case is to drive external LCD interface.
3.42
Dual-flash Quad SPI memory interface (QUADSPI)
The Dual-flash Quad SPI is a specialized communication interface targeting single, dual or
quad SPI flash memories. It can operate in any of the three following modes:
•
Indirect mode: all the operations are performed using the QUADSPI registers
•
Status polling mode: the external flash memory status register is periodically read and
an interrupt can be generated in case of flag setting
•
Memory-mapped mode: the external flash is memory mapped and is seen by the
system as if it were an internal memory
Both throughput and capacity can be increased two-fold using dual-flash mode, where two
Quad SPI flash memories are accessed simultaneously.
The Dual-flash Quad SPI interface supports:
60/281
•
Three functional modes: indirect, status-polling, and memory-mapped
•
Dual-flash mode, where 8 bits can be sent/received simultaneously by accessing two
flash memories in parallel.
•
SDR and DDR support
•
Fully programmable opcode for both indirect and memory mapped mode
•
Fully programmable frame format for both indirect and memory mapped mode
•
Each of the five following phases can be configured independently (enable, length,
single/dual/quad communication)
–
Instruction phase
–
Address phase
–
Alternate bytes phase
–
Dummy cycles phase
–
Data phase
•
Integrated FIFO for reception and transmission
•
8, 16, and 32-bit data accesses are allowed
•
DMA channel for indirect mode operations
•
Programmable masking for external flash flag management
•
Timeout management
•
Interrupt generation on FIFO threshold, timeout, status match, operation complete, and
access error
DS11584 Rev 14
STM32L4A6xG
Functional overview
3.43
Development support
3.43.1
Serial wire JTAG debug port (SWJ-DP)
The Arm® SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using only two pins instead of the five required by the JTAG (JTAG pins
can be reused as GPIO with alternate function): the JTAG TMS and TCK pins are shared
with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
3.43.2
Embedded Trace Macrocell™
The Arm® Embedded Trace Macrocell™ provides a greater visibility of the instruction and
data flow inside the CPU core by streaming compressed data at a very high rate from the
STM32L4A6xG through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then
formatted for display on the host computer that runs the debugger software. TPA hardware
is commercially available from common development tool vendors.
The Embedded Trace Macrocell™ operates with third party debugger software tools.
DS11584 Rev 14
61/281
61
Pinouts and pin description
4
STM32L4A6xG
Pinouts and pin description
Figure 7. STM32L4A6Ax UFBGA169 pinout(1)(2)
1
2
3
4
5
6
7
8
9
10
11
12
13
A
PI10
PH2
VDD
PE0
PB4
PB3
VSS
VDD
PA15
PA14
PA13
PI0
PH14
B
PI9
PI7
VSS
PE1
PB5
VDDIO2
PG9
PD0
PI6
PI2
PI1
PH15
PH12
C
VDD
VSS
PI11
PB8
PB6
PG15
PD4
PD1
PH13
PI3
PI8
VSS
VDD
D
PE4
PE3
PE2
PB9
PB7
PG10
PD5
PD2
PC10
PI4
PH9
PH7
PA12
E
PC13
VBAT
PE6
PE5
PH3-BOOT0
PG11
PD6
PD3
PC11
PI5
PH6
VDDUSB
PA11
F
PC14OSC32_IN
VSS
PF2
PF1
PF0
PG12
PD7
PC12
PA10
PA9
PC6
VDDIO2
VSS
G
PC15OSC32_OUT
VDD
PF3
PF4
PF5
PG14
PG13
PA8
PC9
PC8
PG6
PC7
VDD
H
PH0-OSC_IN
VSS
NRST
PF10
PC4
PG1
PE10
PB11
PG8
PG7
PD15
VSS
VDD
J
PH1OSC_OUT
PC0
PC1
PC2
PC5
PG0
PE9
PE15
PG5
PG4
PG3
PG2
PD10
K
PC3
VSSA/VREF-
PA0
PA5
PB0
PF15
PE8
PE14
PH4
PD14
PD12
PD11
PD13
L
VREF+
VDDA
PA4
PA7
PB1
PF14
PE7
PE13
PH5
PD9
PD8
VDD
VSS
M
OPAMP1_VI
NM
PA3
VSS
PA6
PF11
PF13
VSS
PE12
PH10
PH11
VSS
PB15
PB14
N
PA2
PA1
VDD
OPAMP2_VI
NM
PB2
PF12
VDD
PE11
PB10
PH8
VDD
PB12
PB13
MSv38036V5
1. The above figure shows the package top view.
2. The I/O pins supplied by VDDIO2 are shown in gray.
62/281
DS11584 Rev 14
STM32L4A6xG
Pinouts and pin description
Figure 8. STM32L4A6Ax, external SMPS device, UFBGA169 pinout(1)(2)
1
2
3
4
5
6
7
8
9
10
11
12
13
A
PI10
PH2
VDD
PE0
PB4
PB3
VSS
VDD
PA15
PA14
PA13
PI0
PH14
B
PI9
PI7
VSS
PE1
PB5
VDDIO2
PG9
PD0
PI6
PI2
PI1
PH15
PH12
C
VDD
VSS
PI11
PB8
PB6
VDD12
PD4
PD1
PH13
PI3
PI8
VSS
VDD
D
PE4
PE3
PE2
PB9
PB7
PG10
PD5
PD2
PC10
PI4
PH9
PH7
PA12
E
PC13
VBAT
PE6
PE5
PH3-BOOT0
PG11
PD6
PD3
PC11
PI5
PH6
VDDUSB
PA11
F
PC14OSC32_IN
VSS
PF2
PF1
PF0
PG12
PD7
PC12
PA10
PA9
PC6
VDDIO2
VSS
G
PC15OSC32_OUT
VDD
PF3
PF4
PF5
PG14
PG13
PA8
PC9
PC8
PG6
PC7
VDD
H
PH0-OSC_IN
VSS
NRST
PF10
PC4
PG1
PE10
PB11
PG8
PG7
PD15
VSS
VDD
J
PH1OSC_OUT
PC0
PC1
PC2
PC5
PG0
PE9
PE15
PG5
PG4
PG3
PG2
PD10
K
PC3
VSSA/VREF-
PA0
PA5
PB0
PF15
PE8
PE14
PH4
PD14
PD12
PD11
PD13
L
VREF+
VDDA
PA4
PA7
PB1
PF14
PE7
PE13
PH5
PD9
PD8
VDD
VSS
M
OPAMP1_VI
NM
PA3
VSS
PA6
PF11
PF13
VSS
PE12
PH10
VDD12
VSS
PB15
PB14
N
PA2
PA1
VDD
OPAMP2_VI
NM
PB2
PF12
VDD
PE11
PB10
PH8
VDD
PB12
PB13
MSv42235V2
1. The above figure shows the package top view.
2. The I/O pins supplied by VDDIO2 are shown in gray.
DS11584 Rev 14
63/281
119
Pinouts and pin description
STM32L4A6xG
VDD
VSS
PE1
PE0
PB9
PB8
PH3-BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
VDDIO2
VSS
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
VDD
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
Figure 9. STM32L4A6Zx LQFP144 pinout(1)(2)
PE2
PE3
PE4
PE5
1
2
3
4
108
VDD
107
VSS
106
VDDUSB
105
PA13
PE6
5
104
PA12
VBAT
6
103
PA11
PC13
7
PC14-OSC32_IN
8
102
101
PA10
PA9
PC15-OSC32_OUT
9
100
PA8
PF0
10
99
PC9
PF1
11
PF2
12
98
97
PC8
PC7
PF3
13
96
PC6
PF4
14
95
VDDIO2
PF5
15
94
VSS
VSS
16
93
PG8
VDD
17
92
PG7
PF6
18
91
PG6
PF7
19
90
PG5
PF8
20
89
PG4
PF9
21
88
PG3
PF10
22
87
PG2
PH0-OSC_IN
23
86
PD15
PH1-OSC_OUT
24
85
PD14
NRST
25
84
VDD
PC0
26
83
VSS
PC1
27
82
PD13
PC2
28
81
PD12
PC3
29
80
PD11
VSSA
30
79
PD10
VREF-
31
78
PD9
VREF+
32
77
PD8
VDDA
33
76
PB15
PA0
34
75
PB14
PA1
35
74
PB13
PA2
36
73
PB12
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VSS
VDD
LQFP144
MSv38033V5
1. The above figure shows the package top view.
2. The I/O pins supplied by VDDIO2 are shown in gray.
64/281
DS11584 Rev 14
STM32L4A6xG
Pinouts and pin description
VDD
VSS
VDD12
PE1
PE0
PB9
PB8
PH3-BOOT0
PB7
PB6
PB5
PB4
PB3
VDDIO2
VSS
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
VDD
VSS
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
Figure 10. STM32L4A6Zx, external SMPS device, LQFP144 pinout(1)(2)
PE2
PE3
PE4
PE5
1
2
3
4
108
VDD
107
VSS
106
VDDUSB
105
PA13
PE6
5
104
PA12
VBAT
6
103
PA11
PC13
7
PC14-OSC32_IN
8
102
101
PA10
PA9
PC15-OSC32_OUT
9
100
PA8
PF0
10
99
PC9
PF1
11
PF2
12
98
97
PC8
PC7
PF3
13
96
PC6
PF4
14
95
VDDIO2
PF5
15
94
VSS
VSS
16
93
PG8
VDD
17
92
PG7
PF6
18
91
PG6
PF7
19
90
PG5
PF8
20
89
PG4
PF9
21
88
PG3
PF10
22
87
PG2
PH0-OSC_IN
23
86
PD15
PH1-OSC_OUT
24
85
PD14
NRST
25
84
VDD
PC0
26
83
VSS
PC1
27
82
PD13
PC2
28
81
PD12
PC3
29
80
PD11
VSSA
30
79
PD10
VREF-
31
78
PD9
VREF+
32
77
PD8
VDDA
33
76
PB15
PA0
34
75
PB14
PA1
35
74
PB13
PA2
36
73
PB12
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE11
PE12
PE13
PE14
PE15
PB10
VDD12
VSS
VDD
LQFP144
MSv42236V2
1. The above figure shows the package top view.
2. The I/O pins supplied by VDDIO2 are shown in gray.
DS11584 Rev 14
65/281
119
Pinouts and pin description
STM32L4A6xG
Figure 11. STM32L4A6Qx UFBGA132 ballout(1)(2)
1
2
3
4
5
6
7
8
9
10
11
12
A
PE3
PE1
PB8
PH3-BOOT0
PD7
PD5
PB4
PB3
PA15
PA14
PA13
PA12
B
PE4
PE2
PB9
PB7
PB6
PD6
PD4
PD3
PD1
PC12
PC10
PA11
C
PC13
PE5
PE0
VDD
PB5
PG14
PG13
PD2
PD0
PC11
VDDUSB
PA10
D
PC14OSC32_IN
PE6
VSS
PF2
PF1
PF0
PG12
PG10
PG9
PA9
PA8
PC9
E
PC15OSC32_OUT
VBAT
VSS
PF3
PG5
PC8
PC7
PC6
F
PH0-OSC_IN
VSS
PF4
PF5
VSS
VSS
PG3
PG4
VSS
VSS
G
PH1OSC_OUT
VDD
PG11
PG6
VDD
VDDIO2
PG1
PG2
VDD
VDD
H
PC0
NRST
VDD
PG7
PG0
PD15
PD14
PD13
J
VSSA/VREF-
PC1
PC2
PA4
PA7
PG8
PF12
PF14
PF15
PD12
PD11
PD10
K
PG15
PC3
PA2
PA5
PC4
PF11
PF13
PD9
PD8
PB15
PB14
PB13
L
VREF+
PA0
PA3
PA6
PC5
PB2
PE8
PE10
PE12
PB10
PB11
PB12
M
VDDA
PA1
OPAMP1_
VINM
OPAMP2_
VINM
PB0
PB1
PE7
PE9
PE11
PE13
PE14
PE15
MSv38035V3
1. The above figure shows the package top view.
2. The I/O pins supplied by VDDIO2 are shown in gray.
Figure 12. STM32L4A6Qx, external SMPS device, UFBGA132 ballout(1)(2)
1
2
3
4
5
6
7
8
9
10
11
12
A
PE3
PE1
PB8
PH3-BOOT0
PD7
PD5
PB4
PB3
PA15
PA14
PA13
PA12
B
PE4
PE2
PB9
PB7
PB6
PD6
PD4
PD3
PD1
PC12
PC10
PA11
C
PC13
PE5
PE0
VDD
PB5
VDD12
PG13
PD2
PD0
PC11
VDDUSB
PA10
D
PC14OSC32_IN
PE6
VSS
PF2
PF1
PF0
PG12
PG10
PG9
PA9
PA8
PC9
E
PC15OSC32_OUT
VBAT
VSS
PF3
PG5
PC8
PC7
PC6
F
PH0-OSC_IN
VSS
PF4
PF5
VSS
VSS
PG3
PG4
VSS
VSS
G
PH1OSC_OUT
VDD
PG11
PG6
VDD
VDDIO2
PG1
PG2
VDD
VDD
H
PC0
NRST
VDD
PG7
PG0
PD15
PD14
PD13
J
VSSA/VREF-
PC1
PC2
PA4
PA7
PG8
PF12
PF14
PF15
PD12
PD11
PD10
K
PG15
PC3
PA2
PA5
PC4
PF11
PF13
PD9
PD8
PB15
PB14
PB13
L
VREF+
PA0
PA3
PA6
PC5
PB2
PE8
PE10
PE12
PB10
VDD12
PB12
PA1
OPAMP1_
VINM
OPAMP2_
VINM
PB0
PB1
PE7
PE9
PE11
PE13
PE14
PE15
M
VDDA
MS46960V2
1. The above figure shows the package top view.
2. The I/O pins supplied by VDDIO2 are shown in gray.
66/281
DS11584 Rev 14
STM32L4A6xG
Pinouts and pin description
VDD
VSS
PE1
PE0
PB9
PB8
PH3-BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
Figure 13. STM32L4A6Vx LQFP100 pinout(1)
PE2
1
75
VDD
PE3
2
74
VSS
PE4
3
73
VDDUSB
PE5
4
72
PA13
PE6
5
71
PA12
VBAT
6
70
PA11
PC13
7
69
PA10
PC14-OSC32_IN
8
68
PA9
PC15-OSC32_OUT
9
67
PA8
VSS
10
66
PC9
VDD
11
65
PC8
PH0-OSC_IN
12
64
PC7
PH1-OSC_OUT
13
63
PC6
NRST
14
62
PD15
PC0
15
61
PD14
PC1
16
60
PD13
PC2
17
59
PD12
PC3
18
58
PD11
VSSA
19
57
PD10
VREF-
20
56
PD9
VREF+
21
55
PD8
VDDA
22
54
PB15
PA0
23
53
PB14
PA1
24
52
PB13
PA2
25
51
PB12
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VSS
VDD
LQFP100
MSv38034V2
1. The above figure shows the package top view.
DS11584 Rev 14
67/281
119
Pinouts and pin description
STM32L4A6xG
VDD
VSS
VDD12
PE0
PB9
PB8
PH3-BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
Figure 14. STM32L4A6Vx, external SMPS device, LQFP100 pinout(1)
PE2
1
75
VDD
PE3
2
74
VSS
PE4
3
73
VDDUSB
PE5
4
72
PA13
PE6
5
71
PA12
VBAT
6
70
PA11
PC13
7
69
PA10
PC14-OSC32_IN
8
68
PA9
PC15-OSC32_OUT
9
67
PA8
VSS
10
66
PC9
VDD
11
65
PC8
PH0-OSC_IN
12
64
PC7
PH1-OSC_OUT
13
63
PC6
NRST
14
62
PD15
PC0
15
61
PD14
PC1
16
60
PD13
PC2
17
59
PD12
PC3
18
58
PD11
VSSA
19
57
PD10
VREF-
20
56
PD9
VREF+
21
55
PD8
VDDA
22
54
PB15
PA0
23
53
PB14
PA1
24
52
PB13
PA2
25
51
PB12
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
VDD12
VSS
VDD
LQFP100
1. The above figure shows the package top view.
68/281
DS11584 Rev 14
MS51413V1
STM32L4A6xG
Pinouts and pin description
Figure 15. STM32L4A6Vx WLCSP100L pinout(1)(2)
1
2
3
4
5
6
7
8
9
10
A
VDDUSB
PA15
PD1
VDD
PG10
VDDIO2
PB6
PB9
VSS
VDD
B
VSS
PA14
PD0
PD4
PG9
PG12
PB5
PB8
PE2
PE3
C
PA12
PA13
PC11
PC12
PD7
PB3
PB4
PE4
PC13
VBAT
D
PA11
PA10
PA9
PC10
PD6
PG11
PB7
PE5
VSS
PC14OSC32_IN
E
PC8
PC9
PA8
PD2
PD5
PH3-BOOT0
PE6
NRST
VDD
PC15OSC32_OUT
F
VDD
PC6
PC7
PD15
PB2
PA4
PC3
PC1
PC0
PH0-OSC_IN
G
PD10
PD9
PD14
PE13
PE12
PA5
VREF+
VREF-
PA0
PH1OSC_OUT
H
PB15
PB14
PD8
PE15
PE10
PC4
PA2
PA1
VSSA
PC2
J
PB12
PB13
PB11
PE14
PE9
PB0
PA7
VDD
PA3
VDDA
K
VDD
VSS
PB10
PE11
PE8
PE7
PB1
PC5
PA6
VSS
MS50090V2
1. The above figure shows the package top view.
2. The I/O pins supplied by VDDIO2 are shown in gray.
Figure 16. STM32L4A6Vx, external SMPS device, WLCSP100L pinout(1)(2)
1
2
3
4
5
6
7
8
9
10
A
VDDUSB
PA15
PD1
VDD
PG10
VDDIO2
PB6
PB9
VDD12
VDD
B
VSS
PA14
PD0
PD5
PD6
PG12
PB7
PB8
VSS
PE3
C
PA12
PA13
PC10
PC12
PD4
PD7
PB5
PE2
PC13
VBAT
PC14OSC32_IN
D
PA11
PA10
PA9
PC11
PD2
PG9
PH3-BOOT0
PE6
PC15OSC32_OUT
E
PC8
PC9
PA8
PC7
PG11
PB4
PE4
PE5
VDD
VSS
F
VDD
PD15
PD14
PC6
PB3
PC3
PC1
NRST
PH1OSC_OUT
PH0-OSC_IN
G
PD10
PD9
PD8
PE14
PE13
PA7
PA1
PA0
PC2
PC0
H
PB14
PB13
PB15
PE15
PE10
PB0
PA4
PA2
VSSA/VREF-
VREF+
J
PB12
VDD
PB11
PE12
PE9
PB2
PA5
VDD
PA3
VDDA
K
VDD12
VSS
PB10
PE11
PE8
PE7
PB1
PC4
PA6
VSS
MS50091V2
1. The above figure shows the package top view.
2. The I/O pins supplied by VDDIO2 are shown in gray.
DS11584 Rev 14
69/281
119
Pinouts and pin description
STM32L4A6xG
VDD
VSS
PB9
PB8
PH3-BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
Figure 17. STM32L4A6Rx LQFP64 pinout(1)
VBAT
1
48
VDDUSB
PC13
2
47
VSS
PC14-OSC32_IN
3
46
PA13
PC15-OSC32_OUT
4
45
PA12
PH0-OSC_IN
5
44
PA11
PH1-OSC_OUT
6
43
PA10
NRST
7
42
PA9
PC0
8
41
PA8
PC1
9
40
PC9
PC2
10
39
PC8
PC3
11
38
PC7
VSSA/VREF-
12
37
PC6
VDDA/VREF+
13
36
PB15
PA0
14
35
PB14
PA1
15
34
PB13
PA2
16
33
PB12
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS
VDD
LQFP64
MS38433V2
1. The above figure shows the package top view.
VDD
VSS
VDD12
PB9
PB8
PH3-BOOT0
PB7
PB6
PB5
PB4
PB3
PC12
PC11
PC10
PA15
PA14
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
Figure 18. STM32L4A6Rx, external SMPS, LQFP64 pinout(1)
VBAT
1
48
VDDUSB
PC13
2
47
VSS
PC14-OSC32_IN
3
46
PA13
PC15-OSC32_OUT
4
45
PA12
PH0-OSC_IN
5
44
PA11
PH1-OSC_OUT
6
43
PA10
NRST
7
42
PA9
PC0
8
41
PA8
PC1
9
40
PC9
PC2
10
39
PC8
PC3
11
38
PC7
VSSA/VREF-
12
37
PC6
VDDA/VREF+
13
36
PB15
PA0
14
35
PB14
PA1
15
34
PB13
PA2
16
33
PB12
25
26
27
28
29
30
31
32
PB1
PB2
PB10
PB11
VDD12
VSS
VDD
22
PA6
PB0
21
PA5
24
20
PA4
23
19
VDD
PA7
18
PC4
17
PA3
VSS
QFx64
1. The above figure shows the package top view.
70/281
DS11584 Rev 14
MS51414V1
STM32L4A6xG
Pinouts and pin description
Table 14. Legend/abbreviations used in the pinout table
Name
Pin name
Abbreviation
Definition
Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
S
Supply pin
I
Input only pin
Pin type
I/O
Input / output pin
FT
5 V tolerant I/O
TT
3.6 V tolerant I/O
RST
Bidirectional reset pin with embedded weak pull-up resistor
Option for TT or FT I/Os
I/O structure
_f (1)
I/O, Fm+ capable
_l
(2)
I/O, with LCD function supplied by VLCD
_u
(3)
I/O, with USB function supplied by VDDUSB
_a
(4)
I/O, with Analog switch function supplied by VDDA
_s (5)
Notes
I/O supplied only by VDDIO2
Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.
Alternate
Functions selected through GPIOx_AFR registers
functions
Pin
functions Additional
Functions directly selected/enabled through peripheral registers
functions
1. The related I/O structures in Table 15 are: FT_f, FT_fa, FT_fl, FT_fla.
2. The related I/O structures in Table 15 are: FT_l, FT_fl, FT_lu.
3. The related I/O structures in Table 15 are: FT_u, FT_lu.
4. The related I/O structures in Table 15 are: FT_a, FT_la, FT_fa, FT_fla, TT_a, TT_la.
5. The related I/O structures in Table 15 are: FT_s, FT_fs.
Note:
FT_a and FT_fa pins can be connected to analog peripherals inputs. When analog
peripheral is not connected to this FT_a or FT_fa pins (analog switch from GPIO to
peripheral is not closed, for example ADC not uses given pin as ADC input), then GPIO can
accept VDD + 3.6 V (5 V tolerant I/O). However, once the I/O input is connected to the
analog peripheral (for example ADC selects as input channel from this pin), the parasitic
diode from this I/O pin to VDDA and/or VREF+ does not allow to use higher voltage on given
I/O pin than VDDA or VREF+ and pin is no more 5 V-tolerant I/O.
