0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32U585QII3

STM32U585QII3

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    UFBGA132

  • 描述:

    STM32U585QII3

  • 数据手册
  • 价格&库存
STM32U585QII3 数据手册
STM32U585xx Ultra-low-power Arm® Cortex®-M33 32-bit MCU+TrustZone®+FPU, 240 DMIPS, up to 2 MB Flash memory, 786 KB SRAM, crypto Datasheet - production data Features Includes ST state-of-the-art patented technology Ultra-low-power with FlexPowerControl • 1.71 V to 3.6 V power supply LQFP48 (7 x 7 mm) UFQFPN48 LQFP64 (10 x 10 mm) (7 x 7 mm) LQFP100 (14 x 14 mm) LQFP144 (20 x 20 mm) WLCSP90 (4.2 x 3.95 mm) UFBGA132 (7 x 7 mm) UFBGA169 (7 x 7 mm) • –40 °C to +85/125 °C temperature range • 651 CoreMark® (4.07 CoreMark®/MHz) • Low-power background autonomous mode (LPBAM): autonomous peripherals with DMA, functional down to Stop 2 mode • 535 ULPMark™-CP • VBAT mode: supply for RTC, 32 x 32-bit backup registers and 2-Kbyte backup SRAM • 149 ULPMark™-PP • 58.2 ULPMark™-CM • 133000 SecureMark™-TLS • 160 nA Shutdown mode (24 wakeup pins) Memories • 210 nA Standby mode (24 wakeup pins) • 2-Mbyte Flash memory with ECC, 2 banks read-while-write, including 512 Kbytes with 100 kcycles • 440 nA Standby mode with RTC • 1.9 μA Stop 3 mode with 16-Kbyte SRAM • 786-Kbyte SRAM with ECC OFF or 722-Kbyte SRAM including up to 322-Kbyte SRAM with ECC ON • 4.3 µA Stop 3 mode with full SRAM • 4.0 µA Stop 2 mode with 16-Kbyte SRAM • 8.95 µA Stop 2 mode with full SRAM • External memory interface supporting SRAM, PSRAM, NOR, NAND and FRAM memories • 19.5 μA/MHz Run mode @ 3.3 V • 2 Octo-SPI memory interfaces Core • Arm® 32-bit Cortex®-M33 CPU with TrustZone®, MPU, DSP, and FPU Security and cryptography ART Accelerator • Arm® TrustZone® and securable I/Os, memories and peripherals • PSA level 3 and SESIP level 3 certified • 8-Kbyte instruction cache allowing 0-wait-state execution from Flash and external memories: up to 160 MHz, 240 DMIPS • Flexible life cycle scheme with RDP and password protected debug • 4-Kbyte data cache for external memories • Root of trust thanks to unique boot entry and secure hide protection area (HDP) Power management • Secure firmware installation (SFI) thanks to embedded root secure services (RSS) • Embedded regulator (LDO) and SMPS step-down converter supporting switch on-the-fly and voltage scaling Benchmarks • Secure data storage with hardware unique key (HUK) • Secure firmware upgrade support with TF-M • 1.5 DMIPS/MHz (Drystone 2.1) June 2022 This is information on a product in full production. DS13086 Rev 6 1/334 www.st.com STM32U585xx • 2 AES coprocessors including one with DPA resistance • 3 SPIs (5x SPIs with the dual OCTOSPI) • Public key accelerator, DPA resistant • 2 SDMMC interfaces • 1 CAN FD controller • On-the-fly decryption of Octo-SPI external memories • HASH hardware accelerator • 1 multi-function digital filter (6 filters)+ 1 audio digital filter with sound-activity detection • Parallel synchronous slave interface • True random number generator, NIST SP800-90B compliant 16- and 4-channel DMA controllers, functional in Stop mode • 96-bit unique ID • 512-byte OTP (one-time programmable) Graphic features • Active tampers • Chrom-ART Accelerator (DMA2D) for enhanced graphic content creation Clock management • 1 digital camera interface • 4 to 50 MHz crystal oscillator Mathematical co-processor • 32 kHz crystal oscillator for RTC (LSE) • Internal 16 MHz factory-trimmed RC (±1%) • Internal low-power 32 kHz RC (±5%) • 2 internal multispeed 100 kHz to 48 MHz oscillators, including one auto-trimmed by LSE (better than ±0.25% accuracy) • Internal 48 MHz with clock recovery • 3 PLLs for system clock, USB, audio, ADC General-purpose input/outputs • Up to 136 fast I/Os with interrupt capability most 5V-tolerant and up to 14 I/Os with independent supply down to 1.08 V Up to 17 timers and 2 watchdogs • 2 16-bit advanced motor-control, 4 32-bit, 5 16-bit, 4 low-power 16-bit (available in Stop mode), 2 SysTick timers and 2 watchdogs • CORDIC for trigonometric functions acceleration • Filter mathematical accelerator (FMAC) Up to 22 capacitive sensing channels • Support touch key, linear and rotary touch sensors Rich analog peripherals (independent supply) • 14-bit ADC 2.5-Msps with hardware oversampling • 12-bit ADC 2.5-Msps, with hardware oversampling, autonomous in Stop 2 mode • 2 12-bit DAC, low-power sample and hold • 2 operational amplifiers with built-in PGA • 2 ultra-low-power comparators • RTC with hardware calendar and calibration CRC calculation unit Up to 22 communication peripherals Debug • 1 USB Type-C®/USB power delivery controller • 1 USB OTG 2.0 full-speed controller • 2 SAIs (serial-audio interface) • 4 I2C FM+(1 Mbit/s), SMBus/PMBus® • Development support: serial-wire debug (SWD), JTAG, Embedded Trace Macrocell™ (ETM) ECOPACK2 compliant packages • 6 USARTs (ISO 7816, LIN, IrDA, modem) Table 1. Device summary Reference STM32U585xx 2/334 Part numbers STM32U585AI, STM32U585CI, STM32U585OI, STM32U585QI, STM32U585RI, STM32U585VI, STM32U585ZI DS13086 Rev 6 STM32U585xx Contents Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1 Arm Cortex-M33 core with TrustZone and FPU . . . . . . . . . . . . . . . . . . . . 22 3.2 ART Accelerator (ICACHE and DCACHE) . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.1 Instruction cache (ICACHE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.2 Data cache (DCACHE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.5 3.6 3.4.1 Flash memory protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.2 Additional Flash memory protections when TrustZone activated . . . . . 27 3.4.3 FLASH privilege protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Embedded SRAMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.5.1 SRAMs TrustZone security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.5.2 SRAMs privilege protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 TrustZone security architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.6.1 TrustZone peripheral classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.6.2 Default TrustZone security state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.7 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.8 Global TrustZone controller (GTZC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.9 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.9.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.9.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.9.3 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.9.4 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.9.5 PWR TrustZone security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.10 Peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.11 Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.11.1 RCC TrustZone security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.12 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.13 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 50 DS13086 Rev 6 3/334 8 Contents STM32U585xx 3.13.1 3.14 Low-power general-purpose inputs/outputs (LPGPIO) . . . . . . . . . . . . . . 50 3.14.1 LPGPIO TrustZone security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.15 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.16 System configuration controller (SYSCFG) . . . . . . . . . . . . . . . . . . . . . . . 51 3.17 General purpose direct memory access controller (GPDMA) . . . . . . . . . 51 3.18 Low-power direct memory access controller (LPDMA) . . . . . . . . . . . . . . 53 3.19 Chrom-ART Accelerator controller (DMA2D) . . . . . . . . . . . . . . . . . . . . . . 55 3.20 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.20.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 56 3.20.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 56 3.21 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 57 3.22 CORDIC co-processor (CORDIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.23 Filter math accelerator (FMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.24 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 58 3.25 3.24.1 LCD parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.24.2 FSMC TrustZone security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Octo-SPI interface (OCTOSPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.25.1 OCTOSPI TrustZone security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.26 OCTOSPI I/O manager (OCTOSPIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.27 Delay block (DLYB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.28 Analog-to-digital converter (ADC1 and ADC4) . . . . . . . . . . . . . . . . . . . . . 60 3.28.1 Analog-to-digital converter 1 (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.28.2 Analog-to-digital converter 4 (ADC4) . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.28.3 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.28.4 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.28.5 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.29 Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.30 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.31 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.32 Operational amplifiers (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.33 Multi-function digital filter (MDF) and audio digital filter (ADF) . . . . . . . . . 67 3.34 4/334 GPIOs TrustZone security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.33.1 Multi-function digital filter (MDF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.33.2 Audio digital filter (ADF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 DS13086 Rev 6 STM32U585xx Contents 3.35 Parallel synchronous slave interface (PSSI) . . . . . . . . . . . . . . . . . . . . . . 71 3.36 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.37 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.38 Secure advanced encryption standard hardware accelerator (SAES) and encryption standard hardware accelerator (AES) . . . . . . . . . . . . . . . 73 3.39 HASH hardware accelerator (HASH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.40 On-the-fly decryption engine (OTFDEC) . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.41 Public key accelerator (PKA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.42 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.43 3.42.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.42.2 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16,TIM17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.42.3 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.42.4 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4) . . . . . . . . . . . . 79 3.42.5 Infrared interface (IRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.42.6 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.42.7 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.42.8 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Real-time clock (RTC), tamper and backup registers . . . . . . . . . . . . . . . 80 3.43.1 Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.43.2 Tamper and backup registers (TAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.44 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.45 Universal synchronous/asynchronous receiver transmitter (USART/UART) and low-power universal asynchronous receiver transmitter (LPUART) . 84 3.45.1 Universal synchronous/asynchronous receiver transmitter (USART/UART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.45.2 Low-power universal asynchronous receiver transmitter (LPUART) . . . 86 3.46 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.47 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.48 Secure digital input/output and MultiMediaCards interface (SDMMC) . . . 89 3.49 Controller area network (FDCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.50 USB on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.51 USB Type-C /USB Power Delivery controller (UCPD) . . . . . . . . . . . . . . . 93 3.52 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.52.1 Serial-wire/JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.52.2 Embedded Trace Macrocell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 DS13086 Rev 6 5/334 8 Contents 4 5 STM32U585xx Pinout, pin description and alternate functions . . . . . . . . . . . . . . . . . . 94 4.1 Pinout/ballout schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.3 Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.1 6/334 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.3.2 Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . 155 5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . 155 5.3.4 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 5.3.6 Wakeup time from low-power modes and voltage scaling transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 5.3.7 External clock timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 207 5.3.8 Internal clock timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 5.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 5.3.10 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 5.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 5.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 5.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 5.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 5.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 5.3.16 Extended interrupt and event controller input (EXTI) characteristics . . 234 5.3.17 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 5.3.18 14-bit analog-to-digital converter (ADC1) characteristics . . . . . . . . . . 235 5.3.19 12-bit analog-to-digital converter (ADC4) characteristics . . . . . . . . . . 241 5.3.20 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 DS13086 Rev 6 STM32U585xx 6 7 Contents 5.3.21 VCORE monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 5.3.22 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 5.3.23 Digital-to-analog converter characteristics . . . . . . . . . . . . . . . . . . . . . . 247 5.3.24 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 251 5.3.25 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 5.3.26 Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 255 5.3.27 Temperature and Backup domain supply thresholds monitoring . . . . . 258 5.3.28 ADF/MDF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 5.3.29 DCMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 5.3.30 PSSI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 5.3.31 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 5.3.32 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 5.3.33 OCTOSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 5.3.34 SD/SDIO/e•MMC card host interfaces (SDMMC) characteristics . . . . 286 5.3.35 Delay block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 5.3.36 I2C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 5.3.37 USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 5.3.38 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 5.3.39 SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 5.3.40 OTG_FS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 5.3.41 UCPD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 5.3.42 JTAG/SWD interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 297 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 6.1 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 6.2 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 6.3 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 6.4 WLSCP90 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .311 6.5 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 6.6 UFBGA132 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 6.7 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 6.8 UFBGA169 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 6.9 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 DS13086 Rev 6 7/334 8 Contents STM32U585xx 8 Important security notice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 8/334 DS13086 Rev 6 STM32U585xx List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 STM32U585xx features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Access status versus protection level and execution modes when TZEN = 0 . . . . . . . . . . 25 Access status versus protection level and execution modes when TZEN = 1 . . . . . . . . . . 26 Example of memory map security attribution versus SAU configuration regions . . . . . . . . 29 Boot modes when TrustZone is disabled (TZEN = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Boot modes when TrustZone is enabled (TZEN = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Boot space versus RDP protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 STM32U585xx mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 GPDMA1 channels implementation and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 GPDMA1 autonomous mode and wakeup in low-power modes. . . . . . . . . . . . . . . . . . . . . 53 LPDMA1 channels implementation and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 LPDMA1 autonomous mode and wakeup in low-power modes . . . . . . . . . . . . . . . . . . . . . 55 ADC features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 MDF features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 AES/SAES features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 USART, UART and LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 SPI features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 SAI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 SDMMC features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 STM32U585xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Alternate function AF0 to AF7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Alternate function AF8 to AF15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 155 Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Current consumption in Run mode on LDO, code with data processing running from Flash memory, ICACHE ON (1-way), prefetch ON . . . . . . . . . . . . . . . . . . . 160 Current consumption in Run mode on SMPS, code with data processing running from Flash memory, ICACHE ON (1-way), prefetch ON . . . . . . . . . . . . . . . . . . . 161 Current consumption in Run mode on SMPS, code with data processing running from Flash memory, ICACHE ON (1-way), prefetch ON, VDD = 3.0 V . . . . . . . . 162 Typical current consumption in Run mode on LDO, with different codes running from Flash memory in low-power mode, ICACHE ON (1-way), prefetch ON . . . 163 Typical current consumption in Run mode on LDO, with different codes running from Flash memory, ICACHE ON (1-way), prefetch ON . . . . . . . . . . . . . . . . . . . 163 Typical current consumption in Run mode on SMPS, with different codes running from Flash memory in low-power mode, ICACHE ON (1-way), prefetch ON . . . 165 DS13086 Rev 6 9/334 12 List of tables Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. 10/334 STM32U585xx Typical current consumption in Run mode on SMPS, with different codes running from Flash memory, ICACHE ON (1-way), prefetch ON . . . . . . . . . . . . . . . . . . . 165 Current consumption in Sleep mode on LDO, Flash memory in power down . . . . . . . . . 167 Current consumption in Sleep mode on SMPS, Flash memory in power down . . . . . . . . 168 Current consumption in Sleep mode on SMPS, Flash memory in power down, VDD = 3.0 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 SRAM1/SRAM3 current consumption in Run/Sleep mode with LDO and SMPS . . . . . . . 170 Static power consumption of Flash banks, when supplied by LDO/SMPS . . . . . . . . . . . . 171 Current consumption in Stop 0 mode on LDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Current consumption in Stop 0 mode on SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Current consumption in Stop 1 mode on LDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Current consumption during wakeup from Stop 1 mode on LDO . . . . . . . . . . . . . . . . . . . 175 Current consumption in Stop 1 mode on SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Current consumption during wakeup from Stop 1 mode on SMPS . . . . . . . . . . . . . . . . . 177 Current consumption in Stop 2 mode on LDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 SRAM static power consumption in Stop 2 when supplied by LDO . . . . . . . . . . . . . . . . . 179 Current consumption during wakeup from Stop 2 mode on LDO . . . . . . . . . . . . . . . . . . . 180 Current consumption in Stop 2 mode on SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 SRAM static power consumption in Stop 2 when supplied by SMPS. . . . . . . . . . . . . . . . 182 Current consumption during wakeup from Stop 2 mode on SMPS . . . . . . . . . . . . . . . . . 183 Current consumption in Stop 3 mode on LDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 SRAM static power consumption in Stop 3 when supplied by LDO . . . . . . . . . . . . . . . . . 185 Current consumption during wakeup from Stop 3 mode on LDO . . . . . . . . . . . . . . . . . . . 186 Current consumption in Stop 3 mode on SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 SRAM static power consumption in Stop 3 when supplied by SMPS. . . . . . . . . . . . . . . . 188 Current consumption during wakeup from Stop 3 mode on SMPS . . . . . . . . . . . . . . . . . 189 Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Current consumption during wakeup from Standby mode . . . . . . . . . . . . . . . . . . . . . . . . 193 Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 Current consumption during wakeup from Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . 194 Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Typical dynamic current consumption of peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 Low-power mode wakeup timings on LDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Low-power mode wakeup timings on SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Regulator mode transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 Wakeup time using USART/LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 SHSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 EMI characteristics for fHSE = 8 MHz and fHCLK = 160 MHz. . . . . . . . . . . . . . . . . . . . . . . 222 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 DS13086 Rev 6 STM32U585xx Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. Table 108. Table 109. Table 110. Table 111. Table 112. Table 113. Table 114. Table 115. Table 116. Table 117. Table 118. Table 119. Table 120. Table 121. Table 122. Table 123. Table 124. Table 125. Table 126. Table 127. Table 128. Table 129. Table 130. Table 131. Table 132. Table 133. Table 134. Table 135. Table 136. Table 137. Table 138. Table 139. Table 140. Table 141. Table 142. Table 143. Table 144. List of tables I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Output voltage characteristics for FT_t I/Os in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 228 Output AC characteristics, HSLV OFF (all I/Os except FT_c) . . . . . . . . . . . . . . . . . . . . . 228 Output AC characteristics, HSLV ON (all I/Os except FT_c) . . . . . . . . . . . . . . . . . . . . . . 231 Output AC characteristics for FT_c I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 Output AC characteristics for FT_t I/Os in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 EXTI input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 14-bit ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Maximum RAIN for 14-bit ADC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 14-bit ADC1 accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 12-bit ADC4 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 Maximum RAIN for 12-bit ADC4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 12-bit ADC4 accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 VCORE monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 ADF characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 MDF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 PSSI transmit characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 PSSI receive characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 WWDG min/max timeout value at 160 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 268 Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . 268 Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 269 Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 270 Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 271 Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 271 Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 272 Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 273 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 277 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 280 OCTOSPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 OCTOSPI characteristics in DTR mode (no DQS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 OCTOSPI characteristics in DTR mode (with DQS)/HyperBus . . . . . . . . . . . . . . . . . . . . 283 SD/e•MMC characteristics (VDD = 2.7 V to 3.6 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 DS13086 Rev 6 11/334 12 List of tables Table 145. Table 146. Table 147. Table 148. Table 149. Table 150. Table 151. Table 152. Table 153. Table 154. Table 155. Table 156. Table 157. Table 158. Table 159. Table 160. Table 161. Table 162. Table 163. Table 164. Table 165. Table 166. Table 167. 12/334 STM32U585xx e•MMC characteristics (VDD = 1.71 V to 1.9 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 Delay block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 OTG_FS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 UCPD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 JTAG characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 SWD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 UFQFPN48 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 LQFP48 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 LQFP64 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 WLCSP90 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 WLCSP90 - Recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 LQFP100 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 UFBGA132 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 UFBGA132 - Recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . 319 LQFP144 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 UFBGA169 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 UFBGA169 - Recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . 326 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 DS13086 Rev 6 STM32U585xx List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. STM32U585xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 STM32U585xQ power supply overview (with SMPS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 STM32U585xx power supply overview (without SMPS). . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Power-up /down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 VREFBUF block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 LQFP48_SMPS pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 UFQFPN48_SMPS pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 LQFP64_SMPS pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 WLCSP90-SMPS ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 LQFP100_SMPS pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 UFBGA132 _SMPS ballout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 UFBGA132 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 LQFP144 _SMPS pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 UFBGA169_SMPS ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 UFBGA169 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 STM32U585xx power supply scheme (without SMPS) . . . . . . . . . . . . . . . . . . . . . . . . . . 149 STM32U585xQ power supply scheme (with SMPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 AC timing diagram for high-speed external clock source . . . . . . . . . . . . . . . . . . . . . . . . . 208 AC timing diagram for low-speed external square clock source . . . . . . . . . . . . . . . . . . . . 208 AC timing diagram for low-speed external sinusoidal clock source . . . . . . . . . . . . . . . . . 209 Typical application with a 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 HSI48 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 I/O input characteristics (all I/Os except BOOT0 and FT_c). . . . . . . . . . . . . . . . . . . . . . . 226 Output AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 Typical connection diagram when using the ADC with FT/TT pins featuring analog switch function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 VREFBUF_OUT versus temperature (VRS = 000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 VREFBUF_OUT versus temperature (VRS = 001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 VREFBUF_OUT versus temperature (VRS = 010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 VREFBUF_OUT versus temperature (VRS = 011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 OPAMP voltage noise density, normal mode, RLOAD = 3.9 kΩ . . . . . . . . . . . . . . . . . . . . 258 OPAMP voltage noise density, low-power mode, RLOAD = 20 kΩ . . . . . . . . . . . . . . . . . . 258 ADF timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 MDF timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 DS13086 Rev 6 13/334 15 List of figures Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. Figure 78. Figure 79. Figure 80. Figure 81. Figure 82. Figure 83. Figure 84. Figure 85. Figure 86. Figure 87. Figure 88. Figure 89. Figure 90. Figure 91. Figure 92. Figure 93. Figure 94. Figure 95. Figure 96. Figure 97. Figure 98. Figure 99. 14/334 STM32U585xx DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 PSSI receive timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 PSSI transmit timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 267 Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 269 Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 270 Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 272 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 276 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 279 NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 280 OCTOSPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 OCTOSPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 OCTOSPI HyperBus clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 OCTOSPI HyperBus read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 OCTOSPI HyperBus read with double latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 OCTOSPI HyperBus write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 SD high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 SDMMC DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 USART timing diagram in master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 USART timing diagram in slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 SAI master timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 SAI slave timing digram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 JTAG timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 SWD timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 UFQFPN48 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 UFQFPN48 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 LQFP48 - Outline(15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 LQFP48 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 LQFP64 - Outline(15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 LQFP64 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 WLCSP90 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 WLCSP90 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 WLCSP90 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 LQFP100 - Outline(15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 LQFP100 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 UFBGA132 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 UFBGA132 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 UFBGA132 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 LQFP144 - Outline(15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 DS13086 Rev 6 STM32U585xx Figure 100. Figure 101. Figure 102. Figure 103. Figure 104. List of figures LQFP144 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 UFBGA169 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 UFBGA169 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 UFBGA169 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 DS13086 Rev 6 15/334 15 Introduction 1 STM32U585xx Introduction This document provides the ordering information and mechanical device characteristics of the STM32U585xx microcontrollers. For information on the Arm®(a) Cortex®-M33 core, refer to the Cortex®-M33 Technical Reference Manual, available from the www.arm.com website. For information on the device errata with respect to the datasheet and reference manual, refer to the STM32U575xx and STM32U585xx errata sheet (ES0499) a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. 16/334 DS13086 Rev 6 STM32U585xx 2 Description Description The STM32U585xx devices belong to an ultra-low-power microcontrollers family (STM32U5 Series) based on the high-performance Arm® Cortex®-M33 32-bit RISC core. They operate at a frequency of up to 160 MHz. The Cortex®-M33 core features a single-precision FPU (floating-point unit), that supports all the Arm® single-precision data-processing instructions and all the data types. The Cortex®-M33 core also implements a full set of DSP (digital signal processing) instructions and a MPU (memory protection unit) that enhances the application security. The devices embed high-speed memories (2 Mbytes of Flash memory and 786 Kbytes of SRAM), a FSMC (flexible external memory controller) for static memories (for devices with packages of 90 pins and more), two Octo-SPI Flash memory interfaces (at least one Quad-SPI available on all packages) and an extensive range of enhanced I/Os and peripherals connected to three APB buses, three AHB buses and a 32-bit multi-AHB bus matrix. The devices offer security foundation compliant with the TBSA (trusted-based security architecture) requirements from Arm®. It embeds the necessary security features to implement a secure boot, secure data storage and secure firmware update. Besides these capabilities, the devices incorporate a secure firmware installation feature, that allows the customer to secure the provisioning of the code during its production. A flexible lifecycle is managed thanks to multiple levels of readout protection and debug unlock with password. Firmware hardware isolation is supported thanks to securable peripherals, memories and I/Os, and privilege configuration of peripherals and memories. The devices feature several protection mechanisms for embedded Flash memory and SRAM: readout protection, write protection, secure and hide protection areas. The devices embed several peripherals reinforcing security: a fast AES coprocessor, a secure AES coprocessor with DPA resistance and hardware unique key that can be shared by hardware with fast AES, a PKA (public key accelerator) with DPA resistance, an on-the-fly decryption engine for Octo-SPI external memories, a HASH hardware accelerator, and a true random number generator. The devices offer active tamper detection and protection against transient and environmental perturbation attacks, thanks to several internal monitoring generating secret data erase in case of attack. This helps to fit the PCI requirements for point of sales applications. The devices offer one fast 14-bit ADC (2.5 Msps), one 12-bit ADC (2.5 Msps), two comparators, two operational amplifiers, two DAC channels, an internal voltage reference buffer, a low-power RTC, four 32-bit general-purpose timers, two 16-bit PWM timers dedicated to motor control, three 16-bit general-purpose timers, two 16-bit basic timers and four 16-bit low-power timers. The devices support a MDF (multi-function digital filter) with six filters dedicated to the connection of external sigma-delta modulators. Another low-power digital filter dedicated to audio signals is embedded (ADF), with one filter supporting sound-activity detection. The devices embed also a Chrom-ART Accelerator dedicated to graphic applications, and mathematical accelerators (a trigonometric functions accelerator plus a filter mathematical accelerator). In addition, up to 22 capacitive sensing channels are available. DS13086 Rev 6 17/334 21 Description STM32U585xx The devices also feature standard and advanced communication interfaces such as: four I2Cs, three SPIs, three USARTs, two UARTs, one low-power UART, two SAIs, one digital camera interface (DCMI), two SDMMCs, one FDCAN, one USB OTG full-speed, one USB Type-C /USB Power Delivery controller, and one generic synchronous 8-/16-bit PSSI (parallel data input/output slave interface). The devices operate in the –40 to +85 °C (+105 °C junction) and –40 to +125 °C (+130 °C junction) temperature ranges from a 1.71 to 3.6 V power supply. A comprehensive set of power-saving modes allow the design of low-power applications. Many peripherals (including communication, analog, timers and audio peripherals) can be functional and autonomous down to Stop mode with direct memory access, thanks to LPBAM support (low-power background autonomous mode). Some independent power supplies are supported like an analog independent supply input for ADC, DACs, OPAMPs and comparators, a 3.3 V dedicated supply input for USB and up to 14 I/Os, that can be supplied independently down to 1.08 V. A VBAT input is available for connecting a backup battery in order to preserve the RTC functionality and to backup 32 32-bit registers and 2-Kbyte SRAM. The devices offer eight packages from 48 to 169 pins. Flash memory (Mbytes) SRAM 18/334 2048 backup SRAM + 128 backup registers Yes(1) No Yes(2) 2(3) 2 Advanced control 2 (16 bits) General purpose 4 (32 bits) and 3 (16 bits) Basic 2 (16 bits) Low power 4 (16 bits) SysTick timer 2 Watchdog timers (independent, window) 2 DS13086 Rev 6 STM32U585AI STM32U585ZI STM32U585QI 784 (192+64+512+16) Backup (bytes) OCTOSPI Timers 2 System (Kbytes) External memory controller for static memories (FSMC) STM32U585VI STM32U585OI STM32U585RI Peripherals STM32U585CI Table 2. STM32U585xx features and peripheral counts STM32U585xx Description STM32U585ZI STM32U585AI 4/3 -/8 8/7 8/8 8/7 8/8 2/2 3/2 -/7 7/6 7/7 7/6 7/7 STM32U585VI 3/3 SPI 3 I2C 4 USART 3 UART 1 2 LPUART 1 Communication SAI interfaces FDCAN 1 2 1 OTG FS Yes UCPD Yes SDMMC Camera interface PSSI MDF (multi-function digital filter) 2(4) 0 No Yes/No(5) Yes No Yes/No(5) Yes Yes (2 filters) Yes (6 filters) ADF (audio digital filter) Yes CORDIC co-processor Yes FMAC (filter mathematical accelerator) Yes RTC (real-time clock) Yes Tamper pins (without SMPS / with SMPS) Active tampers (without SMPS / with SMPS)(6) True random number generator Yes SAES, AES Yes PKA (public key accelerator) Yes HASH (SHA-256) Yes On-the-fly decryption for OCTOSPI Yes GPIOs (without SMPS / with SMPS) Wakeup pins (without SMPS / with SMPS) Number of I/Os down to 1.08 V (without SMPS / with SMPS) STM32U585QI STM32U585OI STM32U585RI Peripherals STM32U585CI Table 2. STM32U585xx features and peripheral counts (continued) 37 / 33 51 / 47 69 82 / 79 17 / 15 18 / 17 23 23 / 22 24 / 24 24 / 23 24 / 24 0/0 0/0 6 0/0 13 / 10 14 / 13 14 / 11 DS13086 Rev 6 110 / 106 114 / 111 136 / 133 19/334 21 Description STM32U585xx 11 ADC DAC STM32U585AI 10 / 9 STM32U585ZI STM32U585OI 5/4 STM32U585QI STM32U585RI Capacitive sensing Number of channels (without SMPS / with SMPS) STM32U585VI Peripherals STM32U585CI Table 2. STM32U585xx features and peripheral counts (continued) 19 / 18 22 / 22 22 / 21 22 / 22 24 / 24 24 / 22 24 / 24 12-bit ADC 1 14-bit ADC 1 Nbr of channels (without SMPS / with SMPS) 11 / 10 17 / 15 16 20 / 18 Number of 12-bit D-to-A converters Internal voltage reference buffer 2 No Yes Analog comparator 2 Operational amplifiers 2 Maximum CPU frequency 160 MHz Operating voltage Operating temperature Package 1.71 to 3.6 V Ambient operating temperature: –40 to +85 °C / –40 to +125 °C Junction temperature: –40 to +105 °C / –40 to +130 °C LQFP48, UFQFPN 48 LQFP64 WLCSP 90 LQFP 100 UFBGA 132 LQFP144 UFBGA 169 1. For the WLCSP90 package, FSMC can only support 8-bit LCD interface. 