0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32L4Q5CGU6

STM32L4Q5CGU6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    UFQFN48

  • 描述:

    IC MCU 32BIT 1MB FLASH 48UFQFPN

  • 数据手册
  • 价格&库存
STM32L4Q5CGU6 数据手册
STM32L4Q5xx Ultra-low-power Arm®Cortex®-M4 32-bit MCU+FPU, 150 DMIPS, 1-MB Flash, 320-KB SRAM, LCD-TFT, AES+PKA, ext SMPS Datasheet - production data Features Includes ST state-of-the-art patented technology Ultra-low-power with FlexPowerControl • 1.71 V to 3.6 V power supply LQFP48 (7 x 7 mm) LQFP64 (10 x 10 mm) LQFP100 (14 x 14 mm) LQFP144 (20 x 20 mm) UFQFPN48 (7 x 7 mm) UFBGA132 (7 x 7 mm) UFBGA169 (7 x 7 mm) WLCSP100 (pitch 0.4 mm) • -40 °C to 85/125 °C temperature range • Batch acquisition mode (BAM) • 150 nA in VBAT mode: supply for RTC and 32x32-bit backup registers • 2 x Octo-SPI memory interfaces • 22 nA Shutdown mode (5 wakeup pins) General-purpose inputs/outputs • 42 nA Standby mode (5 wakeup pins) • Up to 136 fast I/Os, most 5 V-tolerant, up to 14 I/Os with independent supply down to 1.08 V • 190 nA Standby mode with RTC • 2.95 μA Stop 2 with RTC Performance benchmark • 110 μA/MHz Run mode (LDO mode) • 1.25 DMIPS/MHz (Drystone 2.1) • 41 μA/MHz Run mode (@ 3.3 V SMPS mode) • 409.20 CoreMark® (3.41 CoreMark/MHz @120 MHz) • 5 µs wakeup from Stop mode • Brownout reset (BOR) in all modes except Shutdown Core Energy benchmark • 285 ULPMark™CP score • Arm® 32-bit Cortex®-M4 CPU with FPU, adaptive real-time accelerator (ART Accelerator) allowing 0-wait-state execution from Flash memory, frequency up to 120 MHz, MPU, 150 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions Up to 24 capacitive sensing channels Memories • 32 kHz crystal oscillator for RTC (LSE) • 1-Mbyte Flash memory, 2 banks read-whilewrite, proprietary code readout protection • Internal 16 MHz factory-trimmed RC (±1%) • 320 Kbytes of SRAM including 64 Kbytes with hardware parity check • Internal multispeed 100 kHz to 48 MHz oscillator, auto-trimmed by LSE (better than ±0.25 % accuracy) • External memory interface for static memories supporting SRAM, PSRAM, NOR, NAND and FRAM memories November 2021 This is information on a product in full production. • Support touchkey, linear and rotary touch sensors Clock management • 4 to 48 MHz crystal oscillator • Internal low-power 32 kHz RC (±5%) • Internal 48 MHz with clock recovery • 3 PLLs for system clock, USB, audio, ADC DS12902 Rev 3 1/312 www.st.com STM32L4Q5xx Interconnect matrix • LCD-TFT controller • 1 AHB bus matrix 16x timers and watchdog 14-channel DMA controller • 2 x 16-bit advanced motor-control • 2 x 32-bit general purpose timers 23 communication peripherals • 5 x 16-bit general purpose timers • USB OTG 2.0 full-speed, LPM and BCD • 2x 16-bit basic timers • 2x SAIs (serial audio interface) • 4x I2C FM+(1 Mbit/s), SMBus/PMBus • 2x low-power 16-bit timers (available in Stop mode) • 6x USARTs (ISO 7816, LIN, IrDA, modem) • 2x watchdogs • 3x SPIs (5x SPIs with the dual Octo-SPI) • 1x SysTick timer • CAN (2.0B Active) and 2x SDMMC • RTC with hardware calendar, alarms and calibration • 8- to 14-bit camera interface up to 32 MHz (black and white) or 10 MHz (color) • 8-/16-bit parallel synchronous data input/output slave interface (PSSI) Cryptographic acceleration • AES (128/256-bit key) • Public key accelerator (PKA) 11 analog peripherals (independent supply) True random generator • 2x 12-bit ADC 5 Msps, up to 16-bit with hardware oversampling, 200 µA/Msps CRC calculation unit • 2x 12-bit DAC, low-power sample and hold HASH (SHA-256) hardware accelerator • 2x operational amplifiers with built-in PGA • 2x ultra-low-power comparators Debug mode • 2x digital filters for sigma delta modulator • Serial wire debug (SWD) • 1x temperature sensor • JTAG • Embedded Trace Macrocell™ (ETM) Advanced graphics features • Chrom-ART Accelerator (DMA2D) for enhanced graphic content creation 96-bit unique ID Table 1. Device summary Reference STM32L4Q5xx 2/312 Part numbers STM32L4Q5AG, STM32L4Q5CG, STM32L4Q5QG, STM32L4Q5RG, STM32L4Q5VG, STM32L4Q5ZG DS12902 Rev 3 STM32L4Q5xx Contents Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1 Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Adaptive real-time memory accelerator (ART Accelerator) . . . . . . . . . . . 19 3.3 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4.1 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4.2 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.5 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.6 Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.7 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.7.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.7.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.7.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.7.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.7.5 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.7.6 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.8 Peripheral and interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.9 Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.10 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.11 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.12 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.13 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.14 DMA request router (DMAMux) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.15 Chrom-ART Accelerator (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.16 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.17 3.16.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 43 3.16.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 44 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 44 DS12902 Rev 3 3/312 6 Contents 4/312 STM32L4Q5xx 3.18 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 44 3.19 Octo-SPI interface (OCTOSPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.20 Octo-SPI IO manager (OCTOSPIIOM) . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.21 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.21.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.21.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.21.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.22 Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.23 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.24 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.25 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.26 Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 50 3.27 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.28 LCD-TFT controller (LTDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.29 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.30 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.31 Parallel synchronous slave interface (PSSI) . . . . . . . . . . . . . . . . . . . . . . 53 3.32 Advanced encryption standard hardware accelerator (AES) . . . . . . . . . . 53 3.33 HASH hardware accelerator (HASH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.34 Public key accelerator (PKA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.35 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.35.1 Advanced-control timer (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.35.2 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16, TIM17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.35.3 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.35.4 Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 56 3.35.5 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.35.6 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.35.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.36 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 58 3.37 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.38 Universal synchronous/asynchronous receiver transmitter (USART) . . . 60 3.39 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 61 3.40 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.41 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 DS12902 Rev 3 STM32L4Q5xx Contents 3.42 Secure digital input/output and MultiMediaCards Interface (SDMMC) . . . 62 3.43 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.44 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 64 3.45 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.45.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.45.2 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . 141 6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . 141 6.3.4 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.3.6 Wakeup time from low-power modes and voltage scaling transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 184 6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 189 6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 6.3.10 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 DS12902 Rev 3 5/312 6 Contents 7 STM32L4Q5xx 6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 6.3.16 Extended interrupt and event controller input (EXTI) characteristics . . 208 6.3.17 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 6.3.18 Analog-to-digital converter characteristics . . . . . . . . . . . . . . . . . . . . . . 209 6.3.19 Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 222 6.3.20 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 227 6.3.21 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 6.3.22 Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 230 6.3.23 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 6.3.24 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 6.3.25 DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 6.3.26 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 6.3.27 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 239 6.3.28 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 6.3.29 OCTOSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 6.3.30 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 269 6.3.31 Parallel slave interface (PSSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 6.3.32 LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 274 6.3.33 SD/SDIO/MMC card host interfaces (SDMMC) . . . . . . . . . . . . . . . . . . 275 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 7.1 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 7.2 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 7.3 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 7.4 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 7.5 WLCSP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 7.6 UFBGA132 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 7.7 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 7.8 UFBGA169 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 7.9 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 6/312 DS12902 Rev 3 STM32L4Q5xx List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 STM32L4Q5xx features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Access status versus readout protection level and execution modes. . . . . . . . . . . . . . . . . 21 STM32L4Q5xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 STM32L4Q5xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 USART/UART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 SAI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 STM32L4Q5xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Alternate function AF0 to AF7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Alternate function AF8 to AF15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 141 Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Current consumption in Run and Low-power run modes, code with data processing running from Flash in single Bank, ART enable (Cache ON Prefetch OFF). . . . . . . . . . . 146 Current consumption in Run and Low-power run modes, code with data processing running from Flash in single Bank, ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Current consumption in Run and Low-power run modes, code with data processing running from Flash in dual bank, ART enable (Cache ON Prefetch OFF) . . . 148 Consumption in Run and Low-power run modes, code with data processing running from Flash in dual bank, ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Current consumption in Run and Low-power run modes, code with data processing running from Flash in single bank, ART disable. . . . . . . . . . . 150 Current consumption in Run and Low-power run modes, code with data processing running from Flash in single bank, ART disable and power supplied by external SMPS . 151 Current consumption in Run and Low-power run modes, code with data processing running from Flash in dual bank, ART disable . . . . . . . . . . . . 152 Current consumption in Run and Low-power run modes, code with data processing running from Flash in dual bank, ART disable and power supplied by external SMPS . . 153 Current consumption in Run and Low-power run modes, code with data processing running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Current consumption in Run and Low-power run modes, code with data processing running from SRAM1 and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . 155 Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . 156 DS12902 Rev 3 7/312 10 List of tables Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. 8/312 STM32L4Q5xx Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Typical current consumption in Run and Low-power run modes with different codes running from Flash, ART disable and power supplied by external SMPS . . . . . . . . . . . . 160 Typical current consumption in Run and Low-power run modes, with different codes running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Typical consumption in Run and Low-power run modes, with different codes running from SRAM1 and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . 162 Current consumption in Sleep and Low-power sleep mode, Flash ON . . . . . . . . . . . . . . 163 Current consumption in Sleep mode, Flash ON and power supplied by external SMPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Current consumption in Low-power sleep mode, Flash in power-down . . . . . . . . . . . . . . 165 Current consumption in Stop 2 mode, SRAM3 disabled . . . . . . . . . . . . . . . . . . . . . . . . . 165 Current consumption in Stop 2 mode, SRAM3 enabled . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 STM32L4Q5xx peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Wakeup time using USART/LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 PLL, PLLSAI1, PLLSAI2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 EXTI input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 DS12902 Rev 3 STM32L4Q5xx Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. Table 108. Table 109. Table 110. Table 111. Table 112. Table 113. Table 114. Table 115. Table 116. Table 117. Table 118. Table 119. Table 120. Table 121. Table 122. Table 123. Table 124. Table 125. Table 126. Table 127. Table 128. Table 129. Table 130. List of tables ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 ADC accuracy - limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 WWDG min/max timeout value at 120 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 USB OTG electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 USB BCD DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 249 Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . 249 Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 250 Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 251 Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 252 Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 252 Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 254 Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 254 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 259 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 263 OCTOSPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 OCTOSPI characteristics in DTR mode (with DQS)/Octal and HyperBus™ . . . . . . . . . . 265 Dynamics characteristics: Delay Block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 PSSI receive characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 PSSI transmit characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 Dynamics characteristics: SD / eMMC characteristics at VDD = 2.7 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 Dynamics characteristics: eMMC characteristics at VDD = 1.71 V to 1.9 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 LQFP48 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 UFQFPN48 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 LQFP 64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 LQPF100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 WLCSP100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 WLCSP100 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . 292 UFBGA132 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 DS12902 Rev 3 9/312 10 List of tables Table 131. Table 132. Table 133. Table 134. Table 135. Table 136. Table 137. 10/312 STM32L4Q5xx UFBGA132 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 295 LQFP144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 UFBGA169 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 UFBGA169 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 303 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 DS12902 Rev 3 STM32L4Q5xx List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. function Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. STM32L4Q5xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 STM32L4Q5xx power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 STM32L4Q5xxxP with external SMPS power supply overview . . . . . . . . . . . . . . . . . . . . . 25 Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Voltage reference buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 STM32L4Q5Cxxx LQFP48 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 STM32L4Q5CxxxP external SMPS LQFP48 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 STM32L4Q5Cxxx UFQFPN48 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 STM32L4Q5CxxxPexternal SMPS UFQFPN48 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . 67 STM32L4Q5Rxxx LQFP64 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 STM32L4Q5RxxxP external SMPS LQFP64 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 STM32L4Q5Vxxx LQFP100 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 STM32L4Q5VxxxP external SMPS LQFP100 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 STM32L4Q5Vxxx WLCSP100 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 STM32L4Q5VxxxP external SMPS WLCSP100 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . 71 STM32L4Q5Qxxx UFBGA132 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 STM32L4Q5QxxxP external SMPS UFBGA132 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . 72 STM32L4Q5Zxxx LQFP144 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 STM32L4Q5ZxxxP external SMPS LQFP144 pinout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 STM32L4Q5Axxx UFBGA169 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 STM32L4Q5AxxxP UFBGA169 external SMPS ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . 75 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 STM32L4Q5xx power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Typical current consumption versus MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 HSI48 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Output AC characteristics definition(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 Typical connection diagram when using the ADC with FT/TT pins featuring analog switch 221 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 USB OTG timings – definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . 246 DS12902 Rev 3 11/312 13 List of figures Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. Figure 78. Figure 79. Figure 80. Figure 81. Figure 82. Figure 83. Figure 84. Figure 85. Figure 86. Figure 87. Figure 88. Figure 89. Figure 90. Figure 91. Figure 92. Figure 93. Figure 94. Figure 95. Figure 96. Figure 97. Figure 98. Figure 99. 12/312 STM32L4Q5xx Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 248 Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 250 Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 251 Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 253 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 259 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 262 NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 263 OCTOSPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 OCTOSPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 OCTOSPI HyperBus™ clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 OCTOSPI HyperBus™ read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 OCTOSPI HyperBus™ read with double latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 OCTOSPI HyperBus™ write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 PSSI receive timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 PSSI transmit timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 LQFP48 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 LQFP48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 LQFP48, external SMPS device marking (package top view) . . . . . . . . . . . . . . . . . . . . . 280 UFQFPN48 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 UFQFPN48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 UFQFPN48, external SMPS device, marking (package top view) . . . . . . . . . . . . . . . . . . 283 LQFP64 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 LQFP64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 LQFP64, external SMPS device, marking (package top view) . . . . . . . . . . . . . . . . . . . . . 286 LQFP100 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 LQFP100 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 LQFP100, external SMPS device, marking (package top view) . . . . . . . . . . . . . . . . . . . . 289 WLCSP100 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 WLCSP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 WLCSP100 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 WLCSP100, external SMPS device, marking (package top view) . . . . . . . . . . . . . . . . . . 293 UFBGA132 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 UFBGA132 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 UFBGA132 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 UFBGA132, external SMPS device, marking (package top view) . . . . . . . . . . . . . . . . . . 297 LQFP144 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 LQFP144 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 LQFP144, external SMPS device, marking (package top view) . . . . . . . . . . . . . . . . . . . . 301 DS12902 Rev 3 STM32L4Q5xx Figure 100. Figure 101. Figure 102. Figure 103. List of figures UFBGA169 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 UFBGA169 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 UFBGA169 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 UFBGA169, external SMPS device, marking (package top view) . . . . . . . . . . . . . . . . . . 