DS11584 Rev 14
71/281
119
LQFP100
LQFP100_SMPS
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA169
UFBGA169_SMPS
-
-
-
-
-
-
-
-
C3
C3
-
DS11584 Rev 14
-
-
-
-
-
B9
B10
C8
C8
B10
E7
1
2
3
1
2
3
B2
A1
B1
B2
A1
B1
1
2
3
1
2
3
D3
D2
D1
D3
D2
D1
PI11
I/O
FT
PE2
PE3
PE4
I/O
I/O
I/O
Notes
WLCSP100L_SMPS
-
I/O structure
WLCSP100L
-
Pin name
(function after
reset)
Pin type
LQFP64_SMPS
Pin functions
LQFP64
Pin Number
Alternate functions
Additional functions
- EVENTOUT
-
FT_l
TRACECK, TIM3_ETR,
TSC_G7_IO1,
- LCD_SEG38, FMC_A23,
SAI1_MCLK_A,
EVENTOUT
-
FT_l
TRACED0, TIM3_CH1,
TSC_G7_IO2,
LCD_SEG39, FMC_A19,
SAI1_SD_B, EVENTOUT
FT
TRACED1, TIM3_CH2,
DFSDM1_DATIN3,
- TSC_G7_IO3, DCMI_D4, FMC_A20, SAI1_FS_A,
EVENTOUT
-
D8
E8
4
4
C2
C2
4
4
E4
E4
PE5
I/O
FT
-
-
E7
D8
5
5
D2
D2
5
5
E3
E3
PE6
I/O
FT
TRACED3, TIM3_CH4,
- DCMI_D7, FMC_A22,
RTC_TAMP3/WKUP3
SAI1_SD_A, EVENTOUT
1
1
C10
C10
6
6
E2
E2
6
6
E2
E2
VBAT
S
-
2
2
C9
C9
7
7
C1
C1
7
7
E1
E1
PC13
I/O
FT
- (1)
(2)
EVENTOUT
RTC_TAMP1/RTC_TS/RT
C_OUT/WKUP2
STM32L4A6xG
-
TRACED2, TIM3_CH3,
DFSDM1_CKIN3,
- TSC_G7_IO4, DCMI_D6, FMC_A21, SAI1_SCK_A,
EVENTOUT
Pinouts and pin description
72/281
Table 15. STM32L4A6xG pin definitions
LQFP100
LQFP100_SMPS
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA169
UFBGA169_SMPS
Pin type
I/O structure
3
D10
D10
8
8
D1
D1
8
8
F1
F1
PC14OSC32_IN
(PC14)
I/O
FT
4
4
E10
D9
9
9
E1
E1
9
9
G1
G1
PC15OSC32_OUT
(PC15)
I/O
FT
-
-
-
-
-
-
D6
D6
10
10
F5
F5
PF0
I/O
FT_f
-
-
-
-
-
-
D5
D5
11
11
F4
F4
PF1
I/O
-
-
-
-
-
-
D4
D4
12
12
F3
F3
PF2
-
-
-
-
-
-
E4
E4
13
13
G3
G3
-
-
-
-
-
-
F3
F3
14
14
G4
-
-
-
-
-
-
F4
F4
15
15
-
-
D9
E10
10
10
F2
F2
16
-
-
E9
E9
11
11
G2
G2
-
-
-
-
-
-
-
-
Notes
WLCSP100L_SMPS
3
Pin name
(function after
reset)
(1)
Alternate functions
Additional functions
EVENTOUT
OSC32_IN
EVENTOUT
OSC32_OUT
-
I2C2_SDA, FMC_A0,
EVENTOUT
-
FT_f
-
I2C2_SCL, FMC_A1,
EVENTOUT
-
I/O
FT
-
I2C2_SMBA, FMC_A2,
EVENTOUT
-
PF3
I/O
FT_a
- FMC_A3, EVENTOUT
ADC3_IN6
G4
PF4
I/O
FT_a
- FMC_A4, EVENTOUT
ADC3_IN7
G5
G5
PF5
I/O
FT_a
- FMC_A5, EVENTOUT
ADC3_IN8
16
F2
F2
VSS
S
-
- -
-
17
17
G2
G2
VDD
S
-
- -
-
18
18
-
-
PF6
I/O
FT_a
(2)
(1)
(2)
TIM5_ETR, TIM5_CH1,
- QUADSPI_BK1_IO3,
ADC3_IN9
SAI1_SD_B, EVENTOUT
73/281
Pinouts and pin description
WLCSP100L
DS11584 Rev 14
LQFP64_SMPS
Pin functions
LQFP64
Pin Number
STM32L4A6xG
Table 15. STM32L4A6xG pin definitions (continued)
Notes
I/O structure
Pin name
(function after
reset)
Pin type
UFBGA169_SMPS
UFBGA169
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100_SMPS
LQFP100
WLCSP100L_SMPS
WLCSP100L
LQFP64_SMPS
LQFP64
Pin Number
Alternate functions
Additional functions
DS11584 Rev 14
-
-
-
-
-
-
-
-
19
19
-
-
PF7
I/O
FT_a
TIM5_CH2,
QUADSPI_BK1_IO2,
SAI1_MCLK_B,
EVENTOUT
-
-
-
-
-
-
-
-
20
20
-
-
PF8
I/O
FT_a
TIM5_CH3,
- QUADSPI_BK1_IO0,
ADC3_IN11
SAI1_SCK_B, EVENTOUT
ADC3_IN10
-
-
-
-
-
-
-
-
21
21
-
-
PF9
I/O
FT_a
TIM5_CH4,
QUADSPI_BK1_IO1,
ADC3_IN12
SAI1_FS_B, TIM15_CH1,
EVENTOUT
-
-
-
-
-
-
-
-
22
22
H4
H4
PF10
I/O
FT_a
QUADSPI_CLK,
- DCMI_D11, TIM15_CH2,
EVENTOUT
ADC3_IN13
5
5
F10
F10
12
12
F1
F1
23
23
H1
H1
PH0-OSC_IN
(PH0)
I/O
FT
- EVENTOUT
OSC_IN
6
6
G10
F9
13
13
G1
G1
24
24
J1
J1
PH1-OSC_OUT
(PH1)
I/O
FT
- EVENTOUT
OSC_OUT
7
7
E8
F8
14
14
H2
H2
25
25
H3
H3
NRST
I/O
RST
- -
-
8
F9
G10
15
15
H1
H1
26
26
J2
J2
PC0
I/O
FT_fla
LPTIM1_IN1, I2C4_SCL,
I2C3_SCL,
DFSDM1_DATIN4,
ADC123_IN1
LPUART1_RX,
LCD_SEG18,
LPTIM2_IN1, EVENTOUT
STM32L4A6xG
8
Pinouts and pin description
74/281
Table 15. STM32L4A6xG pin definitions (continued)
9
DS11584 Rev 14
10
9
10
F8
H10
F7
G9
16
17
16
17
J2
J3
J2
J3
27
28
27
28
J3
J4
J3
J4
PC1
PC2
I/O
I/O
Notes
I/O structure
Pin name
(function after
reset)
Pin type
UFBGA169_SMPS
UFBGA169
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100_SMPS
LQFP100
WLCSP100L_SMPS
WLCSP100L
LQFP64_SMPS
LQFP64
Pin Number
Alternate functions
STM32L4A6xG
Table 15. STM32L4A6xG pin definitions (continued)
Additional functions
FT_fla
TRACED0, LPTIM1_OUT,
I2C4_SDA, SPI2_MOSI,
I2C3_SDA,
DFSDM1_CKIN4,
ADC123_IN2
LPUART1_TX,
QUADSPI_BK2_IO0,
LCD_SEG19, SAI1_SD_A,
EVENTOUT
FT_la
LPTIM1_IN2, SPI2_MISO,
DFSDM1_CKOUT,
ADC123_IN3
QUADSPI_BK2_IO1,
LCD_SEG20, EVENTOUT
LPTIM1_ETR, SPI2_MOSI,
QUADSPI_BK2_IO2,
ADC123_IN4
LCD_VLCD, SAI1_SD_A,
LPTIM2_ETR, EVENTOUT
11
F7
F6
18
18
K2
K2
29
29
K1
K1
PC3
I/O
FT_la
12
12
-
H9
-
-
J1
J1
-
-
K2
K2
VSSA/VREF-
S
-
- -
-
-
-
H9
-
19
19
-
-
30
30
-
-
VSSA
S
-
- -
-
-
-
G8
-
20
20
-
-
31
31
-
-
VREF-
S
-
- -
-
-
-
G7
H10
21
21
L1
L1
32
32
L1
L1
VREF+
S
-
- -
VREFBUF_OUT
-
-
J10
J10
22
22
M1
M1
33
33
L2
L2
VDDA
S
-
- -
-
13
13
-
-
-
-
-
-
-
-
-
-
VDDA/VREF+
-
-
- -
-
Pinouts and pin description
75/281
11
DS11584 Rev 14
14
14
G9
G8
23
23
L2
L2
34
34
K3
K3
PA0
I/O
FT_a
-
-
-
-
-
-
M3
M3
-
-
M1
M1
OPAMP1_
VINM
I
TT
15
16
15
16
H8
H7
G7
H8
24
25
24
25
M2
K3
M2
K3
35
36
35
36
N2
N1
N2
N1
PA1
PA2
I/O
I/O
FT_la
Notes
I/O structure
Pin name
(function after
reset)
Pin type
UFBGA169_SMPS
UFBGA169
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100_SMPS
LQFP100
WLCSP100L_SMPS
WLCSP100L
LQFP64_SMPS
LQFP64
Pin Number
Alternate functions
Additional functions
TIM2_CH1, TIM5_CH1,
TIM8_ETR, USART2_CTS, OPAMP1_VINP,
ADC12_IN5,
- UART4_TX,
RTC_TAMP2/WKUP1
SAI1_EXTCLK,
TIM2_ETR, EVENTOUT
- -
(3)
Pinouts and pin description
76/281
Table 15. STM32L4A6xG pin definitions (continued)
-
TIM2_CH2, TIM5_CH2,
I2C1_SMBA, SPI1_SCK,
OPAMP1_VINM,
USART2_RTS_DE,
ADC12_IN6
UART4_RX, LCD_SEG0,
TIM15_CH1N, EVENTOUT
TIM2_CH4, TIM5_CH4,
USART2_RX,
LPUART1_RX,
OPAMP1_VOUT,
- QUADSPI_CLK,
ADC12_IN8
LCD_SEG2,
SAI1_MCLK_A,
TIM15_CH2, EVENTOUT
17
17
J9
J9
26
26
L3
L3
37
37
M2
M2
PA3
I/O
TT_la
18
18
K10
K10
27
27
E3
E3
38
38
H2
H2
VSS
S
-
- -
-
19
19
J8
J8
28
28
H3
H3
39
39
G13
G13
VDD
S
-
- -
-
STM32L4A6xG
FT_la
TIM2_CH3, TIM5_CH3,
USART2_TX,
LPUART1_TX,
ADC12_IN7,
- QUADSPI_BK1_NCS,
WKUP4/LSCO
LCD_SEG1,
SAI2_EXTCLK,
TIM15_CH1, EVENTOUT
Notes
I/O structure
Pin name
(function after
reset)
Pin type
UFBGA169_SMPS
UFBGA169
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100_SMPS
LQFP100
WLCSP100L_SMPS
WLCSP100L
LQFP64_SMPS
LQFP64
Pin Number
Alternate functions
Additional functions
DS11584 Rev 14
20
20
F6
H7
29
29
J4
J4
40
40
L3
L3
PA4
I/O
TT_a
SPI1_NSS, SPI3_NSS,
USART2_CK,
ADC12_IN9, DAC1_OUT1
- DCMI_HSYNC,
SAI1_FS_B, LPTIM2_OUT,
EVENTOUT
21
21
G6
J7
30
30
K4
K4
41
41
K4
K4
PA5
I/O
TT_a
TIM2_CH1, TIM2_ETR,
ADC12_IN10,
- TIM8_CH1N, SPI1_SCK,
DAC1_OUT2
LPTIM2_ETR, EVENTOUT
TIM1_BKIN, TIM3_CH1,
TIM8_BKIN,
DCMI_PIXCLK,
SPI1_MISO,
USART3_CTS,
OPAMP2_VINP,
- LPUART1_CTS,
ADC12_IN11
QUADSPI_BK1_IO3,
LCD_SEG3,
TIM1_BKIN_COMP2,
TIM8_BKIN_COMP2,
TIM16_CH1, EVENTOUT
22
K9
K9
31
31
L4
L4
42
42
M4
M4
PA6
I/O
FT_la
-
-
-
-
-
-
M4
M4
-
-
N4
N4
OPAMP2_VINM
I
TT
77/281
23
23
J7
G6
32
32
J5
J5
43
43
L4
L4
PA7
I/O
FT_fla
24
24
H6
K8
33
33
K5
K5
44
44
H5
H5
PC4
I/O
FT_la
- -
(3)
-
TIM1_CH1N, TIM3_CH2,
TIM8_CH1N, I2C3_SCL,
OPAMP2_VINM,
SPI1_MOSI,
ADC12_IN12
QUADSPI_BK1_IO2,
LCD_SEG4, TIM17_CH1,
EVENTOUT
USART3_TX,
COMP1_INM,
- QUADSPI_BK2_IO3,
ADC12_IN13
LCD_SEG22, EVENTOUT
Pinouts and pin description
22
STM32L4A6xG
Table 15. STM32L4A6xG pin definitions (continued)
LQFP100
LQFP100_SMPS
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA169
UFBGA169_SMPS
K8
-
34
34
L5
L5
45
45
J5
J5
26
DS11584 Rev 14
27
25
26
J6
K7
H6
K7
35
36
35
36
M5
M6
M5
M6
46
47
46
47
K5
L5
K5
L5
PC5
PB0
PB1
Notes
WLCSP100L_SMPS
-
I/O structure
WLCSP100L
25
Pin name
(function after
reset)
Pin type
LQFP64_SMPS
Pin functions
LQFP64
Pin Number
I/O
FT_la
-
TT_la
TIM1_CH2N, TIM3_CH3,
TIM8_CH2N, SPI1_NSS,
USART3_CK,
OPAMP2_VOUT,
- QUADSPI_BK1_IO1,
ADC12_IN15
LCD_SEG5, COMP1_OUT,
SAI1_EXTCLK,
EVENTOUT
FT_la
TIM1_CH3N, TIM3_CH4,
TIM8_CH3N,
DFSDM1_DATIN0,
COMP1_INM,
USART3_RTS_DE,
ADC12_IN16
LPUART1_RTS_DE,
QUADSPI_BK1_IO0,
LCD_SEG6, LPTIM2_IN1,
EVENTOUT
RTC_OUT, LPTIM1_OUT,
I2C3_SMBA,
COMP1_INP
DFSDM1_CKIN0,
LCD_VLCD, EVENTOUT
I/O
I/O
Alternate functions
Additional functions
USART3_RX,
COMP1_INP,
LCD_SEG23, EVENTOUT ADC12_IN14, WKUP5
27
F5
J6
37
37
L6
L6
48
48
N5
N5
PB2
I/O
FT_la
-
-
-
-
-
-
K6
K6
49
49
M5
M5
PF11
I/O
FT
- DCMI_D12, EVENTOUT
-
-
-
-
-
-
-
J7
J7
50
50
N6
N6
PF12
I/O
FT
- FMC_A6, EVENTOUT
-
-
-
-
-
-
-
-
-
51
51
-
-
VSS
S
-
- -
-
-
-
-
-
-
-
-
-
52
52
A8
A8
VDD
S
-
- -
-
STM32L4A6xG
28
Pinouts and pin description
78/281
Table 15. STM32L4A6xG pin definitions (continued)
WLCSP100L_SMPS
LQFP100
LQFP100_SMPS
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA169
UFBGA169_SMPS
Pin type
I/O structure
-
-
-
-
-
-
K7
K7
53
53
M6
M6
PF13
I/O
FT
-
-
-
-
-
-
J8
J8
54
54
L6
L6
PF14
I/O
FT_fa
-
I2C4_SCL,
DFSDM1_CKIN6,
TSC_G8_IO1, FMC_A8,
EVENTOUT
-
-
-
-
-
-
J9
J9
55
55
K6
K6
PF15
I/O
FT_fa
-
I2C4_SDA, TSC_G8_IO2,
FMC_A9, EVENTOUT
-
-
-
-
-
-
H9
H9
56
56
J6
J6
PG0
I/O
FT
-
TSC_G8_IO3, FMC_A10,
EVENTOUT
-
-
-
-
-
-
G9
G9
57
57
H6
H6
PG1
I/O
FT
-
TSC_G8_IO4, FMC_A11,
EVENTOUT
-
-
K6
K6
38
38
M7
M7
58
58
L7
L7
PE7
I/O
FT
-
TIM1_ETR,
DFSDM1_DATIN2,
FMC_D4, SAI1_SD_B,
EVENTOUT
-
FT
TIM1_CH1N,
DFSDM1_CKIN2,
FMC_D5, SAI1_SCK_B,
EVENTOUT
-
TIM1_CH1,
DFSDM1_CKOUT,
FMC_D6, SAI1_FS_B,
EVENTOUT
-
- -
-
-
K5
K5
39
39
L7
L7
59
59
K7
K7
PE8
I/O
-
-
J5
J5
40
40
M8
M8
60
60
J7
J7
PE9
I/O
FT
-
-
-
-
-
-
F6
F6
61
61
M7
M7
VSS
S
-
Alternate functions
I2C4_SMBA,
- DFSDM1_DATIN6,
FMC_A7, EVENTOUT
Additional functions
-
-
79/281
Pinouts and pin description
-
Pin name
(function after
reset)
Notes
WLCSP100L
DS11584 Rev 14
LQFP64_SMPS
Pin functions
LQFP64
Pin Number
STM32L4A6xG
Table 15. STM32L4A6xG pin definitions (continued)
LQFP100
LQFP100_SMPS
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA169
UFBGA169_SMPS
-
-
-
-
G6
G6
62
62
N7
N7
-
DS11584 Rev 14
-
-
-
-
-
-
-
H5
K4
G5
G4
J4
H5
K4
J4
G5
G4
41
42
43
44
45
41
42
43
44
45
L8
M9
L9
M10
M11
L8
M9
L9
M10
M11
63
64
65
66
67
63
64
65
66
67
H7
N8
M8
L8
K8
H7
N8
M8
L8
K8
S
-
PE10
PE11
PE12
PE13
PE14
I/O
I/O
I/O
I/O
I/O
Alternate functions
- -
Additional functions
-
FT
TIM1_CH2N,
DFSDM1_DATIN4,
TSC_G5_IO1,
QUADSPI_CLK, FMC_D7,
SAI1_MCLK_B,
EVENTOUT
FT
TIM1_CH2,
DFSDM1_CKIN4,
- TSC_G5_IO2,
QUADSPI_BK1_NCS,
FMC_D8, EVENTOUT
FT
TIM1_CH3N, SPI1_NSS,
DFSDM1_DATIN5,
- TSC_G5_IO3,
QUADSPI_BK1_IO0,
FMC_D9, EVENTOUT
FT
TIM1_CH3, SPI1_SCK,
DFSDM1_CKIN5,
- TSC_G5_IO4,
QUADSPI_BK1_IO1,
FMC_D10, EVENTOUT
FT
TIM1_CH4, TIM1_BKIN2,
TIM1_BKIN2_COMP2,
- SPI1_MISO,
QUADSPI_BK1_IO2,
FMC_D11, EVENTOUT
-
-
STM32L4A6xG
-
-
VDD
Notes
WLCSP100L_SMPS
-
I/O structure
WLCSP100L
-
Pin name
(function after
reset)
Pin type
LQFP64_SMPS
Pin functions
LQFP64
Pin Number
Pinouts and pin description
80/281
Table 15. STM32L4A6xG pin definitions (continued)
-
DS11584 Rev 14
29
-
28
H4
K3
H4
K3
46
47
46
47
M12
L10
M12
L10
68
69
68
69
J8
N9
J8
N9
PE15
PB10
I/O
I/O
FT
Notes
I/O structure
Pin name
(function after
reset)
Pin type
UFBGA169_SMPS
UFBGA169
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100_SMPS
LQFP100
WLCSP100L_SMPS
WLCSP100L
LQFP64_SMPS
LQFP64
Pin Number
Alternate functions
TIM1_BKIN,
TIM1_BKIN_COMP1,
- SPI1_MOSI,
QUADSPI_BK1_IO3,
FMC_D12, EVENTOUT
Additional functions
-
TIM2_CH4, I2C4_SDA,
I2C2_SDA,
DFSDM1_CKIN7,
USART3_RX,
LPUART1_TX,
QUADSPI_BK1_NCS,
LCD_SEG11,
COMP2_OUT, EVENTOUT
81/281
29
J3
J3
48
-
L11
-
70
-
H8
H8
PB11
I/O
FT_fl
-
30
-
K1
-
48
-
L11
-
70
-
M10
VDD12
S
-
-
-
-
-
-
-
-
-
-
-
K9
K9
PH4
I/O
-
-
-
-
-
-
-
-
-
-
L9
L9
PH5
I/O
- -
-
FT_f
- I2C2_SCL, EVENTOUT
-
FT_f
I2C2_SDA,
- DCMI_PIXCLK,
EVENTOUT
-
Pinouts and pin description
FT_fl
TIM2_CH3, I2C4_SCL,
I2C2_SCL, SPI2_SCK,
DFSDM1_DATIN7,
USART3_TX,
LPUART1_RX,
TSC_SYNC,
QUADSPI_CLK,
LCD_SEG10,
COMP1_OUT,
SAI1_SCK_A, EVENTOUT
30
STM32L4A6xG
Table 15. STM32L4A6xG pin definitions (continued)
WLCSP100L
WLCSP100L_SMPS
LQFP100
LQFP100_SMPS
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA169
UFBGA169_SMPS
Pin type
I/O structure
Notes
DS11584 Rev 14
LQFP64_SMPS
Pin functions
LQFP64
Pin Number
-
-
-
-
-
-
-
-
-
-
N10
N10
PH8
I/O
FT_f
-
I2C3_SDA, DCMI_HSYNC,
EVENTOUT
-
-
-
-
-
-
-
-
-
-
M9
M9
PH10
I/O
FT
-
TIM5_CH1, DCMI_D1,
EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
M10
-
PH11
I/O
FT
-
TIM5_CH2, DCMI_D2,
EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
M3
M3
VSS
S
-
- -
-
-
-
-
-
-
-
-
-
-
-
N3
N3
VDD
S
-
- -
-
-
-
-
-
-
-
-
-
-
-
M11
M11
VSS
S
-
- -
-
31
31
K2
K2
49
49
F12
F12
71
71
L13
L13
VSS
S
-
- -
-
32
32
K1
J2
50
50
G12
G12
72
72
L12
L12
VDD
S
-
- -
-
-
-
-
-
-
-
-
-
-
-
N11
N11
VDD
S
-
- -
-
33
J1
J1
51
51
L12
L12
73
73
N12
N12
PB12
I/O
FT_l
Alternate functions
Additional functions
TIM1_BKIN,
TIM1_BKIN_COMP2,
I2C2_SMBA, SPI2_NSS,
DFSDM1_DATIN1,
USART3_CK,
LPUART1_RTS_DE,
TSC_G1_IO1, CAN2_RX,
LCD_SEG12, SWPMI1_IO,
SAI2_FS_A, TIM15_BKIN,
EVENTOUT
STM32L4A6xG
33
Pin name
(function after
reset)
Pinouts and pin description
82/281
Table 15. STM32L4A6xG pin definitions (continued)
34
34
J2
H2
52
52
K12
K12
74
74
N13
N13
PB13
I/O
FT_fl
FT_fl
TIM1_CH2N, TIM8_CH2N,
I2C2_SDA, SPI2_MISO,
DFSDM1_DATIN2,
USART3_RTS_DE,
- TSC_G1_IO3,
LCD_SEG14,
SWPMI1_RX,
SAI2_MCLK_A,
TIM15_CH1, EVENTOUT
-
36
-
H2
H1
H3
H1
H3
G3
53
54
55
53
54
55
K11
K10
K9
K11
K10
K9
75
76
77
75
76
77
M13
M12
L11
M13
M12
L11
PB14
PB15
PD8
I/O
FT_l
RTC_REFIN, TIM1_CH3N,
TIM8_CH3N, SPI2_MOSI,
DFSDM1_CKIN2,
TSC_G1_IO4,
LCD_SEG15,
SWPMI1_SUSPEND,
SAI2_SD_A, TIM15_CH2,
EVENTOUT
I/O
FT_l
USART3_TX,
DCMI_HSYNC,
LCD_SEG28, FMC_D13,
EVENTOUT
I/O
Additional functions
83/281
Pinouts and pin description
36
35
Alternate functions
TIM1_CH1N, I2C2_SCL,
SPI2_SCK,
DFSDM1_CKIN1,
USART3_CTS,
LPUART1_CTS,
TSC_G1_IO2, CAN2_TX,
LCD_SEG13,
SWPMI1_TX,
SAI2_SCK_A,
TIM15_CH1N, EVENTOUT
DS11584 Rev 14
35
Notes
I/O structure
Pin name
(function after
reset)
Pin type
UFBGA169_SMPS
UFBGA169
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100_SMPS
LQFP100
WLCSP100L_SMPS
WLCSP100L
LQFP64_SMPS
LQFP64
Pin Number
STM32L4A6xG
Table 15. STM32L4A6xG pin definitions (continued)
Notes
I/O structure
Pin name
(function after
reset)
Pin type
UFBGA169_SMPS
UFBGA169
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100_SMPS
LQFP100
WLCSP100L_SMPS
WLCSP100L
LQFP64_SMPS
LQFP64
Pin Number
Alternate functions
Additional functions
DS11584 Rev 14
-
-
G2
G2
56
56
K8
K8
78
78
L10
L10
PD9
I/O
FT_l
USART3_RX,
DCMI_PIXCLK,
- LCD_SEG29, FMC_D14, SAI2_MCLK_A,
EVENTOUT
-
-
G1
G1
57
57
J12
J12
79
79
J13
J13
PD10
I/O
FT_l
-
FT_l
I2C4_SMBA,
USART3_CTS,
TSC_G6_IO2,
LCD_SEG31, FMC_A16,
SAI2_SD_A,
LPTIM2_ETR, EVENTOUT
FT_fl
TIM4_CH1, I2C4_SCL,
USART3_RTS_DE,
TSC_G6_IO3,
LCD_SEG32, FMC_A17,
SAI2_FS_A, LPTIM2_IN1,
EVENTOUT
TIM4_CH2, I2C4_SDA,
TSC_G6_IO4,
LCD_SEG33, FMC_A18,
LPTIM2_OUT, EVENTOUT
-
-
-
-
-
-
-
-
58
59
58
59
J11
J10
J11
J10
80