2. For the LQFP100 package, only FSMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 chip select. 3. Two OCTOSPIs are available only in Muxed mode. 4. When both are used simultaneously, one supports only SDIO interface. 5. Available on packages without SMPS, not available on packages with SMPS. 6. Active tampers in output sharing mode (one output shared by all inputs). 20/334 DS13086 Rev 6 STM32U585xx Description Figure 1. STM32U585xx block diagram Arm Cortex-M33 160 MHz C-BUS TrustZone FPU FIFO S-BUS SDMMC1 FIFO D[7:0], D[3:1]dir CMD, CMDdir,CK, CKin D0dir, D2dir SDMMC2 IO[7:0], CLK, NCLK, NCS. DQS as AF OTFDEC1 and Octo-SPI1 memory interface IO[7:0], CLK, NCLK, NCS. DQS as AF OTFDEC2 and Octo-SPI2 memory interface Flash memory (up to 2 Mbytes) RNG AES HASH SAES SRAM1 (192 Kbytes) @VDDUSB PKA SRAM2 (64 Kbytes) SRAM3 (512 Kbytes) PHY NVIC FIFO ETM CLK, NE[4:1], NL, NBL[1:0], A[25:0], D[15:0], NOE, NWE, NWAIT, NCE, INT as AF Flexible static memory controller (FSMC): SRAM, PSRAM, NOR Flash,FRAM, NAND Flash AHB bus-matrix MPU ICACHE (8 Kbytes) TRACECLK, TRACED[3:0] JTAG/ SW DCACHE1 (4 Kbytes) NJTRST, JTDI, JTCK/SWCLK, JTMS/SWDIO, JTDO USB FS DCMI/PSSI DP DM D[15:0], CK, CMD as AF AHB2 160 MHz DMA2D @VDD VDD SHSI GPDMA1 HSI48 8 groups of 4 channels max as AF SDIN[5:0], CKIN[5:0], CCK0, CCK1 as AF GPIO port C GPIO port D GPIO port E PF[15:0] GPIO port F PG[15:2] PG[1:0] GPIO port G PH[15:0] GPIO port H PI[7:0] GPIO port I 136 AF EXT IT. WKP @VDD GTZC1 AHB/APB2 16b CRS AHB/APB1 16b TIM15 16b 1 channel, 1 compl. channel, BKIN as AF TIM16 16b 1 channel, 1 compl. channel, BKIN as AF TIM17 16b MOSI, MISO, SCK, NSS as AF MCLK_A, SD_A, FS_A, SCK_A, MCLK_B, SD_B, FS_B, SCK_B as AF smcard USART1 irDA WWDG AUDIOCLK as AF RTC_OUT[8:1], RTC_IN[8:1] VREF+ INP, INN, OUT INP, INN, OUT INP, INN, OUT INP, INN, OUT @VSW XTAL 32k TIM6 16b 32b 4 channels, ETR as AF TIM3 32b 4 channels, ETR as AF TIM4 32b 4 channels, ETR as AF TIM5 32b 4 channels, ETR as AF smcard USART2 irDA RX, TX, CK, CTS, RTS as AF smcard USART3 irDA RX, TX, CK, CTS, RTS as AF UART4 RX, TX, CTS, RTS as AF UART5 RX, TX, CTS, RTS as AF I2C1/SMBUS SCL, SDA, SMBA as AF I2C2/SMBUS SCL, SDA, SMBA as AF I2C4/SMBUS SCL, SDA, SMBA as AF @VDDA OpAmp2 IN1, IN2, CH1, CH2, ETR as AF LPTIM1 IN1, IN2, CH1, CH2, ETR as AF LPTIM3 IN1, OUT, ETR as AF LPTIM4 SCL, SDA, SMBA as AF I2C3/SMBUS MOSI, MISO, SCK, NSS as AF RX, TX, CTS, RTS_DE as AF SPI3 LPUART1 UCPD1 CC1, DBCC1, CC2, DBCC2, FRSCC1, FRSCC2 as AF IN1, IN2, CH1, CH2, ETR as AF D/A converter 1 DAC1_OUT1 D/A converter 2 DAC1_OUT2 AHB/APB3 VREF buffer @VDDA OpAmp1 TX, RX as AF @VDDA ITF TAMP COMP2 FDCAN1 LPTIM2 RTC @VDDA COMP1 MOSI, MISO, SCK, NSS as AF SPI2 TIM7 16b @VDDA AHB3 160 MHz RTC_OUT1, RTC_OUT2, RTC_REFIN, RTC_TS SAI2 Temperature monitoring APB3 160 MHz MCLK_A, SD_A, FS_A, SCK_A, MCLK_B, SD_B, FS_B, SCK_B as AF SRAM4 (16 Kbytes) LPDMA1 SAI1 WKUPx (x=1 to 8) TIM2 SPI1 AHB bus-matrix RX, TX, CK,CTS, RTS as AF APB2 160 MHz SYSCFG 2 channels, 1 compl. channel, BKIN as AF OSC_IN OSC_OUT Standby interface ITF TIM1/PWM TIM8/PWM IWDG APB1 160 MHz (max) 3 compl. channels (TIM1_CH[1:3]N), 4 channels (TIM1_CH[1:4]), ETR, BKIN, BKIN2 as AF LSI FMAC ADC1 3 compl. channels (TIM1_CH[1:3]N), 4 channels (TIM1_CH[1:4]), ETR, BKIN, BKIN2 as AF XTAL OSC 4- 50 MHz Reset and clock control CORDIC 17xIN @VSW CRC @VDDA VDDIO, VDDUSB, VDDA, VSSA, VDD, VSS, NRST PVD, PVM FIFO PE[15:0] GPIO port B BOR Int PLL 1, 2, 3 PHY PD[15:0] @VSW BKPSRAM (2 Kbytes) VDD = 1.71 to 3.6 V VSS @VDD Supply supervision PCLKx PC[12:0] GPIO port A HCLKx PC[15:13] Reset FCLK PB[15:0] MSI HSI16 AHB1 160 MHz PA[15:0] TSC MDF1 @VDD Power management Voltage regulator LDO and SMPS 3.3 to 1.2 V ITF ADC4 LPGPIO ADF1 19xIN IO[15:0] as AF SDIN0, CKIN0, CCK0, CCK1 as AF GTZC2 VDD power domain VDDUSB power domain VSW power domain VDDIO2 power domain VDDA power domain Note: VSW = VDD when VDD is above VBOR0, and VSW = VBAT when VDD is below VBOR0. MSv60471V6 DS13086 Rev 6 21/334 21 Functional overview STM32U585xx 3 Functional overview 3.1 Arm Cortex-M33 core with TrustZone and FPU The Cortex-M33 with TrustZone and FPU is a highly energy-efficient processor designed for microcontrollers and deeply embedded applications, especially those requiring efficient security. The Cortex-M33 processor delivers a high computational performance with low-power consumption and an advanced response to interrupts. It features: • Arm TrustZone technology, using the Armv8-M main extension supporting secure and non-secure states • MPUs (memory protection units), supporting up to 16 regions for secure and non-secure applications • Configurable SAU (secure attribute unit) supporting up to eight memory regions as secure or non-secure • Floating-point arithmetic functionality with support for single precision arithmetic The processor supports a set of DSP instructions that allows an efficient signal processing and a complex algorithm execution. The Cortex-M33 processor supports the following bus interfaces: • System AHB bus: The S-AHB (system AHB) bus interface is used for any instruction fetch and data access to the memory-mapped SRAM, peripheral, external RAM and external device, or Vendor_SYS regions of the Armv8-M memory map. • Code AHB bus: The C-AHB (code AHB) bus interface is used for any instruction fetch and data access to the code region of the Armv8-M memory map. Figure 1 shows the general block diagram of the STM32U585xx devices. 3.2 ART Accelerator (ICACHE and DCACHE) 3.2.1 Instruction cache (ICACHE) The ICACHE is introduced on C-AHB code bus of Cortex-M33 processor to improve performance when fetching instruction (or data) from both internal and external memories. ICACHE offers the following features: • 22/334 Multi-bus interface: – Slave port receiving the memory requests from the Cortex-M33 C-AHB code execution port – Master1 port performing refill requests to internal memories (Flash memory and SRAMs) – Master2 port performing refill requests to external memories (external Flash memory and RAMs through Octo-SPI and FMC interfaces) – Second slave port dedicated to ICACHE registers access DS13086 Rev 6 STM32U585xx • 3.2.2 Functional overview Close to zero wait-states instructions/data access performance: – 0 wait-state on cache hit – Hit-under-miss capability, allowing to serve new processor requests while a line refill (due to a previous cache miss) is still ongoing – Critical-word-first refill policy, minimizing processor stalls on cache miss – Hit ratio improved by two-ways set-associative architecture and pLRU-t replacement policy (pseudo-least-recently-used, based on binary tree), algorithm with best complexity/performance balance – Dual master ports allowing to decouple internal and external memory traffics, on fast and slow buses, respectively; also minimizing impact on interrupt latency – Optimal cache line refill thanks to AHB burst transactions (of the cache line size) – Performance monitoring by means of a hit counter and a miss counter • Extension of cacheable region beyond the code memory space, by means of address remapping logic that allows four cacheable external regions to be defined • Power consumption reduced intrinsically (more accesses to cache memory rather to bigger main memories); even improved by configuring ICACHE as direct mapped (rather than the default two-ways set-associative mode) • TrustZone security support • Maintenance operation for software management of cache coherency • Error management: detection of unexpected cacheable write access, with optional interrupt raising Data cache (DCACHE) The DCACHE is introduced on S-AHB system bus of Cortex-M33 processor to improve the performance of data traffic to/from external memories. DCACHE offers the following features: • • Multi-bus interface: – Slave port receiving the memory requests from the Cortex-M33 S-AHB system port – Master port performing refill requests to external memories (external Flash memory and RAMs through Octo-SPI and FMC interfaces) – Second slave port dedicated to DCACHE registers access Close to zero wait-states external data access performance: – Zero wait-states on cache hit – Hit-under-miss capability, allowing to serve new processor requests to cached data, while a line refill (due to a previous cache miss) is still ongoing – Critical-word-first refill policy for read transactions, minimizing processor stalls on cache miss – Hit ratio improved by two-ways set-associative architecture and pLRU-t replacement policy (pseudo-least-recently-used, based on binary tree), algorithm with best complexity/performance balance – Optimal cache line refill thanks to AHB burst transactions (of the cache line size) – Performance monitoring by means of two hit counters (for read and write) and two miss counters (for read and write) DS13086 Rev 6 23/334 93 Functional overview • Supported cache accesses: – Both write-back and write-through policies supported (selectable with AHB bufferable attribute) – Read and write-back always allocated – Write-through always non-allocated (write-around) – Byte, half-word and word writes supported • TrustZone security support • Maintenance operations for software management of cache coherency: • 3.3 STM32U585xx – Full cache invalidation (non interruptible) – Address range clean and/or invalidate operations (background task, interruptible) Error management: detection of error for master port request initiated by DCACHE (line eviction or clean operation), with optional interrupt raising Memory protection unit The MPU (memory protection unit) is used to manage the CPU accesses to the memory and to prevent one task to accidentally corrupt the memory or the resources used by any other active task. This memory area is organized into up to 16 protected areas. The MPU regions and registers are banked across secure and non-secure states. The MPU is especially helpful for applications where some critical or certified code must be protected against the misbehavior of other tasks. It is usually managed by a RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In a RTOS environment, the kernel can dynamically update the MPU area setting based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. 3.4 Embedded Flash memory The devices feature 2 Mbytes of embedded Flash memory that is available for storing programs and data. The Flash memory supports 10 000 cycles and up to 100 000 cycles on 512 Kbytes. A 128-bit instruction prefetch is implemented and can optionally be enabled. The Flash memory interface features: • Dual-bank operating modes • Read-while-write (RWW) This allows a read operation to be performed from one bank while an erase or program operation is performed to the other bank. The dual-bank boot is also supported. Each bank contains 128 pages of 8 Kbytes. The Flash memory also embeds 512-byte OTP (one-time programmable) for user data. The whole non-volatile memory embeds the ECC (error correction code) feature supporting: 24/334 • single-error detection and correction • double-error detection • ECC fail address report DS13086 Rev 6 STM32U585xx 3.4.1 Functional overview Flash memory protection The option bytes allow the configuration of flexible protections: • write protection (WRP) to protect areas against erasing and programming. Two areas per bank can be selected with 8-Kbyte granularity. • RDP (readout protection) to protect the whole memory, has four levels of protection available (see Table 3 and Table 4): – Level 0: no readout protection – Level 0.5: available only when TrustZone is enabled All read/write operations (if no write protection is set) from/to the non-secure Flash memory are possible. The debug access to secure area is prohibited. Debug access to non-secure area remains possible. – Level 1: memory readout protection The Flash memory cannot be read from or written to if either the debug features are connected or the boot in RAM or bootloader are selected. If TrustZone is enabled, the non-secure debug is possible and the boot in SRAM is not possible. Regressions from Level 1 to lower levels can be protected by password authentication. – Level 2: chip readout protection The debug features, the boot in RAM and the bootloader selection are disabled. A secure secret key can be configured in the secure options to allow the regression capability from Level 2 to Level 1. By default (key not configured), this Level 2 selection is irreversible and JTAG/SWD interfaces are disabled. If the secret key was previously configured in lower RDP levels, the device enables the RDP regression from Level 2 to Level 1 after password authentication through JTAG/SWD interface. Note: In order to reach the best protection level, it is recommended to activate TrustZone and to set the RDP Level 2 with password authentication regression enabled. Table 3. Access status versus protection level and execution modes when TZEN = 0 Area RDP level User execution (boot from Flash memory) Debug/boot from RAM/ bootloader(1) Read Write Erase Read Write Erase 1 Yes Yes Yes No No No(4) 2 Yes Yes Yes N/A N/A N/A 1 Yes No No Yes No No 2 Yes No No N/A N/A N/A 1 Yes Yes(4) N/A Yes Yes(4) N/A 2 Yes No(5) N/A N/A N/A N/A 1 Yes Yes(6) N/A Yes Yes(6) N/A 2 Yes Yes(6) N/A N/A N/A N/A Flash main memory System memory (2) Option bytes(3) OTP DS13086 Rev 6 25/334 93 Functional overview STM32U585xx Table 3. Access status versus protection level and execution modes when TZEN = 0 (continued) Area RDP level User execution (boot from Flash memory) Debug/boot from RAM/ bootloader(1) Read Write Erase Read Write Erase 1 Yes Yes N/A No No N/A(7) 2 Yes Yes N/A N/A N/A N/A 1 Yes Yes N/A No No N/A(8) 2 Yes Yes N/A N/A N/A N/A 1 Yes Yes Yes No(9) Yes Yes 2 Yes Yes Yes N/A N/A N/A Backup registers SRAM2/backup RAM OTFDEC regions (Octo-SPI) 1. When the protection level 2 is active, the debug port, the boot from RAM and the boot from system memory are disabled. 2. The system memory is only read-accessible, whatever the protection level (0, 1 or 2) and execution mode. 3. Option bytes are only accessible through the Flash memory registers and OPSTRT bit. 4. The Flash main memory is erased when the RDP option byte changes from level 1 to level 0. 5. SWAP_BANK option bit can be modified. 6. OTP can only be written once. 7. The backup registers are erased when RDP changes from level 1 to level 0. 8. All SRAMs are erased when RDP changes from level 1 to level 0. 9. The OTFDEC keys are erased when the RDP option byte changes from level 1 to level 0. Table 4. Access status versus protection level and execution modes when TZEN = 1 Area Flash main memory System memory (3) Option bytes(4) 26/334 RDP level User execution (boot from Flash memory) Debug/ bootloader(1) Read Write Erase Read Write Erase 0.5 Yes Yes Yes Yes(2) Yes(2) Yes(2) 1 Yes Yes Yes No No No(5) 2 Yes Yes Yes N/A N/A N/A 0.5 Yes No No Yes No No 1 Yes No No Yes No No 2 Yes No No N/A N/A N/A 0.5 Yes Yes(5) N/A Yes Yes (5) N/A 1 Yes Yes(5) N/A Yes Yes(5) N/A 2 Yes No(6) N/A N/A N/A N/A DS13086 Rev 6 STM32U585xx Functional overview Table 4. Access status versus protection level and execution modes when TZEN = 1 (continued) RDP level Area OTP Backup registers SRAM2/backup RAM OTFDEC regions (Octo-SPI) User execution (boot from Flash memory) Debug/ bootloader(1) Read Write Erase Read Write Erase 0.5 Yes Yes(7) N/A Yes Yes(7) N/A 1 Yes Yes(7) N/A Yes Yes(7) N/A 2 Yes Yes(7) N/A N/A N/A N/A 0.5 Yes Yes N/A Yes(2) Yes(2) N/A(8) 1 Yes Yes N/A No No N/A(8) 2 Yes Yes N/A N/A N/A N/A 0.5 Yes Yes N/A Yes(2) Yes(2) N/A(9) 1 Yes Yes N/A No No N/A(9) 2 Yes Yes N/A N/A N/A N/A 0.5 Yes Yes Yes No(10) Yes Yes 1 Yes Yes Yes No(10) Yes Yes 2 Yes Yes Yes N/A N/A N/A 1. When the protection level 2 is active, the debug port and the bootloader mode are disabled. 2. Depends on TrustZone security access rights. 3. The system memory is only read-accessible, whatever the protection level (0, 1 or 2) and execution mode. 4. Option bytes are only accessible through the Flash memory registers and OPSTRT bit. 5. The Flash main memory is erased when the RDP option byte regresses from level 1 to level 0. 6. SWAP_BANK option bit can be modified. 7. OTP can only be written once. 8. The backup registers are erased when RDP changes from level 1 to level 0. 9. All SRAMs are erased when RDP changes from level 1 to level 0. 10. The OTFDEC keys are erased when the RDP option byte changes from level 1 to level 0. 3.4.2 Additional Flash memory protections when TrustZone activated When the TrustZone security is enabled through option bytes, the whole Flash memory is secure after reset and the following protections are available: • non-volatile watermark-based secure Flash memory area The secure area can be accessed only in Secure mode. One area per bank can be selected with a page granularity. • secure HDP (hide protection area) It is part of the Flash memory secure area and can be protected to deny an access to this area by any data read, write and instruction fetch. For example, a software code in the secure Flash memory hide protection area can be executed only once and deny DS13086 Rev 6 27/334 93 Functional overview STM32U585xx any further access to this area until next system reset. One area per bank can be selected at the beginning of the secure area. • volatile block-based secure Flash memory area Each page can be programmed on-the-fly as secure or non-secure. 3.4.3 FLASH privilege protection Each Flash memory page can be programmed on-the-fly as privileged or unprivileged. 3.5 Embedded SRAMs Five SRAMs are embedded in the STM32U585xx devices, each with specific features. SRAM1, SRAM2, and SRAM3 are the main SRAMs. SRAM4 is in the SRAM used for peripherals LPBAM (low-power background autonomous mode) in Stop 2 mode. These SRAMs are made of several blocks that can be powered down in Stop mode to reduce consumption: 3.5.1 • SRAM1: three 64-Kbyte blocks (total 192 Kbytes) • SRAM2: 8-Kbyte + 56-Kbyte blocks (total 64 Kbytes) with optional ECC. In addition SRAM2 blocks can be retained in Standby mode. • SRAM3: eight 64-Kbyte blocks (total 512 Kbytes) with optional ECC. When ECC is enabled, 256 Kbytes support ECC and 192 Kbytes of SRAM3 can be accessed without ECC. • SRAM4: 16 Kbytes • BKPSRAM (backup SRAM): 2 Kbytes with optional ECC. The BKPSRAM can be retained in all low-power modes and when VDD is off in VBAT mode, but not in Shutdown mode. SRAMs TrustZone security When the TrustZone security is enabled, all SRAMs are secure after reset. The SRAM1, SRAM2, SRAM3, SRAM4 can be programmed as secure or non-secure by blocks, using the MPCBB (block-based memory protection controller). The granularity of SRAM secure block based is a page of 512 bytes. Backup SRAM regions can be programmed as secure or non-secure with watermark, using the TZSC (TrustZone security controller) in the GTZC (global TrustZone controller). 3.5.2 SRAMs privilege protection The SRAM1, SRAM2, SRAM3, SRAM4 can be programmed as privileged or unprivileged by blocks, using the MPCBB. The granularity of SRAM privilege block based is a page of 512 bytes. Backup SRAM regions can be programmed as privileged or unprivileged with watermark, using the TZSC (TrustZone security controller) in the GTZC (global TrustZone controller). 28/334 DS13086 Rev 6 STM32U585xx 3.6 Functional overview TrustZone security architecture The security architecture is based on Arm TrustZone with the Armv8-M main extension. The TrustZone security is activated by the TZEN option bit in the FLASH_OPTR register. When the TrustZone is enabled, the SAU (security attribution unit) and IDAU (implementation defined attribution unit) define the access permissions based on secure and non-secure state. • SAU: up to eight SAU configurable regions are available for security attribution. • IDAU: It provides a first memory partition as non-secure or non-secure callable attributes. It is then combined with the results from the SAU security attribution and the higher security state is selected. Based on IDAU security attribution, the Flash memory, system SRAM and peripheral memory space is aliased twice for secure and non-secure states. However, the external memory space is not aliased. The table below shows an example of typical SAU region configuration based on IDAU regions. The user can split and choose the secure, non-secure or NSC regions for external memories as needed. Table 5. Example of memory map security attribution versus SAU configuration regions Region description Address range IDAU security attribution SAU security attribution typical configuration Final security attribution Code - external memories 0x0000 0000 0x07FF FFFF Non-secure Secure or non-secure or NSC(1) Secure or non-secure or NSC 0x0800 0000 0x0BFF FFFF Non-secure Non-secure Non-secure 0x0C00 0000 0x0FFF FFFF NSC Secure or NSC Secure or NSC Code - Flash and SRAM Code - external memories SRAM Peripherals External memories 0x1000 0000 0x17FF FFFF 0x1800 0000 0x1FFF FFFF Non-secure Non-secure 0x2000 0000 0x2FFF FFFF Non-secure 0x3000 0000 0x3FFF FFFF NSC Secure or NSC Secure or NSC 0x4000 0000 0x4FFF FFFF Non-secure Non-secure Non-secure 0x5000 0000 0x5FFF FFFF NSC Secure or NSC Secure or NSC 0x6000 0000 0xDFFF FFFF Non-secure Secure or non-secure or NSC Secure or non-secure or NSC 1. NSC = non-secure callable. DS13086 Rev 6 29/334 93 Functional overview 3.6.1 STM32U585xx TrustZone peripheral classification When the TrustZone security is active, a peripheral can be either securable or TrustZone-aware type as follows: 3.6.2 • securable: peripheral protected by an AHB/APB firewall gate that is controlled from TZSC to define security properties • TrustZone-aware: peripheral connected directly to AHB or APB bus and implementing a specific TrustZone behavior such as a subset of registers being secure Default TrustZone security state The default system security state is detailed below: • CPU: – • Memory map: – • • – Flash memory security area is defined by watermark user options. – Flash memory block based area is non-secure after reset. SRAMs: FSMC, OCTOSPI banks are secure after reset. MPCWMx (memory protection watermark based controller) is secure. Peripherals – Securable peripherals are non-secure after reset. – TrustZone-aware peripherals are non-secure after reset. Their secure configuration registers are secure. • All GPIOs are secure after reset. • Interrupts: – • 3.7 All SRAMs are secure after reset. MPCBB (memory protection block based controller) is secure. External memories: – • SAU is fully secure after reset. Consequently, all memory map is fully secure. Up to eight SAU configurable regions are available for security attribution. Flash memory: – • Cortex-M33 is in secure state after reset. The boot address must be in secure address. NVIC: All interrupts are secure after reset. NVIC is banked for secure and nonsecure state. TZIC: All illegal access interrupts are disabled after reset. Boot modes At startup, a BOOT0 pin, nBOOT0, NSBOOTADDx[24:0] (x = 0, 1) and SECBOOTADD0[24:0] option bytes are used to select the boot memory address that includes: 30/334 • Boot from any address in user Flash memory. • Boot from system memory bootloader. • Boot from any address in embedded SRAM. • Boot from RSS (root security services). DS13086 Rev 6 STM32U585xx Functional overview The BOOT0 value comes from the PH3-BOOT0 pin or from an option bit depending on the value of a user option bit to free the GPIO pad if needed. The bootloader is located in the system memory, programmed by ST during production. The bootloader is used to reprogram the Flash memory by using USART, I2C, SPI, FDCAN or USB FS in device mode through the DFU (device firmware upgrade). The bootloader is available on all devices. Refer to the application note STM32 microcontroller system memory boot mode (AN2606) for more details. The RSS are embedded in a Flash memory area named secure information block, programmed during ST production. For example, the RSS enable the SFI (secure firmware installation), thanks to the RSSe SFI (RSS extension firmware). This feature allows customer to produce the confidentiality of the firmware to be provisioned into the STM32, when production is sub-contracted to untrusted third party. The RSS are available on all devices, after enabling the TrustZone through the TZEN option bit. Refer to the application note Overview secure firmware install (SFI) (AN4992) for more details. Refer to Table 6 and Table 7 for boot modes when TrustZone is disabled and enabled respectively. Table 6. Boot modes when TrustZone is disabled (TZEN = 0) nBOOT0 FLASH_ OPTR[27] BOOT0 pin PH3 nSWBOOT0 FLASH_ OPTR[26] Boot address option-byte selection Boot area ST programmed default value - 0 1 NSBOOTADD0[24:0] Boot address defined by user option bytes NSBOOTADD0[24:0] Flash: 0x0800 0000 - 1 1 NSBOOTADD1[24:0] Boot address defined by user option bytes NSBOOTADD1[24:0] Bootloader: 0x0BF9 0000 1 - 0 NSBOOTADD0[24:0] Boot address defined by user option bytes NSBOOTADD0[24:0] Flash: 0x0800 0000 0 - 0 NSBOOTADD1[24:0] Boot address defined by user option bytes NSBOOTADD1[24:0] Bootloader: 0x0BF9 0000 When TrustZone is enabled by setting the TZEN option bit, the boot space must be in the secure area. The SECBOOTADD0[24:0] option bytes are used to select the boot secure memory address. A unique boot entry option can be selected by setting the BOOT_LOCK option bit, allowing to boot always at the address selected by SECBOOTADD0[24:0] option bytes. All other boot options are ignored. DS13086 Rev 6 31/334 93 Functional overview STM32U585xx Table 7. Boot modes when TrustZone is enabled (TZEN = 1) BOOT_ LOCK nBOOT0 BOOT0 nSWBOOT0 RSS FLASH_ pin FLASH_ comOPTR[27] PH3 OPTR[26] mand - 0 1 0 SECBOOTADD0 [24:0] - 1 1 0 N/A 0 1 Boot address option-bytes selection Boot area ST programmed default value Secure boot address defined by user Flash: option bytes 0x0C00 0000 SECBOOTADD0[24:0] RSS RSS: 0x0FF8 0000 Secure boot address defined by user Flash: option bytes 0x0C00 0000 SECBOOTADD0[24:0] 1 - 0 0 SECBOOTADD0 [24:0] 0 - 0 0 N/A RSS RSS: 0x0FF8 0000 - - - ≠0 N/A RSS RSS: 0x0FF8 0000 - SECBOOTADD0 [24:0] - - - Secure boot address defined by user Flash: option bytes 0x0C00 0000 SECBOOTADD0[24:0] The boot address option bytes allow any boot memory address to be programmed. However, the allowed address space depends on the Flash memory RDP level. If the programmed boot memory address is out of the allowed memory mapped area when RDP level is 0.5 or more, the default boot address is forced either in secure Flash memory or non-secure Flash memory, depending on TrustZone security option as described in the table below. Table 8. Boot space versus RDP protection RDP TZEN = 1 TZEN = 0 0 Any boot address Any boot address 0.5 1 2 32/334 N/A Boot address only in RSS or secure Flash memory: 0x0C00 0000 - 0x0C1F FFFF Otherwise, forced boot address is 0x0FF8 0000. Any boot address Boot address only in Flash memory 0x0800 0000 - 0x081F FFFF Otherwise, forced boot address is 0x0800 0000. DS13086 Rev 6 STM32U585xx 3.8 Functional overview Global TrustZone controller (GTZC) GTZC is used to configure TrustZone and privileged attributes within the full system. The GTZC includes three different sub-blocks: • TZSC: TrustZone security controller This sub-block defines the secure/privilege state of slave/master peripherals. It also controls the non-secure area size for the watermark memory peripheral controller (MPCWM). The TZSC block informs some peripherals (such as RCC or GPIOs) about the secure status of each securable peripheral, by sharing with RCC and I/O logic. • TZIC: TrustZone illegal access controller This sub-block gathers all security illegal access events in the system and generates a secure interrupt towards NVIC. • MPCBB: MPCBB: block-based memory protection controller This sub-block controls secure states of all memory blocks (512-byte pages) of the associated SRAM. This peripheral aims at configuring the internal RAM in a TrustZone system product having segmented SRAM with programmable-security and privileged attributes. The GTZC main features are: 3.9 • Three independent 32-bit AHB interfaces for TZSC, TZIC and MPCBB • Secure and non-secure access supported for privileged/unprivileged part of TZSC • Set of registers to define product security settings: – Secure/privilege regions for external memories – Secure/privilege access mode for securable peripherals – Secure/privilege access mode for securable legacy masters Power supply management The PWR (power controller) main features are: • • • Power supplies and supply domains – Core domain (VCORE) – VDD domain – Backup domain (VBAT) – Analog domain (VDDA) – SMPS power stage (VDDSMPS, available only on SMPS packages) – VDDIO2 domain – VDDUSB for USB transceiver System supply voltage regulation – SMPS step down converter – Voltage regulator (LDO) Power supply supervision – BOR monitor – PVD monitor – PVM monitor (VDDA, VDDUSB, VDDIO2) DS13086 Rev 6 33/334 93 Functional overview • 3.9.1 STM32U585xx Power management – Operating modes – Voltage scaling control – Low-power modes • VBAT battery charging • TrustZone security and privileged protection Power supply schemes The devices require a 1.71 V to 3.6 V VDD operating voltage supply. Several independent supplies can be provided for specific peripherals: • VDD = 1.71 V to 3.6 V (functionality guaranteed down to VBORx min value) VDD is the external power supply for the I/Os, the internal regulator and the system analog such as reset, power management and internal clocks. It is provided externally through the VDD pins. • VDDA = 1.58 V (COMPs) / 1.6 V (DACs, OPAMPs) / 1.62 V (ADCs) / 1.8 V (VREFBUF) to 3.6 V VDDA is the external analog power supply for ADCs, DACs, voltage reference buffer, operational amplifiers and comparators. The VDDA voltage level is independent from the VDD voltage and must be connected to VDD or VSS pin (preferably to VDD) when these peripherals are not used. • VDDSMPS = 1.71 V to 3.6 V VDDSMPS is the external power supply for the SMPS step down converter. It is provided externally through VDDSMPS supply pin and must be connected to the same supply than VDD. • Note: VLXSMPS is the switched SMPS step down converter output. The SMPS power supply pins are available only on a specific package with SMPS step down converter option. • VDDUSB = 3.0 V to 3.6 V VDDUSB is the external independent power supply for USB transceivers. VDDUSB voltage level is independent from the VDD voltage and must be connected to VDD or VSS pin (preferably to VDD) when the USB is not used. • VDDIO2 = 1.08 V to 3.6 V VDDIO2 is the external power supply for 14 I/Os (port G[15:2]). The VDDIO2 voltage level is independent from the VDD voltage and must be connected to VDD or VSS pin (preferably to VDD) when PG[15:2] are not used. • VBAT = 1.65 V to 3.6 V (functionality guaranteed down to VBOR_VBAT min value) VBAT is the power supply for RTC, TAMP, external and internal clocks 32 kHz oscillators, and backup registers (through power switch) when VDD is not present. • VREF-, VREF+ VREF+ is the input reference voltage for ADCs and DACs. It is also the output of the internal voltage reference buffer when enabled. VREF+ can be grounded when ADC and DAC are not active. The internal voltage reference buffer supports four outputs: 34/334 – VREF+ around 1.5 V. This requires VDDA ≥ 1.8 V. – VREF+ around 1.8 V. This requires VDDA ≥ 2.1 V. DS13086 Rev 6 STM32U585xx Functional overview – VREF+ around 2.048 V. This requires VDDA ≥ 2.4 V. – VREF+ around 2.5 V. This requires VDDA ≥ 2.8 V. VREF- and VREF+ pins are not available on all packages. When not available, they are bonded to VSSA and VDDA, respectively. When the VREF+ is double-bonded with VDDA in a package, the internal voltage reference buffer is not available and must be kept disabled. VREF- must always be equal to VSSA. The STM32U585xx devices embed two regulators: one LDO and one SMPS in parallel to provide the VCORE supply for digital peripherals, SRAM1, SRAM2, SRAM3 and SRAM4 and embedded Flash memory. The SMPS generates this voltage on VDD11 (two pins), with a total external capacitor of 4.7 μF typical. SMPS requires an external coil of 2.2 μH typical. The LDO generates this voltage on VCAP pin connected to an external capacitor of 4.7 μF typical. Both regulators can provide four different voltages (voltage scaling) and can operate in Stop modes. It is possible to switch from SMPS to LDO and from LDO to SMPS on-the-fly. Figure 2. STM32U585xQ power supply overview (with SMPS) VDDA domain VDDA VSSA VDDUSB VSS VDDIO2 VSS A/D converters Comparators D/A converters Operational amplifiers Voltage reference buffer USB transceiver VDDIO2 domain VDDIO2 I/O ring PG[15:2] VDD domain VDDIO1 I/O ring Reset block Temperature sensor 3 x PLL Internal RC oscillators VCORE domain Core VSS Standby circuitry (Wakeup logic, IWDG) SRAM1 SRAM2 SRAM3 SRAM4 VDD Voltage regulator LDO regulator 2x VDD11 VLXSMPS VDDSMPS VSSSMPS VCORE SMPS regulator Digital peripherals Flash memory Low-voltage detector Backup domain VBAT LSE crystal 32 kHz oscillator LSI 32 kHz oscillator Backup registers RCC_BDCR and PWR_BDCR1 registers RTC TAMP BKPSRAM MSv63604V3 DS13086 Rev 6 35/334 93 Functional overview STM32U585xx Figure 3. STM32U585xx power supply overview (without SMPS) VDDA domain VDDA VSSA A/D converters Comparators D/A converters Operational amplifiers Voltage reference buffer VDDUSB VSS VDDIO2 VSS USB transceiver VDDIO2 domain VDDIO2 I/O ring PG[15:2] VDD domain VDDIO1 VSS VDD I/O ring VCORE domain Reset block Temperature sensor 3 x PLL Internal RC oscillators Core SRAM1 SRAM2 SRAM3 SRAM4 Standby circuitry (Wakeup logic, IWDG) VCORE VCAP LDO regulator Digital peripherals Flash memory Low-voltage detector Backup domain VBAT LSE crystal 32kHz oscillator LSI 32 kHz oscillator Backup registers RCC_BDCR and PWR_BDCR1 registers RTC TAMP BKPSRAM MSv64350V4 During power-up and power-down phases, the following power sequence requirements must be respected: 36/334 • When VDD is below 1 V, other power supplies (VDDA, VDDIO2, VDDUSB) must remain below VDD + 300 mV. • When VDD is above 1 V, all power supplies are independent. • During the power-down phase, VDD can temporarily become lower than other supplies only if the energy provided to the MCU remains below 1 mJ. This allows external decoupling capacitors to be discharged with different time constants during the power-down transient phase. DS13086 Rev 6 STM32U585xx Functional overview Figure 4. Power-up /down sequence V 3.6 VDDX(1) VDD VBOR0 1 0.3 Power-on Invalid supply area Operating mode VDDX < VDD + 300 mV Power-down time VDDX independent from VDD MSv47490V1 1. VDDX refers to any power supply among VDDA, VDDUSB, and VDDIO2. 3.9.2 Power supply supervisor The devices have an integrated ultra-low-power BOR (Brownout reset) active in all modes (except for Shutdown mode). The BOR ensures proper operation of the device after power on and during power down. The device remains in reset mode when the monitored supply voltage VDD is below a specified threshold, without the need for an external reset circuit. The lowest BOR level is 1.71 V at power on, and other higher thresholds can be selected through option bytes.The devices feature an embedded PVD (programmable voltage detector) that monitors the VDD power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD drops below and/or rises above the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. In addition, the devices embed a peripheral voltage monitor that compares the independent supply voltages VDDA, VDDUSB and VDDIO2 to ensure that the peripheral is in its functional supply range. The devices support dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the main regulator that supplies the logic (VCORE) can be adjusted according to the system’s maximum operating frequency. The main regulator operates in the following ranges: • Range 1 (VCORE = 1.2 V) with CPU and peripherals running at up to 160 MHz • Range 2 (VCORE = 1.1 V) with CPU and peripherals running at up to 110 MHz • Range 3 (VCORE = 1.0 V) with CPU and peripherals running at up to 55 MHz • Range 4 (VCORE = 0.9 V) with CPU and peripherals running at up to 25 MHz DS13086 Rev 6 37/334 93 Functional overview STM32U585xx Low-power modes The ultra-low-power STM32U585xx devices support seven low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wakeup sources. The table below details the related low-power modes. Table 9. STM32U585xx mode overview Mode Regulator (1) CPU Flash SRAM Clocks ON Any DMA and peripherals(2) Wakeup source Range 1 Run Range 2 Range 3 Yes ON(3) Range 4 All N/A All except OTG_FS and UCPD Range 1 Sleep Stop 0 Range 2 Range 3 No ON ON(4) Any Range 4 All except OTG_FS, and UCPD Range 1 BOR, PVD, PVM, RTC, TAMP, IWDG, TEMP (temp. sensor), VREFBUF, ADC4(7), DAC1 (2 channels)(8), COMPx (x = 1, 2), OPAMPx (x = 1, 2), USARTx (x = 1...5)(9), LPUART1, SPIx (x = 1...3)(10), I2Cx (x = 1...4)(11), LPTIMx (x = 1...4)(12), MDF1(13), ADF1, GPIO, LPGPIO, GPDMA1(14), LPDMA1 Range 2 Range 3 Range 4 No OFF ON(5) LSE LSI (6) Stop 1 All LPR All other peripherals are frozen. 