305 DS12902 Rev 3 13/312 13 Introduction 1 STM32L4Q5xx Introduction This document provides the ordering information and mechanical device characteristics of the STM32L4Q5xx microcontrollers. This document should be read in conjunction with the STM32L4Q5xx reference manual (RM0432). The reference manual is available from the STMicroelectronics website www.st.com. For information on the Arm®(a) Cortex®-M4 core, refer to the Cortex®-M4 Technical Reference Manual, available from the www.arm.com website. For information on the device errata with respect to the datasheet and reference manual, refer to the STM32L4Q5xx errata sheet (ES0510), available from the STMicroelectronics website www.st.com. a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. 14/312 DS12902 Rev 3 STM32L4Q5xx 2 Description Description STM32L4Q5xx designates a family of ultra-low-power microcontroller devices (part of STM32L4+ Series) based on the high-performance Arm® Cortex®-M4 32-bit RISC core. They operate at a frequency of up to 120 MHz. The Cortex-M4 core features a single-precision floating-point unit (FPU), which supports all the Arm® single-precision data-processing instructions and all the data types. The CortexM4 core also implements a full set of DSP (digital signal processing) instructions and a memory protection unit (MPU) that enhances the application’s security. These devices embed high-speed memories (1 Mbyte of Flash memory and 320 Kbytes of SRAM), a flexible external memory controller (FSMC) for static memories (for devices with packages of 100 pins and more), two OCTOSPI Flash memory interfaces (for devices with packages of 100 pins or more) and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix. These devices embed several protection mechanisms for embedded Flash memory and SRAM: readout protection, write protection, proprietary code readout protection and a firewall. These devices offer two fast 12-bit ADCs (5 Msps), two comparators, two operational amplifiers, two DAC channels, an internal voltage reference buffer, a low-power RTC, two general-purpose 32-bit timers, two 16-bit PWM timers dedicated to motor control, seven general-purpose 16-bit timers, and two 16-bit low-power timers. The devices support two digital filters for external sigma delta modulators (DFSDMs). In addition, up to 24 capacitive sensing channels are available. They also feature standard and advanced communication interfaces such as: - Four I2Cs - Three SPIs - Three USARTs, two UARTs and one low-power UART - Two SAIs - Two SDMMCs - One CAN - One USB OTG full-speed - Camera interface - Synchronous parallel data interface (PSSI) STM32L4Q5xx devices embed an AES and a PKA hardware accelerator. The devices operate in the -40 to +85 °C (+105 °C junction) and -40 to +125 °C (+130 °C junction) temperature ranges from a 1.71 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications. Some independent power supplies are supported such as an analog independent supply input for ADC, DAC, OPAMPs and comparators, a 3.3 V dedicated supply input for USB and up to 14 I/Os, which can be supplied independently down to 1.08 V. A VBAT input allows backup of the RTC and the registers. Dedicated VDD12 power supplies can be used to bypass the internal LDO regulator when connected to an external SMPS. DS12902 Rev 3 15/312 18 Description STM32L4Q5xx The STM32L4Q5xx family offers eight packages from 48-pin to 169-pin. Table 2. STM32L4Q5xx features and peripheral counts Peripheral STM32L4 Q5CG (48 pins) STM32L4 Q5RG (64 pins) STM32L4 Q5VG (100 pins) Flash memory SRAM 1 Mbyte 320 (128 + 64 + 128) Kbytes Backup 128 bytes Yes(1) No Yes 2(2) OCTOSPI 2 Advanced control 2 (16-bit) General purpose 5 (16-bit) 2 (32-bit) Basic 2 (16-bit) Low-power 2 (16-bit) SysTick timer 1 Watchdog timers (independent, window) 2 SPI 3 2C 4 I Comm. interfaces USART/UART UART LPUART 3 2(3) 1 SAI 2 CAN 1 USB OTG FS Yes SDMMC 2(4) Digital filters for sigmadelta modulators Number of channels Yes (2 filters) Real time clock (RTC) Yes 4 Tamper pins 3 Camera interface Yes(5) PSSI Yes(6) Chrom-ART Accelerator LTDC 16/312 STM32L4 Q5ZG (144 pins) System External memory controller for static memories (FSMC) Timers STM32L4 Q5QG (132 pins) Yes Yes(7) Yes DS12902 Rev 3 STM32L4 Q5AG (169 pins) STM32L4Q5xx Description Table 2. STM32L4Q5xx features and peripheral counts (continued) Peripheral STM32L4 Q5CG (48 pins) STM32L4 Q5RG (64 pins) STM32L4 Q5VG (100 pins) True random number generator Yes AES Yes HASH (SHA-256) Yes Public key accelerator (PKA) Yes GPIOs(8) Wakeup pins Nb of I/Os down to 1.08 V 38 3 0 Capacitive sensing Number of channels 9 12-bit ADCs Number of channels STM32L4 Q5QG (132 pins) STM32L4 Q5ZG (144 pins) STM32L4 Q5AG (169 pins) 110 5 14 115 5 14 136 5 14 83(9) 5 0 52 4 0 21 24 2 10 16 16 16 12-bit DAC channels 16 2 Internal voltage reference buffer Yes Analog comparator 2 Operational amplifiers 2 Max. CPU frequency 120 MHz Operating voltage (VDD) 1.71 to 3.6 V Operating voltage (VDD12) 1.00 to 1.32 V Operating temperature Packages 16 Ambient operating temperature: -40 to 85 °C / -40 to 125 °C UFQFPN48/ LQFP48 LQFP64 LQFP100/ WLCSP100 UFBGA132 LQFP144 UFBGA169 1. For the LQFP100 package, only FMC bank1 and NAND bank are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 chip select. 2. When multiplexed mode is enabled two OCTOSPIs are available, otherwise only one OCTOSPI is available, for further details on multiplexed mode refer to the RM0432 reference manual. 3. For 48-pin and 64-pin packages only 1x UART is available. 4. For 48 pins packages only one SDMMC2 with SDIO 4-bits is available. SDMMC1 and SDMMC2 are available for packages starting from 64 pins. 5. DCMI is available on devices with packages starting from 64-pin. 6. PSSI is available on devices with packages starting from 64-pin. 7. For 48-pin and 64-pin packages, only RGB222 parallel output is supported. 8. When an SMPS package type is used, two GPIOs are replaced by VDD12 pins to connect the SMPS power supplies hence the available GPIOs number is reduced by two. 9. 81 GPIOs available for WLCSP100 package. DS12902 Rev 3 17/312 18 Description STM32L4Q5xx Figure 1. STM32L4Q5xx block diagram NJTRST, JTDI, JTCK/SWCLK JTDO/SWD, JTDO TRACECLK TRACED[3:0] JTAG & SW MPU ETM NVIC CLK, NE[4:1], NL, NBL[1:0], A[25:0], D[15:0], NOE, NWE, NWAIT, NCE, INT as AF, FRAM Flexible static memory controller (FSMC): SRAM, PSRAM, NOR Flash, NAND Flash OctoSPI1 memory interface IO[7:0], CLK, NCLK, NCS. DQS D-BUS ® ® OctoSPI2 memory interface Arm Cortex -M4 120 MHz FPU I-BUS RNG AES S-BUS FIFO FIFO FIFO SRAM1 128 KB HSYNC, VSYNC, PIXCLK, D[13:0] Camera Interface PSSI SRAM2 64 KB PDCK, DE, RDY, D[15:0] @ VDDUSB SRAM3 128 KB USB OTG PHY SDIO2/MMC FIFO D[7:0] CMD, CK as AF PKA FIFO SDIO1/MMC Flash 1 MB AHB bus-matrix D[7:0] CMD, CK as AF FIFO LCD - TFT CHROM-ART DMA2D FIFO LCD_R[7:0], LCD_G[7:0], LCD_B[7:0], LCD_HSYNC, LCD_VSYNC, LCD_DE, LCD_CLK ART ACCEL/ CACHE HASH AHB2 120 MHz VDD DMA2 Power management Voltage regulator 3.3 to 1.2 V DP DM ID, VBUS, SOF VDD = 1.71 to 3.6 V VSS DMA1 @ VDD @ VDD 8 Groups of 4 channels max as AF RC HSI PA[15:0] Supply supervision reset MSI Touch sensing controller VDDIO, VDDUSB Int BOR GPIO PORT A VDDA, VSSA RC LSI GPIO PORT B PC[15:0] GPIO PORT C PD[15:0] GPIO PORT D PE[15:0] GPIO PORT E PF[15:0] GPIO PORT F PG[15:0] GPIO PORT G PH[15:0] GPIO PORT H PI[11:0] GPIO PORT I PVD, PVM PLL 1&2&3 AHB1 120 MHz PB[15:0] VDD, VSS, NRST @VDD OSC_IN OSC_OUT XTAL OSC 4- 16MHz IWDG Standby interface Reset & clock M AN AGT control @VBAT XTAL 32 kHz OSC32_IN OSC32_OUT PCLKx FCLK HCLKx RTC RTC_TS RTC_TAMPx RTC_OUT AWU Backup register VBAT = 1.55 to 3.6 V @ VDD U STemperature AR T 2 M B ps sensor TIM2 32b 4 channels, ETR as AF TIM3 16b 4 channels, ETR as AF TIM4 16b 4 channels, ETR as AF TIM5 32b 4 channels, ETR as AF CRC 8 analog inputs common to the ADC @ VDDA ADC1 ITF ADC2 @ VDDA AHB/APB2 VREF+ AHB/APB1 USART2 smcard irDA RX, TX, CK, CTS, RTS as AF USART3 smcard irDA RX, TX, CK, CTS, RTS as AF VREF Buffer 114 AF EXT IT. WKUP 3 compl. channels (TIM1_CH[1:3]N), 4 channels (TIM1_CH[1:4]), ETR, BKIN, BKIN2 as AF 3 compl. Channels (TIM1_CH[1:3]N), 4 channels (TIM1_CH[1:4]), ETR, BKIN, BKIN2 as AF TIM1 / PWM 16b TIM8 / PWM 16b RX, TX, CTS, RTS as AF UART5 RX, TX, CTS, RTS as AF SPI2 MOSI, MISO, SCK, NSS as AF SPI3 MOSI, MISO, SCK, NSS as AF I2C1/SMBUS 1 channel, 1 compl. channel, BKIN as AF TIM16 16b 1 channel, 1 compl. channel, BKIN as AF TIM17 smcard irDA MOSI, MISO, SCK, NSS as AF USART1 16b MCLK_A, SD_A, FS_A, SCK_A, EXTCLK MCLK_B, SD_B, FS_B, SCK_B as AF SAI1 TIM6 16b TIM7 16b A 60PM B Hz 2 SPI1 I2C2/SMBUS SCL, SDA, SMBA as AF I2C3/SMBUS SCL, SDA, SMBA as AF I2C4/SMBUS SCL, SDA, SMBA as AF bxCAN1 FIFO 16b P B 1(max) 3 0 M Hz APB1 120AMHz TIM15 SCL, SDA, SMBA as AF WWDG APB2 120MHz 2 channels, 1 compl. channel, BKIN as AF RX, TX, CK,CTS, RTS as AF UART4 TX, RX as AF @VDDA OpAmp1 OUT, INN, INP OpAmp2 OUT, INN, INP LPUART1 RX, TX, CTS, RTS as AF LPTIM1 IN1, IN2, OUT, ETR as AF LPTIM2 IN1, OUT, ETR as AF SAI2 MCLK_A, SD_A, FS_A, SCK_A, EXTCLK MCLK_B, SD_B, FS_B, SCK_B as AF SDCKIN[7:0], SDDATIN[7:0], SDCKOUT,SDTRIG as AF DFSDM @ VDDA INP, INN, OUT COMP1 INP, INN, OUT COMP2 @ VDDA DAC1 ITF Firewall DAC1_OUT1 DAC1_OUT2 1. AF: alternate function on I/O pins. 18/312 DS12902 Rev 3 MSv60428V3 STM32L4Q5xx Functional overview 3 Functional overview 3.1 Arm® Cortex®-M4 core with FPU The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm® processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of the MCU implementation, with a reduced pin count and with low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. The Arm® Cortex®-M4 with FPU 32-bit RISC processor features an exceptional codeefficiency, delivering the expected high-performance from an Arm® core in a memory size usually associated with 8-bit and 16-bit devices. The processor supports a set of DSP instructions which allows an efficient signal processing and a complex algorithm execution. Its single precision FPU speeds up the software development by using metalanguage development tools to avoid saturation. With its embedded Arm® core, the family is compatible with all Arm® tools and software. Figure 1 shows the general block diagram of the family devices. 3.2 Adaptive real-time memory accelerator (ART Accelerator) The ART Accelerator is a memory accelerator that is optimized for the STM32 industrystandard Arm®Cortex®-M4 processors. It balances the inherent performance advantage of the Arm® Cortex®-M4 over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies. To release the processor near 150 DMIPS performance at 120 MHz, the accelerator implements an instruction prefetch queue and a branch cache, which increases the program’s execution speed from the Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from the Flash memory at a CPU frequency of up to 120 MHz. 3.3 Memory protection unit (MPU) The memory protection unit (MPU) is used to manage the CPU accesses to the memory and to prevent one task to accidentally corrupt the memory or the resources used by any other active task. This memory area is organized into up to eight protected areas, which can be divided in up into eight subareas each. The protection area sizes range between 32 bytes and the whole 4 gigabytes of addressable memory. The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. DS12902 Rev 3 19/312 65 Functional overview STM32L4Q5xx 3.4 Memories 3.4.1 Embedded Flash memory The devices feature 1 Mbyte of embedded Flash memory which is available for storing programs and data. The Flash interface features: – Single or dual bank operating modes – Read-while-write (RWW) in dual bank mode This feature allows to perform a read operation from one bank while an erase or program operation is performed to the other bank. The dual-bank boot is also supported. Each bank contains 128 pages of 4 Kbytes. In Single-bank mode the main Flash memory contains 128 pages of 8 Kbytes. Flexible protections can be configured thanks to the option bytes: • Readout protection (RDP) to protect the whole memory. Three levels of protection are available: – Level 0: no readout protection – Level 1: memory readout protection; the Flash memory cannot be read from or written to if either the debug features are connected or the boot in RAM or bootloader are selected – Level 2: chip readout protection; the debug features (Cortex-M4 JTAG and serial wire), the boot in RAM and the bootloader selection are disabled (JTAG fuse). This selection is irreversible. 20/312 DS12902 Rev 3 STM32L4Q5xx Functional overview Table 3. Access status versus readout protection level and execution modes Area Debug, boot from RAM or boot from system memory (loader) User execution Protection level Read Write Erase Read Write Erase Main memory 1 Yes Yes Yes No No No 2 Yes Yes Yes N/A N/A N/A System memory 1 Yes No No Yes No No 2 Yes No No N/A N/A N/A Option bytes 1 Yes Yes Yes Yes Yes Yes 2 Yes No No N/A N/A N/A No No N/A(1) Backup registers SRAM2 PKA RAM (1) 1 Yes Yes N/A 2 Yes Yes N/A N/A N/A N/A No No No(1) 1 Yes Yes Yes(1) 2 Yes Yes Yes N/A N/A N/A No No No(1) N/A N/A N/A 1 Yes Yes Yes(1) 2 Yes Yes Yes 1. Erased when RDP change from Level 1 to Level 0. • • Write protection (WRP): the protected area is protected against erasing and programming: – In single bank mode, four areas can be selected with 8-Kbyte granularity. – In dual bank mode, two areas per bank can be selected with 4-Kbyte granularity. Proprietary code readout protection (PCROP): a part of the Flash memory can be protected against read and write from third parties. The protected area is execute-only and it can only be reached by the STM32 CPU as an instruction code, while all other accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited: – In single bank mode, two areas can be selected with 128-bit granularity. – In dual bank mode, one area per bank can be selected with 64-bit granularity. An additional option bit (PCROP_RDP) allows to select if the PCROP area is erased or not when the RDP protection is changed from Level 1 to Level 0. The whole non-volatile memory embeds the error correction code (ECC) feature supporting: 3.4.2 • Single error detection and correction • Double error detection • The address of the ECC fail can be read in the ECC register. Embedded SRAM The devices feature 320 Kbytes of embedded SRAM. This SRAM is split into three blocks: • 128 Kbytes mapped at address 0x2000 0000 (SRAM1). • 64 Kbytes located at address 0x1000 0000 with hardware parity check (SRAM2). This memory is also mapped at address 0x2002 0000 offering a contiguous address space with the SRAM1. DS12902 Rev 3 21/312 65 Functional overview STM32L4Q5xx This block is accessed through the ICode/DCode buses for maximum performance. Either 64 Kbytes or 4 Kbytes of SRAM2 can be retained in Standby mode. The SRAM2 can be write-protected with 1 Kbyte granularity. • 128 Kbytes mapped at address 0x2003 0000 (SRAM3). The memory can be accessed in read/write at CPU clock speed with 0 wait states. 3.5 Boot modes At startup, a BOOT0 pin and an nBOOT1 option bit are used to select one of three boot options: • Boot from user Flash • Boot from system memory • Boot from embedded SRAM The BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the value of a user option bit to free the GPIO pad if needed. A Flash empty-check mechanism is implemented to force the boot from system Flash if the first Flash memory location is not programmed and if the boot selection is configured to boot from main Flash. The boot loader is located in the system memory. It is used to reprogram the Flash memory by using USART, I2C, SPI, CAN or USB OTG FS in device mode through the DFU (device firmware upgrade). 3.6 Firewall These devices embed a firewall which protects code sensitive and secure data from any access performed by a code executed outside of the protected areas. Each illegal access generates a reset which kills immediately the detected intrusion. The main features of the firewall are the following: • • Three segments can be protected and defined thanks to the firewall registers: – Code segment (located in Flash or SRAM1 if defined as executable protected area) – Non-volatile data segment (located in Flash) – Volatile data segment (located in SRAM1) The start address and the length of each segment are configurable: – Code segment: up to 1024 Kbytes with granularity of 256 bytes – Non-volatile data segment: up to 1024 Kbytes with granularity of 256 bytes – Volatile data segment: up to 128 Kbytes of SRAM1 with a granularity of 64 bytes • Specific mechanism implemented to open the firewall to get access to the protected areas (call gate entry sequence) • Volatile data segment can be shared or not with the non-protected code • Volatile data segment can be executed or not depending on the firewall configuration The Flash readout protection must be set to level 2 in order to reach the expected level of protection. 22/312 DS12902 Rev 3 STM32L4Q5xx Functional overview 3.7 Power supply management 3.7.1 Power supply schemes The STM32L4Q5xx devices require a 1.71 V to 3.6 V VDD operating voltage supply. Several independent supplies can be provided for specific peripherals: • VDD = 1.71 V to 3.6 V VDD is the external power supply for the I/Os, the internal regulator and the system analog such as reset, power management and internal clocks. It is provided externally through the VDD pins. • VDD12 = 1.00 to 1.32 V VDD12 is the external power supply bypassing the internal regulator when connected to an external SMPS. It is provided externally through VDD12 pins and only available on packages with the external SMPS supply option. VDD12 does not require any external decoupling capacitance and cannot support any external load. • VDDA = 1.62 V (ADCs/COMPs) / 1.8 V (DACs/OPAMPs) to 2.4 V (VREFBUF) to 3.6 V VDDA is the external analog power supply for A/D converters, D/A converters, voltage reference buffer, operational amplifiers and comparators. The VDDA voltage level is independent from the VDD voltage and should preferably be connected to VDD when these peripherals are not used. • VDDUSB = 3.0 V to 3.6 V VDDUSB is the external independent power supply for USB transceivers. The VDDUSB voltage level is independent from the VDD voltage and should preferably be connected to VDD when the USB is not used. • VDDIO2 = 1.08 V to 3.6 V • VDDIO2 is the external power supply for 14 I/Os (port G[15:2]). The VDDIO2 voltage level is independent from the VDD voltage and should preferably be connected to VDD when PG[15:2] are not used. • VBAT = 1.55 V to 3.6 V VBAT is the power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. • VREF-, VREF+ VREF+ is the input reference voltage for ADCs and DACs. It is also the output of the internal voltage reference buffer when enabled. When VDDA < 2 V VREF+ must be equal to VDDA. When VDDA ≥ 2 V VREF+ must be between 2 V and VDDA. VREF+ can be grounded when ADC and DAC are not active. The internal voltage reference buffer supports two output voltages, which are configured with VRS bit in the VREFBUF_CSR register: – VREF+ around 2.048 V. This requires VDDA equal to or higher than 2.4 V. – VREF+ around 2.5 V. This requires VDDA equal to or higher than 2.8 V. VREF- and VREF+ pins are not available on all packages. When not available, they are bonded to VSSA and VDDA, respectively. When the VREF+ is double-bonded with VDDA in a package, the internal voltage reference buffer is not available and must be kept disable (refer to datasheet for packages pinout description). VREF- must always be equal to VSSA. DS12902 Rev 3 23/312 65 Functional overview STM32L4Q5xx An embedded linear voltage-regulator is used to supply the internal digital power VCORE. VCORE is the power supply for digital peripherals, SRAM1, SRAM2 and SRAM3. The Flash is supplied by VCORE and VDD. Figure 2. STM32L4Q5xx power supply overview VDDA domain VDDA VSSA VDDUSB VSS VDDIO2 VSS 1 x A/D converter 2 x comparators 2 x D/A converters 2 x operational amplifiers Voltage reference buffer USB transceivers VDDIO2 domain VDDIO2 I/O ring PG[15:2] VDD domain VDDIO1 I/O ring VCORE domain Reset block Temp. sensor 3 x PLL, HSI, MSI VSS VDD Standby circuitry (Wakeup logic, IWDG) VCORE Core SRAM1 SRAM2 SRAM3 Digital peripherals Voltage regulator Low voltage detector Flash memory Backup domain VBAT LSE crystal 32 K osc BKP registers RCC BDCR register RTC MSv49328V1 1. The USB transceiver is powered by VDDUSB, and the GPIOs associated with USB are powered by VDDUS when USB alternate function (PA11 and PA12) is selected. When USB alternate function is not selected the GPIOs associated with USB are powered as standard GPIOs 24/312 DS12902 Rev 3 STM32L4Q5xx Functional overview Figure 3. STM32L4Q5xxxP with external SMPS power supply overview VDDA domain VDDA VSSA 1 x A/D converter 2 x comparators 2 x D/A converters 2 x operational amplifiers Voltage reference buffer VDDUSB VSS VDDIO2 VSS USB transceivers VDDIO2 domain VDDIO2 I/O ring PG[15:2] VDD domain VDDIO1 I/O ring VCORE domain Reset block Temp. sensor Core 3 x PLL, HSI, MSI VSS VDD Standby circuitry (Wakeup logic, IWDG) Voltage regulator 2x VDD12 SRAM1 SRAM2 SRAM3 VCORE Digital peripherals Flash memory Low voltage detector Backup domain VBAT LSE crystal 32 K osc BKP registers RCC BDCR register RTC MSv49333V1 1. The USB transceiver is powered by VDDUSB, and the GPIOs associated with USB are powered by VDDUS when USB alternate function (PA11 and PA12) is selected. When USB alternate function is not selected the GPIOs associated with USB are powered as standard GPIOs During power-up and power-down phases, the following power sequence requirements must be respected: • When VDD is below 1 V, other power supplies (VDDA, VDDIO2 and VDDUSB) must remain below VDD +300 mV. • When VDD is above 1 V, all power supplies are independent. • During the power-down phase, VDD can temporarily become lower than other supplies only if the energy provided to the MCU remains below 1 mJ; this allows external decoupling capacitors to be discharged with different time constants during the powerdown transient phase. DS12902 Rev 3 25/312 65 Functional overview STM32L4Q5xx Figure 4. Power-up/down sequence V 3.6 VDDX(1) VDD VBOR0 1 0.3 Power-on Invalid supply area Operating mode VDDX < VDD + 300 mV Power-down time VDDX independent from VDD MSv47490V1 1. VDDX refers to any power supply among VDDA, VDDIO2 and VDDUSB. 3.7.2 Power supply supervisor The STM32L4Q5xx devices have an integrated ultra-low-power Brownout reset (BOR) active in all modes (except for Shutdown mode). The BOR ensures proper operation of the devices after power-on and during power-down. The devices remain in reset mode when the monitored supply voltage VDD is below a specified threshold, without the need for an external reset circuit. The lowest BOR level is 1.71 V at power on, and other higher thresholds can be selected through option bytes.The devices feature an embedded programmable voltage detector (PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. In addition, the devices embed a peripheral voltage monitor which compares the independent supply voltages VDDA, VDDUSB, VDDIO2 with a fixed threshold in order to ensure that the peripheral is in its functional supply range. 3.7.3 Voltage regulator Two embedded linear voltage regulators supply most of the digital circuitries: the main regulator (MR) and the low-power regulator (LPR). 