81
80
81
K12
K11
K12
K11
PD11
PD12
I/O
I/O
Pinouts and pin description
84/281
Table 15. STM32L4A6xG pin definitions (continued)
USART3_CK,
TSC_G6_IO1,
LCD_SEG30, FMC_D15,
SAI2_SCK_A, EVENTOUT
-
-
-
60
60
H12
H12
82
82
K13
K13
PD13
I/O
FT_fl
-
-
-
-
-
-
-
-
83
83
H12
H12
VSS
S
-
- -
-
-
-
F1
F1
-
-
-
-
84
84
H13
H13
VDD
S
-
- -
-
STM32L4A6xG
-
WLCSP100L_SMPS
LQFP100
LQFP100_SMPS
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA169
UFBGA169_SMPS
Pin type
I/O structure
Notes
-
-
G3
F3
61
61
H11
H11
85
85
K10
K10
PD14
I/O
FT_l
-
TIM4_CH3, LCD_SEG34,
FMC_D0, EVENTOUT
-
-
F4
F2
62
62
H10
H10
86
86
H11
H11
PD15
I/O
FT_l
-
TIM4_CH4, LCD_SEG35,
FMC_D1, EVENTOUT
-
-
-
-
-
-
G10
G10
87
87
J12
J12
PG2
I/O
FT_s
-
SPI1_SCK, FMC_A12,
SAI2_SCK_B, EVENTOUT
-
-
-
-
-
-
F9
F9
88
88
J11
J11
PG3
I/O
FT_s
-
SPI1_MISO, FMC_A13,
SAI2_FS_B, EVENTOUT
-
-
-
-
-
-
F10
F10
89
89
J10
J10
PG4
I/O
FT_s
SPI1_MOSI, FMC_A14,
- SAI2_MCLK_B,
EVENTOUT
-
-
-
-
-
-
-
E9
E9
90
90
J9
J9
PG5
I/O
FT_s
-
SPI1_NSS,
LPUART1_CTS,
FMC_A15, SAI2_SD_B,
EVENTOUT
-
-
-
-
-
-
-
G4
G4
91
91
G11
G11
PG6
I/O
FT_s
I2C3_SMBA,
- LPUART1_RTS_DE,
EVENTOUT
-
-
-
-
-
-
H4
H4
92
92
H10
H10
PG7
I/O
FT_fs
I2C3_SCL, LPUART1_TX,
- FMC_INT, SAI1_MCLK_A, EVENTOUT
-
-
-
-
-
-
J6
J6
93
93
H9
H9
PG8
I/O
FT_fs
-
-
-
-
-
-
-
-
-
94
94
F13
F13
VSS
S
-
- -
-
-
-
-
-
-
-
-
-
95
95
F12
F12
VDDIO2
S
-
- -
-
Pin name
(function after
reset)
Alternate functions
Additional functions
-
I2C3_SDA, LPUART1_RX,
EVENTOUT
Pinouts and pin description
85/281
WLCSP100L
DS11584 Rev 14
LQFP64_SMPS
Pin functions
LQFP64
Pin Number
STM32L4A6xG
Table 15. STM32L4A6xG pin definitions (continued)
37
DS11584 Rev 14
38
39
40
37
38
39
40
F2
F3
E1
E2
F4
E4
E1
E2
63
64
65
66
63
64
65
66
E12
E11
E10
D12
E12
E11
E10
D12
96
97
98
99
96
97
98
99
F11
G12
G10
G9
F11
G12
G10
G9
PC6
PC7
PC8
PC9
I/O
I/O
I/O
I/O
Notes
I/O structure
Pin name
(function after
reset)
Pin type
UFBGA169_SMPS
UFBGA169
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100_SMPS
LQFP100
WLCSP100L_SMPS
WLCSP100L
LQFP64_SMPS
LQFP64
Pin Number
Alternate functions
FT_l
TIM3_CH2, TIM8_CH2,
DFSDM1_DATIN3,
TSC_G4_IO2, DCMI_D1,
- LCD_SEG25,
SDMMC1_D7,
SAI2_MCLK_B,
EVENTOUT
FT_l
TIM3_CH3, TIM8_CH3,
TSC_G4_IO3, DCMI_D2,
LCD_SEG26,
SDMMC1_D0, EVENTOUT
FT_fl
TIM8_BKIN2, TIM3_CH4,
TIM8_CH4, DCMI_D3,
I2C3_SDA, TSC_G4_IO4,
OTG_FS_NOE,
- LCD_SEG27,
SDMMC1_D1,
SAI2_EXTCLK,
TIM8_BKIN2_COMP1,
EVENTOUT
STM32L4A6xG
FT_l
TIM3_CH1, TIM8_CH1,
DFSDM1_CKIN3,
TSC_G4_IO1, DCMI_D0,
- LCD_SEG24,
SDMMC1_D6,
SAI2_MCLK_A,
EVENTOUT
Additional functions
Pinouts and pin description
86/281
Table 15. STM32L4A6xG pin definitions (continued)
41
DS11584 Rev 14
42
43
44
41
42
43
44
E3
D3
D2
D1
E3
D3
D2
D1
67
68
69
70
67
68
69
70
D11
D10
C12
B12
D11
D10
C12
B12
100
101
102
103
100
101
102
103
G8
F10
F9
E13
G8
F10
F9
E13
PA8
PA9
PA10
PA11
I/O
I/O
I/O
I/O
Notes
I/O structure
Pin name
(function after
reset)
Pin type
UFBGA169_SMPS
UFBGA169
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100_SMPS
LQFP100
WLCSP100L_SMPS
WLCSP100L
LQFP64_SMPS
LQFP64
Pin Number
Alternate functions
Additional functions
FT_lu
TIM1_CH2, SPI2_SCK,
DCMI_D0, USART1_TX,
OTG_FS_VBUS
LCD_COM1, SAI1_FS_A,
TIM15_BKIN, EVENTOUT
FT_lu
TIM1_CH3, DCMI_D1,
USART1_RX,
- OTG_FS_ID, LCD_COM2, SAI1_SD_A, TIM17_BKIN,
EVENTOUT
FT_u
TIM1_CH4, TIM1_BKIN2,
SPI1_MISO,
USART1_CTS, CAN1_RX,
OTG_FS_DM,
TIM1_BKIN2_COMP1,
EVENTOUT
TIM1_ETR, SPI1_MOSI,
USART1_RTS_DE,
CAN1_TX, OTG_FS_DP,
EVENTOUT
45
C1
C1
71
71
A12
A12
104
104
D13
D13
PA12
I/O
FT_u
46
46
C2
C2
72
72
A11
A11
105
105
A11
A11
PA13 (JTMS/
SWDIO)
I/O
FT
(4)
-
87/281
JTMS/SWDIO, IR_OUT,
OTG_FS_NOE,
SWPMI1_TX, SAI1_SD_B,
EVENTOUT
Pinouts and pin description
FT_l
MCO, TIM1_CH1,
USART1_CK,
OTG_FS_SOF,
LCD_COM0, SWPMI1_IO,
SAI1_SCK_A,
LPTIM2_OUT, EVENTOUT
45
STM32L4A6xG
Table 15. STM32L4A6xG pin definitions (continued)
LQFP100
LQFP100_SMPS
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA169
UFBGA169_SMPS
Pin type
I/O structure
47
B1
B1
-
-
-
-
-
-
-
-
VSS
S
-
- -
-
48
48
A1
A1
73
73
C11
C11
106
106
E12
E12
VDDUSB
S
-
- -
-
-
-
-
-
74
74
F11
F11
107
107
C12
C12
VSS
S
-
- -
-
-
-
-
-
75
75
G11
G11
108
108
C13
C13
VDD
S
-
- -
-
-
-
-
-
-
-
-
-
-
-
E11
E11
PH6
I/O
FT
-
I2C2_SMBA, DCMI_D8,
EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
D12
D12
PH7
I/O
FT_f
-
I2C3_SCL, DCMI_D9,
EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
D11
D11
PH9
I/O
FT
-
I2C3_SMBA, DCMI_D0,
EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
B13
B13
PH12
I/O
FT
-
TIM5_CH3, DCMI_D3,
EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
A13
A13
PH14
I/O
FT
-
TIM8_CH2N, DCMI_D4,
EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
B12
B12
PH15
I/O
FT
-
TIM8_CH3N, DCMI_D11,
EVENTOUT
-
-
-
-
-
-
-
-
-
-
A12
A12
PI0
I/O
FT
-
TIM5_CH4, SPI2_NSS,
DCMI_D13, EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
C11
C11
PI8
I/O
FT
- DCMI_D12, EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
B11
B11
PI1
I/O
FT
-
SPI2_SCK, DCMI_D8,
EVENTOUT
-
Notes
WLCSP100L_SMPS
47
Pin name
(function after
reset)
Alternate functions
Additional functions
STM32L4A6xG
WLCSP100L
DS11584 Rev 14
LQFP64_SMPS
Pin functions
LQFP64
Pin Number
Pinouts and pin description
88/281
Table 15. STM32L4A6xG pin definitions (continued)
WLCSP100L
WLCSP100L_SMPS
LQFP100
LQFP100_SMPS
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA169
UFBGA169_SMPS
Pin type
I/O structure
Notes
DS11584 Rev 14
LQFP64_SMPS
Pin functions
LQFP64
Pin Number
-
-
-
-
-
-
-
-
-
-
B10
B10
PI2
I/O
FT
-
TIM8_CH4, SPI2_MISO,
DCMI_D9, EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
C10
C10
PI3
I/O
FT
-
TIM8_ETR, SPI2_MOSI,
DCMI_D10, EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
D10
D10
PI4
I/O
FT
-
TIM8_BKIN, DCMI_D5,
EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
E10
E10
PI5
I/O
FT
TIM8_CH1,
- DCMI_VSYNC,
EVENTOUT
-
-
-
-
-
-
-
-
-
-
C9
C9
PH13
I/O
FT
-
TIM8_CH1N, CAN1_TX,
EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
B9
B9
PI6
I/O
FT
-
TIM8_CH2, DCMI_D6,
EVENTOUT
-
49
50
B2
A2
B2
A2
76
77
76
77
A10
A9
A10
A9
109
110
109
110
A10
A9
A10
A9
PA14 (JTCK/
SWCLK)
PA15 (JTDI)
I/O
I/O
FT
FT_l
Alternate functions
Additional functions
-
89/281
(4)
JTCK/SWCLK,
LPTIM1_OUT,
I2C1_SMBA, I2C4_SMBA,
OTG_FS_SOF,
SWPMI1_RX, SAI1_FS_B,
EVENTOUT
(4)
JTDI, TIM2_CH1,
TIM2_ETR, USART2_RX,
SPI1_NSS, SPI3_NSS,
USART3_RTS_DE,
UART4_RTS_DE,
TSC_G3_IO1,
LCD_SEG17,
SWPMI1_SUSPEND,
SAI2_FS_B, EVENTOUT
Pinouts and pin description
50
49
Pin name
(function after
reset)
STM32L4A6xG
Table 15. STM32L4A6xG pin definitions (continued)
51
DS11584 Rev 14
52
53
-
51
52
53
-
-
C3
C4
B3
A3
C3
D4
C4
B3
A3
78
79
80
81
82
78
79
80
81
82
B11
C10
B10
C9
B9
B11
C10
B10
C9
B9
111
112
113
114
115
111
112
113
114
115
D9
E9
F8
B8
C8
D9
E9
F8
B8
C8
PC10
PC11
PC12
PD0
PD1
I/O
I/O
I/O
I/O
I/O
Notes
I/O structure
Pin name
(function after
reset)
Pin type
UFBGA169_SMPS
UFBGA169
LQFP144_SMPS
LQFP144
UFBGA132_SMPS
UFBGA132
LQFP100_SMPS
LQFP100
WLCSP100L_SMPS
WLCSP100L
D4
Pin functions
Alternate functions
Additional functions
FT_l
TRACED1, SPI3_SCK,
USART3_TX, UART4_TX,
TSC_G3_IO2, DCMI_D8,
- LCD_COM4/LCD_SEG28/ LCD_SEG40,
SDMMC1_D2,
SAI2_SCK_B, EVENTOUT
FT_l
QUADSPI_BK2_NCS,
SPI3_MISO, USART3_RX,
UART4_RX, TSC_G3_IO3,
DCMI_D4,
- LCD_COM5/LCD_SEG29/ LCD_SEG41,
SDMMC1_D3,
SAI2_MCLK_B,
EVENTOUT
FT_l
TRACED3, SPI3_MOSI,
USART3_CK, UART5_TX,
TSC_G3_IO4, DCMI_D9,
- LCD_COM6/LCD_SEG30/ LCD_SEG42,
SDMMC1_CK,
SAI2_SD_B, EVENTOUT
FT
SPI2_NSS,
DFSDM1_DATIN7,
CAN1_RX, FMC_D2,
EVENTOUT
-
FT
SPI2_SCK,
DFSDM1_CKIN7,
CAN1_TX, FMC_D3,
EVENTOUT
-
STM32L4A6xG
-
LQFP64_SMPS
LQFP64
Pin Number
Pinouts and pin description
90/281
Table 15. STM32L4A6xG pin definitions (continued)
54
DS11584 Rev 14
-
-
-
E4
-
D5
-
83
84
83
84
C8
B8
C8
B8
116
117
116
117
D8
E8
D8
E8
PD2
PD3
I/O
I/O
FT_l
Notes
I/O structure
Pin name
(function after
reset)
Pin type
UFBGA169_SMPS
UFBGA169
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100_SMPS
LQFP100
WLCSP100L_SMPS
WLCSP100L
LQFP64_SMPS
LQFP64
Pin Number
Alternate functions
STM32L4A6xG
Table 15. STM32L4A6xG pin definitions (continued)
Additional functions
TRACED2, TIM3_ETR,
USART3_RTS_DE,
UART5_RX, TSC_SYNC,
DCMI_D11,
LCD_COM7/LCD_SEG31/
LCD_SEG43,
SDMMC1_CMD,
EVENTOUT
FT
SPI2_SCK, DCMI_D5,
SPI2_MISO,
DFSDM1_DATIN0,
USART2_CTS,
QUADSPI_BK2_NCS,
FMC_CLK, EVENTOUT
-
-
-
B4
C5
85
85
B7
B7
118
118
C7
C7
PD4
I/O
FT
-
-
E5
B4
86
86
A6
A6
119
119
D7
D7
PD5
I/O
FT
USART2_TX,
- QUADSPI_BK2_IO1,
FMC_NWE, EVENTOUT
-
-
-
-
-
-
-
-
-
120
120
-
-
VSS
S
-
- -
-
-
-
A4
A4
-
-
-
-
121
121
-
-
VDD
S
-
- -
-
91/281
Pinouts and pin description
-
SPI2_MOSI,
DFSDM1_CKIN0,
- USART2_RTS_DE,
QUADSPI_BK2_IO0,
FMC_NOE, EVENTOUT
Notes
I/O structure
Pin name
(function after
reset)
Pin type
UFBGA169_SMPS
UFBGA169
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100_SMPS
LQFP100
WLCSP100L_SMPS
WLCSP100L
LQFP64_SMPS
LQFP64
Pin Number
Alternate functions
Additional functions
DS11584 Rev 14
-
-
D5
B5
87
87
B6
B6
122
122
E7
E7
PD6
I/O
FT
DCMI_D10,
QUADSPI_BK2_IO1,
DFSDM1_DATIN1,
- USART2_RX,
QUADSPI_BK2_IO2,
FMC_NWAIT, SAI1_SD_A,
EVENTOUT
-
-
C5
C6
88
88
A5
A5
123
123
F7
F7
PD7
I/O
FT
-
-
-
-
-
B5
A5
D6
A5
-
-
-
-
D9
D8
D9
D8
124
125
124
125
B7
D6
B7
D6
PG9
PG10
I/O
I/O
DFSDM1_CKIN1,
USART2_CK,
QUADSPI_BK2_IO3,
FMC_NE1, EVENTOUT
Pinouts and pin description
92/281
Table 15. STM32L4A6xG pin definitions (continued)
-
FT_s
SPI3_SCK, USART1_TX,
FMC_NCE/FMC_NE2,
SAI2_SCK_A,
TIM15_CH1N, EVENTOUT
FT_s
LPTIM1_IN1, SPI3_MISO,
USART1_RX, FMC_NE3,
SAI2_FS_A, TIM15_CH1,
EVENTOUT
-
D6
E5
-
-
G3
G3
126
126
E6
E6
PG11
I/O
FT_s
-
-
B6
B6
-
-
D7
D7
127
127
F6
F6
PG12
I/O
FT_s
-
LPTIM1_ETR, SPI3_NSS,
USART1_RTS_DE,
FMC_NE4, SAI2_SD_A,
EVENTOUT
-
-
-
-
-
-
C7
C7
128
128
G7
G7
PG13
I/O
FT_fs
-
I2C1_SDA, USART1_CK,
FMC_A24, EVENTOUT
STM32L4A6xG
-
LPTIM1_IN2, SPI3_MOSI,
USART1_CTS,
SAI2_MCLK_A,
TIM15_CH2, EVENTOUT
WLCSP100L
WLCSP100L_SMPS
LQFP100
LQFP100_SMPS
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA169
UFBGA169_SMPS
Pin type
I/O structure
Notes
DS11584 Rev 14
LQFP64_SMPS
Pin functions
LQFP64
Pin Number
-
-
-
-
-
-
C6
-
129
129
G6
G6
PG14
I/O
FT_fs
-
-
-
-
-
-
-
F7
F7
130
130
A7
A7
VSS
S
-
- -
-
-
-
A6
A6
-
-
G7
G7
131
131
B6
B6
VDDIO2
S
-
- -
-
-
-
-
-
-
-
K1
K1
132
-
C6
-
PG15
I/O
FT_s
55
55
C6
C7
F5
E6
89
90
89
90
A8
A7
A8
A7
133
134
132
133
A6
A5
A6
A5
PB3
(JTDO/TRACES
WO)
PB4 (NJTRST)
I/O
I/O
FT_la
FT_fla
Alternate functions
I2C1_SCL, FMC_A25,
EVENTOUT
Additional functions
-
LPTIM1_OUT,
- I2C1_SMBA, DCMI_D13, EVENTOUT
(4)
JTDO/TRACESWO,
TIM2_CH2, SPI1_SCK,
SPI3_SCK,
COMP2_INM
USART1_RTS_DE,
OTG_FS_CRS_SYNC,
LCD_SEG7, SAI1_SCK_B,
EVENTOUT
(4)
NJTRST, TIM3_CH1,
I2C3_SDA, SPI1_MISO,
SPI3_MISO,
USART1_CTS,
COMP2_INP
UART5_RTS_DE,
TSC_G2_IO1, DCMI_D12,
LCD_SEG8,
SAI1_MCLK_B,
TIM17_BKIN, EVENTOUT
93/281
Pinouts and pin description
56
54
Pin name
(function after
reset)
STM32L4A6xG
Table 15. STM32L4A6xG pin definitions (continued)
57
DS11584 Rev 14
58
56
57
B7
A7
C7
A7
91
92
91
92
C5
B5
C5
B5
135
136
134
135
B5
C5
B5
C5
PB5
PB6
I/O
I/O
Notes
I/O structure
Pin name
(function after
reset)
Pin type
UFBGA169_SMPS
UFBGA169
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100_SMPS
LQFP100
WLCSP100L_SMPS
WLCSP100L
LQFP64_SMPS
LQFP64
Pin Number
Alternate functions
Additional functions
FT_fa
LPTIM1_ETR, TIM4_CH1,
TIM8_BKIN2, I2C1_SCL,
I2C4_SCL,
DFSDM1_DATIN5,
- USART1_TX, CAN2_TX, COMP2_INP
TSC_G2_IO3, DCMI_D5,
TIM8_BKIN2_COMP2,
SAI1_FS_B, TIM16_CH1N,
EVENTOUT
LPTIM1_IN2, TIM4_CH2,
TIM8_BKIN, I2C1_SDA,
I2C4_SDA,
DFSDM1_CKIN5,
USART1_RX,
COMP2_INM, PVD_IN
- UART4_CTS,
TSC_G2_IO4,
DCMI_VSYNC,
LCD_SEG21, FMC_NL,
TIM8_BKIN_COMP1,
TIM17_CH1N, EVENTOUT
59
58
D7
B7
93
93
B4
B4
137
136
D5
D5
PB7
I/O
FT_fla
60
59
E6
D7
94
94
A4
A4
138
137
E5
E5
PH3-BOOT0
I/O
FT
- EVENTOUT
-
STM32L4A6xG
FT_la
LPTIM1_IN1, TIM3_CH2,
CAN2_RX, I2C1_SMBA,
SPI1_MOSI, SPI3_MOSI,
USART1_CK,
- UART5_CTS,
TSC_G2_IO2, DCMI_D10,
LCD_SEG9, COMP2_OUT,
SAI1_SD_B, TIM16_BKIN,
EVENTOUT
Pinouts and pin description
94/281
Table 15. STM32L4A6xG pin definitions (continued)
61
60
B8
B8
95
95
A3
A3
139
138
C4
C4
PB8
I/O
Notes
I/O structure
Pin name
(function after
reset)
Pin type
UFBGA169_SMPS
UFBGA169
LQFP144_SMPS
LQFP144
Pin functions
UFBGA132_SMPS
UFBGA132
LQFP100_SMPS
LQFP100
WLCSP100L_SMPS
WLCSP100L
LQFP64_SMPS
LQFP64
Pin Number
Alternate functions
Additional functions
DS11584 Rev 14
FT_fl
TIM4_CH3, I2C1_SCL,
DFSDM1_DATIN6,
CAN1_RX, DCMI_D6,
- LCD_SEG16,
SDMMC1_D4,
SAI1_MCLK_A,
TIM16_CH1, EVENTOUT
IR_OUT, TIM4_CH4,
I2C1_SDA, SPI2_NSS,
DFSDM1_CKIN6,
CAN1_TX, DCMI_D7,
LCD_COM3,
SDMMC1_D5,
SAI1_FS_A, TIM17_CH1,
EVENTOUT
61
A8
A8
96
96
B3
B3
140
139
D4
D4
PB9
I/O
FT_fl
-
62
-
-
-
-
-
C6
-
-
-
C6
VDD12
S
-
-
-
-
-
97
97
C3
C3
141
140
A4
A4
PE0
I/O
FT_l
TIM4_ETR, DCMI_D2,
- LCD_SEG36, FMC_NBL0, TIM16_CH1, EVENTOUT
-
-
-
-
98
-
A2
A2
142
141
B4
B4
PE1
I/O
FT_l
DCMI_D3, LCD_SEG37,
- FMC_NBL1, TIM17_CH1, EVENTOUT
-
-
-
A9
-
98
-
-
-
142
-
-
VDD12
S
-
- -
-
63
63
A9
B9
99
99
D3
D3
143
143
B3
B3
VSS
S
-
- -
-
64
64
A10
A10
100
100
C4
C4
144
144
A3
A3
VDD
S
-
- -
-
-
Pinouts and pin description
95/281
62
- -
STM32L4A6xG
Table 15. STM32L4A6xG pin definitions (continued)
WLCSP100L_SMPS
LQFP100
LQFP100_SMPS
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA169
UFBGA169_SMPS
Pin type
I/O structure
-
-
-
-
-
-
-
-
-
-
C2
C2
VSS
S
-
- -
-
-
-
-
-
-
-
-
-
-
-
C1
C1
VDD
S
-
- -
-
-
-
-
-
-
-
-
-
-
-
A2
A2
PH2
I/O
FT
-
QUADSPI_BK2_IO0,
EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
B2
B2
PI7
I/O
FT
-
TIM8_CH3, DCMI_D7,
EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
B1
B1
PI9
I/O
FT
- CAN1_RX, EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
A1
A1
PI10
I/O
FT
- EVENTOUT
-
Pin name
(function after
reset)
Notes
WLCSP100L
DS11584 Rev 14
LQFP64_SMPS
Pin functions
LQFP64
Pin Number
Alternate functions
Additional functions
Pinouts and pin description
96/281
Table 15. STM32L4A6xG pin definitions (continued)
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current(3 mA), the use of GPIOs PC13 to PC15 in output
mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These GPIOs must not be used as current sources (e.g. to drive an LED).
2. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the
system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the RM0351 reference manual.
3. OPAMPx_VINM pins are not available as additional functions on pins PA1 and PA7 on UFBGA packages. On UFBGA packages, use the OPAMPx_VINM dedicated pins
available on M3 and M4 balls.
4. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are
activated.