38/334 DS13086 Rev 6 Any interrupt or event Reset pin, all I/Os, BOR, PVD, PVM, RTC, TAMP, IWDG, TEMP, ADC4, DAC1 (2 channels), COMPx (x = 1, 2), USARTx (x = 1...5), LPUART1, SPIx (x = 1...3), I2Cx (x = 1...4), LPTIMx (x = 1...4), MDF1, ADF1, GPDMA1, LPDMA1, OTG_FS, UCPD STM32U585xx Functional overview Table 9. STM32U585xx mode overview (continued) Mode Stop 2 Regulator(1) LPR CPU Flash No OFF SRAM Clocks LSE LSI ON(5) DMA and peripherals(2) BOR, PVD, PVM, RTC, TAMP, IWDG, TEMP, VREFBUF, ADC4, DAC1 (2 channels), COMPx (x = 1, 2), OPAMPx (x = 1, 2), LPUART1, SPI3, I2C3, LPTIMx (x = 1, 3, 4), ADF1, LPGPIO, LPDMA1 Wakeup source Reset pin, all I/Os, BOR, PVD, PVM, RTC, TAMP, IWDG, TEMP, ADC4, COMPx (x = 1, 2), LPUART1, SPI3, I2C3, LPTIMx (x = 1,3,4), ADF1, LPDMA1 All other peripherals are frozen. Stop 3 LPR No OFF LSE LSI ON(5) BOR, RTC, TAMP, IWDG, DAC1 (2 static channels), OPAMPx (x = 1, 2) Reset pin, 24 I/Os (WKUPx), BOR, RTC, TAMP, IWDG All other peripherals are frozen. OFF 64-, 56- or 8-Kbyte SRAM2 2-Kbyte BKPSRAM(5) all other SRAMs powered off Standby BOR, RTC, TAMP, IWDG All other peripherals are powered off. LSE LSI OFF I/O configuration can be floating, pull-up or pull-down. OFF Powered off OFF Powered off RTC, TAMP Shutdown Reset pin, 24 I/Os (WKUPx), BOR, RTC, TAMP, IWDG Powered off LPR Powered off I/O configuration can be floating, pull-up or pull-down. LSE All other peripherals are powered off. Reset pin, 24 I/Os (WKUPx), RTC, TAMP I/O configuration can be floating, pull-up or pull-down(15). DS13086 Rev 6 39/334 93 Functional overview STM32U585xx 1. LPR means that the main regulator is OFF and the low-power regulator is ON. 2. All peripherals can be active or clock gated to save power consumption. 3. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM. One bank can also be put in power-down mode. 4. The SRAM1, SRAM2, SRAM3, SRAM4 and BKPSRAM clocks can be gated on or off independently. 5. The SRAM can be individually powered off to save power consumption. 6. MSI and HSI16 can be temporary enabled upon peripheral request, for autonomous functions with DMA or wakeup from Stop event detections. 7. The ADC4 conversion is functional and autonomous with DMA in Stop mode, and can generate a wakeup interrupt on conversion events. 8. DAC1 is the digital-to-analog (D/A) converter controller instance name. This instance controls two D/A converters also called "two channels". The DAC conversions are functional and autonomous with DMA in Stop mode. 9. U(S)ART and LPUART transmission and reception is functional and autonomous with DMA in Stop mode, and can generate a wakeup interrupt on transfer events. 10. SPI transmission and reception is functional and autonomous with DMA in Stop mode, and can generate a wakeup interrupt on transfer events. 11. I2C transmission and reception is functional and autonomous with DMA in Stop mode, and can generate a wakeup interrupt on transfer events. 12. LPTIM is functional and autonomous with DMA in Stop mode, and can generate a wakeup interrupt on all events. 13. MDF and ADF are functional and autonomous with DMA in Stop mode, and can generate a wakeup interrupt on events. 14. GPDMA and LPDMA are functional and autonomous in Stop mode, and can generate a wakeup interrupt on events. 15. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode. By default, the microcontroller is in Run mode after a system or a power reset. It is up to the user to select one of the low-power modes described below: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. • Stop 0, Stop 1, Stop 2 and Stop 3 modes Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI, the HSI16, the HSI48 and the HSE crystal oscillators are disabled. The LSE or LSI is still running. The RTC can remain active (Stop mode with RTC, Stop mode without RTC). Some peripherals are autonomous and can operate in Stop mode by requesting their kernel clock and their bus (APB or AHB) when needed, in order to transfer data with DMA (GPDMA1 in Stop 0 and Stop 1 modes, LPDMA1 in Stop 0, Stop 1 and Stop 2 modes). Refer to Low-power background autonomous mode (LPBAM) for more details. LPBAM is not supported in Stop 3 mode. In Stop 2 and Stop 3 modes, most of the VCORE domain is put in a lower leakage mode. Stop 0 and Stop 1 modes offer the largest number of active peripherals and wakeup sources, a smaller wakeup time but a higher consumption than Stop 2 mode. In Stop 0 mode, the main regulator remains ON, allowing a very fast wakeup time but with much higher consumption. Stop 3 is the lowest power mode with full retention, but the functional peripherals and sources of wakeup are reduced to the same ones than in Standby mode. The system clock when exiting from Stop 0, Stop 1 or Stop 2 mode can be either MSI up to 24 MHz or HSI16, depending on software configuration. 40/334 DS13086 Rev 6 STM32U585xx • Functional overview Standby mode The Standby mode is used to achieve the lowest power consumption with BOR. The internal regulator is switched off so that the VCORE domain is powered off. The PLL, the MSI, the HSI16, the HSI48 and the HSE crystal oscillators are also switched off. The RTC can remain active (Standby mode with RTC, Standby mode without RTC). The BOR always remains active in Standby mode. The state of each I/O during Standby mode can be selected by software: I/O with internal pull-up, internal pull-down or floating. After entering Standby mode, SRAMs and register contents are lost except for registers and backup SRAM in the Backup domain and Standby circuitry. Optionally, the full SRAM2 or 8 Kbytes or 56 Kbytes can be retained in Standby mode, supplied by the low-power regulator (Standby with SRAM2 retention mode). The BOR can be configured in ultra-low-power mode to further reduce power consumption during Standby mode. The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), an RTC event occurs (alarm, periodic wakeup, timestamp), or a tamper detection. The tamper detection can be raised either due to external pins or due to an internal failure detection. The system clock after wakeup is MSI up to 4 MHz. • Shutdown mode The lowest power consumption is achieved in Shutdown mode. The internal regulator is switched off so that the VCORE domain is powered off. The PLL, the HSI16, the HSI48, the MSI, the LSI and the HSE oscillators are also switched off. The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC). The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode, therefore the switch to Backup domain is not supported (VBAT). SRAMs and register contents are lost except for registers in the Backup domain. The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp), or a tamper detection. The system clock after wakeup is MSI at 4 MHz. Low-power background autonomous mode (LPBAM) The ultra-low-power STM32U585xx devices support LPBAM (low-power background autonomous mode) that allows peripherals to be functional and autonomous in Stop mode (Stop 0, Stop 1 and Stop 2 modes), so without any software running. In Stop 0 and Stop 1 modes, the autonomous peripherals are the following: ADC4, DAC1, LPTIMx (x = 1 to 4), USARTx (x = 1 to 5), LPUART1, SPIx (x = 1 to 3), I2Cx (x = 1 to 4), MDF1, ADF1, GPDMA1 and LPDMA1. In these modes, SRAM1, SRAM2, SRAM3 and SRAM4 can be accessed by the GPDMA1, and SRAM4 can be accessed by the LPDMA1. In Stop 2 mode, the autonomous peripherals are the following: ADC4, DAC1, LPTIM1, LPTIM3, LPTIM4, LPUART1, SPI3, I2C3, ADF1 and LPDMA1. In this mode, the SRAM4 can be accessed by the LPDMA1. DS13086 Rev 6 41/334 93 Functional overview STM32U585xx Those peripherals support the features detailed below: • Functionality in Stop mode thanks to its own independent clock (named kernel clock) request capability: the peripheral kernel clock is automatically switched on when requested by a peripheral, and automatically switched off when no peripheral requests it. • DMA transfers supported in Stop mode thanks to system clock request capability: the system clock (MSI or HSI16) automatically switched on when requested by a peripheral, and automatically switched off when no peripheral requests it. When the system clock is requested by an autonomous peripheral, the system clock is woken up and distributed to all peripherals enabled in the RCC. This allows the DMA to access the enabled SRAM, and any enabled peripheral register (for instance GPIO or LPGPIO registers). • Automatic start of the peripheral thanks to hardware synchronous or asynchronous triggers (such as I/Os edge detection and low-power timer event). • Wakeup from Stop mode with peripheral interrupt. The GPDMA and LPDMA are fully functional and the linked-list is updated in Stop mode, allowing the different DMA transfers to be linked without any CPU wakeup. This can be used to chain different peripherals transfers, or to write peripherals registers in order to change their configuration while remaining in Stop mode. The DMA transfers from memory to memory can be started by hardware synchronous or asynchronous triggers, and the DMA transfers between peripherals and memories can also be gated by those triggers. Here below some use-cases that can be done while remaining in Stop mode: • • A/D or D/A conversion triggered by a low-power timer (or any other trigger) – wakeup from Stop mode on analog watchdog if the A/D conversion result is out of programmed thresholds – wakeup from Stop mode on DMA buffer event Audio digital filter data transfer into SRAM – • – • • 42/334 wakeup at the end of peripheral transfer or on DMA buffer event 2 I C master transfer, SPI transmission, UART/LPUART transmission, triggered by a low-power timer (or any other trigger): – example: sensor periodic read – wakeup at the end of peripheral transfer or on DMA buffer event Bridges between peripherals – • wakeup from Stop on sound-activity detection I2C slave reception or transmission, SPI reception, UART/LPUART reception example: ADC converted data transferred by communication peripherals Data transfer from/to GPIO/LPGPIO to/from SRAM for: – controlling external components – implementing data transmission and reception protocols DS13086 Rev 6 STM32U585xx Functional overview Table 10. Functionalities depending on the working mode(1) - - - - Y - - - - - - - - - - - - O(2) O(2) - - - - - - - - - - - SRAM1 (192 Kbytes) Y(3)(4) Y(3)(4) O(7) - O(7) - O(7) - - - - - - SRAM2 (64 Kbytes) Y(3)(4) Y(3)(4) O(7) O(5) O(7) - O(7) - O(6) - - - - SRAM3 (512 Kbytes) (3)(4) Y Y(3)(4) O(7) O(5) O(7) - O(7) - - - - - - SRAM4 (16 Kbytes) Y(3)(4) Y(3)(4) O(7) - O(7) - O(7) - - - - - - O(4) O O(5) O Peripheral Run CPU Flash memory (2 Mbytes) BKPSRAM O (4) Sleep - O O Wakeup capability Shutdown Wakeup capability Standby Wakeup capability Stop 3 Wakeup capability Stop 2 Wakeup capability Stop 0/1 - VBAT O FSMC O O - - - - - - - - - - - OCTOSPIx (x = 1,2) O O - - - - - - - - - - - Backup registers Y Y Y - Y - Y - Y - Y - Y BOR (Brownout reset) Y Y Y Y Y Y Y Y Y Y - - - PVD (programmable voltage detector) O O O O O O - - - - - - - Peripheral voltage monitor O O O O O O - - - - - - - GPDMA1 O O O O(8) - - - - - - - - - O O(9) O O(9) - - - - - - - LPDMA1 O O DMA2D O O HSI16 (high-speed internal) O O (10) - (10) - - - - - - - - HSI48 oscillator O O - - - - - - - - - - - HSE (high-speed external) O O - - - - - - - - - - - LSI (low-speed internal) O O O - O - O - O - - - O LSE (low-speed external) O O O - O - O - O - O - O MSIS and MSIK (multi-speed internal) O O (10) - (10) - - - - - - - - CSS (clock security system) O O - - - - - - - - - - - Clock security system on LSE O O O O O O O O O O O O O DS13086 Rev 6 43/334 93 Functional overview STM32U585xx Table 10. Functionalities depending on the working mode(1) (continued) - - - - Backup domain voltage and temperature monitoring O O O O O O O O O O O O O RTC/TAMP O O O O O O O O O O O O O Number of RTC tamper pins 8 8 8 O 8 O 8 O 8 O 8 O 8 OTG_FS, UCPD O(11) O(11) - O - - - - - - - - - USARTx (x = 1,2,3,4,5) O O O(12) O(12) - - - - - - - - - Low-power UART (LPUART1) O O O(12) O(12) O(12) O(12) - - - - - - - I2Cx (x = 1,2,4) O O O(13) O(13) O O(13) O(13) O (14) O(14) (14) O(14) Peripheral I2C3 SPIx (x = 1,2) Run O O Sleep - O VBAT - - - - - - - - - O(13) O(13) - - - - - - - - - - - - - - - - O(14) O(14) SPI3 O O FDCAN1 O O - - - - - - - - - - - SDMMCx (x = 1,2) O O - - - - - - - - - - - SAIx (x = 1,2) O O - - - - - - - - - - - ADC1 O O - - - - - - - - - - - ADC4 O O - - - - - - - DAC1 (2 converters) O O O - O - - - - - - - - VREFBUF O O O - O - - - - - - - - OPAMPx (x = 1,2) O O O - O - - - - - - - - COMPx (x = 1,2) O O O O O O - - - - - - - Temperature sensor O O O - O - - - - - - - - Timers (TIMx) O O - - - - - - - - - - - LPTIMx (x = 1,3,4) O O O(16) O(16) O(16) O(16) - - - - - - - LPTIM2 O O O(16) O(16) - - - - - IWDG (independent watchdog) O O O WWDG (window watchdog) O O - 44/334 O Wakeup capability Shutdown Wakeup capability Standby Wakeup capability Stop 3 Wakeup capability Stop 2 Wakeup capability Stop 0/1 O(15) O(15) O(15) O(15) - - - - O O O O (17) O (17) - - - - - - - - - - - - - DS13086 Rev 6 O O STM32U585xx Functional overview Table 10. Functionalities depending on the working mode(1) (continued) - - - - - - - - - Wakeup capability - - - - - - - Shutdown Wakeup capability Sleep Standby Wakeup capability Run Stop 3 Wakeup capability Peripheral Stop 2 Wakeup capability Stop 0/1 - - - - - - - - - - - - - - - VBAT SysTick timer O O MDF1 (multi-function digital filter) O O O(18) O(18) ADF1 (audio digital filter) O O O(18) O(18) O(18) O(18) DCMI (digital camera interface) O O - - - - - - - - - - - PSSI (paral. synch. slave interface) O O - - - - - - - - - - - CORDIC coprocessor O O - - - - - - - - - - - FMAC (filter mathematical accelerator) O O - - - - - - - - - - - TSC (touch sensing controller) O O - - - - - - - - - - - RNG (true random number generator) O O - - - - - - - - - - - AES and secure AES O O - - - - - - - - - - - PKA (public key accelerator) O O - - - - - - - - - - - OTFDEC (on-the-fly decryption) O O - - - - - - - - - - - HASH accelerator O O - - - - - - - - - - - CRC calculation unit O O - - - - - - - - - - - GPIOs O O O O O O - 24 pins - (19) (19) 24 pins (20) - 24 pins - 1. Y = yes (enabled). O = optional (disabled by default, can be enabled by software). - = not available. Gray cells highlight the wakeup capability in each mode. 2. The Flash memory can be configured in power-down mode. By default, it is not in power-down mode. 3. The SRAMs can be powered on or off independently. 4. The SRAM clock can be gated on or off independently. 5. ECC error interrupt or NMI wakeup from Stop mode. 6. 8-Kbyte, 56-Kbyte or full SRAM2 content can be preserved. 7. Sub-blocks or full SRAM1 and SRAM3, full SRAM2 and SRAM4 can be powered-off to save power consumption. SRAM1, SRAM2, SRAM3 and SRAM4 can be accessed by GPDMA1 in Stop 0 and Stop 1 modes. SRAM4 can be accessed by LPDMA1 in Stop 0, Stop 1 and Stop 2 modes. 8. GPDMA transfers are functional and autonomous in Stop mode, and generates a wakeup interrupt on transfer events. 9. LPDMA transfers are functional and autonomous in Stop mode, and generates a wakeup interrupt on transfer events. DS13086 Rev 6 45/334 93 Functional overview STM32U585xx 10. Some peripherals with autonomous mode and wakeup from Stop capability can request HSI16, MSIS or MSIK to be enabled. In this case, the oscillator is woken up by the peripheral, and is automatically put off when no peripheral needs it. 11. OTG_FS is functional in voltage scaling range 1, 2 and 3. 12. USART and LPUART reception and transmission are functional and autonomous in Stop mode in asynchronous and in SPI master modes, and generate a wakeup interrupt on transfer events. 13. I2C reception and transmission are functional and autonomous in Stop mode, and generate a wakeup interrupt on transfer events. 14. SPI reception and transmission are functional and autonomous in Stop mode, and generate a wakeup interrupt on transfer events. 15. A/D conversion is functional and autonomous in Stop mode, and generates a wakeup interrupt on conversion events. 16. LPTIM is functional and autonomous in Stop mode, and generates a wakeup interrupt on events. 17. Only IWDG reset can exit the device from Stop 3 and Standby modes. Wakeup with IWDG interrupt is not supported. 18. MDF and ADF are functional and autonomous in Stop mode, and generate a wakeup interrupt on events. 19. I/Os can be configured with internal pull-up, pull-down or floating in Stop 3 and Standby modes. 20. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode. 3.9.3 Reset mode In order to improve the consumption under reset, the I/O state under and after reset is “analog state” (the I/O Schmitt trigger is disabled). In addition, the internal reset pull-up is deactivated when the reset source is internal. 3.9.4 VBAT operation The VBAT pin allows the device VBAT domain to be powered from an external battery or an external super-capacitor. The VBAT pin supplies the RTC with LSE, anti-tamper detection (TAMP), backup registers and 2-Kbyte backup SRAM. Eight anti-tamper detection pins are available in VBAT mode. The VBAT operation is automatically activated when VDD is not present. An internal VBAT battery charging circuit is embedded and can be activated when VDD is present. Note: When the microcontroller is supplied from VBAT, neither external interrupts nor RTC alarm/events exit the microcontroller from the VBAT operation. 3.9.5 PWR TrustZone security When the TrustZone security is activated by the TZEN option bit, the PWR is switched in TrustZone security mode. The PWR TrustZone security secures the following configuration: • low-power mode • WKUP (wakeup) pins • voltage detection and monitoring • VBAT mode Some of the PWR configuration bits security is defined by the security of other peripherals: 46/334 • The VOS (voltage scaling) configuration is secure when the system clock selection is secure in RCC. • The I/O pull-up/pull-down in Standby mode configuration is secure when the corresponding GPIO is secure. DS13086 Rev 6 STM32U585xx 3.10 Functional overview Peripheral interconnect matrix Several peripherals have direct connections between them, that allow autonomous communication between them and support the saving of CPU resources (thus power supply consumption). In addition, these hardware connections allow fast and predictable latency. Depending on the peripherals, these interconnections can operate in Run, Sleep, Low-power Run and Sleep, Stop 0, Stop 1 and Stop 2 modes. 3.11 Reset and clock controller (RCC) The RCC (reset and clock control) manages the different reset types, and generates all clocks for the bus and peripherals. The RCC distributes the clocks coming from the different oscillators to the core and to the peripherals. It also manages the clock gating for low-power modes and ensures the clock robustness. It features: • Clock prescaler: in order to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler. • Clock security system: clock sources can be changed safely on-the-fly in Run mode through a configuration register. • Clock management: in order to reduce the power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. • System clock source: four different clock sources can be used to drive the master clock SYSCLK: – HSE (4 to 50 MHz high-speed external crystal or ceramic resonator) that can supply a PLL. The HSE can also be configured in bypass mode for an external clock. – HSI16 (16 MHz high-speed internal RC oscillator) trimmable by software, that can supply a PLL. – MSI (multispeed internal RC oscillator) trimmable by software, that can generate 16 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be automatically trimmed by hardware to reach better than ±0.25% accuracy. In this mode the MSI can feed the USB device, saving the need of an external high-speed crystal (HSE). The MSI can supply a PLL. – System PLL that can be fed by HSE, HSI16 or MSI, with a maximum frequency at 160 MHz. • HSI48 (RC48 with clock recovery system) internal 48 MHz clock source that can be used to drive the USB, the SDMMC or the RNG peripherals. This clock can be output on the MCO. • UCPD kernel clock, derived from HSI16 clock. The HSI16 RC oscillator must be enabled prior to the UCPD kernel clock use. DS13086 Rev 6 47/334 93 Functional overview • STM32U585xx Auxiliary clock source: two ultra-low-power clock sources that can be used to drive the real-time clock: – LSE (32.768 kHz low-speed external crystal), supporting three drive capability modes. The LSE can also be configured in bypass mode for an external clock. – LSI (32 kHz low-speed internal RC), also used to drive the independent watchdog. The LSI clock accuracy is ±5% accuracy. The LSI clock can be divided by 128 to output a 250 Hz as source clock. • Peripheral clock sources: several peripherals have their own independent clock whatever the system clock. Three PLLs, each having three independent outputs allowing the highest flexibility, can generate independent clocks for the ADC, USB, SDMMC, RNG, MDF, ADF, FDCAN1, OCTOSPIs and SAIs. • Startup clock: after reset, the microcontroller restarts by default with MSI. The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. • CSS (clock security system): this feature can be enabled by software. If a HSE clock failure occurs, the master clock automatically switches to HSI16 and a software interrupt is generated if enabled. LSE failure can also be detected and generates an interrupt. • Clock-out capability: – MCO (microcontroller clock output): it outputs one of the internal clocks for external use by the application. – LSCO (low-speed clock output): it outputs LSI or LSE in all low-power modes (except VBAT mode). Several prescalers allow AHB and APB frequencies configuration. The maximum frequency of the AHB and the APB clock domains is 160 MHz. 48/334 DS13086 Rev 6 STM32U585xx Functional overview Figure 5. Clock tree LSI RC 32 kHz or 250 Hz LSCO OSC32_OUT LSI To IWDG HSI16 LSE OSC 32.768 kHz Clock detector OSC32_IN MCO / 1→16 OSC_OUT HSE OSC 4-50 MHz OSC_IN /32 LSE LSI MSIS HSI16 HSE SYSCLK pll1_r_ck HSI48 MSIK MSIS MSIK 100 kHz – 48 MHz MSIK /Q /R VCO /Q /N /R /R HSI16 SYSCLK MSIK MSIS HSI16 HSE PCLK1 To APB1 peripherals To TIMx (x = 2 to 7) x4 To USARTx (x = 2 to 5) To SPI2 x3 To LPTIM2 HSE pll1_q_ck pll2_p_ck MSIS HSI16 HSE pll2_p_ck To I2Cx (X = 1,2,4) LSI LSE HSI16 pll1_r_ck To FDCAN1 CRS clock SYSCLK MSIK pll1_q_ck pll2_q_ck pll2_q_ck To OCTOSPIx (X = 1,2) PCLK2 pll2_r_ck APB2 PRESC / 1,2,4,8,16 pll3_p_ck To SAES To APB2 peripherals x1 or x2 MSIS HSI16 HSE /M /P /Q /N HSI48 pll1_q_ck PLL3 VCO APB1 PRESC / 1,2,4,8,16 MSIK HSI16 SYSCLK /M /P To Cortex system timer /8 LSE HSI16 SYSCLK pll1_p_ck PLL2 FCLK Cortex free running clock LSE LSI Clock source control /M /P HCLK x1 or x2 MSI RC MSIS 100 kHz – 48 MHz /N AHB PRESC / 1,2,..512 SYSCLK HSI16 VCO To LPTIM1, LPTIM3, LPTIM4 HSE HSI RC 16 MHz PLL1 x2 To AHB bus, core, memory and DMA Clock detector HSI48 RC 48 MHz To UCPD1 To RTC LSI LSE MSIK HSI16 To TIMx (x = 1,8,15,16,17) pll3_q_ck pll3_r_ck SHSI RC /2 pll1_p_ck pll3_q_ck MSIK LSE HSI16 SYSCLK To USART1 MSIK HSI16 SYSCLK To SPI1 x2 To ADF1 and MDF1 AUDIOCLK pll1_p_ck MSIK HSI48 pll1_q_ck pll2_q_ck pll1_p_ck pll2_p_ck pll3_p_ck HSI16 x2 To SDMMCx (X = 1,2) ICLK 48 MHz clock to OTG_FS HSI16 /2 To RNG APB3 PRESC / 1,2,4,8,16 pll2_r_ck HSE HSI16 MSIK To SAIx (X = 1,2) PCLK3 To APB3 peripherals MSIK HSI16 To I2C3 MSIK HSI16 To SPI3 MSIK HSI16 LSE To LPUART1 To ADC1, ADC4 and DAC1 LSI LSE DAC1 sample and hold clock MSv63634V6 DS13086 Rev 6 49/334 93 Functional overview 3.11.1 STM32U585xx RCC TrustZone security When the TrustZone security is activated by the TZEN option bit, the RCC is switched in TrustZone security mode. The RCC TrustZone security secures some RCC system configuration and peripheral configuration clock from being read or modified by non-secure accesses: when a peripheral is secure, the related peripheral clock, reset, clock source selection and clock enable during low-power modes control bits are secure. A peripheral is in secure state: 3.12 • when its corresponding SEC security bit is set in the TZSC (TrustZone security controller), for securable peripherals. • when a security feature of this peripheral is enabled through its dedicated bits, for TrustZone-aware peripherals. Clock recovery system (CRS) The devices embed a special block that allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, that is either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup, automatic trimming and manual trimming action can be combined. 3.13 General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. After reset, all GPIOs are in analog mode to reduce power consumption. The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. 3.13.1 GPIOs TrustZone security Each I/O pin of GPIO port can be individually configured as secure. When the selected I/O pin is configured as secure, its corresponding configuration bits for alternate function, mode selection, I/O data are secure against a non-secure access. The associated registers bit access is restricted to a secure software only. After reset, all GPIO ports are secure. 3.14 Low-power general-purpose inputs/outputs (LPGPIO) The LPGPIO allows dynamic I/O control in Stop 2 mode thanks to LPDMA1. Up to 16 I/Os can be configured and controlled as input or output (open-drain or push-pull depending on GPIO configuration). 50/334 DS13086 Rev 6 STM32U585xx 3.14.1 Functional overview LPGPIO TrustZone security Each I/O pin registers bit of the LPGPIO is configured as secure if the corresponding I/O is configured as secure in the GPIO. 3.15 Multi-AHB bus matrix A 32-bit multi-AHB bus matrix interconnects all master (CPU, DMA2D, GPDMA1, SDMMC1, SDMMC2) and slave (Flash memory, RAM, FMC, OCTOSPIs, SRAMs, AHB and APB) peripherals. It also ensures a seamless and efficient operation even when several highspeed peripherals work simultaneously. Another multi-AHB bus matrix interconnects two masters (previous AHB bus matrix slave port and LPDMA1) and all slaves that are functional in Stop 2 modes (SRAM4 and AHB/APB peripherals functional in Stop 2 mode). 3.16 System configuration controller (SYSCFG) The STM32U585xx devices feature a set of configuration registers. The main purposes of the system configuration controller are the following: 3.17 • Managing robustness feature • Configuring FPU interrupts • Enabling/disabling the FMP high-drive mode of some I/Os and voltage booster for I/Os analog switches • Managing the I/O compensation cell • Configuring register security access General purpose direct memory access controller (GPDMA) The general purpose direct memory access (GPDMA) controller is a bus master and system peripheral. The GPDMA is used to perform programmable data transfers between memory-mapped peripherals and/or memories via linked-lists, upon the control of an off-loaded CPU. The GPDMA main features are: • Dual bidirectional AHB master • Memory-mapped data transfers from a source to a destination: – Peripheral-to-memory – Memory-to-peripheral – Memory-to-memory – Peripheral-to-peripheral • Autonomous data transfers during Sleep and Stop modes • Transfers arbitration based on a four-grade programmed priority at a channel level: – One high-priority traffic class, for time-sensitive channels (queue 3) – Three low-priority traffic classes, with a weighted round-robin allocation for non time-sensitive channels (queues 0, 1, 2) DS13086 Rev 6 51/334 93 Functional overview • Per channel event generation, on any of the following events: transfer complete or half transfer complete or data transfer error or user setting error, and/or update linked-list item error or completed suspension • Per channel interrupt generation, with separately programmed interrupt enable per event • 16 concurrent DMA channels: • • • • 52/334 STM32U585xx – Per channel FIFO for queuing source and destination transfers – Intra-channel DMA transfers chaining via programmable linked-list into memory, supporting two execution modes: run-to-completion and link step mode – Intra-channel and inter-channel DMA transfers chaining via programmable DMA input triggers connection to DMA task completion events Per linked-list item within a channel: – Separately programmed source and destination transfers – Programmable data handling between source and destination: byte-based reordering, packing or unpacking, padding or truncation, sign extension and left/right realignment – Programmable number of data bytes to be transferred from the source, defining the block level – 12 channels with linear source and destination addressing: either fixed or contiguously incremented addressing, programmed at a block level, between successive single transfers – Four channels with 2D source and destination addressing: programmable signed address offsets between successive burst transfers (non-contiguous addressing within a block, combined with programmable signed address offsets between successive blocks, at a second 2D/repeated block level) – Support for scatter-gather (multi-buffer transfers), data interleaving and deinterleaving via 2D addressing – Programmable DMA request and trigger selection – Programmable DMA half-transfer and transfer complete events generation – Pointer to the next linked-list item and its data structure in memory, with automatic update of the DMA linked-list control registers Debug: – Channel suspend and resume support – Channel status reporting including FIFO level and event flags TrustZone support: – Support for secure and non-secure DMA transfers, independently at a first channel level, and independently at a source/destination and link sub-levels – Secure and non-secure interrupts reporting, resulting from any of the respectively secure and non-secure channels – TrustZone-aware AHB slave port, protecting any DMA secure resource (register, register field) from a non-secure access Privileged/unprivileged support: – Support for privileged and unprivileged DMA transfers, independently at channel level – Privileged-aware AHB slave port DS13086 Rev 6 STM32U585xx Functional overview Table 11. GPDMA1 channels implementation and usage Hardware parameters Channel x Features dma_fifo_ dma_ size[x] addressing[x] x = 0 to 11 2 x = 12 to 15 4 0 Channel x (x = 0 to 11) is implemented with: – a FIFO of 8 bytes, 2 words – fixed/contiguously incremented addressing These channels may be also used for GPDMA transfers, between an APB or AHB peripheral and SRAM. 1 Channel x (x = 12 to 15) is implemented with: – a FIFO of 32 bytes, 8 words – 2D addressing These channels may be also used for GPDMA transfers, between a demanding AHB peripheral and SRAM, or for transfers from/to external memories. Table 12. GPDMA1 autonomous mode and wakeup in low-power modes Feature Low-power modes Autonomous mode and wakeup 3.18 GPDMA1 in Sleep, Stop 0 and Stop 1 modes Low-power direct memory access controller (LPDMA) The LPDMA controller is a bus master and system peripheral. The LPDMA is used to perform programmable data transfers between memory-mapped peripherals and/or memories via linked-lists, upon the control of an off-loaded CPU. The LPDMA main features are: • Single bidirectional AHB master • Memory-mapped data transfers from a source to a destination: – Peripheral-to-memory – Memory-to-peripheral – Memory-to-memory – Peripheral-to-peripheral • Autonomous data transfers during Sleep and Stop modes • Transfers arbitration based on a 4-grade programmed priority at channel level: – One high-priority traffic class, for time-sensitive channels (queue 3) – Three low-priority traffic classes, with a weighted round-robin allocation for non time-sensitive channels (queues 0, 1, 2) • Per channel event generation, on any of the following events: transfer complete, or half-transfer complete, or data transfer error, or user setting error, and/or update linked-list item error, or completed suspension • Per channel interrupt generation, with separately programmed interrupt enable per event DS13086 Rev 6 53/334 93 Functional overview • STM32U585xx Four concurrent DMA channels: • – Intra-channel DMA transfers chaining via programmable linked-list into memory, supporting two execution modes: run-to-completion and link step mode – Intra-channel and inter-channel DMA transfers chaining via programmable DMA input triggers connection to DMA task completion events Per linked-list item within a channel: • – Separately programmed source and destination transfers – Programmable data handling between source and destination: byte-based padding or truncation, sign extension and left/right realignment – Programmable number of data bytes to be transferred from the source, defining the block level – Linear source and destination addressing: either fixed or contiguously incremented addressing, programmed at a block level, between successive single transfers – Programmable DMA request and trigger selection – Programmable DMA half-transfer and transfer complete events generation – Pointer to the next linked-list item and its data structure in memory, with automatic update of the DMA linked-list control registers Debug: • – Channel suspend and resume support – Channel status reporting and event flags TrustZone support • – Support for secure and non-secure DMA transfers, independently at a first channel level, and independently at a source/destination and link sub-levels – Secure and non-secure interrupts reporting, resulting from any of the respectively secure and non-secure channels – TrustZone-aware AHB slave port, protecting any DMA secure resource (register, register field) from a non-secure access Privileged/unprivileged support: – Support for privileged and unprivileged DMA transfers, independently at channel level – Privileged-aware AHB slave port Table 13. LPDMA1 channels implementation and usage Hardware parameters Channel x x = 0 to 3 54/334 dma_fifo_ size[x] 0 Features dma_ addressing[x] 0 Channel x (x = 0 to 3) is implemented with: – no FIFO. Only a single source transfer cell is internally registered. – fixed/contiguously incremented addressing DS13086 Rev 6 STM32U585xx Functional overview Table 14. LPDMA1 autonomous mode and wakeup in low-power modes Feature Low-power modes Autonomous mode and wakeup 3.19 LPDMA1 in Sleep, Stop 0, Stop 1 and Stop 2 modes Chrom-ART Accelerator controller (DMA2D) The Chrom-ART Accelerator (DMA2D) is a specialized DMA dedicated to image manipulation. It can perform the following operations: • Filling a part or the whole of a destination image with a specific color • Copying a part or the whole of a source image into a part or the whole of a destination image • Copying a part or the whole of a source image into a part or the whole of a destination image with a pixel format conversion • Blending a part and/or two complete source images with different pixel format and copy the result into a part or the whole of a destination image with a different color format. All the classical color coding schemes are supported from 4-bit up to 32-bit per pixel with indexed or direct color mode. The DMA2D has its own dedicated memories for CLUTs (color look-up tables). The main DMA2D features are: • Single AHB master bus architecture • AHB slave programming interface supporting 8/16/32-bit accesses (except for CLUT accesses that are 32-bit) • User programmable working area size • User programmable offset for sources and destination areas expressed in pixels or bytes expressed in pixels or bytes • User programmable sources and destination addresses on the whole memory space • Up to two sources with blending operation • Alpha value can be modified (source value, fixed value or modulated value) • User programmable source and destination color format • Up to 11 color formats supported from 4-bit up to 32-bit per pixel with indirect or direct color coding • Two internal memories for CLUT storage in indirect color mode • Automatic CLUT loading or CLUT programming via the CPU • User programmable CLUT size • Internal timer to control AHB bandwidth • Six operating modes: register-to-memory, memory-to-memory, memory-to-memory with pixel format conversion, memory-to-memory with pixel format conversion and blending, memory-to memory with pixel format conversion, blending and fixed color foreground, and memory-to memory with pixel format conversion, blending and fixed color background • Area filling with a fixed color • Copy from an area to another • Copy with pixel format conversion between source and destination images • Copy from two sources with independent color format and blending DS13086 Rev 6 55/334 93 Functional overview STM32U585xx • Output buffer byte swapping to support refresh of displays through parallel interface • Abort and suspend of DMA2D operations • Watermark interrupt on a user programmable destination line • Interrupt generation on bus error or access conflict • Interrupt generation on process completion 3.20 Interrupts and events 3.20.1 Nested vectored interrupt controller (NVIC) The devices embed a NVIC that is able to manage 16 priority levels and to handle up to 125 maskable interrupt channels plus the 16 interrupt lines of the Cortex-M33. The NVIC benefits are the following: • closely coupled NVIC giving low-latency interrupt processing • interrupt entry vector table address passed directly to the core • early processing of interrupts • processing of late arriving higher priority interrupts • support for tail chaining • processor state automatically saved • interrupt entry restored on interrupt exit with no instruction overhead • TrustZone support: NVIC registers banked across secure and non-secure states The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency. 3.20.2 Extended interrupt/event controller (EXTI) The EXTI manages the individual CPU and system wakeup through configurable event inputs. It provides wakeup requests to the power control, and generates an interrupt request to the CPU NVIC and events to the CPU event input. For the CPU an additional event generation block (EVG) is needed to generate the CPU event signal. The EXTI wakeup requests allow the system to be woken up from Stop modes. The interrupt request and event request generation can also be used in Run modes. The EXTI also includes the EXTI multiplexer I/O port selection. The EXTI main features are the following: 56/334 • All event inputs allowed to wake up the system • Configurable events (signals from I/Os or peripherals able to generate a pulse) – Selectable active trigger edge – Interrupt pending status register bit independent for the rising and falling edge – Individual interrupt and event generation mask, used for conditioning the CPU wakeup, interrupt and event generation – Software trigger possibility DS13086 Rev 6 STM32U585xx • Functional overview TrustZone secure events – • 3.21 The access to control and configuration bits of secure input events can be made secure EXTI I/O port selection Cyclic redundancy check calculation unit (CRC) The CRC is used to get a CRC code using a configurable generator with polynomial value and size. Among other applications, the CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a mean to verify the Flash memory integrity. The CRC calculation unit helps to compute a signature of the software during runtime, that can be ulteriorly compared with a reference signature generated at link-time and that can be stored at a given memory location. 