26/312 • The MR is used in the Run and Sleep modes and in the Stop 0 mode. • The LPR is used in Low-power run, Low-power sleep, Stop 1 and Stop 2 modes. It is also used to supply the 64 Kbytes SRAM2 in standby with RAM2 retention. • Both regulators are in power-down while they are in standby and Shutdown modes: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption. DS12902 Rev 3 STM32L4Q5xx Functional overview The ultra-low-power devices support dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the main regulator that supplies the logic (VCORE) can be adjusted according to the system’s maximum operating frequency. The main regulator operates in the following ranges: • Range 1 boost mode with the CPU running at up to 120 MHz. • Range 1 normal mode with the CPU running at up to 80 MHz. • Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also limited to 26 MHz. The VCORE can be supplied by the low-power regulator, the main regulator being switched off. The system is then in Low-power run mode. • Low-power run mode with the CPU running at up to 2 MHz. Peripherals with independent clock can be clocked by the HSI16. When the MR is in use, the device with the external SMPS option allows to force an external VCORE supply on the VDD12 supply pins. When VDD12 is forced by an external source and that it is higher than the output of the internal LDO, the current is taken from this external supply and the overall power efficiency is significantly improved if using an external step down DC/DC converter. DS12902 Rev 3 27/312 65 Functional overview 3.7.4 STM32L4Q5xx Low-power modes The ultra-low-power devices support seven low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wake-up sources. The table below shows the related STM32L4Q5xx modes overview. Table 4. STM32L4Q5xx modes overview Mode (1) Regulator CPU Flash SRAM Clocks DMA and peripherals(2) Wakeup source Range 1 Run SMPS range 2 High Range 2 All Yes ON(3) ON Any All except OTG_FS, RNG, LCD-TFT SMPS range 2 Low LPRun LPR N/A Yes ON(3) ON Any except PLL All except OTG_FS, RNG, LCD-TFT N/A Range 1 Sleep SMPS range 2 High Range 2 All No ON(3) ON(4) All except OTG_FS, RNG, LCD-TFT SMPS range 2 Low LPSleep LPR No ON(3) ON(4) Any except PLL All except OTG_FS, RNG, LCD-TFT Any interrupt or event LSE LSI BOR, PVD, PVM RTC, IWDG COMPx (x=1,2) DAC1 OPAMPx (x=1,2) USARTx (x=1...5)(6) LPUART1(6) I2Cx (x=1...4)(7) LPTIMx (x=1,2) *** All other peripherals are frozen Reset pin, all I/Os BOR, PVD, PVM RTC, IWDG COMPx (x=1..2) USARTx (x=1...5)(6) LPUART1(6) I2Cx (x=1...4)(7) LPTIMx (x=1,2) OTG_FS(8) Range 1 Stop 0(5) No Off ON Range 2 28/312 Any interrupt or event Any DS12902 Rev 3 STM32L4Q5xx Functional overview Table 4. STM32L4Q5xx modes overview (continued) Mode Stop 1 Stop 2 Regulator(1) LPR LPR CPU No No Flash Off Off OFF Shutdown OFF ON ON Clocks DMA and peripherals(2) Wakeup source LSE LSI BOR, PVD, PVM RTC, IWDG COMPx (x=1,2) DAC1 OPAMPx (x=1,2) USARTx (x=1...5)(6) LPUART1(6) I2Cx (x=1...4)(7) LPTIMx (x=1,2) *** All other peripherals are frozen Reset pin, all I/Os BOR, PVD, PVM RTC, IWDG COMPx (x=1..2) USARTx (x=1...5)(6) LPUART1(6) I2Cx (x=1...4)(7) LPTIMx (x=1,2) OTG_FS(8) LSE LSI BOR, PVD, PVM RTC, IWDG COMPx (x=1..2) I2C3(7) LPUART1(6) LPTIMx (x=1,2) *** All other peripherals are frozen Reset pin, all I/Os BOR, PVD, PVM RTC, IWDG COMPx (x=1..2) I2C3(7) LPUART1(6) LPTIMx (x=1,2) LSE LSI BOR, RTC, IWDG *** All other peripherals are powered off *** I/O configuration can be floating, pull-up or pulldown Reset pin 5 I/Os (WKUPx)(9) BOR, RTC, IWDG LSE RTC *** All other peripherals are powered off *** I/O configuration can be floating, pull-up or pulldown(10) Reset pin 5 I/Os (WKUPx)(9) RTC SRAM2 ON LPR Standby SRAM Powered Off Powered Off Off Off Powered Off Powered Off 1. LPR means Main regulator is OFF and Low-power regulator is ON. 2. All peripherals can be active or clock gated to save power consumption. 3. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM. 4. The SRAM1, SRAM2 and SRAM3 clocks can be gated on or off independently. 5. SMPS mode can be used in Stop 0 mode, but no significant power gain can be expected. 6. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event. 7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match. 8. OTG_FS wakeup by resume from suspend and attach detection protocol event. DS12902 Rev 3 29/312 65 Functional overview STM32L4Q5xx 9. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5. 10. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode. By default, the microcontroller is in Run mode after a system or a power reset. It is up to the user to select one of the low-power modes described below: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. • Low-power run mode This mode is achieved with VCORE supplied by the low-power regulator to minimize the regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16. • Low-power sleep mode This mode is entered from the Low-power run mode. Only the CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the Lowpower run mode. • Stop 0, Stop 1 and Stop 2 modes Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still running. The RTC can remain active (Stop mode with RTC, Stop mode without RTC). Some peripherals with wake-up capability can enable the HSI16 RC during Stop mode to detect their wake-up condition. Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode, most of the VCORE domain is put in a lower leakage mode. Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator remains ON, allowing a very fast wakeup time but with much higher consumption. The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI up to 48 MHz or HSI16, depending on software configuration. • Standby mode The Standby mode is used to achieve the lowest power consumption with BOR. The internal regulator is switched off so that the VCORE domain is powered off. The PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off. The RTC can remain active (Standby mode with RTC, Standby mode without RTC). The Brownout reset (BOR) always remains active in Standby mode. The state of each I/O during Standby mode can be selected by software: I/O with internal pull-up, internal pull-down or floating. After entering Standby mode, SRAM1, SRAM3 and register contents are lost except for registers in the Backup domain and Standby circuitry. Optionally, the full SRAM2 (or 30/312 DS12902 Rev 3 STM32L4Q5xx Functional overview only the upper 4 Kbytes) can be retained in Standby mode, supplied by the low-power regulator (standby with RAM2 retention mode). The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE). The system clock after wakeup is MSI up to 8 MHz. • Shutdown mode The Shutdown mode allows to achieve the lowest power consumption. The internal regulator is switched off so that the VCORE domain is powered off. The PLL, the HSI16, the MSI, the LSI and the HSE oscillators are also switched off. The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC). The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode, therefore the switch to Backup domain is not supported. SRAM1, SRAM2, SRAM3 and register contents are lost except for registers in the Backup domain. The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper). The system clock after wakeup is MSI at 4 MHz. DS12902 Rev 3 31/312 65 Functional overview STM32L4Q5xx Table 5. Functionalities depending on the working mode(1) - - Y - Y - - - - - - - - - - O(2) O(2) O(2) O(2) - - - - - - - - - SRAM1 (128 Kbytes) Y Y(3) Y Y(3) Y - Y - - - - - - SRAM2 (64 Kbytes) Y Y(3) Y Y(3) Y - Y - O(4) - - - - SRAM3 (128 Kbytes) Y Y(3) Y Y(3) Y - Y(3) - - - - - - FSMC O O O O - - - - - - - - - OCTOSPIx (x=1,2) O O O O - - - - - - - - - Backup registers Y Y Y Y Y - Y - Y - Y - Y Brownout reset (BOR) Y Y Y Y Y Y Y Y Y Y - - - Programmable voltage detector (PVD) O O O O O O O O - - - - - Peripheral voltage monitor (PVMx; x=1,2,3,4) O O O O O O O O - - - - - DMA O O O O - - - - - - - - - DMA2D O O O O - - - - - - - - - High speed internal (HSI16) O O O O (5) - (5) - - - - - - Oscillator HSI48 O O - - - - - - - - - - - High speed external (HSE) O O O O - - - - - - - - - Low speed internal (LSI) O O O O O - O - O - - - - Low speed external (LSE) O O O O O - O - O - O - O Multi speed internal (MSI) O O O O - - - - - - - - - Clock security system (CSS) O O O O - - - - - - - - - Peripheral CPU Flash memory (2 Mbytes) 32/312 Run Sleep Lowpower run Lowpower sleep - DS12902 Rev 3 Wakeup capability - Wakeup capability Standby Shutdown Wakeup capability Stop 2 Wakeup capability Stop 0/1 VBAT STM32L4Q5xx Functional overview Table 5. Functionalities depending on the working mode(1) (continued) - - Clock security system on LSE O O O O O O O O O O - - - RTC / Auto wakeup O O O O O O O O O O O O O Number of RTC Tamper pins 3 3 3 3 3 O 3 O 3 O 3 O 3 Camera interface (DCMI) O O O O - - - - - - - - - PSSI O O O O - - - - - - - - - LCD-TFT O O - - - - - - - - - - - O(8) - - - O - - - - - - - - - - - - - - Peripheral USB OTG FS Run O (8) Sleep Lowpower run Lowpower sleep - Wakeup capability - Wakeup capability Standby Shutdown Wakeup capability Stop 2 Wakeup capability Stop 0/1 VBAT USARTx (x=1,2,3,4,5) O O O O O(6) O(6) Low-power UART (LPUART) O O O O O(6) O(6) O(6) O(6) - - - - - I2Cx (x=1,2,4) O O O O O(7) O(7) (7) - - - - - - - O(7) O(7) O(7) - - - - - I2C3 O O O O O SPIx (x=1,2,3) O O O O - - - - - - - - - CAN(x=1,2) O O O O - - - - - - - - - SDMMC1 O O O O - - - - - - - - - SDMMC2 O O O O - - - - - - - - - SAIx (x=1,2) O O O O - - - - - - - - - DFSDM1 O O O O - - - - - - - - - ADCx (x=1,2) O O O O - - - - - - - - - DAC1 O O O O O - - - - - - - - VREFBUF O O O O O - - - - - - - - OPAMPx (x=1,2) O O O O O - - - - - - - - COMPx (x=1,2) O O O O O O O O - - - - - Temperature sensor O O O O - - - - - - - - - Timers (TIMx) O O O O - - - - - - - - - Low-power timer 1 (LPTIM1) O O O O O O O O - - - - - DS12902 Rev 3 33/312 65 Functional overview STM32L4Q5xx Table 5. Functionalities depending on the working mode(1) (continued) - - Low-power timer 2 (LPTIM2) O O O O O O O O - - - - - Independent watchdog (IWDG) O O O O O O O O O O - - - Window watchdog (WWDG) O O O O - - - - - - - - - SysTick timer O O O O - - - - - - - - - Touch sensing controller (TSC) O O O O - - - - - - - - - Random number generator (RNG) O(8) O(8) - - - - - - - - - - - AES hardware accelerator O O O O - - - - - - - - - PKA O O O O - - - - - - - - - HASH hardware accelerator O O O O - - - - - - - - - CRC calculation unit O O O O - - - - - - - - - GPIOs O O O O O O O O (9) 5 pins (11) 5 pins - Peripheral Run Sleep Lowpower run Lowpower sleep - (10) Wakeup capability - Wakeup capability Standby Shutdown Wakeup capability Stop 2 Wakeup capability Stop 0/1 VBAT (10) 1. Legend: Y = yes (enable). O = optional (disable by default, can be enabled by software). - = not available. Gray cells highlight the wakeup capability in each mode. 2. The Flash can be configured in power-down mode. By default, it is not in power-down mode. 3. The SRAM clock can be gated on or off. In Stop 2 mode, the content of SRAM3 is preserved or not depending on the RRSTP bit in PWR_CR1 register. 4. The upper 4 Kbytes or the full SRAM2 content is preserved depending on RRS[1:0] bits configuration in PWR_CR3 register. 5. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not need it anymore. 6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event. 7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match. 8. Voltage scaling range 1 only. 9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode. 10. The I/Os with wakeup from standby/shutdown capability are: PA0, PC13, PE6, PA2, PC5. 11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode. 34/312 DS12902 Rev 3 STM32L4Q5xx 3.7.5 Functional overview Reset mode In order to improve the consumption under reset, the I/Os state under and after reset is “analog state” (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is deactivated when the reset source is internal. 3.7.6 VBAT operation The VBAT pin allows the device VBAT domain to be powered from an external battery, an external supercapacitor, or from VDD when there is no external battery and when an external supercapacitor is present. The VBAT pin supplies the RTC with LSE and the backup registers. Three anti-tamper detection pins are available in VBAT mode. The VBAT operation is automatically activated when VDD is not present. An internal VBAT battery charging circuit is embedded and can be activated when VDD is present. Note: When the microcontroller is supplied from VBAT, neither external interrupts nor RTC alarm/events exit the microcontroller from the VBAT operation. 3.8 Peripheral and interconnect matrix Several peripherals have direct connections between them, which allow autonomous communication between them and support the saving of CPU resources (thus power supply consumption). In addition, these hardware connections allow fast and predictable latency. Depending on the peripherals, these interconnections can operate in Run, Sleep, Lowpower run, Low-power Sleep, Stop 0, Stop 1 and Stop 2 modes. See Table 6 for more details. Stop 0 / Stop 1 Stop 2 ADCx Low-power sleep COMPx Low-power run TIMx Sleep Interconnect source Run Table 6. STM32L4Q5xx peripherals interconnect matrix TIMx Timers synchronization or chaining Y Y Y Y - - ADCx DAC1 DFSDM1 Conversion triggers Y Y Y Y - - DMA Memory to memory transfer trigger Y Y Y Y - - COMPx Comparator output blanking Y Y Y Y - - TIM1, 8 TIM2, 3 Timer input channel, trigger, break from analog signals comparison Y Y Y Y - - LPTIMERx Low-power timer triggered by analog signals comparison Y Y Y Y Y Y TIM1, 8 Timer triggered by analog watchdog Y Y Y Y - - Interconnect destination Interconnect action DS12902 Rev 3 35/312 65 Functional overview STM32L4Q5xx Run Sleep Low-power run Low-power sleep Stop 0 / Stop 1 Stop 2 Table 6. STM32L4Q5xx peripherals interconnect matrix (continued) TIM16 Timer input channel from RTC events Y Y Y Y - - LPTIMERx Low-power timer triggered by RTC alarms or tampers Y Y Y Y Y Y All clocks sources (internal TIM2 and external) TIM15, 16, 17 Clock source used as input channel for RC measurement and trimming Y Y Y Y - - USB Timer triggered by USB SOF Y Y - - - - Timer break Y Y Y Y - - TIMx External trigger Y Y Y Y - - LPTIMERx External trigger Y Y Y Y Y Y ADC DAC1 DFSDM1 Conversion external trigger Y Y Y Y - - Interconnect source RTC Interconnect destination TIM2 CSS CPU (hard fault) RAM (parity error) Flash memory (ECC error) TIM1,8 COMPx TIM15,16,17 PVD DFSDM1 (analog watchdog, short circuit detection) GPIO 36/312 Interconnect action DS12902 Rev 3 STM32L4Q5xx 3.9 Functional overview Reset and clock controller (RCC) The clock controller (see Figure 5) distributes the clocks coming from the different oscillators to the core and to the peripherals. It also manages the clock gating for low-power modes and ensures the clock robustness. It features: • Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler. • Safe clock switching: clock sources can be changed safely on the fly in Run mode through a configuration register. • Clock management: to reduce the power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. • System clock source: four different clock sources can be used to drive the master clock SYSCLK: – 4 to 48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply a PLL. The HSE can also be configured in bypass mode for an external clock. – 16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can supply a PLL – Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be automatically trimmed by hardware to reach better than ±0.25% accuracy. In this mode the MSI can feed the USB device, saving the need of an external high-speed crystal (HSE). The MSI can supply a PLL. – System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency at 120 MHz. • RC48 with clock recovery system (HSI48): internal 48 MHz clock source (HSI48)can be used to drive the USB, the SDMMC or the RNG peripherals. This clock can be output on the MCO. • Auxiliary clock source: two ultra-low-power clock sources that can be used to drive the real-time clock: – 32.768 kHz low-speed external crystal (LSE), supporting four drive capability modes. The LSE can also be configured in bypass mode for an external clock. – 32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock accuracy is ±5% accuracy. • Peripheral clock sources: several peripherals (USB, SDMMC, RNG, SAI, USARTs, I2Cs, LPTimers, ADC) have their own independent clock whatever the system clock. Three PLLs, each having three independent outputs allowing the highest flexibility, can generate independent clocks for the ADC, the USB/SDMMC/RNG, the two SAIs, and LCD-TFT. • Startup clock: after reset, the microcontroller restarts by default with an internal 4 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. • Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI16 and a software DS12902 Rev 3 37/312 65 Functional overview STM32L4Q5xx interrupt is generated if enabled. LSE failure can also be detected and generated an interrupt. • Clock-out capability: – MCO (microcontroller clock output): it outputs one of the internal clocks for external use by the application – LSCO (low-speed clock output): it outputs LSI or LSE in all low-power modes (except VBAT). Several prescalers allow the AHB frequency, the high speed APB (APB2) and the lowspeed APB (APB1) domains to be configured. The maximum frequency of the AHB and the APB domains is 120 MHz. 38/312 DS12902 Rev 3 STM32L4Q5xx Functional overview Figure 5. Clock tree to IWDG LSI RC 32 kHz LSCO to RTC OSC32_OUT LSE OSC 32.768 kHz /32 OSC32_IN MCO to PWR LSE LSI MSI HSI16 HSE SYSCLK / 1→16 to AHB bus, core, memory and DMA AHB PRESC / 1,2,..512 HCLK PLLCLK HSI48 to Cortex system timer /8 Clock source control OSC_OUT HSE OSC 4-48 MHz OSC_IN Clock detector FCLK Cortex free running clock APB1 PRESC / 1,2,4,8,16 HSE PCLK1 to APB1 peripherals x1 or x2 MSI HSI16 SYSCLK LSE HSI16 SYSCLK to USARTx X=2..5 to LPUART1 HSI RC 16 MHz HSI16 SYSCLK MSI RC 100 kHz – 48 MHz PLL MSI HSI16 HSE /M /P PLLSAI3CLK /Q PLL48M1CLK /R PLLCLK MSI to OCTOSPIx x=1,2 CRS clock APB2 PRESC / 1,2,4,8,16 /P PLLSAI1CLK /Q PLL48M2CLK /R PLLADC1CLK HSI16 x1 or x2 LSE HSI16 SYSCLK 48 MHz clock to USB, RNG PLLSAI2CLK DFSDM audio clock /Q PLLLCDCLK to ADCx X=1,2 MSI HSI16 /M /R to USART1 to SDMMCx x=1,2 MSI SYSCLK /P to APB2 peripherals to TIMx x=1,8,15,16,17 HSI16 PLLSAI2 to LPTIMx x=1,2 PCLK2 /M PLLSAI1 to I2Cx x=1,2,3,4 LSI LSE HSI16 RC 48 MHz to TIMx x=2..7 to SAI1 HSI16 PLLSAI2DIVR SAI1_EXTCLK LTDC clock to SAI2 SAI2_EXTCLK MSv61129V2 DS12902 Rev 3 39/312 65 Functional overview 3.10 STM32L4Q5xx Clock recovery system (CRS) The devices embed a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which can be either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action. 3.11 General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be achieved thanks to their mapping on the AHB2 bus. The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. 3.12 Multi-AHB bus matrix The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, DMA2D, SDMMC1, SDMMC2 and LCD-TFT) and the slaves (Flash memory, RAM, FSMC, OCTOSPI, AHB and APB peripherals). It also ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously. 40/312 DS12902 Rev 3 STM32L4Q5xx Functional overview Figure 6. Multi-AHB bus matrix DMA1 DMA2 DMA2D LCD-TFT SDMMC1 SDMMC2 S-bus D-bus I-bus Cortex®-M4 with FPU DCode ACCEL ICode FLASH 2 MB SRAM1 SRAM2 SRAM3 AHB1 peripherals AHB2 peripherals FSMC OCTOSPI1 OCTOSPI2 BusMatrix-S MSv61127V1 3.13 Direct memory access controller (DMA) The device embeds 2 DMAs. Refer to Table 7: DMA implementation for the features implementation. Direct memory access (DMA) is used in order to provide a high-speed data transfer between peripherals and memory as well as from memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps the CPU resources free for other operations. The two DMA controllers have 14 channels in total, each one dedicated to manage memory access requests from one or more peripherals. Each controller has an arbiter for handling the priority between DMA requests. DS12902 Rev 3 41/312 65 Functional overview STM32L4Q5xx The DMA supports: • 14 independently configurable channels (requests) – Each channel is connected to a dedicated hardware DMA request, a software trigger is also supported on each channel. This configuration is done by software. • Priorities between requests from channels of one DMA are both software programmable (4 levels: very high, high, medium, low) or hardware programmable in case of equality (request 1 has priority over request 2, etc.) • Independent source and destination transfer size (byte, half word, word), emulating packing and unpacking. Source/destination addresses must be aligned on the data size • Support for circular buffer management • 3 event flags (DMA half transfer, DMA transfer complete and DMA transfer error) logically ORed together in a single interrupt request for each channel • Memory-to-memory transfer • Peripheral-to-memory, memory-to-peripheral, and peripheral-to-peripheral transfers • Access to Flash, SRAM, APB and AHB peripherals as source and destination • Programmable number of data to be transferred: up to 65536 Table 7. DMA implementation 42/312 DMA features DMA1 DMA2 Number of regular channels 7 7 DS12902 Rev 3 STM32L4Q5xx 3.14 Functional overview DMA request router (DMAMux) When a peripheral indicates a request for DMA transfer by setting its DMA request line, the DMA request is pending until it is served and the corresponding DMA request line is reset. The DMA request router allows to route the DMA control lines between the peripherals and the DMA controllers of the product. An embedded multi-channel DMA request generator can be considered as one of such peripherals. The routing function is ensured by a multi-channel DMA request line multiplexer. Each channel selects a unique set of DMA control lines, unconditionally or synchronously with events on synchronization inputs. For simplicity, the functional description is limited to DMA request lines. The other DMA control lines are not shown in figures or described in the text. The DMA request generator produces DMA requests following events on DMA request trigger inputs. 3.15 Chrom-ART Accelerator (DMA2D) Chrom-ART Accelerator (DMA2D) is a graphic accelerator that offers an advanced bit blitting, row data copy and pixel format conversion. It supports the following functions: • Rectangle filling with a fixed color • Rectangle copy • Rectangle copy with pixel format conversion • Rectangle composition with blending and pixel format conversion. Various image format coding are supported, from indirect 4 bpp color mode up to 32 bpp direct color. It embeds a dedicated memory to store color lookup tables. An interrupt can be generated when an operation is complete or at a programmed watermark. All the operations are fully automatized and are running independently from the CPU or the DMAs. 3.16 Interrupts and events 3.16.1 Nested vectored interrupt controller (NVIC) The STM32L4Q5xx devices embed a nested vectored interrupt controller which is able to manage 16 priority levels, and to handle up to 95 maskable interrupt channels plus the 16 interrupt lines of the Cortex®-M4. The NVIC benefits are the following: • Closely coupled NVIC gives low latency interrupt processing • Interrupt entry vector table address passed directly to the core • Allows early processing of interrupts • Processing of late arriving higher priority interrupts • Support for tail chaining • Processor state automatically saved • Interrupt entry restored on interrupt exit with no instruction overhead DS12902 Rev 3 43/312 65 Functional overview STM32L4Q5xx The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency. 3.16.2 Extended interrupt/event controller (EXTI) The extended interrupt/event controller consists of 36 edge detector lines used to generate interrupt/event requests and to wake up the system from the Stop mode. Each external line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The internal lines are connected to peripherals with wakeup from Stop mode capability. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 114 GPIOs can be connected to the 16 external interrupt lines. 3.17 Cyclic redundancy check calculation unit (CRC) The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator with polynomial value and size. Among other applications, the CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a mean to verify the Flash memory integrity. The CRC calculation unit helps to compute a signature of the software during runtime, which can be ulteriorly compared with a reference signature generated at link-time and which can be stored at a given memory location. 3.18 Flexible static memory controller (FSMC) The flexible static memory controller (FSMC) includes two memory controllers: • The NOR/PSRAM memory controller • The NAND/memory controller This memory controller is also named flexible memory controller (FMC). The main features of the FSMC controller are the following: • 44/312 Interface with static-memory mapped devices including: – Static random access memory (SRAM) – NOR Flash memory/OneNAND Flash memory – PSRAM (four memory banks) – NAND Flash memory with ECC hardware to check up to 8 Kbytes of data – Ferroelectric RAM (FRAM) • 8-,16- bit data bus width • Independent chip select control for each memory bank • Independent configuration for each memory bank • Write FIFO • The Maximum FMC_CLK frequency for synchronous accesses is HCLK/2. DS12902 Rev 3 STM32L4Q5xx Functional overview LCD parallel interface The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost effective graphic applications using LCD modules with embedded controllers or highperformance solutions using external controllers with dedicated acceleration. 3.19 Octo-SPI interface (OCTOSPI) The OCTOSPI is a specialized communication interface targetting single, dual, quad or octal SPI memories. It can operate in any of the three following modes: • Indirect mode: all the operations are performed using the OCTOSPI registers • Status polling mode: the external memory status register is periodically read and an interrupt can be generated in case of flag setting • Memory-mapped mode: the external memory is memory mapped and is seen by the system as if it were an internal memory supporting read and write operation The OCTOSPI supports two frame formats: • Classical frame format with command, address, alternate byte, dummy cycles and data phase over 1, 2, 4 or 8 data pins • HyperBus™ frame format The OCTOSPI offers the following features: • Three functional modes: indirect, status-polling, and memory-mapped • Read and write support in memory-mapped mode • Supports for single, dual, quad and octal communication • Dual-quad mode, where 8 bits can be sent/received simultaneously by accessing two quad memories in parallel. • SDR and DTR support • Data strobe support • Fully programmable opcode for both indirect and memory mapped mode • Fully programmable frame format for both indirect and memory mapped mode • Each of the five following phases can be configured independently (enable, length, single/dual/quad communication) – Instruction phase – Address phase – Alternate bytes phase – Dummy cycles phase – Data phase • HyperBus™ support • Integrated FIFO for reception and transmission • 8, 16, and 32-bit data accesses are allowed • DMA channel for indirect mode operations DS12902 Rev 3 45/312 65 Functional overview 3.20 STM32L4Q5xx • Timeout management • Interrupt generation on FIFO threshold, timeout, status match, operation complete, and access error Octo-SPI IO manager (OCTOSPIIOM) The OCTOSPI IO manager is a low level interface allowing: • Efficient OCTOSPI pin assignment with a full IO Matrix (before alternate function map) • Multiplexing single/dual/quad/octal SPI interface over the same bus The OCTOSPI IO manager has the following features: 46/312 • Support up to two single/dual/quad/octal SPI Interface • Support up to eight ports for pin assignment • Fully programmable IO matrix for pin assignment by function (data/control/clock) • Muxer for Single/Dual/Quad/Octal SPI interface multiplexing over the same bus DS12902 Rev 3 STM32L4Q5xx 3.21 Functional overview Analog-to-digital converter (ADC) The device embeds two successive approximation analog-to-digital converters with the following features: • 12-bit native resolution, with built-in calibration • 5.33 Msps maximum conversion rate with full resolution Down to 18.75 ns sampling time – Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit resolution) • Up to 16 external channels • 5 internal channels: internal reference voltage, temperature sensor, VBAT/3, DAC1_OUT1 and DAC1_OUT2 outputs • One external reference pin is available on some package, allowing the input voltage range to be independent from the power supply • Single-ended and differential mode inputs • Low-power design • 3.21.1 – – Capable of low-current operation at low conversion rate (consumption decreases linearly with speed) – Dual clock domain architecture: ADC speed independent from CPU frequency Highly versatile digital interface – Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups of analog signals conversions can be programmed to differentiate background and high-priority real-time conversions – Each ADC support multiple trigger inputs for synchronization with on-chip timers and external signals – Results stored into a data register or in RAM with DMA controller support – Data pre-processing: left/right alignment and per channel offset compensation – Built-in oversampling unit for enhanced SNR – Channel-wise programmable sampling time – Analog watchdog for automatic voltage monitoring, generating interrupts and trigger for selected timers – Hardware assistant to prepare the context of the injected channels to allow fast context switching Temperature sensor The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature. The temperature sensor is internally connected to the ADC1_IN17 input channels which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. DS12902 Rev 3 47/312 65 Functional overview STM32L4Q5xx Table 8. Temperature sensor calibration values 3.21.2 Calibration value name Description Memory address TS_CAL1 TS ADC raw data acquired at a temperature of 30 °C (± 5 °C), VDDA = VREF+ = 3.0 V (± 10 mV) 0x1FFF 75A8 - 0x1FFF 75A9 TS_CAL2 TS ADC raw data acquired at a temperature of 130 °C (± 5 °C), VDDA = VREF+ = 3.0 V (± 10 mV) 0x1FFF 75CA - 0x1FFF 75CB Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and the comparators. The VREFINT is internally connected to the ADC1_IN0 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. Table 9. Internal voltage reference calibration values 3.21.3 Calibration value name Description Memory address VREFINT Raw data acquired at a temperature of 30 °C (± 5 °C), VDDA = VREF+ = 3.0 V (± 10 mV) 0x1FFF 75AA - 0x1FFF 75AB VBAT battery voltage monitoring This embedded hardware enables the application to measure the VBAT battery voltage using the internal ADC channel ADC1_IN18. As the VBAT voltage may be higher than the VDDA, and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by 3. As a consequence, the converted digital value is one third of the VBAT voltage. 3.22 Digital to analog converter (DAC) Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration. This digital interface supports the following features: 48/312 • Up to two DAC output channels • 8-bit or 12-bit output mode • Buffer offset calibration (factory and user trimming) • Left or right data alignment in 12-bit mode • Synchronized update capability • Noise-wave generation • Triangular-wave generation DS12902 Rev 3 STM32L4Q5xx Functional overview • Dual DAC channel independent or simultaneous conversions • DMA capability for each channel • External triggers for conversion • Sample and hold low-power mode, with internal or external capacitor The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels. 3.23 Voltage reference buffer (VREFBUF) The devices embed a voltage reference buffer which can be used as voltage reference for ADC, DACs and also as voltage reference for external components through the VREF+ pin. The internal voltage reference buffer supports two voltages: • 2.042 V • 2.5 V An external voltage reference can be provided through the VREF+ pin when the internal voltage reference buffer is off. The VREF+ pin is double-bonded with VDDA on some packages. In these packages the internal voltage reference buffer is not available. Figure 7. Voltage reference buffer VREFBUF VDDA Bandgap DAC, ADC + VREF+ Low frequency cut-off capacitor 100 nF MSv40197V1 3.24 Comparators (COMP) The devices embed two rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) and with selectable output polarity. The reference voltage can be one of the following: • External I/O • DAC output channels • Internal reference voltage or submultiple (1/4, 1/2, 3/4). All comparators can wake up from Stop mode, generate interrupts and breaks for the timers and can also be combined into a window comparator. DS12902 Rev 3 49/312 65 Functional overview 3.25 STM32L4Q5xx Operational amplifier (OPAMP) The devices embed two operational amplifiers with external or internal follower routing and PGA capability. The operational amplifier features: 3.26 • Low input bias current • Low offset voltage • Low-power mode • Rail-to-rail input Digital filter for sigma-delta modulators (DFSDM) The STM32L4Q5xx devices embed one DFSDM with two digital filters modules and four external input serial channels (transceivers) or alternately four internal parallel inputs support. The DFSDM peripheral is dedicated to interface the external Σ∆ modulators to the microcontroller and then to perform digital filtering of the received data streams (which represent analog value on Σ∆ modulators inputs). The DFSDM can also interface the PDM (pulse density modulation) microphones and perform PDM to PCM conversion and filtering in hardware. The DFSDM features optional parallel data stream inputs from microcontrollers memory (through DMA/CPU transfers into DFSDM). The DFSDM transceivers support several serial interface formats (to support various Σ∆ modulators) and the DFSDM digital filter modules perform digital processing according to the user’s selected filter parameters with up to 24-bit final ADC resolution. The DFSDM peripheral supports: • • 4 multiplexed input digital serial channels: – Configurable SPI interface to connect various SD modulator(s) – Configurable Manchester coded 1 wire interface support – PDM (pulse density modulation) microphone input support – Maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding) – Clock output for SD modulator(s): 0..20 MHz Alternative inputs from 8 internal digital parallel channels (up to 16-bit input resolution): – • 50/312 Internal sources: device memory data streams (DMA) 2 digital filter modules with adjustable digital signal processing: – Sincx filter: filter order/type (1..5), oversampling ratio (up to 1..1024) – Integrator: oversampling ratio (1..256) • Up to 24-bit output data resolution, signed output data format • Automatic data offset correction (offset stored in register by user) • Continuous or single conversion • Start-of-conversion triggered by: – Software trigger – Internal timers DS12902 Rev 3 STM32L4Q5xx • • 3.27 Functional overview – External events – Start-of-conversion synchronously with first digital filter module (DFSDM0) Analog watchdog feature: – Low value and high-value data threshold registers – Dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32) – Input from final output data or from selected input digital serial channels – Continuous monitoring independently from standard conversion Short circuit detector to detect saturated analog input values (bottom and top range): – Up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on serial data stream – Monitoring continuously each input serial channel • Break signal generation on analog watchdog event or on short circuit detector event • Extremes detector: – Storage of minimum and maximum values of final conversion data – Refreshed by software • DMA capability to read the final conversion data • Interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial channel clock absence • “Regular” or “injected” conversions: – “Regular” conversions can be requested at any time or even in continuous mode without having any impact on the timing of “injected” conversions – “Injected” conversions for precise timing and with high conversion priority Digital camera interface (DCMI) The devices embed a camera interface that can connect with any camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface in order to receive video data. The camera interface can sustain a data transfer rate up to 54 Mbytes/s at 54 MHz. It features: • Programmable polarity for the input pixel clock and synchronization signals • Parallel data communication of 8-, 10-, 12- or 14-bit • Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG) • Supports continuous mode or snapshot (a single frame) mode • Capability to automatically crop the image. DS12902 Rev 3 51/312 65 Functional overview 3.28 STM32L4Q5xx LCD-TFT controller (LTDC) The LCD-TFT display controller provides a 24-bit parallel digital RGB (red, green, blue) and delivers all signals to interface directly to a broad range of LCD and TFT panels with the following features: 3.29 • One display layer with dedicated FIFO (64 x 32-bit) • Color look-up table (CLUT) up to 256 colors (256 x 24-bit) per layer • Up to 8 input color formats selectable per layer • Flexible blending between two layers using alpha value (per pixel or constant) • Flexible programmable parameters for each layer • Color keying (transparency color) • Up to four programmable interrupt events Touch sensing controller (TSC) The touch sensing controller provides a simple solution to add capacitive sensing functionality to any application. A capacitive sensing technology is able to detect finger presence near an electrode that is protected from direct touch by a dielectric (glass, plastic or other). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application. The main features of the touch sensing controller are the following: Note: 52/312 • Proven and robust surface charge transfer acquisition principle • Supports up to 24 capacitive sensing channels • Up to 3 capacitive sensing channels can be acquired in parallel offering a very good response time • Spread spectrum feature to improve system robustness in noisy environments • Full hardware management of the charge transfer acquisition sequence • Programmable charge transfer frequency • Programmable sampling capacitor I/O pin • Programmable channel I/O pin • Programmable max count value to avoid long acquisition when a channel is faulty • Dedicated end of acquisition and max count error flags with interrupt capability • One sampling capacitor for up to 3 capacitive sensing channels to reduce the system components • Compatible with proximity, touchkey, linear and rotary touch sensor implementation • Designed to operate with STMTouch touch sensing firmware library The number of capacitive sensing channels is dependent on the size of the packages and subject to I/O availability. DS12902 Rev 3 STM32L4Q5xx 3.30 Functional overview True random number generator (RNG) The RNG is a true random number generator that provides full entropy outputs to the application as 32-bit samples. It is composed of a live entropy source (analog) and an internal conditioning component. 3.31 Parallel synchronous slave interface (PSSI) The PSSI is a generic synchronous 8-/16-bit parallel data input/output slave interface. It allows the transmitter to send a data valid signal to indicate when the data is valid, and the receiver to output a flow control signal to indicate when it is ready to sample the data. The PSSI main features are: 3.32 • The PSSI shares most of the circuitry with the digital camera interface (DCMI). It thus cannot be used simultaneously with the DCMI. • Slave mode operation • 8- or 16-bit parallel data input or output • 4-word (16-byte) FIFO • Data enable (DE) alternate function input and Ready (RDY) alternate function output. When enabled, these signals can either allow the transmitter to indicate when the data is valid or the receiver to indicate when it is ready to sample the data, or both. Advanced encryption standard hardware accelerator (AES) The devices embed an AES hardware accelerator that can be used both to encipher and to decipher data using an AES algorithm. The AES peripheral supports: • Encryption/decryption using AES Rijndael block cipher algorithm • NIST FIPS 197 compliant implementation of AES encryption/decryption algorithm • 128-bit and 256-bit register for storing the encryption, decryption or derivation key (4x 32-bit registers) • Electronic codebook (ECB), cipher block chaining (CBC), Counter mode (CTR), Galois Counter Mode (GCM), Galois Message Authentication Code mode (GMAC) and Cipher Message Authentication Code mode (CMAC) supported • Key scheduler • Key derivation for decryption • 128-bit data block processing • 128-bit, 256-bit key length • 1x32-bit INPUT buffer and 1x32-bit OUTPUT buffer • Register access supporting 32-bit data width only • One 128-bit Register for the initialization vector when AES is configured in CBC mode or for the 32-bit counter initialization when CTR mode is selected, GCM mode or CMAC mode • Automatic data flow control with support of direct memory access (DMA) using 2 channels, one for incoming data, and one for outcoming data • Suspend a message if another message with a higher priority needs to be processed. DS12902 Rev 3 53/312 65 Functional overview 3.33 STM32L4Q5xx HASH hardware accelerator (HASH) The hash processor is a fully compliant implementation of the secure hash algorithm (SHA1, SHA-224, SHA-256), the MD5 (message-digest algorithm 5) hash algorithm and the HMAC (keyed-hash message authentication code) algorithm suitable for a variety of applications. It computes a message digest (160 bits for the SHA-1 algorithm, 256 bits for the SHA-256 algorithm and 224 bits for the SHA-224 algorithm,128 bits for the MD5 algorithm) for messages of up to (264 - 1) bits, while the HMAC algorithms provide a way of authenticating messages by means of hash functions. The HMAC algorithms consist in calling the SHA-1, SHA-224, SHA-256 or MD5 hash function twice. 3.34 Public key accelerator (PKA) The public key accelerator (PKA) is intended for the computation of cryptographic public key primitives, specifically those related to RSA, Diffie-Hellmann or ECC (elliptic curve cryptography) over GF(p) (Galois fields). To achieve high performance at a reasonable cost, these operations are executed in the Montgomery domain. All needed computations are performed within the accelerator, so no further hardware/software elaboration is needed to process the inputs or the outputs. PKA main features: • Acceleration of RSA, DH and ECC over GF(p) operations, based on the Montgomery method for fast modular multiplications. More specifically: – 3.35 RSA modular exponentiation, RSA Chinese remainder theorem (CRT) exponentiation – ECC scalar multiplication, point on curve check – ECDSA signature generation and verification • Capability to handle operands up to 3136 bits for RSA/DH and 640 bits for ECC. • Arithmetic and modular operations such as addition, subtraction, multiplication, modular reduction, modular inversion, comparison, and Montgomery multiplication. • Built-in Montgomery domain inward and outward transformations • AMBA AHB slave peripheral, accessible through 32-bit word single accesses only (otherwise, for writes, an AHB bus error is generated, and write accesses are ignored). Timers and watchdogs The devices include two advanced control timers, up to nine general-purpose timers, two basic timers, two low-power timers, two watchdog timers and a SysTick timer. Table 10 below compares the features of the advanced control, general-purpose and basic timers. 54/312 DS12902 Rev 3 STM32L4Q5xx Functional overview Table 10. Timer feature comparison Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Capture/ compare channels Complementary outputs Advanced control TIM1, TIM8 16-bit Up, down, Up/down Any integer between 1 and 65536 Yes 4 3 Generalpurpose TIM2, TIM5 32-bit Up, down, Up/down Any integer between 1 and 65536 Yes 4 No Generalpurpose TIM3, TIM4 16-bit Up, down, Up/down Any integer between 1 and 65536 Yes 4 No Generalpurpose TIM15 16-bit Up Any integer between 1 and 65536 Yes 2 1 Generalpurpose TIM16, TIM17 16-bit Up Any integer between 1 and 65536 Yes 1 1 Basic TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No 3.35.1 Advanced-control timer (TIM1, TIM8) The advanced-control timers can each be seen as a three-phase PWM multiplexed on six channels. They have complementary PWM outputs with programmable inserted deadtimes. They can also be seen as complete general-purpose timers. The four independent channels can be used for: • Input capture • Output compare • PWM generation (edge or center-aligned modes) with full modulation capability (0100%) • One-pulse mode output In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled in order to turn off any power switches driven by these outputs. Many features are shared with the general-purpose TIMx timers (described in Section 3.35.2) using the same architecture, so the advanced-control timers can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining. DS12902 Rev 3 55/312 65 Functional overview 3.35.2 STM32L4Q5xx General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16, TIM17) There are up to seven synchronizable general-purpose timers embedded in the devices (see Table 10 for differences). Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base. • TIM2, TIM3, TIM4 and TIM5 They are full-featured general-purpose timers: – TIM2 and TIM5 have a 32-bit auto-reload up/downcounter and 32-bit prescaler – TIM3 and TIM4 have 16-bit auto-reload up/downcounter and 16-bit prescaler. These timers feature four independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other generalpurpose timers via the Timer Link feature for synchronization or event chaining. The counters can be frozen in debug mode. All have independent DMA request generation and support quadrature encoders. • TIM15, 16 and 17 They are general-purpose timers with mid-range features: They have 16-bit auto-reload upcounters and 16-bit prescalers. – TIM15 has two channels and one complementary channel – TIM16 and TIM17 have one channel and one complementary channel All channels can be used for input capture/output compare, PWM or one-pulse mode output. The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation. The counters can be frozen in debug mode. 3.35.3 Basic timers (TIM6 and TIM7) The basic timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit timebases. 