STM32L4A6xG
AF0
AF1
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/2/5/8/
LPTIM1
TIM1/2/3/4/5
SPI2/USART2/
CAN2/TIM8/
QUADSPI
I2C1/2/3/4/
DCMI
SPI1/2/DCMI/
QUADSPI
SPI3/I2C3/
DFSDM/
COMP1/
QUADSPI
USART1/2/3
PA0
-
TIM2_CH1
TIM5_CH1
TIM8_ETR
-
-
-
USART2_CTS
PA1
-
TIM2_CH2
TIM5_CH2
-
I2C1_SMBA
SPI1_SCK
-
USART2_RTS_
DE
PA2
-
TIM2_CH3
TIM5_CH3
-
-
-
-
USART2_TX
PA3
-
TIM2_CH4
TIM5_CH4
-
-
-
-
USART2_RX
PA4
-
-
-
-
-
SPI1_NSS
SPI3_NSS
USART2_CK
PA5
-
TIM2_CH1
TIM2_ETR
TIM8_CH1N
-
SPI1_SCK
-
-
PA6
-
TIM1_BKIN
TIM3_CH1
TIM8_BKIN
DCMI_PIXCLK
SPI1_MISO
-
USART3_CTS
PA7
-
TIM1_CH1N
TIM3_CH2
TIM8_CH1N
I2C3_SCL
SPI1_MOSI
-
-
PA8
MCO
TIM1_CH1
-
-
-
-
-
USART1_CK
PA9
-
TIM1_CH2
-
SPI2_SCK
-
DCMI_D0
-
USART1_TX
PA10
-
TIM1_CH3
-
-
-
DCMI_D1
-
USART1_RX
PA11
-
TIM1_CH4
TIM1_BKIN2
-
-
SPI1_MISO
-
USART1_CTS
PA12
-
TIM1_ETR
-
-
-
SPI1_MOSI
-
USART1_RTS_
DE
PA13
JTMS/SWDIO
IR_OUT
-
-
-
-
-
-
PA14
JTCK/SWCLK
LPTIM1_OUT
-
-
I2C1_SMBA
I2C4_SMBA
-
-
PA15
JTDI
TIM2_CH1
TIM2_ETR
USART2_RX
-
SPI1_NSS
SPI3_NSS
USART3_RTS_
DE
Port
DS11584 Rev 14
Port A
97/281
Pinouts and pin description
AF2
STM32L4A6xG
Table 16. Alternate function AF0 to AF7(1)
AF0
AF1
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/2/5/8/
LPTIM1
TIM1/2/3/4/5
SPI2/USART2/
CAN2/TIM8/
QUADSPI
I2C1/2/3/4/
DCMI
SPI1/2/DCMI/
QUADSPI
SPI3/I2C3/
DFSDM/
COMP1/
QUADSPI
USART1/2/3
PB0
-
TIM1_CH2N
TIM3_CH3
TIM8_CH2N
-
SPI1_NSS
-
USART3_CK
PB1
-
TIM1_CH3N
TIM3_CH4
TIM8_CH3N
-
-
DFSDM1_
DATIN0
USART3_RTS_
DE
PB2
RTC_OUT
LPTIM1_OUT
-
-
I2C3_SMBA
-
DFSDM1_CKIN0
-
PB3
JTDO/
TRACESWO
TIM2_CH2
-
-
-
SPI1_SCK
SPI3_SCK
USART1_RTS_
DE
PB4
NJTRST
-
TIM3_CH1
-
I2C3_SDA
SPI1_MISO
SPI3_MISO
USART1_CTS
PB5
-
LPTIM1_IN1
TIM3_CH2
CAN2_RX
I2C1_SMBA
SPI1_MOSI
SPI3_MOSI
USART1_CK
PB6
-
LPTIM1_ETR
TIM4_CH1
TIM8_BKIN2
I2C1_SCL
I2C4_SCL
DFSDM1_
DATIN5
USART1_TX
PB7
-
LPTIM1_IN2
TIM4_CH2
TIM8_BKIN
I2C1_SDA
I2C4_SDA
DFSDM1_CKIN5
USART1_RX
PB8
-
-
TIM4_CH3
-
I2C1_SCL
-
DFSDM1_
DATIN6
-
PB9
-
IR_OUT
TIM4_CH4
-
I2C1_SDA
SPI2_NSS
DFSDM1_CKIN6
-
PB10
-
TIM2_CH3
-
I2C4_SCL
I2C2_SCL
SPI2_SCK
DFSDM1_
DATIN7
USART3_TX
PB11
-
TIM2_CH4
-
I2C4_SDA
I2C2_SDA
-
DFSDM1_CKIN7
USART3_RX
PB12
-
TIM1_BKIN
-
TIM1_BKIN_
COMP2
I2C2_SMBA
SPI2_NSS
DFSDM1_
DATIN1
USART3_CK
PB13
-
TIM1_CH1N
-
-
I2C2_SCL
SPI2_SCK
DFSDM1_CKIN1
USART3_CTS
PB14
-
TIM1_CH2N
-
TIM8_CH2N
I2C2_SDA
SPI2_MISO
DFSDM1_
DATIN2
USART3_RTS_
DE
PB15
RTC_REFIN
TIM1_CH3N
-
TIM8_CH3N
-
SPI2_MOSI
DFSDM1_CKIN2
-
Port
DS11584 Rev 14
Port B
STM32L4A6xG
AF2
Pinouts and pin description
98/281
Table 16. Alternate function AF0 to AF7(1) (continued)
AF0
AF1
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/2/5/8/
LPTIM1
TIM1/2/3/4/5
SPI2/USART2/
CAN2/TIM8/
QUADSPI
I2C1/2/3/4/
DCMI
SPI1/2/DCMI/
QUADSPI
SPI3/I2C3/
DFSDM/
COMP1/
QUADSPI
USART1/2/3
PC0
-
LPTIM1_IN1
I2C4_SCL
-
I2C3_SCL
-
DFSDM1_
DATIN4
-
PC1
TRACED0
LPTIM1_OUT
I2C4_SDA
SPI2_MOSI
I2C3_SDA
-
DFSDM1_CKIN4
-
PC2
-
LPTIM1_IN2
-
-
-
SPI2_MISO
DFSDM1_
CKOUT
-
PC3
-
LPTIM1_ETR
-
-
-
SPI2_MOSI
-
-
PC4
-
-
-
-
-
-
-
USART3_TX
PC5
-
-
-
-
-
-
-
USART3_RX
PC6
-
-
TIM3_CH1
TIM8_CH1
-
-
DFSDM1_CKIN3
-
PC7
-
-
TIM3_CH2
TIM8_CH2
-
-
DFSDM1_
DATIN3
-
PC8
-
-
TIM3_CH3
TIM8_CH3
-
-
-
-
PC9
-
TIM8_BKIN2
TIM3_CH4
TIM8_CH4
DCMI_D3
-
I2C3_SDA
-
PC10
TRACED1
-
-
-
-
-
SPI3_SCK
USART3_TX
PC11
-
-
-
-
-
QUADSPI_
BK2_NCS
SPI3_MISO
USART3_RX
PC12
TRACED3
-
-
-
-
-
SPI3_MOSI
USART3_CK
PC13
-
-
-
-
-
-
-
-
PC14
-
-
-
-
-
-
-
-
PC15
-
-
-
-
-
-
-
-
Port
DS11584 Rev 14
Port C
99/281
Pinouts and pin description
AF2
STM32L4A6xG
Table 16. Alternate function AF0 to AF7(1) (continued)
AF0
AF1
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/2/5/8/
LPTIM1
TIM1/2/3/4/5
SPI2/USART2/
CAN2/TIM8/
QUADSPI
I2C1/2/3/4/
DCMI
SPI1/2/DCMI/
QUADSPI
SPI3/I2C3/
DFSDM/
COMP1/
QUADSPI
USART1/2/3
PD0
-
-
-
-
-
SPI2_NSS
DFSDM1_
DATIN7
-
PD1
-
-
-
-
-
SPI2_SCK
DFSDM1_CKIN7
-
PD2
TRACED2
-
TIM3_ETR
-
-
-
-
USART3_RTS_
DE
PD3
-
-
-
SPI2_SCK
DCMI_D5
SPI2_MISO
DFSDM1_
DATIN0
USART2_CTS
PD4
-
-
-
-
-
SPI2_MOSI
DFSDM1_CKIN0
USART2_RTS_
DE
PD5
-
-
-
-
-
-
-
USART2_TX
PD6
-
-
-
-
DCMI_D10
QUADSPI_
BK2_IO1
DFSDM1_
DATIN1
USART2_RX
PD7
-
-
-
-
-
-
DFSDM1_CKIN1
USART2_CK
PD8
-
-
-
-
-
-
-
USART3_TX
PD9
-
-
-
-
-
-
-
USART3_RX
PD10
-
-
-
-
-
-
-
USART3_CK
PD11
-
-
-
-
I2C4_SMBA
-
-
USART3_CTS
PD12
-
-
TIM4_CH1
-
I2C4_SCL
-
-
USART3_RTS_
DE
PD13
-
-
TIM4_CH2
-
I2C4_SDA
-
-
-
PD14
-
-
TIM4_CH3
-
-
-
-
-
PD15
-
-
TIM4_CH4
-
-
-
-
-
Port
DS11584 Rev 14
Port D
STM32L4A6xG
AF2
Pinouts and pin description
100/281
Table 16. Alternate function AF0 to AF7(1) (continued)
AF0
AF1
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/2/5/8/
LPTIM1
TIM1/2/3/4/5
SPI2/USART2/
CAN2/TIM8/
QUADSPI
I2C1/2/3/4/
DCMI
SPI1/2/DCMI/
QUADSPI
SPI3/I2C3/
DFSDM/
COMP1/
QUADSPI
USART1/2/3
PE0
-
-
TIM4_ETR
-
-
-
-
-
PE1
-
-
-
-
-
-
-
-
PE2
TRACECK
-
TIM3_ETR
-
-
-
-
-
PE3
TRACED0
-
TIM3_CH1
-
-
-
-
-
PE4
TRACED1
-
TIM3_CH2
-
-
-
DFSDM1_
DATIN3
-
PE5
TRACED2
-
TIM3_CH3
-
-
-
DFSDM1_CKIN3
-
PE6
TRACED3
-
TIM3_CH4
-
-
-
-
-
PE7
-
TIM1_ETR
-
-
-
-
DFSDM1_
DATIN2
-
PE8
-
TIM1_CH1N
-
-
-
-
DFSDM1_CKIN2
-
PE9
-
TIM1_CH1
-
-
-
-
DFSDM1_
CKOUT
-
PE10
-
TIM1_CH2N
-
-
-
-
DFSDM1_
DATIN4
-
PE11
-
TIM1_CH2
-
-
-
-
DFSDM1_CKIN4
-
PE12
-
TIM1_CH3N
-
-
-
SPI1_NSS
DFSDM1_
DATIN5
-
PE13
-
TIM1_CH3
-
-
-
SPI1_SCK
DFSDM1_CKIN5
-
PE14
-
TIM1_CH4
TIM1_BKIN2
TIM1_BKIN2_
COMP2
-
SPI1_MISO
-
-
PE15
-
TIM1_BKIN
-
TIM1_BKIN_
COMP1
-
SPI1_MOSI
-
-
Port
DS11584 Rev 14
Port E
101/281
Pinouts and pin description
AF2
STM32L4A6xG
Table 16. Alternate function AF0 to AF7(1) (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/2/5/8/
LPTIM1
TIM1/2/3/4/5
SPI2/USART2/
CAN2/TIM8/
QUADSPI
I2C1/2/3/4/
DCMI
SPI1/2/DCMI/
QUADSPI
SPI3/I2C3/
DFSDM/
COMP1/
QUADSPI
USART1/2/3
PF0
-
-
-
-
I2C2_SDA
-
-
-
PF1
-
-
-
-
I2C2_SCL
-
-
-
PF2
-
-
-
-
I2C2_SMBA
-
-
-
PF3
-
-
-
-
-
-
-
-
PF4
-
-
-
-
-
-
-
-
PF5
-
-
-
-
-
-
-
-
PF6
-
TIM5_ETR
TIM5_CH1
-
-
-
-
-
PF7
-
-
TIM5_CH2
-
-
-
-
-
PF8
-
-
TIM5_CH3
-
-
-
-
-
PF9
-
-
TIM5_CH4
-
-
-
-
-
PF10
-
-
-
QUADSPI_CLK
-
-
-
-
PF11
-
-
-
-
-
-
-
-
PF12
-
-
-
-
-
-
-
-
PF13
-
-
-
-
I2C4_SMBA
-
DFSDM1_
DATIN6
-
PF14
-
-
-
-
I2C4_SCL
-
DFSDM1_CKIN6
-
PF15
-
-
-
-
I2C4_SDA
-
-
-
Port
DS11584 Rev 14
Port F
Pinouts and pin description
102/281
Table 16. Alternate function AF0 to AF7(1) (continued)
STM32L4A6xG
AF0
AF1
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/2/5/8/
LPTIM1
TIM1/2/3/4/5
SPI2/USART2/
CAN2/TIM8/
QUADSPI
I2C1/2/3/4/
DCMI
SPI1/2/DCMI/
QUADSPI
SPI3/I2C3/
DFSDM/
COMP1/
QUADSPI
USART1/2/3
PG0
-
-
-
-
-
-
-
-
PG1
-
-
-
-
-
-
-
-
PG2
-
-
-
-
-
SPI1_SCK
-
-
PG3
-
-
-
-
-
SPI1_MISO
-
-
PG4
-
-
-
-
-
SPI1_MOSI
-
-
PG5
-
-
-
-
-
SPI1_NSS
-
-
PG6
-
-
-
-
I2C3_SMBA
-
-
-
PG7
-
-
-
-
I2C3_SCL
-
-
-
PG8
-
-
-
-
I2C3_SDA
-
-
-
PG9
-
-
-
-
-
-
SPI3_SCK
USART1_TX
PG10
-
LPTIM1_IN1
-
-
-
-
SPI3_MISO
USART1_RX
PG11
-
LPTIM1_IN2
-
-
-
-
SPI3_MOSI
USART1_CTS
PG12
-
LPTIM1_ETR
-
-
-
-
SPI3_NSS
USART1_RTS_
DE
PG13
-
-
-
-
I2C1_SDA
-
-
USART1_CK
PG14
-
-
-
-
I2C1_SCL
-
-
-
PG15
-
LPTIM1_OUT
-
-
I2C1_SMBA
-
-
-
Port
DS11584 Rev 14
Port G
103/281
Pinouts and pin description
AF2
STM32L4A6xG
Table 16. Alternate function AF0 to AF7(1) (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/2/5/8/
LPTIM1
TIM1/2/3/4/5
SPI2/USART2/
CAN2/TIM8/
QUADSPI
I2C1/2/3/4/
DCMI
SPI1/2/DCMI/
QUADSPI
SPI3/I2C3/
DFSDM/
COMP1/
QUADSPI
USART1/2/3
PH0
-
-
-
-
-
-
-
-
PH1
-
-
-
-
-
-
-
-
PH2
-
-
-
QUADSPI_
BK2_IO0
-
-
-
-
PH3
-
-
-
-
-
-
-
-
PH4
-
-
-
-
I2C2_SCL
-
-
-
PH5
-
-
-
-
I2C2_SDA
-
-
-
PH6
-
-
-
-
I2C2_SMBA
-
-
-
PH7
-
-
-
-
I2C3_SCL
-
-
-
PH8
-
-
-
-
I2C3_SDA
-
-
-
PH9
-
-
-
-
I2C3_SMBA
-
-
-
PH10
-
-
TIM5_CH1
-
-
-
-
-
PH11
-
-
TIM5_CH2
-
-
-
-
-
PH12
-
-
TIM5_CH3
-
-
-
-
-
PH13
-
-
-
TIM8_CH1N
-
-
-
-
PH14
-
-
-
TIM8_CH2N
-
-
-
-
PH15
-
-
-
TIM8_CH3N
-
-
-
-
Port
DS11584 Rev 14
Port H
Pinouts and pin description
104/281
Table 16. Alternate function AF0 to AF7(1) (continued)
STM32L4A6xG
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_AF
TIM1/2/5/8/
LPTIM1
TIM1/2/3/4/5
SPI2/USART2/
CAN2/TIM8/
QUADSPI
I2C1/2/3/4/
DCMI
SPI1/2/DCMI/
QUADSPI
SPI3/I2C3/
DFSDM/
COMP1/
QUADSPI
USART1/2/3
PI0
-
-
TIM5_CH4
-
-
SPI2_NSS
-
-
PI1
-
-
-
-
-
SPI2_SCK
-
-
PI2
-
-
-
TIM8_CH4
-
SPI2_MISO
-
-
PI3
-
-
-
TIM8_ETR
-
SPI2_MOSI
-
-
PI4
-
-
-
TIM8_BKIN
-
-
-
-
PI5
-
-
-
TIM8_CH1
-
-
-
-
PI6
-
-
-
TIM8_CH2
-
-
-
-
PI7
-
-
-
TIM8_CH3
-
-
-
-
PI8
-
-
-
-
-
-
-
-
PI9
-
-
-
-
-
-
-
-
PI10
-
-
-
-
-
-
-
-
PI11
-
-
-
-
-
-
-
-
Port
DS11584 Rev 14
Port I
STM32L4A6xG
Table 16. Alternate function AF0 to AF7(1) (continued)
1. Refer to Table 17 for AF8 to AF15.
Pinouts and pin description
105/281
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4/5/
LPUART1/
CAN2
CAN1/TSC
CAN2/
OTG_FS/DCMI/
QUADSPI
LCD
SDMMC/
COMP1/2/
FMC/SWPMI1
SAI1/2
TIM2/15/16/17/
LPTIM2
EVENTOUT
PA0
UART4_TX
-
-
-
-
SAI1_EXTCLK
TIM2_ETR
EVENTOUT
PA1
UART4_RX
-
-
LCD_SEG0
-
-
TIM15_CH1N
EVENTOUT
PA2
LPUART1_TX
-
QUADSPI_BK1_NCS
LCD_SEG1
-
SAI2_EXTCLK
TIM15_CH1
EVENTOUT
PA3
LPUART1_RX
-
QUADSPI_CLK
LCD_SEG2
-
SAI1_MCLK_A
TIM15_CH2
EVENTOUT
PA4
-
-
DCMI_HSYNC
-
-
SAI1_FS_B
LPTIM2_OUT
EVENTOUT
PA5
-
-
-
-
-
-
LPTIM2_ETR
EVENTOUT
PA6
LPUART1_
CTS
-
QUADSPI_BK1_IO3
LCD_SEG3
TIM1_BKIN_
COMP2
TIM8_BKIN_C
OMP2
TIM16_CH1
EVENTOUT
PA7
-
-
QUADSPI_BK1_IO2
LCD_SEG4
-
-
TIM17_CH1
EVENTOUT
PA8
-
-
OTG_FS_SOF
LCD_COM0
SWPMI1_IO
SAI1_SCK_A
LPTIM2_OUT
EVENTOUT
PA9
-
-
-
LCD_COM1
-
SAI1_FS_A
TIM15_BKIN
EVENTOUT
PA10
-
-
OTG_FS_ID
LCD_COM2
-
SAI1_SD_A
TIM17_BKIN
EVENTOUT
PA11
-
CAN1_RX
OTG_FS_DM
-
TIM1_BKIN2_
COMP1
-
-
EVENTOUT
PA12
-
CAN1_TX
OTG_FS_DP
-
-
-
-
EVENTOUT
PA13
-
-
OTG_FS_NOE
-
SWPMI1_TX
SAI1_SD_B
-
EVENTOUT
PA14
-
-
OTG_FS_SOF
-
SWPMI1_RX
SAI1_FS_B
-
EVENTOUT
-
LCD_SEG17
SWPMI1_
SUSPEND
SAI2_FS_B
-
EVENTOUT
Port
DS11584 Rev 14
Port A
PA15
UART4_RTS_
TSC_G3_IO1
DE
STM32L4A6xG
AF8
Pinouts and pin description
106/281
Table 17. Alternate function AF8 to AF15(1)
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4/5/
LPUART1/
CAN2
CAN1/TSC
CAN2/
OTG_FS/DCMI/
QUADSPI
LCD
SDMMC/
COMP1/2/
FMC/SWPMI1
SAI1/2
TIM2/15/16/17/
LPTIM2
EVENTOUT
PB0
-
-
QUADSPI_BK1_IO1
LCD_SEG5
COMP1_OUT
SAI1_EXTCLK
-
EVENTOUT
PB1
LPUART1_
RTS_DE
-
QUADSPI_BK1_IO0
LCD_SEG6
-
-
LPTIM2_IN1
EVENTOUT
PB2
-
-
-
LCD_VLCD
-
-
-
EVENTOUT
PB3
-
-
OTG_FS_CRS_SYNC
LCD_SEG7
-
SAI1_SCK_B
-
EVENTOUT
PB4
UART5_
RTS_DE
TSC_G2_IO1
DCMI_D12
LCD_SEG8
-
SAI1_MCLK_B
TIM17_BKIN
EVENTOUT
PB5
UART5_CTS
TSC_G2_IO2
DCMI_D10
LCD_SEG9
COMP2_OUT
SAI1_SD_B
TIM16_BKIN
EVENTOUT
PB6
CAN2_TX
TSC_G2_IO3
DCMI_D5
-
TIM8_BKIN2_
COMP2
SAI1_FS_B
TIM16_CH1N
EVENTOUT
PB7
UART4_CTS
TSC_G2_IO4
DCMI_VSYNC
LCD_SEG21
FMC_NL
TIM8_BKIN_C
OMP1
TIM17_CH1N
EVENTOUT
PB8
-
CAN1_RX
DCMI_D6
LCD_SEG16
SDMMC1_D4
SAI1_MCLK_A
TIM16_CH1
EVENTOUT
PB9
-
CAN1_TX
DCMI_D7
LCD_COM3
SDMMC1_D5
SAI1_FS_A
TIM17_CH1
EVENTOUT
PB10
LPUART1_RX
TSC_SYNC
QUADSPI_CLK
LCD_SEG10
COMP1_OUT
SAI1_SCK_A
-
EVENTOUT
PB11
LPUART1_TX
-
QUADSPI_BK1_NCS
LCD_SEG11
COMP2_OUT
-
-
EVENTOUT
PB12
LPUART1_
RTS_DE
TSC_G1_IO1
CAN2_RX
LCD_SEG12
SWPMI1_IO
SAI2_FS_A
TIM15_BKIN
EVENTOUT
PB13
LPUART1_
CTS
TSC_G1_IO2
CAN2_TX
LCD_SEG13
SWPMI1_TX
SAI2_SCK_A
TIM15_CH1N
EVENTOUT
PB14
-
TSC_G1_IO3
-
LCD_SEG14
SWPMI1_RX
SAI2_MCLK_A
TIM15_CH1
EVENTOUT
PB15
-
TSC_G1_IO4
-
LCD_SEG15
SWPMI1_
SUSPEND
SAI2_SD_A
TIM15_CH2
EVENTOUT
Port
DS11584 Rev 14
Port B
107/281
Pinouts and pin description
AF8
STM32L4A6xG
Table 17. Alternate function AF8 to AF15(1) (continued)
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4/5/
LPUART1/
CAN2
CAN1/TSC
CAN2/
OTG_FS/DCMI/
QUADSPI
LCD
SDMMC/
COMP1/2/
FMC/SWPMI1
SAI1/2
TIM2/15/16/17/
LPTIM2
EVENTOUT
PC0
LPUART1_RX
-
-
LCD_SEG18
-
-
LPTIM2_IN1
EVENTOUT
PC1
LPUART1_TX
-
QUADSPI_BK2_IO0
LCD_SEG19
-
SAI1_SD_A
-
EVENTOUT
PC2
-
-
QUADSPI_BK2_IO1
LCD_SEG20
-
-
-
EVENTOUT
PC3
-
-
QUADSPI_BK2_IO2
LCD_VLCD
-
SAI1_SD_A
LPTIM2_ETR
EVENTOUT
PC4
-
-
QUADSPI_BK2_IO3
LCD_SEG22
-
-
-
EVENTOUT
PC5
-
-
-
LCD_SEG23
-
-
-
EVENTOUT
PC6
-
TSC_G4_IO1
DCMI_D0
LCD_SEG24
SDMMC1_D6
SAI2_MCLK_A
-
EVENTOUT
PC7
-
TSC_G4_IO2
DCMI_D1
LCD_SEG25
SDMMC1_D7
SAI2_MCLK_B
-
EVENTOUT
PC8
-
TSC_G4_IO3
DCMI_D2
LCD_SEG26
SDMMC1_D0
-
-
EVENTOUT
PC9
-
TSC_G4_IO4
OTG_FS_NOE
LCD_SEG27
SDMMC1_D1
SAI2_EXTCLK
TIM8_BKIN2_
COMP1
EVENTOUT
PC10
UART4_TX
TSC_G3_IO2
DCMI_D8
LCD_COM4/
LCD_SEG28/
LCD_SEG40
SDMMC1_D2
SAI2_SCK_B
-
EVENTOUT
PC11
UART4_RX
TSC_G3_IO3
DCMI_D4
LCD_COM5/
LCD_SEG29/
LCD_SEG41
SDMMC1_D3
SAI2_MCLK_B
-
EVENTOUT
PC12
UART5_TX
TSC_G3_IO4
DCMI_D9
LCD_COM6/
LCD_SEG30/
LCD_SEG42
SDMMC1_CK
SAI2_SD_B
-
EVENTOUT
PC13
-
-
-
-
-
-
-
EVENTOUT
PC14
-
-
-
-
-
-
-
EVENTOUT
PC15
-
-
-
-
-
-
-
EVENTOUT
Port
DS11584 Rev 14
Port C
STM32L4A6xG
AF8
Pinouts and pin description
108/281
Table 17. Alternate function AF8 to AF15(1) (continued)
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4/5/
LPUART1/
CAN2
CAN1/TSC
CAN2/
OTG_FS/DCMI/
QUADSPI
LCD
SDMMC/
COMP1/2/
FMC/SWPMI1
SAI1/2
TIM2/15/16/17/
LPTIM2
EVENTOUT
PD0
-
CAN1_RX
-
-
FMC_D2
-
-
EVENTOUT
PD1
-
CAN1_TX
-
-
FMC_D3
-
-
EVENTOUT
PD2
UART5_RX
TSC_SYNC
DCMI_D11
LCD_COM7/
LCD_SEG31/
LCD_SEG43
SDMMC1_
CMD
-
-
EVENTOUT
PD3
-
-
QUADSPI_BK2_NCS
-
FMC_CLK
-
-
EVENTOUT
PD4
-
-
QUADSPI_BK2_IO0
-
FMC_NOE
-
-
EVENTOUT
PD5
-
-
QUADSPI_BK2_IO1
-
FMC_NWE
-
-
EVENTOUT
PD6
-
-
QUADSPI_BK2_IO2
-
FMC_NWAIT
SAI1_SD_A
-
EVENTOUT
PD7
-
-
QUADSPI_BK2_IO3
-
FMC_NE1
-
-
EVENTOUT
PD8
-
-
DCMI_HSYNC
LCD_SEG28
FMC_D13
-
-
EVENTOUT
PD9
-
-
DCMI_PIXCLK
LCD_SEG29
FMC_D14
SAI2_MCLK_A
-
EVENTOUT
PD10
-
TSC_G6_IO1
-
LCD_SEG30
FMC_D15
SAI2_SCK_A
-
EVENTOUT
PD11
-
TSC_G6_IO2
-
LCD_SEG31
FMC_A16
SAI2_SD_A
LPTIM2_ETR
EVENTOUT
PD12
-
TSC_G6_IO3
-
LCD_SEG32
FMC_A17
SAI2_FS_A
LPTIM2_IN1
EVENTOUT
PD13
-
TSC_G6_IO4
-
LCD_SEG33
FMC_A18
-
LPTIM2_OUT
EVENTOUT
PD14
-
-
-
LCD_SEG34
FMC_D0
-
-
EVENTOUT
PD15
-
-
-
LCD_SEG35
FMC_D1
-
-
EVENTOUT
Port
DS11584 Rev 14
Port D
109/281
Pinouts and pin description
AF8
STM32L4A6xG
Table 17. Alternate function AF8 to AF15(1) (continued)
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4/5/
LPUART1/
CAN2
CAN1/TSC
CAN2/
OTG_FS/DCMI/
QUADSPI
LCD
SDMMC/
COMP1/2/
FMC/SWPMI1
SAI1/2
TIM2/15/16/17/
LPTIM2
EVENTOUT
PE0
-
-
DCMI_D2
LCD_SEG36
FMC_NBL0
-
TIM16_CH1
EVENTOUT
PE1
-
-
DCMI_D3
LCD_SEG37
FMC_NBL1
-
TIM17_CH1
EVENTOUT
PE2
-
TSC_G7_IO1
-
LCD_SEG38
FMC_A23
SAI1_MCLK_A
-
EVENTOUT
PE3
-
TSC_G7_IO2
-
LCD_SEG39
FMC_A19
SAI1_SD_B
-
EVENTOUT
PE4
-
TSC_G7_IO3
DCMI_D4
-
FMC_A20
SAI1_FS_A
-
EVENTOUT
PE5
-
TSC_G7_IO4
DCMI_D6
-
FMC_A21
SAI1_SCK_A
-
EVENTOUT
PE6
-
-
DCMI_D7
-
FMC_A22
SAI1_SD_A
-
EVENTOUT
PE7
-
-
-
-
FMC_D4
SAI1_SD_B
-
EVENTOUT
PE8
-
-
-
-
FMC_D5
SAI1_SCK_B
-
EVENTOUT
PE9
-
-
-
-
FMC_D6
SAI1_FS_B
-
EVENTOUT
PE10
-
TSC_G5_IO1
QUADSPI_CLK
-
FMC_D7
SAI1_MCLK_B
-
EVENTOUT
PE11
-
TSC_G5_IO2 QUADSPI_BK1_NCS
-
FMC_D8
-
-
EVENTOUT
PE12
-
TSC_G5_IO3
QUADSPI_BK1_IO0
-
FMC_D9
-
-
EVENTOUT
PE13
-
TSC_G5_IO4
QUADSPI_BK1_IO1
-
FMC_D10
-
-
EVENTOUT
PE14
-
-
QUADSPI_BK1_IO2
-
FMC_D11
-
-
EVENTOUT
PE15
-
-
QUADSPI_BK1_IO3
-
FMC_D12
-
-
EVENTOUT
Port
DS11584 Rev 14
Port E
Pinouts and pin description
110/281
Table 17. Alternate function AF8 to AF15(1) (continued)
STM32L4A6xG
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4/5/
LPUART1/
CAN2
CAN1/TSC
CAN2/
OTG_FS/DCMI/
QUADSPI
LCD
SDMMC/
COMP1/2/
FMC/SWPMI1
SAI1/2
TIM2/15/16/17/
LPTIM2
EVENTOUT
PF0
-
-
-
-
FMC_A0
-
-
EVENTOUT
PF1
-
-
-
-
FMC_A1
-
-
EVENTOUT
PF2
-
-
-
-
FMC_A2
-
-
EVENTOUT
PF3
-
-
-
-
FMC_A3
-
-
EVENTOUT
PF4
-
-
-
-
FMC_A4
-
-
EVENTOUT
PF5
-
-
-
-
FMC_A5
-
-
EVENTOUT
PF6
-
-
QUADSPI_BK1_IO3
-
-
SAI1_SD_B
-
EVENTOUT
PF7
-
-
QUADSPI_BK1_IO2
-
-
SAI1_MCLK_B
-
EVENTOUT
PF8
-
-
QUADSPI_BK1_IO0
-
-
SAI1_SCK_B
-
EVENTOUT
PF9
-
-
QUADSPI_BK1_IO1
-
-
SAI1_FS_B
TIM15_CH1
EVENTOUT
PF10
-
-
DCMI_D11
-
-
-
TIM15_CH2
EVENTOUT
PF11
-
-
DCMI_D12
-
-
-
-
EVENTOUT
PF12
-
-
-
-
FMC_A6
-
-
EVENTOUT
PF13
-
-
-
-
FMC_A7
-
-
EVENTOUT
PF14
-
TSC_G8_IO1
-
-
FMC_A8
-
-
EVENTOUT
PF15
-
TSC_G8_IO2
-
-
FMC_A9
-
-
EVENTOUT
Port
DS11584 Rev 14
Port F
111/281
Pinouts and pin description
AF8
STM32L4A6xG
Table 17. Alternate function AF8 to AF15(1) (continued)
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4/5/
LPUART1/
CAN2
CAN1/TSC
CAN2/
OTG_FS/DCMI/
QUADSPI
LCD
SDMMC/
COMP1/2/
FMC/SWPMI1
SAI1/2
TIM2/15/16/17/
LPTIM2
EVENTOUT
PG0
-
TSC_G8_IO3
-
-
FMC_A10
-
-
EVENTOUT
PG1
-
TSC_G8_IO4
-
-
FMC_A11
-
-
EVENTOUT
PG2
-
-
-
-
FMC_A12
SAI2_SCK_B
-
EVENTOUT
PG3
-
-
-
-
FMC_A13
SAI2_FS_B
-
EVENTOUT
PG4
-
-
-
-
FMC_A14
SAI2_MCLK_B
-
EVENTOUT
PG5
LPUART1_
CTS
-
-
-
FMC_A15
SAI2_SD_B
-
EVENTOUT
PG6
LPUART1_
RTS_DE
-
-
-
-
-
-
EVENTOUT
PG7
LPUART1_TX
-
-
-
FMC_INT
SAI1_MCLK_A
-
EVENTOUT
PG8
LPUART1_RX
-
-
-
-
-
-
EVENTOUT
PG9
-
-
-
-
FMC_NCE/
FMC_NE2
SAI2_SCK_A
TIM15_CH1N
EVENTOUT
PG10
-
-
-
-
FMC_NE3
SAI2_FS_A
TIM15_CH1
EVENTOUT
PG11
-
-
-
-
-
SAI2_MCLK_A
TIM15_CH2
EVENTOUT
PG12
-
-
-
-
FMC_NE4
SAI2_SD_A
-
EVENTOUT
PG13
-
-
-
-
FMC_A24
-
-
EVENTOUT
PG14
-
-
-
-
FMC_A25
-
-
EVENTOUT
PG15
-
-
DCMI_D13
-
-
-
-
EVENTOUT
Port
DS11584 Rev 14
Port G
STM32L4A6xG
AF8
Pinouts and pin description
112/281
Table 17. Alternate function AF8 to AF15(1) (continued)
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4/5/
LPUART1/
CAN2
CAN1/TSC
CAN2/
OTG_FS/DCMI/
QUADSPI
LCD
SDMMC/
COMP1/2/
FMC/SWPMI1
SAI1/2
TIM2/15/16/17/
LPTIM2
EVENTOUT
PH0
-
-
-
-
-
-
-
EVENTOUT
PH1
-
-
-
-
-
-
-
EVENTOUT
PH2
-
-
-
-
-
-
-
EVENTOUT
PH3
-
-
-
-
-
-
-
EVENTOUT
PH4
-
-
-
-
-
-
-
EVENTOUT
PH5
-
-
DCMI_PIXCLK
-
-
-
-
EVENTOUT
PH6
-
-
DCMI_D8
-
-
-
-
EVENTOUT
PH7
-
-
DCMI_D9
-
-
-
-
EVENTOUT
PH8
-
-
DCMI_HSYNC
-
-
-
-
EVENTOUT
PH9
-
-
DCMI_D0
-
-
-
-
EVENTOUT
PH10
-
-
DCMI_D1
-
-
-
-
EVENTOUT
PH11
-
-
DCMI_D2
-
-
-
-
EVENTOUT
PH12
-
-
DCMI_D3
-
-
-
-
EVENTOUT
PH13
-
CAN1_TX
-
-
-
-
-
EVENTOUT
PH14
-
-
DCMI_D4
-
-
-
-
EVENTOUT
PH15
-
-
DCMI_D11
-
-
-
-
EVENTOUT
Port
DS11584 Rev 14
Port H
113/281
Pinouts and pin description
AF8
STM32L4A6xG
Table 17. Alternate function AF8 to AF15(1) (continued)
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
UART4/5/
LPUART1/
CAN2
CAN1/TSC
CAN2/
OTG_FS/DCMI/
QUADSPI
LCD
SDMMC/
COMP1/2/
FMC/SWPMI1
SAI1/2
TIM2/15/16/17/
LPTIM2
EVENTOUT
PI0
-
-
DCMI_D13
-
-
-
-
EVENTOUT
PI1
-
-
DCMI_D8
-
-
-
-
EVENTOUT
PI2
-
-
DCMI_D9
-
-
-
-
EVENTOUT
PI3
-
-
DCMI_D10
-
-
-
-
EVENTOUT
PI4
-
-
DCMI_D5
-
-
-
-
EVENTOUT
PI5
-
-
DCMI_VSYNC
-
-
-
-
EVENTOUT
PI6
-
-
DCMI_D6
-
-
-
-
EVENTOUT
PI7
-
-
DCMI_D7
-
-
-
-
EVENTOUT
PI8
-
-
DCMI_D12
-
-
-
-
EVENTOUT
PI9
-
CAN1_RX
-
-
-
-
-
EVENTOUT
PI10
-
-
-
-
-
-
-
EVENTOUT
PI11
-
-
-
-
-
-
-
EVENTOUT
Port
Port I
Pinouts and pin description
114/281
Table 17. Alternate function AF8 to AF15(1) (continued)