3.22 CORDIC co-processor (CORDIC) The CORDIC co-processor provides hardware acceleration of certain mathematical functions, notably trigonometric, commonly used in motor control, metering, signal processing and many other applications. It speeds up the calculation of these functions compared to a software implementation, allowing a lower operating frequency, or freeing up processor cycles in order to perform other tasks. The CORDIC main features are: 3.23 • 24-bit CORDIC rotation engine • Circular and hyperbolic modes • Rotation and vectoring modes • Functions: sine, cosine, sinh, cosh, atan, atan2, atanh, modulus, square root, natural logarithm • Programmable precision • Low-latency AHB slave interface • Results can be read as soon as ready without polling or interrupt • DMA read and write channels • Multiple register read/write by DMA Filter math accelerator (FMAC) The FMAC performs arithmetic operations on vectors. It comprises a MAC (multiplier/accumulator) unit, together with address generation logic that allows it to index vector elements held in local memory. The unit includes support for circular buffers on input and output, that allows digital filters to be implemented. Both finite and infinite impulse response filters can be done. DS13086 Rev 6 57/334 93 Functional overview STM32U585xx The unit allows frequent or lengthy filtering operations to be offloaded from the CPU, freeing up the processor for other tasks. In many cases it can accelerate such calculations compared to a software implementation, resulting in a speed-up of time critical tasks. The FMAC main features are: 3.24 • 16 x 16-bit multiplier • 24 + 2-bit accumulator with addition and subtraction • 16-bit input and output data • 256 x 16-bit local memory • Up to three areas can be defined in memory for data buffers (two input, one output), defined by programmable base address pointers and associated size registers • Input and output buffers can be circular • Filter functions: FIR, IIR (direct form 1) • Vector functions: dot product, convolution, correlation • AHB slave interface • DMA read and write data channels Flexible static memory controller (FSMC) The FSMC includes two memory controllers: • NOR/PSRAM memory controller • NAND/memory controller The FSMC is also named flexible memory controller (FMC). The main features of the FSMC are the following: • 3.24.1 Interface with static-memory mapped devices including: – Static random access memory (SRAM) – NOR Flash memory/OneNAND Flash memory – PSRAM (four memory banks) – NAND Flash memory with ECC hardware to check up to 8 Kbytes of data – Ferroelectric RAM (FRAM) • 8-,16-bit data bus width • Independent chip select control for each memory bank • Independent configuration for each memory bank • Write FIFO LCD parallel interface The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel® 8080 and Motorola® 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost effective graphic applications using LCD modules with embedded controllers or high-performance solutions using external controllers with dedicated acceleration. 58/334 DS13086 Rev 6 STM32U585xx 3.24.2 Functional overview FSMC TrustZone security When the TrustZone security is enabled, the whole FSMC banks are secure after reset. Non-secure area can be configured using the TZSC MPCWMx controller: • FSMC NOR/PSRAM bank: – • Up to two non-secure area can be configured thought the TZSC MPCWM2 controller with a 64-Kbyte granularity FSMC NAND bank: – Can be either configured as fully secure or fully non-secure using the TZSC MPCWM3 controller The FSMC registers can be configured as secure through the TZSC controller. 3.25 Octo-SPI interface (OCTOSPI) The devices embed two OCTOSPIs. The OCTOSPI supports most external serial memories such as serial PSRAMs, serial NAND and serial NOR Flash memories, HyperRAMs™ and HyperFlash™ memories, with the following functional modes: • Indirect mode: all the operations are performed using the OCTOSPI registers. • Status-polling mode: the external memory status register is periodically read and an interrupt can be generated in case of flag setting. • Memory-mapped mode: the external memory is memory mapped and is seen by the system as if it were an internal memory supporting read and write operation. The OCTOSPI supports the following protocols with associated frame formats: • the standard frame format with the command, address, alternate byte, dummy cycles and data phase • the HyperBus™ frame format The OCTOSPI offers the following features: • Three functional modes: Indirect, Status-polling, and Memory-mapped • Read and write support in Memory-mapped mode • Supports for single, dual, quad and octal communication • Dual-quad mode, where eight bits can be sent/received simultaneously by accessing two quad memories in parallel. • SDR (single-data rate) and DTR (double-transfer rate) support • Data strobe support • Fully programmable opcode • Fully programmable frame format • HyperBus support • Integrated FIFO for reception and transmission • 8-, 16-, and 32-bit data accesses allowed • DMA channel for Indirect mode operations • Interrupt generation on FIFO threshold, timeout, operation complete, and access error DS13086 Rev 6 59/334 93 Functional overview 3.25.1 STM32U585xx OCTOSPI TrustZone security When the TrustZone security is enabled, the whole OCTOSPI bank is secure after reset. Up to two non-secure area can be configured thought the TZSC MPCWM1 and MPCWM5 controllers with a granularity of 64 Kbytes. The OCTOSPI registers can be configured as secure through the TZSC controller. 3.26 OCTOSPI I/O manager (OCTOSPIM) The OCTOSPI I/O manager is a low-level interface enabling: • efficient OCTOSPI pin assignment with a full I/O matrix (before alternate function map) • multiplex of Single-, Dual-, Quad-, Octal-SPI interfaces over the same bus and hence support memories embedded in a multichip package The OCTOSPIM main features are: 3.27 • Supports up to two Single-, Dual-, Quad-, Octal-SPI interfaces • Supports up to two ports for pin assignment • Fully programmable I/O matrix for pin assignment by function (data/control/clock) Delay block (DLYB) The delay block (DLYB) is used to generate an output clock that is dephased from the input clock. The phase of the output clock must be programmed by the user application. The output clock is then used to clock the data received by another peripheral such as a SDMMC or Octo-SPI interface. The delay is voltage and temperature dependent, that may require the application to re-configure and recenter the output clock phase with the received data. The delay block main features are: 3.28 • Input clock frequency ranging from 25 to 160 MHz • Up to 12 oversampling phases Analog-to-digital converter (ADC1 and ADC4) The devices embed two successive approximation analog-to-digital converters. Table 15. ADC features ADC modes/features(1) ADC1 ADC4 14 bits 12 bits 2.5 Msps 2.5 Msps Hardware offset calibration X X Hardware linearity calibration X - Single-ended inputs X X Differential inputs X - Resolution Maximum sampling speed for 14-bit resolution 60/334 DS13086 Rev 6 STM32U585xx Functional overview Table 15. ADC features (continued) ADC modes/features(1) ADC1 ADC4 X - Oversampling up to x1024 up to x256 Data register 32 bits 16 bits DMA support X X Parallel data output to MDF X - Autonomous mode - X Offset compensation X - Gain compensation X - Number of analog watchdogs 3 3 Wakeup from Stop mode - X(2) Injected channel conversion 1. X = supported. 2. Wakeup supported from Stop 0, Stop 1 and Stop 2 modes. 3.28.1 Analog-to-digital converter 1 (ADC1) The ADC1 is a 14-bit ADC successive approximation analog-to-digital converter. This ADC has up to 20 multiplexed channels. A/D conversion of the various channels can be performed in Single, Continuous, Scan or Discontinuous mode. The result of the ADC is stored in a left-aligned or right-aligned 32-bit data register. This ADC is mapped on the AHB bus to allow fast data handling. The analog watchdog features allow the application to detect if the input voltage goes outside the user-defined high or low thresholds. A built-in hardware over sampler allows analog performances to be improved while off-loading the related computational burden from the CPU. An efficient low-power mode is implemented to allow very low consumption at low frequency. The ADC1 main features are: • High-performance features – 14-, 12-, 10- or 8-bit configurable resolution – A/D conversion time independent from the AHB bus clock frequency – Faster conversion time by lowering resolution – Management of single-ended or differential inputs (programmable per channels) – Fast data handling thanks to the AHB slave bus interface – Self-calibration (both offset and linearity) – Channel-wise programmable sampling time – Flexible sampling time control – Up to four injected channels (analog inputs assignment to regular or injected channels is fully configurable) – Fast context switching thanks to the hardware assistant that prepares the context of the injected channels DS13086 Rev 6 61/334 93 Functional overview • • • • – Data alignment with in-built data coherency – Data can be managed by GPDMA for regular channel conversions with FIFO – Data can be routed to MDF for post processing – Four dedicated data registers for the injected channels Oversampler – 32-bit data register – Oversampling ratio adjustable from 2 to 1024 – Programmable data right and left shift Data preconditioning – Gain compensation – Offset compensation Low-power features – Speed adaptive low-power mode to reduce ADC consumption when operating at low frequency – Slow bus frequency application while keeping optimum ADC performance – Automatic control to avoid ADC overrun in low AHB bus clock frequency application (auto-delayed mode) ADC features an external analog input channel: – • • Up to 17 channels from dedicated GPIO pads Three additional internal dedicated channels: – • STM32U585xx One channel for internal reference voltage (VREFINT) – One channel for internal temperature sensor (VSENSE) – One channel for VBAT monitoring channel (VBAT/4) Start-of-conversion can be initiated: – by software for both regular and injected conversions – by hardware triggers with configurable polarity (internal timers events or GPIO input events) for both regular and injected conversions Conversion modes – Single mode: the ADC converts a single channel. The conversion is triggered by a special event. – Scan mode: the ADC scans and converts a sequence of channels. – Continuous mode: the ADC converts continuously selected inputs. – Discontinuous mode: the ADC converts a subset of the conversion sequence. • Interrupt generation when the ADC is ready, at end of sampling, end of conversion (regular or injected), end of sequence conversion (regular or injected), analog watchdog 1, 2 or 3 or when an overrun event occurs • Three analog watchdogs – • Filtering to ignore out-of-range data ADC input range: VSSA < VIN < VREF+ Note: The ADC1 analog block clock frequency must be between 5 MHz and 55 MHz. 62/334 DS13086 Rev 6 STM32U585xx 3.28.2 Functional overview Analog-to-digital converter 4 (ADC4) The 12-bit ADC4 is a successive approximation analog-to-digital converter. It has up to 25 multiplexed channels allowing it to measure signals from 19 external and six internal sources. A/D conversion of the various channels can be performed in Single, Continuous, Scan or Discontinuous mode. The result of the ADC is stored in a left-aligned or right-aligned 16-bit data register. The analog watchdog feature allows the application to detect if the input voltage goes outside the user-defined higher or lower thresholds. An efficient low-power mode is implemented to allow very low consumption at low frequency. The ADC4 is autonomous in low-power modes down to Stop 2 mode. A built-in hardware oversampler allows analog performances to be improved while off-loading the related computational burden from the CPU. The ADC4 main features are: • • • High performance – 12-, 10-, 8- or 6-bit configurable resolution – A/D conversion time: 0.4 µs for 12-bit resolution (2.5 MHz), faster conversion times obtained by lowering resolution – Self-calibration – Programmable sampling time – Data alignment with built-in data coherency – DMA support Low-power – HCLK frequency reduced for low-power operation while still keeping optimum ADC performance – Wait mode: ADC overrun prevented in applications with low frequency HCLK – Auto-off mode: ADC automatically powered off except during the active conversion phase, dramatically reducing the ADC power consumption – Autonomous mode: In low-power modes down to Stop 2 mode, the ADC4 is automatically switched on when a trigger occurs to start conversion, and it is automatically switched off after conversion. Data are transfered in SRAM with DMA. – ADC4 interrupts wake up the device from Stop 0, Stop 1 and Stop 2 modes. Analog input channels – • Up to 19 external analog inputs – One channel for the internal temperature sensor (VSENSE) – One channel for the internal reference voltage (VREFINT) – One channel for the internal digital core voltage (VCORE) – One channel for monitoring the external VBAT power supply pin – Connection to two DAC internal channels Start-of-conversion can be initiated: – By software – By hardware triggers with configurable polarity (timer events or GPIO input events) DS13086 Rev 6 63/334 93 Functional overview • STM32U585xx Conversion modes – Conversion of a single channel or scan of a sequence of channels – Selected inputs converted once per trigger in Single mode – Selected inputs converted continuously in Continuous mode – Discontinuous mode • Interrupt generation at the end of sampling, end of conversion, end of sequence conversion, and in case of analog watchdog or overrun events, with wakeup from Stop capability • Analog watchdog • Oversampler – 16-bit data register – Oversampling ratio adjustable from 2 to 256 – Programmable data shift up to 8 bits • ADC supply requirements: 1.62 to 3.6 V • ADC input range: VSSA < VIN < VREF+ Note: The ADC4 analog block clock frequency must be between 140 kHz and 55 MHz. 3.28.3 Temperature sensor The temperature sensor generates a voltage VSENSE that varies linearly with temperature. The temperature sensor is internally connected to ADC1 and ADC4 input channel that is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it must be calibrated to obtain a good accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by STMicroelectronics in the system memory area, accessible in read-only mode. Table 16. Temperature sensor calibration values Calibration value name Description Memory address TS_CAL1 Temperature sensor 14-bit raw data acquired by ADC1 at 30 °C (± 5 °C), VDDA = VREF+ = 3.0 V (± 10 mV) 0x0BFA 0710 - 0x0BFA 0711 TS_CAL2 Temperature sensor 14-bit raw data acquired by ADC1 at 130 °C (± 5 °C), VDDA = VREF+ = 3.0 V (± 10 mV) 0x0BFA 0742 - 0x0BFA 0743 64/334 DS13086 Rev 6 STM32U585xx 3.28.4 Functional overview Internal voltage reference (VREFINT) The VREFINT provides a stable (bandgap) voltage output for the ADC and the comparators. The VREFINT is internally connected to ADC1 and ADC4 input channels. The precise voltage of VREFINT is individually measured for each part by STMicroelectronics during production test and stored in the system memory area. It is accessible in read-only mode. Table 17. Internal voltage reference calibration values Calibration value name VREFINT_CAL 3.28.5 Description 14-bit raw data acquired by ADC1 at 30 °C (± 5 °C), VDDA = VREF+ = 3.0 V (± 10 mV) Memory address 0x0BFA 07A5 - 0x0BFA 07A6 VBAT battery voltage monitoring This embedded hardware enables the application to measure the VBAT battery voltage using ADC1 or ADC4 input channel. As the VBAT voltage may be higher than the VDDA, and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by four. As a consequence, the converted digital value is a quarter of the VBAT voltage. 3.29 Digital to analog converter (DAC) The DAC module is a 12-bit, voltage output digital-to-analog converter. The DAC can be configured in 8- or 12-bit mode and may be used in conjunction with the DMA controller. In 12-bit mode, the data may be left- or right-aligned. The DAC features two output channels, each with its own converter. In dual DAC channel mode, conversions can be done independently or simultaneously when both channels are grouped together for synchronous update operations. An input reference pin, VREF+ (shared with others analog peripherals) is available for better resolution. An internal reference can also be set on the same input. The DAC_OUTx pin can be used as general purpose input/output (GPIO) when the DAC output is disconnected from output pad and connected to on chip peripheral. The DAC output buffer can be optionally enabled to allow a high drive output current. An individual calibration can be applied on each DAC output channel. The DAC output channels support a low-power mode, the sample and hold mode. The digital interface supports the following features: • One DAC interface, maximum two output channels • Left or right data alignment in 12-bit mode • Synchronized update capability • Noise-wave and triangular-wave generation • Sawtooth wave generation • Dual DAC channel for independent or simultaneous conversions • DMA capability for each channel including DMA underrun error detection • Double data DMA capability to reduce the bus activity • External triggers for conversion • DAC output channel buffered/unbuffered modes DS13086 Rev 6 65/334 93 Functional overview 3.30 STM32U585xx • Buffer offset calibration • Each DAC output can be disconnected from the DAC_OUTx output pin • DAC output connection to on chip peripherals • Sample and hold mode for low-power operation in Stop mode. The DAC voltage can be changed autonomously with the DMA while the device is in Stop mode. • Autonomous mode to reduce the power consumption for the system • Voltage reference input Voltage reference buffer (VREFBUF) The devices embed a voltage reference buffer that can be used as voltage reference for ADCs, DACs and also as voltage reference for external components through the VREF+ pin. Figure 6. VREFBUF block diagram VREFINT + VREF+ - VSSA MSv64430V2 The internal voltage reference buffer supports four voltages: 1.5 V, 1.8 V, 2.048 V and 2.5 V. An external voltage reference can be provided through the VREF+ pin when the internal voltage reference buffer is off. The VREF+ pin is double-bonded with VDDA on some packages. In these packages the internal voltage reference buffer is not available. 3.31 Comparators (COMP) The devices embed two rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low power) and with selectable output polarity. The reference voltage can be one of the following: 66/334 • External I/O • DAC output channels • Internal reference voltage or submultiple (1/4, 1/2, 3/4) DS13086 Rev 6 STM32U585xx Functional overview All comparators can wake up from Stop 0, Stop 1 and Stop 2 modes, generate interrupts and breaks for the timers and can also be combined into a window comparator. 3.32 Operational amplifiers (OPAMP) The devices embed two operational amplifiers with external or internal follower routing and PGA capability. The operational amplifier features: 3.33 • Low-input bias current • Low-offset voltage • Low-power mode • Rail-to-rail input Multi-function digital filter (MDF) and audio digital filter (ADF) The table below lists the set of features implemented into the MDF and the ADF. Table 18. MDF features MDF modes/features(1) ADF1 MDF1 1 6 ADF_CKI0 / MDF_CKIy connected to pins - X Sound activity detection (SAD) X - RXFIFO depth (number of 24-bit words) 4 4 ADC connected to ADCITF1 - ADC1 ADC connected to ADCITF2 - - Motor dedicated features (SCD, OLD, OEC, INT, snapshot, break) - X Main path with CIC4, CIC5 X X Main path with CIC1,2, 3 or FastSinc - X Number of filters (DFLTx) and serial interfaces (SITFx) RSFLT, HPF, SAT, SCALE, DLY, Discard functions Autonomous in Stop mode X X X(2) X(3) 1. X = supported. 2. Stop 0, Stop 1 and Stop 2 modes only. 3. Stop 0 and Stop 1 modes only. 3.33.1 Multi-function digital filter (MDF) The MDF is a high-performance module dedicated to the connection of external sigma-delta (Σ∆) modulators. It is mainly targeted for the following applications: • audio capture signals • motor control • metering The MDF features six digital serial interfaces (SITFx) and digital filters (DFLTx) with flexible digital processing options to offer up to 24-bit final resolution. The DFLTx of the MDF also include the filters of the ADF (audio digital filter). DS13086 Rev 6 67/334 93 Functional overview STM32U585xx The MDF can receive, via its serial interfaces, streams coming from various digital sensors. The MDF supports the following standards allowing the connection of various ΣΔ modulator sensors: • SPI interface • Manchester coded 1-wire interface • PDM interface A flexible BSMX (bitstream matrix) allows the connection of any incoming bitstream to any filter. The MDF converts an input data stream into clean decimated digital data words. This conversion is done thanks to low-pass digital filters and decimation blocks.In addition it is possible to insert a high-pass filter or DC offset correction block. The conversion speed and resolution are adjustable according to configurable parameters for digital processing: filter type, filter order, decimation ratio, integrator length. The maximum output data resolution is up to 24 bits. There are two conversion modes: single conversion and continuous modes. The data can be automatically stored in a system RAM buffer through DMA, thus reducing the software overhead. A flexible trigger interface can be used to control the conversion start. This timing control can trigger simultaneous conversions or insert a programmable delay between conversions. The MDF features an OLD (out-off limit detectors) function. There is one OLD for each digital filter chain. Independent programmable thresholds are available for each OLD, making it very suitable for over-current detection. A SCD (short circuit detector) is also available for every selected bitstream. The SCD is able to detect a short-circuit condition with a very short latency. Independent programmable thresholds are offered in order to define the short circuit condition. All the digital processing is performed using only the kernel clock. The MDF requests the bus interface clock (AHB clock) only when data must be transfered or when a specific event requests the attention of the system processor. The MDF main features are: • AHB interface • Six serial digital inputs: – configurable SPI interface to connect various digital sensors – configurable Manchester coded interface support – compatible with PDM interface to support digital microphones • Two common clock input/output for Σ∆ modulators • Flexible BSMX for connection between filters and digital inputs • Two inputs to connect the internal ADCs • Six flexible digital filter paths, including: – A configurable CIC filter: - Can be split into two CIC filters: high-resolution filter and out-off limit detector - Can be configured in Sinc4 filter - Can be configured in Sinc5 filter - Adjustable decimation ratio – 68/334 A reshape filter to improve the out-off band rejection and in-band ripple DS13086 Rev 6 STM32U585xx 3.33.2 Functional overview – A high-pass filter to cancel the DC offset – An offset error cancellation – Gain control – Saturation blocks – An out-off limit detector • Short-circuit detector • Clock absence detector • 16- or 24-bit signed output data resolution • Continuous or single conversion • Possibility to delay independently each bitstream • Various trigger possibilities • Break generation on out-of limit or short-circuit detector events • Autonomous functionality in Stop modes • DMA can be used to read the conversion data • Interrupts services Audio digital filter (ADF) The ADF is a high-performance module dedicated to the connection of external Σ∆ modulators. It is mainly targeted for the following applications: • audio capture signals • metering The ADF features one digital serial interface (SITF0) and one digital filter (DFLT0) with flexible digital processing options to offer up to 24-bit final resolution. The DLFT0 of the ADF is a subset of the digital filters included into the MDF. The ADF serial interface supports several standards allowing the connection of various Σ∆ modulator sensors: • SPI interface • Manchester coded 1-wire interface • PDM interface A flexible BSMX allows the connection of any incoming bitstream to any filter. The ADF converts an input data stream into clean decimated digital data words. This conversion is done thanks to low-pass digital filters and decimation blocks. In addition it is possible to insert a high-pass filter or a DC offset correction block. The conversion speed and resolution are adjustable according to configurable parameters for digital processing: filter type, filter order, decimation ratio. The maximum output data resolution is up to 24 bits. There are two conversion modes: single conversion and continuous modes. The data can be automatically stored in a system RAM buffer through DMA, thus reducing the software overhead. A SAD (sound activity detector) is available for the detection of “speech-like” signals. The SAD is connected at the output of DFLT0. Several parameters can be programmed to adjust properly the SAD to the sound environment. The SAD can strongly reduce the power consumption by preventing the storage of samples into the system memory as long as the observed signal does not match the programmed criteria. DS13086 Rev 6 69/334 93 Functional overview STM32U585xx A flexible trigger interface can be used to control the start of conversion of the ADF. All the digital processing is performed using only the kernel clock. The ADF requests the bus interface clock (AHB clock) only when data must be transfered or when a specific event requests the attention of the system processor. The ADF main features are: • AHB interface • One serial digital input: – Configurable SPI interface to connect various digital sensors – Configurable Manchester coded interface support – Compatible with PDM interface to support digital microphones • Two common clocks input/output for Σ∆ modulators • Flexible BSMX for connection between filters and digital inputs • One flexible digital filter path, including: – A configurable CIC filter: - Can be configured in Sinc4 filter - Can be configured in Sinc5 filter - Adjustable decimation ratio 70/334 – A reshape filter to improve the out-off band rejection and in-band ripple – A high-pass filter to cancel the DC offset – Gain control – Saturation blocks • Clock absence detector • Sound activity detector • 16- or 24-bit signed output data resolution • Continuous or single conversion • Possibility to delay independently each bitstream • Various trigger possibilities • Autonomous mode in Stop 0, Stop 1 and Stop 2 modes • Wakeup from Stop with all interrupts • DMA can be used to read the conversion data • Interrupts services DS13086 Rev 6 STM32U585xx 3.34 Functional overview Digital camera interface (DCMI) The DCMI is a synchronous parallel interface able to receive a high-speed data flow from an external 8-, 10-, 12- or 14-bit CMOS camera module. It supports different data formats: YCbCr4:2:2/RGB565 progressive video and compressed data (JPEG). This interface is for use with black and white cameras, X24 and X5 cameras, and it is assumed that all preprocessing such as resizing is performed in the camera module. The DCMI features are: 3.35 • 8-, 10-, 12- or 14-bit parallel interface • Embedded/external line and frame synchronization • Continuous or snapshot mode • Crop feature • Supports the following data formats: – 8/10/12/14-bit progressive video: either monochrome or raw Bayer – YCbCr 4:2:2 progressive video – RGB 565 progressive video – Compressed data: JPEG Parallel synchronous slave interface (PSSI) The PSSI and the DCMI use the same circuitry. As a result, these two peripherals cannot be used at the same time: when using the PSSI, the DCMI registers cannot be accessed, and vice versa. In addition, the PSSI and the DCMI share the same alternate functions and the same interrupt vector. The PSSI is a generic synchronous 8-/16-bit parallel data input/output slave interface. It enables the transmitter to send a data valid signal that indicates when the data is valid, and the receiver to output a flow control signal that indicates when it is ready to sample the data. The PSSI peripheral main features are the following: • Slave mode operation • 8-bit or 16-bit parallel data input or output • 4-word (16-byte) FIFO • Data enable (PSSI_DE) alternate function input and ready (PSSI_RDY) alternate function output When selected, these inputs can either enable the transmitter to indicate when the data is valid, or allow the receiver to indicate when it is ready to sample the data, or both. 3.36 Touch sensing controller (TSC) The TSC provides a simple solution to add capacitive sensing functionality to any application. A capacitive sensing technology is able to detect finger presence near an electrode that is protected from direct touch by a dielectric (such as glass or plastic). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. DS13086 Rev 6 71/334 93 Functional overview STM32U585xx The TSC is fully supported by the STMTouch touch sensing firmware library that is free to use and allows touch sensing functionality to be implemented reliably in the end application. The TSC main features are the following: • Proven and robust surface charge transfer acquisition principle • Supports up to 22 capacitive sensing channels • Up to eight capacitive sensing channels can be acquired in parallel offering a very good response time • Spread spectrum feature to improve system robustness in noisy environments • Full hardware management of the charge transfer acquisition sequence • Programmable charge transfer frequency • Programmable sampling capacitor I/O pin • Programmable channel I/O pin • Programmable max count value to avoid long acquisition when a channel is faulty • Dedicated end of acquisition and max count error flags with interrupt capability • One sampling capacitor for up to three capacitive sensing channels to reduce the system components • Compatible with proximity, touchkey, linear and rotary touch sensor implementation • Designed to operate with STMTouch touch sensing firmware library Note: The number of capacitive sensing channels is dependent on the size of the packages and subject to I/O availability. 3.37 True random number generator (RNG) The RNG is a true random number generator that provides full entropy outputs to the application as 32-bit samples. It is composed of a live entropy source (analog) and an internal conditioning component. The RNG is a NIST SP 800-90B compliant entropy source that can be used to construct a non-deterministic random bit generator (NDRBG). The true random generator: 72/334 • delivers 32-bit true random numbers, produced by an analog entropy source conditioned by a NIST SP800-90B approved conditioning stage • can be used as entropy source to construct a non-deterministic random bit generator (NDRBG) • produces four 32-bit random samples every 412 AHB clock cycles if fAHB < 77 MHz (256 RNG clock cycles otherwise) • embeds startup and NIST SP800-90B approved continuous health tests (repetition count and adaptive proportion tests), associated with specific error management • can be disabled to reduce power consumption, or enabled with an automatic low-power mode (default configuration) • has an AMBA AHB slave peripheral, accessible through 32-bit word single accesses only (else an AHB bus error is generated, and the write accesses are ignored) DS13086 Rev 6 STM32U585xx 3.38 Functional overview Secure advanced encryption standard hardware accelerator (SAES) and encryption standard hardware accelerator (AES) The devices embed two AES accelerators: SAES and AES. The SAES with hardware unique key embeds protection against differential power analysis (DPA) and related side channel attacks. The SAES can share its current key register information with the faster AES using a dedicated hardware bus. The SAES and the AES can be used to both encrypt and decrypt data using the AES algorithm. It is a fully compliant implementation of the advanced encryption standard (AES) as defined by Federal Information Processing Standards Publication (FIPS PUB 197, Nov 2001). Multiple chaining modes are supported for key sizes of 128 or 256 bits. ECB and CBC chaining is supported by both SAES and AES, while CTR, CCM, GCM and GMAC chaining is only supported by the AES. SAES and AES support DMA single transfers for incoming and outgoing data (two DMA channels required). The SAES supports the selection of all the following key sources, while the AES support only the first: • 256-bit software key, written by the application in the key registers (write only) • 256-bit derived hardware unique key (DHUK), computed inside the SAES engine from a non-volatile OTP based root hardware unique key (RHUK) • 256-bit boot hardware key (BHK), stored in tamper-resistant secure backup registers, written by a secure code during boot. Once written, this key cannot be read or write by any application until the next product reset. • XOR of DHUK (provisioned chip secret) and BHK (software secret) DHUK, BHK and their XOR are not visible by any software (even secure). Note: 128-bit key size can also be selected. BHK key is cleared in case of tamper or RDP regression. When the SAES is secure (respectively non-secure), DHUK secure (respectively nonsecure) is used. The SAES peripheral is connected by hardware to the true random number generator RNG (for side-channel resistance). The SAES and AES peripherals support: • Compliant implementation of standard NIST Special Publication 197, Advanced Encryption Standard (AES) and Special Publication 800-38A, Recommendation for Block Cipher Modes of Operation • 128-bit data block processing • Support for cipher keys length of 128-bit and 256-bit • Encryption and decryption with multiple chaining modes: – Electronic codebook (ECB) mode – Cipher block chaining (CBC) mode DS13086 Rev 6 73/334 93 Functional overview • STM32U585xx Additional chaining modes supported by AES only: – Counter (CTR) mode – Galois counter mode (GCM) – Galois message authentication code (GMAC) mode – Counter with CBC-MAC (CCM) mode • 528 or 743 clock cycle latency in ECB encryption mode for SAES processing one 128-bit block of data with, respectively, 128-bit or 256-bit key • 51 or 75 clock cycle latency in ECB encryption mode for AES processing one 128-bit block of data with, respectively, 128-bit or 256-bit key • Integrated round key scheduler to compute the last round key for AES ECB/CBC decryption • 256-bit register for storing the cryptographic key (four 32-bit registers), with key atomicity enforcement • 128-bit registers for storing initialization vectors (four 32-bit registers) • One 32-bit input buffer and one 32-bit output buffer • Automatic data flow control with support of single-transfer direct memory access (DMA) using two channels (one for incoming data, one for processed data) • Data swapping logic to support 1-, 8-, 16- or 32-bit data • Possibility for software to suspend a message if the SAES/AES needs to process another message with a higher priority (suspend/resume operation) • SAES additional features: – Security context enforcement for keys – Hardware secret key encryption/ decryption (wrapped key mode) and sharing with faster AES peripheral (Shared key mode) – Protection against differential power analysis (DPA) and related side-channel attacks – Optional hardware loading of two hardware secret keys (BHK, DHUK) that can be XORed together On top of standard AES encryption and decryption with a key loaded by software, SAES peripheral allows the following advanced use cases: Note: 74/334 • Allow or deny the sharing of a key between a secure and a non-secure application, enforced by hardware • Encrypt once a key using side-channel resistant AES, then share it to a faster AES engine by decrypting it (Shared key mode) • On-chip encrypted storage using chip-unique secret DHUK • Transport key generation by encrypting the device public unique ID with the application secret BHK • Binding of device secure storage keys, using the silicon unique secret key (DHUK) XORed with the boot secret key (BHK). If BHK is lost, the whole device secure storage is lost. Encrypted storage or derived keys that are using DHUK or BHK, cannot be used anymore when a security breach is detected. DS13086 Rev 6 STM32U585xx Functional overview Table 19. AES/SAES features AES/SAES modes/features(1) AES SAES ECB, CBC chaining X X CTR, CCM, GCM chaining X - AES 128-bit ECB encryption in cycles 51 528 DHUK and BHK key selection - X Side-channel attacks resistance - X Shared key between SAES and AES X 1. X = supported. 