3.35.4 Low-power timer (LPTIM1 and LPTIM2) The devices embed two low-power timers. These timers have an independent clock and are running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to wakeup the system from Stop mode. LPTIM1 and LPTIM2 can be active in Stop 0, Stop 1 and Stop 2 modes. 56/312 DS12902 Rev 3 STM32L4Q5xx Functional overview This low-power timer supports the following features: 3.35.5 • 16-bit up counter with 16-bit autoreload register • 16-bit compare register • Configurable output: pulse, PWM • Continuous/ one shot mode • Selectable software/hardware input trigger • Selectable clock source – Internal clock sources: LSE, LSI, HSI16 or APB clock – External clock source over LPTIM input (working even with no internal clock source running, used by pulse counter application). • Programmable digital glitch filter • Encoder mode (LPTIM1 only) • Repetition counter. Independent watchdog (IWDG) The independent watchdog is based on a 12-bit downcounter and an 8-bit prescaler. It is clocked from an independent 32 kHz internal RC (LSI) and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. 3.35.6 Window watchdog (WWDG) The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.35.7 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features: • A 24-bit down counter • Autoreload capability • Maskable system interrupt generation when the counter reaches 0. • Programmable clock source DS12902 Rev 3 57/312 65 Functional overview 3.36 STM32L4Q5xx Real-time clock (RTC) and backup registers The RTC is an independent BCD timer/counter. It supports the following features: • Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format • Automatic correction for 28, 29 (leap year), 30, and 31 days of the month • Two programmable alarms • On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock • Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision • Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy • Three anti-tamper detection pins with programmable filter • Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to VBAT mode • 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period The RTC and the 32 backup registers are supplied through a switch that takes power either from the VDD supply when present or from the VBAT pin. The backup registers are 32-bit registers used to store 128 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from standby or Shutdown mode. The RTC clock sources can be: • A 32.768 kHz external crystal (LSE) • An external resonator or oscillator (LSE) • The internal low-power RC oscillator (LSI, with typical frequency of 32 kHz) • The high-speed external clock (HSE) divided by 32 The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes except Shutdown mode. All RTC events (alarm, wake-up timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes. 58/312 DS12902 Rev 3 STM32L4Q5xx 3.37 Functional overview Inter-integrated circuit interface (I2C) The device embeds four I2C. Refer to Table 11: I2C implementation for the features implementation. The I2C bus interface handles communications between the microcontroller and the serial I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing. The I2C peripheral supports: • • I2C-bus specification and user manual rev. 5 compatibility: – Slave and master modes, multimaster capability – Standard-mode (Sm), with a bitrate up to 100 kbit/s – Fast-mode (Fm), with a bitrate up to 400 kbit/s – Fast-mode plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os – 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses – Programmable setup and hold times – Optional clock stretching System management bus (SMBus) specification rev 2.0 compatibility: – Hardware PEC (packet error checking) generation and verification with ACK control – Address resolution protocol (ARP) support – SMBus alert • Power system management protocol (PMBusTM) specification rev 1.1 compatibility • Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming. Refer to Figure 5: Clock tree • Wakeup from Stop mode on address match • Programmable analog and digital noise filters • 1-byte buffer with DMA capability Table 11. I2C implementation I2C features(1) I2C1 I2C2 I2C3 I2C4 Standard-mode (up to 100 kbit/s) X X X X Fast-mode (up to 400 kbit/s) X X X X Fast-mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s) X X X X Programmable analog and digital noise filters X X X X SMBus/PMBus hardware support X X X X Independent clock X X X X Wakeup from Stop 0, Stop 1 mode on address match X X X X Wakeup from Stop 2 mode on address match - - X - 1. X: supported DS12902 Rev 3 59/312 65 Functional overview 3.38 STM32L4Q5xx Universal synchronous/asynchronous receiver transmitter (USART) The devices have three embedded universal synchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4, UART5). These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN master/slave capability. They provide hardware management of the CTS and RTS signals, and RS485 driver enable. They are able to communicate at speeds of up to 10 Mbit/s. The USART1, USART2 and USART3 also provide a Smartcard mode (ISO 7816 compliant) and an SPI-like communication capability. All USART have a clock domain independent from the CPU clock, allowing the USARTx (x=1,2,3,4,5) to wake up the MCU from Stop mode using baudrates up to 200 Kbaud. The wake up events from Stop mode are programmable and can be: • Start bit detection • Any received data frame • A specific programmed data frame All USART interfaces can be served by the DMA controller. Table 12. USART/UART/LPUART features USART modes/features(1) USART1 USART2 USART3 UART4 UART5 LPUART1 Hardware flow control for modem X X X X X X Continuous communication using DMA X X X X X X Multiprocessor communication X X X X X X Synchronous mode X X X - - - Smartcard mode X X X - - - Single-wire half-duplex communication X X X X X X IrDA SIR ENDEC block X X X X X - LIN mode X X X X X - Dual clock domain X X X X X X Wakeup from Stop 0 / Stop 1 modes X X X X X X Wakeup from Stop 2 mode - - - - - X Receiver timeout interrupt X X X X X - Modbus communication X X X X X - Auto baud rate detection Driver enable X (4 modes) X X LPUART/USART data length X 7, 8 and 9 bits 1. X = supported. 60/312 X - DS12902 Rev 3 X X STM32L4Q5xx 3.39 Functional overview Low-power universal asynchronous receiver transmitter (LPUART) The devices embed one low-power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half-duplex single-wire communication and modem operations (CTS/RTS). It allows multiprocessor communication. The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop mode are programmable and can be: • Start bit detection • Any received data frame • A specific programmed data frame Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates. The LPUART interface can be served by the DMA controller. 3.40 Serial peripheral interface (SPI) Three SPI interfaces allow communication up to slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives eight master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI interfaces support NSS pulse mode, TI mode and hardware CRC calculation. All SPI interfaces can be served by the DMA controller. 3.41 Serial audio interfaces (SAI) The devices embed two SAI. Refer to Table 13: SAI implementation for the features implementation. The SAI bus interface handles communications between the microcontroller and the serial audio protocol. The SAI peripheral supports: • Two independent audio sub-blocks which can be transmitters or receivers with their respective FIFO. • 8-word integrated FIFOs for each audio sub-block. • Synchronous or asynchronous mode between the audio sub-blocks. • Master or slave configuration independent for both audio sub-blocks. • Clock generator for each audio block to target independent audio frequency sampling when both audio sub-blocks are configured in master mode. • Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit. • Peripheral with large configurability and flexibility allowing to target as example the following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF out. DS12902 Rev 3 61/312 65 Functional overview STM32L4Q5xx • Up to 16 slots available with configurable size and with the possibility to select which ones are active in the audio frame. • Number of bits by frame may be configurable. • Frame synchronization active level configurable (offset, bit length, level). • First active bit position in the slot is configurable. • LSB first or MSB first for data transfer. • Mute mode. • Stereo/Mono audio frame capability. • Communication clock strobing edge configurable (SCK). • Error flags with associated interrupts if enabled respectively. • • – Overrun and underrun detection. – Anticipated frame synchronization signal detection in slave mode. – Late frame synchronization signal detection in slave mode. – Codec not ready for the AC’97 mode in reception. Interruption sources when enabled: – Errors. – FIFO requests. DMA interface with two dedicated channels to handle access to the dedicated integrated FIFO of each SAI audio sub-block. Table 13. SAI implementation SAI features(1) SAI1 SAI2 I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 X X Mute mode X X Stereo/Mono audio frame capability. X X 16 slots X X Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit X X X (8 Word) X (8 Word) SPDIF X X PDM X - FIFO size 1. X: supported 3.42 Secure digital input/output and MultiMediaCards Interface (SDMMC) The devices embed two SDMMC host interfaces. Each SDMMC host interface embeds a dedicated DMA controller allowing high-speed transfers between the interface and the other AHB slaves. The SD/SDIO, MultiMediaCard (MMC) host interface (SDMMC) provides an interface between the AHB bus and SD memory cards, SDIO cards and MMC devices. 62/312 DS12902 Rev 3 STM32L4Q5xx Functional overview The SDMMC features include the following: 3.43 • Full compliance with MultiMediaCard System Specification Version 4.51. Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit • Full compatibility with previous versions of MultiMediaCards (backward compatibility) • Full compliance with SD Memory Card Specifications Version 4.1. (SDR104 SDMMC_CK speed limited to maximum allowed IO speed, SPI mode and UHS-II mode not supported) • Full compliance with SDIO Card Specification Version 4.0: card support for two different databus modes: 1-bit (default) and 4-bit. (SDR104 SDMMC_CK speed limited to maximum allowed IO speed, SPI mode and UHS-II mode not supported) • Data transfer up to 104 Mbyte/s for the 8-bit mode (depending maximum allowed IO speed) • Data and command output enable signals to control external bidirectional drivers. Controller area network (CAN) The CAN is compliant with the 2.0A and B (active) specifications with a bit rate of up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. The CAN has three transmit mailboxes, two receive FIFOS with three stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated. The CAN peripheral supports: • CAN protocol version 2.0 A, B Active • Bit rates of up to 1 Mbit/s • Transmission • • • – Three transmit mailboxes – Configurable transmit priority Reception – Two receive FIFOs with three stages – Scalable filter banks: 28 filter banks – Identifier list feature – Configurable FIFO overrun Time-triggered communication option – Disable automatic retransmission mode – 16-bit free running timer – Time Stamp sent in last two data bytes Management – Maskable interrupts – Software-efficient mailbox mapping at a unique address space DS12902 Rev 3 63/312 65 Functional overview 3.44 STM32L4Q5xx Universal serial bus on-the-go full-speed (OTG_FS) The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that can be provided by the internal multispeed oscillator (MSI) automatically trimmed by 32.768 kHz external oscillator (LSE).This allows to use the USB device without external high speed crystal (HSE). The major features are: • Combined Rx and Tx FIFO size of 1.25 Kbytes with dynamic FIFO sizing • Supports the session request protocol (SRP) and host negotiation protocol (HNP) • One bidirectional control endpoint + 5 IN endpoints + 5 OUT endpoints • Eight host channels with periodic OUT support • HNP/SNP/IP inside (no need for any external resistor) • Software configurable to OTG 1.3 and OTG 2.0 modes of operation • OTG 2.0 Supports ADP (Attach detection Protocol) • USB 2.0 LPM (Link Power Management) support • Battery charging specification revision 1.2 support • Internal FS OTG PHY support For OTG/Host modes, a power switch is needed in case bus-powered devices are connected. The synchronization for this oscillator can also be taken from the USB data stream itself (SOF signalization) which allows crystal less operation. 3.45 Development support 3.45.1 Serial wire JTAG debug port (SWJ-DP) The Arm® SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. Debug is performed using two pins only instead of five required by the JTAG (JTAG pins could be re-used as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 64/312 DS12902 Rev 3 STM32L4Q5xx 3.45.2 Functional overview Embedded Trace Macrocell™ The Arm® Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the devices through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. Real-time instruction and data flow activity being recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors. The Embedded Trace Macrocell operates with third party debugger software tools. DS12902 Rev 3 65/312 65 Pinouts and pin description 4 STM32L4Q5xx Pinouts and pin description VDD VSS PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 48 47 46 45 44 43 42 41 40 39 38 37 Figure 8. STM32L4Q5Cxxx LQFP48 pinout(1) VBAT 1 36 VDDUSB PC13 2 35 VSS PC14-OSC32_IN 3 34 PA13 PC15-OSC32_OUT 4 33 PA12 PH0-OSC_IN 5 32 PA11 PH1-OSC_OUT 6 31 PA10 NRST 7 30 PA9 VSSA/VREF- 8 29 PA8 VDDA/VREF+ 9 28 PB15 PA0 10 27 PB14 PA1 11 26 PB13 PA2 12 25 PB12 13 14 15 16 17 18 19 20 21 22 23 24 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 PB11 VSS VDD LQFP48 MSv62912V1 1. The above figure shows the package top view. VDD VSS VDD12 PB9 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 48 47 46 45 44 43 42 41 40 39 38 37 Figure 9. STM32L4Q5CxxxP external SMPS LQFP48 pinout(1) VBAT 1 36 VDDUSB PC13 2 35 VSS PC14-OSC32_IN 3 34 PA13 PC15-OSC32_OUT 4 33 PA12 PH0-OSC_IN 5 32 PA11 PH1-OSC_OUT 6 31 PA10 NRST 7 30 PA9 VSSA/VREF- 8 29 PA8 VDDA/VREF+ 9 28 PB15 PA0 10 27 PB14 PA1 11 26 PB13 PA2 12 25 PB12 13 14 15 16 17 18 19 20 21 22 23 24 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 VDD12 VSS VDD LQFP48 1. The above figure shows the package top view. 66/312 DS12902 Rev 3 MSv62913V1 STM32L4Q5xx Pinouts and pin description VDD VSS PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 48 47 46 45 44 43 42 41 40 39 38 37 Figure 10. STM32L4Q5Cxxx UFQFPN48 pinout(1) VBAT 1 36 VDDUSB PC13 2 35 VSS PC14-OSC32_IN 3 34 PA13 PC15-OSC32_OUT 4 33 PA12 PH0-OSC_IN 5 32 PA11 PH1-OSC_OUT 6 31 PA10 NRST 7 30 PA9 VSSA/VREF- 8 29 PA8 VDDA/VREF+ 9 28 PB15 PA0 10 27 PB14 PA1 11 26 PB13 PA2 12 25 PB12 13 14 15 16 17 18 19 20 21 22 23 24 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 PB11 VSS VDD UFQFPN48 MSv62914V1 1. The above figure shows the package top view. VDD VSS VDD12 PB9 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 48 47 46 45 44 43 42 41 40 39 38 37 Figure 11. STM32L4Q5CxxxPexternal SMPS UFQFPN48 pinout(1) VBAT 1 36 VDDUSB PC13 2 35 VSS PC14-OSC32_IN 3 34 PA13 PC15-OSC32_OUT 4 33 PA12 PH0-OSC_IN 5 32 PA11 PH1-OSC_OUT 6 31 PA10 NRST 7 30 PA9 VSSA/VREF- 8 29 PA8 VDDA/VREF+ 9 28 PB15 PA0 10 27 PB14 PA1 11 26 PB13 PA2 12 25 PB12 13 14 15 16 17 18 19 20 21 22 23 24 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 VDD12 VSS VDD UFQFPN48 MSv62915V1 1. The above figure shows the package top view. DS12902 Rev 3 67/312 75 Pinouts and pin description STM32L4Q5xx VDD VSS PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 Figure 12. STM32L4Q5Rxxx LQFP64 pinout(1) VBAT 1 48 VDDUSB PC13 2 47 VSS PC14-OSC32_IN 3 46 PA13 PC15-OSC32_OUT 4 45 PA12 PH0-OSC_IN 5 44 PA11 PH1-OSC_OUT 6 43 PA10 NRST 7 42 PA9 PC0 8 41 PA8 PC1 9 40 PC9 PC2 10 39 PC8 PC3 11 38 PC7 VSSA/VREF- 12 37 PC6 VDDA/VREF+ 13 36 PB15 PA0 14 35 PB14 PA1 15 34 PB13 PA2 16 33 PB12 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PB10 PB11 VSS VDD LQFP64 MSv62910V1 1. The above figure shows the package top view. VDD VSS VDD12 PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PC12 PC11 PC10 PA15 PA14 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 Figure 13. STM32L4Q5RxxxP external SMPS LQFP64 pinout(1) VBAT 1 48 VDDUSB PC13 2 47 VSS PC14-OSC32_IN 3 46 PA13 PC15-OSC32_OUT 4 45 PA12 PH0-OSC_IN 5 44 PA11 PH1-OSC_OUT 6 43 PA10 NRST 7 42 PA9 PC0 8 41 PA8 PC1 9 40 PC9 PC2 10 39 PC8 PC3 11 38 PC7 VSSA/VREF- 12 37 PC6 VDDA/VREF+ 13 36 PB15 PA0 14 35 PB14 PA1 15 34 PB13 PA2 16 33 PB12 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PB0 PB1 PB2 PB10 PB11 VDD12 VSS VDD LQFP64 1. The above figure shows the package top view. 68/312 DS12902 Rev 3 MSv62911V1 STM32L4Q5xx Pinouts and pin description VDD VSS PE1 PE0 PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 Figure 14. STM32L4Q5Vxxx LQFP100 pinout(1) PE2 1 75 VDD PE3 2 74 VSS PE4 3 73 VDDUSB PE5 4 72 PA13 PE6 5 71 PA12 VBAT 6 70 PA11 PC13 7 69 PA10 PC14-OSC32_IN 8 68 PA9 PC15-OSC32_OUT 9 67 PA8 VSS 10 66 PC9 VDD 11 65 PC8 PH0-OSC_IN 12 64 PC7 PH1-OSC_OUT 13 63 PC6 NRST 14 62 PD15 PC0 15 61 PD14 PC1 16 60 PD13 PC2 17 59 PD12 PC3 18 58 PD11 VSSA 19 57 PD10 VREF- 20 56 PD9 VREF+ 21 55 PD8 VDDA 22 54 PB15 PA0 23 53 PB14 PA1 24 52 PB13 PA2 25 51 PB12 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS VDD LQFP100 MSv62908V1 1. The above figure shows the package top view. DS12902 Rev 3 69/312 75 Pinouts and pin description STM32L4Q5xx VDD VSS VDD12 PE0 PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 Figure 15. STM32L4Q5VxxxP external SMPS LQFP100 pinout(1) PE2 1 75 VDD PE3 2 74 VSS PE4 3 73 VDDUSB PE5 4 72 PA13 PE6 5 71 PA12 VBAT 6 70 PA11 PC13 7 69 PA10 PC14-OSC32_IN 8 68 PA9 PC15-OSC32_OUT 9 67 PA8 VSS 10 66 PC9 VDD 11 65 PC8 PH0-OSC_IN 12 64 PC7 PH1-OSC_OUT 13 63 PC6 NRST 14 62 PD15 PC0 15 61 PD14 PC1 16 60 PD13 PC2 17 59 PD12 PC3 18 58 PD11 VSSA 19 57 PD10 VREF- 20 56 PD9 VREF+ 21 55 PD8 VDDA 22 54 PB15 PA0 23 53 PB14 PA1 24 52 PB13 PA2 25 51 PB12 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 VDD12 VSS VDD LQFP100 1. The above figure shows the package top view. Figure 16. STM32L4Q5Vxxx WLCSP100 ballout(1) 1 2 3 4 5 6 7 8 9 10 A VDDUSB PA15 PD1 VDD PG10 VDDIO2 PB6 PB9 VSS VDD B VSS PA14 PD0 PD4 PG9 PG12 PB5 PB8 PE2 PE3 C PA12 PA13 PC11 PC12 PD7 PB3 PB4 PE4 PC13 VBAT D PA11 PA10 PA9 PC10 PD6 PG11 PB7 PE5 VSS PC14OSC32_IN E PC8 PC9 PA8 PD2 PD5 PH3-BOOT0 PE6 NRST VDD PC15OSC32_OUT F VDD PC6 PC7 PD15 PB2 PA4 PC3 PC1 PC0 PH0-OSC_IN G PD10 PD9 PD14 PE13 PE12 PA5 VREF+ VREF- PA0 PH1OSC_OUT H PB15 PB14 PD8 PE15 PE10 PC4 PA2 PA1 VSSA PC2 J PB12 PB13 PB11 PE14 PE9 PB0 PA7 VDD PA3 VDDA K VDD VSS PB10 PE11 PE8 PE7 PB1 PC5 PA6 VSS MSv62906V1 1. The above figure shows the package top view. 70/312 DS12902 Rev 3 STM32L4Q5xx Pinouts and pin description Figure 17. STM32L4Q5VxxxP external SMPS WLCSP100 ballout(1) 1 2 3 4 5 6 7 8 9 10 A VDDUSB PA15 PD1 VDD PG10 VDDIO2 PB6 PB9 VDD12 VDD B VSS PA14 PD0 PD5 PD6 PG12 PB7 PB8 VSS PE3 C PA12 PA13 PC10 PC12 PD4 PD7 PB5 PE2 PC13 VBAT D PA11 PA10 PA9 PC11 PD2 PG9 PH3-BOOT0 PE6 PC15OSC32_OUT PC14OSC32_IN E PC8 PC9 PA8 PC7 PG11 PB4 PE4 PE5 VDD VSS PH0-OSC_IN F VDD PD15 PD14 PC6 PB3 PC3 PC1 NRST PH1OSC_OUT G PD10 PD9 PD8 PE14 PE13 PA7 PA1 PA0 PC2 PC0 H PB14 PB13 PB15 PE15 PE10 PB0 PA4 PA2 VSSA/VREF- VREF+ J PB12 VDD PB11 PE12 PE9 PB2 PA5 VDD PA3 VDDA K VDD12 VSS PB10 PE11 PE8 PE7 PB1 PC4 PA6 VSS MSv62907V1 1. The above figure shows the package top view. Figure 18. STM32L4Q5Qxxx UFBGA132 ballout(1) 1 2 3 4 5 6 7 8 9 10 11 12 A PE3 PE1 PB8 PH3-BOOT0 PD7 PD5 PB4 PB3 PA15 PA14 PA13 PA12 B PE4 PE2 PB9 PB7 PB6 PD6 PD4 PD3 PD1 PC12 PC10 PA11 C PC13 PE5 PE0 VDD PB5 PG14 PG13 PD2 PD0 PC11 VDDUSB PA10 D PC14OSC32_IN PE6 VSS PF2 PF1 PF0 PG12 PG10 PG9 PA9 PA8 PC9 E PC15OSC32_OUT VBAT VSS PF3 PG5 PC8 PC7 PC6 F PH0-OSC_IN VSS PF4 PF5 VSS VSS PG3 PG4 VSS VSS G PH1OSC_OUT VDD PG11 PG6 VDD VDDIO2 PG1 PG2 VDD VDD H PC0 NRST VDD PG7 PG0 PD15 PD14 PD13 J VSSA/VREF- PC1 PC2 PA4 PA7 PG8 PF12 PF14 PF15 PD12 PD11 PD10 K PG15 PC3 PA2 PA5 PC4 PF11 PF13 PD9 PD8 PB15 PB14 PB13 L VREF+ PA0 PA3 PA6 PC5 PB2 PE8 PE10 PE12 PB10 PB11 PB12 PA1 OPAMP1_VI NM OPAMP2_VI NM PB0 PB1 PE7 PE9 PE11 PE13 PE14 PE15 M VDDA MSv62904V1 1. The above figure shows the package top view. DS12902 Rev 3 71/312 75 Pinouts and pin description STM32L4Q5xx Figure 19. STM32L4Q5QxxxP external SMPS UFBGA132 ballout(1) 1 2 3 4 5 6 7 8 9 10 11 12 A PE3 PE1 PB8 PH3-BOOT0 PD7 PD5 PB4 PB3 PA15 PA14 PA13 PA12 B PE4 PE2 PB9 PB7 PB6 PD6 PD4 PD3 PD1 PC12 PC10 PA11 C PC13 PE5 PE0 VDD PB5 VDD12 PG13 PD2 PD0 PC11 VDDUSB PA10 D PC14OSC32_IN PE6 VSS PF2 PF1 PF0 PG12 PG10 PG9 PA9 PA8 PC9 E PC15OSC32_OUT VBAT VSS PF3 PG5 PC8 PC7 PC6 F PH0-OSC_IN VSS PF4 PF5 VSS VSS PG3 PG4 VSS VSS G PH1OSC_OUT VDD PG11 PG6 VDD VDDIO2 PG1 PG2 VDD VDD H PC0 NRST VDD PG7 PG0 PD15 PD14 PD13 J VSSA/VREF- PC1 PC2 PA4 PA7 PG8 PF12 PF14 PF15 PD12 PD11 PD10 K PG15 PC3 PA2 PA5 PC4 PF11 PF13 PD9 PD8 PB15 PB14 PB13 L VREF+ PA0 PA3 PA6 PC5 PB2 PE8 PE10 PE12 PB10 VDD12 PB12 M VDDA PA1 OPAMP1_VI NM OPAMP2_VI NM PB0 PB1 PE7 PE9 PE11 PE13 PE14 PE15 MSv62905V1 1. The above figure shows the package top view. 72/312 DS12902 Rev 3 STM32L4Q5xx Pinouts and pin description 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 VDD VSS PE1 PE0 PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 VDDIO2 VSS PG14 PG13 PG12 PG11 PG10 PG9 PD7 PD6 VDD VSS PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 Figure 20. STM32L4Q5Zxxx LQFP144 pinout(1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 LQFP144 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 VDD VSS VDDUSB PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 VDDIO2 VSS PG8 PG7 PG6 PG5 PG4 PG3 PG2 PD15 PD14 VDD VSS PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PF11 PF12 VSS VDD PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 VSS VDD PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS VDD 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 PE2 PE3 PE4 PE5 PE6 VBAT PC13 PC14-OSC32_IN PC15-OSC32_OUT PF0 PF1 PF2 PF3 PF4 PF5 VSS VDD PF6 PF7 PF8 PF9 PF10 PH0-OSC_IN PH1-OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VREFVREF+ VDDA PA0 PA1 PA2 MSv62902V1 1. The above figure shows the package top view. DS12902 Rev 3 73/312 75 Pinouts and pin description STM32L4Q5xx 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 VDD VSS VDD12 PE1 PE0 PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 VDDIO2 VSS PG14 PG13 PG12 PG11 PG10 PG9 PD7 PD6 VDD VSS PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 Figure 21. STM32L4Q5ZxxxP external SMPS LQFP144 pinout(1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 LQFP144 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 VDD VSS VDDUSB PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 VDDIO2 VSS PG8 PG7 PG6 PG5 PG4 PG3 PG2 PD15 PD14 VDD VSS PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PF11 PF12 VSS VDD PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 VSS VDD PE10 PE11 PE12 PE13 