DS11584 Rev 14
1. Refer to Table 16 for AF0 to AF7.
STM32L4A6xG
STM32L4A6xG
5
Memory mapping
Memory mapping
Figure 19. STM32L4A6xG memory map
0xFFFF FFFF
0xBFFF FFFF
Reserved
Cortex™-M4
with FPU
Internal
Peripherals
7
0xA000 1400
QUADSPI registers
0xA000 1000
FMC registers
0xA000 0000
0xE000 0000
0x5FFF FFFF
Reserved
6
0x5006 0C00
AHB2
0x4800 0000
Reserved
0xC000 0000
0x4002 4400
AHB1
FMC and
QUADSPI
registers
5
0x4002 0000
0x4001 6400
0xA000 0000
4
QUADSPI flash
bank
0x4001 0000
FMC bank3
0x4000 0000
Reserved
APB2
Reserved
0x4000 9800
0x9000 0000
APB1
0x1FFF FFFF
0x8000 0000
Reserved
0x1FFF F810
Option Bytes
3
0x1FFF F800
Reserved
FMC bank1
0x1FFF F000
System memory
0x6000 0000
0x1FFF 8000
Reserved
0x1FFF 7810
Options Bytes
2
0x1FFF 7800
Reserved
0x1FFF 7400
Peripherals
OTP area
0x4000 0000
0x1FFF 7000
System memory
1
0x2004 0000
0x1FFF 0000
SRAM2
Reserved
0x1001 0000
SRAM1
SRAM2
0x2000 0000
0x1000 0000
Reserved
0
0x0810 0000
CODE
Flash memory
0x0800 0000
0x0000 0000
0x0010 0000
0x0000 0000
Reserved
Reserved
Flash, system memory
or SRAM, depending on
BOOT configuration
MSv38032V1
DS11584 Rev 14
115/281
119
Memory mapping
STM32L4A6xG
Table 18. STM32L4A6xG memory map and peripheral register boundary
addresses(1)
Bus
AHB4
AHB3
-
AHB2
-
116/281
Boundary address
Size
(bytes)
Peripheral
0xA000 1000 - 0xA000 13FF
1 KB
QUADSPI
0xA000 0400 - 0xA000 0FFF
3 KB
Reserved
0xA000 0000 - 0xA000 03FF
1 KB
FMC
0x5006 0C00 - 0x5FFF FFFF
~260 MB
0x5006 0800 - 0x5006 0BFF
1 KB
RNG
0x5006 0400 - 0x5006 07FF
1 KB
HASH
0x5006 0000 - 0x5006 03FF
1 KB
AES
0x5005 0400 - 0x5005 FFFF
62 KB
Reserved
0x5005 0000 - 0x5005 03FF
1 KB
DCMI
0x5004 0400 - 0x5004 FFFF
62 KB
Reserved
0x5004 0000 - 0x5004 03FF
1 KB
ADC
0x5000 0000 - 0x5003 FFFF
16 KB
OTG_FS
0x4800 2400 - 0x4FFF FFFF
~127 MB
Reserved
0x4800 2000 - 0x4800 23FF
1 KB
GPIOI
0x4800 1C00 - 0x4800 1FFF
1 KB
GPIOH
0x4800 1800 - 0x4800 1BFF
1 KB
GPIOG
0x4800 1400 - 0x4800 17FF
1 KB
GPIOF
0x4800 1000 - 0x4800 13FF
1 KB
GPIOE
0x4800 0C00 - 0x4800 0FFF
1 KB
GPIOD
0x4800 0800 - 0x4800 0BFF
1 KB
GPIOC
0x4800 0400 - 0x4800 07FF
1 KB
GPIOB
0x4800 0000 - 0x4800 03FF
1 KB
GPIOA
0x4002 BC00 - 0x47FF FFFF
~127 MB
DS11584 Rev 14
Reserved
Reserved
STM32L4A6xG
Memory mapping
Table 18. STM32L4A6xG memory map and peripheral register boundary
addresses(1) (continued)
Bus
AHB1
APB2
Boundary address
Size
(bytes)
Peripheral
0x4002 B000 - 0x4002 BBFF
3 KB
DMA2D
0x4002 4400 - 0x4002 AFFF
26 KB
Reserved
0x4002 4000 - 0x4002 43FF
1 KB
TSC
0x4002 3400 - 0x4002 3FFF
1 KB
Reserved
0x4002 3000 - 0x4002 33FF
1 KB
CRC
0x4002 2400 - 0x4002 2FFF
3 KB
Reserved
0x4002 2000 - 0x4002 23FF
1 KB
FLASH registers
0x4002 1400 - 0x4002 1FFF
3 KB
Reserved
0x4002 1000 - 0x4002 13FF
1 KB
RCC
0x4002 0800 - 0x4002 0FFF
2 KB
Reserved
0x4002 0400 - 0x4002 07FF
1 KB
DMA2
0x4002 0000 - 0x4002 03FF
1 KB
DMA1
0x4001 6400 - 0x4001 FFFF
39 KB
Reserved
0x4001 6000 - 0x4001 63FF
1 KB
DFSDM1
0x4001 5C00 - 0x4001 5FFF
1 KB
Reserved
0x4001 5800 - 0x4001 5BFF
1 KB
SAI2
0x4001 5400 - 0x4001 57FF
1 KB
SAI1
0x4001 4C00 - 0x4001 53FF
2 KB
Reserved
0x4001 4800 - 0x4001 4BFF
1 KB
TIM17
0x4001 4400 - 0x4001 47FF
1 KB
TIM16
0x4001 4000 - 0x4001 43FF
1 KB
TIM15
0x4001 3C00 - 0x4001 3FFF
1 KB
Reserved
0x4001 3800 - 0x4001 3BFF
1 KB
USART1
0x4001 3400 - 0x4001 37FF
1 KB
TIM8
0x4001 3000 - 0x4001 33FF
1 KB
SPI1
0x4001 2C00 - 0x4001 2FFF
1 KB
TIM1
0x4001 2800 - 0x4001 2BFF
1 KB
SDMMC1
0x4001 2000 - 0x4001 27FF
2 KB
Reserved
0x4001 1C00 - 0x4001 1FFF
1 KB
FIREWALL
0x4001 0800- 0x4001 1BFF
5 KB
Reserved
0x4001 0400 - 0x4001 07FF
1 KB
EXTI
DS11584 Rev 14
117/281
119
Memory mapping
STM32L4A6xG
Table 18. STM32L4A6xG memory map and peripheral register boundary
addresses(1) (continued)
Bus
Boundary address
Size
(bytes)
0x4001 0200 - 0x4001 03FF
APB2
0x4001 0030 - 0x4001 01FF
COMP
1 KB
0x4001 0000 - 0x4001 002F
APB1
118/281
Peripheral
VREFBUF
SYSCFG
0x4000 9800 - 0x4000 FFFF
26 KB
Reserved
0x4000 9400 - 0x4000 97FF
1 KB
LPTIM2
0x4000 8C00 - 0x4000 93FF
2 KB
Reserved
0x4000 8800 - 0x4000 8BFF
1 KB
SWPMI1
0x4000 8400 - 0x4000 87FF
1 KB
I2C4
0x4000 8000 - 0x4000 83FF
1 KB
LPUART1
0x4000 7C00 - 0x4000 7FFF
1 KB
LPTIM1
0x4000 7800 - 0x4000 7BFF
1 KB
OPAMP
0x4000 7400 - 0x4000 77FF
1 KB
DAC1
0x4000 7000 - 0x4000 73FF
1 KB
PWR
0x4000 6800 - 0x4000 6FFF
1 KB
Reserved
0x4000 6800 - 0x4000 6BFF
1 KB
CAN2
0x4000 6400 - 0x4000 67FF
1 KB
CAN1
0x4000 6000 - 0x4000 63FF
1 KB
CRS
0x4000 5C00- 0x4000 5FFF
1 KB
I2C3
0x4000 5800 - 0x4000 5BFF
1 KB
I2C2
0x4000 5400 - 0x4000 57FF
1 KB
I2C1
0x4000 5000 - 0x4000 53FF
1 KB
UART5
0x4000 4C00 - 0x4000 4FFF
1 KB
UART4
DS11584 Rev 14
STM32L4A6xG
Memory mapping
Table 18. STM32L4A6xG memory map and peripheral register boundary
addresses(1) (continued)
Bus
APB1
Boundary address
Size
(bytes)
Peripheral
0x4000 4800 - 0x4000 4BFF
1 KB
USART3
0x4000 4400 - 0x4000 47FF
1 KB
USART2
0x4000 4000 - 0x4000 43FF
1 KB
Reserved
0x4000 3C00 - 0x4000 3FFF
1 KB
SPI3
0x4000 3800 - 0x4000 3BFF
1 KB
SPI2
0x4000 3400 - 0x4000 37FF
1 KB
Reserved
0x4000 3000 - 0x4000 33FF
1 KB
IWDG
0x4000 2C00 - 0x4000 2FFF
1 KB
WWDG
0x4000 2800 - 0x4000 2BFF
1 KB
RTC
0x4000 2400 - 0x4000 27FF
1 KB
LCD
0x4000 1800 - 0x4000 23FF
3 KB
Reserved
0x4000 1400 - 0x4000 17FF
1 KB
TIM7
0x4000 1000 - 0x4000 13FF
1 KB
TIM6
0x4000 0C00- 0x4000 0FFF
1 KB
TIM5
0x4000 0800 - 0x4000 0BFF
1 KB
TIM4
0x4000 0400 - 0x4000 07FF
1 KB
TIM3
0x4000 0000 - 0x4000 03FF
1 KB
TIM2
1. The gray color is used for reserved boundary addresses.
DS11584 Rev 14
119/281
119
Electrical characteristics
STM32L4A6xG
6
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3σ).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2σ).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 20.
6.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 21.
Figure 20. Pin loading conditions
Figure 21. Pin input voltage
MCU pin
MCU pin
C = 50 pF
VIN
MS19210V1
120/281
DS11584 Rev 14
MS19211V1
STM32L4A6xG
6.1.6
Electrical characteristics
Power supply scheme
Figure 22. Power supply scheme
VBAT
Backup circuitry
(LSE, RTC,
Backup registers)
1.55 – 3.6 V
Power switch
VDD
VCORE
n x VDD
Regulator
n x 100 nF
GPIOs
IN
+1 x 4.7 μF
Level shifter
OUT
IO
logic
Level shifter
VDDIO1
IO
logic
Kernel logic
(CPU, Digital
& Memories)
n x VSS
VDDIO2
m x VDDIO2
VDDIO2
OUT
m x100 nF
+4.7 μF
GPIOs
IN
m x VSS
VDDA
VDDA
VREF
10 nF
+1 μF
100 nF +1 μF
VREF+
VREF-
ADCs/
DACs/
OPAMPs/
COMPs/
VREFBUF
VSSA
MS35001V3
Caution:
Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to or
below the appropriate pins on the underside of the PCB to ensure the good functionality of
the device.
DS11584 Rev 14
121/281
245
Electrical characteristics
6.1.7
STM32L4A6xG
Current consumption measurement
Figure 23. Current consumption measurement scheme with and without external
SMPS power supply
IDD_USB
IDD_USB
VDDUSB
VDDUSB
IDD_VBAT
IDD_VBAT
VBAT
VBAT
IDD
IDD
IDDA
VDD12
SMPS
VDD
VDD
VDDIO2
VDDIO2
IDDA
VDDA
VDDA
MSv45730V1
The IDD_ALL parameters given in Table 26 to Table 48 represent the total MCU consumption
including the current supplying VDD, VDDIO2, VDDA, VDDUSB and VBAT.
6.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 19, Table 20 and Table 21
may cause permanent damage to the device. These are stress ratings only and functional
operation of the device at these conditions is not implied. Exposure to maximum rating
conditions for extended periods may affect device reliability. The device mission profile
(application conditions) is compliant with JEDEC JESD47 qualification standard, extended
mission profiles are available on demand.
Table 19. Voltage characteristics(1)
Symbol
Ratings
VDDX - VSS
External main supply voltage (including VDD,
VDDA, VDDIO2, VDDUSB, VLCD, VBAT, VREF+)
VDD12 - VSS
External SMPS supply voltage
VIN(2)
Max
-0.3
4.0
Range 1
-0.3
Range 2
-0.3
VSS-0.3
min (VDD, VDDA, VDDIO2,
VDDUSB, VLCD) + 4.0(3)(4)
Input voltage on TT_xx pins
VSS-0.3
4.0
Input voltage on BOOT0 pin
VSS
9.0
VSS-0.3
4.0
DS11584 Rev 14
Unit
1.4
Input voltage on FT_xxx pins
Input voltage on any other pins
122/281
Min
V
STM32L4A6xG
Electrical characteristics
Table 19. Voltage characteristics(1) (continued)
Symbol
Ratings
Min
Max
Unit
|∆VDDx|
Variations between different VDDX power pins of
the same domain
-
50
mV
|VSSx-VSS|
Variations between all the different ground
pins(5)
-
50
mV
VDDX-VSS
External main supply voltage (including VDD,
VDDA, VDDUSB, VBAT, VREF+)
-0.3
4.0
V
VREF+ - VDDA
Allowed voltage difference for VREF+ > VDDA
-
0.4
V
1. All main power (VDD, VDDA, VDDIO2, VDDUSB, VLCD, VBAT) and ground (VSS, VSSA) pins must always be connected to the
external power supply, in the permitted range.
2. VIN maximum must always be respected. Refer to Table 20 for the maximum allowed injected current values.
3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table.
4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
5. Include VREF- pin.
Table 20. Current characteristics
Symbol
Ratings
Max
∑IVDD
Total current into sum of all VDD power lines (source)(1) (2)
150
∑IVSS
Total current out of sum of all VSS ground lines (sink)(1)
150
IVDD(PIN)
Maximum current into each VDD power pin (source)(1)(2)
100
IVSS(PIN)
IIO(PIN)
∑IIO(PIN)
IINJ(PIN)(4)
∑|IINJ(PIN)|
Maximum current out of each VSS ground pin
(sink)(1)
Unit
100
Output current sunk by any I/O and control pin except FT_f
20
Output current sunk by any FT_f pin
20
Output current sourced by any I/O and control pin
20
Total output current sunk by sum of all I/Os and control pins(3)
mA
100
(3)
Total output current sourced by sum of all I/Os and control pins
Injected current on FT_xxx, TT_xx, RST and B pins, except PA4,
PA5
100
-5/+0(5)
Injected current on PA4, PA5
-5/0
Total injected current (sum of all I/Os and control pins)(6)
25
1. All main power (VDD, VDDA, VDDIO2, VDDUSB, VLCD, VBAT) and ground (VSS, VSSA) pins must always be connected to the
external power supplies, in the permitted range.
2. Valid also for VDD12 on SMPS package
3. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
4. Positive injection (when VIN > VDDIOx) is not possible on these I/Os and does not occur for input voltages lower than the
specified maximum value.
5. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer to Table 19 for the minimum allowed
input voltage values.
6. When several inputs are submitted to a current injection, the maximum ∑|IINJ(PIN)| is the absolute sum of the negative
injected currents (instantaneous values).
DS11584 Rev 14
123/281
245
Electrical characteristics
STM32L4A6xG
Table 21. Thermal characteristics
Symbol
TSTG
TJ
Ratings
Storage temperature range
Maximum junction temperature
6.3
Operating conditions
6.3.1
General operating conditions
Value
Unit
–65 to +150
°C
150
°C
Table 22. General operating conditions
Symbol
Parameter
Conditions
Min
Max
fHCLK
Internal AHB clock frequency
-
0
80
fPCLK1
Internal APB1 clock frequency
-
0
80
fPCLK2
Internal APB2 clock frequency
-
0
80
VDD
Standard operating voltage
-
VDD12
Standard operating voltage
VDDIO2 PG[15:2] I/Os supply voltage
VDDA
Analog supply voltage
Up to 26 MHz
1.05
At least one I/O in PG[15:2] used
1.08
3.6
0
3.6
PG[15:2] not used
ADC or COMP used
1.62
DAC or OPAMP used
1.8
VREFBUF used
2.4
USB used
USB not used
TT_xx I/O
BOOT0
VIN
All I/O except BOOT0 and TT_xx
124/281
DS11584 Rev 14
1.32
3.6
V
0
1.55
3.6
3.0
3.6
0
3.6
-0.3
VDDIOx+0.3(2)
0
9
-0.3
Min(Min(VDD, VDDA,
VDDIO2, VDDUSB,
VLCD)+3.6 V,
5.5 V)(3)(4)
I/O input voltage
MHz
3.6
1.08
Backup operating voltage
VDDUSB USB supply voltage
(1)
Full frequency range
ADC, DAC, OPAMP, COMP,
VREFBUF not used
VBAT
1.71
Unit
STM32L4A6xG
Electrical characteristics
Table 22. General operating conditions (continued)
Symbol
PD
PD
Parameter
Conditions
Power dissipation at
TA = 85 °C for suffix 6(5)
-
-
625
LQFP100
-
-
476
LQFP64
-
-
444
-
385
UFBGA132
-
-
364
WLCSP100L
-
-
559
LQFP144
-
-
156
LQFP100
-
-
119
LQFP64
-
-
111
-
96
UFBGA169
UFBGA132
-
-
91
WLCSP100L
-
-
140
Ambient temperature for the
suffix 6 version
Maximum power dissipation
–40
85
Low-power dissipation(6)
–40
105
Ambient temperature for the
suffix 3 version
Maximum power dissipation
–40
125
Low-power dissipation(6)
–40
130
Suffix 6 version
–40
105
Suffix 3 version
–40
130
TA
TJ
Max
LQFP144
UFBGA169
Power dissipation at
TA = 125 °C for suffix 3(5)
Min
Junction temperature range
Unit
mW
mW
°C
°C
1. When RESET is released functionality is guaranteed down to VBOR0 Min.
2. A GPIO with analog input function enabled cannot exceed min(VDDA, VREF+) + 0.3 V.
3. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table.
Maximum I/O input voltage is the smallest value between Min(VDD, VDDA, VDDIO2, VDDUSB, VLCD)+3.6 V and 5.5V.
4. For operation with voltage higher than Min (VDD, VDDA, VDDIO2, VDDUSB, VLCD) +0.3 V, the internal Pull-up and Pull-Down
resistors must be disabled.
5. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.7: Thermal characteristics).
6. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.7:
Thermal characteristics).
6.3.2
Operating conditions at power-up / power-down
The parameters given in Table 23 are derived from tests performed under the ambient
temperature condition summarized in Table 22.
Table 23. Operating conditions at power-up / power-down(1)
Symbol
tVDD
tVDDA
Parameter
Conditions
VDD rise time rate
-
VDD fall time rate
VDDA rise time rate
-
VDDA fall time rate
DS11584 Rev 14
Min
Max
0
∞
10
∞
0
∞
10
∞
Unit
µs/V
µs/V
125/281
245
Electrical characteristics
STM32L4A6xG
Table 23. Operating conditions at power-up / power-down(1) (continued)
Symbol
Parameter
Conditions
VDDUSB rise time rate
tVDDUSB
Max
0
∞
10
∞
0
∞
10
∞
-
VDDUSB fall time rate
VDDIO2 rise time rate
tVDDIO2
Min
-
VDDIO2 fall time rate
Unit
µs/V
µs/V
1. At Power up, the VDD12 voltage should not be forced externally
The requirements for power-up/down sequence specified in Section 3.10.1: Power supply
schemes must be respected.
6.3.3
Embedded reset and power control block characteristics
The parameters given in Table 24 are derived from tests performed under the ambient
temperature conditions summarized in Table 22.