3.39 HASH hardware accelerator (HASH) The HASH is a fully compliant implementation of the secure hash algorithm (SHA-1, SHA-224, SHA-256), the MD5 (message-digest algorithm 5) hash algorithm and the HMAC (keyed-hash message authentication code) algorithm. HMAC is suitable for applications requiring message authentication. The HASH computes FIPS (Federal information processing standards) approved digests of length of 160, 224, 256 bits, for messages of up to (264 – 1) bits. It also computes 128 bits digests for the MD5 algorithm. The HASH main features are: • • • • Suitable for data authentication applications, compliant with: – Federal Information Processing Standards Publication FIPS PUB 180-4, Secure Hash Standard (SHA-1 and SHA-2 family) – Federal Information Processing Standards Publication FIPS PUB 186-4, Digital Signature Standard (DSS) – Internet Engineering Task Force (IETF) Request For Comments RFC 1321, MD5 Message-Digest Algorithm – Internet Engineering Task Force (IETF) Request For Comments RFC 2104, HMAC: Keyed-Hashing for Message Authentication and Federal Information Processing Standards Publication FIPS PUB 198-1, The Keyed-Hash Message Authentication Code (HMAC) Fast computation of SHA-1, SHA-224, SHA-256, and MD5 – 82 (respectively 66) clock cycles for processing one 512-bit block of data using SHA-1 (respectively SHA-256) algorithm – 66 clock cycles for processing one 512-bit block of data using MD5 algorithm Corresponding 32-bit words of the digest from consecutive message blocks are added to each other to form the digest of the whole message: – Automatic 32-bit words swapping to comply with the internal little-endian representation of the input bit string – Word swapping supported: bits, bytes, half-words and 32-bit words Automatic padding to complete the input bit string to fit digest minimum block size of 512 bits (16 × 32 bits) DS13086 Rev 6 75/334 93 Functional overview 3.40 STM32U585xx • Single 32-bit input register associated to an internal input FIFO of sixteen 32-bit words, corresponding to one block size • AHB slave peripheral, accessible through 32-bit word accesses only (else an AHB error is generated) • 8 × 32-bit words (H0 to H7) for output message digest • Automatic data flow control with support of direct memory access (DMA) using one channel. Single or fixed burst of 4 supported. • Interruptible message digest computation, on a per-32-bit word basis – Re-loadable digest registers – Hashing computation suspend/resume mechanism, including using DMA On-the-fly decryption engine (OTFDEC) The OTFDEC allows the decryption of the on-the-fly AHB traffic based on the read request address information, for example execute-in-place of a code stored encrypted. Four independent and non-overlapping encrypted regions can be defined in OTFDEC. OTFDEC uses AES-128 in counter mode to achieve the lowest possible latency. As consequence, each time the content of one encrypted region is changed the entire region must be re-encrypted with a different cryptographic context (key or initialization vector). This constraint makes OTFDEC suitable to decrypt read-only data or code, stored in external NOR Flash. Note: When OTFDEC is used in conjunction with OCTOSPI, it is mandatory to access the Flash memory using the Memory-mapped mode of the Flash memory controller. When security is enabled in the product, OTFDEC can be programmed only by a secure host. The OTFDEC main features are the following: • • • 76/334 On-the-fly 128-bit decryption during OCTOSPI memory-mapped read operations (single or multiple) – Use of AES in counter (CTR) mode, with two 128-bit keystream buffers – Support for any read size – Physical address of the reads is used for the encryption/decryption Up to 4 independent encrypted regions – Granularity of the region definition: 4096 bytes – Region configuration write locking mechanism – Each region has its own 128-bit key, two bytes firmware version, and eight bytes application-defined nonce. At least one of those must be changed each time an encryption is performed by the application. Encryption keys confidentiality and integrity protection – Write-only registers, with software locking mechanism – Availability of 8-bit CRC as public key information • Support for OCTOSPI prefetching mechanism • Possibility to select an enhanced encryption mode to add a proprietary layer of protection on top of AES stream cipher (execute only) DS13086 Rev 6 STM32U585xx 3.41 Functional overview • AMBA® AHB slave peripheral, accessible through 32-bit word single accesses only (otherwise an AHB bus error is generated, and write accesses are ignored) • Secure only programming if TrustZone security is enabled • Encryption mode Public key accelerator (PKA) The PKA is intended for the computation of cryptographic public key primitives, specifically those related to RSA, Diffie-Hellmann or ECC (elliptic curve cryptography) over GF(p) (Galois fields). To achieve high performance at a reasonable cost, these operations are executed in the Montgomery domain. All needed computations are performed within the accelerator, so no further hardware/software elaboration is needed to process the inputs or the outputs. The PKA main features are: • 3.42 Acceleration of RSA, DH and ECC over GF(p) operations, based on the Montgomery method for fast modular multiplications. More specifically: – RSA modular exponentiation, RSA Chinese remainder theorem (CRT) exponentiation – ECC scalar multiplication, point on curve check, complete addition, double base ladder, projective to affine – ECDSA signature generation and verification • Capability to handle operands up to 4160 bits for RSA/DH and 640 bits for ECC • Arithmetic and modular operations such as addition, subtraction, multiplication, modular reduction, modular inversion, comparison, and Montgomery multiplication • Built-in Montgomery domain inward and outward transformations • Protection against differential power analysis (DPA) and related side-channel attacks. Timers and watchdogs The devices include two advanced control timers, up to seven general-purpose timers, two basic timers, four low-power timers, two watchdog timers and two SysTick timers. The table below compares the features of the advanced control, general-purpose and basic timers. Table 20. Timer feature comparison Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Advanced control TIM1, TIM8 16 bits Up, down, Up/down Any integer between 1 and 65536 Yes 4 3 Generalpurpose TIM2, TIM3, TIM4, TIM5 32 bits Up, down, Up/down Any integer between 1 and 65536 Yes 4 No DS13086 Rev 6 Capture/ Complementary compare outputs channels 77/334 93 Functional overview STM32U585xx Table 20. Timer feature comparison (continued) Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Generalpurpose TIM15 16 bits Up Any integer between 1 and 65536 Yes 2 1 Generalpurpose TIM16, TIM17 16 bits Up Any integer between 1 and 65536 Yes 1 1 Basic TIM6, TIM7 16 bits Up Any integer between 1 and 65536 Yes 0 No 3.42.1 Capture/ Complementary compare outputs channels Advanced-control timers (TIM1, TIM8) The advanced-control timers can each be seen as a three-phase PWM multiplexed on six channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers. The four independent channels can be used for: • Input capture • Output compare • PWM generation (edge or center-aligned modes) with full modulation capability (0 - 100%) • One-pulse mode output In Debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled in order to turn off any power switches driven by these outputs. Many features are shared with the general-purpose TIMx timers (described in the next section) using the same architecture, so the advanced-control timers can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining. 3.42.2 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16,TIM17) There are up to seven synchronizable general-purpose timers embedded in the STM32U585xx devices (see Table 20 for differences). Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base. • TIM2, TIM3, TIM4 and TIM5 They are full-featured general-purpose timers with 32-bit auto-reload up/downcounter and 16-bit prescaler. These timers feature four independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other general-purpose timers via the Timer Link feature for synchronization or event chaining. The counters can be frozen in Debug mode. All have independent DMA request generation and support quadrature encoders. 78/334 DS13086 Rev 6 STM32U585xx • Functional overview TIM15, 16 and 17 They are general-purpose timers with mid-range features. They have 16-bit auto-reload upcounters and 16-bit prescalers. – TIM15 has two channels and one complementary channel – TIM16 and TIM17 have one channel and one complementary channel All channels can be used for input capture/output compare, PWM or one-pulse mode output. The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation. The counters can be frozen in Debug mode. 3.42.3 Basic timers (TIM6 and TIM7) The basic timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit timebase. 3.42.4 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4) The devices embed four low-power timers. These timers have an independent clock and are running in Stop mode if they are clocked by HSI16, MSI, LSE, LSI or an external clock. They are able to wake up the system from Stop mode. LPTIM1, LPTIM3, and LPTIM4 are active in Stop 0, Stop 1 and Stop 2 modes. LPTIM2 is active in Stop 0 and Stop 1 mode. The low-power timer supports the following features: • 16-bit up counter with 16-bit autoreload register • 3-bit prescaler with eight possible dividing factors (1, 2, 4, 8, 16, 32, 64, 128) • Selectable clock – Internal clock sources: LSE, LSI, HSI16, MSIK (LPTIM1, LPTIM3, LPTIM4 only) or APB clock (LPTIM2 only) – External clock source over LPTIM input (working with no LP oscillator running, used by Pulse Counter application) • 16-bit ARR autoreload register • 16-bit capture/compare register • Continuous/One-shot mode • Selectable software/hardware input trigger • Programmable digital glitch filter • Configurable output: pulse, PWM • Configurable I/O polarity • Encoder mode • Repetition counter • Up to 2 independent channels for: • – Input capture – PWM generation (edge-aligned mode) – One-pulse mode output Interrupt generation on 10 events DS13086 Rev 6 79/334 93 Functional overview • 3.42.5 STM32U585xx DMA request generation on the following events: – Update event – Input capture Infrared interface (IRTIM) An infrared interface (IRTIM) for remote control is available on the device. It can be used with an infrared LED to perform remote control functions. It uses internal connections with TIM16 and TIM17. 3.42.6 Independent watchdog (IWDG) The independent watchdog is based on a 12-bit downcounter and a 8-bit prescaler. It is clocked from an independent 32 kHz internal RC (LSI) and, as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in Debug mode. 3.42.7 Window watchdog (WWDG) The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in Debug mode. 3.42.8 SysTick timer The Cortex-M33 with TrustZone embeds two SysTick timers. When TrustZone is activated, two SysTick timer are available: • SysTick, secure instance • SysTick, non-secure instance When TrustZone is disabled, only one SysTick timer is available. This timer (secure or non-secure) is dedicated to real-time operating systems, but can also be used as a standard down counter. It features: • A 24-bit down counter • Autoreload capability • Maskable system interrupt generation when the counter reaches 0 • Programmable clock source. 3.43 Real-time clock (RTC), tamper and backup registers 3.43.1 Real-time clock (RTC) The RTC supports the following features: 80/334 • Calendar with subsecond, seconds, minutes, hours (12 or 24 format), weekday, date, month, year, in BCD (binary-coded decimal) format • Binary mode with 32-bit free-running counter DS13086 Rev 6 STM32U585xx Functional overview • Automatic correction for 28, 29 (leap year), 30, and 31 days of the month • Two programmable alarms • On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock • Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision • Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy • Timestamp feature that can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to VBAT mode • 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period • TrustZone support: – RTC fully securable – Alarm A, alarm B, wakeup timer and timestamp individual secure or non-secure configuration – Alarm A, alarm B, wakeup timer and timestamp individual privileged protection The RTC is supplied through a switch that takes power either from the VDD supply when present or from the VBAT pin. The RTC clock sources can be one of the following: • 32.768 kHz external crystal (LSE) • external resonator or oscillator (LSE) • internal low-power RC oscillator (LSI, with typical frequency of 32 kHz) • high-speed external clock (HSE), divided by a prescaler in the RCC. The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes except Shutdown mode. All RTC events (alarm, wakeup timer, timestamp) can generate an interrupt and wakeup the device from the low-power modes. 3.43.2 Tamper and backup registers (TAMP) The anti-tamper detection circuit is used to protect sensitive data from external attacks. 32 32-bit backup registers are retained in all low-power modes and also in VBAT mode. The backup registers, as well as other secrets in the device, are protected by this anti-tamper detection circuit with eight tamper pins and eleven internal tampers. The external tamper pins can be configured for edge detection, or level detection with or without filtering, or active tamper that increases the security level by auto checking that the tamper pins are not externally opened or shorted. TAMP main features: • A tamper detection can erase the backup registers, backup SRAM, SRAM2, caches and cryptographic peripherals. • 32 32-bit backup registers: – The backup registers (TAMP_BKPxR) are implemented in the Backup domain that remains powered-on by VBAT when the VDD power is switched off. DS13086 Rev 6 81/334 93 Functional overview • • • STM32U585xx Up to 8 tamper pins for 8 external tamper detection events: – Active tamper mode: continuous comparison between tamper output and input to protect from physical open-short attacks – Flexible active tamper I/O management: from 4 meshes (each input associated to its own exclusive output) to 7 meshes (single output shared for up to 7 tamper inputs) – Passive tampers: ultra-low power edge or level detection with internal pull-up hardware management – Configurable digital filter 11 internal tamper events to protect against transient or environmental perturbation attacks: – Backup domain voltage monitoring – Temperature monitoring – LSE monitoring – RTC calendar overflow – JTAG/SWD access if RDP different from 0 – Monotonic counter overflow – Cryptographic peripherals fault (RNG, SAES, AES, PKA) – Independent watchdog reset when tamper flag is already set – 3 ADC4 watchdogs Each tamper can be configured in two modes: – Hardware mode: immediate erase of secrets on tamper detection, including backup registers erase – Software mode: erase of secrets following a tamper detection launched by software • Any tamper detection can generate a RTC time stamp event. • TrustZone support: – Tamper secure or non-secure configuration – Backup registers configuration in 3 configurable-size areas: - 1 read/write secure area - 1 write secure/read non-secure area - 1 read/write non-secure area – 82/334 Boot secret key (BHK) only usable by secure AES peripheral, stored in backup registers, protected against read and write access • Tamper configuration and backup registers privilege protection • Monotonic counter DS13086 Rev 6 STM32U585xx 3.44 Functional overview Inter-integrated circuit interface (I2C) The device embeds four I2C. Refer to Table 21 for the features implementation. The I2C bus interface handles communications between the microcontroller and the serial I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing. The I2C peripheral supports: • • I2C-bus specification and user manual rev. 5 compatibility: – Slave and Master modes, multimaster capability – Standard-mode (Sm), with a bit rate up to 100 Kbit/s – Fast-mode (Fm), with a bit rate up to 400 Kbit/s – Fast-mode Plus (Fm+), with a bit rate up to 1 Mbit/s and 20 mA output drive I/Os – 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses – Programmable setup and hold times – Optional clock stretching System management bus (SMBus) specification rev 3.0 compatibility: – Hardware PEC (packet error checking) generation and verification with ACK control – Address resolution protocol (ARP) support – SMBus alert • Power system management protocol (PMBus) specification rev 1.3 compatibility • Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming • Autonomous functionality in Stop modes with wakeup from Stop capability • Programmable analog and digital noise filters • 1-byte buffer with DMA capability Table 21. I2C implementation I2C features(1) I2C1 I2C2 I2C3 I2C4 Standard-mode (up to 100 Kbit/s) X X X X Fast-mode (up to 400 Kbit/s) X X X X Fast-mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s) X X X X Programmable analog and digital noise filters X X X X SMBus/PMBus hardware support X X X X Independent clock X X X X Autonomous in Stop 0, Stop 1 mode with wakeup capability X X X X Autonomous in Stop 2 mode with wakeup capability - - X - 1. X: supported DS13086 Rev 6 83/334 93 Functional overview 3.45 STM32U585xx Universal synchronous/asynchronous receiver transmitter (USART/UART) and low-power universal asynchronous receiver transmitter (LPUART) The devices embed three universal synchronous receiver transmitters (USART1, USART2 and USART3), two universal asynchronous receiver transmitters (UART4, UART5) and one low-power universal asynchronous receiver transmitter (LPUART1). Table 22. USART, UART and LPUART features USART modes/features(1) USART1/2/3 UART4/5 LPUART1 Hardware flow control for modem X X X Continuous communication using DMA X X X Multiprocessor communication X X X Synchronous mode (master/slave) X - - Smartcard mode X - - Single-wire half-duplex communication X X X IrDA SIR ENDEC block X X - LIN mode X X - Dual-clock domain and wakeup from Stop mode (2) X(2) X(3) X Receiver timeout interrupt X X - Modbus communication X X - Auto-baud rate detection X X - Driver enable X X X USART data length 7, 8 and 9 bits Tx/Rx FIFO X Tx/Rx FIFO size X X 8 bytes Autonomous mode X X X 1. X = supported. 2. Wakeup supported from Stop 0 and Stop 1 modes. 3. Wakeup supported from Stop 0, Stop 1 and Stop 2 modes. 3.45.1 Universal synchronous/asynchronous receiver transmitter (USART/UART) The USART offers a flexible means to perform full-duplex data exchange with external equipments requiring an industry standard NRZ asynchronous serial data format. A very wide range of baud rates can be achieved through a fractional baud rate generator. The USART supports both synchronous one-way and half-duplex single-wire communications, as well as LIN (local interconnection network), Smartcard protocol, IrDA (infrared data association) SIR ENDEC specifications, and modem operations (CTS/RTS). Multiprocessor communications are also supported. 84/334 DS13086 Rev 6 STM32U585xx Functional overview High-speed data communications up to 20 Mbauds are possible by using the DMA (direct memory access) for multibuffer configuration. The USART main features are: • Full-duplex asynchronous communication • NRZ standard format (mark/space) • Configurable oversampling method by 16 or 8 to achieve the best compromise between speed and clock tolerance • Baud rate generator systems • Two internal FIFOs for transmit and receive data Each FIFO can be enabled/disabled by software and come with a status flag. • A common programmable transmit and receive baud rate • Dual-clock domain with dedicated kernel clock for peripherals independent from PCLK • Auto baud rate detection • Programmable data word length (7, 8 or 9 bits) • Programmable data order with MSB-first or LSB-first shifting • Configurable stop bits (1 or 2 stop bits) • Synchronous Master/Slave mode and clock output/input for synchronous communications • SPI slave transmission underrun error flag • Single-wire half-duplex communications • Continuous communications using DMA • Received/transmitted bytes are buffered in reserved SRAM using centralized DMA • Separate enable bits for transmitter and receiver • Separate signal polarity control for transmission and reception • Swappable Tx/Rx pin configuration • Hardware flow control for modem and RS-485 transceiver • Communication control/error detection flags • Parity control: – Transmits parity bit – Checks parity of received data byte • Interrupt sources with flags • Multiprocessor communications: wakeup from Mute mode by idle line detection or address mark detection • Autonomous functionality in Stop mode with wakeup from stop capability • LIN master synchronous break send capability and LIN slave break detection capability – 13-bit break generation and 10/11-bit break detection when USART is hardware configured for LIN • IrDA SIR encoder decoder supporting 3/16-bit duration for Normal mode • Smartcard mode – Supports the T = 0 and T = 1 asynchronous protocols for smartcards as defined in the ISO/IEC 7816-3 standard – 0.5 and 1.5 stop bits for Smartcard operation DS13086 Rev 6 85/334 93 Functional overview • 3.45.2 STM32U585xx Support for Modbus communication – Timeout feature – CR/LF character recognition Low-power universal asynchronous receiver transmitter (LPUART) The LPUART supports bidirectional asynchronous serial communication with minimum power consumption. It also supports half-duplex single-wire communication and modem operations (CTS/RTS). It allows multiprocessor communication. Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher-speed clock can be used to reach higher baudrates. The LPUART interface can be served by the DMA controller. The LPUART main features are: • Full-duplex asynchronous communications • NRZ standard format (mark/space) • Programmable baud rate • From 300 baud/s to 9600 baud/s using a 32.768 kHz clock source • Higher baud rates can be achieved by using a higher frequency clock source • Two internal FIFOs to transmit and receive data Each FIFO can be enabled/disabled by software and come with status flags for FIFO states. • Dual-clock domain with dedicated kernel clock for peripherals independent from PCLK • Programmable data word length (7 or 8 or 9 bits) • Programmable data order with MSB-first or LSB-first shifting • Configurable stop bits (1 or 2 stop bits) • Single-wire half-duplex communications • Continuous communications using DMA • Received/transmitted bytes are buffered in reserved SRAM using centralized DMA • Separate enable bits for transmitter and receiver • Separate signal polarity control for transmission and reception • Swappable Tx/Rx pin configuration • Hardware flow control for modem and RS-485 transceiver • Transfer detection flags: • 86/334 – Receive buffer full – Transmit buffer empty – Busy and end of transmission flags Parity control: – Transmits parity bit – Checks parity of received data byte DS13086 Rev 6 STM32U585xx • 3.46 Functional overview Four error detection flags: – Overrun error – Noise detection – Frame error – Parity error • Interrupt sources with flags • Multiprocessor communications: wakeup from Mute mode by idle line detection or address mark detection • Autonomous functionality in Stop mode with wakeup from Stop capability Serial peripheral interface (SPI) The devices embed three serial peripheral interfaces (SPI) that can be used to communicate with external devices while using the specific synchronous protocol. The SPI protocol supports half-duplex, full-duplex and simplex synchronous, serial communication with external devices. The interface can be configured as master or slave and can operate in multi-slave or multi-master configurations. The device configured as master provides communication clock (SCK) to the slave device. The slave select (SS) and ready (RDY) signals can be applied optionally just to setup communication with concrete slave and to assure it handles the data flow properly. The Motorola® data format is used by default, but some other specific modes are supported as well. The SPI main features are: • Full-duplex synchronous transfers on three lines • Half-duplex synchronous transfer on two lines (with bidirectional data line) • Simplex synchronous transfers on two lines (with unidirectional data line) • 4-bit to 32-bit data size selection or fixed to 8-bit and 16-bit only • Multi master or multi slave mode capability • Dual-clock domain, separated clock for the peripheral kernel that can be independent of PCLK • Baud rate prescaler up to kernel frequency/2 or bypass from RCC in Master mode • Protection of configuration and setting • Hardware or software management of SS for both master and slave • Adjustable minimum delays between data and between SS and data flow • Configurable SS signal polarity and timing, MISO x MOSI swap capability • Programmable clock polarity and phase • Programmable data order with MSB-first or LSB-first shifting • Programmable number of data within a transaction to control SS and CRC • Dedicated transmission and reception flags with interrupt capability • SPI Motorola® and Texas Instruments® formats support • Hardware CRC feature can secure communication at the end of transaction by: – Adding CRC value in Tx mode – Automatic CRC error checking for Rx mode DS13086 Rev 6 87/334 93 Functional overview STM32U585xx • Error detection with interrupt capability in case of data overrun, CRC error, data underrun at slave, mode fault at master • Two 16x or 8x 8-bit embedded Rx and TxFIFOs with DMA capability • Programmable number of data in transaction • Configurable FIFO thresholds (data packing) • Configurable behavior at slave underrun condition (support of cascaded circular buffers) • Autonomous functionality in Stop modes (handling of the transaction flow and required clock distribution) with wakeup from stop capability • Optional status pin RDY signalizing the slave device ready to handle the data flow. Table 23. SPI features SPI1, SPI2 (full feature set instances) SPI3 (limited feature set instance) Data size Configurable from 4 to 32-bit 8/16-bit CRC computation CRC polynomial length configurable from 5 to 33-bit CRC polynomial length configurable from 9 to 17-bit 16x 8-bit 8x 8-bit Unlimited, expandable Up to 1024, no data counter Autonomous in Stop 0, Stop 1 mode with wakeup capability Yes Yes Autonomous in Stop 2 mode with wakeup capability No Yes SPI feature Size of FIFOs Number of transfered data 3.47 Serial audio interfaces (SAI) The devices embed two SAIs. Refer to Table 24: SAI implementation for the features implementation. The SAI bus interface handles communications between the microcontroller and the serial audio protocol. The SAI peripheral supports: 88/334 • Two independent audio sub-blocks that can be transmitters or receivers with their respective FIFO • 8-word integrated FIFOs for each audio sub-block • Synchronous or Asynchronous mode between the audio sub-blocks • Master or slave configuration independent for both audio sub-blocks • Clock generator for each audio block to target independent audio frequency sampling when both audio sub-blocks are configured in master mode • Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit • Peripheral with large configurability and flexibility allowing to target as example the following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF out • Up to 16 slots available with configurable size and with the possibility to select which ones are active in the audio frame • Number of bits by frame may be configurable DS13086 Rev 6 STM32U585xx Functional overview • Frame synchronization active level configurable (offset, bit length, level) • First active bit position in the slot is configurable • LSB first or MSB first for data transfer • Mute mode • Stereo/mono audio frame capability • Communication clock strobing edge configurable (SCK) • Error flags with associated interrupts if enabled respectively • • – Overrun and underrun detection – Anticipated frame synchronization signal detection in Slave mode – Late frame synchronization signal detection in Slave mode – Codec not ready for the AC’97 mode in reception Interruption sources when enabled: – Errors – FIFO requests DMA interface with two dedicated channels to handle access to the dedicated integrated FIFO of each SAI audio sub-block. Table 24. SAI implementation SAI features(1) SAI1 SAI2 I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 X X Mute mode X X Stereo/mono audio frame capability. X X 16 slots X X Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit X X X (8 words) X (8 words) SPDIF X X PDM X - FIFO size 1. X: supported 3.48 Secure digital input/output and MultiMediaCards interface (SDMMC) The SDMMC (SD/SDIO embedded MultiMediaCard e•MMC™ host interface) provides an interface between the AHB bus and SD memory cards, SDIO cards and e•MMC devices. The MultiMediaCard system specifications are available through the MultiMediaCard association website at www.mmca.org, published by the MMCA technical committee. SD memory card and SD I/O card system specifications are available through the SD card Association website at www.sdcard.org. DS13086 Rev 6 89/334 93 Functional overview STM32U585xx The SDMMC features include the following: • Compliance with Embedded MultiMediaCard System Specification Version 5.1 Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit (HS200 SDMMC_CK speed limited to maximum allowed I/O speed) (HS400 is not supported). • Full compatibility with previous versions of MultiMediaCards (backward compatibility). • Full compliance with SD memory card specifications version 6.0 (SDR104 SDMMC_CK speed limited to maximum allowed I/O speed, SPI mode and UHS-II mode not supported). • Full compliance with SDIO card specification version 4.0 Card support for two different databus modes: 1-bit (default) and 4-bit (SDR104 SDMMC_CK speed limited to maximum allowed I/O speed, SPI mode and UHS-II mode not supported). • Data transfer up to 208 Mbyte/s for the 8-bit mode (Depending maximum allowed I/O speed). • Data and command output enable signals to control external bidirectional drivers • IDMA linked list support The MultiMediaCard/SD bus connects cards to the host. The current version of the SDMMC supports only one SD/SDIO/e•MMC card at any one time and a stack of e•MMC. Table 25. SDMMC features SDMMC modes/features(1) SDMMC1 SDMMC2 Variable delay (SDR104, HS200) X X SDMMC_CKIN X - SDMMC_CDIR, SDMMC_D0DIR X - SDMMC_D123DIR X - 1. X = supported. When SDMMC peripherals are used simultaneously: 90/334 • Only one can be used in e•MMC with 8-bit bus width. • The SDMMC1 SDIO voltage switch use is mutually exclusive with SDMMC2 interfacing e•MMC with 8-bit bus width, as follows: – If SDMMC1 has to support SDIO UHS-I modes (SDR12, SDR25, SDR50, SDR104 or DDR50), SDMMC2 cannot support e•MMC with 8-bit bus width. – if SDMMC2 has to support e•MMC with 8-bit bus width, SDMMC1 supports only SDIO default mode and high-speed mode. DS13086 Rev 6 STM32U585xx 3.49 Functional overview Controller area network (FDCAN) The controller area network (CAN) subsystem consists of one CAN module, a shared message RAM memory and a configuration block. The modules (FDCAN) are compliant with ISO 11898-1: 2015 (CAN protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0. A 0.8-Kbyte message RAM implements filters, receives FIFOs, transmits event FIFOs and transmits FIFOs. The FDCAN main features are: 3.50 • Conform with CAN protocol version 2.0 part A, B and ISO 11898-1: 2015, -4 • CAN FD with maximum 64 data bytes supported • CAN error logging • AUTOSAR and J1939 support • Improved acceptance filtering • 2 receive FIFOs of three payloads each (up to 64 bytes per payload) • Separate signaling on reception of high priority messages • Configurable transmit FIFO / queue of three payload (up to 64 bytes per payload) • Configurable transmit Event FIFO • Programmable loop-back test mode • Maskable module interrupts • Two clock domains: APB bus interface and CAN core kernel clock • Power-down support USB on-the-go full-speed (OTG_FS) The devices embed a USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG_FS peripheral is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It has software-configurable endpoint setting and supports suspend/resume. This interface requires a precise 48 MHz clock that can be generated from the internal main PLL (the clock source must use a HSE crystal oscillator) or by the internal 48 MHz oscillator (HSI48) in Automatic-trimming mode. The synchronization for this oscillator can be taken from the USB data stream itself (SOF signalization) that allows crystal less operation. The OTG_FS features are: • USB-IF certified to the Universal Serial Bus Specification Rev 2.0 • On-chip full-speed PHY • Full support (PHY) for the optional OTG (on-the-go) protocol detailed in the OTG Supplement Rev 2.0 specification – Integrated support for A-B device identification (ID line) – Integrated support for host negotiation protocol (HNP) and session request protocol (SRP) – Allows host to turn VBUS off to conserve battery power in OTG applications – Supports OTG monitoring of VBUS levels with internal comparators – Supports dynamic host-peripheral switch of role DS13086 Rev 6 91/334 93 Functional overview • • STM32U585xx Software-configurable to operate as: – SRP capable USB FS peripheral (B-device) – SRP capable USB FS/LS host (A-device) – USB On-The-Go Full-Speed dual role device Supports FS SOF and LS keep-alives with – SOF pulse PAD connectivity – SOF pulse internal connection to timer (TIMx) – Configurable framing period – Configurable end of frame interrupt • USB 2.0 link power management (LPM) support • Includes power saving features such as system stop during USB suspend, switch-off of clock domains internal to the digital core, PHY and DFIFO power management. • Dedicated RAM of 1.25 Kbytes with advanced FIFO control: – Configurable partitioning of RAM space into different FIFOs for flexible and efficient use of RAM – Each FIFO able to hold multiple packets – Dynamic memory allocation – Configurable FIFO sizes that are not powers of two to allow the use of contiguous memory locations • Max guaranteed USB bandwidth for up to one frame (1 ms) without system intervention • Support of charging port detection as described in Battery Charging Specification revision 1.2 on the FS PHY transceiver only. Host-mode features: • External charge pump for VBUS voltage generation. • Up to 12 host channels (pipes): each channel is dynamically reconfigurable to allocate any type of USB transfer. • Built-in hardware scheduler holding: • – Up to 12 interrupt plus isochronous transfer requests in the periodic hardware queue – Up to 12 control plus bulk transfer requests in the non-periodic hardware queue Management of a shared Rx FIFO, a periodic Tx FIFO and a non-periodic Tx FIFO for efficient usage of the USB data RAM Peripheral-mode features: 92/334 • 1 bidirectional control endpoint0 • 5 IN endpoints (EPs) configurable to support bulk, interrupt or isochronous transfers • 5 OUT endpoints configurable to support bulk, interrupt or isochronous transfers • Management of a shared Rx FIFO and a Tx-OUT FIFO for efficient usage of the USB data RAM • Management of up to 6 dedicated Tx-IN FIFOs (one for each active IN EP) to put less load on the application • Support for the soft disconnect feature DS13086 Rev 6 STM32U585xx 3.51 Functional overview USB Type-C /USB Power Delivery controller (UCPD) The device embeds one controller (UCPD) compliant with USB Type-C Cable and Connector Specification release 2.0 and USB Power Delivery Rev. 3.0 specifications. The controller uses specific I/Os supporting the USB Type-C and USB power delivery requirements, featuring: • USB Type-C pull-up (Rp, all values) and pull-down (Rd) resistors • “Dead battery” support • USB power delivery message transmission and reception • FRS (fast role swap) support The digital controller handles notably: • USB Type-C level detection with debounce, generating interrupts • FRS detection, generating an interrupt • Byte-level interface for USB power delivery payload, generating interrupts (DMA compatible) • USB power delivery timing dividers (including a clock prescaler) • CRC generation/checking • 4b5b encode/decode • Ordered sets (with a programmable ordered set mask at receive) • Frequency recovery in receiver during preamble The interface offers low-power operation compatible with Stop mode, maintaining the capacity to detect incoming USB power delivery messages and FRS signaling. 