PE14 PE15 PB10 VDD12 VSS VDD 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 PE2 PE3 PE4 PE5 PE6 VBAT PC13 PC14-OSC32_IN PC15-OSC32_OUT PF0 PF1 PF2 PF3 PF4 PF5 VSS VDD PF6 PF7 PF8 PF9 PF10 PH0-OSC_IN PH1-OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VREFVREF+ VDDA PA0 PA1 PA2 1. The above figure shows the package top view. 74/312 DS12902 Rev 3 MSv62903V1 STM32L4Q5xx Pinouts and pin description Figure 22. STM32L4Q5Axxx UFBGA169 ballout(1) 1 2 3 4 5 6 7 8 9 10 11 12 13 A PI10 PH2 VDD PE0 PB4 PB3 VSS VDD PA15 PA14 PA13 PI0 PH14 B PI9 PI7 VSS PE1 PB5 VDDIO2 PG9 PD0 PI6 PI2 PI1 PH15 PH12 C VDD VSS PI11 PB8 PB6 PG15 PD4 PD1 PH13 PI3 PI8 VSS VDD D PE4 PE3 PE2 PB9 PB7 PG10 PD5 PD2 PC10 PI4 PH9 PH7 PA12 E PC13 VBAT PE6 PE5 PH3-BOOT0 PG11 PD6 PD3 PC11 PI5 PH6 VDDUSB PA11 F PC14OSC32_IN VSS PF2 PF1 PF0 PG12 PD7 PC12 PA10 PA9 PC6 VDDIO2 VSS G PC15OSC32_OUT VDD PF3 PF4 PF5 PG14 PG13 PA8 PC9 PC8 PG6 PC7 VDD H PH0-OSC_IN VSS NRST PF10 PC4 PG1 PE10 PB11 PG8 PG7 PD15 VSS VDD J PH1OSC_OUT PC0 PC1 PC2 PC5 PG0 PE9 PE15 PG5 PG4 PG3 PG2 PD10 K PC3 VSSA/VREF- PA0 PA5 PB0 PF15 PE8 PE14 PH4 PD14 PD12 PD11 PD13 L VREF+ VDDA PA4 PA7 PB1 PF14 PE7 PE13 PH5 PD9 PD8 VDD VSS M OPAMP1_VI NM PA3 VSS PA6 PF11 PF13 VSS PE12 PH10 PH11 VSS PB15 PB14 VDD OPAMP2_VI NM PB2 PF12 VDD PE11 PB10 PH8 VDD PB12 N PA2 PA1 PB13 MSv62900V1 1. The above figure shows the package top view. Figure 23. STM32L4Q5AxxxP UFBGA169 external SMPS ballout(1) 1 2 3 4 5 6 7 8 9 10 11 12 13 A PI10 PH2 VDD PE0 PB4 PB3 VSS VDD PA15 PA14 PA13 PI0 PH14 B PI9 PI7 VSS PE1 PB5 VDDIO2 PG9 PD0 PI6 PI2 PI1 PH15 PH12 C VDD VSS PI11 PB8 PB6 VDD12 PD4 PD1 PH13 PI3 PI8 VSS VDD D PE4 PE3 PE2 PB9 PB7 PG10 PD5 PD2 PC10 PI4 PH9 PH7 PA12 E PC13 VBAT PE6 PE5 PH3-BOOT0 PG11 PD6 PD3 PC11 PI5 PH6 VDDUSB PA11 F PC14OSC32_IN VSS PF2 PF1 PF0 PG12 PD7 PC12 PA10 PA9 PC6 VDDIO2 VSS G PC15OSC32_OUT VDD PF3 PF4 PF5 PG14 PG13 PA8 PC9 PC8 PG6 PC7 VDD H PH0-OSC_IN VSS NRST PF10 PC4 PG1 PE10 PB11 PG8 PG7 PD15 VSS VDD J PH1OSC_OUT PC0 PC1 PC2 PC5 PG0 PE9 PE15 PG5 PG4 PG3 PG2 PD10 K PC3 VSSA/VREF- PA0 PA5 PB0 PF15 PE8 PE14 PH4 PD14 PD12 PD11 PD13 L VREF+ VDDA PA4 PA7 PB1 PF14 PE7 PE13 PH5 PD9 PD8 VDD VSS M OPAMP1_VI NM PA3 VSS PA6 PF11 PF13 VSS PE12 PH10 VDD12 VSS PB15 PB14 VDD OPAMP2_VI NM PB2 PF12 VDD PE11 PB10 PH8 VDD PB12 N PA2 PA1 PB13 MSv62901V1 1. The above figure shows the package top view. DS12902 Rev 3 75/312 75 STM32L4Q5xx Table 14. Legend/abbreviations used in the pinout table Name Pin name Abbreviation Definition Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O TT 3.6 V tolerant I/O B Dedicated BOOT0 pin RST Bidirectional reset pin with embedded weak pull-up resistor Pin type I/O structure Option for TT or FT I/Os _f (1) I/O, Fm+ capable _u (2) I/O, with USB function supplied by VDDUSB _a (3) (4) _s Notes I/O supplied only by VDDIO2 Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset. Alternate functions Pin functions Additional functions I/O, with Analog switch function supplied by VDDA (5) Functions selected through GPIOx_AFR registers Functions directly selected/enabled through peripheral registers 1. The related I/O structures are: FT_f, FT_fa, FT_fl, FT_fla. 2. The related I/O structures are: FT_u, FT_lu. 3. The related I/O structures are: FT_a, FT_la, FT_fa, FT_fla, TT_a, TT_la. 4. The analog switch for the TSC function is supplied by VDD. 5. The related I/O structures are: FT_s, FT_fs. 76/312 DS12902 Rev 3 STM32L4Q5xx Table 15. STM32L4Q5xx pin definitions LQFP48 LQFP64 + Ext SMPS LQFP64 WLCSP100 + Ext SMPS WLCSP100 LQFP100 + Ext SMPS LQFP100 UFBGA132 + Ext SMPS UFBGA132 LQFP144 + Ext SMPS LQFP144 Pin type I/O structure Notes - - - - - - - - - - D3 D3 - - M11 M11 VSS S - - - - - - - - - - - - - - C4 C4 - - C1 C1 VDD S - - - - - - - - - - - - - - - - - - C3 C3 PI11 I/O FT - OCTOSPIM_P2_IO0, PSSI_D15, EVENTOUT - - TRACECK, TIM3_ETR, SAI1_CK1, TSC_G7_IO1, LCD_R7, FMC_A23, SAI1_MCLK_A, EVENTOUT - - TRACED0, TIM3_CH1, OCTOSPIM_P1_DQS , TSC_G7_IO2, LCD_R6, FMC_A19, SAI1_SD_B, EVENTOUT - - - - - - - - - - - - - C8 B9 B10 B10 1 2 1 2 B2 A1 B2 A1 1 2 1 2 D3 D2 UFBGA169 LQFP48 + Ext SMPS Alternate functions UFBGA169 + ext SMPS UFQFPN48 DS12902 Rev 3 UFQFPN48 + Ext SMPS Pin Number D3 D2 Pin name (function after reset) PE2 PE3 I/O I/O FT _l FT _l Additional functions 77/312 78/312 Table 15. STM32L4Q5xx pin definitions (continued) - - - - E7 C8 3 3 B1 B1 3 3 D1 D1 PE4 I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS - Pin name (function after reset) FT Alternate functions Additional functions - TRACED1, TIM3_CH2, SAI1_D2, DFSDM1_DATIN3, TSC_G7_IO3, DCMI_D4/PSSI_D4, LCD_B7, FMC_A20, SAI1_FS_A, EVENTOUT - - TRACED2, TIM3_CH3, SAI1_CK2, DFSDM1_CKIN3, TSC_G7_IO4, DCMI_D6/PSSI_D6, LCD_G7, FMC_A21, SAI1_SCK_A, EVENTOUT - RTC_TAMP3,WKU P3 DS12902 Rev 3 Notes - UFQFPN48 UFQFPN48 + Ext SMPS Pin Number - - - - - - E8 D8 4 4 C2 C2 4 4 E4 E4 PE5 I/O FT 5 D2 D2 5 5 E3 E3 PE6 I/O FT - C10 C10 6 6 E2 E2 6 6 E2 E2 VBAT S - - - - C9 7 7 C1 C1 7 7 E1 E1 PC13 I/O EVENTOUT RTC_TAMP1/RTC _TS/RTC_OUT,WK UP2 - - - - - - D8 1 1 1 1 1 1 2 2 2 2 2 2 E7 C9 (1) FT (2) STM32L4Q5xx 5 TRACED3, TIM3_CH4, SAI1_D1, DCMI_D7/PSSI_D7, LCD_G6, FMC_A22, SAI1_SD_A, EVENTOUT - - - - 4 - - 4 - - 4 - - 4 - - D9 - - E10 - - LQFP144 UFBGA169 + ext SMPS UFBGA169 8 D1 D1 8 8 F1 F1 9 - - 9 - - E1 D6 D5 E1 D6 D5 9 10 11 9 10 11 G1 F5 F4 PC14OSC32_I N (PC14) I/O FT (2) G1 PC15OSC32_O I/O UT (PC15) FT (2) F5 F4 PF0 PF1 Notes I/O structure 4 8 Pin name (function after reset) Pin type DS12902 Rev 3 4 D10 D10 LQFP144 + Ext SMPS 3 UFBGA132 LQFP64 3 UFBGA132 + Ext SMPS LQFP64 + Ext SMPS 3 LQFP100 LQFP48 3 LQFP100 + Ext SMPS LQFP48 + Ext SMPS 3 WLCSP100 UFQFPN48 3 WLCSP100 + Ext SMPS UFQFPN48 + Ext SMPS Pin Number Alternate functions Additional functions EVENTOUT OSC32_IN EVENTOUT OSC32_OUT - I2C2_SDA, OCTOSPIM_P2_IO0, FMC_A0, EVENTOUT - - I2C2_SCL, OCTOSPIM_P2_IO1, FMC_A1, EVENTOUT - - (1) (1) I/O FT _f I/O FT _f 79/312 - - - - - - - - - - D4 D4 12 12 F3 F3 PF2 I/O FT - I2C2_SMBA, OCTOSPIM_P2_IO2, FMC_A2, EVENTOUT - - - - - - - - - - E4 E4 13 13 G3 G3 PF3 I/O FT - OCTOSPIM_P2_IO3, FMC_A3, EVENTOUT - - - - - - - - - - - F3 F3 14 14 G4 G4 PF4 I/O FT - OCTOSPIM_P2_CLK , FMC_A4, EVENTOUT - STM32L4Q5xx Table 15. STM32L4Q5xx pin definitions (continued) 80/312 Table 15. STM32L4Q5xx pin definitions (continued) LQFP48 + Ext SMPS LQFP48 LQFP64 + Ext SMPS LQFP64 WLCSP100 + Ext SMPS WLCSP100 LQFP100 + Ext SMPS LQFP100 UFBGA132 + Ext SMPS UFBGA132 LQFP144 + Ext SMPS LQFP144 UFBGA169 + ext SMPS UFBGA169 Pin type I/O structure Notes Alternate functions - - - - - - - - - - F4 F4 15 15 G5 G5 PF5 I/O FT - OCTOSPIM_P2_NCL K, FMC_A5, EVENTOUT - - - - - - - E10 D9 10 10 F2 F2 16 16 F2 F2 VSS S - - - - - - - - - - E9 E9 11 11 G2 G2 17 17 G2 G2 VDD S - - - - - TIM5_ETR, TIM5_CH1, OCTOSPIM_P1_IO3, SAI1_SD_B, EVENTOUT - - TIM5_CH2, OCTOSPIM_P1_IO2, SAI1_MCLK_B, EVENTOUT - - TIM5_CH3, OCTOSPIM_P1_IO0, SAI1_SCK_B, EVENTOUT - - TIM5_CH4, OCTOSPIM_P1_IO1, SAI1_FS_B, TIM15_CH1, EVENTOUT - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 18 19 20 21 18 19 20 21 - - - - - - - - Pin name (function after reset) PF6 PF7 PF8 PF9 I/O I/O I/O I/O FT FT FT FT Additional functions STM32L4Q5xx UFQFPN48 DS12902 Rev 3 UFQFPN48 + Ext SMPS Pin Number I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 + Ext SMPS UFBGA132 H4 H4 PF10 I/O FT - F10 F10 12 12 F1 F1 23 23 H1 H1 PH0OSC_IN (PH0) I/O FT - EVENTOUT OSC_IN 6 F9 G10 13 13 G1 G1 24 24 J1 J1 PH1OSC_OU T (PH1) I/O FT - EVENTOUT OSC_OUT 7 F8 E8 14 14 H2 H2 25 25 H3 H3 NRST I-O RS T - - - - LPTIM1_IN1, I2C3_SCL, SDMMC2_CKIN, LPUART1_RX, LCD_DE, SDMMC1_CMD, SAI2_FS_A, LPTIM2_IN1, EVENTOUT ADC12_IN1 5 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 8 - G10 - F9 15 15 H1 H1 26 LQFP144 22 - 8 UFBGA132 + Ext SMPS 22 - LQFP100 - - - LQFP100 + Ext SMPS - - - WLCSP100 - - - WLCSP100 + Ext SMPS Notes DS12902 Rev 3 - OCTOSPIM_P1_CLK , PSSI_D15, DFSDM1_CKOUT, DCMI_D11/PSSI_D11 , SAI1_D3, TIM15_CH2, EVENTOUT - - Pin name (function after reset) Alternate functions LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS UFQFPN48 UFQFPN48 + Ext SMPS Pin Number 26 J2 J2 PC0 I/O FT _fl a Additional functions - STM32L4Q5xx Table 15. STM32L4Q5xx pin definitions (continued) 81/312 82/312 Table 15. STM32L4Q5xx pin definitions (continued) DS12902 Rev 3 - - - - - - 9 10 9 10 F7 G9 F8 H10 16 17 16 17 J2 J3 J2 J3 27 28 27 28 J3 J4 J3 J4 PC1 PC2 I/O I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS - Pin name (function after reset) FT _fl a FT _la Notes - UFQFPN48 UFQFPN48 + Ext SMPS Pin Number Alternate functions Additional functions - TRACED0, LPTIM1_OUT, SPI2_MOSI, I2C3_SDA, LPUART1_TX, OCTOSPIM_P1_IO4, SAI1_SD_A, EVENTOUT ADC12_IN2 - LPTIM1_IN2, SPI2_MISO, DFSDM1_CKOUT, OCTOSPIM_P1_IO5, LCD_HSYNC, EVENTOUT ADC12_IN3 ADC12_IN4 - - - 11 11 F6 F7 18 18 K2 K2 29 29 K1 K1 PC3 I/O FT _a - - - - - - - - H9 19 19 - - 30 30 - - VSSA S - - - - - - - - - - - G8 20 20 - - 31 31 - - VREF- S - - - - 8 8 8 8 12 12 H9 - - - J1 J1 - - K2 K2 VSSA/VR EF- S - - - - - - - - - - H10 G7 21 21 L1 L1 32 32 L1 L1 VREF+ S - - - VREFBUF_OUT STM32L4Q5xx - LPTIM1_ETR, SAI1_D1, SPI2_MOSI, OCTOSPIM_P1_IO6, SAI1_SD_A, LPTIM2_ETR, EVENTOUT UFQFPN48 LQFP48 + Ext SMPS LQFP48 LQFP64 + Ext SMPS LQFP64 WLCSP100 + Ext SMPS WLCSP100 LQFP100 + Ext SMPS LQFP100 UFBGA132 + Ext SMPS UFBGA132 LQFP144 + Ext SMPS LQFP144 UFBGA169 + ext SMPS UFBGA169 Pin type I/O structure Notes DS12902 Rev 3 UFQFPN48 + Ext SMPS Pin Number Alternate functions - - - - - - J10 J10 22 22 M1 M1 33 33 L2 L2 VDDA S - - - - 9 9 9 9 13 13 - - - - - - - - - - VDDA/VR EF+ S - - - - - TIM2_CH1, TIM5_CH1, TIM8_ETR, USART2_CTS_NSS, UART4_TX, SAI1_EXTCLK, TIM2_ETR, EVENTOUT OPAMP1_VINP, ADC12_IN5, RTC_TAMP2,WKU P1 - - - - TIM2_CH2, TIM5_CH2, I2C1_SMBA, SPI1_SCK, USART2_RTS_DE, UART4_RX, OCTOSPIM_P1_DQS , SDMMC2_CMD, TIM15_CH1N, EVENTOUT OPAMP1_VINM, ADC12_IN6 Pin name (function after reset) 10 10 10 10 14 14 G8 G9 23 23 L2 L2 34 34 K3 K3 PA0 I/O FT _a - - - - - - - - - - M3 M3 - - M1 M1 OPAMP1 _VINM I TT 11 11 11 11 15 15 G7 H8 24 24 M2 M2 35 35 N2 N2 PA1 I/O FT _la Additional functions STM32L4Q5xx Table 15. STM32L4Q5xx pin definitions (continued) 83/312 84/312 Table 15. STM32L4Q5xx pin definitions (continued) 12 12 16 16 H8 H7 25 25 K3 K3 36 36 N1 N1 PA2 I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS 12 Pin name (function after reset) FT _la Alternate functions Additional functions - TIM2_CH3, TIM5_CH3, USART2_TX, LPUART1_TX, OCTOSPIM_P1_NCS , SAI2_EXTCLK, TIM15_CH1, EVENTOUT ADC12_IN7, WKUP4/LSCO OPAMP1_VOUT, ADC12_IN8 DS12902 Rev 3 Notes 12 UFQFPN48 UFQFPN48 + Ext SMPS Pin Number 13 13 13 13 17 17 - - - - 18 18 - - - - 19 19 J9 J9 K10 K10 J8 J8 26 26 L3 L3 37 37 M2 M2 PA3 I/O TT _a - TIM2_CH4, TIM5_CH4, SAI1_CK1, USART2_RX, LPUART1_RX, OCTOSPIM_P1_CLK , SAI1_MCLK_A, TIM15_CH2, EVENTOUT 27 27 E3 E3 38 38 H2 H2 VSS S - - - - 28 28 H3 H3 39 39 N3 N3 VDD S - - - - STM32L4Q5xx 14 14 20 20 H7 F6 29 29 J4 J4 40 40 L3 L3 PA4 I/O DS12902 Rev 3 15 15 15 15 21 21 J7 G6 30 30 K4 K4 41 41 K4 K4 PA5 I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS 14 Pin name (function after reset) TT _a TT _a 85/312 Notes 14 UFQFPN48 UFQFPN48 + Ext SMPS Pin Number Alternate functions Additional functions - OCTOSPIM_P1_NCS , SPI1_NSS, SPI3_NSS, USART2_CK, DCMI_HSYNC/PSSI_ DE, LCD_CLK, SAI1_FS_B, LPTIM2_OUT, EVENTOUT ADC12_IN9, DAC1_OUT1 - TIM2_CH1, TIM2_ETR, TIM8_CH1N, PSSI_D14, SPI1_SCK, LCD_R7, LPTIM2_ETR, EVENTOUT ADC12_IN10, DAC1_OUT2 OPAMP2_VINP, ADC12_IN11 - 16 16 16 16 22 22 K9 K9 31 31 L4 L4 42 42 M4 M4 PA6 I/O FT _a - TIM1_BKIN, TIM3_CH1, TIM8_BKIN, DCMI_PIXCLK/PSSI_ PDCK, SPI1_MISO, USART3_CTS_NSS, LPUART1_CTS, OCTOSPIM_P1_IO3, TIM16_CH1, EVENTOUT - - - - - - - - - - M4 M4 - - N4 N4 OPAMP2 _VINM I TT - - STM32L4Q5xx Table 15. STM32L4Q5xx pin definitions (continued) 86/312 Table 15. STM32L4Q5xx pin definitions (continued) DS12902 Rev 3 - - 18 17 - - 18 - - 18 17 - - 18 23 24 NC 25 23 24 25 26 G6 K8 - H6 J7 H6 K8 J6 32 33 34 35 32 33 34 35 J5 K5 L5 M5 J5 K5 L5 M5 43 44 45 46 43 44 45 46 L4 H5 J5 K5 L4 H5 J5 K5 PA7 PC4 PC5 PB0 I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS 17 Pin name (function after reset) Notes 17 UFQFPN48 UFQFPN48 + Ext SMPS Pin Number Alternate functions Additional functions - TIM1_CH1N, TIM3_CH2, TIM8_CH1N, I2C3_SCL, SPI1_MOSI, OCTOSPIM_P1_IO2, TIM17_CH1, EVENTOUT OPAMP2_VINM, ADC12_IN12 - OCTOSPIM_P2_NCS , USART3_TX, OCTOSPIM_P1_IO7, EVENTOUT COMP1_INM, ADC12_IN13 FT _fl a I/O FT _a I/O FT (3) _a SAI1_D3, PSSI_D15, USART3_RX, LCD_CLK, EVENTOUT COMP1_INP, ADC12_IN14, WKUP5 TT _la TIM1_CH2N, TIM3_CH3, TIM8_CH2N, SPI1_NSS, USART3_CK, OCTOSPIM_P1_IO1, LCD_B6, COMP1_OUT, SAI1_EXTCLK, EVENTOUT OPAMP2_VOUT, ADC12_IN15 I/O - STM32L4Q5xx I/O 20 19 20 20 19 20 26 27 27 28 K7 J6 K7 F5 36 37 36 37 M6 L6 M6 L6 47 48 47 48 L5 N5 L5 N5 PB1 PB2 I/O I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS 19 Pin name (function after reset) FT _a FT _a Notes DS12902 Rev 3 19 UFQFPN48 UFQFPN48 + Ext SMPS Pin Number Alternate functions Additional functions - TIM1_CH3N, TIM3_CH4, TIM8_CH3N, DFSDM1_DATIN0, USART3_RTS_DE, LPUART1_RTS_DE, OCTOSPIM_P1_IO0, LCD_G6, LPTIM2_IN1, EVENTOUT COMP1_INM, ADC12_IN16 - RTC_OUT2, LPTIM1_OUT, I2C3_SMBA, DFSDM1_CKIN0, OCTOSPIM_P1_DQS , EVENTOUT COMP1_INP - 87/312 - - - - - - - - - - K6 K6 49 49 M5 M5 PF11 I/O FT - OCTOSPIM_P1_NCL K, LCD_DE, DCMI_D12/PSSI_D1 2, EVENTOUT - - - - - - - - - - J7 J7 50 50 N6 N6 PF12 I/O FT - OCTOSPIM_P2_DQS , LCD_B0, FMC_A6, EVENTOUT - - - - - - - - - - - E3 E3 51 51 H2 H2 VSS S - - - - - - - - - - - - - - H3 H3 52 52 N7 N7 VDD S - - - - STM32L4Q5xx Table 15. STM32L4Q5xx pin definitions (continued) 88/312 Table 15. STM32L4Q5xx pin definitions (continued) LQFP48 LQFP64 + Ext SMPS LQFP64 WLCSP100 + Ext SMPS WLCSP100 LQFP100 + Ext SMPS LQFP100 UFBGA132 + Ext SMPS UFBGA132 LQFP144 + Ext SMPS LQFP144 UFBGA169 + ext SMPS UFBGA169 - - - - - - - - K7 K7 53 53 M6 M6 DS12902 Rev 3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - K6 - - - - K6 - - - - 38 - - - - 38 J8 J9 H9 G9 M7 J8 J9 H9 G9 M7 54 55 56 57 58 54 55 56 57 58 L6 K6 J6 H6 L7 L6 K6 J6 H6 L7 Additional functions FT - I2C4_SMBA, LCD_B1, FMC_A7, EVENTOUT - - I2C4_SCL, TSC_G8_IO1, LCD_G0, FMC_A8, EVENTOUT - - I2C4_SDA, TSC_G8_IO2, LCD_G1, FMC_A9, EVENTOUT - - OCTOSPIM_P2_IO4, TSC_G8_IO3, FMC_A10, EVENTOUT - - OCTOSPIM_P2_IO5, TSC_G8_IO4, FMC_A11, EVENTOUT - - TIM1_ETR, DFSDM1_DATIN2, LCD_B6, FMC_D4, SAI1_SD_B, EVENTOUT - PF13 I/O I/O FT _f I/O FT _f PF14 PF15 PG0 PG1 PE7 I/O I/O I/O FT FT FT STM32L4Q5xx - - Notes LQFP48 + Ext SMPS - I/O structure UFQFPN48 - Alternate functions Pin name (function after reset) Pin type UFQFPN48 + Ext SMPS Pin Number - - - - K5 K5 39 39 L7 L7 59 59 K7 K7 PE8 I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS - Pin name (function after reset) FT DS12902 Rev 3 Notes - UFQFPN48 UFQFPN48 + Ext SMPS Pin Number Alternate functions Additional functions - TIM1_CH1N, DFSDM1_CKIN2, LCD_B7, FMC_D5, SAI1_SCK_B, EVENTOUT - - - - - - - - J5 J5 40 40 M8 M8 60 60 J7 J7 PE9 I/O FT - TIM1_CH1, DFSDM1_CKOUT, OCTOSPIM_P1_NCL K, LCD_G2, FMC_D6, SAI1_FS_B, EVENTOUT - - - - - - - - - - F6 F6 61 61 M7 M7 VSS S - - - - - - - - - - - - - - G6 G6 62 62 N7 N7 VDD S - - - - - TIM1_CH2N, TSC_G5_IO1, OCTOSPIM_P1_CLK , LCD_G3, FMC_D7, SAI1_MCLK_B, EVENTOUT - - TIM1_CH2, TSC_G5_IO2, OCTOSPIM_P1_NCS , LCD_G4, FMC_D8, EVENTOUT - - - - - - - - - - - - - H5 K4 H5 K4 41 42 41 42 L8 M9 L8 M9 63 64 63 64 H7 N8 H7 N8 PE10 PE11 I/O I/O FT FT STM32L4Q5xx Table 15. STM32L4Q5xx pin definitions (continued) 89/312 90/312 Table 15. STM32L4Q5xx pin definitions (continued) DS12902 Rev 3 - - - - - - - - - - - - - - - - - - - - - - J4 G5 G4 H4 G5 G4 J4 H4 43 44 45 46 43 44 L9 M1 0 L9 M1 0 45 M11 M11 46 M1 2 M1 2 65 66 67 68 65 66 67 68 M8 L8 K8 J8 M8 L8 K8 J8 PE12 PE13 PE14 PE15 I/O I/O I/O I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS - Pin name (function after reset) FT FT FT FT Alternate functions Additional functions - TIM1_CH3N, SPI1_NSS, TSC_G5_IO3, OCTOSPIM_P1_IO0, LCD_G5, FMC_D9, EVENTOUT - - TIM1_CH3, SPI1_SCK, TSC_G5_IO4, OCTOSPIM_P1_IO1, LCD_G6, FMC_D10, EVENTOUT - - TIM1_CH4, TIM1_BKIN2, SPI1_MISO, OCTOSPIM_P1_IO2, LCD_G7, FMC_D11, EVENTOUT - - TIM1_BKIN, SPI1_MOSI, OCTOSPIM_P1_IO3, LCD_R2, FMC_D12, EVENTOUT - STM32L4Q5xx Notes - UFQFPN48 UFQFPN48 + Ext SMPS Pin Number NC 21 22 NC 21 22 28 29 29 30 K3 J3 K3 J3 47 NC 47 48 L10 L10 NC L11 69 NC 69 70 N9 H8 N9 H8 PB10 PB11 I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS 21 Pin name (function after reset) 91/312 Notes DS12902 Rev 3 21 UFQFPN48 UFQFPN48 + Ext SMPS Pin Number Alternate functions Additional functions I/O FT _fl - TIM2_CH3, I2C4_SCL, I2C2_SCL, SPI2_SCK, OCTOSPIM_P1_IO3, USART3_TX, LPUART1_RX, TSC_SYNC, OCTOSPIM_P1_CLK , COMP1_OUT, SAI1_SCK_A, EVENTOUT - I/O TIM2_CH4, I2C4_SDA, I2C2_SDA, USART3_RX, FT (3) LPUART1_TX, _fl OCTOSPIM_P1_NCS , LCD_VSYNC, COMP2_OUT, EVENTOUT - - I2C2_SCL, OCTOSPIM_P2_DQS , PSSI_D14, EVENTOUT - - I2C2_SDA, DCMI_PIXCLK/PSSI_ PDCK, EVENTOUT - - - - - - - - - - - - - - - K9 K9 PH4 I/O FT _f - - - - - - - - - - - - - - L9 L9 PH5 I/O FT _f STM32L4Q5xx Table 15. STM32L4Q5xx pin definitions (continued) 92/312 Table 15. STM32L4Q5xx pin definitions (continued) - - - - - - - - - - - - - - - - - - - - - - UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 - N10 N10 PH8 PH10 I/O structure - LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS - I/O FT _f I/O Notes DS12902 Rev 3 - - Pin name (function after reset) Pin type - UFQFPN48 UFQFPN48 + Ext SMPS Pin Number Alternate functions Additional functions - I2C3_SDA, OCTOSPIM_P2_IO3, DCMI_HSYNC/PSSI_ DE, EVENTOUT - FT - TIM5_CH1, OCTOSPIM_P2_IO5, DCMI_D1/PSSI_D1, EVENTOUT - TIM5_CH2, OCTOSPIM_P2_IO6, DCMI_D2/PSSI_D2, EVENTOUT - M9 M9 PH11 I/O FT (3) - - - - - - - - - - - - - - NC M1 0 - - - - - - - - - - F6 F6 - - C2 C2 VSS S - - - - - - - - - - - - - - G6 G6 - - L12 L12 VDD S - - - - 22 - 22 - 30 - K1 - 48 - L11 - 70 - M1 0 - VDD12 S - - - - 23 23 23 23 31 31 K2 K2 49 49 F12 F12 71 71 A7 A7 VSS S - - - - 24 24 24 24 32 32 J2 K1 50 50 G12 G12 72 72 N11 N11 VDD S - - - - STM32L4Q5xx 26 25 26 26 25 26 33 34 33 34 J1 H2 J1 J2 51 52 51 52 L12 L12 K12 K12 73 74 73 74 N12 N12 N13 N13 PB12 PB13 I/O I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS 25 Pin name (function after reset) FT FT _fl Notes DS12902 Rev 3 25 UFQFPN48 UFQFPN48 + Ext SMPS Pin Number Alternate functions Additional functions - TIM1_BKIN, I2C2_SMBA, SPI2_NSS, DFSDM1_DATIN1, USART3_CK, LPUART1_RTS_DE, TSC_G1_IO1, OCTOSPIM_P1_NCL K, SDMMC2_CK, SAI2_FS_A, TIM15_BKIN, EVENTOUT - - TIM1_CH1N, I2C2_SCL, SPI2_SCK, DFSDM1_CKIN1, USART3_CTS_NSS, LPUART1_CTS, TSC_G1_IO2, OCTOSPIM_P1_IO1, SAI2_SCK_A, TIM15_CH1N, EVENTOUT - STM32L4Q5xx Table 15. STM32L4Q5xx pin definitions (continued) 93/312 94/312 Table 15. STM32L4Q5xx pin definitions (continued) 28 28 - 28 - 27 28 - 35 36 - 35 36 - H1 H3 G3 H2 H1 H3 53 54 55 53 54 55 K11 K11 K10 K10 K9 K9 75 76 77 75 76 77 M1 3 M1 2 L11 M1 3 M1 2 L11 PB14 PB15 PD8 I/O I/O I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS 27 FT _fl FT FT Alternate functions Additional functions - TIM1_CH2N, TIM8_CH2N, I2C2_SDA, SPI2_MISO, DFSDM1_DATIN2, USART3_RTS_DE, TSC_G1_IO3, OCTOSPIM_P1_IO6, SDMMC2_D0, SAI2_MCLK_A, TIM15_CH1, EVENTOUT - - RTC_REFIN, TIM1_CH3N, TIM8_CH3N, SPI2_MOSI, DFSDM1_CKIN2, TSC_G1_IO4, OCTOSPIM_P1_IO7, SDMMC2_D1, SAI2_SD_A, TIM15_CH2, EVENTOUT - - USART3_TX, DCMI_HSYNC/PSSI_ DE, LCD_R3, FMC_D13, EVENTOUT - STM32L4Q5xx - 27 Pin name (function after reset) Notes DS12902 Rev 3 27 UFQFPN48 UFQFPN48 + Ext SMPS Pin Number - - - - G2 G2 56 56 K8 K8 78 78 DS12902 Rev 3 - - - - - H13 H13 VDD S - - - - - I2C4_SMBA, USART3_CTS_NSS, TSC_G6_IO2, LCD_R6, FMC_A16, SAI2_SD_A, LPTIM2_ETR, EVENTOUT - J12 J12 79 79 - - - - - - - - - - F11 F11 - - - - - - - - - - - H3 H3 - J11 J11 80 I/O structure S 57 58 Pin type VSS 57 58 UFBGA169 L13 L13 G1 - - - G1 - - - - - - FT - - FT I/O - - I/O USART3_RX, DCMI_PIXCLK/PSSI_ PDCK, LCD_R4, FMC_D14, SAI2_MCLK_A, EVENTOUT PD10 - - PD9 Additional functions J13 - - L10 L10 Alternate functions USART3_CK, TSC_G6_IO1, LCD_R5, FMC_D15, SAI2_SCK_A, EVENTOUT - - UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS - Pin name (function after reset) Notes - UFQFPN48 UFQFPN48 + Ext SMPS Pin Number 80 J13 K12 K12 PD11 I/O FT STM32L4Q5xx Table 15. STM32L4Q5xx pin definitions (continued) 95/312 96/312 Table 15. STM32L4Q5xx pin definitions (continued) - - - - - - 59 59 J10 J10 81 81 K11 K11 PD12 I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS - Pin name (function after reset) FT _fl DS12902 Rev 3 Notes - UFQFPN48 UFQFPN48 + Ext SMPS Pin Number Alternate functions Additional functions - TIM4_CH1, I2C4_SCL, USART3_RTS_DE, TSC_G6_IO3, LCD_R7, FMC_A17, SAI2_FS_A, LPTIM2_IN1, EVENTOUT - - 82 82 K13 K13 PD13 I/O FT _fl - - F11 F11 83 83 H12 H12 VSS S - - - - - - H3 H3 84 84 G13 G13 VDD S - - - - G3 61 61 H11 H11 85 85 K10 K10 PD14 I/O FT - TIM4_CH3, LCD_B2, FMC_D0, EVENTOUT - F4 62 62 H10 H10 86 86 H11 H11 PD15 I/O FT - TIM4_CH4, LCD_B3, FMC_D1, EVENTOUT - - - - - - - - - 60 60 - - - - - - - - - - - - - - - F1 F1 - - - - - - F3 - - - - - - F2 STM32L4Q5xx H12 H12 TIM4_CH2, I2C4_SDA, TSC_G6_IO4, FMC_A18, LPTIM2_OUT, EVENTOUT DS12902 Rev 3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G10 G10 F9 F9 F10 F10 E9 G4 E9 G4 87 88 89 90 91 87 88 89 90 91 J12 J11 J10 J9 J12 J11 J10 J9 G11 G11 PG2 PG3 PG4 PG5 PG6 I/O I/O I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS - Pin name (function after reset) FT _s FT _s FT _s I/O FT _s I/O FT _s Notes - UFQFPN48 UFQFPN48 + Ext SMPS Pin Number Alternate functions Additional functions - SPI1_SCK, SDMMC2_D4, FMC_A12, SAI2_SCK_B, EVENTOUT - - SPI1_MISO, SDMMC2_D5, FMC_A13, SAI2_FS_B, EVENTOUT - - SPI1_MOSI, SDMMC2_D6, FMC_A14, SAI2_MCLK_B, EVENTOUT - - SPI1_NSS, LPUART1_CTS, SDMMC2_D7, FMC_A15, SAI2_SD_B, EVENTOUT - - OCTOSPIM_P1_DQS , I2C3_SMBA, LPUART1_RTS_DE, LCD_R1, EVENTOUT - STM32L4Q5xx Table 15. STM32L4Q5xx pin definitions (continued) 97/312 98/312 Table 15. STM32L4Q5xx pin definitions (continued) DS12902 Rev 3 - - - - - - - H4 H4 92 92 H10 H10 PG7 I/O FT _fs - - - - - - - - - - - J6 J6 93 93 H9 H9 PG8 I/O FT _fs - I2C3_SDA, LPUART1_RX, EVENTOUT - - - - - - - - - - - F7 F7 94 94 F13 F13 VSS S - - - - - - - - - - - - - - G7 G7 95 95 F12 F12 VDDIO2 S - - - - - TIM3_CH1, TIM8_CH1, DFSDM1_CKIN3, SDMMC2_D6, SDMMC1_D0DIR, TSC_G4_IO1, DCMI_D0/PSSI_D0, LCD_G7, SDMMC1_D6, SAI2_MCLK_A, EVENTOUT - - - - - 37 37 F4 F2 63 63 E12 E12 96 LQFP144 - LQFP100 - LQFP64 - SAI1_CK1, I2C3_SCL, OCTOSPIM_P2_DQS , DFSDM1_CKOUT, LPUART1_TX, FMC_INT, SAI1_MCLK_A, EVENTOUT LQFP48 Alternate functions 96 F11 F11 PC6 I/O FT Additional functions - STM32L4Q5xx Notes I/O structure Pin name (function after reset) Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 + Ext SMPS LQFP48 + Ext SMPS UFQFPN48 UFQFPN48 + Ext SMPS Pin Number - - - - - - - - - - 38 39 40 38 39 40 E4 E1 E2 F3 E1 E2 64 65 66 64 65 66 E11 E11 E10 E10 D12 D12 97 98 99 97 98 99 G12 G12 G10 G10 G9 G9 PC7 PC8 PC9 I/O I/O I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS - Pin name (function after reset) FT FT FT _fl 99/312 Notes DS12902 Rev 3 - UFQFPN48 UFQFPN48 + Ext SMPS Pin Number Alternate functions Additional functions - TIM3_CH2, TIM8_CH2, DFSDM1_DATIN3, SDMMC2_D7, SDMMC1_D123DIR, TSC_G4_IO2, DCMI_D1/PSSI_D1, LCD_B6, SDMMC1_D7, SAI2_MCLK_B, EVENTOUT - - TIM3_CH3, TIM8_CH3, TSC_G4_IO3, DCMI_D2/PSSI_D2, SDMMC1_D0, EVENTOUT - - TRACED0, TIM8_BKIN2, TIM3_CH4, TIM8_CH4, DCMI_D3/PSSI_D3, I2C3_SDA, TSC_G4_IO4, OTG_FS_NOE, SDMMC1_D1, SAI2_EXTCLK, EVENTOUT - STM32L4Q5xx Table 15. STM32L4Q5xx pin definitions (continued) 100/312 Table 15. STM32L4Q5xx pin definitions (continued) 29 29 41 41 E3 E3 67 67 D11 D11 100 100 G8 G8 PA8 I/O DS12902 Rev 3 30 31 30 31 30 31 30 31 42 43 42 43 D3 D2 D3 D2 68 69 68 69 D10 D10 101 101 F10 F10 C12 C12 102 102 F9 F9 PA9 PA10 I/O I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS 29 Pin name (function after reset) FT _f FT _fl u FT _fl u Alternate functions Additional functions - MCO, TIM1_CH1, SAI1_CK2, USART1_CK, OTG_FS_SOF, LCD_B7, SAI1_SCK_A, LPTIM2_OUT, EVENTOUT - - TIM1_CH2, SPI2_SCK, DCMI_D0/PSSI_D0, USART1_TX, LCD_G7, SAI1_FS_A, TIM15_BKIN, EVENTOUT OTG_FS_VBUS - TIM1_CH3, SAI1_D1, DCMI_D1/PSSI_D1, USART1_RX, OTG_FS_ID, LCD_G6, SAI1_SD_A, TIM17_BKIN, EVENTOUT - STM32L4Q5xx Notes 29 UFQFPN48 UFQFPN48 + Ext SMPS Pin Number 32 32 44 44 D1 D1 70 70 B12 B12 103 103 E13 E13 PA11 I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS 32 Pin name (function after reset) FT _u Alternate functions Additional functions - TIM1_CH4, TIM1_BKIN2, SPI1_MISO, USART1_CTS_NSS, CAN1_RX, OTG_FS_DM, LCD_DE, EVENTOUT - - TIM1_ETR, SPI1_MOSI, OCTOSPIM_P2_NCS , USART1_RTS_DE, CAN1_TX, OTG_FS_DP, LCD_VSYNC, EVENTOUT - JTMS/SWDIO, IR_OUT, OTG_FS_NOE, SAI1_SD_B, EVENTOUT - DS12902 Rev 3 Notes 32 UFQFPN48 UFQFPN48 + Ext SMPS Pin Number 33 33 33 33 45 45 C1 C1 71 71 I/O FT _u A12 A12 104 104 D13 D13 PA12 A11 A11 105 105 A11 A11 PA13 (JTMS/S WDIO) I/O VSS S - - - - VDDUSB S - - - - FT (4) 101/312 34 34 34 34 46 46 C2 C2 72 72 35 35 35 35 47 47 B1 B1 - - 36 36 36 36 48 48 A1 A1 73 73 C11 C11 106 106 E12 E12 - - - - - - B1 B1 74 74 F11 F11 107 107 C12 C12 VSS S - - - - - - - - - - F1 F1 75 75 G11 G11 108 108 C13 C13 VDD S - - - - F11 F11 - - C12 C12 STM32L4Q5xx Table 15. STM32L4Q5xx pin definitions (continued) 102/312 Table 15. STM32L4Q5xx pin definitions (continued) DS12902 Rev 3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E11 E11 D12 D12 D11 D11 PH6 PH7 PH9 I/O I/O I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS - Pin name (function after reset) FT FT _f FT Notes - UFQFPN48 UFQFPN48 + Ext SMPS Pin Number Alternate functions Additional functions - I2C2_SMBA, OCTOSPIM_P2_CLK , DCMI_D8/PSSI_D8, EVENTOUT - - I2C3_SCL, OCTOSPIM_P2_NCL K, DCMI_D9/PSSI_D9, EVENTOUT - - I2C3_SMBA, OCTOSPIM_P2_IO4, DCMI_D0/PSSI_D0, EVENTOUT - - - - - - - - - - - - - - - B13 B13 PH12 I/O FT - - - - - - - - - - - - - - - A13 A13 PH14 I/O FT - TIM8_CH2N, DCMI_D4/PSSI_D4, EVENTOUT - - TIM8_CH3N, OCTOSPIM_P2_IO6, DCMI_D11/PSSI_D11 , EVENTOUT - - - - - - - - - - - - - - - B12 B12 PH15 I/O FT STM32L4Q5xx - TIM5_CH3, OCTOSPIM_P2_IO7, DCMI_D3/PSSI_D3, EVENTOUT - - - - - - - - - - - - A12 A12 PI0 I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS - Pin name (function after reset) FT DS12902 Rev 3 Notes - UFQFPN48 UFQFPN48 + Ext SMPS Pin Number Alternate functions Additional functions - TIM5_CH4, OCTOSPIM_P1_IO5, SPI2_NSS, DCMI_D13/PSSI_D1 3, EVENTOUT - - - - - - - - - - - - - - - - C11 C11 PI8 I/O FT - OCTOSPIM_P2_NCS , DCMI_D12/PSSI_D1 2, EVENTOUT - - - - - - - - - - - - - - B11 B11 PI1 I/O FT - SPI2_SCK, DCMI_D8/PSSI_D8, EVENTOUT - - TIM8_CH4, SPI2_MISO, DCMI_D9/PSSI_D9, EVENTOUT - - - - - - - - - - - - - - - - - B10 B10 PI2 I/O FT - - - - - - - - - - - - - - C10 C10 PI3 I/O FT - TIM8_ETR, SPI2_MOSI, DCMI_D10/PSSI_D1 0, EVENTOUT - - - - - - - - - - - - - - D10 D10 PI4 I/O FT - TIM8_BKIN, DCMI_D5/PSSI_D5, EVENTOUT STM32L4Q5xx Table 15. STM32L4Q5xx pin definitions (continued) 103/312 104/312 Table 15. STM32L4Q5xx pin definitions (continued) - - - - - - - - - - - - - E10 E10 - - - - - - - - - - - - - - C9 - 37 - 37 - 37 - 37 - 49 - 49 - B2 - B2 - 76 - 76 - - - - B9 C9 B9 A10 A10 109 109 A10 A10 I/O structure Notes DS12902 Rev 3 - Pin name (function after reset) Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS UFQFPN48 UFQFPN48 + Ext SMPS Pin Number Alternate functions PI5 I/O FT - TIM8_CH1, OCTOSPIM_P2_NCS , DCMI_VSYNC/PSSI_ RDY, EVENTOUT PH13 I/O FT - TIM8_CH1N, CAN1_TX, EVENTOUT - - TIM8_CH2, OCTOSPIM_P2_CLK , DCMI_D6/PSSI_D6, EVENTOUT - JTCK/SWCLK, LPTIM1_OUT, I2C1_SMBA, I2C4_SMBA, OTG_FS_SOF, SAI1_FS_B, EVENTOUT - PI6 PA14 (JTCK/S WCLK) I/O I/O FT FT (4) Additional functions - STM32L4Q5xx - 38 - - 38 - 50 51 50 51 A2 C3 A2 D4 77 78 77 78 A9 A9 B11 B11 110 111 110 111 A9 D9 A9 D9 PA15 (JTDI) PC10 I/O I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS 38 Pin name (function after reset) Notes DS12902 Rev 3 38 UFQFPN48 UFQFPN48 + Ext SMPS Pin Number Alternate functions Additional functions FT (4) JTDI, TIM2_CH1, TIM2_ETR, USART2_RX, SPI1_NSS, SPI3_NSS, USART3_RTS_DE, UART4_RTS_DE, TSC_G3_IO1, LCD_HSYNC, SAI2_FS_B, EVENTOUT - TRACED1, DCMI_VSYNC/PSSI_ RDY, SPI3_SCK, USART3_TX, UART4_TX, TSC_G3_IO2, DCMI_D8/PSSI_D8, SDMMC1_D2, SAI2_SCK_B, EVENTOUT - FT - STM32L4Q5xx Table 15. STM32L4Q5xx pin definitions (continued) 105/312 106/312 Table 15. STM32L4Q5xx pin definitions (continued) - - - - - - - - - - - - 52 53 - - 52 53 - - D4 C4 B3 A3 C3 C4 B3 A3 79 80 81 82 79 80 81 82 C10 C10 112 B10 B10 113 C9 B9 C9 B9 114 115 112 113 114 115 E9 F8 B8 C8 E9 F8 B8 C8 PC11 PC12 PD0 PD1 I/O I/O I/O I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS - FT FT FT FT Alternate functions Additional functions - DCMI_D2/PSSI_D2, OCTOSPIM_P1_NCS , SPI3_MISO, USART3_RX, UART4_RX, TSC_G3_IO3, DCMI_D4/PSSI_D4, SDMMC1_D3, SAI2_MCLK_B, EVENTOUT - - TRACED3, SPI3_MOSI, USART3_CK, UART5_TX, TSC_G3_IO4, DCMI_D9/PSSI_D9, LCD_R6, SDMMC1_CK, SAI2_SD_B, EVENTOUT - - SPI2_NSS, CAN1_RX, LCD_B4, FMC_D2, EVENTOUT - - SPI2_SCK, CAN1_TX, LCD_B5, FMC_D3, EVENTOUT - STM32L4Q5xx - - Pin name (function after reset) Notes DS12902 Rev 3 - UFQFPN48 UFQFPN48 + Ext SMPS Pin Number - NC 54 D5 E4 83 83 C8 C8 116 116 D8 D8 PD2 - I/O - SPI2_SCK, DCMI_D5/PSSI_D5, SPI2_MISO, DFSDM1_DATIN0, USART2_CTS_NSS, OCTOSPIM_P2_NCS , LCD_CLK, FMC_CLK, EVENTOUT - - SPI2_MOSI, DFSDM1_CKIN0, USART2_RTS_DE, SDMMC2_CKIN, OCTOSPIM_P1_IO4, FMC_NOE, EVENTOUT - - USART2_TX, OCTOSPIM_P1_IO5, FMC_NWE, EVENTOUT - DS12902 Rev 3 I/O TRACED2, TIM3_ETR, USART3_RTS_DE, UART5_RX, (3) FT TSC_SYNC, DCMI_D11/PSSI_D11 , SDMMC1_CMD, EVENTOUT - - 107/312 - - - - - - - - - - - - - - - - - C5 B4 - B4 E5 84 85 86 84 85 86 B8 B7 A6 B8 B7 A6 117 118 119 117 118 119 E8 C7 D7 E8 C7 D7 PD3 PD4 PD5 I/O I/O FT FT FT Notes UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS - I/O structure - Pin name (function after reset) Pin type - UFQFPN48 UFQFPN48 + Ext SMPS Pin Number Alternate functions Additional functions STM32L4Q5xx Table 15. STM32L4Q5xx pin definitions (continued) 108/312 Table 15. STM32L4Q5xx pin definitions (continued) LQFP64 + Ext SMPS LQFP64 WLCSP100 + Ext SMPS WLCSP100 LQFP100 + Ext SMPS LQFP100 UFBGA132 + Ext SMPS UFBGA132 UFBGA169 + ext SMPS UFBGA169 Pin type I/O structure Notes - - - - - - - - - F11 F11 120 120 M3 M3 VSS S - - - - - - - - - - A4 A4 - - G11 G11 121 121 A8 A8 VDD S - - - - - SAI1_D1, DCMI_D10/PSSI_D1 0, SPI3_MOSI, DFSDM1_DATIN1, USART2_RX, SDMMC2_CK, OCTOSPIM_P1_IO6, LCD_DE, FMC_NWAIT, SAI1_SD_A, EVENTOUT - - DFSDM1_CKIN1, USART2_CK, SDMMC2_CMD, OCTOSPIM_P1_IO7, FMC_NCE/FMC_NE1 , EVENTOUT - - OCTOSPIM_P2_IO6, SPI3_SCK, USART1_TX, SDMMC2_D0, FMC_NCE/FMC_NE2 , SAI2_SCK_A, TIM15_CH1N, EVENTOUT - - - - - - - - - - - - - - - - - - - B5 C6 D6 D5 C5 B5 87 88 - 87 88 - B6 A5 D9 B6 A5 D9 LQFP144 LQFP48 - LQFP144 + Ext SMPS LQFP48 + Ext SMPS Alternate functions 122 122 123 123 124 124 E7 F7 B7 E7 F7 B7 Pin name (function after reset) PD6 PD7 PG9 I/O I/O I/O FT FT FT _s Additional functions STM32L4Q5xx UFQFPN48 DS12902 Rev 3 UFQFPN48 + Ext SMPS Pin Number - - - - A5 A5 - - D8 D8 125 125 D6 D6 PG10 I/O DS12902 Rev 3 - - - - - - - - - - - - E5 B6 D6 B6 - - - - G3 D7 G3 D7 126 126 127 127 E6 F6 E6 F6 PG11 PG12 I/O I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS - Pin name (function after reset) FT _s FT _s FT _s Notes - UFQFPN48 UFQFPN48 + Ext SMPS Pin Number Alternate functions Additional functions - LPTIM1_IN1, OCTOSPIM_P2_IO7, SPI3_MISO, USART1_RX, SDMMC2_D1, FMC_NE3, SAI2_FS_A, TIM15_CH1, EVENTOUT - - LPTIM1_IN2, OCTOSPIM_P1_IO5, SPI3_MOSI, USART1_CTS_NSS, SDMMC2_D2, SAI2_MCLK_A, TIM15_CH2, EVENTOUT - - LPTIM1_ETR, OCTOSPIM_P2_NCS , SPI3_NSS, USART1_RTS_DE, SDMMC2_D3, FMC_NE4, SAI2_SD_A, EVENTOUT - STM32L4Q5xx Table 15. STM32L4Q5xx pin definitions (continued) 109/312 110/312 Table 15. STM32L4Q5xx pin definitions (continued) DS12902 Rev 3 Notes I/O structure Pin name (function after reset) Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS UFQFPN48 UFQFPN48 + Ext SMPS Pin Number Alternate functions Additional functions - I2C1_SDA, USART1_CK, LCD_R0, FMC_A24, EVENTOUT - I2C1_SCL, LCD_R1, FMC_A25, EVENTOUT - - - - - - - - - - - C7 C7 128 128 G7 G7 PG13 FT I/O _fs - - - - - - - - - - NC C6 129 129 G6 G6 PG14 I/O - - - - - - - - - - F7 F7 130 130 A7 A7 VSS S - - - - - - - - - - A6 A6 - - G7 G7 131 131 B6 B6 VDDIO2 S - - - - - 39 - 39 - 39 - 39 - 54 - 55 - F5 - C6 - 89 - 89 K1 A8 K1 A8 NC 132 132 133 NC A6 C6 A6 PG15 I/O FT (3) _fs LPTIM1_OUT, I2C1_SMBA, FT (3) OCTOSPIM_P2_DQS , _s DCMI_D13/PSSI_D1 3, EVENTOUT - COMP2_INM STM32L4Q5xx PB3 (JTDO/TR FT I/O ACESWO _la ) JTDO/TRACESWO, TIM2_CH2, OCTOSPIM_P1_IO4, SPI1_SCK, SPI3_SCK, USART1_RTS_DE, OTG_FS_CRS_SYN C, SDMMC2_D2, SAI1_SCK_B, EVENTOUT - DS12902 Rev 3 40 41 40 41 40 41 40 41 55 56 56 57 E6 C7 C7 B7 90 91 90 91 A7 C5 A7 C5 133 134 134 135 A5 B5 Notes I/O structure Pin name (function after reset) Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS UFQFPN48 UFQFPN48 + Ext SMPS Pin Number Alternate functions 111/312 A5 NJTRST, TIM3_CH1, OCTOSPIM_P1_IO5, I2C3_SDA, SPI1_MISO, SPI3_MISO, USART1_CTS_NSS, PB4 FT (4) UART5_RTS_DE, I/O (NJTRST) _fa TSC_G2_IO1, DCMI_D12/PSSI_D1 2, SDMMC2_D3, SAI1_MCLK_B, TIM17_BKIN, EVENTOUT B5 LPTIM1_IN1, TIM3_CH2, OCTOSPIM_P1_IO0, I2C1_SMBA, SPI1_MOSI, SPI3_MOSI, USART1_CK, UART5_CTS, TSC_G2_IO2, DCMI_D10/PSSI_D1 0, COMP2_OUT, SAI1_SD_B, TIM16_BKIN, EVENTOUT PB5 I/O FT _la - Additional functions COMP2_INP - STM32L4Q5xx Table 15. STM32L4Q5xx pin definitions (continued) 112/312 Table 15. STM32L4Q5xx pin definitions (continued) 42 42 57 58 A7 A7 92 92 B5 B5 135 136 C5 C5 PB6 I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS 42 Pin name (function after reset) FT _fa Alternate functions Additional functions - LPTIM1_ETR, TIM4_CH1, TIM8_BKIN2, I2C1_SCL, I2C4_SCL, USART1_TX, TSC_G2_IO3, DCMI_D5/PSSI_D5, LCD_R6, SAI1_FS_B, TIM16_CH1N, EVENTOUT COMP2_INP COMP2_INM, PVD_IN - 43 43 43 43 58 59 B7 D7 93 93 B4 B4 136 137 D5 D5 PB7 I/O FT _fl a - LPTIM1_IN2, TIM4_CH2, TIM8_BKIN, I2C1_SDA, I2C4_SDA, USART1_RX, UART4_CTS, TSC_G2_IO4, DCMI_VSYNC/PSSI_ RDY, LCD_VSYNC, FMC_NL, TIM17_CH1N, EVENTOUT 44 44 44 44 59 60 D7 E6 94 94 A4 A4 137 138 E5 E5 PH3BOOT0 I/O FT - EVENTOUT STM32L4Q5xx Notes DS12902 Rev 3 42 UFQFPN48 UFQFPN48 + Ext SMPS Pin Number 45 45 46 45 45 46 60 61 61 62 B8 A8 B8 A8 95 96 95 96 A3 B3 A3 B3 138 139 139 140 C4 D4 C4 D4 PB8 PB9 I/O I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS NC Pin name (function after reset) Notes DS12902 Rev 3 NC UFQFPN48 UFQFPN48 + Ext SMPS Pin Number Alternate functions Additional functions FT (3) _fl TIM4_CH3, SAI1_CK1, I2C1_SCL, DFSDM1_CKOUT, SDMMC2_D4, SDMMC1_CKIN, CAN1_RX, DCMI_D6/PSSI_D6, LCD_DE, SDMMC1_D4, SAI1_MCLK_A, TIM16_CH1, EVENTOUT - FT _fl IR_OUT, TIM4_CH4, SAI1_D2, I2C1_SDA, SPI2_NSS, SDMMC2_D5, SDMMC1_CDIR, CAN1_TX, DCMI_D7/PSSI_D7, SDMMC1_D5, SAI1_FS_A, TIM17_CH1, EVENTOUT - - STM32L4Q5xx Table 15. STM32L4Q5xx pin definitions (continued) 113/312 114/312 Table 15. STM32L4Q5xx pin definitions (continued) - - - - - - 97 97 C3 C3 140 141 DS12902 Rev 3 - - - - - - - - NC 98 A2 A2 46 - 46 - 62 - A9 - 98 - C6 - 47 47 47 47 63 63 B9 A9 99 99 D3 D3 48 48 48 48 64 64 A10 A10 100 100 C4 C4 - - - - - - - - - - C4 C4 - - - - - - - - - - - D3 D3 - - - - - - - - - - - - - - - - - - - - - - - A4 PE0 I/O I/O structure Pin type UFBGA169 UFBGA169 + ext SMPS A4 FT Alternate functions Additional functions - TIM4_ETR, DCMI_D2/PSSI_D2, LCD_HSYNC, FMC_NBL0, TIM16_CH1, EVENTOUT - DCMI_D3/PSSI_D3, LCD_VSYNC, FMC_NBL1, TIM17_CH1, EVENTOUT - FT (3) 141 142 B4 B4 PE1 I/O 142 C6 - VDD12 - - - - - 143 143 B3 B3 VSS S - - - - 144 144 A3 A3 VDD S - - - - - A3 A3 VDD S - - - - - - B3 B3 VSS S - - - - - - A2 A2 PH2 I/O FT - OCTOSPIM_P1_IO4, EVENTOUT - - TIM8_CH3, OCTOSPIM_P2_NCL K, DCMI_D7/PSSI_D7, EVENTOUT - - - - B2 B2 PI7 I/O FT STM32L4Q5xx - LQFP144 LQFP144 + Ext SMPS UFBGA132 UFBGA132 + Ext SMPS LQFP100 LQFP100 + Ext SMPS WLCSP100 WLCSP100 + Ext SMPS LQFP64 LQFP64 + Ext SMPS LQFP48 LQFP48 + Ext SMPS - Pin name (function after reset) Notes - UFQFPN48 UFQFPN48 + Ext SMPS Pin Number UFQFPN48 LQFP48 + Ext SMPS LQFP48 LQFP64 + Ext SMPS LQFP64 WLCSP100 + Ext SMPS WLCSP100 LQFP100 + Ext SMPS LQFP100 UFBGA132 + Ext SMPS UFBGA132 LQFP144 + Ext SMPS LQFP144 UFBGA169 + ext SMPS UFBGA169 Pin type I/O structure Notes DS12902 Rev 3 UFQFPN48 + Ext SMPS Pin Number Alternate functions - - - - - - - - - - - - - - B1 B1 PI9 I/O FT - OCTOSPIM_P2_IO2, CAN1_RX, EVENTOUT - - - - - - - - - - - - - - - A1 A1 PI10 I/O FT - OCTOSPIM_P2_IO1, PSSI_D14, EVENTOUT - Pin name (function after reset) Additional functions 1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF - These GPIOs must not be used as current sources (for example to drive a LED). 2. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the RM0432 reference manual. 3. NC (not-connected) balls must be left unconnected. However, PF8 and PF9 NC' IOs are not bonded. They must be configured by software to output push-pull and forced to 0 in the output data register to avoid extra current consumption in low-power modes. 4. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated. STM32L4Q5xx Table 15. STM32L4Q5xx pin definitions (continued) 115/312 116/312 Table 16. Alternate function AF0 to AF7(1) AF0 Port DS12902 Rev 3 Port A AF1 OTG_FS/SYS_A TIM1/2/5/8/LPTI F M1 AF2 TIM1/2/3/4/5 AF3 AF4 AF5 AF6 AF7 SPI2/SAI1/I2C4/ SPI1/2/3/I2C4/D SPI3/I2C3/DFSD USART2/CAN2/ FSDM1/DCMI/O M1/COMP1/OCT USART1/2/3/SD OTG_FS/TIM1/8 I2C1/2/3/4/DCMI MMC2 CTOSPIM_P1/2/ OSPIM_P1/2/QU /OCTOSPIM_P1/ ADSPI QUADSPI QUADSPI - TIM2_CH1 TIM5_CH1 TIM8_ETR - - - USART2_CTS_ NSS PA1 - TIM2_CH2 TIM5_CH2 - I2C1_SMBA SPI1_SCK - USART2_RTS_ DE PA2 - TIM2_CH3 TIM5_CH3 - - - - USART2_TX PA3 - TIM2_CH4 TIM5_CH4 SAI1_CK1 - - - USART2_RX PA4 - - - OCTOSPIM_P1_ NCS - SPI1_NSS SPI3_NSS USART2_CK PA5 - TIM2_CH1 TIM2_ETR TIM8_CH1N PSSI_D14 SPI1_SCK - - PA6 - TIM1_BKIN TIM3_CH1 TIM8_BKIN DCMI_PIXCLK/P SSI_PDCK SPI1_MISO - USART3_CTS_ NSS PA7 - TIM1_CH1N TIM3_CH2 TIM8_CH1N I2C3_SCL SPI1_MOSI - - PA8 MCO TIM1_CH1 - SAI1_CK2 - - - USART1_CK PA9 - TIM1_CH2 - SPI2_SCK - DCMI_D0/PSSI_ D0 - USART1_TX PA10 - TIM1_CH3 - SAI1_D1 - DCMI_D1/PSSI_ D1 - USART1_RX PA11 - TIM1_CH4 TIM1_BKIN2 - - SPI1_MISO - USART1_CTS_ NSS PA12 - TIM1_ETR - - - SPI1_MOSI OCTOSPIM_P2_ NCS USART1_RTS_ DE PA13 JTMS/SWDIO IR_OUT - - - - - - PA14 JTCK/SWCLK LPTIM1_OUT - - I2C1_SMBA I2C4_SMBA - - PA15 JTDI TIM2_CH1 TIM2_ETR USART2_RX - SPI1_NSS SPI3_NSS USART3_RTS_ DE STM32L4Q5xx PA0 AF0 Port DS12902 Rev 3 Port B AF1 OTG_FS/SYS_A TIM1/2/5/8/LPTI F M1 AF2 TIM1/2/3/4/5 AF3 AF4 AF5 AF6 AF7 SPI2/SAI1/I2C4/ SPI1/2/3/I2C4/D SPI3/I2C3/DFSD USART2/CAN2/ FSDM1/DCMI/O M1/COMP1/OCT USART1/2/3/SD OTG_FS/TIM1/8 I2C1/2/3/4/DCMI MMC2 CTOSPIM_P1/2/ OSPIM_P1/2/QU /OCTOSPIM_P1/ ADSPI QUADSPI QUADSPI 117/312 PB0 - TIM1_CH2N TIM3_CH3 TIM8_CH2N - SPI1_NSS - USART3_CK PB1 - TIM1_CH3N TIM3_CH4 TIM8_CH3N - - DFSDM1_DATIN 0 USART3_RTS_ DE PB2 RTC_OUT2 LPTIM1_OUT - - I2C3_SMBA - DFSDM1_CKIN0 - PB3 JTDO/TRACES WO TIM2_CH2 - OCTOSPIM_P1_ IO4 - SPI1_SCK SPI3_SCK USART1_RTS_ DE PB4 NJTRST - TIM3_CH1 OCTOSPIM_P1_ IO5 I2C3_SDA SPI1_MISO SPI3_MISO USART1_CTS_ NSS PB5 - LPTIM1_IN1 TIM3_CH2 OCTOSPIM_P1_ IO0 I2C1_SMBA SPI1_MOSI SPI3_MOSI USART1_CK PB6 - LPTIM1_ETR TIM4_CH1 TIM8_BKIN2 I2C1_SCL I2C4_SCL - USART1_TX PB7 - LPTIM1_IN2 TIM4_CH2 TIM8_BKIN I2C1_SDA I2C4_SDA - USART1_RX PB8 - - TIM4_CH3 SAI1_CK1 I2C1_SCL DFSDM1_CKOU T - SDMMC2_D4 PB9 - IR_OUT TIM4_CH4 SAI1_D2 I2C1_SDA SPI2_NSS - SDMMC2_D5 PB10 - TIM2_CH3 - I2C4_SCL I2C2_SCL SPI2_SCK OCTOSPIM_P1_ IO3 USART3_TX PB11 - TIM2_CH4 - I2C4_SDA I2C2_SDA - - USART3_RX PB12 - TIM1_BKIN - TIM1_BKIN I2C2_SMBA SPI2_NSS DFSDM1_DATIN 1 USART3_CK PB13 - TIM1_CH1N - - I2C2_SCL SPI2_SCK DFSDM1_CKIN1 USART3_CTS_ NSS PB14 - TIM1_CH2N - TIM8_CH2N I2C2_SDA SPI2_MISO DFSDM1_DATIN 2 USART3_RTS_ DE PB15 RTC_REFIN TIM1_CH3N - TIM8_CH3N - SPI2_MOSI DFSDM1_CKIN2 - STM32L4Q5xx Table 16. Alternate function AF0 to AF7(1) (continued) 118/312 Table 16. Alternate function AF0 to AF7(1) (continued) AF0 Port DS12902 Rev 3 Port C AF1 OTG_FS/SYS_A TIM1/2/5/8/LPTI F M1 AF2 TIM1/2/3/4/5 AF3 AF4 AF5 AF6 AF7 SPI2/SAI1/I2C4/ SPI1/2/3/I2C4/D SPI3/I2C3/DFSD USART2/CAN2/ FSDM1/DCMI/O M1/COMP1/OCT USART1/2/3/SD OTG_FS/TIM1/8 I2C1/2/3/4/DCMI MMC2 CTOSPIM_P1/2/ OSPIM_P1/2/QU /OCTOSPIM_P1/ ADSPI QUADSPI QUADSPI - LPTIM1_IN1 - - I2C3_SCL - - SDMMC2_CKIN PC1 TRACED0 LPTIM1_OUT - SPI2_MOSI I2C3_SDA - - - PC2 - LPTIM1_IN2 - - - SPI2_MISO DFSDM1_CKOU T - PC3 - LPTIM1_ETR - SAI1_D1 - SPI2_MOSI - - PC4 - - - - - OCTOSPIM_P2_ NCS - USART3_TX PC5 - - - SAI1_D3 PSSI_D15 - - USART3_RX PC6 - - TIM3_CH1 TIM8_CH1 - - DFSDM1_CKIN3 SDMMC2_D6 PC7 - - TIM3_CH2 TIM8_CH2 - - DFSDM1_DATIN 3 SDMMC2_D7 PC8 - - TIM3_CH3 TIM8_CH3 - - - - PC9 TRACED0 TIM8_BKIN2 TIM3_CH4 TIM8_CH4 DCMI_D3/PSSI_ D3 - I2C3_SDA - PC10 TRACED1 - - - DCMI_VSYNC/P SSI_RDY - SPI3_SCK USART3_TX PC11 - - - - DCMI_D2/PSSI_ OCTOSPIM_P1_ D2 NCS SPI3_MISO USART3_RX PC12 TRACED3 - - - - - SPI3_MOSI USART3_CK PC13 - - - - - - - - PC14 - - - - - - - - PC15 - - - - - - - - STM32L4Q5xx PC0 AF0 Port DS12902 Rev 3 Port D AF1 OTG_FS/SYS_A TIM1/2/5/8/LPTI F M1 AF2 TIM1/2/3/4/5 AF3 AF4 AF5 AF6 AF7 SPI2/SAI1/I2C4/ SPI1/2/3/I2C4/D SPI3/I2C3/DFSD USART2/CAN2/ FSDM1/DCMI/O M1/COMP1/OCT USART1/2/3/SD OTG_FS/TIM1/8 I2C1/2/3/4/DCMI MMC2 CTOSPIM_P1/2/ OSPIM_P1/2/QU /OCTOSPIM_P1/ ADSPI QUADSPI QUADSPI PD0 - - - - - SPI2_NSS - - PD1 - - - - - SPI2_SCK - - PD2 TRACED2 - TIM3_ETR - - - - USART3_RTS_ DE PD3 - - - SPI2_SCK DCMI_D5/PSSI_ D5 SPI2_MISO DFSDM1_DATIN 0 USART2_CTS_ NSS PD4 - - - - - SPI2_MOSI DFSDM1_CKIN0 USART2_RTS_ DE PD5 - - - - - - - USART2_TX PD6 - - - SAI1_D1 DCMI_D10/PSSI _D10 SPI3_MOSI DFSDM1_DATIN 1 USART2_RX PD7 - - - - - - DFSDM1_CKIN1 USART2_CK PD8 - - - - - - - USART3_TX PD9 - - - - - - - USART3_RX PD10 - - - - - - - USART3_CK PD11 - - - - I2C4_SMBA - - USART3_CTS_ NSS PD12 - - TIM4_CH1 - I2C4_SCL - - USART3_RTS_ DE PD13 - - TIM4_CH2 - I2C4_SDA - - - PD14 - - TIM4_CH3 - - - - - PD15 - - TIM4_CH4 - - - - - STM32L4Q5xx Table 16. Alternate function AF0 to AF7(1) (continued) 119/312 120/312 Table 16. Alternate function AF0 to AF7(1) (continued) AF0 Port DS12902 Rev 3 Port E AF1 OTG_FS/SYS_A TIM1/2/5/8/LPTI F M1 AF2 TIM1/2/3/4/5 AF3 AF4 AF5 AF6 AF7 SPI2/SAI1/I2C4/ SPI1/2/3/I2C4/D SPI3/I2C3/DFSD USART2/CAN2/ FSDM1/DCMI/O M1/COMP1/OCT USART1/2/3/SD OTG_FS/TIM1/8 I2C1/2/3/4/DCMI MMC2 CTOSPIM_P1/2/ OSPIM_P1/2/QU /OCTOSPIM_P1/ ADSPI QUADSPI QUADSPI - - TIM4_ETR - - - - - PE1 - - - - - - - - PE2 TRACECK - TIM3_ETR SAI1_CK1 - - - - PE3 TRACED0 - TIM3_CH1 OCTOSPIM_P1_ DQS - - - - PE4 TRACED1 - TIM3_CH2 SAI1_D2 - - DFSDM1_DATIN 3 - PE5 TRACED2 - TIM3_CH3 SAI1_CK2 - - DFSDM1_CKIN3 - PE6 TRACED3 - TIM3_CH4 SAI1_D1 - - - - PE7 - TIM1_ETR - - - - DFSDM1_DATIN 2 - PE8 - TIM1_CH1N - - - - DFSDM1_CKIN2 - PE9 - TIM1_CH1 - - - - DFSDM1_CKOU T - PE10 - TIM1_CH2N - - - - - - PE11 - TIM1_CH2 - - - - - - PE12 - TIM1_CH3N - - - SPI1_NSS - - PE13 - TIM1_CH3 - - - SPI1_SCK - - PE14 - TIM1_CH4 TIM1_BKIN2 TIM1_BKIN2 - SPI1_MISO - - PE15 - TIM1_BKIN - TIM1_BKIN - SPI1_MOSI - - STM32L4Q5xx PE0 AF0 Port DS12902 Rev 3 Port F AF1 OTG_FS/SYS_A TIM1/2/5/8/LPTI F M1 AF2 TIM1/2/3/4/5 AF3 AF4 AF5 AF6 AF7 SPI2/SAI1/I2C4/ SPI1/2/3/I2C4/D SPI3/I2C3/DFSD USART2/CAN2/ FSDM1/DCMI/O M1/COMP1/OCT USART1/2/3/SD OTG_FS/TIM1/8 I2C1/2/3/4/DCMI MMC2 CTOSPIM_P1/2/ OSPIM_P1/2/QU /OCTOSPIM_P1/ ADSPI QUADSPI QUADSPI 121/312 PF0 - - - - I2C2_SDA OCTOSPIM_P2_ IO0 - - PF1 - - - - I2C2_SCL OCTOSPIM_P2_ IO1 - - PF2 - - - - I2C2_SMBA OCTOSPIM_P2_ IO2 - - PF3 - - - - - OCTOSPIM_P2_ IO3 - - PF4 - - - - - OCTOSPIM_P2_ CLK - - PF5 - - - - - OCTOSPIM_P2_ NCLK - - PF6 - TIM5_ETR TIM5_CH1 - - - - - PF7 - - TIM5_CH2 - - - - - PF8 - - TIM5_CH3 - - - - - PF9 - - TIM5_CH4 - - - - - PF10 - - - OCTOSPIM_P1_ CLK PSSI_D15 - DFSDM1_CKOU T - PF11 - - - OCTOSPIM_P1_ NCLK - - - - PF12 - - - - - OCTOSPIM_P2_ DQS - - PF13 - - - - I2C4_SMBA - - - PF14 - - - - I2C4_SCL - - - PF15 - - - - I2C4_SDA - - - STM32L4Q5xx Table 16. Alternate function AF0 to AF7(1) (continued) 122/312 Table 16. Alternate function AF0 to AF7(1) (continued) AF0 Port DS12902 Rev 3 Port G AF1 OTG_FS/SYS_A TIM1/2/5/8/LPTI F M1 AF2 TIM1/2/3/4/5 AF3 AF4 AF5 AF6 AF7 SPI2/SAI1/I2C4/ SPI1/2/3/I2C4/D SPI3/I2C3/DFSD USART2/CAN2/ FSDM1/DCMI/O M1/COMP1/OCT USART1/2/3/SD OTG_FS/TIM1/8 I2C1/2/3/4/DCMI MMC2 CTOSPIM_P1/2/ OSPIM_P1/2/QU /OCTOSPIM_P1/ ADSPI QUADSPI QUADSPI PG0 - - - - - OCTOSPIM_P2_ IO4 - - PG1 - - - - - OCTOSPIM_P2_ IO5 - - PG2 - - - - - SPI1_SCK - - PG3 - - - - - SPI1_MISO - - PG4 - - - - - SPI1_MOSI - - PG5 - - - - - SPI1_NSS - - PG6 - - - OCTOSPIM_P1_ DQS I2C3_SMBA - - - PG7 - - - SAI1_CK1 I2C3_SCL PG8 - - - - I2C3_SDA - - - PG9 - - - - - OCTOSPIM_P2_ IO6 SPI3_SCK USART1_TX PG10 - LPTIM1_IN1 - - - OCTOSPIM_P2_ IO7 SPI3_MISO USART1_RX PG11 - LPTIM1_IN2 - OCTOSPIM_P1_ IO5 - - SPI3_MOSI USART1_CTS_ NSS PG12 - LPTIM1_ETR - - - OCTOSPIM_P2_ NCS SPI3_NSS USART1_RTS_ DE PG13 - - - - I2C1_SDA - - USART1_CK PG14 - - - - I2C1_SCL - - - PG15 - LPTIM1_OUT - - I2C1_SMBA OCTOSPIM_P2_ DQS - - OCTOSPIM_P2_ DFSDM1_CKOU DQS T - STM32L4Q5xx AF0 Port DS12902 Rev 3 Port H AF1 OTG_FS/SYS_A TIM1/2/5/8/LPTI F M1 AF2 TIM1/2/3/4/5 AF3 AF4 AF5 AF6 AF7 SPI2/SAI1/I2C4/ SPI1/2/3/I2C4/D SPI3/I2C3/DFSD USART2/CAN2/ FSDM1/DCMI/O M1/COMP1/OCT USART1/2/3/SD OTG_FS/TIM1/8 I2C1/2/3/4/DCMI MMC2 CTOSPIM_P1/2/ OSPIM_P1/2/QU /OCTOSPIM_P1/ ADSPI QUADSPI QUADSPI 123/312 PH0 - - - - - - - - PH1 - - - - - - - - PH2 - - - OCTOSPIM_P1_ IO4 - - - - PH3 - - - - - - - - PH4 - - - - I2C2_SCL OCTOSPIM_P2_ DQS - - PH5 - - - - I2C2_SDA - - - PH6 - - - - I2C2_SMBA OCTOSPIM_P2_ CLK - - PH7 - - - - I2C3_SCL OCTOSPIM_P2_ NCLK - - PH8 - - - - I2C3_SDA OCTOSPIM_P2_ IO3 - - PH9 - - - - I2C3_SMBA OCTOSPIM_P2_ IO4 - - PH10 - - TIM5_CH1 - - OCTOSPIM_P2_ IO5 - - PH11 - - TIM5_CH2 - - OCTOSPIM_P2_ IO6 - - PH12 - - TIM5_CH3 - - OCTOSPIM_P2_ IO7 - - PH13 - - - TIM8_CH1N - - - - PH14 - - - TIM8_CH2N - - - - PH15 - - - TIM8_CH3N - OCTOSPIM_P2_ IO6 - - STM32L4Q5xx Table 16. Alternate function AF0 to AF7(1) (continued) 124/312 Table 16. Alternate function AF0 to AF7(1) (continued) AF0 Port DS12902 Rev 3 Port I AF1 OTG_FS/SYS_A TIM1/2/5/8/LPTI F M1 AF2 TIM1/2/3/4/5 AF3 AF4 AF5 AF6 AF7 SPI2/SAI1/I2C4/ SPI1/2/3/I2C4/D SPI3/I2C3/DFSD USART2/CAN2/ FSDM1/DCMI/O M1/COMP1/OCT USART1/2/3/SD OTG_FS/TIM1/8 I2C1/2/3/4/DCMI MMC2 CTOSPIM_P1/2/ OSPIM_P1/2/QU /OCTOSPIM_P1/ ADSPI QUADSPI QUADSPI PI0 - - TIM5_CH4 OCTOSPIM_P1_ IO5 - SPI2_NSS - - PI1 - - - - - SPI2_SCK - - PI2 - - - TIM8_CH4 - SPI2_MISO - - PI3 - - - TIM8_ETR - SPI2_MOSI - - PI4 - - - TIM8_BKIN - - - - PI5 - - - TIM8_CH1 - OCTOSPIM_P2_ NCS - - PI6 - - - TIM8_CH2 - OCTOSPIM_P2_ CLK - - PI7 - - - TIM8_CH3 - OCTOSPIM_P2_ NCLK - - PI8 - - - - - OCTOSPIM_P2_ NCS - - PI9 - - - - - OCTOSPIM_P2_ IO2 - - PI10 - - - - - OCTOSPIM_P2_ IO1 - - PI11 - - - - - OCTOSPIM_P2_ IO0 - - 