Table 24. Embedded reset and power control block characteristics
Symbol
tRSTTEMPO(2)
126/281
Parameter
Reset temporization after
BOR0 is detected
VBOR0(2)
Brown-out reset threshold 0
VBOR1
Brown-out reset threshold 1
VBOR2
Brown-out reset threshold 2
VBOR3
Brown-out reset threshold 3
VBOR4
Brown-out reset threshold 4
VPVD0
Programmable voltage
detector threshold 0
VPVD1
PVD threshold 1
VPVD2
PVD threshold 2
VPVD3
PVD threshold 3
VPVD4
PVD threshold 4
Conditions(1)
Min
Typ
Max
Unit
-
250
400
μs
Rising edge
1.62
1.66
1.7
Falling edge
1.6
1.64
1.69
Rising edge
2.06
2.1
2.14
Falling edge
1.96
2
2.04
Rising edge
2.26
2.31
2.35
Falling edge
2.16
2.20
2.24
Rising edge
2.56
2.61
2.66
Falling edge
2.47
2.52
2.57
Rising edge
2.85
2.90
2.95
Falling edge
2.76
2.81
2.86
Rising edge
2.1
2.15
2.19
Falling edge
2
2.05
2.1
Rising edge
2.26
2.31
2.36
Falling edge
2.15
2.20
2.25
Rising edge
2.41
2.46
2.51
Falling edge
2.31
2.36
2.41
Rising edge
2.56
2.61
2.66
Falling edge
2.47
2.52
2.57
Rising edge
2.69
2.74
2.79
Falling edge
2.59
2.64
2.69
VDD rising
DS11584 Rev 14
V
V
V
V
V
V
V
V
V
V
STM32L4A6xG
Electrical characteristics
Table 24. Embedded reset and power control block characteristics (continued)
Conditions(1)
Min
Typ
Max
Rising edge
2.85
2.91
2.96
Falling edge
2.75
2.81
2.86
Rising edge
2.92
2.98
3.04
Falling edge
2.84
2.90
2.96
Hysteresis in
continuous
Hysteresis voltage of BORH0 mode
-
20
-
Hysteresis in
other mode
-
30
-
Symbol
Parameter
VPVD5
PVD threshold 5
VPVD6
PVD threshold 6
Vhyst_BORH0
Unit
V
V
mV
Hysteresis voltage of BORH
(except BORH0) and PVD
-
-
100
-
mV
BOR(3) (except BOR0) and
IDD
(2)
(BOR_PVD)
PVD consumption from VDD
-
-
1.1
1.6
µA
-
1.18
1.22
1.26
V
Vhyst_BOR_PVD
VPVM1
VDDUSB peripheral voltage
monitoring
VPVM3
VDDA peripheral voltage
monitoring
Rising edge
1.61
1.65
1.69
Falling edge
1.6
1.64
1.68
VPVM4
VDDA peripheral voltage
monitoring
Rising edge
1.78
1.82
1.86
Falling edge
1.77
1.81
1.85
V
V
Vhyst_PVM3
PVM3 hysteresis
-
-
10
-
mV
Vhyst_PVM4
PVM4 hysteresis
-
-
10
-
mV
IDD
PVM1 and PVM2
(PVM1/PVM2)
consumption from VDD
(2)
-
-
0.2
-
µA
IDD
PVM3 and PVM4
(PVM3/PVM4)
consumption from VDD
(2)
-
-
2
-
µA
1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power
sleep modes.
2. Guaranteed by design.
3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply
current characteristics tables.
DS11584 Rev 14
127/281
245
Electrical characteristics
6.3.4
STM32L4A6xG
Embedded voltage reference
The parameters given in Table 25 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 22.
Table 25. Embedded internal voltage reference
Symbol
VREFINT
Parameter
Conditions
Internal reference voltage
–40 °C < TA < +130 °C
Min
Typ
Max
Unit
1.182
1.212
1.232
V
tS_vrefint (1)
ADC sampling time when
reading the internal reference
voltage
-
4(2)
-
-
µs
tstart_vrefint
Start time of reference voltage
buffer when ADC is enable
-
-
8
12(2)
µs
-
-
12.5
20(2)
µA
-
5
7.5(2)
mV
-
30
50(2)
ppm/°C
ppm
ppm/V
VREFINT buffer consumption
IDD(VREFINTBUF) from VDD when converted by
ADC
∆VREFINT
TCoeff
ACoeff
VDDCoeff
Internal reference voltage
spread over the temperature
range
VDD = 3 V
Average temperature coefficient –40°C < TA < +130°C
Long term stability
1000 hours, T = 25°C
-
300
1000(2)
Average voltage coefficient
3.0 V < VDD < 3.6 V
-
250
1200(2)
24
25
26
49
50
51
74
75
76
VREFINT_DIV1
1/4 reference voltage
VREFINT_DIV2
1/2 reference voltage
VREFINT_DIV3
3/4 reference voltage
-
1. The shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
128/281
DS11584 Rev 14
%
VREFINT
STM32L4A6xG
Electrical characteristics
Figure 24. VREFINT versus temperature
V
1.235
1.23
1.225
1.22
1.215
1.21
1.205
1.2
1.195
1.19
1.185
-40
-20
0
20
40
Mean
60
Min
80
100
120
°C
Max
MSv40169V1
6.3.5
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 23: Current consumption
measurement scheme with and without external SMPS power supply.
Typical and maximum current consumption
The MCU is placed under the following conditions:
•
All I/O pins are in analog input mode
•
All peripherals are disabled except when explicitly mentioned
•
The flash memory access time is adjusted with the minimum wait states number,
depending on the fHCLK frequency (refer to the table “Number of wait states according
to CPU clock (HCLK) frequency” available in the RM0351 reference manual).
•
When the peripherals are enabled fPCLK = fHCLK
The parameters given in Table 26 to Table 49 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 22: General
operating conditions.
DS11584 Rev 14
129/281
245
Conditions
Symbol
Parameter
-
Voltage
scaling
DS11584 Rev 14
IDD_ALL
(LPRun)
Unit
85 °C
2.9
3.0
3.3
3.8
4.7
2.53
1.9
2.0
2.2
2.7
3.7
1.29
1.74
1.0
1.1
1.4
1.8
2.8
0.68
0.9
1.35
0.6
0.7
0.9
1.4
2.4
0.36
0.48
0.7
1.15
0.4
0.5
0.7
1.2
2.2
0.23
0.26
0.38
0.6
1.06
0.3
0.4
0.6
1.1
2.0
100 kHz
0.14
0.17
0.3
0.52
0.97
0.2
0.3
0.5
1.0
2.0
80 MHz
9.44
9.5
9.67
9.93
10.4
10.3
10.4
10.7
11.3
12.4
72 MHz
8.52
8.59
8.75
9.01
9.53
9.3
9.4
9.7
10.3
11.4
64 MHz
7.61
7.67
7.83
8.09
8.61
8.3
8.4
8.7
9.3
10.4
Range 1 48 MHz
5.72
5.78
5.94
6.2
6.72
6.3
6.4
6.7
7.3
8.4
32 MHz
3.87
3.92
4.07
4.33
4.84
4.2
4.4
4.7
5.2
6.3
24 MHz
2.94
2.99
3.14
3.39
3.9
3.2
3.4
3.6
4.2
5.3
16 MHz
2.01
2.06
2.2
2.45
2.95
2.2
2.3
2.6
3.2
4.2
2 MHz
274
307
444
678
1150
318
425
656
1167
2197
1 MHz
158
195
328
564
1040
195
309
558
1047
2084
400 kHz
88.2
123
256
490
969
116
232
485
973
2012
100 kHz
63
90.6
223
457
934
79
195
447
942
1975
fHCLK = fHSE up
to 48MHz
included, bypass
Supply
mode
current in
PLL ON above
Run mode
48 MHz all
peripherals
disable
Supply
current in fHCLK = fMSI
Low-power all peripherals disable
run mode
25 °C 55 °C
85 °C
26 MHz
2.65
2.69
2.82
3.05
3.51
16 MHz
1.68
1.72
1.85
2.07
8 MHz
0.91
0.94
1.07
4 MHz
0.52
0.55
2 MHz
0.33
1 MHz
fHCLK
1. Guaranteed by characterization results, unless otherwise specified.
105 °C 125 °C 25 °C
105 °C 125 °C
mA
µA
STM32L4A6xG
55 °C
Range 2
IDD_ALL(Run)
MAX(1)
TYP
Electrical characteristics
130/281
Table 26. Current consumption in Run and Low-power run modes, code with data processing
running from flash, ART enable (Cache ON Prefetch OFF)
Conditions(1)
Symbol
Unit
-
IDD_ALL(Run)
TYP
Parameter
Supply current in Run
mode
fHCLK = fHSE up to 48MHz included, bypass mode
PLL ON above
48 MHz all peripherals disable
DS11584 Rev 14
fHCLK
25 °C
55 °C
85 °C
105 °C 125 °C
80 MHz
3.39
3.42
3.48
3.57
3.74
72 MHz
3.06
3.09
3.15
3.24
3.43
64 MHz
2.74
2.76
2.81
2.91
3.10
48 MHz
2.06
2.08
2.14
2.23
2.42
32 MHz
1.39
1.41
1.46
1.56
1.74
24 MHz
1.06
1.07
1.13
1.22
1.40
16 MHz
0.72
0.74
0.79
0.88
1.06
8 MHz
0.39
0.41
0.46
0.56
0.75
4 MHz
0.22
0.24
0.29
0.39
0.58
2 MHz
0.14
0.16
0.21
0.30
0.50
1 MHz
0.10
0.11
0.16
0.26
0.46
100 kHz
0.06
0.07
0.13
0.22
0.42
STM32L4A6xG
Table 27. Current consumption in Run modes, code with data processing running from flash,
(ART enable Cache ON Prefetch OFF) and power supplied
(by external SMPS (VDD12 = 1.10 V)
mA
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%,
VDD12 = 1.10 V
Electrical characteristics
131/281
Conditions
Symbol
Parameter
-
Voltage
scaling
Range 2
IDD_ALL(Run)
DS11584 Rev 14
IDD_ALL
(LPRun)
fHCLK = fHSE up
to 48MHz
included, bypass
Supply
mode
current in
PLL ON above
Run mode
48 MHz all
peripherals
disable
MAX(1)
TYP
Unit
fHCLK
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
26 MHz
3.1
3.14
3.28
3.51
3.98
3.5
3.6
3.8
4.3
5.3
16 MHz
2.19
2.23
2.36
2.59
3.05
2.5
2.6
2.8
3.3
4.3
8 MHz
1.22
1.26
1.39
1.61
2.07
1.4
1.5
1.7
2.2
3.2
4 MHz
0.69
0.73
0.85
1.08
1.53
0.8
0.9
1.1
1.6
2.6
2 MHz
0.41
0.44
0.57
0.79
1.24
0.5
0.6
0.8
1.3
2.3
1 MHz
0.27
0.3
0.43
0.65
1.1
0.3
0.4
0.6
1.1
2.1
100 kHz
0.14
0.18
0.3
0.52
0.97
0.2
0.3
0.5
1.0
2.0
80 MHz
10
10.1
10.3
10.5
11.1
11.1
11.2
11.6
12.2
13.31
72 MHz
9.02
9.1
9.29
9.59
10.1
10
10.1
10.5
11.0
12.2
64 MHz
Range 1 48 MHz
8.94
9.02
9.2
9.48
10
9.9
10.1
10.4
11.0
12.1
7.51
7.59
7.77
8.05
8.59
8.4
8.6
8.9
9.5
10.6
32 MHz
5.38
5.45
5.62
5.88
6.41
6.0
6.2
6.5
7.0
8.2
24 MHz
4.07
4.12
4.28
4.54
5.06
4.5
4.7
5.0
5.5
6.6
16 MHz
2.86
2.92
3.07
3.33
3.84
3.2
3.3
3.6
4.2
5.3
2 MHz
378
412
549
782
1260
436
538
761
1287
2317
1 MHz
213
246
381
618
1100
255
367
609.
1105
2138
400 kHz
101
144
277
514
989
141
256
507
995
2033
100 kHz
62
95.8
228
463
939
85
201
454
947
1982
Supply
current in fHCLK = fMSI
Low-power all peripherals disable
run
Electrical characteristics
132/281
Table 28. Current consumption in Run and Low-power run modes, code with data processing
running from flash, ART disable
mA
µA
1. Guaranteed by characterization results, unless otherwise specified.
STM32L4A6xG
Conditions(1)
Symbol
-
IDD_ALL(Run)
TYP
Parameter
Supply current in Run
mode
fHCLK = fHSE up to 48MHz included, bypass mode
PLL ON above
48 MHz all peripherals disable
fHCLK
25 °C
55
°C
DS11584 Rev 14
85 °C 105 °C
125
°C
80 MHz
3.59
3.63
3.70
3.77
3.99
72 MHz
3.24
3.27
3.34
3.45
3.63
64 MHz
3.21
3.24
3.31
3.41
3.59
48 MHz
2.70
2.73
2.79
2.89
3.09
32 MHz
1.93
1.96
2.02
2.11
2.30
24 MHz
1.46
1.48
1.54
1.63
1.82
16 MHz
1.03
1.05
1.10
1.20
1.38
8 MHz
0.53
0.54
0.60
0.69
0.89
4 MHz
0.30
0.31
0.37
0.47
0.66
2 MHz
0.18
0.19
0.25
0.34
0.53
1 MHz
0.12
0.13
0.19
0.28
0.47
100 kHz
0.06
0.08
0.13
0.22
0.42
Uni
t
STM32L4A6xG
Table 29. Current consumption in Run modes, code with data processing running from flash,
ART disable and power supplied by external SMPS (VDD12 = 1.10 V)
mA
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%,
VDD12 = 1.10 V
Electrical characteristics
133/281
Conditions
Symbol
Parameter
-
Voltage
scaling
Range 2
IDD_ALL(Run)
Supply
current in
Run mode
DS11584 Rev 14
fHCLK = fHSE up
to 48MHz
included, bypass
mode
PLL ON above
48 MHz all
peripherals
disable
Range 1
IDD_ALL
(LPRun)
Supply
current in
low-power
run mode
fHCLK = fMSI
all peripherals disable
FLASH in power-down
MAX(1)
TYP
fHCLK
25 °C
55 °C
85 °C
105
°C
125
°C
25 °C
55 °C
85 °C
105
°C
125
°C
26 MHz
2.72
2.76
2.89
3.12
3.58
3.0
3.1
3.4
3.8
4.8
16 MHz
1.73
1.76
1.89
2.12
2.58
1.9
2.0
2.3
2.7
3.7
8 MHz
0.93
0.96
1.09
1.31
1.77
1.0
1.1
1.42
1.8
2.8
4 MHz
0.53
0.57
0.69
0.91
1.36
0.6
0.7
0.9
1.4
2.4
2 MHz
0.33
0.36
0.49
0.71
1.16
0.4
0.5
0.7
1.2
2.2
1 MHz
0.23
0.26
0.39
0.61
1.06
0.2
0.4
0.6
1.1
2.1
100 kHz
0.14
0.17
0.3
0.52
0.97
0.2
0.3
0.5
1.0
2.0
80 MHz
9.71
9.78
9.95
10.2
10.8
10.6
10.7
11.1
11.6
12.7
72 MHz
8.77
8.84
9
9.27
9.8
9.6
9.7
10.0
10.6
11.7
64 MHz
7.82
7.89
8.05
8.32
8.84
8.5
8.7
9.0
9.5
10.6
48 MHz
5.87
5.93
6.1
6.36
6.88
6.4
6.6
6.9
7.4
8.5
32 MHz
3.97
4.03
4.18
4.44
4.95
4.4
4.5
4.8
5.3
6.4
24 MHz
3.02
3.07
3.22
3.47
3.99
3.3
3.5
3.7
4.3
5.4
16 MHz
2.07
2.11
2.26
2.51
3.02
2.3
2.4
2.7
3.2
4.3
2 MHz
258
296
430
665
1140
295
402
634
1154
2180
1 MHz
136
180
314
550
1020
170
283
530
1034
2065
400 kHz
78.5
109
241
475
951
90
206
458
958
1991
100 kHz
37.4
78.1
208
440
918
53
171
429
925
1957
Unit
Electrical characteristics
134/281
Table 30. Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1
mA
µA
1. Guaranteed by characterization results, unless otherwise specified.
STM32L4A6xG
Conditions(1)
Symbol
TYP
Parameter
Unit
-
fHCLK = fHSE up to 48MHz included, bypass mode
IDD_ALL(Run) Supply current in Run mode PLL ON above
48 MHz all peripherals disable
DS11584 Rev 14
25 °C 55 °C
85 °C
80 MHz
3.49
3.52
3.58
3.67
3.88
72 MHz
3.15
3.18
3.24
3.33
3.52
64 MHz
2.81
2.84
2.89
2.99
3.18
48 MHz
2.11
2.13
2.19
2.29
2.47
32 MHz
1.43
1.45
1.50
1.60
1.78
24 MHz
1.09
1.10
1.16
1.25
1.43
16 MHz
0.74
0.76
0.81
0.90
1.09
8 MHz
0.40
0.41
0.47
0.57
0.76
4 MHz
0.23
0.25
0.30
0.39
0.59
2 MHz
0.14
0.16
0.21
0.31
0.50
1 MHz
0.10
0.11
0.17
0.26
0.46
100 kHz
0.06
0.07
0.13
0.22
0.42
fHCLK
105 °C 125 °C
STM32L4A6xG
Table 31. Current consumption in Run, code with data processing running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V)
mA
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%,
VDD12 = 1.10 V
Electrical characteristics
135/281
Electrical characteristics
STM32L4A6xG
Table 32. Typical current consumption in Run and Low-power run modes, with different codes
running from flash, ART enable (Cache ON Prefetch OFF)
Conditions
Supply
current in
Run mode
TYP
Voltage
scaling
-
Range 2
fHCLK = 26 MHz
IDD_ALL
(Run)
Parameter
fHCLK = fHSE up
to 48 MHz
included, bypass
mode PLL ON
above 48 MHz
all peripherals
disable
Range 1
fHCLK = 80 MHz
Symbol
Code
2.65
102
Coremark
2.97
114
Dhrystone 2.1
3.1
IDD_ALL
(LPRun)
mA
119
Fibonacci
2.9
112
While(1)
2.43
93
9.44
118
Coremark
10.6
133
Dhrystone 2.1
10.9
Fibonacci
10.3
129
While(1)
8.66
108
274
137
Reduced
code(1)
code(1)
mA
Unit
25 °C
Reduced code(1)
Reduced
Supply
current in fHCLK = fMSI = 2 MHz
Low-power all peripherals disable
run
25 °C
TYP
Unit
136
Coremark
307
Dhrystone 2.1
308
Fibonacci
273
137
While(1)
258
129
µA/MHz
µA/MHz
154
µA
154
µA/MHz
1. Reduced code used for characterization results provided in Table 26, Table 28, Table 30.
Table 33. Typical current consumption in Run, with different codes running from flash, ART
enable (Cache ON Prefetch OFF) and power supplied
(by external SMPS (VDD12 = 1.10 V)
Conditions(1)
Supply
current in
Run mode
-
fHCLK = fHSE up to
48 MHz included,
bypass mode PLL
ON above
48 MHz
all peripherals
disable
Voltage
scaling
fHCLK = 26 MHz
IDD_ALL
(Run)
Parameter
fHCLK = 80 MHz
Symbol
TYP
TYP
Unit
Code
25 °C
Reduced code(2)
1.14
44
Coremark
1.28
49
Dhrystone 2.1
1.34
51
Fibonacci
1.25
48
While(1)
1.05
Reduced code(2)
3.39
Coremark
3.81
48
Dhrystone 2.1
3.92
49
Fibonacci
3.70
46
While(1)
3.11
39
mA
Unit
25 °C
40
42
µA/MHz
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters:
SMPS input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.10 V
2. Reduced code used for characterization results provided in Table 26, Table 28, Table 30.
136/281
DS11584 Rev 14
STM32L4A6xG
Electrical characteristics
Table 34. Typical current consumption in Run, with different codes running from flash, ART
enable (Cache ON Prefetch OFF) and power supplied
(by external SMPS (VDD12 = 1.05 V)
Conditions(1)
IDD_ALL
(Run)
Parameter
Supply
current in
Run mode
-
Voltage
scaling
fHCLK = fHSE up to
48 MHz included,
bypass mode PLL
ON above
48 MHz
all peripherals
disable
fHCLK = 26 MHz
Symbol
TYP
TYP
Unit
Code
25 °C
Reduced code(2)
1.04
40
Coremark
1.17
45
Dhrystone 2.1
1.22
Fibonacci
1.14
44
While(1)
0.96
37
mA
Unit
25 °C
47
µA/MHz
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters:
SMPS input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.05 V
2. Reduced code used for characterization results provided in Table 26, Table 28, Table 30.
Table 35. Typical current consumption in Run and Low-power run modes, with different codes
running from flash, ART disable
Conditions
IDD_ALL
(Run)
IDD_ALL
(LPRun)
Parameter
Supply
current in
Run mode
-
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz
all peripherals
disable
Voltage
scaling
Range 1
Range 2
fHCLK = 80 MHz fHCLK = 26 MHz
Symbol
Supply
current in fHCLK = fMSI = 2 MHz
Low-power all peripherals disable
run
TYP
Code
25 °C
TYP
Unit
25 °C
Reduced code(1)
3.1
119
Coremark
2.85
110
Dhrystone 2.1
2.86
mA
110
Fibonacci
2.63
101
While(1)
2.42
93.1
10
125
9.33
117
Reduced code(1)
Coremark
mA
Dhrystone 2.1
9.4
Fibonacci
8.66
108
118
While(1)
8.61
108
Reduced code(1)
378
189
Coremark
412
Dhrystone 2.1
418
Fibonacci
392
196
While(1)
266
133
Unit
µA/MHz
µA/MHz
206
µA
209
µA/MHz
1. Reduced code used for characterization results provided in Table 26, Table 28, Table 30.
DS11584 Rev 14
137/281
245
Electrical characteristics
STM32L4A6xG
Table 36. Typical current consumption in Run modes, with different codes running from
flash, ART disable and power supplied by external SMPS (VDD12 = 1.10 V)
Conditions(1)
IDD_ALL
(Run)
Parameter
Supply
current in
Run mode
Voltage
scaling
-
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz
all peripherals
disable
fHCLK = 80 MHz fHCLK = 26 MHz
Symbol
TYP
Code
25 °C
Reduced code(2)
1.34
TYP
Unit
25 °C
Unit
51
Coremark
1.23
47
Dhrystone 2.1
1.23
47
Fibonacci
1.13
44
While(1)
1.04
Reduced code(1)
3.59
mA
40
45
Coremark
3.35
42
Dhrystone 2.1
3.38
42
Fibonacci
3.11
39
While(1)
3.10
39
µA/MHz
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS
input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.10 V
2. Reduced code used for characterization results provided in Table 26, Table 28, Table 30.
Table 37. Typical current consumption in Run modes, with different codes running from
flash, ART disable and power supplied by external SMPS (VDD12 = 1.05 V)
Conditions(1)
IDD_ALL
(Run)
Parameter
Supply
current in
Run mode
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz
all peripherals
Voltage
scaling
fHCLK = 26 MHz
Symbol
TYP
Code
25 °C
Reduced code(2)
1.22
TYP
Unit
25 °C
Unit
47
Coremark
1.12
Dhrystone 2.1
1.12
43
Fibonacci
1.03
40
While(1)
0.95
37
mA
43
µA/MHz
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS
input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.05 V
2. Reduced code used for characterization results provided in Table 26, Table 28, Table 30.
138/281
DS11584 Rev 14
STM32L4A6xG
Electrical characteristics
Table 38. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1
Conditions
IDD_ALL
(Run)
IDD_ALL
(LPRun)
Parameter
Voltage
scaling
-
Range 1
Range 2
fHCLK = 80 MHz fHCLK = 26 MHz
Symbol
fHCLK = fHSE up to
48 MHz included,
Supply
bypass mode
current in PLL ON above
Run mode 48 MHz all
peripherals
disable
Supply
current in fHCLK = fMSI = 2 MHz
Low-power all peripherals disable
run
TYP
Code
Reduced code(1)
25 °C
TYP
Unit
2.72
Coremark
2.72
Dhrystone 2.1
2.65
Fibonacci
2.47
25 °C
105
105
mA
102
2.37
91
Reduced code(1)
9.71
121
9.7
Dhrystone 2.1
9.48
µA/MHz
95
While(1)
Coremark
Unit
121
mA
119
Fibonacci
8.79
110
While(1)
8.45
106
Reduced code(1)
258
129
Coremark
268
134
Dhrystone 2.1
240
Fibonacci
230
115
While(1)
255
128
µA
120
µA/MHz
µA/MHz
1. Reduced code used for characterization results provided in Table 26, Table 28, Table 30.
Table 39. Typical current consumption in Run, with different codes running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V)
Conditions(1)
IDD_ALL
(Run)
Parameter
Supply
current in
Run mode
-
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz all
peripherals disable
TYP
Voltage
scaling
fHCLK = 80 MHz fHCLK = 26 MHz
Symbol
TYP
Unit
Code
25 °C
Reduced code(2)
1.17
45
Coremark
1.17
45
Dhrystone 2.1
1.14
44
Fibonacci
1.07
41
While(1)
1.02
Reduced code(1)
3.49
mA
25 °C
39
44
Coremark
3.49
44
Dhrystone 2.1
3.41
43
Fibonacci
3.16
39
While(1)
3.04
38
Unit
µA/MHz
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS
input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.10 V
2. Reduced code used for characterization results provided in Table 26, Table 28, Table 30.
DS11584 Rev 14
139/281
245
Electrical characteristics
STM32L4A6xG
Table 40. Typical current consumption in Run, with different codes running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.05 V)
Conditions(1)
IDD_ALL
(Run)
Parameter
Supply
current in
Run mode
fHCLK = fHSE up to
48 MHz included,
bypass mode
PLL ON above
48 MHz all
peripherals disable
TYP
Voltage
scaling
fHCLK = 26 MHz
Symbol
Code
25 °C
Reduced code(2)
1.07
TYP
Unit
25 °C
Unit
41
Coremark
1.07
Dhrystone 2.1
1.04
41
Fibonacci
0.97
37
While(1)
0.93
36
mA
40
µA/MHz
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS
input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.05 V
2. Reduced code used for characterization results provided in Table 26, Table 28, Table 30.
140/281
DS11584 Rev 14
Conditions
Symbol
Parameter
-
Voltage
scaling
Range 2
IDD_ALL
(Sleep)
DS11584 Rev 14
IDD_ALL
(LPSleep)
Supply
current in
sleep
mode,
fHCLK = fHSE up
to 48 MHz
included, bypass
mode
pll ON above
48 MHz all
peripherals
disable
MAX(1)