3.52 Development support 3.52.1 Serial-wire/JTAG debug port (SWJ-DP) The Arm SWJ-DP interface is embedded and is a combined JTAG and serial-wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. Debug is performed using two pins only instead of five required by the JTAG (JTAG pins can be re-used as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 3.52.2 Embedded Trace Macrocell The Arm Embedded Trace Macrocell (ETM) provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the devices through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors. The ETM operates with third party debugger software tools. DS13086 Rev 6 93/334 93 Pinout, pin description and alternate functions STM32U585xx 4 Pinout, pin description and alternate functions 4.1 Pinout/ballout schematics VDD VSS VDD11 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 48 47 46 45 44 43 42 41 40 39 38 37 Figure 7. LQFP48_SMPS pinout VBAT 1 36 VDD PC13 2 35 VSS PC14-OSC32_IN 3 34 PA13 PC15-OSC32_OUT 4 33 PA12 PH0-OSC_IN 5 32 PA11 PH1-OSC_OUT 6 31 PA10 NRST 7 30 PA9 VSSA 8 29 PA8 VDDA 9 28 PB15 PA0 10 27 PB14 PA1 11 26 PB13 PA2 12 25 VDD 13 14 15 16 17 18 19 20 21 22 23 24 PA3 PA4 PA5 PA6 PA7 PB0 PB1 VLXSMPS VDDSMPS VSSSMPS VDD11 VSS LQFP48 MSv62928V1 1. The above figure shows the package top view. VDD VSS PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 48 47 46 45 44 43 42 41 40 39 38 37 Figure 8. LQFP48 pinout VBAT 1 36 VDD PC13 2 35 VSS PC14-OSC32_IN 3 34 PA13 PC15-OSC32_OUT 4 33 PA12 PH0-OSC_IN 5 32 PA11 PH1-OSC_OUT 6 31 PA10 NRST 7 30 PA9 VSSA 8 29 PA8 VDDA 9 28 PB15 PA0 10 27 PB14 PA1 11 26 PB13 PA2 12 25 PB12 13 14 15 16 17 18 19 20 21 22 23 24 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 VCAP VSS VDD LQFP48 MSv62922V1 1. The above figure shows the package top view. 94/334 DS13086 Rev 6 STM32U585xx Pinout, pin description and alternate functions VDD VSS VDD11 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 48 47 46 45 44 43 42 41 40 39 38 37 Figure 9. UFQFPN48_SMPS pinout VBAT 1 36 VDD PC13 2 35 VSS PC14-OSC32_IN 3 34 PA13 PC15-OSC32_OUT 4 33 PA12 PH0-OSC_IN 5 32 PA11 PH1-OSC_OUT 6 31 PA10 NRST 7 30 PA9 VSSA 8 29 PA8 VDDA 9 28 PB15 PA0 10 27 PB14 PA1 11 26 PB13 PA2 12 25 VDD 13 14 15 16 17 18 19 20 21 22 23 24 PA3 PA4 PA5 PA6 PA7 PB0 PB1 VLXSMPS VDDSMPS VSSSMPS VDD11 VSS UFQFPN48 MSv63695V3 1. The above figure shows the package top view. VDD VSS PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 48 47 46 45 44 43 42 41 40 39 38 37 Figure 10. UFQFPN48 pinout VBAT 1 36 VDD PC13 2 35 VSS PC14-OSC32_IN 3 34 PA13 PC15-OSC32_OUT 4 33 PA12 PH0-OSC_IN 5 32 PA11 PH1-OSC_OUT 6 31 PA10 NRST 7 30 PA9 VSSA 8 29 PA8 VDDA 9 28 PB15 PA0 10 27 PB14 PA1 11 26 PB13 PA2 12 25 PB12 13 14 15 16 17 18 19 20 21 22 23 24 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 VCAP VSS VDD UFQFPN48 MSv63696V2 1. The above figure shows the package top view. DS13086 Rev 6 95/334 147 Pinout, pin description and alternate functions STM32U585xx VDD VSS VDD11 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 Figure 11. LQFP64_SMPS pinout VBAT 1 48 VDDUSB PC13 2 47 VSS PC14-OSC32_IN 3 46 PA13 PC15-OSC32_OUT 4 45 PA12 PH0-OSC_IN 5 44 PA11 PH1-OSC_OUT 6 43 PA10 NRST 7 42 PA9 PC0 8 41 PA8 PC1 9 40 PC9 PC2 10 39 PC8 PC3 11 38 PC7 VSSA 12 37 PC6 VDDA 13 36 PB15 PA0 14 35 PB14 PA1 15 34 PB13 PA2 16 33 VDD 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PA3 VSS VDD PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 VLXSMPS VDDSMPS VSSSMPS VDD11 VSS LQFP64 MSv62929V1 1. The above figure shows the package top view. VDD VSS PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 Figure 12. LQFP64 pinout VBAT 1 48 VDDUSB PC13 2 47 VSS PC14-OSC32_IN 3 46 PA13 PC15-OSC32_OUT 4 45 PA12 PH0-OSC_IN 5 44 PA11 PH1-OSC_OUT 6 43 PA10 NRST 7 42 PA9 PC0 8 41 PA8 PC1 9 40 PC9 PC2 10 39 PC8 PC3 11 38 PC7 VSSA 12 37 PC6 VDDA 13 36 PB15 PA0 14 35 PB14 PA1 15 34 PB13 PA2 16 33 PB12 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PB10 VCAP VSS VDD LQFP64 MSv62923V1 1. The above figure shows the package top view. 96/334 DS13086 Rev 6 STM32U585xx Pinout, pin description and alternate functions Figure 13. WLCSP90-SMPS ballout 1 3 2 A VDD PC11 B C VSS VDDUSB D E G PD14 J K PD15 VDD VDD11 PC6 PB10 VSS SMPS VDD SMPS PE10 VLX SMPS PA6 PE7 PE8 PB2 PH1-OSC_ OUT PA4 PH0-OSC_IN NRST VREF+ PA2 PA7 PC14-OSC32 _IN PC15OSC32_OUT PC1 PA1 PB0 VBAT PC13 PC3 PB1 VDD PE6 PC0 PA5 VDD11 PE3 PE5 PA0 18 VSS PE4 PC2 PA3 PE9 PH3-BOOT0 PA9 PC5 PB8 PB5 17 16 PB9 PB7 PB3 PA8 15 14 PB6 PB4 PG11 PC9 PB14 VSS PD4 13 12 VDDIO2 PG13 PC10 PB15 VSS PG12 PG9 PA15 11 10 PG14 PD1 PC7 PB13 PG10 PD0 PA11 9 8 PD5 PA13 PC8 H PD2 PA14 PA10 7 6 PC12 PA12 F 5 4 VSSA VDDA VDD VSS MSv62645V2 1. The above figure shows the package top view. DS13086 Rev 6 97/334 147 Pinout, pin description and alternate functions STM32U585xx VDD VSS VDD11 PE0 PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 Figure 14. LQFP100_SMPS pinout PE2 1 75 VDD PE3 2 74 VSS PE4 3 73 VDDUSB PE5 4 72 PA13 PE6 5 71 PA12 VBAT 6 70 PA11 PC13 7 69 PA10 PC14-OSC32_IN 8 68 PA9 PC15-OSC32_OUT 9 67 PA8 VSS 10 66 PC9 VDD 11 65 PC8 PH0-OSC_IN 12 64 PC7 PH1-OSC_OUT 13 63 PC6 NRST 14 62 PD15 PC0 15 61 PD14 PC1 16 60 PD13 PC2 17 59 PD12 PC3 18 58 PD11 VSSA 19 57 PD10 VREF+ 20 56 PD9 VDDA 21 55 PD8 PA0 22 54 PB15 PA1 23 53 PB14 PA2 24 52 PB13 PA3 25 51 VDD 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VSS VDD PA4 PA5 PA6 PA7 PB0 PB1 PB2 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VLXSMPS VDDSMPS VSSSMPS VDD11 VSS LQFP100 1. The above figure shows the package top view. 98/334 DS13086 Rev 6 MSv62930V1 STM32U585xx Pinout, pin description and alternate functions VDD VSS PE1 PE0 PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 Figure 15. LQFP100 pinout PE2 1 75 VDD PE3 2 74 VSS PE4 3 73 VDDUSB PE5 4 72 PA13 PE6 5 71 PA12 VBAT 6 70 PA11 PC13 7 69 PA10 PC14-OSC32_IN 8 68 PA9 PC15-OSC32_OUT 9 67 PA8 VSS 10 66 PC9 VDD 11 65 PC8 PH0-OSC_IN 12 64 PC7 PH1-OSC_OUT 13 63 PC6 NRST 14 62 PD15 PC0 15 61 PD14 PC1 16 60 PD13 PC2 17 59 PD12 PC3 18 58 PD11 VSSA 19 57 PD10 VREF- 20 56 PD9 VREF+ 21 55 PD8 VDDA 22 54 PB15 PA0 23 53 PB14 PA1 24 52 PB13 PA2 25 51 PB12 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 VCAP VSS VDD LQFP100 MSv62924V1 1. The above figure shows the package top view. DS13086 Rev 6 99/334 147 Pinout, pin description and alternate functions STM32U585xx Figure 16. UFBGA132 _SMPS ballout 1 2 3 4 5 6 7 8 9 10 11 12 A PE5 PE3 PE1 PB9 PB6 PG12 PD6 PD5 PD2 PC11 PA15 VDDUSB B VBAT PE4 PE2 VDD11 PH3BOOT0 PB4 PG9 PD4 PD1 PC12 PC10 PA12 C PC14OSC32 _IN PE6 PC13 PE0 PB8 PB3 PG10 PD3 PD0 PA13 PA14 PA11 D PC15OSC32_ OUT PF0 PF3 VDD PB7 PB5 PD7 VDDIO2 VDD PA9 PA10 PA8 E PF2 PF1 PF4 VSS VSS PC7 PC9 PC8 F PH0OSC_IN PF5 PC2 PC3 VSS VDD PG6 PG7 PC6 PG8 G PH1-OSC _OUT NRST PC1 PA1 VDD VSS PG4 PG2 PG3 PG5 H VSSA PC0 OPAMP1 _VINM VSS VSS PD14 PD13 PD15 J VREF+ PA0 PC5 VDD PF14 PE8 PE10 PE12 VDD PD9 PD11 PD12 K VDDA PA2 PA7 PB2 PF11 PG1 PE7 PE14 PB10 PB13 PB14 PB15 L PA3 PA6 PA4 PB1 PF12 PF15 PE11 PE15 PB11 VSS SMPS PB12 PD8 M PA5 OPAMP2 _VINM PC4 PB0 PF13 PG0 PE9 PE13 VDD SMPS VLX SMPS VDD11 PD10 MSv62931V2 1. The above figure shows the package top view. 100/334 DS13086 Rev 6 STM32U585xx Pinout, pin description and alternate functions Figure 17. UFBGA132 ballout 1 2 3 4 5 6 7 8 9 10 11 12 A PE5 PE3 PE1 PB9 PB6 PG12 PD6 PD5 PD2 PC11 PA15 VDDUSB B VBAT PE4 PE2 PG15 PH3BOOT0 PB4 PG9 PD4 PD1 PC12 PC10 PA12 C PC14OSC32 _IN PE6 PC13 PE0 PB8 PB3 PG10 PD3 PD0 PA13 PA14 PA11 D PC15OSC32_ OUT PF0 PF3 VDD PB7 PB5 PD7 VDDIO2 VDD PA9 PA10 PA8 E PF2 PF1 PF4 VSS VSS PC7 PC9 PC8 F PH0OSC_IN PF5 PC2 PC3 VSS VDD PG6 PG7 PC6 PG8 G PH1OSC_ OUT NRST PC1 PA1 VDD VSS PG4 PG2 PG3 PG5 H VSSA PC0 OPAMP1 _VINM VSS VSS PD14 PD13 PD15 J VREF+ PA0 PC5 VDD PF14 PE8 PE10 PE12 VDD PD9 PD11 PD12 K VDDA PA2 PA7 PB2 PF11 PG1 PE7 PE14 PB10 PB13 PB14 PB15 L PA3 PA6 PA4 PB1 PF12 PF15 PE11 PE15 PB11 VCAP PB12 PD8 M PA5 OPAMP2 _VINM PC4 PB0 PF13 PG0 PE9 PE13 PG14 PG13 PG11 PD10 MSv62925V2 1. The above figure shows the package top view. DS13086 Rev 6 101/334 147 Pinout, pin description and alternate functions STM32U585xx 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 VDD VSS VDD11 PE1 PE0 PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 VDDIO2 VSS PG14 PG13 PG12 PG10 PG9 PD7 PD6 VDD VSS PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 Figure 18. LQFP144 _SMPS pinout 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 LQFP144 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 VDD VSS VDDUSB PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 VDDIO2 VSS PG8 PG7 PG6 PG5 PG4 PG3 PG2 PD15 PD14 VDD VSS PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 VDD VSS VDD PA4 PA5 PA6 PA7 PB0 PB1 PB2 PF11 PF12 VSS VDD PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 VSS VDD PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VLXSMPS VDDSMPS VSSSMPS VDD11 VSS 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 PE2 PE3 PE4 PE5 PE6 VBAT PC13 PC14-OSC32_IN PC15-OSC32_OUT PF0 PF1 PF2 PF3 PF4 PF5 VSS VDD PF6 PF7 PF8 PF9 PF10 PH0-OSC_IN PH1-OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VREF+ VDDA PA0 PA1 PA2 PA3 1. The above figure shows the package top view. 102/334 DS13086 Rev 6 MSv62932V1 STM32U585xx Pinout, pin description and alternate functions 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 VDD VSS PE1 PE0 PB9 PB8 PH3-BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 VDDIO2 VSS PG14 PG13 PG12 PG11 PG10 PG9 PD7 PD6 VDD VSS PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 Figure 19. LQFP144 pinout 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 LQFP144 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 VDD VSS VDDUSB PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 VDDIO2 VSS PG8 PG7 PG6 PG5 PG4 PG3 PG2 PD15 PD14 VDD VSS PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PF11 PF12 VSS VDD PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 VSS VDD PE10 PE11 PE12 PE13 PE14 PE15 PB10 VCAP VSS VDD 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 PE2 PE3 PE4 PE5 PE6 VBAT PC13 PC14-OSC32_IN PC15-OSC32_OUT PF0 PF1 PF2 PF3 PF4 PF5 VSS VDD PF6 PF7 PF8 PF9 PF10 PH0-OSC_IN PH1-OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VREFVREF+ VDDA PA0 PA1 PA2 MSv62926V1 1. The above figure shows the package top view. DS13086 Rev 6 103/334 147 Pinout, pin description and alternate functions STM32U585xx Figure 20. UFBGA169_SMPS ballout 1 2 3 4 5 6 7 8 9 10 11 12 13 A PE2 PI6 VDD VDD11 PG15 VDDIO2 PG9 VDD PC11 PA15 VDD PI1 PH15 B VDD VSS PI5 VSS PB6 PB4 PD6 VSS PD0 PI4 VSS PI0 PH12 C VBAT PE4 PI7 PE1 PH3BOOT0 PB5 PG10 PD4 PC10 PA14 PH14 PH13 PH10 D PC14OSC32 _IN PE5 PE3 PE0 PB9 PB3 PD7 PD3 PH11 PI3 PI2 PH8 VDD E PC15OSC32_ OUT PF0 PC13 PE6 PB8 PG12 PD5 PC12 PH9 PH4 PH6 VSS VDDUSB F PF8 VSS PF1 PF2 PB7 PD1 PD2 PH7 PH5 PH2 PA10 PA13 PA12 G VDD PF7 PF9 PF5 PF3 PF4 PA8 PG7 PC9 PC8 PA9 PC7 PA11 H PH0OSC_IN VSS NRST PF10 OPAMP2 _VINM PF6 PG1 PE10 PG8 PG6 PG4 VDDIO2 PC6 J PH1OSC_ OUT PC0 PC1 PC2 PA7 PG0 PE9 PG3 PG5 PD14 PD15 VSS VDD K PC3 VSSA PA0 PA5 PB0 PF12 PE8 PE14 PB10 PD12 PD10 PD13 PG2 L VREF+ VDDA PA1 PC4 PB2 PF14 PE7 PE13 PB11 PB12 PB15 PD8 PD9 M OPAMP1 _VINM PA2 VSS PC5 PF11 PF13 VSS PE11 PE15 VSS SMPS VSS PB14 PD11 N PA4 PA3 VDD PA6 PB1 PF15 VDD PE12 VLX SMPS VDD SMPS VDD11 VDD PB13 MSv62933V3 1. The above figure shows the package top view. 104/334 DS13086 Rev 6 STM32U585xx Pinout, pin description and alternate functions Figure 21. UFBGA169 ballout 1 2 3 4 5 6 7 8 9 10 11 12 13 A PE2 PI6 VDD VCAP PG15 VDDIO2 PG9 VDD PC11 PA15 VDD PI1 PH15 B VDD VSS PI5 VSS PB6 PB4 PD6 VSS PD0 PI4 VSS PI0 PH12 C VBAT PE4 PI7 PE1 PH3BOOT0 PB5 PG10 PD4 PC10 PA14 PH14 PH13 PH10 D PC14OSC32_ IN PE5 PE3 PE0 PB9 PB3 PD7 PD3 PH11 PI3 PI2 PH8 VDD E PC15OSC32_ OUT PF0 PC13 PE6 PB8 PG12 PD5 PC12 PH9 PH4 PH6 VSS VDDUSB F PF8 VSS PF1 PF2 PB7 PD1 PD2 PH7 PH5 PH2 PA10 PA13 PA12 G VDD PF7 PF9 PF5 PF3 PF4 PA8 PG7 PC9 PC8 PA9 PC7 PA11 H PH0OSC_IN VSS NRST PF10 OPAMP2 _VINM PF6 PG1 PE10 PG8 PG6 PG4 VDDIO2 PC6 J PH1OSC_ OUT PC0 PC1 PC2 PA7 PG0 PE9 PG3 PG5 PD14 PD15 VSS VDD K PC3 VSSA PA0 PA5 PB0 PF12 PE8 PE14 PB10 PD12 PD10 PD13 PG2 L VREF+ VDDA PA1 PC4 PB2 PF14 PE7 PE13 PB11 PB12 PB15 PD8 PD9 M OPAMP1 _VINM PA2 VSS PC5 PF11 PF13 VSS PE11 PE15 PG11 VSS PB14 PD11 N PA4 PA3 VDD PA6 PB1 PF15 VDD PE12 PG14 PG13 VCAP VDD PB13 MSv62927V3 1. The above figure shows the package top view. DS13086 Rev 6 105/334 147 Pinout, pin description and alternate functions 4.2 STM32U585xx Pin description Table 26. Legend/abbreviations used in the pinout table Name Pin name Pin type Abbreviation Definition Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input/output pin FT 5V-tolerant I/O TT 3.6V-tolerant I/O RST Bidirectional reset pin with embedded weak pull-up resistor Option for TT or FT I/Os(1) I/O structure Notes Pin functions _a I/O, with analog switch function supplied by VDDA _c I/O with USB Type-C power delivery function _d I/O with USB Type-C power delivery dead battery function _f I/O, Fm+ capable _h I/O with high-speed low-voltage mode _s I/O supplied only by VDDIO2 _t I/O with a function supported in VBAT mode _u I/O, with USB function supplied by VDDUSB _v I/O very high-speed capable Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset. Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers 1. The related I/O structures in the table below are a concatenation of various options. Examples: FT_hat, FT_fs, FT_u, TT_a. 106/334 DS13086 Rev 6 - - - - - C15 D14 E13 1 2 3 4 B3 A2 B2 A1 1 2 3 4 A1 D3 C2 D2 - - - - - - - - 1 2 3 4 B3 A2 B2 A1 1 2 3 4 A1 D3 C2 D2 PE2 PE3 PE4 PE5 I/O structure Pin type UFBGA169 LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 UFBGA169 SMPS LQFP144 SMPS UFBGA132 SMPS LQFP100 SMPS WLCSP90 SMPS - I/O FT_ha I/O FT_ hat I/O FT_ hat I/O FT_ hat Alternate functions Additional functions - TRACECLK, TIM3_ETR, SAI1_CK1, TSC_G7_IO1, LPGPIO1_P14, FMC_A23, SAI1_MCLK_A, EVENTOUT - - TRACED0, TIM3_CH1, OCTOSPIM_P1_DQS, TSC_G7_IO2, LPGPIO1_P15, FMC_A19, SAI1_SD_B, EVENTOUT TAMP_IN6/ TAMP_ OUT3 - TRACED1, TIM3_CH2, SAI1_D2, MDF1_SDI3, TSC_G7_IO3, DCMI_D4/PSSI_D4, FMC_A20, SAI1_FS_A, EVENTOUT WKUP1, TAMP_IN7/ TAMP_ OUT8 - TRACED2, TIM3_CH3, SAI1_CK2, MDF1_CKI3, TSC_G7_IO4, DCMI_D6/PSSI_D6, FMC_A21, SAI1_SCK_A, EVENTOUT WKUP2, TAMP_IN8/ TAMP_ OUT7 WKUP3, TAMP_IN3/ TAMP_ OUT6 - - D16 5 C2 5 E4 - - 5 C2 5 E4 PE6 I/O FT_ht - TRACED3, TIM3_CH4, SAI1_D1, DCMI_D7/PSSI_D7, FMC_A22, SAI1_SD_A, EVENTOUT 1 1 C17 6 B1 6 C1 1 1 6 B1 6 C1 VBAT S - - - - - - - - - - F2 - - - - - F2 VSS S - - - - 107/334 Pinout, pin description and alternate functions DS13086 Rev 6 - - Pin name (function after reset) Notes - LQFP64 SMPS LQFP48 SMPS UFQFPN48 SMPS Pin number STM32U585xx Table 27. STM32U585xx pin definitions(1) Notes I/O structure Pin name (function after reset) Pin type UFBGA169 LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 UFBGA169 SMPS LQFP144 SMPS UFBGA132 SMPS LQFP100 SMPS WLCSP90 SMPS LQFP64 SMPS LQFP48 SMPS UFQFPN48 SMPS Pin number DS13086 Rev 6 Alternate functions Additional functions EVENTOUT WKUP2, RTC_TS/ RTC_OUT1, TAMP_IN1/ TAMP_ OUT2 EVENTOUT OSC32_IN (3) EVENTOUT OSC32_ OUT (2) 2 E15 7 C3 7 E3 2 2 7 C3 7 E3 PC13 I/O FT 3 3 D18 8 C1 8 D1 3 3 8 C1 8 D1 PC14OSC32_IN (PC14) I/O FT 4 4 E17 9 D1 9 E1 4 4 9 D1 9 E1 PC15OSC32_OUT (PC15) I/O FT - - - - D2 10 E2 - - - D2 10 E2 PF0 I/O FT_fh - I2C2_SDA, OCTOSPIM_P2_IO0, FMC_A0, EVENTOUT - - - - - E2 11 F3 - - - E2 11 F3 PF1 I/O FT_fh - I2C2_SCL, OCTOSPIM_P2_IO1, FMC_A1, EVENTOUT - - - - - E1 12 F4 - - - E1 12 F4 PF2 I/O FT_h - LPTIM3_CH2, I2C2_SMBA, OCTOSPIM_P2_IO2, FMC_A2, EVENTOUT WKUP8 - - - - D3 13 G5 - - - D3 13 G5 PF3 I/O FT_h - LPTIM3_IN1, OCTOSPIM_P2_IO3, FMC_A3, EVENTOUT - - - - - E3 14 G6 - - - E3 14 G6 PF4 I/O FT_hv - LPTIM3_ETR, OCTOSPIM_P2_CLK, FMC_A4, EVENTOUT - - - - - F2 15 G4 - - - F2 15 G4 PF5 I/O FT_hv - LPTIM3_CH1, OCTOSPIM_P2_NCLK, FMC_A5, EVENTOUT - (3) (2) (3) (2) STM32U585xx 2 Pinout, pin description and alternate functions 108/334 Table 27. STM32U585xx pin definitions(1) (continued) LQFP48 SMPS UFQFPN48 SMPS LQFP64 SMPS WLCSP90 SMPS LQFP100 SMPS UFBGA132 SMPS LQFP144 SMPS UFBGA169 SMPS LQFP48 UFQFPN48 LQFP64 LQFP100 UFBGA132 LQFP144 UFBGA169 Pin name (function after reset) Pin type I/O structure Notes Pin number Alternate functions - - - 10 F6 16 H2 - - 10 F6 16 H2 VSS S - - - - - - - 11 F7 17 G1 - - 11 F7 17 G1 VDD S - - - - - Additional functions 109/334 - - - - 18 H6 - - - - 18 H6 PF6 I/O FT_h - - - - - - 19 G2 - - - - 19 G2 PF7 I/O FT_h - TIM5_CH2, FDCAN1_RX, OCTOSPIM_P1_IO2, SAI1_MCLK_B, EVENTOUT - - - - - - 20 F1 - - - - 20 F1 PF8 I/O FT_h - TIM5_CH3, PSSI_D14, FDCAN1_TX, OCTOSPIM_P1_IO0, SAI1_SCK_B, EVENTOUT - - - - - - 21 G3 - - - - 21 G3 PF9 I/O FT_h - TIM5_CH4, PSSI_D15, OCTOSPIM_P1_IO1, SAI1_FS_B, TIM15_CH1, EVENTOUT - I/O FT_hv - OCTOSPIM_P1_CLK, PSSI_D15, MDF1_CCK1, DCMI_D11/PSSI_D11, SAI1_D3, TIM15_CH2, EVENTOUT - I/O FT - EVENTOUT OSC_IN PH1-OSC_OUT I/O (PH1) FT - EVENTOUT OSC_OUT RST - - - - - - - - 22 H4 - - - - 22 H4 PF10 5 5 F18 12 F1 23 H1 5 5 12 F1 23 H1 PH0-OSC_IN (PH0) 6 6 F16 13 G1 24 J1 6 6 13 G1 24 J1 7 7 G17 14 G2 25 H3 7 7 14 G2 25 H3 NRST I/O Pinout, pin description and alternate functions DS13086 Rev 6 - TIM5_ETR, TIM5_CH1, DCMI_D12/PSSI_D12, OCTOSPIM_P2_NCS, OCTOSPIM_P1_IO3, SAI1_SD_B, EVENTOUT STM32U585xx Table 27. STM32U585xx pin definitions(1) (continued) 8 15 H2 26 J2 - 8 15 H2 26 J2 PC0 I/O I/O structure Pin type UFBGA169 LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 UFBGA169 SMPS LQFP144 SMPS UFBGA132 SMPS LQFP100 SMPS WLCSP90 SMPS F14 Pin name (function after reset) FT_ fha DS13086 Rev 6 FT_ fhav - 9 G15 16 G3 27 J3 - 9 16 G3 27 J3 PC1 I/O - 10 F12 17 F3 28 J4 - 10 17 F3 28 J4 PC2 I/O FT_ha I/O FT_ha Notes - LQFP64 SMPS LQFP48 SMPS UFQFPN48 SMPS Pin number Alternate functions Additional functions - LPTIM1_IN1, OCTOSPIM_P1_IO7, I2C3_SCL(boot), SPI2_RDY, MDF1_SDI4, LPUART1_RX, SDMMC1_D5, SAI2_FS_A, LPTIM2_IN1, EVENTOUT ADC1_IN1, ADC4_IN1 - TRACED0, LPTIM1_CH1, SPI2_MOSI, I2C3_SDA(boot), MDF1_CKI4, LPUART1_TX, OCTOSPIM_P1_IO4, SDMMC2_CK, SAI1_SD_A, EVENTOUT ADC1_IN2, ADC4_IN2 - LPTIM1_IN2, SPI2_MISO, MDF1_CCK1, OCTOSPIM_P1_IO5, LPGPIO1_P5, EVENTOUT ADC1_IN3, ADC4_IN3 - LPTIM1_ETR, LPTIM3_CH1, SAI1_D1, SPI2_MOSI, OCTOSPIM_P1_IO6, SAI1_SD_A, LPTIM2_ETR, EVENTOUT ADC1_IN4, ADC4_IN4 11 G13 18 F4 29 K1 - 11 18 F4 29 K1 PC3 8 12 H18 19 H1 30 K2 8 12 19 H1 30 K2 VSSA S - - - - - - - - - - - - - 20 - 31 - VREF- S - - - - - - H16 20 J1 31 L1 - - 21 J1 32 L1 VREF+ S - - - VREFBUF_ OUT 9 13 J17 21 K1 32 L2 9 13 22 K1 33 L2 VDDA S - - - - STM32U585xx - Pinout, pin description and alternate functions 110/334 Table 27. STM32U585xx pin definitions(1) (continued) G11 22 J2 33 K3 10 14 23 J2 34 K3 PA0 I/O FT_ hat - - - - - H3 - M1 - - - H3 - M1 OPAMP1_ VINM I TT - - - - LPTIM1_CH2, TIM2_CH2, TIM5_CH2, I2C1_SMBA, SPI1_SCK, USART2_RTS_DE, UART4_RX, OCTOSPIM_P1_DQS, LPGPIO1_P0, TIM15_CH1N, EVENTOUT OPAMP1_ VINM, ADC1_IN6, WKUP3, TAMP_IN5/ TAMP_ OUT4 - TIM2_CH3, TIM5_CH3, SPI1_RDY, USART2_TX(boot), LPUART1_TX, OCTOSPIM_P1_NCS, UCPD1_FRSTX1, TIM15_CH1, EVENTOUT COMP1_ INP3, ADC1_IN7, WKUP4/ LSCO - TIM2_CH4, TIM5_CH4, SAI1_CK1, USART2_RX(boot), LPUART1_RX, OCTOSPIM_P1_CLK, LPGPIO1_P1, SAI1_MCLK_A, TIM15_CH2, EVENTOUT OPAMP1_ VOUT, ADC1_IN8, WKUP5 11 12 15 16 J13 J15 23 24 G4 K2 34 35 L3 M2 11 12 15 16 24 25 G4 K2 LQFP144 14 LQFP100 10 TIM2_CH1, TIM5_CH1, TIM8_ETR, SPI3_RDY, USART2_CTS, UART4_TX, OCTOSPIM_P2_NCS, SDMMC2_CMD, AUDIOCLK, TIM2_ETR, EVENTOUT LQFP64 Alternate functions 35 36 L3 M2 PA1 PA2 I/O FT_ hat I/O FT_ha Additional functions OPAMP1_ VINP, ADC1_IN5, WKUP1, TAMP_IN2/ TAMP_ OUT1 111/334 13 17 H10 25 L1 36 N2 13 17 26 L1 37 N2 PA3 I/O TT_ hav - 18 K18 26 G7 37 M3 - 18 27 G7 38 M3 VSS S - - - - - 19 K16 27 G6 38 N3 - 19 28 G6 39 N3 VDD S - - - - Pinout, pin description and alternate functions DS13086 Rev 6 Notes I/O structure Pin name (function after reset) Pin type UFBGA169 UFBGA132 LQFP48 UFQFPN48 UFBGA169 SMPS LQFP144 SMPS UFBGA132 SMPS LQFP100 SMPS WLCSP90 SMPS LQFP64 SMPS LQFP48 SMPS UFQFPN48 SMPS Pin number STM32U585xx Table 27. STM32U585xx pin definitions(1) (continued) DS13086 Rev 6 15 20 21 H12 28 29 L3 M1 39 40 N1 K4 14 15 20 21 29 30 L3 M1 40 41 N1 K4 PA4 PA5 16 22 F10 30 L2 41 N4 16 22 31 L2 42 N4 PA6 - - - - M2 - H5 - - - M2 - H5 OPAMP2_VINM 17 23 K14 31 K3 42 J5 17 23 32 K3 43 J5 PA7 I/O structure Pin type UFBGA169 LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 UFBGA169 SMPS LQFP144 SMPS UFBGA132 SMPS LQFP100 SMPS WLCSP90 SMPS H14 Pin name (function after reset) I/O TT_ha I/O TT_a I/O FT_ha I I/O TT Alternate functions Additional functions - OCTOSPIM_P1_NCS, SPI1_NSS(boot), SPI3_NSS, USART2_CK, DCMI_HSYNC/PSSI_DE, SAI1_FS_B, LPTIM2_CH1, EVENTOUT ADC1_IN9, ADC4_IN9, DAC1_ OUT1, WKUP2 - CSLEEP, TIM2_CH1, TIM2_ETR, TIM8_CH1N, PSSI_D14, SPI1_SCK(boot), USART3_RX, LPTIM2_ETR, EVENTOUT ADC1_IN10, ADC4_IN10, DAC1_ OUT2, WKUP6 - CDSTOP, TIM1_BKIN, TIM3_CH1, TIM8_BKIN, DCMI_PIXCLK/PSSI_PDCK, SPI1_MISO(boot), USART3_CTS, LPUART1_CTS, OCTOSPIM_P1_IO3, LPGPIO1_P2, TIM16_CH1, EVENTOUT OPAMP2_ VINP, ADC1_IN11, ADC4_IN11, WKUP7 - - - - SRDSTOP, TIM1_CH1N, OPAMP2_ TIM3_CH2, TIM8_CH1N, VINM, I2C3_SCL, SPI1_MOSI(boot), ADC1_IN12, USART3_TX, OCTOSPIM_P1_IO2, ADC4_IN20, LPTIM2_CH2, TIM17_CH1, WKUP8 EVENTOUT STM32U585xx FT_ fha Notes 14 LQFP64 SMPS LQFP48 SMPS UFQFPN48 SMPS Pin number Pinout, pin description and alternate functions 112/334 Table 27. STM32U585xx pin definitions(1) (continued) - 18 19 - - 24 25 G9 K12 J11 - - 32 33 M3 J3 M4 L4 - - 43 44 L4 M4 K5 N5 - - 18 19 24 25 26 27 33 34 35 36 M3 J3 M4 L4 44 45 46 47 L4 M4 K5 N5 PC4 PC5 PB0 PB1 I/O FT_ha I/O FT_at I/O TT_ha I/O FT_ha Notes I/O structure Pin type UFBGA169 LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 UFBGA169 SMPS LQFP144 SMPS UFBGA132 SMPS LQFP100 SMPS WLCSP90 SMPS - Pin name (function after reset) Alternate functions Additional functions - COMP1_ INM2, USART3_TX, OCTOSPIM_P1_IO7, ADC1_IN13, EVENTOUT ADC4_IN22 - COMP1_ INP1, ADC1_IN14, TIM1_CH4N, SAI1_D3, PSSI_D15, ADC4_IN23, WKUP5, USART3_RX, EVENTOUT TAMP_IN4/ TAMP_ OUT5 - TIM1_CH2N, TIM3_CH3, TIM8_CH2N, LPTIM3_CH1, SPI1_NSS, USART3_CK, OCTOSPIM_P1_IO1, LPGPIO1_P9, COMP1_OUT, AUDIOCLK, EVENTOUT OPAMP2_ VOUT, ADC1_IN15, ADC4_IN18 - TIM1_CH3N, TIM3_CH4, TIM8_CH3N, LPTIM3_CH2, MDF1_SDI0, USART3_RTS_DE, LPUART1_RTS_DE, OCTOSPIM_P1_IO0, LPGPIO1_P3, LPTIM2_IN1, EVENTOUT COMP1_ INM1, ADC1_IN16, ADC4_IN19, WKUP4 113/334 Pinout, pin description and alternate functions DS13086 Rev 6 - LQFP64 SMPS LQFP48 SMPS UFQFPN48 SMPS Pin number STM32U585xx Table 27. STM32U585xx pin definitions(1) (continued) FT_ hat Notes I/O structure Pin name (function after reset) Pin type UFBGA169 LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 UFBGA169 SMPS LQFP144 SMPS UFBGA132 SMPS LQFP100 SMPS WLCSP90 SMPS LQFP64 SMPS LQFP48 SMPS UFQFPN48 SMPS Pin number Alternate functions Additional functions - LPTIM1_CH1, TIM8_CH4N, I2C3_SMBA, SPI1_RDY, MDF1_CKI0, OCTOSPIM_P1_DQS, UCPD1_FRSTX1, EVENTOUT COMP1_ INP2, ADC1_IN17, WKUP1, RTC_OUT2 DS13086 Rev 6 26 K10 34 K4 45 L5 20 28 37 K4 48 L5 PB2 I/O - - - - K5 46 M5 - - - K5 49 M5 PF11 I/O FT_hv - OCTOSPIM_P1_NCLK, DCMI_D12/PSSI_D12, LPTIM4_IN1, EVENTOUT - - - - - L5 47 K6 - - - L5 50 K6 PF12 I/O FT_h - OCTOSPIM_P2_DQS, FMC_A6, LPTIM4_ETR, EVENTOUT - - - - - - 48 M7 - - - - 51 M7 VSS S - - - - - - - - - 49 N7 - - - - 52 N7 VDD S - - - - - - - - M5 50 M6 - - - M5 53 M6 PF13 I/O FT_h - I2C4_SMBA, UCPD1_FRSTX2, FMC_A7, LPTIM4_OUT, EVENTOUT - - - - - J5 51 L6 - - - J5 54 L6 PF14 I/O FT_ fha - I2C4_SCL, TSC_G8_IO1, FMC_A8, EVENTOUT ADC4_IN5 - - - - L6 52 N6 - - - L6 55 N6 PF15 I/O FT_ fha - I2C4_SDA, TSC_G8_IO2, FMC_A9, EVENTOUT ADC4_IN6 - - - - M6 53 J6 - - - M6 56 J6 PG0 I/O FT_ha - OCTOSPIM_P2_IO4, TSC_G8_IO3, FMC_A10, EVENTOUT ADC4_IN7 - - - - K6 54 H7 - - - K6 57 H7 PG1 I/O FT_ha - OCTOSPIM_P2_IO5, TSC_G8_IO4, FMC_A11, EVENTOUT ADC4_IN8 STM32U585xx - Pinout, pin description and alternate functions 114/334 Table 27. STM32U585xx pin definitions(1) (continued) LQFP64 SMPS WLCSP90 SMPS LQFP100 SMPS UFBGA132 SMPS LQFP144 SMPS UFBGA169 SMPS LQFP48 UFQFPN48 LQFP64 LQFP100 UFBGA132 LQFP144 UFBGA169 Pin name (function after reset) Pin type I/O structure Notes Alternate functions - - H8 35 K7 55 L7 - - 38 K7 58 L7 PE7 I/O FT_h - TIM1_ETR, MDF1_SDI2, FMC_D4, SAI1_SD_B, EVENTOUT WKUP6 - - J9 36 J6 56 K7 - - 39 J6 59 K7 PE8 I/O FT_h - TIM1_CH1N, MDF1_CKI2, FMC_D5, SAI1_SCK_B, EVENTOUT WKUP7 - TIM1_CH1, ADF1_CCK0, MDF1_CCK0, OCTOSPIM_P1_NCLK, FMC_D6, SAI1_FS_B, EVENTOUT - I/O FT_hv Additional functions 115/334 - - K8 37 M7 57 J7 - - 40 M7 60 J7 PE9 - - - - - 58 - - - - - 61 - VSS S - - - - - - - - J4 59 - - - - J4 62 - VDD S - - - - - - J7 38 J7 60 H8 - - 41 J7 63 H8 PE10 I/O FT_ hav - TIM1_CH2N, ADF1_SDI0, MDF1_SDI4, TSC_G5_IO1, OCTOSPIM_P1_CLK, FMC_D7, SAI1_MCLK_B, EVENTOUT - - - - 39 L7 61 M8 - - 42 L7 64 M8 PE11 I/O FT_ha - TIM1_CH2, SPI1_RDY, MDF1_CKI4, TSC_G5_IO2, OCTOSPIM_P1_NCS, FMC_D8, EVENTOUT - - - - 40 J8 62 N8 - - 43 J8 65 N8 PE12 I/O FT_ha - TIM1_CH3N, SPI1_NSS, MDF1_SDI5, TSC_G5_IO3, OCTOSPIM_P1_IO0, FMC_D9, EVENTOUT - - - - 41 M8 63 L8 - - 44 M8 66 L8 PE13 I/O FT_ha - TIM1_CH3, SPI1_SCK, MDF1_CKI5, TSC_G5_IO4, OCTOSPIM_P1_IO1, FMC_D10, EVENTOUT - Pinout, pin description and alternate functions DS13086 Rev 6 LQFP48 SMPS UFQFPN48 SMPS Pin number STM32U585xx Table 27. STM32U585xx pin definitions(1) (continued) LQFP64 SMPS WLCSP90 SMPS LQFP100 SMPS UFBGA132 SMPS LQFP144 SMPS UFBGA169 SMPS LQFP48 UFQFPN48 LQFP64 LQFP100 UFBGA132 LQFP144 UFBGA169 Pin name (function after reset) Pin type I/O structure Notes DS13086 Rev 6 LQFP48 SMPS UFQFPN48 SMPS Pin number Alternate functions - - - 42 K8 64 K8 - - 45 K8 67 K8 PE14 I/O FT_h - TIM1_CH4, TIM1_BKIN2, SPI1_MISO, OCTOSPIM_P1_IO2, FMC_D11, EVENTOUT - - - - 43 L8 65 M9 - - 46 L8 68 M9 PE15 I/O FT_h - TIM1_BKIN, TIM1_CH4N, SPI1_MOSI, OCTOSPIM_P1_IO3, FMC_D12, EVENTOUT - - TIM2_CH3, LPTIM3_CH1, I2C4_SCL, I2C2_SCL(boot), SPI2_SCK, USART3_TX, LPUART1_RX, TSC_SYNC, OCTOSPIM_P1_CLK, LPGPIO1_P4, COMP1_OUT, SAI1_SCK_A, EVENTOUT WKUP8 - - 27 H6 44 K9 66 K9 21 29 47 K9 69 K9 PB10 I/O FT_ fhv Additional functions - - 45 L9 67 L9 - - - L9 - L9 PB11 I/O FT_fh - 20 28 K6 46 M10 68 N9 - - - - - - VLXSMPS S - - - - 21 29 K4 47 M9 69 N10 - - - - - - VDDSMPS S - - - - 22 30 J5 48 L10 70 M10 - - - - - - VSSSMPS S - - - - - - - - - - - 22 30 48 L10 70 N11 VCAP S - - - - 23 31 K2 49 M11 71 N11 - - - - - - VDD11 S - - - - 24 32 J3 50 E9 72 M11 23 31 49 E9 71 M11 VSS S - - - - 25 33 J1 51 D4 73 N12 24 32 50 D4 72 N12 VDD S - - - - STM32U585xx - TIM2_CH4, I2C4_SDA, I2C2_SDA(boot), SPI2_RDY, USART3_RX, LPUART1_TX, OCTOSPIM_P1_NCS, COMP2_OUT, EVENTOUT Pinout, pin description and alternate functions 116/334 Table 27. STM32U585xx pin definitions(1) (continued) 27 34 35 H2 H4 - 52 53 L11 K10 K11 - 74 75 L10 N13 M12 25 26 27 33 34 35 51 52 53 L11 K10 K11 73 74 75 L10 N13 M12 PB12 PB13 PB14 I/O I/O I/O I/O structure Pin type UFBGA169 LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 UFBGA169 SMPS LQFP144 SMPS UFBGA132 SMPS LQFP100 SMPS WLCSP90 SMPS - FT_ hav FT_f FT_fd Alternate functions Additional functions - TIM1_BKIN, I2C2_SMBA, SPI2_NSS(boot), MDF1_SDI1, USART3_CK, LPUART1_RTS_DE, TSC_G1_IO1, OCTOSPIM_P1_NCLK, SAI2_FS_A, TIM15_BKIN, EVENTOUT - - TIM1_CH1N, LPTIM3_IN1, I2C2_SCL, SPI2_SCK(boot), MDF1_CKI1, USART3_CTS, LPUART1_CTS, TSC_G1_IO2, SAI2_SCK_A, TIM15_CH1N, EVENTOUT - - TIM1_CH2N, LPTIM3_ETR, TIM8_CH2N, I2C2_SDA, SPI2_MISO(boot), MDF1_SDI2, USART3_RTS_DE, TSC_G1_IO3, SDMMC2_D0, SAI2_MCLK_A, TIM15_CH1, EVENTOUT UCPD1_ DBCC2 UCPD1_ CC2, WKUP7 - 117/334 28 36 G5 54 K12 76 L11 28 36 54 K12 76 L11 PB15 I/O FT_c (4) RTC_REFIN, TIM1_CH3N, LPTIM2_IN2, TIM8_CH3N, SPI2_MOSI(boot), MDF1_CKI2, FMC_NBL1, SDMMC2_D1, SAI2_SD_A, TIM15_CH2, EVENTOUT - - - 55 L12 77 L12 - - 55 L12 77 L12 PD8 I/O FT_h - USART3_TX, DCMI_HSYNC/PSSI_DE, FMC_D13, EVENTOUT Pinout, pin description and alternate functions DS13086 Rev 6 26 - Pin name (function after reset) Notes - LQFP64 SMPS LQFP48 SMPS UFQFPN48 SMPS Pin number STM32U585xx Table 27. STM32U585xx pin definitions(1) (continued) - DS13086 Rev 6 - - - - - - - - - 56 57 58 59 J10 M12 J11 J12 78 79 80 81 L13 K11 M13 K10 - - - - - - - - 56 57 58 59 J10 M12 J11 J12 78 79 80 81 L13 K11 M13 K10 PD9 PD10 PD11 PD12 I/O I/O structure Pin type UFBGA169 LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 UFBGA169 SMPS LQFP144 SMPS UFBGA132 SMPS LQFP100 SMPS WLCSP90 SMPS - Pin name (function after reset) FT_h I/O FT_ha I/O FT_ha Notes - LQFP64 SMPS LQFP48 SMPS UFQFPN48 SMPS Pin number Alternate functions Additional functions - LPTIM2_IN2, USART3_RX, DCMI_PIXCLK/PSSI_PDCK, FMC_D14, SAI2_MCLK_A, LPTIM3_IN1, EVENTOUT - - LPTIM2_CH2, USART3_CK, TSC_G6_IO1, FMC_D15, SAI2_SCK_A, LPTIM3_ETR, EVENTOUT - - I2C4_SMBA, USART3_CTS, TSC_G6_IO2, FMC_CLE/FMC_A16, SAI2_SD_A, LPTIM2_ETR, EVENTOUT ADC4_IN15 - TIM4_CH1, I2C4_SCL, USART3_RTS_DE, TSC_G6_IO3, FMC_ALE/FMC_A17, SAI2_FS_A, LPTIM2_IN1, EVENTOUT ADC4_IN16 ADC4_IN17 I/O FT_ fha - TIM4_CH2, I2C4_SDA, TSC_G6_IO4, LPGPIO1_P6, FMC_A18, LPTIM4_IN1, LPTIM2_CH1, EVENTOUT - - 60 H11 82 K12 - - 60 H11 82 K12 PD13 I/O - - - - - 83 J12 - - - - 83 J12 VSS S - - - - - - - - - 84 J13 - - - - 84 J13 VDD S - - - - - - G1 61 H10 85 J10 - - 61 H10 85 J10 PD14 I/O FT_h - TIM4_CH3, FMC_D0, LPTIM3_CH1, EVENTOUT - - - G3 62 H12 86 J11 - - 62 H12 86 J11 PD15 I/O FT_h - TIM4_CH4, FMC_D1, LPTIM3_CH2, EVENTOUT - STM32U585xx - FT_ fha Pinout, pin description and alternate functions 118/334 Table 27. STM32U585xx pin definitions(1) (continued) WLCSP90 SMPS LQFP100 SMPS UFBGA132 SMPS LQFP144 SMPS UFBGA169 SMPS LQFP48 UFQFPN48 LQFP64 LQFP100 UFBGA132 LQFP144 UFBGA169 Notes Alternate functions - - - - G10 87 K13 - - - G10 87 K13 PG2 I/O FT_hs - SPI1_SCK, FMC_A12, SAI2_SCK_B, EVENTOUT - - - - - G11 88 J8 - - - G11 88 J8 PG3 I/O FT_hs - SPI1_MISO, FMC_A13, SAI2_FS_B, EVENTOUT - - - - - G9 89 H11 - - - G9 89 H11 PG4 I/O FT_hs - SPI1_MOSI, FMC_A14, SAI2_MCLK_B, EVENTOUT - - - - - G12 90 J9 - - - G12 90 J9 PG5 I/O FT_hs - SPI1_NSS, LPUART1_CTS, FMC_A15, SAI2_SD_B, EVENTOUT - - OCTOSPIM_P1_DQS, I2C3_SMBA, SPI1_RDY, LPUART1_RTS_DE, UCPD1_FRSTX1, EVENTOUT - - - - - - F9 91 H10 - - - F9 91 H10 PG6 Pin type LQFP64 SMPS Pin name (function after reset) I/O FT_hs Additional functions 119/334 - - - - F10 92 G8 - - - F10 92 G8 PG7 I/O FT_fhs - SAI1_CK1, I2C3_SCL, OCTOSPIM_P2_DQS, MDF1_CCK0, LPUART1_TX, UCPD1_FRSTX2, FMC_INT, SAI1_MCLK_A, EVENTOUT - - - - F12 93 H9 - - - F12 93 H9 PG8 I/O FT_fs - I2C3_SDA, LPUART1_RX, EVENTOUT - - - - - - 94 - - - - - 94 - VSS S - - - - - - - - - 95 H12 - - - - 95 H12 VDDIO2 S - - - - - CSLEEP, TIM3_CH1, TIM8_CH1, MDF1_CKI3, SDMMC1_D0DIR, TSC_G4_IO1, DCMI_D0/PSSI_D0, SDMMC2_D6, SDMMC1_D6, SAI2_MCLK_A, EVENTOUT - - 37 G7 63 F11 96 H13 - 37 63 F11 96 H13 PC6 I/O FT_a Pinout, pin description and alternate functions DS13086 Rev 6 LQFP48 SMPS UFQFPN48 SMPS I/O structure Pin number STM32U585xx Table 27. STM32U585xx pin definitions(1) (continued) DS13086 Rev 6 - - 29 30 38 39 40 41 42 F2 F6 F8 E11 64 65 66 67 68 E10 E12 E11 97 98 99 D12 100 G12 G10 G9 G7 D10 101 G11 - - - 29 30 38 39 40 41 42 64 65 66 67 68 E10 E12 E11 97 98 99 D12 100 G12 G10 G9 G7 D10 101 G11 PC7 PC8 PC9 PA8 PA9 I/O I/O I/O I/O structure Pin type UFBGA169 LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 UFBGA169 SMPS LQFP144 SMPS UFBGA132 SMPS LQFP100 SMPS WLCSP90 SMPS F4 Pin name (function after reset) FT_a FT_a FT_a I/O FT_hv I/O FT_u Alternate functions Additional functions - CDSTOP, TIM3_CH2, TIM8_CH2, MDF1_SDI3, SDMMC1_D123DIR, TSC_G4_IO2, DCMI_D1/PSSI_D1, SDMMC2_D7, SDMMC1_D7, SAI2_MCLK_B, LPTIM2_CH2, EVENTOUT - - SRDSTOP, TIM3_CH3, TIM8_CH3, TSC_G4_IO3, DCMI_D2/PSSI_D2, SDMMC1_D0, LPTIM3_CH1, EVENTOUT - - TRACED0, TIM8_BKIN2, TIM3_CH4, TIM8_CH4, DCMI_D3/PSSI_D3, TSC_G4_IO4, OTG_FS_NOE, SDMMC1_D1, LPTIM3_CH2, EVENTOUT - - MCO, TIM1_CH1, SAI1_CK2, SPI1_RDY, USART1_CK, OTG_FS_SOF, TRACECLK, SAI1_SCK_A, LPTIM2_CH1, EVENTOUT - - TIM1_CH2, SPI2_SCK, DCMI_D0/PSSI_D0, USART1_TX(boot), SAI1_FS_A, TIM15_BKIN, EVENTOUT OTG_FS_ VBUS STM32U585xx Notes - LQFP64 SMPS LQFP48 SMPS UFQFPN48 SMPS Pin number Pinout, pin description and alternate functions 120/334 Table 27. STM32U585xx pin definitions(1) (continued) 44 E3 69 70 D11 102 F11 C12 103 G13 31 32 43 44 69 70 D11 102 F11 C12 103 G13 PA10 PA11 I/O I/O I/O structure Pin type UFBGA169 LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 UFBGA169 SMPS LQFP144 SMPS UFBGA132 SMPS LQFP100 SMPS WLCSP90 SMPS E1 FT_u FT_u Alternate functions Additional functions - CRS_SYNC, TIM1_CH3, LPTIM2_IN2, SAI1_D1, DCMI_D1/PSSI_D1, USART1_RX(boot), OTG_FS_ID, SAI1_SD_A, TIM17_BKIN, EVENTOUT - - TIM1_CH4, TIM1_BKIN2, SPI1_MISO, USART1_CTS, FDCAN1_RX, OTG_FS_DM(boot), EVENTOUT - - 33 45 D2 71 B12 104 F13 33 45 71 B12 104 F13 PA12 I/O FT_u - TIM1_ETR, SPI1_MOSI, OCTOSPIM_P2_NCS, USART1_RTS_DE, FDCAN1_TX, OTG_FS_DP(boot), EVENTOUT 34 46 D4 72 C10 105 F12 34 46 72 C10 105 F12 PA13 (JTMS/ SWDIO) I/O FT (5) JTMS/SWDIO, IR_OUT, OTG_FS_NOE, SAI1_SD_B, EVENTOUT - - 47 - - - 47 - VSS S - - - - - 48 C1 73 A12 106 E13 - 48 73 A12 106 E13 VDDUSB S - - - - 35 - B2 74 H4 107 E12 35 - 74 H4 107 E12 VSS S - - - - 36 - A1 75 D9 108 D13 36 - 75 D9 108 D13 VDD S - - - - FT (5) JTCK/SWCLK, LPTIM1_CH1, I2C1_SMBA, I2C4_SMBA, OTG_FS_SOF, SAI1_FS_B, EVENTOUT - 37 49 C3 76 - - - C11 109 C10 37 49 76 - - - C11 109 C10 PA14 (JTCK/ SWCLK) I/O 121/334 Pinout, pin description and alternate functions DS13086 Rev 6 32 43 Pin name (function after reset) Notes 31 LQFP64 SMPS LQFP48 SMPS UFQFPN48 SMPS Pin number STM32U585xx Table 27. STM32U585xx pin definitions(1) (continued) 38 DS13086 Rev 6 - - 50 51 52 E5 E7 A3 77 78 79 A11 B11 110 A10 111 A10 112 C9 A9 38 - - 50 51 52 77 78 79 A11 B11 110 A10 111 A10 112 C9 A9 PA15 (JTDI) PC10 PC11 I/O I/O FT_c FT_a I/O FT_ha Notes I/O structure Pin name (function after reset) Pin type UFBGA169 LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 UFBGA169 SMPS LQFP144 SMPS UFBGA132 SMPS LQFP100 SMPS WLCSP90 SMPS LQFP64 SMPS LQFP48 SMPS UFQFPN48 SMPS Pin number Alternate functions Additional functions (5) JTDI, TIM2_CH1, TIM2_ETR, USART2_RX, SPI1_NSS, SPI3_NSS, USART3_RTS_DE, UART4_RTS_DE, SAI2_FS_B, EVENTOUT UCPD1_ CC1 - TRACED1, LPTIM3_ETR, ADF1_CCK1, SPI3_SCK, USART3_TX(boot), UART4_TX, TSC_G3_IO2, DCMI_D8/PSSI_D8, LPGPIO1_P8, SDMMC1_D2, SAI2_SCK_B, EVENTOUT - - LPTIM3_IN1, ADF1_SDI0, DCMI_D2/PSSI_D2, OCTOSPIM_P1_NCS, SPI3_MISO, USART3_RX(boot), UART4_RX, TSC_G3_IO3, DCMI_D4/PSSI_D4, UCPD1_FRSTX2, SDMMC1_D3, SAI2_MCLK_B, EVENTOUT - - (4) 53 B4 80 B10 113 E8 - 53 80 B10 113 E8 PC12 I/O FT_ hav - - - C5 81 C9 114 B9 - - 81 C9 114 B9 PD0 I/O FT_h - TIM8_CH4N, SPI2_NSS, FDCAN1_RX, FMC_D2, EVENTOUT - - - D6 82 B9 115 F6 - - 82 B9 115 F6 PD1 I/O FT_h - SPI2_SCK, FDCAN1_TX, FMC_D3, EVENTOUT - STM32U585xx - TRACED3, SPI3_MOSI, USART3_CK, UART5_TX, TSC_G3_IO4, DCMI_D9/PSSI_D9, LPGPIO1_P10, SDMMC1_CK, SAI2_SD_B, EVENTOUT Pinout, pin description and alternate functions 122/334 Table 27. STM32U585xx pin definitions(1) (continued) - - 83 84 A9 C8 116 117 F7 D8 - - 54 - 83 84 A9 C8 116 117 F7 D8 PD2 PD3 I/O I/O structure Pin type UFBGA169 LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 UFBGA169 SMPS LQFP144 SMPS UFBGA132 SMPS LQFP100 SMPS WLCSP90 SMPS A5 FT I/O FT_hv Alternate functions Additional functions - TRACED2, TIM3_ETR, USART3_RTS_DE, UART5_RX, TSC_SYNC, DCMI_D11/PSSI_D11, LPGPIO1_P7, SDMMC1_CMD, LPTIM4_ETR, EVENTOUT - - SPI2_SCK, DCMI_D5/PSSI_D5, SPI2_MISO, MDF1_SDI0, USART2_CTS, OCTOSPIM_P2_NCS, FMC_CLK, EVENTOUT - - - - D8 85 B8 118 C8 - - 85 B8 118 C8 PD4 I/O FT_h - SPI2_MOSI, MDF1_CKI0, USART2_RTS_DE, OCTOSPIM_P1_IO4, FMC_NOE, EVENTOUT - - B6 86 A8 119 E7 - - 86 A8 119 E7 PD5 I/O FT_h - SPI2_RDY, USART2_TX, OCTOSPIM_P1_IO5, FMC_NWE, EVENTOUT - - - - - - 120 B8 - - - - 120 B8 VSS S - - - - - - - - - 121 A8 - - - - 121 A8 VDD S - - - - - SAI1_D1, DCMI_D10/PSSI_D10, SPI3_MOSI, MDF1_SDI1, USART2_RX, OCTOSPIM_P1_IO6, SDMMC2_CK, FMC_NWAIT, SAI1_SD_A, EVENTOUT - - - - 87 A7 122 B7 - - 87 A7 122 B7 PD6 I/O FT_hv 123/334 Pinout, pin description and alternate functions DS13086 Rev 6 - 54 Pin name (function after reset) Notes - LQFP64 SMPS LQFP48 SMPS UFQFPN48 SMPS Pin number STM32U585xx Table 27. STM32U585xx pin definitions(1) (continued) DS13086 Rev 6 - - - - - - - C7 A7 E9 88 - - - D7 B7 C7 - 123 124 125 - D7 A7 C7 - - - - - - - - - 88 - - - - B8 - A6 126 E6 - - - - - C9 - - 127 - - - - - - A9 - - 128 - - - - D7 B7 C7 124 125 D7 A7 C7 M11 126 M10 PD7 PG9 PG10 PG11 I/O I/O structure Pin type UFBGA169 LQFP144 123 FT_h I/O FT_hs I/O FT_hs I/O FT_hs Alternate functions Additional functions - MDF1_CKI1, USART2_CK, OCTOSPIM_P1_IO7, SDMMC2_CMD, FMC_NCE/FMC_NE1, LPTIM4_OUT, EVENTOUT - - OCTOSPIM_P2_IO6, SPI3_SCK(boot), USART1_TX, FMC_NCE/FMC_NE2, SAI2_SCK_A, TIM15_CH1N, EVENTOUT - - LPTIM1_IN1, OCTOSPIM_P2_IO7, SPI3_MISO(boot), USART1_RX, FMC_NE3, SAI2_FS_A, TIM15_CH1, EVENTOUT - - LPTIM1_IN2, OCTOSPIM_P1_IO5, SPI3_MOSI, USART1_CTS, SAI2_MCLK_A, TIM15_CH2, EVENTOUT - - PG12 I/O FT_hs - LPTIM1_ETR, OCTOSPIM_P2_NCS, SPI3_NSS(boot), USART1_RTS_DE, FMC_NE4, SAI2_SD_A, EVENTOUT M10 128 N10 PG13 I/O FT_fhs - I2C1_SDA, SPI3_RDY, USART1_CK, FMC_A24, EVENTOUT - M9 PG14 I/O FT_fhs - LPTIM1_CH2, I2C1_SCL, FMC_A25, EVENTOUT - A6 127 129 E6 N9 STM32U585xx - UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 UFBGA169 SMPS LQFP144 SMPS UFBGA132 SMPS LQFP100 SMPS WLCSP90 SMPS - Pin name (function after reset) Notes - LQFP64 SMPS LQFP48 SMPS UFQFPN48 SMPS Pin number Pinout, pin description and alternate functions 124/334 Table 27. STM32U585xx pin definitions(1) (continued) LQFP64 SMPS WLCSP90 SMPS LQFP100 SMPS UFBGA132 SMPS LQFP144 SMPS UFBGA169 SMPS LQFP48 UFQFPN48 LQFP64 LQFP100 UFBGA132 LQFP144 UFBGA169 Pin name (function after reset) Pin type I/O structure Notes Alternate functions - - B10 - H9 129 - - - - H9 130 - VSS S - - - - - - A11 - D8 130 A6 - - - D8 131 A6 VDDIO2 S - - - - - - - - - 131 A5 - - - B4 132 A5 PG15 - LPTIM1_CH1, I2C1_SMBA, OCTOSPIM_P2_DQS, DCMI_D13/PSSI_D13, EVENTOUT - - JTDO/TRACESWO, TIM2_CH2, LPTIM1_CH1, ADF1_CCK0, I2C1_SDA, SPI1_SCK, SPI3_SCK, USART1_RTS_DE, CRS_SYNC, LPGPIO1_P11, SDMMC2_D2, SAI1_SCK_B, EVENTOUT COMP2_ INM2 NJTRST, LPTIM1_CH2, TIM3_CH1, ADF1_SDI0, I2C3_SDA, SPI1_MISO, SPI3_MISO, USART1_CTS, UART5_RTS_DE, (5) TSC_G2_IO1, DCMI_D12/PSSI_D12, LPGPIO1_P12, SDMMC2_D3, SAI1_MCLK_B, TIM17_BKIN, EVENTOUT COMP2_ INP1 39 40 41 55 56 57 D10 C11 D12 89 90 91 C6 B6 D6 132 133 134 D6 B6 C6 39 40 41 55 56 57 89 90 91 C6 B6 D6 133 134 135 D6 B6 C6 I/O FT_hs PB3 (JTDO/TRACES I/O WO) PB4 (NJTRST) PB5 I/O I/O FT_fa FT_fa FT_ havd - 125/334 LPTIM1_IN1, TIM3_CH2, OCTOSPIM_P1_NCLK, I2C1_SMBA, SPI1_MOSI, SPI3_MOSI(boot), USART1_CK, UART5_CTS, TSC_G2_IO2, DCMI_D10/PSSI_D10, COMP2_OUT, SAI1_SD_B, TIM16_BKIN, EVENTOUT Additional functions UCPD1_ DBCC1, WKUP6 Pinout, pin description and alternate functions DS13086 Rev 6 LQFP48 SMPS UFQFPN48 SMPS Pin number STM32U585xx Table 27. STM32U585xx pin definitions(1) (continued) 58 92 A5 135 B5 42 58 92 A5 136 B5 PB6 I/O I/O structure Pin type UFBGA169 LQFP144 UFBGA132 LQFP100 LQFP64 LQFP48 UFQFPN48 UFBGA169 SMPS LQFP144 SMPS UFBGA132 SMPS LQFP100 SMPS WLCSP90 SMPS A13 Pin name (function after reset) FT_fa DS13086 Rev 6 43 59 B12 93 D5 136 F5 43 59 93 D5 137 F5 PB7 I/O FT_ fhav 44 60 C13 94 B5 137 C5 44 60 94 B5 138 C5 PH3-BOOT0 I/O FT 45 - B14 A15 95 96 C5 A4 138 139 E5 D5 45 46 61 62 95 96 C5 A4 139 140 E5 D5 PB8 PB9 I/O I/O FT_f FT_f Alternate functions Additional functions - LPTIM1_ETR, TIM4_CH1, TIM8_BKIN2, I2C1_SCL(boot), I2C4_SCL, MDF1_SDI5, USART1_TX, TSC_G2_IO3, DCMI_D5/PSSI_D5, SAI1_FS_B, TIM16_CH1N, EVENTOUT COMP2_ INP2, WKUP3 - LPTIM1_IN2, TIM4_CH2, TIM8_BKIN, I2C1_SDA(boot), I2C4_SDA, MDF1_CKI5, USART1_RX, UART4_CTS, TSC_G2_IO4, DCMI_VSYNC/PSSI_RDY, FMC_NL, TIM17_CH1N, EVENTOUT COMP2_ INM1, PVD_IN, WKUP4 - EVENTOUT - - TIM4_CH3, SAI1_CK1, I2C1_SCL, MDF1_CCK0, SPI3_RDY, SDMMC1_CKIN, FDCAN1_RX(boot), DCMI_D6/PSSI_D6, SDMMC2_D4, SDMMC1_D4, SAI1_MCLK_A, TIM16_CH1, EVENTOUT WKUP5 - IR_OUT, TIM4_CH4, SAI1_D2, I2C1_SDA, SPI2_NSS, SDMMC1_CDIR, FDCAN1_TX(boot), DCMI_D7/PSSI_D7, SDMMC2_D5, SDMMC1_D5, SAI1_FS_A, TIM17_CH1, EVENTOUT - STM32U585xx - 61 Notes 42 LQFP64 SMPS LQFP48 SMPS UFQFPN48 SMPS Pin number Pinout, pin description and alternate functions 126/334 Table 27. STM32U585xx pin definitions(1) (continued) LQFP64 SMPS WLCSP90 SMPS LQFP100 SMPS UFBGA132 SMPS LQFP144 SMPS UFBGA169 SMPS LQFP48 UFQFPN48 LQFP64 LQFP100 UFBGA132 LQFP144 UFBGA169 Pin type I/O structure Notes 127/334 Pin name (function after reset) Alternate functions - - - 97 C4 140 D4 - - 97 C4 141 D4 PE0 I/O FT_h - TIM4_ETR, DCMI_D2/PSSI_D2, LPGPIO1_P13, FMC_NBL0, TIM16_CH1, EVENTOUT - - - - - A3 141 C4 - - 98 A3 142 C4 PE1 I/O FT_h - DCMI_D3/PSSI_D3, FMC_NBL1, TIM17_CH1, EVENTOUT - - - - - - - - - - - - - A4 VCAP S - - - - 46 62 A17 98 B4 142 A4 - - - - - - VDD11 S - - - - 47 63 B16 99 E4 143 B4 47 63 99 E4 143 B4 VSS S - - - - 48 64 B18 100 J9 144 A3 48 64 100 J9 144 A3 VDD S - - - - - - - - - - B11 - - - - - B11 VSS S - - - - - - - - - - F10 - - - - - F10 PH2 I/O FT_h - OCTOSPIM_P1_IO4, EVENTOUT - - - - - - - E10 - - - - - E10 PH4 I/O FT_fh - I2C2_SCL, OCTOSPIM_P2_DQS, PSSI_D14, EVENTOUT - - - - - - - F9 - - - - - F9 PH5 I/O FT_f - I2C2_SDA, DCMI_PIXCLK/PSSI_PDCK, EVENTOUT - - - - - - - E11 - - - - - E11 PH6 I/O FT_hv - I2C2_SMBA, OCTOSPIM_P2_CLK, DCMI_D8/PSSI_D8, EVENTOUT - - - - - - - F8 - - - - - F8 PH7 I/O FT_ fhv - I2C3_SCL, OCTOSPIM_P2_NCLK, DCMI_D9/PSSI_D9, EVENTOUT - - - - - - - D12 - - - - - D12 PH8 I/O FT_fh - I2C3_SDA, OCTOSPIM_P2_IO3, DCMI_HSYNC/PSSI_DE, EVENTOUT - Additional functions Pinout, pin description and alternate functions DS13086 Rev 6 LQFP48 SMPS UFQFPN48 SMPS Pin number STM32U585xx Table 27. STM32U585xx pin definitions(1) (continued) WLCSP90 SMPS LQFP100 SMPS UFBGA132 SMPS LQFP144 SMPS UFBGA169 SMPS LQFP48 UFQFPN48 LQFP64 LQFP100 UFBGA132 LQFP144 UFBGA169 Pin name (function after reset) Pin type I/O structure Notes Alternate functions - - - - - - E9 - - - - - E9 PH9 I/O FT_h - I2C3_SMBA, OCTOSPIM_P2_IO4, DCMI_D0/PSSI_D0, EVENTOUT - - - - - - - C13 - - - - - C13 PH10 I/O FT_h - TIM5_CH1, OCTOSPIM_P2_IO5, DCMI_D1/PSSI_D1, EVENTOUT - - - - - - - D9 - - - - - D9 PH11 I/O FT_h - TIM5_CH2, OCTOSPIM_P2_IO6, DCMI_D2/PSSI_D2, EVENTOUT - - - - - - - B13 - - - - - B13 PH12 I/O FT_h - TIM5_CH3, TIM8_CH4N, OCTOSPIM_P2_IO7, DCMI_D3/PSSI_D3, EVENTOUT - - - - - - - C12 - - - - - C12 PH13 I/O FT - TIM8_CH1N, FDCAN1_TX, EVENTOUT - - - - - - - C11 - - - - - C11 PH14 I/O FT - TIM8_CH2N, FDCAN1_RX, DCMI_D4/PSSI_D4, EVENTOUT - - - - - - - A13 - - - - - A13 PH15 I/O FT_h - TIM8_CH3N, OCTOSPIM_P2_IO6, DCMI_D11/PSSI_D11, EVENTOUT - - - - - - - A11 - - - - - A11 VDD S - - - - - - - - - - B12 - - - - - B12 PI0 I/O FT_h - TIM5_CH4, OCTOSPIM_P1_IO5, SPI2_NSS, DCMI_D13/PSSI_D13, EVENTOUT - - - - - - - A12 - - - - - A12 PI1 I/O FT_h - SPI2_SCK, OCTOSPIM_P2_IO2, DCMI_D8/PSSI_D8, EVENTOUT - - - - - - - D11 - - - - - D11 PI2 I/O FT_hv - TIM8_CH4, SPI2_MISO, OCTOSPIM_P2_IO1, DCMI_D9/PSSI_D9, EVENTOUT - Additional functions STM32U585xx LQFP64 SMPS DS13086 Rev 6 LQFP48 SMPS UFQFPN48 SMPS Pin number Pinout, pin description and alternate functions 128/334 Table 27. STM32U585xx pin definitions(1) (continued) LQFP64 SMPS WLCSP90 SMPS LQFP100 SMPS UFBGA132 SMPS LQFP144 SMPS UFBGA169 SMPS LQFP48 UFQFPN48 LQFP64 LQFP100 UFBGA132 LQFP144 UFBGA169 Pin name (function after reset) Pin type I/O structure Notes Alternate functions - - - - - - D10 - - - - - D10 PI3 I/O FT_h - TIM8_ETR, SPI2_MOSI, OCTOSPIM_P2_IO0, DCMI_D10/PSSI_D10, EVENTOUT - - - - - - - B2 - - - - - B2 VSS S - - - - - - - - - - B1 - - - - - B1 VDD S - - - - - - - - - - B10 - - - - - B10 PI4 I/O FT - TIM8_BKIN, SPI2_RDY, DCMI_D5/PSSI_D5, EVENTOUT - - - - - - - B3 - - - - - B3 PI5 I/O FT_h - TIM8_CH1, OCTOSPIM_P2_NCS, DCMI_VSYNC/PSSI_RDY, EVENTOUT - - - - - - - A2 - - - - - A2 PI6 I/O FT_hv - TIM8_CH2, OCTOSPIM_P2_CLK, DCMI_D6/PSSI_D6, EVENTOUT - - - - - - - C3 - - - - - C3 PI7 I/O FT_hv - TIM8_CH3, OCTOSPIM_P2_NCLK, DCMI_D7/PSSI_D7, EVENTOUT - Additional functions 1. Function availability depends on the chosen device. 