1. Refer to next table for AF8 to AF15. STM32L4Q5xx AF8 AF9 AF13 AF14 AF15 UART4/5/LPUA RT1/CAN2/SDM MC1/2 CAN1/TSC/LCD SAI1/2/TIM8 TIM2/8/15/16/1 7/LPTIM2 EVENOUT PA0 UART4_TX - - - - SAI1_EXTCLK TIM2_ETR EVENTOUT PA1 UART4_RX - OCTOSPIM_P1_DQS - SDMMC2_CMD - TIM15_CH1N EVENTOUT PA2 LPUART1_TX - OCTOSPIM_P1_NCS - - SAI2_EXTCLK TIM15_CH1 EVENTOUT PA3 LPUART1_RX - OCTOSPIM_P1_CLK - - SAI1_MCLK_A TIM15_CH2 EVENTOUT PA4 - - DCMI_HSYNC/PSSI_ DE LCD_CLK - SAI1_FS_B LPTIM2_OUT EVENTOUT PA5 - - - LCD_R7 - - LPTIM2_ETR EVENTOUT PA6 LPUART1_CTS - OCTOSPIM_P1_IO3 - TIM1_BKIN TIM8_BKIN TIM16_CH1 EVENTOUT PA7 - - OCTOSPIM_P1_IO2 - - - TIM17_CH1 EVENTOUT PA8 - - OTG_FS_SOF LCD_B7 - SAI1_SCK_A LPTIM2_OUT EVENTOUT PA9 - - - LCD_G7 - SAI1_FS_A TIM15_BKIN EVENTOUT PA10 - - OTG_FS_ID LCD_G6 - SAI1_SD_A TIM17_BKIN EVENTOUT PA11 - CAN1_RX OTG_FS_DM LCD_DE TIM1_BKIN2 - - EVENTOUT PA12 - CAN1_TX OTG_FS_DP LCD_VSYNC - - - EVENTOUT PA13 - - OTG_FS_NOE - - SAI1_SD_B - EVENTOUT PA14 - - OTG_FS_SOF - - SAI1_FS_B - EVENTOUT TSC_G3_IO1 - LCD_HSYNC - SAI2_FS_B - EVENTOUT Port DS12902 Rev 3 Port A PA15 UART4_RTS_DE AF10 AF11 AF12 SDMMC1/2/COM CAN2/OTG_FS/DCMI/ SDMMC2/LCD/D P1/2/TIM1/8/FM OCTOSPIM_P1/2/QU SI/LCD C/SWPMI1 ADSPI STM32L4Q5xx Table 17. Alternate function AF8 to AF15(1) 125/312 126/312 Table 17. Alternate function AF8 to AF15(1) (continued) AF8 AF9 AF13 AF14 AF15 UART4/5/LPUA RT1/CAN2/SDM MC1/2 CAN1/TSC/LCD SAI1/2/TIM8 TIM2/8/15/16/1 7/LPTIM2 EVENOUT PB0 - - OCTOSPIM_P1_IO1 LCD_B6 COMP1_OUT SAI1_EXTCLK - EVENTOUT PB1 LPUART1_RTS_ DE - OCTOSPIM_P1_IO0 LCD_G6 - - LPTIM2_IN1 EVENTOUT PB2 - - OCTOSPIM_P1_DQS - - - - EVENTOUT PB3 - - OTG_FS_CRS_SYNC - SDMMC2_D2 SAI1_SCK_B - EVENTOUT PB4 UART5_RTS_DE TSC_G2_IO1 DCMI_D12/PSSI_D12 - SDMMC2_D3 SAI1_MCLK_B TIM17_BKIN EVENTOUT PB5 UART5_CTS TSC_G2_IO2 DCMI_D10/PSSI_D10 - COMP2_OUT SAI1_SD_B TIM16_BKIN EVENTOUT PB6 - TSC_G2_IO3 DCMI_D5/PSSI_D5 LCD_R6 TIM8_BKIN2 SAI1_FS_B TIM16_CH1N EVENTOUT PB7 UART4_CTS TSC_G2_IO4 DCMI_VSYNC/PSSI_ RDY LCD_VSYNC FMC_NL TIM8_BKIN TIM17_CH1N EVENTOUT PB8 SDMMC1_CKIN CAN1_RX DCMI_D6/PSSI_D6 LCD_DE SDMMC1_D4 SAI1_MCLK_A TIM16_CH1 EVENTOUT PB9 SDMMC1_CDIR CAN1_TX DCMI_D7/PSSI_D7 - SDMMC1_D5 SAI1_FS_A TIM17_CH1 EVENTOUT PB10 LPUART1_RX TSC_SYNC OCTOSPIM_P1_CLK - COMP1_OUT SAI1_SCK_A - EVENTOUT PB11 LPUART1_TX - OCTOSPIM_P1_NCS LCD_VSYNC COMP2_OUT - - EVENTOUT PB12 LPUART1_RTS_ DE TSC_G1_IO1 OCTOSPIM_P1_NCL K - SDMMC2_CK SAI2_FS_A TIM15_BKIN EVENTOUT PB13 LPUART1_CTS TSC_G1_IO2 OCTOSPIM_P1_IO1 - - SAI2_SCK_A TIM15_CH1N EVENTOUT PB14 - TSC_G1_IO3 OCTOSPIM_P1_IO6 SDMMC2_D0 - SAI2_MCLK_A TIM15_CH1 EVENTOUT PB15 - TSC_G1_IO4 OCTOSPIM_P1_IO7 SDMMC2_D1 - SAI2_SD_A TIM15_CH2 EVENTOUT Port DS12902 Rev 3 Port B AF10 AF11 AF12 SDMMC1/2/COM CAN2/OTG_FS/DCMI/ SDMMC2/LCD/D P1/2/TIM1/8/FM OCTOSPIM_P1/2/QU SI/LCD C/SWPMI1 ADSPI STM32L4Q5xx AF8 AF9 AF13 AF14 AF15 UART4/5/LPUA RT1/CAN2/SDM MC1/2 CAN1/TSC/LCD SAI1/2/TIM8 TIM2/8/15/16/1 7/LPTIM2 EVENOUT PC0 LPUART1_RX - - LCD_DE SDMMC1_CMD SAI2_FS_A LPTIM2_IN1 EVENTOUT PC1 LPUART1_TX - OCTOSPIM_P1_IO4 - - SAI1_SD_A - EVENTOUT PC2 - - OCTOSPIM_P1_IO5 LCD_HSYNC - - - EVENTOUT PC3 - - OCTOSPIM_P1_IO6 - - SAI1_SD_A LPTIM2_ETR EVENTOUT PC4 - - OCTOSPIM_P1_IO7 - - - - EVENTOUT PC5 - - - LCD_CLK - - - EVENTOUT PC6 SDMMC1_D0DI R TSC_G4_IO1 DCMI_D0/PSSI_D0 LCD_G7 SDMMC1_D6 SAI2_MCLK_A - EVENTOUT PC7 SDMMC1_D123 DIR TSC_G4_IO2 DCMI_D1/PSSI_D1 LCD_B6 SDMMC1_D7 SAI2_MCLK_B - EVENTOUT PC8 - TSC_G4_IO3 DCMI_D2/PSSI_D2 - SDMMC1_D0 - - EVENTOUT PC9 - TSC_G4_IO4 OTG_FS_NOE - SDMMC1_D1 SAI2_EXTCLK TIM8_BKIN2 EVENTOUT PC10 UART4_TX TSC_G3_IO2 DCMI_D8/PSSI_D8 - SDMMC1_D2 SAI2_SCK_B - EVENTOUT PC11 UART4_RX TSC_G3_IO3 DCMI_D4/PSSI_D4 - SDMMC1_D3 SAI2_MCLK_B - EVENTOUT PC12 UART5_TX TSC_G3_IO4 DCMI_D9/PSSI_D9 LCD_R6 SDMMC1_CK SAI2_SD_B - EVENTOUT PC13 - - - - - - - EVENTOUT PC14 - - - - - - - EVENTOUT PC15 - - - - - - - EVENTOUT Port DS12902 Rev 3 Port C AF10 AF11 AF12 SDMMC1/2/COM CAN2/OTG_FS/DCMI/ SDMMC2/LCD/D P1/2/TIM1/8/FM OCTOSPIM_P1/2/QU SI/LCD C/SWPMI1 ADSPI STM32L4Q5xx Table 17. Alternate function AF8 to AF15(1) (continued) 127/312 128/312 Table 17. Alternate function AF8 to AF15(1) (continued) AF8 AF9 AF13 AF14 AF15 UART4/5/LPUA RT1/CAN2/SDM MC1/2 CAN1/TSC/LCD SAI1/2/TIM8 TIM2/8/15/16/1 7/LPTIM2 EVENOUT PD0 - CAN1_RX - LCD_B4 FMC_D2 - - EVENTOUT PD1 - CAN1_TX - LCD_B5 FMC_D3 - - EVENTOUT PD2 UART5_RX TSC_SYNC DCMI_D11/PSSI_D11 - SDMMC1_CMD - - EVENTOUT PD3 - - OCTOSPIM_P2_NCS LCD_CLK FMC_CLK - - EVENTOUT PD4 SDMMC2_CKIN - OCTOSPIM_P1_IO4 - FMC_NOE - - EVENTOUT PD5 - - OCTOSPIM_P1_IO5 - FMC_NWE - - EVENTOUT PD6 SDMMC2_CK - OCTOSPIM_P1_IO6 LCD_DE FMC_NWAIT SAI1_SD_A - EVENTOUT PD7 SDMMC2_CMD - OCTOSPIM_P1_IO7 - FMC_NCE/FMC _NE1 - - EVENTOUT PD8 - - DCMI_HSYNC/PSSI_ DE LCD_R3 FMC_D13 - - EVENTOUT PD9 - - DCMI_PIXCLK/PSSI_ PDCK LCD_R4 FMC_D14 SAI2_MCLK_A - EVENTOUT PD10 - TSC_G6_IO1 - LCD_R5 FMC_D15 SAI2_SCK_A - EVENTOUT PD11 - TSC_G6_IO2 - LCD_R6 FMC_A16 SAI2_SD_A LPTIM2_ETR EVENTOUT PD12 - TSC_G6_IO3 - LCD_R7 FMC_A17 SAI2_FS_A LPTIM2_IN1 EVENTOUT PD13 - TSC_G6_IO4 - - FMC_A18 - LPTIM2_OUT EVENTOUT PD14 - - - LCD_B2 FMC_D0 - - EVENTOUT PD15 - - - LCD_B3 FMC_D1 - - EVENTOUT Port DS12902 Rev 3 Port D AF10 AF11 AF12 SDMMC1/2/COM CAN2/OTG_FS/DCMI/ SDMMC2/LCD/D P1/2/TIM1/8/FM OCTOSPIM_P1/2/QU SI/LCD C/SWPMI1 ADSPI STM32L4Q5xx AF8 AF9 AF13 AF14 AF15 UART4/5/LPUA RT1/CAN2/SDM MC1/2 CAN1/TSC/LCD SAI1/2/TIM8 TIM2/8/15/16/1 7/LPTIM2 EVENOUT PE0 - - DCMI_D2/PSSI_D2 LCD_HSYNC FMC_NBL0 - TIM16_CH1 EVENTOUT PE1 - - DCMI_D3/PSSI_D3 LCD_VSYNC FMC_NBL1 - TIM17_CH1 EVENTOUT PE2 - TSC_G7_IO1 - LCD_R7 FMC_A23 SAI1_MCLK_A - EVENTOUT PE3 - TSC_G7_IO2 - LCD_R6 FMC_A19 SAI1_SD_B - EVENTOUT PE4 - TSC_G7_IO3 DCMI_D4/PSSI_D4 LCD_B7 FMC_A20 SAI1_FS_A - EVENTOUT PE5 - TSC_G7_IO4 DCMI_D6/PSSI_D6 LCD_G7 FMC_A21 SAI1_SCK_A - EVENTOUT PE6 - - DCMI_D7/PSSI_D7 LCD_G6 FMC_A22 SAI1_SD_A - EVENTOUT PE7 - - - LCD_B6 FMC_D4 SAI1_SD_B - EVENTOUT PE8 - - - LCD_B7 FMC_D5 SAI1_SCK_B - EVENTOUT PE9 - - OCTOSPIM_P1_NCL K LCD_G2 FMC_D6 SAI1_FS_B - EVENTOUT PE10 - TSC_G5_IO1 OCTOSPIM_P1_CLK LCD_G3 FMC_D7 SAI1_MCLK_B - EVENTOUT PE11 - TSC_G5_IO2 OCTOSPIM_P1_NCS LCD_G4 FMC_D8 - - EVENTOUT PE12 - TSC_G5_IO3 OCTOSPIM_P1_IO0 LCD_G5 FMC_D9 - - EVENTOUT PE13 - TSC_G5_IO4 OCTOSPIM_P1_IO1 LCD_G6 FMC_D10 - - EVENTOUT PE14 - - OCTOSPIM_P1_IO2 LCD_G7 FMC_D11 - - EVENTOUT PE15 - - OCTOSPIM_P1_IO3 LCD_R2 FMC_D12 - - EVENTOUT Port DS12902 Rev 3 Port E AF10 AF11 AF12 SDMMC1/2/COM CAN2/OTG_FS/DCMI/ SDMMC2/LCD/D P1/2/TIM1/8/FM OCTOSPIM_P1/2/QU SI/LCD C/SWPMI1 ADSPI STM32L4Q5xx Table 17. Alternate function AF8 to AF15(1) (continued) 129/312 130/312 Table 17. Alternate function AF8 to AF15(1) (continued) AF8 AF9 AF13 AF14 AF15 UART4/5/LPUA RT1/CAN2/SDM MC1/2 CAN1/TSC/LCD SAI1/2/TIM8 TIM2/8/15/16/1 7/LPTIM2 EVENOUT PF0 - - - - FMC_A0 - - EVENTOUT PF1 - - - - FMC_A1 - - EVENTOUT PF2 - - - - FMC_A2 - - EVENTOUT PF3 - - - - FMC_A3 - - EVENTOUT PF4 - - - - FMC_A4 - - EVENTOUT PF5 - - - - FMC_A5 - - EVENTOUT PF6 - - OCTOSPIM_P1_IO3 - - SAI1_SD_B - EVENTOUT PF7 - - OCTOSPIM_P1_IO2 - - SAI1_MCLK_B - EVENTOUT PF8 - - OCTOSPIM_P1_IO0 - - SAI1_SCK_B - EVENTOUT PF9 - - OCTOSPIM_P1_IO1 - - SAI1_FS_B TIM15_CH1 EVENTOUT PF10 - - DCMI_D11/PSSI_D11 - - SAI1_D3 TIM15_CH2 EVENTOUT PF11 - LCD_DE DCMI_D12/PSSI_D12 - - - - EVENTOUT PF12 - - - LCD_B0 FMC_A6 - - EVENTOUT PF13 - - - LCD_B1 FMC_A7 - - EVENTOUT PF14 - TSC_G8_IO1 - LCD_G0 FMC_A8 - - EVENTOUT PF15 - TSC_G8_IO2 - LCD_G1 FMC_A9 - - EVENTOUT Port DS12902 Rev 3 Port F AF10 AF11 AF12 SDMMC1/2/COM CAN2/OTG_FS/DCMI/ SDMMC2/LCD/D P1/2/TIM1/8/FM OCTOSPIM_P1/2/QU SI/LCD C/SWPMI1 ADSPI STM32L4Q5xx AF8 AF9 AF13 AF14 AF15 UART4/5/LPUA RT1/CAN2/SDM MC1/2 CAN1/TSC/LCD SAI1/2/TIM8 TIM2/8/15/16/1 7/LPTIM2 EVENOUT PG0 - TSC_G8_IO3 - - FMC_A10 - - EVENTOUT PG1 - TSC_G8_IO4 - - FMC_A11 - - EVENTOUT PG2 - - - SDMMC2_D4 FMC_A12 SAI2_SCK_B - EVENTOUT PG3 - - - SDMMC2_D5 FMC_A13 SAI2_FS_B - EVENTOUT PG4 - - - SDMMC2_D6 FMC_A14 SAI2_MCLK_B - EVENTOUT PG5 LPUART1_CTS - - SDMMC2_D7 FMC_A15 SAI2_SD_B - EVENTOUT PG6 LPUART1_RTS_ DE LCD_R1 - - - - - EVENTOUT PG7 LPUART1_TX - - - FMC_INT SAI1_MCLK_A - EVENTOUT PG8 LPUART1_RX - - - - - - EVENTOUT PG9 - - - SDMMC2_D0 FMC_NCE/FMC _NE2 SAI2_SCK_A TIM15_CH1N EVENTOUT PG10 - - - SDMMC2_D1 FMC_NE3 SAI2_FS_A TIM15_CH1 EVENTOUT PG11 - - - SDMMC2_D2 - SAI2_MCLK_A TIM15_CH2 EVENTOUT PG12 - - - SDMMC2_D3 FMC_NE4 SAI2_SD_A - EVENTOUT PG13 - - - LCD_R0 FMC_A24 - - EVENTOUT PG14 - - - LCD_R1 FMC_A25 - - EVENTOUT PG15 - - DCMI_D13/PSSI_D13 - - - - EVENTOUT Port DS12902 Rev 3 Port G AF10 AF11 AF12 SDMMC1/2/COM CAN2/OTG_FS/DCMI/ SDMMC2/LCD/D P1/2/TIM1/8/FM OCTOSPIM_P1/2/QU SI/LCD C/SWPMI1 ADSPI STM32L4Q5xx Table 17. Alternate function AF8 to AF15(1) (continued) 131/312 132/312 Table 17. Alternate function AF8 to AF15(1) (continued) AF8 AF9 AF13 AF14 AF15 UART4/5/LPUA RT1/CAN2/SDM MC1/2 CAN1/TSC/LCD SAI1/2/TIM8 TIM2/8/15/16/1 7/LPTIM2 EVENOUT PH0 - - - - - - - EVENTOUT PH1 - - - - - - - EVENTOUT PH2 - - - - - - - EVENTOUT PH3 - - - - - - - EVENTOUT PH4 - - PSSI_D14 - - - - EVENTOUT PH5 - - DCMI_PIXCLK/PSSI_ PDCK - - - - EVENTOUT PH6 - - DCMI_D8/PSSI_D8 - - - - EVENTOUT PH7 - - DCMI_D9/PSSI_D9 - - - - EVENTOUT PH8 - - DCMI_HSYNC/PSSI_ DE - - - - EVENTOUT PH9 - - DCMI_D0/PSSI_D0 - - - - EVENTOUT PH10 - - DCMI_D1/PSSI_D1 - - - - EVENTOUT PH11 - - DCMI_D2/PSSI_D2 - - - - EVENTOUT PH12 - - DCMI_D3/PSSI_D3 - - - - EVENTOUT PH13 - CAN1_TX - - - - - EVENTOUT PH14 - - DCMI_D4/PSSI_D4 - - - - EVENTOUT PH15 - - DCMI_D11/PSSI_D11 - - - - EVENTOUT Port DS12902 Rev 3 Port H AF10 AF11 AF12 SDMMC1/2/COM CAN2/OTG_FS/DCMI/ SDMMC2/LCD/D P1/2/TIM1/8/FM OCTOSPIM_P1/2/QU SI/LCD C/SWPMI1 ADSPI STM32L4Q5xx AF8 AF9 AF13 AF14 AF15 UART4/5/LPUA RT1/CAN2/SDM MC1/2 CAN1/TSC/LCD SAI1/2/TIM8 TIM2/8/15/16/1 7/LPTIM2 EVENOUT PI0 - - DCMI_D13/PSSI_D13 - - - - EVENTOUT PI1 - - DCMI_D8/PSSI_D8 - - - - EVENTOUT PI2 - - DCMI_D9/PSSI_D9 - - - - EVENTOUT PI3 - - DCMI_D10/PSSI_D10 - - - - EVENTOUT PI4 - - DCMI_D5/PSSI_D5 - - - - EVENTOUT PI5 - - DCMI_VSYNC/PSSI_ RDY - - - - EVENTOUT PI6 - - DCMI_D6/PSSI_D6 - - - - EVENTOUT PI7 - - DCMI_D7/PSSI_D7 - - - - EVENTOUT PI8 - - DCMI_D12/PSSI_D12 - - - - EVENTOUT PI9 - CAN1_RX - - - - - EVENTOUT PI10 - - PSSI_D14 - - - - EVENTOUT PI11 - - PSSI_D15 - - - - EVENTOUT Port Port I DS12902 Rev 3 1. Refer to previous table for AF0 to AF7. AF10 AF11 AF12 SDMMC1/2/COM CAN2/OTG_FS/DCMI/ SDMMC2/LCD/D P1/2/TIM1/8/FM OCTOSPIM_P1/2/QU SI/LCD C/SWPMI1 ADSPI STM32L4Q5xx Table 17. Alternate function AF8 to AF15(1) (continued) 133/312 Memory mapping 5 STM32L4Q5xx Memory mapping For memory map and peripheral register boundary addresses refer to the corresponding section of reference manual RM0432. 134/312 DS12902 Rev 3 STM32L4Q5xx Electrical characteristics 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean ±2σ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 24. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 25. Figure 24. Pin loading conditions Figure 25. Pin input voltage MCU pin MCU pin C = 50 pF VIN MS19210V1 DS12902 Rev 3 MS19211V1 135/312 277 Electrical characteristics 6.1.6 STM32L4Q5xx Power supply scheme Figure 26. STM32L4Q5xx power supply scheme VBAT Backup circuitry (LSE, RTC, Backup registers) 1.55 – 3.6 V Power switch 2 x VDD12(1) 1.00 – 1.32 V VDD VCORE n x VDD Regulator n x 100 nF GPIOs IN +1 x 4.7 μF Level shifter OUT IO logic Level shifter VDDIO1 IO logic Kernel logic (CPU, Digital & Memories) n x VSS VDDIO2 m x VDDIO2 VDDIO2 OUT m x100 nF +4.7 μF GPIOs IN m x VSS VDDA VDDA VREF 10 nF +1 μF VREF+ VREF- 100 nF +1 μF ADCs/ DACs/ OPAMPs/ COMPs/ VREFBUF VSSA (1) VDD12 available only on packages with external SMPS. MSv45701V3 Caution: 136/312 Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. DS12902 Rev 3 STM32L4Q5xx 6.1.7 Electrical characteristics Current consumption measurement The IDD_ALL parameters given in Table 25 to Table 39 represent the total MCU consumption including the current supplying VDD, VDDIO2, VDDA, VDDUSB and VBAT. Figure 27. Current consumption measurement IDD_USB IDD_USB VDDUSB VDDUSB IDD_VBAT IDD_VBAT VBAT VBAT IDD SMPS IDD IDDA VDD12 VDD VDD VDDIO2 VDDIO2 IDDA VDDA VDDA MSv45730V1 6.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 18: Voltage characteristics, Table 19: Current characteristics and Table 20: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 qualification standard, extended mission profiles are available on demand. Table 18. Voltage characteristics(1) Symbol Ratings Min Max Unit VDDX - VSS External main supply voltage (including VDD, VDDA, VDDIO2, VDDUSB, VBAT, VREF+) -0.3 4.0 V VDD12 - VSS External SMPS supply voltage Range 1 -0.3 Range 2 -0.3 1.4 V VIN(2) Input voltage on FT_xxx pins VSS-0.3 min (VDD, VDDA, VDDIO2, VDDUSB) + 4.0(3)(4) Input voltage on TT_xx pins VSS-0.3 4.0 Input voltage on any other pins VSS-0.3 4.0 DS12902 Rev 3 V 137/312 277 Electrical characteristics STM32L4Q5xx Table 18. Voltage characteristics(1) (continued) Symbol Ratings Min Max |∆VDDx| Variations between different VDDX power pins of the same domain - 50 Variations between all the different ground pins(5) - 50 Allowed voltage difference for VREF+ > VDDA - 0.4 |VSSx-VSS| VREF+ - VDDA Unit mV V 1. All main power (VDD, VDDA, VDDIO2, VDDUSB, VBAT) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 19: Current characteristics for the maximum allowed injected current values. 3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table. 4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled. 5. Include VREF- pin. Table 19. Current characteristics Symbol Ratings Max ∑IVDD Total current into sum of all VDD power lines (source)(1) (2) 200 ∑IVSS Total current out of sum of all VSS ground lines (sink)(1) (2) 200 IVDD(PIN) Maximum current into each VDD power pin (source)(1) 100 IVSS(PIN) (sink)(1) 100 IIO(PIN) ∑IIO(PIN) IINJ(PIN)(4) ∑|IINJ(PIN)| Maximum current out of each VSS ground pin Output current sunk by any I/O and control pin except FT_f 20 Output current sunk by any FT_f pin 20 Output current sourced by any I/O and control pin 20 Total output current sunk by sum of all I/Os and control pins(3) Unit 100 (3) Total output current sourced by sum of all I/Os and control pins 100 Injected current on FT_xxx, TT_xx, RST and B pins, except PA4, PA5 -5/+0(5) Injected current on PA4, PA5 -5/0 (6) Total injected current (sum of all I/Os and control pins) 25 1. All main power (VDD, VDDA, VDDIO2, VDDUSB, VBAT) and ground (VSS, VSSA) pins must always be connected to the external power supplies, in the permitted range. 2. Valid also for VDD12 on SMPS package. 3. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages. 4. Positive injection (when VIN > VDDIOx) is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 5. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 18: Voltage characteristics for the minimum allowed input voltage values. 6. When several inputs are submitted to a current injection, the maximum ∑|IINJ(PIN)| is the absolute sum of the negative injected currents (instantaneous values). 138/312 DS12902 Rev 3 mA STM32L4Q5xx Electrical characteristics Table 20. Thermal characteristics Symbol TSTG TJ Ratings Storage temperature range Maximum junction temperature 6.3 Operating conditions 6.3.1 General operating conditions Value Unit –65 to +150 °C 150 °C Table 21. General operating conditions Symbol Parameter Conditions Min Max Unit fHCLK Internal AHB clock frequency - 0 120 fPCLK1 Internal APB1 clock frequency - 0 120 fPCLK2 Internal APB2 clock frequency - 0 120 Standard operating voltage - 1.71(1) 3.6 V Up to 120 MHz 1.14 Up to 80 MHz 1.08 1.32 V Up to 26 MHz 1.00(2) At least one I/O in PG[15:2] used 1.08 3.6 0 3.6 VDD VDD12 VDDIO2 VDDA Standard operating voltage PG[15:2] I/Os supply voltage Analog supply voltage PG[15:2] not used ADC or COMP used 1.62 DAC or OPAMP used 1.8 VREFBUF used 2.4 ADC, DAC, OPAMP, COMP, VREFBUF not used VBAT VDDUSB Backup operating voltage USB supply voltage USB used USB not used TT_xx I/O VIN I/O input voltage All I/O except TT_xx DS12902 Rev 3 3.6 MHz V 0 1.55 3.6 3.0 3.6 0 3.6 -0.3 VDDIOx+0.3 -0.3 MIN(MIN(VDD, VDDA, VDDIO2, VDDUSB)+3.6 V, 5.5 V)(3)(4) V V 139/312 277 Electrical characteristics STM32L4Q5xx Table 21. General operating conditions (continued) Symbol Parameter Conditions LQFP144 LQFP100 UFBGA169 PD Power dissipation at TA = 85 °C for suffix 6(5) UFBGA132 WLCSP100 LQFP48 LQFP64 UFQFPN48 LQFP144 LQFP100 UFBGA169 PD Power dissipation at TA = 125 °C for suffix 3(5) UFBGA132 WLCSP100 LQFP48 LGFP64 UFQFPN48 Ambient temperature for the suffix 6 version TA Ambient temperature for the suffix 3 version TJ Junction temperature range Min Max Unit See Section 7.9: Thermal characteristics for application appropriate thermal resistance and package. Power dissipation is then calculated according ambient temperature (TA) and maximum junction temperature (TJ) and selected thermal resistance. mW See Section 7.9: Thermal characteristics for application appropriate thermal resistance and package. Power dissipation is then calculated according ambient temperature (TA) and maximum junction temperature (TJ) and selected thermal resistance. mW Maximum power dissipation –40 85 Low-power dissipation(6) –40 105 Maximum power dissipation –40 125 Low-power dissipation(6) –40 130 Suffix 6 version –40 105 Suffix 3 version –40 130 °C °C 1. When RESET is released functionality is guaranteed down to VBOR0 Min. 2. For Flash erase and program operation, VDD12 min must be 1.08 V. 3. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table. Maximum I/O input voltage is the smallest value between MIN(VDD, VDDA, VDDIO2, VDDUSB)+3.6 V and 5.5V. 4. For operation with voltage higher than Min (VDD, VDDA, VDDIO2, VDDUSB) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled. 5. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.9: Thermal characteristics). 6. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.9: Thermal characteristics). 140/312 DS12902 Rev 3 STM32L4Q5xx 6.3.2 Electrical characteristics Operating conditions at power-up / power-down The parameters given in Table 22 are derived from tests performed under the ambient temperature condition summarized in Table 21. Table 22. Operating conditions at power-up / power-down(1) Symbol Parameter Conditions Min Max - 0 ∞ ENULP=0 10 ∞ ENULP=1 100 ∞ 0 ∞ 10 ∞ 0 ∞ 10 ∞ 0 ∞ 10 ∞ VDD rise time rate tVDD VDD fall time rate VDDA rise time rate tVDDA - VDDA fall time rate VDDUSB rise time rate tVDDUSB - VDDUSB fall time rate VDDIO2 rise time rate tVDDIO2 - VDDIO2 fall time rate Unit µs/V ms/V µs/V µs/V µs/V 1. At power-up, the VDD12 voltage should not be forced externally. 6.3.3 Embedded reset and power control block characteristics The parameters given in Table 23 are derived from tests performed under the ambient temperature conditions summarized in Table 21: General operating conditions. Table 23. Embedded reset and power control block characteristics Symbol tRSTTEMPO(2) Parameter Reset temporization after BOR0 is detected VBOR0(2) Brown-out reset threshold 0 VBOR1 Brown-out reset threshold 1 VBOR2 Brown-out reset threshold 2 VBOR3 Brown-out reset threshold 3 VBOR4 Brown-out reset threshold 4 VPVD0 Programmable voltage detector threshold 0 Conditions(1) Min Typ Max Unit - 250 400 μs Rising edge 1.62 1.66 1.7 Falling edge 1.6 1.64 1.69 Rising edge 2.06 2.1 2.14 Falling edge 1.96 2 2.04 Rising edge 2.26 2.31 2.35 Falling edge 2.16 2.20 2.24 Rising edge 2.56 2.61 2.66 Falling edge 2.47 2.52 2.57 Rising edge 2.85 2.90 2.95 Falling edge 2.76 2.81 2.86 Rising edge 2.1 2.15 2.19 Falling edge 2 2.05 2.1 VDD rising DS12902 Rev 3 V V V V V V 141/312 277 Electrical characteristics STM32L4Q5xx Table 23. Embedded reset and power control block characteristics (continued) Symbol Parameter VPVD1 PVD threshold 1 VPVD2 PVD threshold 2 VPVD3 PVD threshold 3 VPVD4 PVD threshold 4 VPVD5 PVD threshold 5 VPVD6 PVD threshold 6 Vhyst_BORH0 Hysteresis voltage of BORH0 Conditions(1) Min Typ Max Rising edge 2.26 2.31 2.36 Falling edge 2.15 2.20 2.25 Rising edge 2.41 2.46 2.51 Falling edge 2.31 2.36 2.41 Rising edge 2.56 2.61 2.66 Falling edge 2.47 2.52 2.57 Rising edge 2.69 2.74 2.79 Falling edge 2.59 2.64 2.69 Rising edge 2.85 2.91 2.96 Falling edge 2.75 2.81 2.86 Rising edge 2.92 2.98 3.04 Falling edge 2.84 2.90 2.96 Hysteresis in continuous mode - 20 - Hysteresis in other mode - 30 - Unit V V V V V mV Hysteresis voltage of BORH (except BORH0) and PVD - - 100 - mV BOR(3) (except BOR0) and PVD consumption from VDD with ENULP=0 - - 1.1 1.6 µA BOR(3) (except BOR0) and PVD consumption from VDD with ENULP=1 - - 55 1000 nA VPVM1 VDDUSB peripheral voltage monitoring - 1.18 1.22 1.26 V VPVM3 VDDA peripheral voltage monitoring Rising edge 1.61 1.65 1.69 Falling edge 1.6 1.64 1.68 VPVM4 VDDA peripheral voltage monitoring Rising edge 1.78 1.82 1.86 Falling edge 1.77 1.81 1.85 Vhyst_BOR_PVD IDD (BOR_PVD)(2) V V Vhyst_PVM3 PVM3 hysteresis - - 10 - mV Vhyst_PVM4 PVM4 hysteresis - - 10 - mV PVM1 and PVM2 IDD (PVM1/PVM2)(2) consumption from VDD - - 0.2 - µA IDD PVM3 and PVM4 (PVM3/PVM4)(2) consumption from VDD - - 2 - µA 1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes. 2. Guaranteed by design. 142/312 V DS12902 Rev 3 STM32L4Q5xx Electrical characteristics 3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply current characteristics tables. 6.3.4 Embedded voltage reference The parameters given in Table 24 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. Table 24. Embedded internal voltage reference Symbol Parameter VREFINT Internal reference voltage Conditions Min Typ –40 °C < TJ < +130 °C 1.182 1.212 Max Unit 1.232 V ADC sampling time when reading the internal reference voltage - 4(2) - - µs Start time of reference voltage buffer when ADC is enable - - 8 12(2) µs VREFINT buffer consumption from VDD IDD(VREFINTBUF) when converted by ADC - - 12.5 20(2) µA tS_vrefint (1) tstart_vrefint ∆VREFINT Internal reference voltage spread over the temperature range VDD = 3 V - 5 7.5(2) mV TCoeff Average temperature coefficient –40°C < TJ < +130°C - 30 50(2) ppm/°C ACoeff Long term stability 1000 hours, T = 25°C - 300 1000(2) ppm Average voltage coefficient 3.0 V < VDD < 3.6 V - 250 1200(2) ppm/V 24 25 26 49 50 51 74 75 76 VDDCoeff VREFINT_DIV1 1/4 reference voltage VREFINT_DIV2 1/2 reference voltage VREFINT_DIV3 3/4 reference voltage - % VREFINT 1. The shortest sampling time can be determined in the application by multiple iterations. 2. Guaranteed by design. DS12902 Rev 3 143/312 277 Electrical characteristics STM32L4Q5xx Figure 28. VREFINT versus temperature V 1.235 1.23 1.225 1.22 1.215 1.21 1.205 1.2 1.195 1.19 1.185 -40 -20 0 20 40 Mean 60 Min 80 100 120 °C Max MSv40169V2 144/312 DS12902 Rev 3 STM32L4Q5xx 6.3.5 Electrical characteristics Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code The current consumption is measured as described in . Typical and maximum current consumption The MCU is placed under the following conditions: • All I/O pins are in analog input mode • All peripherals are disabled except when explicitly mentioned • The Flash memory access time is adjusted with the minimum wait states number, depending on the fHCLK frequency (refer to the table “Number of wait states according to CPU clock (HCLK) frequency” available in the RM0432 reference manual). • When the peripherals are enabled fPCLK = fHCLK • The voltage scaling Range 1 is adjusted to fHCLK frequency as follows: – Voltage Range 1 Boost mode for 80 MHz < fHCLK
STM32L4Q5CGU6 价格&库存

很抱歉,暂时无法提供与“STM32L4Q5CGU6”相匹配的价格&库存,您可以联系我们找货

免费人工找货