TYP
Unit
25 °C 55 °C
85 °C
26 MHz
0.79
0.82
0.95
1.17
1.63
16 MHz
0.54
0.57
0.7
0.92
8 MHz
0.33
0.37
0.49
0.71
4 MHz
0.23
0.26
0.39
2 MHz
0.18
0.21
0.34
fHCLK
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
0.9
1.0
1.2
1.7
2.7
1.38
0.6
0.7
1.0
1.4
2.4
1.17
0.4
0.5
0.7
1.2
2.2
0.61
1.06
0.3
0.4
0.6
1.1
2.1
0.56
1.01
0.2
0.3
0.5
1.0
1.0
1 MHz
0.16
0.19
0.31
0.53
0.99
0.2
0.3
0.5
1.0
1.0
100 kHz
0.13
0.17
0.29
0.51
0.96
0.1
0.3
0.5
1.0
1.9
80 MHz
2.57
2.62
2.76
3.01
3.53
2.8
2.9
3.2
3.8
4.9
72 MHz
2.34
2.38
2.53
2.78
3.29
2.6
2.7
3.0
3.5
4.6
64 MHz
Range 1 48 MHz
2.1
2.15
2.29
2.54
3.05
2.3
2.4
2.7
3.3
4.4
1.58
1.63
1.78
2.03
2.54
1.8
1.9
2.2
2.7
3.8
32 MHz
1.11
1.15
1.3
1.54
2.05
1.2
1.4
1.7
2.2
3.3
24 MHz
0.87
0.91
1.06
1.3
1.81
1.0
1.1
1.4
1.9
3.0
16 MHz
0.63
0.67
0.82
1.06
1.56
0.7
0.8
1.1
1.6
2.7
2 MHz
103
140
270
506
985
130
247
500
990
2025
1 MHz
74.2
111
245
476
955
100
215
467
963
1999
400 kHz
60
89.8
224
457
937
79
194
444
941
1975
100 kHz
53.7
84.1
216
448
928
70
185
434
933
1967
Supply
current in
=f
f
low-power HCLK MSI
all peripherals disable
sleep
mode
mA
µA
141/281
Electrical characteristics
1. Guaranteed by characterization results, unless otherwise specified.
STM32L4A6xG
Table 41. Current consumption in Sleep and Low-power sleep modes, flash ON
Conditions(1)
Symbol
Unit
-
IDD_ALL(Sleep)
TYP
Parameter
Supply current in sleep mode,
fHCLK = fHSE up to 48 MHz included, bypass
mode
pll ON above
48 MHz all peripherals disable
DS11584 Rev 14
fHCLK
25 °C
55 °C
85 °C
105 °C
125 °C
80 MHz
0.92
0.94
0.99
1.08
1.27
72 MHz
0.84
0.86
0.91
1.00
1.18
64 MHz
0.75
0.77
0.82
0.91
1.10
48 MHz
0.57
0.59
0.64
0.73
0.91
32 MHz
0.40
0.41
0.47
0.55
0.74
24 MHz
0.31
0.33
0.38
0.47
0.65
16 MHz
0.23
0.24
0.29
0.38
0.56
8 MHz
0.14
0.16
0.21
0.31
0.50
4 MHz
0.10
0.11
0.17
0.26
0.46
2 MHz
0.08
0.09
0.15
0.24
0.44
1 MHz
0.07
0.08
0.13
0.23
0.43
100 kHz
0.06
0.07
0.13
0.22
0.41
Electrical characteristics
142/281
Table 42. Current consumption in Sleep, flash ON and power supplied
by external SMPS (VDD12 = 1.10 V)
mA
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%,
VDD12 = 1.10 V
STM32L4A6xG
Conditions
Symbol
Parameter
Voltage
scaling
-
IDD_ALL
(LPSleep)
Supply current
=f
f
in low-power HCLK MSI
all peripherals disable
sleep mode
MAX(1)
TYP
Unit
fHCLK
25 °C 55 °C
2 MHz
92.7
124
85 °C
258
105 °C 125 °C 25 °C
487
968
105
55 °C
85 °C
224
474
105 °C 125 °C
969
2006
1 MHz
63.5
97.5
223
460
951
75
193
446
942
1975
400 kHz
42.6
75.6
207
443
947
54
171
426
923
1955
100 kHz
31.2
67.6
199
437
905
44
162
420
916
1947
STM32L4A6xG
Table 43. Current consumption in Low-power sleep modes, flash in power-down
µA
1. Guaranteed by characterization results, unless otherwise specified.
Table 44. Current consumption in Stop 2 mode
Conditions
Symbol
Unit
DS11584 Rev 14
-
LCD disabled
IDD_ALL
(Stop 2)
MAX(1)
TYP
Parameter
Supply current in
Stop 2 mode,
RTC disabled
LCD enabled(2)
clocked by LSI
VDD
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
1.8 V
2.57
6.86
25.2
60.1
135
2.4 V
2.62
6.91
25.5
60.6
3V
2.69
6.93
25.7
3.6 V
2.7
7.08
1.8 V
2.92
2.4 V
105 °C 125 °C
5.3
16.4
64
154.6
353
137
5.3
16.6
64.9
156.7
359
61.5
140
5.4
16.9
66.3
159.7
366
26.3
62.9
143
5.4
17.4
67.8
163.8
375
7.19
25.3
59.5
135
5.3
16.6
64.8
155.6
355
2.99
7.3
25.6
60.3
136
5.5
16.8
65.9
157.9
360
3V
3.04
7.41
26.1
61.7
140
5.9
17.3
67.1
160.8
367
3.6 V
3.31
7.7
26.8
63.2
143
6.2
17.9
69.1
165.0
376
µA
Electrical characteristics
143/281
Conditions
Symbol
MAX(1)
TYP
Parameter
Unit
55 °C
85 °C
105 °C 125 °C
6.1
17.2
64.8
155.4
354
140
6.2
17.5
65.7
157.6
360
63.5
144
6.5
17.9
67.2
160.6
367
27.7
65.2
147
7.1
18.7
69.0
164.9
376
7.31
25.5
60
135
5.5
16.8
65.1
155.8
355
3.10
7.46
25.8
60.7
137
5.8
17.1
66.3
158.2
360
3V
3.23
7.63
26.4
62.1
141
6.2
17.5
67.6
161.4
367
3.6 V
3.47
7.95
27.1
63.6
144
6.58
18.3
69.5
165.5
376
1.8 V
2.93
7.52
26.2
61.4
139
-
-
-
-
-
RTC clocked by LSE
2.4 V
bypassed at
32768Hz,LCD disabled 3 V
3.1
7.68
26.6
62.1
140
-
-
-
-
-
3.3
7.81
26.9
63.4
143
-
-
-
-
-
3.6 V
3.48
8.07
27.6
65.0
146
-
-
-
-
-
1.8 V
2.86
7.48
26.2
61.4
-
-
-
-
-
-
2.4 V
3.01
7.56
26.5
62.2
-
-
-
-
-
-
3V
3.18
7.65
26.8
63.5
-
-
-
-
-
-
3.6 V
3.31
7.94
27.5
65.1
-
-
-
-
-
-
-
RTC clocked by LSI,
LCD disabled
RTC clocked by LSI,
LCD enabled(3)
DS11584 Rev 14
Supply current in
IDD_ALL(Stop 2
Stop 2 mode,
with RTC)
RTC enabled
RTC clocked by LSE
quartz(3)
in low drive mode,
LCD disabled
VDD
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
1.8 V
2.97
7.46
26.2
61.4
139
2.4 V
3.09
7.61
26.5
62.3
3V
3.15
7.81
27
3.6 V
3.4
8.05
1.8 V
2.98
2.4 V
Electrical characteristics
144/281
Table 44. Current consumption in Stop 2 mode (continued)
µA
STM32L4A6xG
Conditions
Symbol
MAX(1)
TYP
Parameter
Unit
VDD
25 °C 55 °C
Wakeup clock is
MSI = 48 MHz,
voltage Range 1.
See (4).
3V
1.69
-
-
-
-
Wakeup clock is
MSI = 4 MHz,
voltage Range 2.
See (4).
3V
1.35
-
-
-
Wakeup clock is
HSI16 = 16 MHz,
voltage Range 1.
See (4).
3V
1.7
-
-
-
-
Supply current
IDD_ALL(wake
during wakeup
up from
from Stop 2
Stop 2)
mode
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
STM32L4A6xG
Table 44. Current consumption in Stop 2 mode (continued)
mA
DS11584 Rev 14
1. Guaranteed by characterization results, unless otherwise specified.
2. LCD enabled with external voltage source. Consumption from VLCD excluded. Refer to LCD controller characteristics for IVLCD.
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
4. Wakeup with code execution from flash. Average value given for a typical wakeup time as specified in Table 51: Low-power mode wakeup timings.
Electrical characteristics
145/281
Symbol
Parameter
Conditions
-
IDD_ALL
(Stop 1)
Supply current
in Stop 1
mode,
RTC disabled
-
-
LCD
disabled
LCD
enabled(2)
clocked by
LSI
DS11584 Rev 14
LCD
disabled
RTC clocked by
LSI
Supply current
IDD_ALL
in stop 1
(Stop 1 with
mode,
RTC)
RTC enabled RTC clocked by
LSE bypassed
at 32768 Hz
RTC clocked by
LSE quartz(3) in
low drive mode
LCD
enabled(2)
LCD
disabled
LCD
disabled
MAX(1)
TYP
VDD
25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
1.8 V
11.2
30.7
107
243
523
25.4
79.6
287
651
1395
2.4 V
11.3
30.8
108
244
526
25.5
79.8
288
655
1403
3V
11.6
31
108
245
530
25.9
80.5
290
659
1413
3.6 V
11.9
31.5
109
248
536
28.6
81.4
293
665
1428
1.8 V
11.7
29.7
102
234
504
27.1
81.1
288.5
653
1397
2.4 V
11.7
29.9
102
234
506
27.2
81.0
289
656
1405
3V
12.1
29.9
103
234
508
27.4
81.6
291
660
1415
3.6 V
12.2
30.1
103
235
510
28.8
82.4
294
667
1429
1.8 V
11.9
31.1
108
244
524
26.6
80.5
288
652
1396
2.4 V
12.1
31.4
109
245
528
26.7
80.9
289
656
1404
3V
12.4
31.7
109
246
531
27.7
81.6
291
660
1415
3.6 V
12.6
32.3
110
249
537
28.9
82.8
295
667
1429
1.8 V
11.7
30.1
104
235
510
26.7
80.6
288
653
1397
2.4 V
11.8
30.2
104
238
511
26.7
81.1
290
657
1406
3V
11.8
30.5
104
238
515
28.3
81.8
2912
661
1416
3.6 V
12.3
31
105
239
519
30.9
83.0
295
668
1430
1.8 V
11.6
31.3
108
244
524
-
-
-
-
-
2.4 V
11.8
31.6
109
245
527
-
-
-
-
-
3V
12.3
31.9
109
246
531
-
-
-
-
-
3.6 V
12.7
32.5
111
249
537
-
-
-
-
-
1.8 V
11.5
31.1
108
244
-
-
-
-
-
-
2.4 V
11.5
31.4
109
246
-
-
-
-
-
-
3V
12
31.7
109
247
-
-
-
-
-
-
3.6 V
12.4
32.3
110
250
-
-
-
-
-
-
Unit
µA
Electrical characteristics
146/281
Table 45. Current consumption in Stop 1 mode
µA
STM32L4A6xG
Symbol
Conditions
Parameter
-
-
Wakeup clock MSI = 48 MHz,
voltage Range 1.
See (4).
Supply current Wakeup clock MSI = 4 MHz,
IDD_ALL
voltage Range 2.
during
(wakeup
wakeup from See (4).
from Stop1)
Stop 1
Wakeup clock
HSI16 = 16 MHz,
voltage Range 1.
See (4).
MAX(1)
TYP
VDD
25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
3V
0.99
-
-
-
-
-
-
-
-
-
3V
1.1
-
-
-
-
-
-
-
-
-
3V
0.95
-
-
-
-
-
-
-
-
-
Unit
STM32L4A6xG
Table 45. Current consumption in Stop 1 mode (continued)
mA
1. Guaranteed by characterization results, unless otherwise specified.
DS11584 Rev 14
2. LCD enabled with external voltage source. Consumption from VLCD excluded. Refer to LCD controller characteristics for IVLCD.
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
4. Wakeup with code execution from flash. Average value given for a typical wakeup time as specified in Table 51: Low-power mode wakeup timings.
Table 46. Current consumption in Stop 0 mode
Conditions
Parameter
IDD_ALL
(Stop 0)
Supply current in Stop 0
mode,
RTC disabled
VDD
85 °C
105 °C
125
°C
25 °C
55 °C
85 °C
105 °C
125 °C
1.8 V
127
153
244
404
734
148
218
471
905
1795
2.4 V
129
155
247
407
737
151
221
474
910
1803
3V
131
156
249
409
741
154
224
478
915
1813
3.6 V
133
158
251
412
744
157
228
482
921
1822(2)
1. Guaranteed by characterization results, unless otherwise specified.
2. Guaranteed by test in production.
25 °C 55 °C
Unit
µA
147/281
Electrical characteristics
Symbol
MAX(1)
TYP
Conditions
Symbol
Parameter
Unit
-
IDD_ALL
(Standby)
DS11584 Rev 14
IDD_ALL
(Standby
with RTC)
MAX(1)
TYP
Supply current
in Standby
mode (backup
registers
retained),
RTC disabled
Supply current
in Standby
mode (backup
registers
retained),
RTC enabled
VDD
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C
125 °C
1.8 V
108
299
1343
3822
10353
227
899
4159
13059
36572
2.4 V
118
348
1562
4447
12012
252
1009
4846
15026
41366
3V
133
404
1777
5071
13589
318
1211
6082
17245
46714
3.6 V
171
501
2115
5898
15539
435
1508
7230
19850
52888(2)
1.8 V
296
-
-
-
-
-
-
-
-
-
2.4 V
349
-
-
-
-
-
-
-
-
-
3V
411
-
-
-
-
-
-
-
-
-
3.6 V
506
-
-
-
-
-
-
-
-
-
1.8 V
377
581
1700
4270
11100
763
1422
5182
13585
36564
RTC clocked by LSI, no 2.4 V
independent watchdog
3V
461
700
2020
5030
12900
942
1704
5992
15473
41383
559
843
2390
5990
15500
1166
2032
6938
17889
46728
3.6 V
689
1050
2920
7130
18100
1454
2511
7754
20714
53018
1.8 V
422
-
-
-
-
-
-
-
-
-
2.4 V
518
-
-
-
-
-
-
-
-
-
3V
560
-
-
-
-
-
-
-
-
-
3.6 V
780
-
-
-
-
-
-
-
-
-
No independent
watchdog
With independent
watchdog
RTC clocked by LSI,
with independent
watchdog
nA
Electrical characteristics
148/281
Table 47. Current consumption in Standby mode
nA
STM32L4A6xG
Conditions
Symbol
Parameter
Unit
-
IDD_ALL
(Standby
with RTC)
DS11584 Rev 14
IDD_ALL
(SRAM2)(4)
IDD_ALL
(wakeup
from
Standby)
MAX(1)
TYP
Supply current
in Standby
mode (backup
registers
retained),
RTC enabled
Supply current
to be added in
Standby mode
when SRAM2
is retained
Supply current
during wakeup
from Standby
mode
RTC clocked by LSE
bypassed at 32768Hz
RTC clocked by LSE
quartz (3) in low drive
mode
-
Wakeup clock is
MSI = 4 MHz.
See (5).
VDD
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C
125 °C
1.8 V
308
504
1683
4193
10783
-
-
-
-
-
2.4 V
400
633
1963
4957
12583
-
-
-
-
-
3V
508
779
2319
5925
15130
-
-
-
-
-
3.6 V
661
1009
2825
7027
17540
-
-
-
-
-
1.8 V
426
624
1679
4244
10884
-
-
-
-
-
2.4 V
521
751
1985
4952
12619
-
-
-
-
-
3V
643
914
2371
5931
15121
-
-
-
-
-
3.6 V
819
1162
2914
7019
17551
-
-
-
-
-
1.8 V
371
1111
4297
10153
22747
806
2640
10537
24695
54376
2.4 V
372
1112
4328
10154
22888
809
2661
10545
24767
54505
3V
374
1116
4403
10429
23711
811
2683
10553
24840
54634
3.6 V
378
1149
4545
10702
24361
814
2704
10561
24913
54763
3V
1.4
-
-
-
-
-
-
-
-
-
STM32L4A6xG
Table 47. Current consumption in Standby mode (continued)
nA
nA
mA
1. Guaranteed by characterization results, unless otherwise specified.
2. Guaranteed by test in production.
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
5. Wakeup with code execution from flash. Average value given for a typical wakeup time as specified in Table 51: Low-power mode wakeup timings.
149/281
Electrical characteristics
4. The supply current in Standby with SRAM2 mode is: IDD_ALL(Standby) + IDD_ALL(SRAM2). The supply current in Standby with RTC with SRAM2 mode is:
IIDD_ALL(Standby + RTC) + IDD_ALL(SRAM2).
Conditions
Symbol
Unit
-
IDD_ALL
(Shutdown)
DS11584 Rev 14
IDD_ALL
(Shutdown
with RTC)
MAX(1)
TYP
Parameter
Supply current
in Shutdown
mode
(backup
registers
retained) RTC
disabled
Supply current
in Shutdown
mode
(backup
registers
retained) RTC
enabled
Supply current
IDD_ALL
during wakeup
(wakeup from
from Shutdown
Shutdown)
mode
-
RTC clocked by LSE
bypassed at 32768 Hz
RTC clocked by LSE
quartz (2) in low drive
mode
Wakeup clock is
MSI = 4 MHz.
See (3).
VDD
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
1.8 V
24
161
983
3020
8970
85
556
3314
10498
31391
2.4 V
31
193
1150
3530
10300
111
648
3844
11897
35017
3V
44
242
1400
4260
12500
154
780
4447
13473
39297
3.6 V
76
338
1790
5220
14700
236
1009
5354
15679
44571
1.8 V
225
363
1190
3230
9180
-
-
-
-
-
2.4 V
314
478
1440
3820
10700
-
-
-
-
-
3V
421
621
1790
4660
12900
-
-
-
-
-
3.6 V
561
831
2280
5730
15300
-
-
-
-
-
1.8 V
341
472
1303
3459
-
-
-
-
-
-
2.4 V
435
586
1572
4041
-
-
-
-
-
-
3V
553
732
1982
5145
-
-
-
-
-
-
3.6 V
716
948
2520
6325
-
-
-
-
-
-
3V
0.6
-
-
-
-
-
-
-
-
-
nA
Electrical characteristics
150/281
Table 48. Current consumption in Shutdown mode
nA
mA
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
3. Wakeup with code execution from flash. Average value given for a typical wakeup time as specified in Table 51: Low-power mode wakeup timings.
STM32L4A6xG
Conditions
Symbol
MAX(1)
TYP
Parameter
Unit
-
RTC disabled
RTC enabled and
Backup domain clocked by LSE
IVDD_VBAT(VBAT)
supply current bypassed at
32768 Hz
DS11584 Rev 14
RTC enabled and
clocked by LSE
quartz(2)
VBAT
25 °C 55 °C
85 °C
105 °C 125 °C 25 °C
55 °C
85 °C
105 °C 125 °C
1.8 V
2
18
110
329
908
-
-
-
-
-
2.4 V
2
20
125
371
1016
-
-
-
-
-
3V
3
25
154
546
1965
-
-
-
-
-
3.6 V
10
57
324
963
2688
-
-
-
-
-
1.8 V
198
216
312
535
-
-
-
-
-
-
2.4 V
280
300
411
664
-
-
-
-
-
-
3V
375
402
544
943
-
-
-
-
-
-
3.6 V
488
529
791
1459
-
-
-
-
-
-
1.8 V
320
347
448
856
1432
-
-
-
-
-
2.4 V
405
436
550
921
1567
-
-
-
-
-
3V
512
545
686
1128
2529
-
-
-
-
-
3.6 V
648
705
976
1588
3293
-
-
-
-
-
STM32L4A6xG
Table 49. Current consumption in VBAT mode
nA
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
Electrical characteristics
151/281
Electrical characteristics
STM32L4A6xG
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 70: I/O static characteristics.
For the output pins, any internal or external pull-up or pull-down and external load must also
be considered to estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 50), the I/Os used by an application also contribute to the current consumption. When
an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin
circuitry and to charge/discharge the capacitive load internal and external connected to the
pin:
I SW = V DDIOx × f SW × C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDIOx is the I/O supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
152/281
DS11584 Rev 14
STM32L4A6xG
Electrical characteristics
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 50. The MCU is placed
under the following conditions:
•
All I/O pins are in Analog mode
•
The given value is calculated by measuring the difference of the current consumptions:
–
when the peripheral is clocked on
–
when the peripheral is clocked off
•
Ambient operating temperature and supply voltage conditions summarized in Table 19:
Voltage characteristics
•
The power consumption of the digital part of the on-chip peripherals is given in
Table 50. The power consumption of the analog part of the peripherals (where
applicable) is indicated in each related section of the datasheet.
DS11584 Rev 14
153/281
245
Electrical characteristics
STM32L4A6xG
Table 50. Peripheral current consumption
Range 1
Range 2
Low-power run
and sleep
Bus Matrix(1)
4.44
3.75
4.00
ADC independent clock domain
0.40
0.08
0.30
ADC AHB clock domain
5.55
4.63
5.00
AES
1.70
1.50
1.60
CRC
0.48
0.42
0.50
DMA1
2.00
1.60
2.00
DMA2
1.76
1.50
1.50
DMA2D
24.33
20.21
24.50
FLASH
8.50
7.10
8.00
FMC
Peripheral
7.58
6.29
7.00
(2)
1.59
1.25
1.50
(2)
GPIOB
1.56
1.25
1.50
GPIOC(2)
1.58
1.29
1.50
GPIOD(2)
1.40
1.17
1.40
(2)
1.36
1.13
1.40
(2)
1.70
1.40
1.50
GPIOG(2)
1.80
1.50
1.80
(2)
1.50
1.30
1.50
GPIOI
1.18
0.96
1.00
HASH
2.18
1.79
2.00
DCMI
1.6
1.3
1.2
OTG_FS independent clock domain
23.20
NA
NA
OTG_FS AHB clock domain
14.30
NA
NA
QUADSPI
6.84
5.67
6.50
RNG independent clock domain
2.20
NA
NA
RNG AHB clock domain
0.51
NA
NA
SRAM1
2.80
2.29
2.50
SRAM2
1.20
1.00
1.00
TSC
1.50
1.17
1.00
121.00
79.10
87.20
GPIOA
AHB
GPIOE
GPIOF
GPIOH
(2)
AHB
All AHB peripherals
154/281
DS11584 Rev 14
Unit
µA/MHz
µA/MHz
STM32L4A6xG
Electrical characteristics
Table 50. Peripheral current consumption (continued)
Range 1
Range 2
Low-power run
and sleep
AHB to APB1 bridge(3)
0.90
0.70
0.90
CAN1
3.68
3.04
3.50
DAC1
3.20
2.70
3.00
I2C1 independent clock domain
3.80
3.20
3.30
I2C1 APB clock domain
1.00
0.79
1.00
I2C2 independent clock domain
3.41
2.83
3.00
I2C2 APB clock domain
0.98
0.79
1.00
I2C3 independent clock domain
2.89
2.38
2.50
I2C3 APB clock domain
0.98
0.83
1.00
I2C4 independent clock domain
3.41
2.83
3.00
I2C4 APB clock domain
0.98
0.79
1.00
LCD
1.03
0.80
1.03
LPUART1 independent clock domain
2.40
2.00
2.20
LPUART1 APB clock domain
0.98
0.83
0.80
LPTIM1 independent clock domain
3.10
2.54
2.54
LPTIM1 APB clock domain
0.88
0.75
0.90
LPTIM2 independent clock domain
2.86
2.42
2.25
LPTIM2 APB clock domain
0.90
0.67
0.75
OPAMP
0.29
0.20
0.30
PWR
0.80
0.63
0.60
SPI2
1.78
1.50
1.50
SPI3
1.76
1.50
1.50
SWPMI1 independent clock domain
2.10
1.50
2.00
SWPMI1 APB clock domain
1.00
0.79
0.75
Peripheral
APB1
DS11584 Rev 14
Unit
µA/MHz
155/281
245
Electrical characteristics
STM32L4A6xG
Table 50. Peripheral current consumption (continued)
Range 1
Range 2
Low-power run
and sleep
TIM2
5.85
4.88
5.70
TIM3
5.20
4.25
5.00
TIM4
4.50
3.67
4.20
TIM5
5.60
4.58
5.10
TIM6
0.85
0.70
0.90
TIM7
0.86
0.71
0.90
USART2 independent clock domain
4.06
3.40
4.00
USART2 APB clock domain
1.38
1.17
1.40
USART3 independent clock domain
4.80
3.92
4.60
USART3 APB clock domain
1.80
1.50
1.80
UART4 independent clock domain
3.80
3.10
3.00
UART4 APB clock domain
1.30
1.13
1.30
UART5 independent clock domain
3.83
3.17
3.50
UART5 APB clock domain
1.60
1.25
1.50
WWDG
0.39
0.33
0.40
84.20
74.96
82.70
AHB to APB2 bridge
1.00
0.90
0.90
DFSDM1
6.00
5.00
5.50
FW
0.28
0.30
0.30
SAI1 independent clock domain
2.60
2.10
2.30
SAI1 APB clock domain
2.09
1.80
2.00
SAI2 independent clock domain
3.30
2.70
3.00
SAI2 APB clock domain
2.50
2.00
2.50
SDMMC1 independent clock domain
4.20
3.90
4.20
SDMMC1 APB clock domain
2.10
1.80
2.00
SPI1
1.71
1.42
1.50
SYSCFG/VREFBUF/COMP
0.55
0.50
0.50
TIM1
8.41
6.96
7.50
TIM8
8.83
7.33
8.00
TIM15
3.96
3.29
3.50
TIM16
3.24
2.67
3.00
TIM17
2.94
2.46
2.50
USART1 independent clock domain
5.20
4.29
5.50
USART1 APB clock domain
1.70
1.50
1.60
Peripheral
APB1
All APB1 on
(4)
APB2
156/281
DS11584 Rev 14
Unit
µA/MHz
µA/MHz
STM32L4A6xG
Electrical characteristics
Table 50. Peripheral current consumption (continued)
Peripheral
APB2
All APB2 on
ALL
Range 1
Range 2
Low-power run
and sleep
55.40
41.33
46.00
234.98
195.83
235.70
Unit
µA/MHz
1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).
2. The GPIOx (x= A…I) dynamic current consumption is approximately divided by a factor two versus this table values when
the GPIO port is locked thanks to LCKK and LCKy bits in the GPIOx_LCKR register. In order to save the full GPIOx current
consumption, the GPIOx clock should be disabled in the RCC when all port I/Os are used in alternate function or analog
mode (clock is only required to read or write into GPIO registers, and is not used in AF or analog modes).
3. The AHB to APB1 Bridge is automatically active when at least one peripheral is ON on the APB1.
4. The AHB to APB2 Bridge is automatically active when at least one peripheral is ON on the APB2.
6.3.6
Wakeup time from low-power modes and voltage scaling
transition times
The wakeup times given in Table 51 are the latency between the event and the execution of
the first user instruction.
The device goes in low-power mode after the WFE (Wait For Event) instruction.