2. PC13, PC14 and PC15 are supplied through the power switch (by VSW). Since the switch only sinks a limited amount of current (3 mA), the use of PC13 to PC15 GPIOs in output mode is limited: - The speed must not exceed 2 MHz with a maximum load of 30 pF. - These GPIOs must not be used as current sources (for example to drive a LED). 3. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function depends then on the content of the RTC registers that are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the product reference manual. 4. After reset, a pull-down resistor (Rd = 5.1 kΩ from UCPD peripheral) can be activated on PA15 and PB15 (UCPD1_CC1, UCPD1_CC2). The pull-down on PA15 (UCPD1_CC1) is activated by high level on PB5 (UCPD1_DBCC1). The pull-down on PB15 (UCPD1_CC2) is activated by high level on PB14 (UCPD1_DBCC2). This pull-down control (dead battery support on UCPD) can be disabled by setting UCPD_DBDIS = 1 in the PWR_UCPDR register. 5. After reset, this pin is configured as JTAG/SWD alternate functions. The internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated. 129/334 Pinout, pin description and alternate functions DS13086 Rev 6 LQFP48 SMPS UFQFPN48 SMPS Pin number STM32U585xx Table 27. STM32U585xx pin definitions(1) (continued) Alternate functions Table 28. Alternate function AF0 to AF7(1) AF0 AF2 AF3 AF4 AF5 AF6 AF7 DCMI/ I2C1/2/3/4/ LPTIM3 DCMI/I2C4/MDF1/ OCTOSPIM_P1/2/ SPI1/2/3 I2C3/MDF1/ OCTOSPIM_P2/ SPI3 USART1/2/3 LPTIM1/ TIM1/2/5/8 LPTIM1/2/3/ TIM1/2/3/4/5 PA0 - TIM2_CH1 TIM5_CH1 TIM8_ETR - - SPI3_RDY USART2_CTS PA1 LPTIM1_CH2 TIM2_CH2 TIM5_CH2 - I2C1_SMBA SPI1_SCK - USART2_ RTS_DE PA2 - TIM2_CH3 TIM5_CH3 - - SPI1_RDY - USART2_TX PA3 - TIM2_CH4 TIM5_CH4 SAI1_CK1 - - - USART2_RX PA4 - - - OCTOSPIM_P1 _NCS - SPI1_NSS SPI3_NSS USART2_CK PA5 CSLEEP TIM2_CH1 TIM2_ETR TIM8_CH1N PSSI_D14 SPI1_SCK - USART3_RX PA6 CDSTOP TIM1_BKIN TIM3_CH1 TIM8_BKIN DCMI_PIXCL K/PSSI_ PDCK SPI1_MISO - USART3_CTS PA7 SRDSTOP TIM1_CH1N TIM3_CH2 TIM8_CH1N I2C3_SCL SPI1_MOSI - USART3_TX PA8 MCO TIM1_CH1 - SAI1_CK2 - SPI1_RDY - USART1_CK PA9 - TIM1_CH2 - SPI2_SCK - DCMI_D0/PSSI_D0 - USART1_TX PA10 CRS_SYNC TIM1_CH3 LPTIM2_IN2 SAI1_D1 - DCMI_D1/PSSI_D1 - USART1_RX PA11 - TIM1_CH4 TIM1_BKIN2 - - SPI1_MISO - USART1_CTS PA12 - TIM1_ETR - - - SPI1_MOSI OCTOSPIM_ P2_NCS USART1_ RTS_DE PA13 JTMS/SWDIO IR_OUT - - - - - - PA14 JTCK/SWCLK LPTIM1_CH1 - - I2C1_SMBA I2C4_SMBA - - PA15 JTDI TIM2_CH1 TIM2_ETR USART2_RX - SPI1_NSS SPI3_NSS USART3_ RTS_DE DS13086 Rev 6 STM32U585xx CRS/LPTIM1/ SYS_AF ADF1/I2C4/ OCTOSPIM_P1/ OTG_FS/SAI1/ SPI2/TIM1/8/ USART2 Port Port A AF1 Pinout, pin description and alternate functions 130/334 4.3 AF0 AF2 AF3 AF4 AF5 AF6 AF7 DCMI/ I2C1/2/3/4/ LPTIM3 DCMI/I2C4/MDF1/ OCTOSPIM_P1/2/ SPI1/2/3 I2C3/MDF1/ OCTOSPIM_P2/ SPI3 USART1/2/3 LPTIM1/ TIM1/2/5/8 LPTIM1/2/3/ TIM1/2/3/4/5 PB0 - TIM1_CH2N TIM3_CH3 TIM8_CH2N LPTIM3_CH1 SPI1_NSS - USART3_CK PB1 - TIM1_CH3N TIM3_CH4 TIM8_CH3N LPTIM3_CH2 - MDF1_SDI0 USART3_ RTS_DE PB2 - LPTIM1_CH1 - TIM8_CH4N I2C3_SMBA SPI1_RDY MDF1_CKI0 - PB3 JTDO/ TRACESWO TIM2_CH2 LPTIM1_CH1 ADF1_CCK0 I2C1_SDA SPI1_SCK SPI3_SCK USART1_ RTS_DE PB4 NJTRST LPTIM1_CH2 TIM3_CH1 ADF1_SDI0 I2C3_SDA SPI1_MISO SPI3_MISO USART1_CTS PB5 - LPTIM1_IN1 TIM3_CH2 OCTOSPIM_ P1_NCLK I2C1_SMBA SPI1_MOSI SPI3_MOSI USART1_CK PB6 - LPTIM1_ETR TIM4_CH1 TIM8_BKIN2 I2C1_SCL I2C4_SCL MDF1_SDI5 USART1_TX PB7 - LPTIM1_IN2 TIM4_CH2 TIM8_BKIN I2C1_SDA I2C4_SDA MDF1_CKI5 USART1_RX PB8 - - TIM4_CH3 SAI1_CK1 I2C1_SCL MDF1_CCK0 SPI3_RDY - PB9 - IR_OUT TIM4_CH4 SAI1_D2 I2C1_SDA SPI2_NSS - - PB10 - TIM2_CH3 LPTIM3_CH1 I2C4_SCL I2C2_SCL SPI2_SCK - USART3_TX PB11 - TIM2_CH4 - I2C4_SDA I2C2_SDA SPI2_RDY - USART3_RX PB12 - TIM1_BKIN - - I2C2_SMBA SPI2_NSS MDF1_SDI1 USART3_CK PB13 - TIM1_CH1N LPTIM3_IN1 - I2C2_SCL SPI2_SCK MDF1_CKI1 USART3_CTS PB14 - TIM1_CH2N LPTIM3_ETR TIM8_CH2N I2C2_SDA SPI2_MISO MDF1_SDI2 USART3_ RTS_DE PB15 RTC_REFIN TIM1_CH3N LPTIM2_IN2 TIM8_CH3N - SPI2_MOSI MDF1_CKI2 - DS13086 Rev 6 131/334 Pinout, pin description and alternate functions CRS/LPTIM1/ SYS_AF ADF1/I2C4/ OCTOSPIM_P1/ OTG_FS/SAI1/ SPI2/TIM1/8/ USART2 Port Port B AF1 STM32U585xx Table 28. Alternate function AF0 to AF7(1) (continued) AF0 AF2 AF3 AF4 AF5 AF6 AF7 DCMI/ I2C1/2/3/4/ LPTIM3 DCMI/I2C4/MDF1/ OCTOSPIM_P1/2/ SPI1/2/3 I2C3/MDF1/ OCTOSPIM_P2/ SPI3 USART1/2/3 LPTIM1/ TIM1/2/5/8 LPTIM1/2/3/ TIM1/2/3/4/5 PC0 - LPTIM1_IN1 - OCTOSPIM_ P1_IO7 I2C3_SCL SPI2_RDY MDF1_SDI4 - PC1 TRACED0 LPTIM1_CH1 - SPI2_MOSI I2C3_SDA - MDF1_CKI4 - PC2 - LPTIM1_IN2 - - - SPI2_MISO MDF1_CCK1 - PC3 - LPTIM1_ETR LPTIM3_CH1 SAI1_D1 - SPI2_MOSI - - PC4 - - - - - - - USART3_TX PC5 - TIM1_CH4N - SAI1_D3 PSSI_D15 - - USART3_RX PC6 CSLEEP - TIM3_CH1 TIM8_CH1 - - MDF1_CKI3 - PC7 CDSTOP - TIM3_CH2 TIM8_CH2 - - MDF1_SDI3 - PC8 SRDSTOP - TIM3_CH3 TIM8_CH3 - - - - PC9 TRACED0 TIM8_BKIN2 TIM3_CH4 TIM8_CH4 DCMI_D3/ PSSI_D3 - - - PC10 TRACED1 - LPTIM3_ETR ADF1_CCK1 - - SPI3_SCK USART3_TX PC11 - - LPTIM3_IN1 ADF1_SDI0 DCMI_D2/ PSSI_D2 OCTOSPIM_ P1_NCS SPI3_MISO USART3_RX PC12 TRACED3 - - - - - SPI3_MOSI USART3_CK PC13 - - - - - - - - PC14 - - - - - - - - PC15 - - - - - - - - DS13086 Rev 6 STM32U585xx CRS/LPTIM1/ SYS_AF ADF1/I2C4/ OCTOSPIM_P1/ OTG_FS/SAI1/ SPI2/TIM1/8/ USART2 Port Port C AF1 Pinout, pin description and alternate functions 132/334 Table 28. Alternate function AF0 to AF7(1) (continued) AF0 AF2 AF3 AF4 AF5 AF6 AF7 DCMI/ I2C1/2/3/4/ LPTIM3 DCMI/I2C4/MDF1/ OCTOSPIM_P1/2/ SPI1/2/3 I2C3/MDF1/ OCTOSPIM_P2/ SPI3 USART1/2/3 LPTIM1/ TIM1/2/5/8 LPTIM1/2/3/ TIM1/2/3/4/5 PD0 - - - TIM8_CH4N - SPI2_NSS - - PD1 - - - - - SPI2_SCK - - PD2 TRACED2 - TIM3_ETR - - - - USART3_ RTS_DE PD3 - - - SPI2_SCK DCMI_D5/ PSSI_D5 SPI2_MISO MDF1_SDI0 USART2_CTS PD4 - - - - - SPI2_MOSI MDF1_CKI0 USART2_ RTS_DE PD5 - - - - - SPI2_RDY - USART2_TX PD6 - - - SAI1_D1 DCMI_D10/ PSSI_D10 SPI3_MOSI MDF1_SDI1 USART2_RX PD7 - - - - - - MDF1_CKI1 USART2_CK PD8 - - - - - - - USART3_TX PD9 - - LPTIM2_IN2 - - - - USART3_RX PD10 - - LPTIM2_CH2 - - - - USART3_CK PD11 - - - - I2C4_SMBA - - USART3_CTS PD12 - - TIM4_CH1 - I2C4_SCL - - USART3_ RTS_DE PD13 - - TIM4_CH2 - I2C4_SDA - - - PD14 - - TIM4_CH3 - - - - - PD15 - - TIM4_CH4 - - - - - DS13086 Rev 6 133/334 Pinout, pin description and alternate functions CRS/LPTIM1/ SYS_AF ADF1/I2C4/ OCTOSPIM_P1/ OTG_FS/SAI1/ SPI2/TIM1/8/ USART2 Port Port D AF1 STM32U585xx Table 28. Alternate function AF0 to AF7(1) (continued) AF0 AF2 AF3 AF4 AF5 AF6 AF7 DCMI/ I2C1/2/3/4/ LPTIM3 DCMI/I2C4/MDF1/ OCTOSPIM_P1/2/ SPI1/2/3 I2C3/MDF1/ OCTOSPIM_P2/ SPI3 USART1/2/3 CRS/LPTIM1/ SYS_AF LPTIM1/ TIM1/2/5/8 LPTIM1/2/3/ TIM1/2/3/4/5 ADF1/I2C4/ OCTOSPIM_P1/ OTG_FS/SAI1/ SPI2/TIM1/8/ USART2 PE0 - - TIM4_ETR - - - - - PE1 - - - - - - - - PE2 TRACECLK - TIM3_ETR SAI1_CK1 - - - - PE3 TRACED0 - TIM3_CH1 OCTOSPIM_ P1_DQS - - - - PE4 TRACED1 - TIM3_CH2 SAI1_D2 - - MDF1_SDI3 - PE5 TRACED2 - TIM3_CH3 SAI1_CK2 - - MDF1_CKI3 - PE6 TRACED3 - TIM3_CH4 SAI1_D1 - - - - PE7 - TIM1_ETR - - - - MDF1_SDI2 - PE8 - TIM1_CH1N - - - - MDF1_CKI2 - PE9 - TIM1_CH1 - ADF1_CCK0 - - MDF1_CCK0 - PE10 - TIM1_CH2N - ADF1_SDI0 - - MDF1_SDI4 - PE11 - TIM1_CH2 - - - SPI1_RDY MDF1_CKI4 - PE12 - TIM1_CH3N - - - SPI1_NSS MDF1_SDI5 - PE13 - TIM1_CH3 - - - SPI1_SCK MDF1_CKI5 - PE14 - TIM1_CH4 TIM1_BKIN2 - - SPI1_MISO - - PE15 - TIM1_BKIN - TIM1_CH4N - SPI1_MOSI - - Port DS13086 Rev 6 Port E AF1 Pinout, pin description and alternate functions 134/334 Table 28. Alternate function AF0 to AF7(1) (continued) STM32U585xx AF0 AF2 AF3 AF4 AF5 AF6 AF7 DCMI/ I2C1/2/3/4/ LPTIM3 DCMI/I2C4/MDF1/ OCTOSPIM_P1/2/ SPI1/2/3 I2C3/MDF1/ OCTOSPIM_P2/ SPI3 USART1/2/3 LPTIM1/ TIM1/2/5/8 LPTIM1/2/3/ TIM1/2/3/4/5 PF0 - - - - I2C2_SDA OCTOSPIM_P2_IO0 - - PF1 - - - - I2C2_SCL OCTOSPIM_P2_IO1 - - PF2 - - LPTIM3_CH2 - I2C2_SMBA OCTOSPIM_P2_IO2 - - PF3 - - LPTIM3_IN1 - - OCTOSPIM_P2_IO3 - - PF4 - - LPTIM3_ETR - - OCTOSPIM_ P2_CLK - - PF5 - - LPTIM3_CH1 - - OCTOSPIM_ P2_NCLK - - PF6 - TIM5_ETR TIM5_CH1 - DCMI_D12/P SSI_D12 OCTOSPIM_ P2_NCS - - PF7 - - TIM5_CH2 - - - - - PF8 - - TIM5_CH3 - PSSI_D14 - - - PF9 - - TIM5_CH4 - PSSI_D15 - - - PF10 - - - OCTOSPIM_ P1_CLK PSSI_D15 - MDF1_CCK1 - PF11 - - - OCTOSPIM_ P1_NCLK - - - - PF12 - - - - - OCTOSPIM_ P2_DQS - - PF13 - - - - I2C4_SMBA - - - PF14 - - - - I2C4_SCL - - - PF15 - - - - I2C4_SDA - - - DS13086 Rev 6 135/334 Pinout, pin description and alternate functions CRS/LPTIM1/ SYS_AF ADF1/I2C4/ OCTOSPIM_P1/ OTG_FS/SAI1/ SPI2/TIM1/8/ USART2 Port Port F AF1 STM32U585xx Table 28. Alternate function AF0 to AF7(1) (continued) AF0 AF2 AF3 AF4 AF5 AF6 AF7 DCMI/ I2C1/2/3/4/ LPTIM3 DCMI/I2C4/MDF1/ OCTOSPIM_P1/2/ SPI1/2/3 I2C3/MDF1/ OCTOSPIM_P2/ SPI3 USART1/2/3 LPTIM1/ TIM1/2/5/8 LPTIM1/2/3/ TIM1/2/3/4/5 PG0 - - - - - OCTOSPIM_P2_IO4 - - PG1 - - - - - OCTOSPIM_P2_IO5 - - PG2 - - - - - SPI1_SCK - - PG3 - - - - - SPI1_MISO - - PG4 - - - - - SPI1_MOSI - - PG5 - - - - - SPI1_NSS - - PG6 - - - OCTOSPIM_ P1_DQS I2C3_SMBA SPI1_RDY - - PG7 - - - SAI1_CK1 I2C3_SCL OCTOSPIM_ P2_DQS MDF1_CCK0 - PG8 - - - - I2C3_SDA - - - PG9 - - - - - OCTOSPIM_P2_IO6 SPI3_SCK USART1_TX PG10 - LPTIM1_IN1 - - - OCTOSPIM_P2_IO7 SPI3_MISO USART1_RX PG11 - LPTIM1_IN2 - OCTOSPIM_ P1_IO5 - - SPI3_MOSI USART1_CTS PG12 - LPTIM1_ETR - - - OCTOSPIM_ P2_NCS SPI3_NSS USART1_ RTS_DE PG13 - - - - I2C1_SDA - SPI3_RDY USART1_CK PG14 - LPTIM1_CH2 - - I2C1_SCL - - - PG15 - LPTIM1_CH1 - - I2C1_SMBA OCTOSPIM_ P2_DQS - - DS13086 Rev 6 STM32U585xx CRS/LPTIM1/ SYS_AF ADF1/I2C4/ OCTOSPIM_P1/ OTG_FS/SAI1/ SPI2/TIM1/8/ USART2 Port Port G AF1 Pinout, pin description and alternate functions 136/334 Table 28. Alternate function AF0 to AF7(1) (continued) AF0 AF2 AF3 AF4 AF5 AF6 AF7 DCMI/ I2C1/2/3/4/ LPTIM3 DCMI/I2C4/MDF1/ OCTOSPIM_P1/2/ SPI1/2/3 I2C3/MDF1/ OCTOSPIM_P2/ SPI3 USART1/2/3 LPTIM1/ TIM1/2/5/8 LPTIM1/2/3/ TIM1/2/3/4/5 PH0 - - - - - - - - PH1 - - - - - - - - PH2 - - - OCTOSPIM_ P1_IO4 - - - - PH3 - - - - - - - - PH4 - - - - I2C2_SCL OCTOSPIM_ P2_DQS - - PH5 - - - - I2C2_SDA - - - PH6 - - - - I2C2_SMBA OCTOSPIM_ P2_CLK - - PH7 - - - - I2C3_SCL OCTOSPIM_ P2_NCLK - - PH8 - - - - I2C3_SDA OCTOSPIM_P2_IO3 - - PH9 - - - - I2C3_SMBA OCTOSPIM_P2_IO4 - - PH10 - - TIM5_CH1 - - OCTOSPIM_P2_IO5 - - PH11 - - TIM5_CH2 - - OCTOSPIM_P2_IO6 - - PH12 - - TIM5_CH3 TIM8_CH4N - OCTOSPIM_P2_IO7 - - PH13 - - - TIM8_CH1N - - - - PH14 - - - TIM8_CH2N - - - - PH15 - - - TIM8_CH3N - OCTOSPIM_P2_IO6 - - DS13086 Rev 6 137/334 Pinout, pin description and alternate functions CRS/LPTIM1/ SYS_AF ADF1/I2C4/ OCTOSPIM_P1/ OTG_FS/SAI1/ SPI2/TIM1/8/ USART2 Port Port H AF1 STM32U585xx Table 28. Alternate function AF0 to AF7(1) (continued) AF0 AF2 AF3 AF4 AF5 AF6 AF7 DCMI/ I2C1/2/3/4/ LPTIM3 DCMI/I2C4/MDF1/ OCTOSPIM_P1/2/ SPI1/2/3 I2C3/MDF1/ OCTOSPIM_P2/ SPI3 USART1/2/3 CRS/LPTIM1/ SYS_AF LPTIM1/ TIM1/2/5/8 LPTIM1/2/3/ TIM1/2/3/4/5 ADF1/I2C4/ OCTOSPIM_P1/ OTG_FS/SAI1/ SPI2/TIM1/8/ USART2 PI0 - - TIM5_CH4 OCTOSPIM_ P1_IO5 - SPI2_NSS - - PI1 - - - - - SPI2_SCK OCTOSPIM_ P2_IO2 - PI2 - - - TIM8_CH4 - SPI2_MISO OCTOSPIM_ P2_IO1 - PI3 - - - TIM8_ETR - SPI2_MOSI OCTOSPIM_ P2_IO0 - PI4 - - - TIM8_BKIN - SPI2_RDY - - PI5 - - - TIM8_CH1 - OCTOSPIM_ P2_NCS - - PI6 - - - TIM8_CH2 - OCTOSPIM_ P2_CLK - - PI7 - - - TIM8_CH3 - OCTOSPIM_ P2_NCLK - - Port DS13086 Rev 6 Port I AF1 Pinout, pin description and alternate functions 138/334 Table 28. Alternate function AF0 to AF7(1) (continued) 1. Refer to the next table for AF8 to AF15. STM32U585xx AF9 AF10 AF11 AF12 AF13 AF14 AF15 LPUART1/ SDMMC1/ UART4/5 CAN1/TSC CRS/DCMI/ OCTOSPIM_P1/2/ OTG_FS LPGPIO1/ SDMMC2/ UCPD1/FMC COMP1/2/FMC/ SDMMC1/2 LPTIM2/4/ SAI1/2 LPTIM2/3/ TIM2/15/16/17 EVENOUT PA0 UART4_TX - OCTOSPIM_ P2_NCS - SDMMC2_CMD AUDIOCLK TIM2_ETR EVENTOUT PA1 UART4_RX - OCTOSPIM_ P1_DQS LPGPIO1_P0 - - TIM15_CH1N EVENTOUT PA2 LPUART1_TX - OCTOSPIM_ P1_NCS UCPD1_ FRSTX1 - - TIM15_CH1 EVENTOUT PA3 LPUART1_RX - OCTOSPIM_P1_CLK LPGPIO1_P1 - SAI1_MCLK_A TIM15_CH2 EVENTOUT PA4 - - DCMI_HSYNC/ PSSI_DE - - SAI1_FS_B LPTIM2_CH1 EVENTOUT PA5 - - - - - - LPTIM2_ETR EVENTOUT PA6 LPUART1_CTS - OCTOSPIM_P1_IO3 LPGPIO1_P2 - - TIM16_CH1 EVENTOUT PA7 - - OCTOSPIM_P1_IO2 - - LPTIM2_CH2 TIM17_CH1 EVENTOUT PA8 - - OTG_FS_SOF - TRACECLK SAI1_SCK_A LPTIM2_CH1 EVENTOUT PA9 - - - - - SAI1_FS_A TIM15_BKIN EVENTOUT PA10 - - OTG_FS_ID - - SAI1_SD_A TIM17_BKIN EVENTOUT PA11 - FDCAN1_RX OTG_FS_DM - - - - EVENTOUT PA12 - FDCAN1_TX OTG_FS_DP - - - - EVENTOUT PA13 - - OTG_FS_NOE - - SAI1_SD_B - EVENTOUT PA14 - - OTG_FS_SOF - - SAI1_FS_B - EVENTOUT - - - - SAI2_FS_B - EVENTOUT DS13086 Rev 6 Port A Port PA15 UART4_RTS_DE 139/334 Pinout, pin description and alternate functions AF8 STM32U585xx Table 29. Alternate function AF8 to AF15(1) AF9 AF10 AF11 AF12 AF13 AF14 AF15 LPUART1/ SDMMC1/ UART4/5 CAN1/TSC CRS/DCMI/ OCTOSPIM_P1/2/ OTG_FS LPGPIO1/ SDMMC2/ UCPD1/FMC COMP1/2/FMC/ SDMMC1/2 LPTIM2/4/ SAI1/2 LPTIM2/3/ TIM2/15/16/17 EVENOUT PB0 - - OCTOSPIM_P1_IO1 LPGPIO1_P9 COMP1_OUT AUDIOCLK - EVENTOUT PB1 LPUART1_ RTS_DE - OCTOSPIM_P1_IO0 LPGPIO1_P3 - - LPTIM2_IN1 EVENTOUT PB2 - - OCTOSPIM_ P1_DQS UCPD1_ FRSTX1 - - - EVENTOUT PB3 - - CRS_SYNC LPGPIO1_P11 SDMMC2_D2 SAI1_SCK_B - EVENTOUT PB4 UART5_RTS_DE TSC_G2_IO1 DCMI_D12/ PSSI_D12 LPGPIO1_P12 SDMMC2_D3 SAI1_MCLK_B TIM17_BKIN EVENTOUT PB5 UART5_CTS TSC_G2_IO2 DCMI_D10/ PSSI_D10 - COMP2_OUT SAI1_SD_B TIM16_BKIN EVENTOUT PB6 - TSC_G2_IO3 DCMI_D5/PSSI_D5 - - SAI1_FS_B TIM16_CH1N EVENTOUT PB7 UART4_CTS TSC_G2_IO4 DCMI_VSYNC/ PSSI_RDY - FMC_NL - TIM17_CH1N EVENTOUT PB8 SDMMC1_CKIN FDCAN1_RX DCMI_D6/PSSI_D6 SDMMC2_D4 SDMMC1_D4 SAI1_MCLK_A TIM16_CH1 EVENTOUT PB9 SDMMC1_CDIR FDCAN1_TX DCMI_D7/PSSI_D7 SDMMC2_D5 SDMMC1_D5 SAI1_FS_A TIM17_CH1 EVENTOUT PB10 LPUART1_RX TSC_SYNC OCTOSPIM_P1_CLK LPGPIO1_P4 COMP1_OUT SAI1_SCK_A - EVENTOUT PB11 LPUART1_TX - OCTOSPIM_ P1_NCS - COMP2_OUT - - EVENTOUT PB12 LPUART1_RTS_ DE TSC_G1_IO1 OCTOSPIM_ P1_NCLK - - SAI2_FS_A TIM15_BKIN EVENTOUT PB13 LPUART1_CTS TSC_G1_IO2 - - - SAI2_SCK_A TIM15_CH1N EVENTOUT PB14 - TSC_G1_IO3 - - SDMMC2_D0 SAI2_MCLK_A TIM15_CH1 EVENTOUT PB15 - - - FMC_NBL1 SDMMC2_D1 SAI2_SD_A TIM15_CH2 EVENTOUT DS13086 Rev 6 Port B Port STM32U585xx AF8 Pinout, pin description and alternate functions 140/334 Table 29. Alternate function AF8 to AF15(1) (continued) AF9 AF10 AF11 AF12 AF13 AF14 AF15 LPUART1/ SDMMC1/ UART4/5 CAN1/TSC CRS/DCMI/ OCTOSPIM_P1/2/ OTG_FS LPGPIO1/ SDMMC2/ UCPD1/FMC COMP1/2/FMC/ SDMMC1/2 LPTIM2/4/ SAI1/2 LPTIM2/3/ TIM2/15/16/17 EVENOUT PC0 LPUART1_RX - - - SDMMC1_D5 SAI2_FS_A LPTIM2_IN1 EVENTOUT PC1 LPUART1_TX - OCTOSPIM_P1_IO4 - SDMMC2_CK SAI1_SD_A - EVENTOUT PC2 - - OCTOSPIM_P1_IO5 LPGPIO1_P5 - - - EVENTOUT PC3 - - OCTOSPIM_P1_IO6 - - SAI1_SD_A LPTIM2_ETR EVENTOUT PC4 - - OCTOSPIM_P1_IO7 - - - - EVENTOUT PC5 - - - - - - - EVENTOUT PC6 SDMMC1_ D0DIR TSC_G4_IO1 DCMI_D0/PSSI_D0 SDMMC2_D6 SDMMC1_D6 SAI2_MCLK_A - EVENTOUT PC7 SDMMC1_ D123DIR TSC_G4_IO2 DCMI_D1/PSSI_D1 SDMMC2_D7 SDMMC1_D7 SAI2_MCLK_B LPTIM2_CH2 EVENTOUT PC8 - TSC_G4_IO3 DCMI_D2/PSSI_D2 - SDMMC1_D0 - LPTIM3_CH1 EVENTOUT PC9 - TSC_G4_IO4 OTG_FS_NOE - SDMMC1_D1 - LPTIM3_CH2 EVENTOUT PC10 UART4_TX TSC_G3_IO2 DCMI_D8/PSSI_D8 LPGPIO1_P8 SDMMC1_D2 SAI2_SCK_B - EVENTOUT PC11 UART4_RX TSC_G3_IO3 DCMI_D4/PSSI_D4 UCPD1_ FRSTX2 SDMMC1_D3 SAI2_MCLK_B - EVENTOUT PC12 UART5_TX TSC_G3_IO4 DCMI_D9/PSSI_D9 LPGPIO1_P10 SDMMC1_CK SAI2_SD_B - EVENTOUT PC13 - - - - - - - EVENTOUT PC14 - - - - - - - EVENTOUT PC15 - - - - - - - EVENTOUT DS13086 Rev 6 Port C Port 141/334 Pinout, pin description and alternate functions AF8 STM32U585xx Table 29. Alternate function AF8 to AF15(1) (continued) AF9 AF10 AF11 AF12 AF13 AF14 AF15 LPUART1/ SDMMC1/ UART4/5 CAN1/TSC CRS/DCMI/ OCTOSPIM_P1/2/ OTG_FS LPGPIO1/ SDMMC2/ UCPD1/FMC COMP1/2/FMC/ SDMMC1/2 LPTIM2/4/ SAI1/2 LPTIM2/3/ TIM2/15/16/17 EVENOUT PD0 - FDCAN1_RX - - FMC_D2 - - EVENTOUT PD1 - FDCAN1_TX - - FMC_D3 - - EVENTOUT PD2 UART5_RX TSC_SYNC DCMI_D11/ PSSI_D11 LPGPIO1_P7 SDMMC1_CMD LPTIM4_ETR - EVENTOUT PD3 - - OCTOSPIM_ P2_NCS - FMC_CLK - - EVENTOUT PD4 - - OCTOSPIM_P1_IO4 - FMC_NOE - - EVENTOUT PD5 - - OCTOSPIM_P1_IO5 - FMC_NWE - - EVENTOUT PD6 - - OCTOSPIM_P1_IO6 SDMMC2_CK FMC_NWAIT SAI1_SD_A - EVENTOUT PD7 - - OCTOSPIM_P1_IO7 SDMMC2_CMD FMC_NCE/ FMC_NE1 LPTIM4_OUT - EVENTOUT PD8 - - DCMI_HSYNC/ PSSI_DE - FMC_D13 - - EVENTOUT PD9 - - DCMI_PIXCLK/ PSSI_PDCK - FMC_D14 SAI2_MCLK_A LPTIM3_IN1 EVENTOUT PD10 - TSC_G6_IO1 - - FMC_D15 SAI2_SCK_A LPTIM3_ETR EVENTOUT PD11 - TSC_G6_IO2 - - FMC_CLE/ FMC_A16 SAI2_SD_A LPTIM2_ETR EVENTOUT PD12 - TSC_G6_IO3 - - FMC_ALE/ FMC_A17 SAI2_FS_A LPTIM2_IN1 EVENTOUT PD13 - TSC_G6_IO4 - LPGPIO1_P6 FMC_A18 LPTIM4_IN1 LPTIM2_CH1 EVENTOUT PD14 - - - - FMC_D0 - LPTIM3_CH1 EVENTOUT PD15 - - - - FMC_D1 - LPTIM3_CH2 EVENTOUT DS13086 Rev 6 Port D Port STM32U585xx AF8 Pinout, pin description and alternate functions 142/334 Table 29. Alternate function AF8 to AF15(1) (continued) AF9 AF10 AF11 AF12 AF13 AF14 AF15 LPUART1/ SDMMC1/ UART4/5 CAN1/TSC CRS/DCMI/ OCTOSPIM_P1/2/ OTG_FS LPGPIO1/ SDMMC2/ UCPD1/FMC COMP1/2/FMC/ SDMMC1/2 LPTIM2/4/ SAI1/2 LPTIM2/3/ TIM2/15/16/17 EVENOUT PE0 - - DCMI_D2/PSSI_D2 LPGPIO1_P13 FMC_NBL0 - TIM16_CH1 EVENTOUT PE1 - - DCMI_D3/PSSI_D3 - FMC_NBL1 - TIM17_CH1 EVENTOUT PE2 - TSC_G7_IO1 - LPGPIO1_P14 FMC_A23 SAI1_MCLK_A - EVENTOUT PE3 - TSC_G7_IO2 - LPGPIO1_P15 FMC_A19 SAI1_SD_B - EVENTOUT PE4 - TSC_G7_IO3 DCMI_D4/PSSI_D4 - FMC_A20 SAI1_FS_A - EVENTOUT PE5 - TSC_G7_IO4 DCMI_D6/PSSI_D6 - FMC_A21 SAI1_SCK_A - EVENTOUT PE6 - - DCMI_D7/PSSI_D7 - FMC_A22 SAI1_SD_A - EVENTOUT PE7 - - - - FMC_D4 SAI1_SD_B - EVENTOUT PE8 - - - - FMC_D5 SAI1_SCK_B - EVENTOUT PE9 - - OCTOSPIM_P1_NC LK - FMC_D6 SAI1_FS_B - EVENTOUT PE10 - TSC_G5_IO1 OCTOSPIM_P1_CLK - FMC_D7 SAI1_MCLK_B - EVENTOUT PE11 - TSC_G5_IO2 OCTOSPIM_ P1_NCS - FMC_D8 - - EVENTOUT PE12 - TSC_G5_IO3 OCTOSPIM_P1_IO0 - FMC_D9 - - EVENTOUT PE13 - TSC_G5_IO4 OCTOSPIM_P1_IO1 - FMC_D10 - - EVENTOUT PE14 - - OCTOSPIM_P1_IO2 - FMC_D11 - - EVENTOUT PE15 - - OCTOSPIM_P1_IO3 - FMC_D12 - - EVENTOUT DS13086 Rev 6 Port E Port 143/334 Pinout, pin description and alternate functions AF8 STM32U585xx Table 29. Alternate function AF8 to AF15(1) (continued) AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 LPUART1/ SDMMC1/ UART4/5 CAN1/TSC CRS/DCMI/ OCTOSPIM_P1/2/ OTG_FS LPGPIO1/ SDMMC2/ UCPD1/FMC COMP1/2/FMC/ SDMMC1/2 LPTIM2/4/ SAI1/2 LPTIM2/3/ TIM2/15/16/17 EVENOUT PF0 - - - - FMC_A0 - - EVENTOUT PF1 - - - - FMC_A1 - - EVENTOUT PF2 - - - - FMC_A2 - - EVENTOUT PF3 - - - - FMC_A3 - - EVENTOUT PF4 - - - - FMC_A4 - - EVENTOUT PF5 - - - - FMC_A5 - - EVENTOUT PF6 - - OCTOSPIM_P1_IO3 - - SAI1_SD_B - EVENTOUT PF7 - FDCAN1_RX OCTOSPIM_P1_IO2 - - SAI1_MCLK_B - EVENTOUT PF8 - FDCAN1_TX OCTOSPIM_P1_IO0 - - SAI1_SCK_B - EVENTOUT PF9 - - OCTOSPIM_P1_IO1 - - SAI1_FS_B TIM15_CH1 EVENTOUT PF10 - - DCMI_D11/ PSSI_D11 - - SAI1_D3 TIM15_CH2 EVENTOUT PF11 - - DCMI_D12/ PSSI_D12 - - LPTIM4_IN1 - EVENTOUT PF12 - - - - FMC_A6 LPTIM4_ETR - EVENTOUT PF13 - - - UCPD1_ FRSTX2 FMC_A7 LPTIM4_OUT - EVENTOUT PF14 - TSC_G8_IO1 - - FMC_A8 - - EVENTOUT PF15 - TSC_G8_IO2 - - FMC_A9 - - EVENTOUT DS13086 Rev 6 Port F Port Pinout, pin description and alternate functions 144/334 Table 29. Alternate function AF8 to AF15(1) (continued) STM32U585xx AF9 AF10 AF11 AF12 AF13 AF14 AF15 LPUART1/ SDMMC1/ UART4/5 CAN1/TSC CRS/DCMI/ OCTOSPIM_P1/2/ OTG_FS LPGPIO1/ SDMMC2/ UCPD1/FMC COMP1/2/FMC/ SDMMC1/2 LPTIM2/4/ SAI1/2 LPTIM2/3/ TIM2/15/16/17 EVENOUT PG0 - TSC_G8_IO3 - - FMC_A10 - - EVENTOUT PG1 - TSC_G8_IO4 - - FMC_A11 - - EVENTOUT PG2 - - - - FMC_A12 SAI2_SCK_B - EVENTOUT PG3 - - - - FMC_A13 SAI2_FS_B - EVENTOUT PG4 - - - - FMC_A14 SAI2_MCLK_B - EVENTOUT PG5 LPUART1_CTS - - - FMC_A15 SAI2_SD_B - EVENTOUT PG6 LPUART1_ RTS_DE - - UCPD1_ FRSTX1 - - - EVENTOUT PG7 LPUART1_TX - - UCPD1_ FRSTX2 FMC_INT SAI1_MCLK_A - EVENTOUT PG8 LPUART1_RX - - - - - - EVENTOUT PG9 - - - - FMC_NCE/ FMC_NE2 SAI2_SCK_A TIM15_CH1N EVENTOUT PG10 - - - - FMC_NE3 SAI2_FS_A TIM15_CH1 EVENTOUT PG11 - - - - - SAI2_MCLK_A TIM15_CH2 EVENTOUT PG12 - - - - FMC_NE4 SAI2_SD_A - EVENTOUT PG13 - - - - FMC_A24 - - EVENTOUT PG14 - - - - FMC_A25 - - EVENTOUT PG15 - - DCMI_D13/ PSSI_D13 - - - - EVENTOUT DS13086 Rev 6 Port G Port 145/334 Pinout, pin description and alternate functions AF8 STM32U585xx Table 29. Alternate function AF8 to AF15(1) (continued) AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 LPUART1/ SDMMC1/ UART4/5 CAN1/TSC CRS/DCMI/ OCTOSPIM_P1/2/ OTG_FS LPGPIO1/ SDMMC2/ UCPD1/FMC COMP1/2/FMC/ SDMMC1/2 LPTIM2/4/ SAI1/2 LPTIM2/3/ TIM2/15/16/17 EVENOUT PH0 - - - - - - - EVENTOUT PH1 - - - - - - - EVENTOUT PH2 - - - - - - - EVENTOUT PH3 - - - - - - - EVENTOUT PH4 - - PSSI_D14 - - - - EVENTOUT PH5 - - DCMI_PIXCLK/ PSSI_PDCK - - - - EVENTOUT PH6 - - DCMI_D8/PSSI_D8 - - - - EVENTOUT PH7 - - DCMI_D9/PSSI_D9 - - - - EVENTOUT PH8 - - DCMI_HSYNC/ PSSI_DE - - - - EVENTOUT PH9 - - DCMI_D0/PSSI_D0 - - - - EVENTOUT PH10 - - DCMI_D1/PSSI_D1 - - - - EVENTOUT PH11 - - DCMI_D2/PSSI_D2 - - - - EVENTOUT PH12 - - DCMI_D3/PSSI_D3 - - - - EVENTOUT PH13 - FDCAN1_TX - - - - - EVENTOUT PH14 - FDCAN1_RX DCMI_D4/PSSI_D4 - - - - EVENTOUT PH15 - - DCMI_D11/ PSSI_D11 - - - - EVENTOUT DS13086 Rev 6 Port H Port Pinout, pin description and alternate functions 146/334 Table 29. Alternate function AF8 to AF15(1) (continued) STM32U585xx AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 LPUART1/ SDMMC1/ UART4/5 CAN1/TSC CRS/DCMI/ OCTOSPIM_P1/2/ OTG_FS LPGPIO1/ SDMMC2/ UCPD1/FMC COMP1/2/FMC/ SDMMC1/2 LPTIM2/4/ SAI1/2 LPTIM2/3/ TIM2/15/16/17 EVENOUT PI0 - - DCMI_D13/ PSSI_D13 - - - - EVENTOUT PI1 - - DCMI_D8/PSSI_D8 - - - - EVENTOUT PI2 - - DCMI_D9/PSSI_D9 - - - - EVENTOUT PI3 - - DCMI_D10/ PSSI_D10 - - - - EVENTOUT PI4 - - DCMI_D5/PSSI_D5 - - - - EVENTOUT PI5 - - DCMI_VSYNC/ PSSI_RDY - - - - EVENTOUT PI6 - - DCMI_D6/PSSI_D6 - - - - EVENTOUT PI7 - - DCMI_D7/PSSI_D7 - - - - EVENTOUT Port I Port 147/334 Pinout, pin description and alternate functions DS13086 Rev 6 1. For AF0 to AF7 refer to the previous table. STM32U585xx Table 29. Alternate function AF8 to AF15(1) (continued) Electrical characteristics STM32U585xx 5 Electrical characteristics 5.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 5.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes, and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3σ). 5.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean ±2σ). 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 5.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 22. 5.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 23. Figure 22. Pin loading conditions Figure 23. Pin input voltage MCU pin MCU pin C = 50 pF VIN MSv68045V1 148/334 DS13086 Rev 6 MSv68046V1 STM32U585xx 5.1.6 Electrical characteristics Power supply scheme Figure 24. STM32U585xx power supply scheme (without SMPS) VBAT Backup circuitry (LSE, RTC, TAMP backup registers, backup SRAM) 1.65 – 3.6 V VDDUSB VDDUSB 100 nF Power switch VCAP 4.7 μF VDD VCORE n x VDD LDO regulator VCORE GPIOs IN Level shifter OUT n x 100 nF + 1 x 10 μF I/O logic Level shifter VDDIO1 I/O logic Kernel logic (CPU, digital and memories) n x VSS VDDIO2 m x VDDIO2 VDDIO2 OUT m x 100 nF + 4.7 μF GPIOs IN m x VSS VDDA VDDA VREF 100 nF +1 μF 100 nF+ 1 μF VREF+ VREF- ADCs/ DACs/ OPAMPs/ COMPs/ VREFBUF VSSA MSv64358V3 Caution: If there are two VCAP pins (UFBGA169 package), each pin must be connected to a 2.2 µF (typical) capacitor (for a total around 4.4 µF). DS13086 Rev 6 149/334 299 Electrical characteristics STM32U585xx Figure 25. STM32U585xQ power supply scheme (with SMPS) Backup circuitry (LSE, RTC, TAMP, backup registers, backup SRAM) VBAT 1.65 – 3.6 V VDDUSB Power switch VDDUSB 100 nF VDD VDDSMPS 10 μF Voltage regulator VCORE SMPS VLXSMPS 2.2 μH SMPS ON 2 x VDD11 2 x 2.2 μF Kernel logic (CPU, digital and memories) VSSSMPS SMPS OFF VDD LDO n x VDD n x 100 nF + 10 μF GPIOs IN Level shifter OUT I/O logic Level shifter VDDIO1 I/O logic n x VSS VDDIO2 m x VDDIO2 VDDIO2 OUT m x100 nF + 4.7 μF GPIOs IN m x VSS VDDA VDDA VREF 100 nF + 1 μF 100 nF+ 1 μF VREF+ VREF- ADCs/ DACs/ OPAMPs/ COMPs/ VREFBUF VSSA MSv64359V3 Note: 150/334 SMPS and LDO regulators provide, in a concurrent way, the VCORE supply depending on application requirements. However, only one of them is active at the same time. When SMPS is active, it feeds the VCORE on the two VDD11 pins supplied by the filtered SMPS VLXSMPS output pin. A 2.2 µH coil and a 2.2 µF capacitor on each VDD11 pin are then required. When LDO is active, it supplies the VCORE and regulates it using the same decoupling capacitors on VDD11 pins. It is recommended to add a decoupling capacitor of 100 nF near each VDD11 pin/ball, but it is not mandatory. DS13086 Rev 6 STM32U585xx Electrical characteristics Caution: Each power supply pair (such as VDD/VSS or VDDA/VSSA) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. 5.1.7 Current consumption measurement The IDD parameters given in various tables in the next sections, represent the total MCU consumption including the current supplying VDD, VDDIO2, VDDA, VDDUSB, VBAT and VDDSMPS (if the device embeds the SMPS). Figure 26. Current consumption measurement VBAT IDD_VBAT IDD VDD VDDA VDDUSB VDDSMPS VDDIO2 MSv62920V2 5.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 30, Table 31 and Table 32 may cause permanent damage to the device. These are stress ratings only and the functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 qualification standard, extended mission profiles are available on demand. Table 30. Voltage characteristics(1)(2) Symbol Ratings Min Max VDDX - VSS External main supply voltage (including VDDSMPS, VDDA, VDDUSB, VBAT, VREF+) -0.3 4.0 I/O supply when HSLV = 0 -0.3 4.0 I/O supply when HSLV = 1 -0.3 2.75 VDDIOx(3) - VSS VIN(4) Unit V Input voltage on FT_xx pins except FT_c pins Min (min (VDD, VDDA, VDDUSB, VDDIO2) VSS - 0.3 + 4.0, 6.0)(5)(6) Input voltage on FT_t pins in VBAT mode VSS - 0.3 DS13086 Rev 6 Min (min (VBAT, VDDA, VDDUSB, VDDIO2) + 4.0, 6.0) (5)(6) 151/334 299 Electrical characteristics STM32U585xx Table 30. Voltage characteristics(1)(2) (continued) Symbol Min Max Input voltage on FT_c pins VSS - 0.3 5.5 Input voltage on any other pins VSS - 0.3 4.0 Allowed voltage difference for VREF+ > VDDA - 0.4 |∆VDDx| Variations between different VDDx power pins of the same domain - 50.0 |VSSx-VSS| Variations between all the different ground pins(7) - 50.0 VIN(4) VREF+ - VDDA Ratings Unit V mV 1. All main power (VDD, VDDSMPS, VDDA, VDDUSB, VDDIO2, VBAT) and ground (VSS, VSSA, VSSSMPS) pins must always be connected to the external power supply, in the permitted range. 2. The I/O structure options listed in this table can be a concatenation of options including the option explicitly listed. For instance TT_a refers to any TT I/O with _a option. TT_xx refers to any TT I/O and FT_xx refers to any FT I/O. 3. VDDIO1 or VDDIO2, VDDIO1 = VDD. 4. VIN maximum must always be respected. Refer to Table 31 for the maximum allowed injected current values. 5. To sustain a voltage higher than 4 V, the internal pull-up/pull-down resistors must be disabled. 6. This formula has to be applied only on the power supplies related to the I/O structure described in the pin definition table. 7. Including VREF- pin. Table 31. Current characteristics Symbol Ratings Max ∑IVDD Total current into sum of all VDD power lines (source) (1) 200 ∑IVSS Total current out of sum of all VSS ground lines (sink)(1) 200 IVDD Maximum current into each VDD power pin (source)(1) 100 (sink)(1) 100 IVSS Maximum current out of each VSS ground pin IIO Output current sunk by any I/O and control pin ∑I(PIN) IINJ(PIN)(3)(4) ∑|IINJ(PIN)| 20 Total output current sunk by sum of all I/Os and control pins(2) Total output current sourced by sum of all I/Os and control pins Injected current on FT_xx, TT_xx, RST pins Total injected current (sum of all I/Os and control Unit mA 120 (2) 120 -5/+0 pins)(5) ±25 1. All main power (VDD, VDDSMPS, VDDA, VDDUSB, VDDIO2, VBAT) and ground (VSS, VSSA, VSSSMPS) pins must always be connected to the external power supplies, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins, referring to high pin count QFP packages. 3. Positive injection (when VIN > VDDIOx) is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 4. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 30 for the minimum allowed input voltage values. 5. When several inputs are submitted to a current injection, the maximum ∑|IINJ(PIN) is the absolute sum of the negative injected currents (instantaneous values). 152/334 DS13086 Rev 6 STM32U585xx Electrical characteristics Table 32. Thermal characteristics Symbol TSTG TJ Ratings Value Storage temperature range –65 to +150 Maximum junction temperature 5.3 Operating conditions 5.3.1 General operating conditions 140 Unit °C Table 33. General operating conditions Symbol Parameter VDD Standard operating voltage Conditions Min Typ Max HSLV(1) = 0 1.71(2) - 3.6 HSLV = 1 1.71(2) - 2.7 Supply voltage for the internal SMPS VDDSMPS step-down converter VDDIO2 Supply voltage for PG[15:2] I/Os - VDD At least one I/O in PG[15:2] used, HSLV = 0 1.08 - 3.6 At least one I/O in PG[15:2] used, HSLV = 1 1.08 - 2.7 0 - 3.6 3.0 - 3.6 0 - 3.6 COMP used 1.58 - 3.6 DAC or OPAMP used 1.60 ADC used 1.62 - 3.6 VREFBUF used (normal mode) 1.8 - 3.6 0 - 3.6 1.65(3) - 3.6 PG[15:2] I/Os not used VDDUSB VDDA USB supply voltage Analog supply voltage USB used USB not used ADC, DAC, COMP, OPAMP, and VREFBUF not used VBAT Backup domain supply voltage - Unit DS13086 Rev 6 V 3.6 153/334 299 Electrical characteristics STM32U585xx Table 33. General operating conditions (continued) Symbol VIN VCORE fHCLK Parameter I/O input voltage Internal regulator ON AHB clock frequency APB1, APB2, APB3 clock (x = 1, 2, 3) frequency fPCLKx Conditions Min Typ Max All I/Os except FT_c and TT_xx pins -0.3 - Min(min(VDD, VDDA, VDDUSB, VDDIO2) +3.6, 5.5)(4)(5) Input voltage on FT_t pins in VBAT mode -0.3 - Min(min(VBAT, VDDA, VDDUSB, VDDIO2)+ 3.6, 5.5)(4)(5) FT_c I/Os -0.3 - 5.0 TT_xx I/Os -0.3 - VDDIOx + 0.3 Range 1 1.15 1.21 1.27 Range 2 1.05 1.1 1.15 Range 3 0.95 1.0 1.05 Range 4 0.81 0.9 0.99 Range 1 - - 160 Range 2 - - 110 Range 3 - - 55 Range 4 - - 25 Range 1 - - 160 Range 2 - - 110 Range 3 - - 55 Range 4 - - 25 Unit V MHz LQFP48 UFQFPN48 LQFP64 PD Power dissipation at TA = 85 °C for suffix 6(6) WLCSP90 LQFP100 UFBGA132 LQFP144 See Section 6.9: Package thermal characteristics for application appropriate thermal resistance and package. The power dissipation is then calculated according to ambient temperature (TA) and maximum junction temperature (TJ) and selected thermal resistance. UFBGA169 mW LQFP48 UFQFPN48 LQFP64 PD Power dissipation at TA = 125 °C for suffix 3(6) WLCSP90 LQFP100 UFBGA132 LQFP144 See Section 6.9: Package thermal characteristics for application appropriate thermal resistance and package. The power dissipation is then calculated according ambient temperature (TA) and maximum junction temperature (TJ) and selected thermal resistance. UFBGA169 154/334 DS13086 Rev 6 STM32U585xx Electrical characteristics Table 33. General operating conditions (continued) Symbol Parameter Conditions Typ Max Maximum power dissipation –40 85 Low-power dissipation(7) –40 105 Ambient temperature for suffix 3 Maximum power dissipation –40 125 Low-power dissipation(7) –40 130 Junction temperature range Suffix 6 version –40 105 Suffix 3 version –40 130 Ambient temperature for suffix 6 TA TJ Min Unit °C 1. HSLV means high-speed low-voltage mode (refer to the GPIO section of the product reference manual). 2. When RESET is released, the functionality is guaranteed down to VBORx min. 3. In VBAT mode, the functionality is guaranteed down to VBOR_VBAT min. 4. This formula has to be applied only on the power supplies related to the I/O structure described by the pin definition table. The maximum I/O input voltage is the smallest value between Min (VDD, VDDA, VDDUSB, VDDIO2)+3.6 V, and 5.5V. 5. For operation with voltage higher than Min (VDD, VDDA, VDDUSB, VDDIO2) +0.3 V, the internal pull-up and pull-down resistors must be disabled. 6. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Section 6.9: Package thermal characteristics). 7. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJ max (see Section 6.9: Package thermal characteristics). 5.3.2 Operating conditions at power-up/power-down The parameters given in the table below are derived from tests performed under the ambient temperature condition summarized in Table 33. Table 34. Operating conditions at power-up/power-down Symbol Parameter Conditions Min Max - 0 ∞ ULPMEN = 0 (default value) 20 ∞ Standby mode with ULPMEN = 1 250 ∞ VDD rise-time rate tVDD 5.3.3 VDD fall-time rate Unit µs/V ms/V Embedded reset and power control block characteristics The parameters given in the table below are derived from tests performed under the ambient temperature conditions summarized in Table 33. Table 35. Embedded reset and power control block characteristics(1) Symbol tRSTTEMPO(2) Parameter Conditions Reset temporization after BOR0 is detected VDD rising DS13086 Rev 6 Min Typ Max Unit - - 900 μs 155/334 299 Electrical characteristics STM32U585xx Table 35. Embedded reset and power control block characteristics(1) (continued) Symbol VBOR0 Parameter Conditions Brownout reset threshold 0 VBOR1 Brownout reset threshold 1 VBOR2 Brownout reset threshold 2 VBOR3 Brownout reset threshold 3 VBOR4 Brownout reset threshold 4 VPVD0 Programmable voltage detector threshold 0 VPVD1 PVD threshold 1 VPVD2 PVD threshold 2 VPVD3 PVD threshold 3 VPVD4 PVD threshold 4 VPVD5 PVD threshold 5 VPVD6 PVD threshold 6 Min Typ Max Rising edge 1.6 1.66 1.71 Falling edge, range 1, 2, 3 1.58 1.64 1.69 Falling edge, range 4 and low-power modes 1.58 1.64 1.69 Rising edge 1.98 2.08 2.17 Falling edge 1.9 2.00 2.1 Rising edge 2.18 2.29 2.39 Falling edge 2.08 2.18 2.25 Rising edge 2.48 2.59 2.7 Falling edge 2.39 2.5 2.61 Rising edge 2.76 2.88 3.0 Falling edge 2.67 2.79 2.9 Rising edge 2.03 2.13 2.23 Falling edge 1.93 2.03 2.12 Rising edge 2.18 2.29 2.39 Falling edge 2.08 2.18 2.28 Rising edge 2.33 2.44 2.55 Falling edge 2.23 2.34 2.44 Rising edge 2.47 2.59 2.7 Falling edge 2.39 2.50 2.61 Rising edge 2.6 2.72 2.83 Falling edge 2.5 2.62 2.73 Rising edge 2.76 2.88 3.0 Falling edge 2.66 2.78 2.9 Rising edge 2.83 2.96 3.08 Falling edge 2.76 2.88 3.0 Unit V Vhyst_BOR0 Hysteresis voltage of BOR0 - - 20 - Vhyst_BOR_PVD Hysteresis voltage of BOR (except BOR0) and PVD - - 80 - tBOR_PVD BOR/PVD sampling period ULPMEN = 1 - 30 55 ms Additional BOR0 consumption if ULPMEN = 0 versus ULPMEN = 1 Standby mode - 60 - nA BOR(3) (except BOR0) and PVD consumption from VDD(4) - - 1 1.5 µA VBAT brownout reset threshold - 1.58 - 1.65 V _sampling IDD_BOR0(2) IDD_BOR_PVD(2) VBOR_VBAT 156/334 DS13086 Rev 6 mV STM32U585xx Electrical characteristics Table 35. Embedded reset and power control block characteristics(1) (continued) Symbol Parameter tVBAT_BOR Conditions VBAT BOR sampling period in VBAT mode _sampling Min Typ Max Unit - 0.5 2.5 s Rising edge 1.61 1.68 1.75 Falling edge 1.58 1.65 1.71 Rising edge 1.77 1.86 1.95 Falling edge 1.73 1.82 1.9 MONEN = 0(5) VAVM1 VDDA voltage monitor 1 threshold VAVM2 VDDA voltage monitor 2 threshold VIO2VM VDDIO2 voltage monitor threshold - 0.96 1.01 1.05 VUVM VDDUSB voltage monitor threshold - 1.15 1.22 1.28 Vhyst_AVM Hysteresis of VDDA voltage monitor - - 40 - IDD_VM(2) Voltage monitor consumption from VDD (AVM1, AVM2, IO2VM or UVM single instance) - - 0.4 0.6 VDDA voltage monitor consumption from VDDA (resistor bridge) - IDD_AVM_A(2) V mV µA - 1.25 1.85 1. Evaluated by characterization and not tested in production, unless otherwise specified. 2. Specified by design. Not tested in production 3. BOR0 is enabled in all modes (except Shutdown), and its consumption is therefore included in the supply current characteristics tables. 4. This is also the consumption saved in Standby mode when ULPMEN = 1. 5. VBAT brownout reset monitoring is discontinuous when MONEN = 0 in PWR_BDCR1, and is continuous when MONEN = 1. 5.3.4 Embedded voltage reference The parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 33. Table 36. Embedded internal voltage reference Symbol VREFINT(1) tS_vrefint(2)(3) tstart_vrefint (3) Parameter Conditions Internal reference voltage Min Typ Max Range 1, 2, 3 1.175 1.215 1.255 Range 4 and low-power modes 1.170 1.215 1.260 4 - - Unit V ADC sampling time when reading the internal reference voltage - Start time of reference voltage buffer when the ADC is enabled - - 4 6 - - 1.5 2.1 µA µs IDD(VREFINTBUF) VREFINT buffer consumption from (3) VDD when converted by the ADC ∆VREFINT(4) Internal reference voltage spread over the temperature range VDD = 3 V - 6 11.5 mV TCoeff(4) Average temperature coefficient –40°C < TJ < +130 °C - 40 125 ppm/°C Long term stability 1000 hours, TJ = 25 °C - 400 1000 ppm ACoeff (3) DS13086 Rev 6 157/334 299 Electrical characteristics STM32U585xx Table 36. Embedded internal voltage reference (continued) Symbol VDDCoeff Parameter (4) Conditions Average voltage coefficient 3.0 V ≤ VDD ≤ 3.6 V Min Typ Max Unit - 500 2900 ppm/V VREFINT_DIV1(3) 1/4 reference voltage - 24 25 26 (3) 1/2 reference voltage - 49 50 51 VREFINT_DIV3(3) 3/4 reference voltage - 74 75 76 VREFINT_DIV2 % VREFINT 1. VREFINT does not take into account package and soldering effects. 