Table 51. Low-power mode wakeup timings(1)
Symbol
tWUSLEEP
Parameter
Conditions
Typ
Max
-
6
6
Wakeup time from Sleep
mode to Run mode
Wakeup time from LowtWULPSLEEP power sleep mode to Lowpower run mode
Wakeup in flash with flash in power-down during
low-power sleep mode (SLEEP_PD=1 in
FLASH_ACR) and with clock MSI = 2 MHz
Range 1
Wake up time from Stop 0
mode to Run mode in flash
Range 2
tWUSTOP0
Range 1
Wake up time from Stop 0
mode to Run mode in
SRAM1
Range 2
7
9
Wakeup clock MSI = 48 MHz
7.0
11.6
Wakeup clock HSI16 = 16 MHz
6.2
10.7
Wakeup clock MSI = 24 MHz
7.3
11.7
Wakeup clock HSI16 = 16 MHz
6.2
10.7
Wakeup clock MSI = 4 MHz
7.6
13.2
Wakeup clock MSI = 48 MHz
2.5
2.9
Wakeup clock HSI16 = 16 MHz
2.7
2.9
Wakeup clock MSI = 24 MHz
3.2
3.6
Wakeup clock HSI16 = 16 MHz
2.7
2.9
Wakeup clock MSI = 4 MHz
5.7
13.2
DS11584 Rev 14
Unit
Nb of
CPU
cycles
µs
157/281
245
Electrical characteristics
STM32L4A6xG
Table 51. Low-power mode wakeup timings(1) (continued)
Symbol
Parameter
Conditions
Range 1
Wake up time from Stop 1
mode to Run mode in flash
Range 2
Range 1
tWUSTOP1
Wake up time from Stop 1
mode to Run mode in
SRAM1
Wake up time from Stop 1
mode to Low-power run
mode in flash
Wake up time from Stop 1
mode to Low-power run
mode in SRAM1
Range 2
Regulator in
low-power
mode (LPR=1
in PWR_CR1)
Range 1
Wake up time from Stop 2
mode to Run mode in flash
Range 2
tWUSTOP2
Range 1
Wake up time from Stop 2
mode to Run mode in
SRAM1
tWUSTBY
tWUSTBY
SRAM2
tWUSHDN
Range 2
Wakeup time from Standby
mode to Run mode
Range 1
Wakeup time from Standby
with SRAM2 to Run mode
Range 1
Wakeup time from
Shutdown mode to Run
mode
Range 1
Typ
Max
Wakeup clock MSI = 48 MHz
8.4
9.4
Wakeup clock HSI16 = 16 MHz
7.8
8.4
Wakeup clock MSI = 24 MHz
8.7
9.6
Wakeup clock HSI16 = 16 MHz
7.8
8.3
Wakeup clock MSI = 4 MHz
8.0
12.9
Wakeup clock MSI = 48 MHz
5.5
5.9
Wakeup clock HSI16 = 16 MHz
6.6
7.0
Wakeup clock MSI = 24 MHz
6.1
6.5
Wakeup clock HSI16 = 16 MHz
6.6
7.0
Wakeup clock MSI = 4 MHz
8.5
12.8
13.8
20.0
11.8
22.0
Wakeup clock MSI = 48 MHz
8.9
9.8
Wakeup clock HSI16 = 16 MHz
8.3
9.2
Wakeup clock MSI = 24 MHz
9.3
10.2
Wakeup clock HSI16 = 16 MHz
8.2
9.2
Wakeup clock MSI = 4 MHz
14.2
16.1
Wakeup clock MSI = 48 MHz
6.1
7.1
Wakeup clock HSI16 = 16 MHz
7.2
8.1
Wakeup clock MSI = 24 MHz
6.8
7.8
Wakeup clock HSI16 = 16 MHz
7.2
8.2
Wakeup clock MSI = 4 MHz
8.4
16.7
Wakeup clock MSI = 8 MHz
15.3
23.2
Wakeup clock MSI = 4 MHz
21.3
30.5
Wakeup clock MSI = 8 MHz
15.3
23.1
Wakeup clock MSI = 4 MHz
21.3
30.6
Wakeup clock MSI = 4 MHz
305.9 322.3
µs
Wakeup clock MSI = 2 MHz
1. Guaranteed by characterization results.
158/281
Unit
DS11584 Rev 14
µs
µs
µs
µs
STM32L4A6xG
Electrical characteristics
Table 52. Regulator modes transition times(1)
Symbol
Parameter
tWULPRUN
tVOST
Conditions
Typ
Max
Wakeup time from Low-power run mode to
Code run with MSI 2 MHz
Run mode(2)
5
7
Regulator transition time from Range 2 to
Range 1 or Range 1 to Range 2(3)
20
40
Typ
Max
Stop 0 mode
-
1.7
Stop 1 mode and Stop 2
mode
-
8.5
Unit
µs
Code run with MSI 24 MHz
1. Guaranteed by characterization results.
2. Time until REGLPF flag is cleared in PWR_SR2.
3. Time until VOSF flag is cleared in PWR_SR2.
Table 53. Wakeup time using USART/LPUART(1)
Symbol
Parameter
tWUUSART
tWULPUART
Conditions
Wakeup time needed to calculate the
maximum USART/LPUART baud rate
permitting to wakeup up from Stop mode
when USART/LPUART clock source is
HSI16
Unit
µs
1. Guaranteed by design.
6.3.7
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 25.
Table 54. High-speed external user clock characteristics(1)
Symbol
fHSE_ext
Parameter
User external clock source frequency
Conditions
Min
Typ
Max
Voltage scaling
Range 1
-
8
48
Voltage scaling
Range 2
-
8
26
MHz
VHSEH
OSC_IN input pin high level voltage
-
0.7 VDDIOx
-
VDDIOx
VHSEL
OSC_IN input pin low level voltage
-
VSS
-
0.3 VDDIOx
Voltage scaling
Range 1
7
-
-
Voltage scaling
Range 2
18
tw(HSEH)
OSC_IN high or low time
tw(HSEL)
Unit
V
ns
-
-
1. Guaranteed by design.
DS11584 Rev 14
159/281
245
Electrical characteristics
STM32L4A6xG
Figure 25. High-speed external clock source AC timing diagram
tw(HSEH)
VHSEH
90%
10%
VHSEL
tr(HSE)
tf(HSE)
t
tw(HSEL)
THSE
MS19214V2
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 26.
Table 55. Low-speed external user clock characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
kHz
fLSE_ext
User external clock source frequency
-
-
32.768
1000
VLSEH
OSC32_IN input pin high level voltage
-
0.7 VDDIOx
-
VDDIOx
VLSEL
OSC32_IN input pin low level voltage
-
VSS
-
0.3 VDDIOx
-
250
-
-
tw(LSEH)
OSC32_IN high or low time
tw(LSEL)
V
ns
1. Guaranteed by design.
Figure 26. Low-speed external clock source AC timing diagram
tw(LSEH)
VLSEH
90%
10%
VLSEL
tr(LSE)
tf(LSE)
t
tw(LSEL)
TLSE
MS19215V2
160/281
DS11584 Rev 14
STM32L4A6xG
Electrical characteristics
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 56. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Table 56. HSE oscillator characteristics(1)
Symbol
fOSC_IN
RF
Conditions(2)
Min
Typ
Max
Unit
Oscillator frequency
-
4
8
48
MHz
Feedback resistor
-
-
200
-
kΩ
-
-
5.5
VDD = 3 V,
Rm = 30 Ω,
CL = 10 pF@8 MHz
-
0.44
-
VDD = 3 V,
Rm = 45 Ω,
CL = 10 pF@8 MHz
-
0.45
-
VDD = 3 V,
Rm = 30 Ω,
CL = 5 pF@48 MHz
-
0.68
-
VDD = 3 V,
Rm = 30 Ω,
CL = 10 pF@48 MHz
-
0.94
-
VDD = 3 V,
Rm = 30 Ω,
CL = 20 pF@48 MHz
-
1.77
-
Startup
-
-
1.5
mA/V
VDD is stabilized
-
2
-
ms
Parameter
During startup
IDD(HSE)
Gm
HSE current consumption
Maximum critical crystal
transconductance
tSU(HSE)(4) Startup time
(3)
mA
1. Guaranteed by design.
2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 27). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
DS11584 Rev 14
161/281
245
Electrical characteristics
Note:
STM32L4A6xG
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 27. Typical application with an 8 MHz crystal
Resonator with integrated
capacitors
CL1
OSC_IN
8 MHz
resonator
CL2
REXT (1)
fHSE
RF
Bias
controlled
gain
OSC_OUT
MS19876V1
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. All the information given in this paragraph are based on design simulation results
obtained with typical external components specified in Table 57. In the application, the
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Table 57. LSE oscillator characteristics (fLSE = 32.768 kHz)(1)
Symbol
IDD(LSE)
Parameter
LSE current consumption
Maximum critical crystal
Gmcritmax
gm
tSU(LSE)(3) Startup time
162/281
Conditions(2)
Min
Typ
Max
LSEDRV[1:0] = 00
Low drive capability
-
250
-
LSEDRV[1:0] = 01
Medium low drive capability
-
315
-
LSEDRV[1:0] = 10
Medium high drive capability
-
500
-
LSEDRV[1:0] = 11
High drive capability
-
630
-
LSEDRV[1:0] = 00
Low drive capability
-
-
0.5
LSEDRV[1:0] = 01
Medium low drive capability
-
-
0.75
LSEDRV[1:0] = 10
Medium high drive capability
-
-
1.7
LSEDRV[1:0] = 11
High drive capability
-
-
2.7
VDD is stabilized
-
2
-
DS11584 Rev 14
Unit
nA
µA/V
s
STM32L4A6xG
Electrical characteristics
1. Guaranteed by design.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
3.
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 28. Typical application with a 32.768 kHz crystal
Resonator with integrated
capacitors
CL1
OSC32_IN
fLSE
Drive
programmable
amplifier
32.768 kHz
resonator
OSC32_OUT
CL2
MS30253V2
Note:
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
6.3.8
Internal clock source characteristics
The parameters given in Table 58 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 22: General operating
conditions. The provided curves are characterization results, not tested in production.
High-speed internal (HSI16) RC oscillator
Table 58. HSI16 oscillator characteristics(1)
Symbol
fHSI16
TRIM
Parameter
HSI16 Frequency
HSI16 user trimming step
DuCy(HSI16)(2) Duty Cycle
Conditions
Min
Typ
Max
Unit
15.88
-
16.08
MHz
Trimming code is not a
multiple of 64
0.2
0.3
0.4
Trimming code is a
multiple of 64
-4
-6
-8
45
-
55
%
-1
-
1
%
-2
-
1.5
%
-0.1
-
0.05
%
VDD=3.0 V, TA=30 °C
-
∆Temp(HSI16)
HSI16 oscillator frequency TA= 0 to 85 °C
drift over temperature
TA= -40 to 125 °C
∆VDD(HSI16)
HSI16 oscillator frequency
VDD=1.62 V to 3.6 V
drift over VDD
DS11584 Rev 14
%
163/281
245
Electrical characteristics
STM32L4A6xG
Table 58. HSI16 oscillator characteristics(1) (continued)
Symbol
Conditions
Min
Typ
Max
Unit
HSI16 oscillator start-up
time
-
-
0.8
1.2
μs
tstab(HSI16)(2)
HSI16 oscillator
stabilization time
-
-
3
5
μs
IDD(HSI16)(2)
HSI16 oscillator power
consumption
-
-
155
190
μA
tsu(HSI16)(2)
Parameter
1. Guaranteed by characterization results.
2. Guaranteed by design.
Figure 29. HSI16 frequency versus temperature
MHz
16.4
+2 %
16.3
+1.5 %
16.2
+1 %
16.1
16
15.9
-1 %
15.8
-1.5 %
15.7
-2 %
15.6
-40
-20
0
Mean
20
40
60
min
80
100
120 °C
max
MSv39299V2
164/281
DS11584 Rev 14
STM32L4A6xG
Electrical characteristics
Multi-speed internal (MSI) RC oscillator
Table 59. MSI oscillator characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Range 0
98.7
100
101.3
Range 1
197.4
200
202.6
Range 2
394.8
400
405.2
Range 3
7896
800
810.4
Range 4
0.987
1
1.013
Range 5
1.974
2
2.026
Range 6
3.948
4
4.052
Range 7
7.896
8
8.104
Range 8
15.79
16
16.21
Range 9
23.69
24
24.31
Range 10
31.58
32
32.42
Range 11
47.38
48
48.62
Range 0
-
98.304
-
Range 1
-
196.608
-
Range 2
-
393.216
-
Range 3
-
786.432
-
Range 4
-
1.016
-
PLL mode Range 5
XTAL=
32.768 kHz Range 6
-
1.999
-
-
3.998
-
Range 7
-
7.995
-
Range 8
-
15.991
-
Range 9
-
23.986
-
Range 10
-
32.014
-
Range 11
-
48.005
-
-3.5
-
3
-8
-
6
MSI mode
fMSI
∆TEMP(MSI)(2)
MSI frequency
after factory
calibration, done
at VDD=3 V and
TA=30 °C
MSI oscillator
frequency drift
over
temperature
TA= -0 to 85 °C
MSI mode
TA= -40 to 125 °C
DS11584 Rev 14
Unit
kHz
MHz
kHz
MHz
%
165/281
245
Electrical characteristics
STM32L4A6xG
Table 59. MSI oscillator characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
VDD=1.62 V
to 3.6 V
-1.2
-
VDD=2.4 V
to 3.6 V
-0.5
-
VDD=1.62 V
to 3.6 V
-2.5
-
VDD=2.4 V
to 3.6 V
-0.8
-
VDD=1.62 V
to 3.6 V
-5
-
VDD=2.4 V
to 3.6 V
-1.6
-
TA= -40 to 85 °C
-
1
2
TA= -40 to 125 °C
-
2
4
-
-
3.458
Range 0 to 3
∆VDD(MSI)
(2)
MSI oscillator
frequency drift
over VDD
(reference is
3 V)
MSI mode
Range 4 to 7
Range 8 to 11
∆FSAMPLING
(MSI)(2)(6)
Frequency
variation in
sampling
mode(3)
MSI mode
P_USB
Jitter(MSI)(6)
Period jitter for
USB clock(4)
PLL mode
Range 11
MT_USB
Jitter(MSI)(6)
Medium term
jitter for USB
clock(5)
PLL mode
Range 11
CC jitter(MSI)(6)
RMS cycle-tocycle jitter
P jitter(MSI)(6)
tSU(MSI)(6)
tSTAB(MSI)(6)
166/281
Max
Unit
0.5
0.7
%
1.2
%
for next
transition
-
for paired
transition
-
-
-
3.916
for next
transition
-
-
-
2
for paired
transition
-
-
-
1
PLL mode Range 11
-
-
60
-
ps
RMS Period jitter PLL mode Range 11
-
-
50
-
ps
Range 0
-
-
10
20
Range 1
-
-
5
10
Range 2
-
-
4
8
Range 3
-
-
3
7
Range 4 to 7
-
-
3
6
Range 8 to 11
-
-
2.5
6
10 % of final
frequency
-
-
0.25
0.5
5 % of final
frequency
-
-
0.5
1.25
1 % of final
frequency
-
-
-
2.5
MSI oscillator
start-up time
MSI oscillator
PLL mode
stabilization time Range 11
DS11584 Rev 14
ns
ns
us
ms
STM32L4A6xG
Electrical characteristics
Table 59. MSI oscillator characteristics(1) (continued)
Symbol
IDD(MSI)(6)
Parameter
MSI oscillator
power
consumption
Conditions
MSI and
PLL mode
Min
Typ
Max
Range 0
-
-
0.6
1
Range 1
-
-
0.8
1.2
Range 2
-
-
1.2
1.7
Range 3
-
-
1.9
2.5
Range 4
-
-
4.7
6
Range 5
-
-
6.5
9
Range 6
-
-
11
15
Range 7
-
-
18.5
25
Range 8
-
-
62
80
Range 9
-
-
85
110
Range 10
-
-
110
130
Range 11
-
-
155
190
Unit
µA
1. Guaranteed by characterization results.
2. This is a deviation for an individual part once the initial frequency has been measured.
3. Sampling mode means Low-power run/Low-power sleep modes with Temperature sensor disable.
4. Average period of MSI @48 MHz is compared to a real 48 MHz clock over 28 cycles. It includes frequency tolerance + jitter
of MSI @48 MHz clock.
5. Only accumulated jitter of MSI @48 MHz is extracted over 28 cycles.
For next transition: min. and max. jitter of 2 consecutive frame of 28 cycles of the MSI @48 MHz, for 1000 captures over 28
cycles.
For paired transitions: min. and max. jitter of 2 consecutive frame of 56 cycles of the MSI @48 MHz, for 1000 captures over
56 cycles.
6. Guaranteed by design.
DS11584 Rev 14
167/281
245
Electrical characteristics
STM32L4A6xG
Figure 30. Typical current consumption versus MSI frequency
High-speed internal 48 MHz (HSI48) RC oscillator
Table 60. HSI48 oscillator characteristics(1)
Symbol
Parameter
fHSI48
HSI48 Frequency
TRIM
HSI48 user trimming step
USER TRIM
COVERAGE
HSI48 user trimming coverage
DuCy(HSI48) Duty Cycle
Accuracy of the HSI48 oscillator
ACCHSI48_REL over temperature (factory
calibrated)
DVDD(HSI48)
HSI48 oscillator frequency drift
with VDD
Conditions
VDD=3.0V, TA=30°C
±32 steps
VDD = 3.0 V to 3.6 V,
TA = –15 to 85 °C
Min
Typ
Max
Unit
-
48
-
MHz
-
0.11(2)
0.18(2)
%
±3(3)
±3.5(3)
-
%
45(2)
-
55(2)
%
-
-
±3(3)
%
VDD = 1.65 V to 3.6 V,
TA = –40 to 125 °C
-
-
±4.5(3)
VDD = 3 V to 3.6 V
-
0.025(3)
0.05(3)
VDD = 1.65 V to 3.6 V
-
0.05(3)
0.1(3)
%
tsu(HSI48)
HSI48 oscillator start-up time
-
-
2.5(2)
6(2)
μs
IDD(HSI48)
HSI48 oscillator power
consumption
-
-
340(2)
380(2)
μA
168/281
DS11584 Rev 14
STM32L4A6xG
Electrical characteristics
Table 60. HSI48 oscillator characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
NT jitter
Next transition jitter
Accumulated jitter on 28 cycles(4)
-
-
+/-0.15(2)
-
ns
PT jitter
Paired transition jitter
Accumulated jitter on 56 cycles(4)
-
-
+/-0.25(2)
-
ns
1. VDD = 3 V, TA = –40 to 125°C unless otherwise specified.
2. Guaranteed by design.
3. Guaranteed by characterization results.
4. Jitter measurement are performed without clock source activated in parallel.
Figure 31. HSI48 frequency versus temperature
%
6
4
2
0
-2
-4
-6
-50
-30
-10
Avg
10
30
50
70
90
min
110
130
°C
max
MSv40989V1
Low-speed internal (LSI) RC oscillator
Table 61. LSI oscillator characteristics(1)
Symbol
fLSI
tSU(LSI)(2)
tSTAB(LSI)(2)
IDD(LSI)(2)
Parameter
LSI Frequency
LSI oscillator startup time
LSI oscillator
stabilization time
LSI oscillator power
consumption
Conditions
Min
Typ
Max
Unit
VDD = 3.0 V, TA = 30 °C
31.04
-
32.96
VDD = 1.62 to 3.6 V, TA = -40 to 125 °C
29.5
-
34
-
-
80
130
μs
5% of final frequency
-
125
180
μs
-
-
110
180
nA
kHz
1. Guaranteed by characterization results.
2. Guaranteed by design.
DS11584 Rev 14
169/281
245
Electrical characteristics
6.3.9
STM32L4A6xG
PLL characteristics
The parameters given in Table 62 are derived from tests performed under temperature and
VDD supply voltage conditions summarized in Table 22: General operating conditions.
Table 62. PLL, PLLSAI1, PLLSAI2 characteristics(1)
Symbol
fPLL_IN
Parameter
Conditions
Min
Typ
Max
Unit
PLL input clock(2)
-
4
-
16
MHz
PLL input clock duty cycle
-
45
-
55
%
Voltage scaling Range 1
2.0645
-
80
Voltage scaling Range 2
2.0645
-
26
Voltage scaling Range 1
8
-
80
Voltage scaling Range 2
8
-
26
Voltage scaling Range 1
8
-
80
Voltage scaling Range 2
8
-
26
Voltage scaling Range 1
64
-
344
Voltage scaling Range 2
64
-
128
-
15
40
-
40
-
-
30
-
VCO freq = 64 MHz
-
150
200
VCO freq = 96 MHz
-
200
260
VCO freq = 192 MHz
-
300
380
VCO freq = 344 MHz
-
520
650
fPLL_P_OUT PLL multiplier output clock P
fPLL_Q_OUT PLL multiplier output clock Q
fPLL_R_OUT PLL multiplier output clock R
fVCO_OUT
tLOCK
Jitter
IDD(PLL)
PLL VCO output
PLL lock time
-
RMS cycle-to-cycle jitter
System clock 80 MHz
RMS period jitter
PLL power consumption on
VDD(1)
MHz
MHz
MHz
MHz
μs
±ps
μA
1. Guaranteed by design.
2. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between the 3 PLLs.
6.3.10
Flash memory characteristics
Table 63. Flash memory characteristics(1)
Symbol
Parameter
Conditions
Typ
Max
Unit
tprog
64-bit programming time
-
81.69
90.76
µs
tprog_row
one row (32 double
word) programming time
normal programming
2.61
2.90
fast programming
1.91
2.12
tprog_page
one page (2 Kbyte)
programming time
normal programming
20.91
23.24
fast programming
15.29
16.98
22.02
24.47
normal programming
5.35
5.95
fast programming
3.91
4.35
tERASE
tprog_bank
170/281
Page (2 KB) erase time
one bank (512 Kbyte)
programming time
-
DS11584 Rev 14
ms
s
STM32L4A6xG
Electrical characteristics
Table 63. Flash memory characteristics(1) (continued)
Symbol
tME
IDD
Parameter
Conditions
Typ
Max
Unit
-
22.13
24.59
ms
Write mode
3.4
-
Erase mode
3.4
-
Write mode
7 (for 2 μs)
-
Erase mode
7 (for 41 μs)
-
Mass erase time
(one or two banks)
Average consumption
from VDD
Maximum current (peak)
mA
1. Guaranteed by design.
Table 64. Flash memory endurance and data retention
Symbol
NEND
tRET
Min(1)
Unit
TA = –40 to +105 °C
10
kcycles
1 kcycle(2) at TA = 85 °C
30
Parameter
Endurance
Data retention
Conditions
1 kcycle
(2)
at TA = 105 °C
15
1 kcycle
(2)
at TA = 125 °C
7
10
kcycles(2)
at TA = 55 °C
30
10 kcycles(2) at TA = 85 °C
15
10 kcycles
(2)
at TA = 105 °C
Years
10
1. Guaranteed by characterization results.
2. Cycling performed over the whole temperature range.
6.3.11
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling two LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 65. They are based on the EMS levels and classes
defined in application note AN1709.
DS11584 Rev 14
171/281
245
Electrical characteristics
STM32L4A6xG
Table 65. EMS characteristics
Conditions
Level/
Class
Symbol
Parameter
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 80 MHz,
conforming to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 80 MHz,
conforming to IEC 61000-4-4
5A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
•
Corrupted program counter
•
Unexpected reset
•
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling two LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
172/281
DS11584 Rev 14
STM32L4A6xG
Electrical characteristics
Table 66. EMI characteristics for fHSE = 8 MHz and fHCLK = 80 MHz
Symbol Parameter
SEMI
Peak(1)
Conditions
Monitored frequency band
Value
0.1 MHz to 30 MHz
3
30 MHz to 130 MHz
VDD = 3.6 V, TA = 25 °C,
BGA169 package
130 MHz to 1 GHz
compliant with IEC 61967-2
1 GHz to 2 GHz
-2
0.1 MHz to 30 MHz
1.5
(2)
Level
Unit
dBµV
0
8
-
1. Refer to AN1709 “EMI radiated test” section.
2. Refer to AN1709 “EMI level classification” section.
6.3.12
+
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n + 1) supply pins). This test
conforms to the ANSI/JEDEC standard.
Table 67. ESD absolute maximum ratings
Symbol
VESD(HBM)
Ratings
Conditions
Class
Electrostatic discharge voltage TA = +25 °C, conforming to
(human body model)
ANSI/ESDA/JEDEC JS-001
Electrostatic discharge voltage TA = +25 °C, conforming to
VESD(CDM)
(charge device model)
ANSI/ESD STM5.3.1
Maximum
Unit
value(1)
2
2000
V
C3
250
1. Guaranteed by characterization results.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
•
a supply overvoltage is applied to each power supply pin
•
a current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 68. Electrical sensitivities
Symbol
LU
Parameter
Static latch-up class
Conditions
TA = +105 °C conforming to JESD78A
Class
II level A(1)
1. Negative injection is limited to -30 mA for PF0, PF1, PG6, PG7, PG8, PG12, PG13, PG14.
DS11584 Rev 14
173/281
245
Electrical characteristics
6.3.13
STM32L4A6xG
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal
product operation. However, in order to give an indication of the robustness of the
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests
are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or
oscillator frequency deviation).
The characterization results are given in Table 69.
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
Table 69. I/O current injection susceptibility(1)
Functional
susceptibility
Symbol
IINJ
Description
Unit
Negative
injection
Positive
injection
Injected current on all pins except PA4, PA5, PB0, PF12,
PF13, OPAMP1_V1NM, OPAMP2_V1NM
-5
NA(2)
Injected current on pins PB0, PF12, PF13
0
NA(2)
Injected current on OPAMP1_V1NM, OPAMP2_V1NM
0
0
Injected current on PA4, PA5 pins
-5
0
mA
1. Guaranteed by characterization.
2. Injection is not possible
6.3.14
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 70 are derived from tests
performed under the conditions summarized in Table 22: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant (except BOOT0).
Note:
174/281
For information on GPIO configuration, refer to the application note AN4899 “STM32 GPIO
configuration for hardware settings and low-power consumption” available from the ST
website www.st.com.
DS11584 Rev 14
STM32L4A6xG
Electrical characteristics
Table 70. I/O static characteristics
Symbol
VIL(1)
VIH(1)
Parameter
Conditions
Typ
Max
Unit
I/O input low level
voltage except
BOOT0
1.62 V