2. The shortest sampling time for the application can be determined by multiple iterations. 3. Specified by design. Not tested in production. 4. Evaluated by characterization. Not tested in production. Figure 27. VREFINT versus temperature MSv69159V1 5.3.5 Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Section 5.1.7: Current consumption measurement. Typical and maximum current consumption The MCU is placed under the following conditions: 158/334 • All I/O pins are in analog input mode. • All peripherals are disabled except when explicitly mentioned. • The Flash memory access time is adjusted with the minimum wait-state number, depending on the fHCLK frequency (refer to the tables “Number of wait states according to CPU clock (HCLK) frequency” available in the product reference manual). • When the peripherals are enabled, fPCLK = fHCLK. DS13086 Rev 6 STM32U585xx • Electrical characteristics The voltage scaling range is adjusted to fHCLK frequency as follows: – Voltage range 1 for 110 MHz < fHCLK ≤ 160 MHz – Voltage range 2 for 55 MHz < fHCLK ≤ 110 MHz – Voltage range 3 for 25 MHz < fHCLK ≤ 55 MHz – Voltage range 4 for fHCLK ≤ 25 MHz The parameters given in the tables below are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 33. DS13086 Rev 6 159/334 299 Symbol Conditions Parameter - fHCLK = fMSI, all peripherals and AHB/APB disabled, Flash bank 2 in power down, all SRAMs enabled DS13086 Rev 6 Supply current in (Run) Run mode IDD fHCLK = PLL on HSE 16 MHz in bypass mode, all peripherals and AHB/APB disabled, Flash bank 2 in power down, all SRAMs enabled fHCLK = fHSE bypass mode, all peripherals and AHB/APB disabled, Flash bank 2 in power down, all SRAMs enabled 2. Evaluated by characterization. Not tested in production. Voltage scaling Range 4 Range 1 Range 2 Range 3 fHCLK 25°C 55°C 85°C 105°C 125°C 30°C (MHz) Unit 55°C 85°C 105°C 125°C 24 1.75 2.10 3.10 4.65 7.70 2.60 3.40 6.40 12.00 21.00 16 1.30 1.65 2.65 4.20 7.25 2.10 2.90 5.90 11.00 20.00 12 1.05 1.40 2.40 3.95 7.00 1.80 2.70 5.60 11.00 20.00 4 0.49 0.82 1.85 3.40 6.40 1.20 2.00 5.00 9.80 19.00 2 0.37 0.70 1.70 3.25 6.30 1.10 1.90 4.90 9.60 19.00 1 0.30 0.63 1.65 3.20 6.20 0.94 1.80 4.80 9.60 19.00 0.4 0.26 0.59 1.60 3.15 6.15 0.89 1.80 4.80 9.50 19.00 0.1 0.24 0.57 1.55 3.15 6.15 0.87 1.80 4.70 9.50 19.00 160 13.50 14.50 16.00 18.50 23.50 17.00 19.00 26.00 37.00 57.00 140 12.00 12.50 14.50 17.00 21.50 15.00 17.00 24.00 35.00 55.00 120 10.50 11.00 13.00 15.50 20.00 14.00 15.00 23.00 33.00 53.00 110 8.80 9.35 10.50 1300 72 6.00 6.50 10.00 10.00 14.00 7.80 9.30 15.00 23.00 38.00 64 5.40 5.95 9.50 9.50 13.50 7.10 8.70 14.00 22.00 38.00 55 4.25 4.65 5.90 7.75 11.50 5.60 6.70 11.00 17.00 29.00 32 2.70 3.10 4.30 6.10 9.60 3.80 5.00 8.80 mA 16.50 11.00 13.00 18.00 26.00 41.00 15.00 27.00 STM32U585xx 1. The current consumption from SRAM is similar. Max(2) Typ Electrical characteristics 160/334 Table 37. Current consumption in Run mode on LDO, code with data processing running from Flash memory, ICACHE ON (1-way), prefetch ON(1) Symbol Parameter - fHCLK = fMSI, all peripherals and AHB/APB disabled, Flash bank 2 in power down, all SRAMs enabled DS13086 Rev 6 Supply current in (Run) Run mode IDD fHCLK = PLL on HSE 16 MHz in bypass mode, all peripherals and AHB/APB disabled, Flash bank 2 in power down, all SRAMs enabled Voltage scaling Range 4 Range 1 Range 2 Range 3 1. The current consumption from SRAM is similar. 2. Evaluated by characterization. Not tested in production. 3. The maximum value is at VDD = 1.71 V in Run mode on SMPS. Unit fHCLK (MHz) 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 24 1.15 1.35 2.05 3.10 5.20 2.30 2.40 4.50 7.80 15.00 16 0.88 1.10 1.75 2.80 4.90 1.60 2.00 4.20 7.50 15.00 12 0.62 0.97 1.60 2.65 4.70 1.30 1.80 4.00 7.30 14.00 4 0.34 0.56 1.20 2.20 4.40 0.77 1.40 3.50 6.80 14.00 2 0.22 0.46 1.15 2.20 4.25 0.64 1.30 3.50 6.80 14.00 1 0.18 0.40 1.10 2.15 4.20 0.60 1.20 3.40 6.70 14.00 0.4 0.16 0.36 1.05 2.10 4.20 0.57 1.10 3.40 6.70 14.00 0.1 0.15 0.34 1.05 2.10 4.20 0.55 1.10 3.40 6.70 14.00 160 10.50 11.00 12.50 14.50 18.00 14.00 15.00 21.00 28.00 44.00 140 9.30 9.85 11.00 13.00 16.50 13.00 14.00 19.00 27.00 42.00 120 8.50 9.05 10.50 12.50 16.50 11.00 13.00 18.00 26.00 42.00 110 6.95 7.40 8.55 10.00 13.00 8.90 9.90 14.00 20.00 32.00 72 4.35 4.70 5.65 7.10 9.80 6.00 6.80 11.00 17.00 28.00 64 3.95 4.30 5.25 6.65 9.40 5.40 6.30 11.00 16.00 27.00 55 3.05 3.40 4.25 5.60 7.95 4.10 4.90 7.90 13.00 21.00 32 1.85 2.10 2.85 3.95 6.15 2.70 3.40 6.20 11.00 19.00 mA 161/334 Electrical characteristics fHCLK = fHSE bypass mode, all peripherals and AHB/APB disabled, Flash bank 2 in power down, all SRAMs enabled Max at 1.71 V ≤ VDD ≤ 3.6 V(2)(3) Typ at VDD = 1.8 V Conditions STM32U585xx Table 38. Current consumption in Run mode on SMPS, code with data processing running from Flash memory, ICACHE ON (1-way), prefetch ON(1) Symbol Parameter - fHCLK = fMSI, all peripherals and AHB/APB disabled, Flash bank 2 in power down, all SRAMs enabled DS13086 Rev 6 Supply current in (Run) Run mode IDD fHCLK = PLL on HSE 16 MHz in bypass mode, all peripherals and AHB/APB disabled, Flash bank 2 in power down, all SRAMs enabled fHCLK = fHSE bypass mode, all peripherals and AHB/APB disabled, Flash bank 2 in power down, all SRAMs enabled Max at VDD = 3.0 V(2) Typ at VDD = 3.0 V Conditions Voltage scaling Range 4 Range 1 Range 2 Range 3 Unit fHCLK (MHz) 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 24 0.73 0.91 1.30 2.00 3.45 2.30 2.40 3.10 4.80 9.10 16 0.60 0.71 1.15 1.80 3.25 1.60 1.90 2.70 4.60 8.80 12 0.45 0.65 1.05 1.70 3.15 1.30 1.60 2.60 4.50 8.70 4 0.23 0.38 0.82 1.50 2.80 0.60 0.97 2.30 4.30 8.40 2 0.17 0.31 0.74 1.40 2.85 0.49 0.84 2.20 4.20 8.40 1 0.15 0.29 0.73 1.40 2.80 0.46 0.81 2.20 4.20 8.40 0.4 0.13 0.27 0.72 1.40 2.75 0.44 0.79 2.20 4.20 8.30 0.1 0.12 0.26 0.72 1.35 2.75 0.44 0.78 2.20 4.10 8.30 160 7.15 7.55 8.55 9.90 12.50 14.00 15.00 16.00 19.00 28.00 140 6.35 6.75 7.70 9.05 11.50 13.00 13.00 15.00 17.00 27.00 120 5.80 6.20 7.20 8.60 11.00 11.00 12.00 13.00 17.00 26.00 110 4.40 4.70 5.40 6.35 8.20 8.90 9.20 11.00 13.00 19.00 72 3.05 3.35 4.05 5.10 7.00 6.00 6.20 7.40 11.00 18.00 64 2.80 3.10 3.80 4.80 6.70 5.40 5.70 6.90 11.00 18.00 55 2.20 2.45 3.05 3.95 5.55 4.00 4.40 5.40 7.90 14.00 32 1.40 1.60 2.15 2.95 4.50 2.60 3.00 4.30 6.80 13.00 Electrical characteristics 162/334 Table 39. Current consumption in Run mode on SMPS, code with data processing running from Flash memory, ICACHE ON (1-way), prefetch ON, VDD = 3.0 V(1) mA 1. The current consumption from SRAM is similar. STM32U585xx 2. Evaluated by characterization. Not tested in production. Symbol Conditions Parameter Voltage scaling - Supply current in (Run) Run mode IDD fHCLK = fMSI = 24 MHz, all peripherals disabled, Flash bank 2 in power down, SRAM2 enabled, SRAM1, SRAM3, SRAM4 in power down Range 4 Typ Typ Unit Unit Code 1.8 V 3V 3.3 V 1.8 V 3V 3.3 V Reduced Code 1.65 1.65 1.65 68.8 68.8 68.8 CoreMark 1.55 1.60 1.60 64.6 66.7 66.7 SecureMark 1.80 1.80 1.80 75.0 75.0 75.0 Dhrystone 2.1 1.65 1.65 1.65 68.8 68.8 68.8 Fibonacci 1.30 1.30 1.30 54.2 54.2 54.2 while(1) 1.20 1.20 1.20 50.0 50.0 50.0 mA STM32U585xx Table 40. Typical current consumption in Run mode on LDO, with different codes running from Flash memory in low-power mode, ICACHE ON (1-way), prefetch ON µA/ MHz Symbol DS13086 Rev 6 Table 41. Typical current consumption in Run mode on LDO, with different codes running from Flash memory, ICACHE ON (1-way), prefetch ON(1) Conditions Parameter Supply current in (Run) Run mode IDD - Range 4 Typ Unit Unit Code 1.8 V 3V 3.3 V 1.8 V 3V 3.3 V Reduced Code 1.75 1.75 1.75 72.9 72.9 72.9 CoreMark 1.65 1.65 1.65 68.8 68.8 68.8 SecureMark 1.85 1.85 1.90 77.1 77.1 79.2 Dhrystone 2.1 1.75 1.75 1.75 72.9 72.9 72.9 Fibonacci 1.40 1.40 1.40 58.3 58.3 58.3 While(1) 1.30 1.30 1.30 54.2 54.2 54.2 mA µA/ MHz 163/334 Electrical characteristics fHCLK = fMSI = 24 MHz, all peripherals disabled, Flash bank 2 in power down, all SRAMs enabled Voltage scaling Typ Symbol Conditions Parameter - fHCLK = fPLL = 160 MHz, PLL on HSE 16 MHz in bypass mode, all peripherals disabled, Flash bank 2 in power down, all SRAMs enabled DS13086 Rev 6 Supply current in (Run) Run mode IDD fHCLK = fPLL = 110 MHz, PLL on HSE 16 MHz in bypass mode, all peripherals disabled, Flash bank 2 in power down, all SRAMs enabled fHCLK = fHSE = 55 MHz, all peripherals disable, Flash bank 2 in power down, all SRAMs enabled Voltage scaling Range 1 Range 2 Range 3 Typ Typ Unit Unit Code 1.8 V 3V 3.3 V 1.8 V 3V 3.3 V Reduced Code 13.50 13.50 13.50 84.4 84.4 84.4 CoreMark 13.50 13.50 13.50 84.4 84.4 84.4 SecureMark 15.00 15.00 15.00 93.8 93.8 93.8 Dhrystone 2.1 14.00 14.00 14.00 87.5 87.5 87.5 Fibonacci 10.50 10.50 10.50 65.6 65.6 65.6 While(1) 10.00 10.00 10.00 62.5 62.5 62.5 Reduced Code 8.80 8.80 8.85 80.0 80.0 80.5 CoreMark 8.60 8.65 8.65 78.2 78.6 78.6 SecureMark 9.65 9.70 9.70 87.7 88.2 88.2 Dhrystone 2.1 9.05 9.05 9.10 82.3 82.3 82.7 Fibonacci 6.80 6.80 6.80 61.8 61.8 61.8 While(1) 6.55 6.55 6.60 59.5 59.5 60.0 Reduced Code 4.15 4.25 4.25 75.5 77.3 77.3 CoreMark 4.15 4.20 4.25 75.5 76.4 77.3 SecureMark 4.65 4.70 4.75 84.5 85.5 86.4 Dhrystone 2.1 4.35 4.40 4.40 79.1 80.0 80.0 Fibonacci 3.25 3.30 3.35 59.1 60.0 60.9 While(1) 3.05 3.10 3.15 55.5 56.4 57.3 mA Electrical characteristics 164/334 Table 41. Typical current consumption in Run mode on LDO, with different codes running from Flash memory, ICACHE ON (1-way), prefetch ON(1) (continued) µA/ MHz 1. The current consumption from SRAM is similar. STM32U585xx Symbol IDD (Run) Conditions Parameter Voltage scaling - Supply current in Run mode fHCLK = fMSI = 24 MHz, all peripherals disabled, Flash bank 2 in power down, SRAM2 enabled, SRAM1, SRAM3, SRAM4 in power down Range 4 Typ Typ Unit Unit Code 1.8 V 3V 3.3 V 1.8 V 3V 3.3 V Reduced Code 1.10 0.69 0.64 45.8 28.5 26.5 CoreMark 1.05 0.68 0.61 43.8 28.3 25.4 SecureMark 1.20 0.79 0.72 50.0 32.9 30.0 Dhrystone 2.1 1.10 0.69 0.64 45.8 28.5 26.7 Fibonacci 0.89 0.59 0.51 37.1 24.4 21.3 while(1) 0.77 0.54 0.47 32.1 22.3 19.5 mA STM32U585xx Table 42. Typical current consumption in Run mode on SMPS, with different codes running from Flash memory in low-power mode, ICACHE ON (1-way), prefetch ON µA/ MHz Symbol DS13086 Rev 6 Table 43. Typical current consumption in Run mode on SMPS, with different codes running from Flash memory, ICACHE ON (1-way), prefetch ON(1) IDD (Run) Conditions Parameter - Supply current in Run mode Range 4 Typ Unit Unit Code 1.8 V 3V 3.3 V 1.8 V 3V 3.3 V Reduced Code 1.15 0.73 0.68 47.9 30.2 28.3 CoreMark 1.10 0.72 0.66 45.8 30.0 27.5 SecureMark 1.25 0.85 0.77 52.1 35.2 32.1 Dhrystone 2.1 1.15 0.75 0.69 47.9 31.0 28.8 Fibonacci 0.97 0.65 0.58 40.4 26.9 24.2 while(1) 0.89 0.61 0.55 36.9 25.2 22.7 mA µA/ MHz 165/334 Electrical characteristics fHCLK = fMSI = 24 MHz, all peripherals disabled, Flash bank 2 in power down, all SRAMs enabled Voltage scaling Typ Symbol Conditions Parameter - fHCLK = fPLL = 160 MHz, PLL on HSE 16 MHz in bypass mode, all peripherals disabled, Flash bank 2 in power down, all SRAMs enabled DS13086 Rev 6 IDD (Run) Supply current in Run mode fHCLK = fPLL = 110 MHz, PLL on HSE 16 MHz in bypass mode, all peripherals disabled, Flash bank 2 in power down, all SRAMs enabled fHCLK = fHSE = 55 MHz, all peripherals disabled, Flash bank 2 in power down, all SRAMs enabled Voltage scaling Range 1 Range 2 Range 3 Typ Typ Unit Unit Code 1.8 V 3V 3.3 V 1.8 V 3V 3.3 V Reduced Code 10.50 7.15 6.70 65.6 44.7 41.9 CoreMark 10.50 7.05 6.55 65.6 44.1 40.9 SecureMark 11.50 7.85 7.35 71.9 49.1 45.9 Dhrystone 2.1 11.00 7.40 6.90 68.8 46.3 43.1 Fibonacci 8.25 5.65 5.30 51.6 35.3 33.1 while(1) 7.90 5.45 5.10 49.4 34.1 31.9 Reduced Code 6.40 4.40 4.15 58.2 40.0 37.7 CoreMark 6.25 4.30 4.05 56.8 39.1 36.8 SecureMark 7.00 4.80 4.50 63.6 43.6 40.9 Dhrystone 2.1 6.55 4.50 4.25 59.5 40.9 38.6 Fibonacci 5.00 3.50 3.30 45.5 31.8 30.0 while(1) 4.80 3.35 3.20 43.6 30.5 29.1 Reduced Code 3.05 2.20 2.15 55.5 40.0 39.1 CoreMark 3.05 2.20 2.10 55.5 40.0 38.2 SecureMark 3.40 2.45 2.30 61.8 44.5 41.8 Dhrystone 2.1 3.20 2.30 2.20 58.2 41.8 40.0 Fibonacci 2.40 1.80 1.75 43.6 32.7 31.8 while(1) 2.30 1.70 1.65 41.8 30.9 30.0 mA Electrical characteristics 166/334 Table 43. Typical current consumption in Run mode on SMPS, with different codes running from Flash memory, ICACHE ON (1-way), prefetch ON(1) (continued) µA/ MHz 1. The current consumption from SRAM is similar. STM32U585xx Symbol Conditions Parameter Voltage scaling - fHCLK = fMSI, all peripherals disabled DS13086 Rev 6 Supply IDD current in (Sleep) Sleep mode Range 4 Range 1 fHCLK = PLL on HSE 16 MHz in bypass mode, all peripherals disabled Range 2 fHCLK = fHSE bypass mode, all peripherals disabled Max(1) Typ Range 3 25°C 55°C 85°C 24 0.61 0.94 1.95 3.50 16 0.49 0.81 1.80 12 0.43 0.75 4 0.25 2 105°C 125°C 30°C 55°C 85°C 105°C 125°C 6.50 1.20 2.10 5.00 9.70 19.00 3.35 6.40 1.10 1.90 4.90 9.50 19.00 1.75 3.30 6.30 0.95 1.90 4.80 9.50 19.00 0.58 1.55 3.10 6.15 0.76 1.70 4.60 9.30 19.00 0.22 0.55 1.55 3.10 6.10 0.72 1.60 4.60 9.30 19.00 1 0.21 0.53 1.55 3.05 6.10 0.71 1.60 4.60 9.20 19.00 0.4 0.19 0.52 1.50 3.05 6.05 0.69 1.60 4.50 9.20 19.00 0.1 0.19 0.52 1.50 3.05 6.10 0.69 1.60 4.50 9.20 19.00 160 4.35 4.95 6.65 9.10 13.50 6.10 8.10 15.00 26.00 46.00 140 3.90 4.50 6.15 8.65 13.50 5.60 7.60 15.00 25.00 46.00 120 3.45 4.05 5.75 8.20 13.00 5.10 7.10 14.00 25.00 46.00 110 3.25 3.75 5.20 7.35 11.50 4.50 6.00 12.00 20.00 35.00 72 2.15 2.65 4.05 6.15 10.00 3.30 4.80 9.90 18.00 34.00 64 2.00 2.50 3.90 6.00 9.95 3.20 4.70 9.80 18.00 33.00 55 1.45 1.85 3.05 4.85 8.40 2.30 3.40 7.30 14.00 26.00 32 1.00 1.40 2.60 4.40 7.85 1.80 2.90 6.80 13.00 25.00 mA 167/334 Electrical characteristics 1. Evaluated by characterization. Not tested in production. Unit fHCLK (MHz) STM32U585xx Table 44. Current consumption in Sleep mode on LDO, Flash memory in power down Symbol Parameter - fHCLK = fMSI, all peripherals disabled DS13086 Rev 6 IDD (Sleep) Voltage scaling Range 4 Supply current in Sleep mode Range 1 fHCLK = PLL on HSE 16 MHz in bypass mode, all peripherals disabled Range 2 fHCLK = fHSE bypass mode, all peripherals disabled Max at 1.71 V ≤ VDD ≤ 3.6 V(1) (2) Typ at VDD = 1.8 V Conditions Range 3 fHCLK (MHz) Unit 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 24 0.41 0.63 1.25 2.25 4.40 0.73 1.40 3.60 6.80 14.00 16 0.27 0.53 1.20 2.20 4.30 0.57 1.30 3.50 6.70 14.00 12 0.24 0.48 1.15 2.20 4.25 0.53 1.20 3.50 6.70 14.00 4 0.14 0.34 1.05 2.05 4.10 0.42 1.10 3.40 6.50 13.00 2 0.12 0.34 1.05 2.05 4.10 0.39 1.00 3.40 6.50 13.00 1 0.11 0.33 1.05 2.05 4.10 0.38 0.99 3.40 6.50 13.00 0.4 0.10 0.31 1.05 2.05 4.10 0.38 0.97 3.40 6.50 13.00 0.1 0.10 0.31 1.05 2.05 4.10 0.37 0.97 3.40 6.50 13.00 160 3.50 3.95 5.20 7.00 10.50 4.80 6.20 12.00 19.00 34.00 140 3.10 3.60 4.80 6.60 10.00 4.30 5.80 12.00 19.00 34.00 120 2.80 3.25 4.50 6.30 9.70 4.00 5.40 11.00 19.00 33.00 110 2.60 3.00 4.10 5.75 8.65 3.50 4.70 8.80 15.00 26.00 72 1.65 2.00 2.90 4.30 7.00 2.40 3.50 7.40 13.00 24.00 64 1.55 1.90 2.80 4.20 6.90 2.30 3.40 7.30 13.00 24.00 55 1.10 1.40 2.25 3.55 5.90 1.70 2.50 5.60 9.80 19.00 32 0.85 1.10 1.90 3.15 5.60 1.40 2.20 5.10 9.40 18.00 Electrical characteristics 168/334 Table 45. Current consumption in Sleep mode on SMPS, Flash memory in power down mA 1. Evaluated by characterization. Not tested in production. 2. The maximum value is at VDD = 1.71 V in Sleep mode on SMPS. STM32U585xx Symbol Parameter - fHCLK = fMSI, all peripherals disabled DS13086 Rev 6 IDD (Sleep) Voltage scaling Range 4 Supply current in Sleep mode Range 1 fHCLK = PLL on HSE 16 MHz in bypass mode, all peripherals disabled Range 2 fHCLK = fHSE bypass mode, all peripherals disabled Range 3 fHCLK (MHz) Unit 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 24 0.26 0.40 0.83 1.50 2.80 0.66 1.20 2.20 4.20 8.20 16 0.20 0.33 0.77 1.40 2.80 0.54 0.99 2.10 4.10 8.20 12 0.17 0.31 0.75 1.40 2.75 0.49 0.92 2.10 4.10 8.10 4 0.10 0.24 0.66 1.30 2.70 0.30 0.71 2.00 3.90 8.10 2 0.08 0.22 0.66 1.30 2.65 0.27 0.68 2.00 3.90 8.00 1 0.08 0.22 0.66 1.30 2.65 0.26 0.67 2.00 3.90 8.00 0.4 0.07 0.21 0.65 1.30 2.65 0.26 0.64 2.00 3.90 8.00 0.1 0.07 0.21 0.65 1.30 2.65 0.26 0.65 2.00 3.90 8.00 160 2.50 2.85 3.75 5.05 7.40 4.50 5.00 7.40 13.00 22.00 140 2.25 2.60 3.50 4.75 7.15 4.00 4.60 7.20 12.00 22.00 120 2.05 2.40 3.25 4.55 6.90 3.60 4.20 6.90 12.00 21.00 110 1.95 2.25 3.00 4.10 6.05 3.20 3.60 5.70 9.30 17.00 72 1.30 1.55 2.20 3.20 5.10 2.20 2.60 4.80 8.30 16.00 64 1.20 1.45 2.15 3.15 5.00 2.00 2.50 4.70 8.20 16.00 55 0.92 1.10 1.70 2.55 4.15 1.40 1.90 3.60 6.30 12.00 32 0.70 0.89 1.45 2.30 3.95 1.10 1.60 3.30 6.00 12.00 mA 169/334 Electrical characteristics 1. Evaluated by characterization. Not tested in production. Max at VDD = 3.0 V(1) Typ at VDD = 3.0 V Conditions STM32U585xx Table 46. Current consumption in Sleep mode on SMPS, Flash memory in power down, VDD = 3.0 V Conditions Symbol Parameter - IDD (SRAM1) LDO IDD (SRAM3) DS13086 Rev 6 IDD (SRAM1) SMPS, VDD = 3.0 V IDD (SRAM3) Typ Voltage scaling fHCLK (MHz) Max Unit 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C Range 4 24 0.02 0.05 0.16 0.33 0.68 0.06 0.15 0.48 1.00 2.05 SRAM1 supply current in Range 1 Run/Sleep mode (SRAM1PD = 1 Range 2 versus SRAM1PD = 0) 160 0.04 0.10 0.28 0.55 1.07 0.15 0.30 0.83 1.65 3.20 110 0.03 0.08 0.23 0.47 0.94 0.11 0.24 0.70 1.41 2.82 Range 3 55 0.02 0.06 0.19 0.40 0.81 0.08 0.19 0.58 1.20 2.43 Range 4 24 0.04 0.13 0.41 0.87 1.78 0.15 0.39 1.24 2.62 5.34 SRAM3 supply current in Range 1 Run/Sleep mode (SRAM3PD = 1 Range 2 versus SRAM3PD = 0) 160 0.11 0.26 0.73 1.44 2.80 0.39 0.79 2.18 4.31 8.40 110 0.08 0.21 0.60 1.22 2.44 0.28 0.62 1.81 3.67 7.32 Range 3 55 0.06 0.16 0.50 1.04 2.09 0.20 0.49 1.50 3.11 6.28 Range 4 24 0.01 0.02 0.06 0.10 0.26 0.02 0.06 0.19 0.31 0.78 SRAM1 supply current in Range 1 Run/Sleep mode (SRAM1PD = 1 Range 2 versus SRAM1PD = 0) 160 0.02 0.05 0.14 0.28 0.55 0.07 0.15 0.43 0.84 1.64 110 0.01 0.04 0.12 0.23 0.46 0.05 0.12 0.36 0.70 1.37 Range 3 55 0.01 0.03 0.09 0.18 0.36 0.04 0.09 0.27 0.55 1.09 Range 4 24 0.02 0.05 0.17 0.32 0.69 0.06 0.16 0.51 0.95 2.07 SRAM3 supply current in Range 1 Run/Sleep mode (SRAM3PD = 1 Range 2 versus SRAM3PD = 0) 160 0.06 0.13 0.37 0.73 1.43 0.20 0.40 1.12 2.20 4.28 100 0.04 0.10 0.30 0.61 1.19 0.14 0.31 0.91 1.84 3.57 Range 3 55 0.03 0.08 0.23 0.48 0.95 0.09 0.23 0.70 1.45 2.86 Electrical characteristics 170/334 Table 47. SRAM1/SRAM3 current consumption in Run/Sleep mode with LDO and SMPS mA STM32U585xx Conditions Symbol Parameter (SRAM1) (SRAM3) Unit fHCLK (MHz) Range 4 24 0.01 0.03 0.11 0.17 0.43 0.04 0.11 0.34 0.55 1.37 SRAM1 supply current in Range 1 Run/Sleep mode (SRAM1PD = 1 Range 2 versus SRAM1PD = 0) 160 0.03 0.09 0.24 0.47 0.91 0.13 0.27 0.75 1.47 2.88 110 0.02 0.07 0.20 0.39 0.76 0.09 0.21 0.63 1.23 2.41 Range 3 55 0.02 0.05 0.15 0.31 0.60 0.06 0.16 0.48 0.97 1.91 Range 4 24 0.03 0.09 0.28 0.53 1.15 0.11 0.28 0.89 1.66 3.62 SRAM3 supply current in Range 1 Run/Sleep mode (SRAM3PD = 1 Range 2 versus SRAM3PD = 0) 160 0.09 0.22 0.62 1.22 2.38 0.35 0.71 1.96 3.87 7.52 100 0.06 0.17 0.51 1.02 1.98 0.24 0.54 1.60 3.22 6.26 Range 3 55 0.04 0.13 0.39 0.80 1.59 0.16 0.40 1.24 2.54 5.01 SMPS(1) IDD Max Voltage scaling - IDD Typ 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C STM32U585xx Table 47. SRAM1/SRAM3 current consumption in Run/Sleep mode with LDO and SMPS (continued) mA DS13086 Rev 6 1. The typical value is measured at VDD = 1.8 V. The maximum value is for 1.71 V ≤ VDD ≤ 3.6 V and is at VDD = 1.71 V in Run/Sleep mode on SMPS. Table 48. Static power consumption of Flash banks, when supplied by LDO/SMPS Typ Symbol Max Parameter Unit 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C (1) (Flash_Bank1) Flash bank 1 static consumption in normal mode (PD1 = 1 versus PD1 = 0) 45.0 50.0 50.0 50.0 100.0 100.0 100.0 100.0 100.0 150.0 IDD (1) (Flash_Bank2) Flash bank 2 static consumption in normal mode (PD2 = 1 versus PD2 = 0) 45.0 50.0 50.0 50.0 100.0 100.0 100.0 100.0 100.0 150.0 One Flash bank additional static consumption in (2) normal mode versus low-power mode (Flash_Bank_LPM) (LPM = 0 versus LPM = 1) 25.0 25.0 25.0 25.0 50.0 40.0 40.0 70.0 IDD 40.0 40.0 1. When one bank is in power down, this consumption is saved. When Flash memory is in power down in Sleep mode (SLEEP_PD =1 ), Bank 1 and Bank 2 are in power down. 2. If no bank is in power-down, the Flash memory additional static consumption in normal mode versus low-power mode is 2 x IDD(Flash_Bank_LPM). µA 171/334 Electrical characteristics IDD Conditions Symbol Max(1) Typ Parameter Unit VDD (V) 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 1.8 110 280 770 1500 3000 400 840 2400 4500 9000 2.4 115 290 805 1600 3050 420 870 2500 4800 9200 3.0 115 295 820 1600 3150 420 890 2500 4800 9500 3.3 115 295 820 1600 3150 420 890 2500 4800 9500 3.6 115 295 825 1600 3150 420 890 2500 4800 9500 1.8 125 305 840 1650 3300 460 920 2600 5000 9900 2.4 125 315 875 1750 3400 460 950 2700 5300 11000 3.0 125 320 895 1800 3500 460 960 2700 5400 11000 3.3 130 320 890 1750 3500 470 960 2700 5300 11000 3.6 130 320 895 1800 3500 470 960 2700 5400 11000 Supply current in Stop 0 mode, regulator in Range 4, RTC disabled, 8-Kbyte SRAM2 + ICACHE retained IDD(Stop 0) DS13086 Rev 6 Supply current in Stop 0 mode, regulator in Range 4, RTC disabled, All SRAMs retained Electrical characteristics 172/334 Table 49. Current consumption in Stop 0 mode on LDO µA 1. Evaluated by characterization. Not tested in production. STM32U585xx Conditions Symbol Max(1) Typ Parameter Supply current in Stop 0 mode, regulator in Range 4, RTC disabled, 8-Kbyte SRAM2 + ICACHE retained IDD(Stop 0) DS13086 Rev 6 Supply current in Stop 0 mode, regulator in Range 4, RTC disabled, All SRAM retained Unit VDD (V) 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 1.8 54.5 160 535 1050 2100 200 480 1700 3200 6300 2.4 38.5 115 360 890 1650 140 350 1100 2700 5000 3.0 39.5 115 340 685 1400 150 350 1100 2100 4200 3.3 37.0 105 315 640 1300 140 320 950 2000 3900 3.6 35.5 100 295 605 1200 130 300 890 1900 3600 1.8 61.5 175 515 1200 2350 230 530 1600 3600 7100 2.4 43.5 125 400 930 1850 160 380 1200 2800 5600 3.0 44.5 125 370 770 1550 170 380 1200 2400 4700 3.3 41.5 115 345 705 1400 150 350 1100 2200 4200 3.6 40.0 110 325 665 1350 150 330 980 2000 4100 STM32U585xx Table 50. Current consumption in Stop 0 mode on SMPS µA 1. Evaluated by characterization. Not tested in production. Table 51. Current consumption in Stop 1 mode on LDO Conditions Symbol Max(1) Typ Parameter 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 1.8 82.0 250 755 1500 3000 300 750 2300 4500 9000 2.4 83.5 250 750 1500 3050 310 750 2300 4500 9200 770 2300 4700 9200 320 (2) 3.0 87.5 255 755 1550 3050 3.3 84.0 250 755 1550 3050 310 750 2300 4700 9200 3.6 95.5 255 760 1550 3050 350 770 2300 4700 9200 µA 173/334 Electrical characteristics Supply current in Stop 1 mode, RTC disabled, IDD (Stop 1) 8-Kbyte SRAM2 + ICACHE retained Unit VDD (V) Conditions Symbol Max(1) Typ Parameter Supply current in Stop 1 mode, IDD (Stop 1) RTC disabled, All SRAMs retained DS13086 Rev 6 Supply current in Stop 1 mode, RTC(3) clocked by LSI 32 kHz, 8-Kbyte SRAM2 + ICACHE retained Supply current in Stop 1 mode, RTC(3) clocked by LSE IDD(Stop 1 bypassed at 32768 Hz, with RTC) 8-Kbyte SRAM2 + ICACHE retained Supply current in Stop 1 mode, RTC(3) clocked by LSE quartz in medium low-drive mode, LSESYSEN = 0 in RCC_BDCR, 8-Kbyte SRAM2 + ICACHE retained Unit VDD (V) 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 1.8 89.0 255 760 1550 3100 330 770 2300 4700 9300 2.4 94.0 265 795 1600 3200 340 800 2400 4800 9600 3.0 100.0 270 815 1650 3300 370 810 2500 5000 9900 3.3 100.0 275 815 1650 3300 370 830 2500 5000 9900 3.6 110.0 275 825 1650 3300 400 830 2500 5000 9900 1.8 81.5 240 695 1400 2800 - - - - - 2.4 88.5 245 730 1450 2900 - - - - - 3.0 93.0 245 745 1500 2950 - - - - - 3.3 89.0 250 745 1500 2950 - - - - - 3.6 87.5 250 755 1500 2950 - - - - - 1.8 81.0 240 715 1450 2800 - - - - - 2.4 81.5 245 720 1450 2800 - - - - - 3.0 90.5 245 720 1450 2800 - - - - - 3.3 83.5 245 725 1450 2800 - - - - - 3.6 94.0 255 730 1450 2850 - - - - - 1.8 83.5 245 730 1500 2950 - - - - - 2.4 84.0 240 730 1500 2950 - - - - - 3.0 88.0 245 735 1500 2950 - - - - - 3.3 84.5 245 735 1500 2950 - - - - - 3.6 84.5 250 740 1500 2950 - - - - - 2. Tested in production. 3. RTC with default configuration but LPCAL = 1 in RTC_CALR. µA STM32U585xx 1. Evaluated by characterization and not tested in production, unless otherwise specified. Electrical characteristics 174/334 Table 51. Current consumption in Stop 1 mode on LDO (continued) Conditions Symbol Typ Parameter Unit VDD (V) Wakeup clock is MSI 24 MHz QDD(wakeup from Stop 1) Electrical charge consumed during wakeup from Stop 1 mode 25°C 2.08 Wakeup clock is HSI 16 MHz 3.0 2.03 Wakeup clock is MSI 1 MHz STM32U585xx Table 52. Current consumption during wakeup from Stop 1 mode on LDO nAs 4.80 Table 53. Current consumption in Stop 1 mode on SMPS Conditions Symbol Max(1) Typ Parameter DS13086 Rev 6 Supply current in Stop 1 mode, RTC disabled, 8-Kbyte SRAM2 + ICACHE retained IDD(Stop 1) Supply current in Stop 1 mode, RTC disabled, All SRAMs retained Unit VDD (V) 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 1.8 54.5 160 535 1050 2100 200 480 1700 3200 6300 2.4 38.5 115 350 890 1650 140 350 1100 2700 5000 350 1100 2100 4200 150 (2) 39.5 115 340 685 1400 3.3 37.0 105 315 640 1300 140 320 950 2000 3900 3.6 35.5 100 295 600 1200 130 300 890 1800 3600 1.8 61.5 175 515 1200 2350 230 530 1600 3600 7100 2.4 43.5 125 390 930 1850 160 380 1200 2800 5600 3.0 44.0 125 370 770 1550 160 380 1200 2400 4700 3.3 41.5 115 345 705 1400 150 350 1100 2200 4200 3.6 39.5 110 325 665 1350 150 330 980 2000 4100 µA 175/334 Electrical characteristics 3.0 Conditions Symbol Max(1) Typ Parameter Supply current in Stop 1 mode, RTC(3) clocked by LSI 32 kHz, 8-Kbyte SRAM2 + ICACHE retained DS13086 Rev 6 Supply current in Stop 1 mode, RTC(3) clocked by LSE IDD(Stop 1 bypassed at 32768 Hz, with RTC) 8-Kbyte SRAM2 + ICACHE retained Supply current in Stop 1 mode, RTC(3) clocked by LSE quartz in medium low-drive mode, LSESYSEN = 0 in RCC_BDCR, 8-Kbyte SRAM2 + ICACHE retained Unit VDD (V) 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 1.8 54.5 160 535 1050 2100 - - - - - 2.4 39.0 115 350 890 1650 - - - - - 3.0 40.0 115 340 685 1400 - - - - - 3.3 37.5 110 315 640 1300 - - - - - 3.6 36.0 100 295 600 1200 - - - - - 1.8 65.0 180 535 1050 2100 - - - - - 2.4 50.0 140 415 850 1700 - - - - - 3.0 42.0 120 345 705 1400 - - - - - 3.3 39.0 110 320 655 1250 - - - - - 3.6 38.0 105 300 620 1200 - - - - - 1.8 54.0 155 610 1050 2100 - - - - - 2.4 39.5 150 490 875 1600 - - - - - 3.0 39.5 115 335 680 1350 - - - - - 3.3 37.0 105 310 630 1250 - - - - - 3.6 35.5 100 295 590 1150 - - - - - Electrical characteristics 176/334 Table 53. Current consumption in Stop 1 mode on SMPS (continued) µA 1. Evaluated by characterization and not tested in production, unless otherwise specified. 2. Tested in production. 3. RTC with default configuration but LPCAL = 1 in RTC_CALR. STM32U585xx Conditions Symbol Typ Parameter Unit VDD (V) Wakeup clock is MSI 24 MHz QDD(wakeup from Stop 1) Electrical charge consumed during wakeup from Stop 1 mode 25°C 1.10 Wakeup clock is HSI 16 MHz 3.0 Wakeup clock is MSI 1 MHz 0.38 STM32U585xx Table 54. Current consumption during wakeup from Stop 1 mode on SMPS nAs 1.33 Table 55. Current consumption in Stop 2 mode on LDO Conditions Symbol Max(1) Typ Parameter DS13086 Rev 6 Supply current in Stop 2 mode, RTC disabled, 8-Kbyte SRAM2 + ICACHE retained IDD(Stop 2) Supply current in Stop 2 mode, RTC disabled, All SRAMs retained Unit VDD (V) 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 1.8 8.90 23.5 70.0 145 305 33.0 71.0 210.0 440.0 920.0 2.4 8.90 23.5 70.5 145 310 33.0 71.0 220.0 440.0 930.0 72.0 220.0 450.0 950.0 (2) 9.05 24.0 71.5 150 315 33.0 3.3 9.30 24.5 73.0 150 320 34.0 74.0 220.0 450.0 960.0 3.6 10.00 26.0 75.5 155 325 37.0 78.0 230.0 470.0 980.0 1.8 20.00 48.5 145.0 310 680 73.0 150.0 440.0 930.0 2100.0 2.4 20.00 48.5 145.0 315 680 73.0 150.0 440.0 950.0 2100.0 3.0 20.50 48.5 145.0 315 685 74.0 150.0 440.0 950.0 2100.0 3.3 20.50 49.5 150.0 315 690 74.0 150.0 450.0 950.0 2100.0 3.6 22.00 51.0 150.0 320 700 80.0 160.0 450.0 960.0 2100.0 µA 177/334 Electrical characteristics 3.0 Conditions Symbol Max(1) Typ Parameter Unit VDD (V) 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 1.8 9.45 24.0 71.5 150 315 35.0 72.0 220.0 450.0 950.0 2.4 9.50 24.0 71.5 150 315 35.0 72.0 220.0 450.0 950.0 3.0 9.60 24.5 73.0 150 320 35.0 74.0 220.0 450.0 960.0 3.3 9.30 25.0 74.0 155 325 34.0 75.0 230.0 470.0 980.0 3.6 11.00 26.5 77.0 160 335 40.0 80.0 240.0 480.0 1100.0 1.8 9.15 23.5 70.0 145 305 33.0 71.0 210.0 440.0 920.0 2.4 9.20 23.5 70.5 145 310 34.0 71.0 220.0 440.0 930.0 3.0 9.20 24.0 71.5 150 315 34.0 72.0 220.0 450.0 950.0 3.3 9.50 24.5 73.0 150 320 35.0 74.0 220.0 450.0 960.0 IDD(Stop 2 3.6 10.50 26.0 76.0 155 325 38.0 78.0 230.0 470.0 980.0 with RTC) 1.8 9.15 24.0 71.5 150 315 33.0 72.0 220.0 450.0 950.0 2.4 9.20 24.0 71.5 150 315 34.0 72.0 220.0 450.0 950.0 3.0 9.50 24.0 72.5 150 320 35.0 72.0 220.0 450.0 960.0 3.3 9.50 25.0 74.0 155 325 35.0 75.0 230.0 470.0 980.0 3.6 10.50 26.5 76.5 160 335 38.0 80.0 230.0 480.0 1100.0 1.8 9.35 23.5 70.5 145 305 - - - - - 2.4 9.40 24.0 71.0 150 310 - - - - - 3.0 9.25 24.0 72.0 150 315 - - - - - 3.3 9.65 25.0 73.5 150 320 - - - - - 3.6 10.50 26.5 76.0 155 325 - - - - - Supply current in Stop 2 mode, RTC(3) clocked by LSI 32 kHz, 8-Kbyte SRAM2 + ICACHE retained DS13086 Rev 6 Supply current in Stop 2 mode, RTC(3) clocked by LSI 250 Hz, 8-Kbyte SRAM2 + ICACHE retained Supply current in Stop 2 mode, RTC(3) clocked by LSE bypassed at 32768 Hz, 8-Kbyte SRAM2 + ICACHE retained Supply current in Stop 2 mode, RTC(3) clocked by LSE quartz in medium low-drive mode, 8-Kbyte SRAM2 + ICACHE retained 2. Tested in production. 3. RTC with default configuration but LPCAL = 1 in RTC_CALR. µA STM32U585xx 1. Evaluated by characterization and not tested in production, unless otherwise specified. Electrical characteristics 178/334 Table 55. Current consumption in Stop 2 mode on LDO (continued) Max(1) Typ Symbol Parameter Unit 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C DS13086 Rev 6 SRAM1 64-Kbyte page x static consumption (SRAM1PDSx = 1 versus SRAM1PDSx = 0) 0.8 2.0 6.0 13.2 28.6 3.0 6.0 18.0 40.0 86.0 IDD(SRAM2_8KB)(3) SRAM2 8-Kbyte page 1 static consumption (SRAM2PDS1 = 1 versus SRAM2PDS1 = 0) 0.2 0.4 1.4 3.1 6.5 0.7 1.4 4.4 10.0 20.0 IDD(SRAM2_56KB)(3) SRAM2 56-Kbyte page 2 static consumption (SRAM2PDS2 = 1 versus SRAM2PDS2 = 0) 1.0 2.6 8.0 17.6 37.9 3.6 7.7 25.0 53.0 120.0 IDD(SRAM3_64kB)(4) SRAM3 64-Kbyte page x static consumption (SRAM3PDSx = 1 versus SRAM3PDSx = 0) 0.8 1.9 5.7 12.6 27.5 3.0 5.8 18.0 38.0 83.0 IDD(SRAM4) SRAM4 static consumption (SRAM4PDS = 1 versus SRAM4PDS = 0) 0.3 0.6 1.8 3.9 8.2 1.0 1.8 5.4 12.0 25.0 IDD(ICRAM) ICACHE SRAM static consumption (ICRAMPDS = 1 versus ICRAMPDS = 0) 0.1 0.4 1.3 2.9 5.7 0.5 1.3 4.0 8.6 18.0 DCACHE1 SRAM static consumption (DC1RAMPDS = 1 versus DC1RAMPDS = 0) 0.1 0.2 0.7 1.5 3.0 0.3 0.7 2.3 4.6 9.1 IDD(DMA2DRAM) DMA2D SRAM static consumption (DMA2DRAMPDS = 1 versus DMA2DRAMPDS = 0) 0.0 0.1 0.3 0.5 0.7 0.2 0.3 1.0 1.6 2.0 IDD(PRAM) FMAC, FDCAN and USB SRAM static consumption (PRAMPDS = 1 versus PRAMPDS = 0) 0.0 0.1 0.4 0.7 1.1 0.2 0.4 1.3 2.3 3.2 PKA SRAM static consumption (PKARAMPDS = 1 versus PKARAMPDS = 0) 0.1 0.2 0.6 1.2 2.1 0.3 0.5 1.9 3.6 6.3 IDD(DC1RAM) IDD(PKARAM) 1. Evaluated by characterization. Not tested in production. 2. SRAM1 total consumption is 3 × IDD(SRAM1_64KB). 3. SRAM2 total consumption is IDD(SRAM2_8KB) + IDD(SRAM2_56KB). 4. SRAM3 total consumption is 8 × IDD(SRAM3_64KB). µA 179/334 Electrical characteristics IDD(SRAM1_64kB)(2) STM32U585xx Table 56. SRAM static power consumption in Stop 2 when supplied by LDO Conditions Symbol Typ Parameter Unit VDD (V) Wakeup clock is MSI 24 MHz QDD(wakeup from Stop 2) Electrical charge consumed during wakeup from Stop 2 mode 25°C 0.81 Wakeup clock is HSI 16 MHz 3.0 0.79 Wakeup clock is MSI 1 MHz nAs 1.98 Electrical characteristics 180/334 Table 57. Current consumption during wakeup from Stop 2 mode on LDO Table 58. Current consumption in Stop 2 mode on SMPS Conditions Symbol Max(1) Typ Parameter DS13086 Rev 6 Supply current in Stop 2 mode, RTC disabled, 8-Kbyte SRAM2 + ICACHE retained IDD(Stop 2) Supply current in Stop 2 mode, RTC disabled, ALL SRAMs retained Unit VDD (V) 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 1.8 5.30 14.0 42.0 88.5 195 19.0 42.0 130.0 270.0 580.0 2.4 3.50 9.6 29.5 63.5 140 13.0 29.0 87.0 190.0 410.0 30.0 93.0 200.0 440.0 (2) 3.0 3.90 10.0 31.5 68.0 150 14.0 3.3 3.90 10.0 30.5 65.5 145 14.0 30.0 89.0 190.0 420.0 3.6 4.55 11.0 31.0 65.0 145 16.0 32.0 89.0 190.0 420.0 1.8 12.00 28.5 83.5 180.0 440 44.0 86.0 250.0 540.0 1400.0 2.4 7.85 19.5 58.5 125.0 280 29.0 59.0 180.0 380.0 830.0 3.0 8.55 20.5 61.0 130.0 290 31.0 61.0 190.0 390.0 860.0 3.3 8.20 19.5 57.5 125.0 275 30.0 58.0 170.0 370.0 810.0 3.6 8.55 19.5 56.0 120.0 265 30.0 57.0 170.0 360.0 780.0 µA STM32U585xx Conditions Symbol Max(1) Typ Parameter Unit 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 1.8 5.60 14.0 42.0 89.0 195 20.0 42.0 130.0 270.0 580.0 2.4 3.85 10.0 30.0 63.5 140 14.0 30.0 89.0 190.0 410.0 3.0 4.35 10.5 32.0 68.5 150 16.0 31.0 94.0 200.0 440.0 3.3 4.40 10.5 31.0 66.0 145 16.0 31.0 91.0 200.0 420.0 3.6 5.15 11.5 31.5 66.0 145 18.0 33.0 91.0 190.0 420.0 1.8 5.40 14.0 42.0 89.0 195 20.0 42.0 130.0 270.0 580.0 2.4 3.60 9.8 30.0 63.5 135 13.0 29.0 89.0 190.0 400.0 3.0 4.00 10.5 31.5 68.0 150 15.0 31.0 93.0 200.0 440.0 3.3 4.05 10.5 31.0 65.5 145 15.0 31.0 91.0 190.0 420.0 IDD(Stop 2 3.6 4.75 11.0 31.5 65.5 145 17.0 32.0 91.0 190.0 420.0 with RTC) 1.8 5.50 14.0 42.0 89.0 195 20.0 42.0 130.0 270.0 580.0 2.4 3.70 9.9 30.0 63.5 140 14.0 30.0 89.0 190.0 410.0 3.0 4.15 10.5 32.0 68.0 150 15.0 31.0 94.0 200.0 440.0 3.3 4.20 10.5 31.0 66.0 145 15.0 31.0 91.0 200.0 420.0 3.6 4.90 11.0 31.5 65.5 145 17.0 32.0 91.0 190.0 420.0 1.8 5.50 14.0 41.5 88.0 190 - - - - - 2.4 3.80 9.9 30.0 63.0 135 - - - - - 3.0 4.15 10.5 31.5 67.5 145 - - - - - 3.3 4.20 10.5 31.0 65.0 140 - - - - - 3.6 4.85 11.0 31.5 65.0 140 - - - - - Supply current in Stop 2 mode, RTC(3) clocked by LSI 32 kHz, 8-Kbyte SRAM2 + ICACHE retained DS13086 Rev 6 Supply current in Stop 2 mode, RTC(3) clocked by LSI 250 Hz, 8-Kbyte SRAM2 + ICACHE retained Supply current in Stop 2 mode, RTC(3) clocked by LSE bypassed at 32768 Hz, 8-Kbyte SRAM2 + ICACHE retained Supply current in Stop 2 mode, RTC(3) clocked by LSE quartz in medium low-drive mode, 8-Kbyte SRAM2 + ICACHE retained 1. Evaluated by characterization and not tested in production, unless otherwise specified. 2. Tested in production. 181/334 3. RTC with default configuration but LPCAL = 1 in RTC_CALR. µA Electrical characteristics VDD (V) STM32U585xx Table 58. Current consumption in Stop 2 mode on SMPS (continued) Max(1) Typ Symbol Parameter Unit 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C DS13086 Rev 6 IDD(SRAM1_64kB)(2) SRAM1 64-Kbyte page x static consumption (SRAM1PDSx = 1 versus SRAM1PDSx = 0) 0.4 0.9 2.6 5.5 12.7 1.5 2.7 7.7 17.0 39.0 IDD(SRAM2_8KB)(3) SRAM2 8-Kbyte page 1 static consumption (SRAM2PDS1 = 1 versus SRAM2PDS1 = 0) 0.1 0.2 0.6 1.2 2.9 0.3 0.6 2.0 3.7 10.0 IDD(SRAM2_56KB)(3) SRAM2 56-Kbyte page 2 static consumption (SRAM2PDS2 = 1 versus SRAM2PDS2 = 0) 0.5 1.1 3.4 7.5 16.7 1.7 3.4 11.0 23.0 50.0 IDD(SRAM3_64kB)(4) SRAM3 64-Kbyte page x static consumption (SRAM3PDSx = 1 versus SRAM3PDSx = 0) 0.4 0.8 2.4 5.3 12.2 1.4 2.5 7.3 16.0 37.0 IDD(SRAM4) SRAM4 static consumption (SRAM4PDS = 1 versus SRAM4PDS = 0) 0.1 0.3 0.7 1.5 3.7 0.4 0.8 2.2 4.6 12.0 IDD(ICRAM) ICACHE SRAM static consumption (ICRAMPDS = 1 versus ICRAMPDS = 0) 0.1 0.2 0.5 1.0 2.6 0.3 0.5 2.0 3.1 7.9 DCACHE1 SRAM static consumption (DC1RAMPDS = 1 versus DC1RAMPDS = 0) 0.0 0.1 0.3 0.4 1.3 0.2 0.3 1.0 1.4 4.0 IDD(DMA2DRAM) DMA2D SRAM static consumption (DMA2DRAMPDS = 1 versus DMA2DRAMPDS = 0) 0.0 0.0 0.1 0.2 0.4 0.1 0.1 0.2 0.6 1.1 IDD(PRAM) FMAC, FDCAN and USB SRAM static consumption (PRAMPDS = 1 versus PRAMPDS = 0) 0.0 0.0 0.1 0.2 0.6 0.1 0.1 0.3 0.6 1.8 PKA SRAM static consumption (PKARAMPDS = 1 versus PKARAMPDS = 0) 0.0 0.1 0.2 0.3 1.0 0.1 0.2 0.6 0.9 2.9 IDD(DC1RAM) IDD(PKARAM) Electrical characteristics 182/334 Table 59. SRAM static power consumption in Stop 2 when supplied by SMPS µA 1. Evaluated by characterization. Not tested in production. 2. SRAM1 total consumption is 3 × IDD(SRAM1_64KB). 4. SRAM3 total consumption is 8 × IDD(SRAM3_64KB). STM32U585xx 3. SRAM2 total consumption is IDD(SRAM2_8KB) + IDD(SRAM2_56KB). Conditions Symbol Typ Parameter Unit VDD (V) Wakeup clock is MSI 24 MHz QDD(wakeup from Stop 2) Electrical charge consumed during wakeup from Stop 2 mode 25°C 0.57 Wakeup clock is HSI 16 MHz 3.0 Wakeup clock is MSI 1 MHz 0.18 STM32U585xx Table 60. Current consumption during wakeup from Stop 2 mode on SMPS nAs 1.19 Table 61. Current consumption in Stop 3 mode on LDO Conditions Symbol Max(1) Typ Parameter DS13086 Rev 6 Supply current in Stop 3 mode, RTC disabled, 8-Kbyte SRAM2 + ICACHE retained IDD(Stop 3) Supply current in Stop 3 mode, RTC disabled, all SRAMs retained Unit VDD (V) 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 1.8 5.15 14.5 49.0 110 240 19.0 44.0 150.0 330.0 710.0 2.4 5.15 15.0 49.5 110 240 19.0 45.0 150.0 330.0 710.0 3.0 5.60 15.0 50.5 110 245 20.0 45.0 150.0 330.0 720.0 3.3 5.30 15.5 51.5 115 250 19.0 46.0 160.0 340.0 740.0 3.6 6.80 17.0 54.0 115 255 24.0 50.0 160.0 340.0 750.0 1.8 12.00 35.5 125.0 290 665 44.0 110.0 380.0 870.0 2000.0 2.4 12.00 36.0 125.0 295 670 44.0 110.0 380.0 890.0 2000.0 110.0 390.0 900.0 2100.0 47.0 (2) 13.00 36.5 130.0 300 675 3.3 14.50 37.0 130.0 300 685 52.0 120.0 390.0 900.0 2100.0 3.6 14.50 39.0 135.0 305 695 52.0 120.0 410.0 910.0 2100.0 183/334 Electrical characteristics 3.0 µA Conditions Symbol Max(1) Typ Parameter Unit VDD (V) 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 1.8 5.45 15.0 49.5 110 240 20.0 45.0 150.0 330.0 710.0 2.4 5.55 15.0 50.0 110 240 20.0 45.0 150.0 330.0 710.0 3.0 6.05 15.5 51.0 110 245 22.0 46.0 160.0 330.0 720.0 3.3 5.80 16.0 52.0 115 250 21.0 48.0 160.0 340.0 740.0 3.6 7.35 18.0 54.5 120 255 26.0 53.0 160.0 360.0 750.0 1.8 5.25 15.0 49.5 110 240 19.0 45.0 150.0 330.0 710.0 2.4 5.30 15.0 49.5 110 240 19.0 45.0 150.0 330.0 710.0 3.0 5.75 15.0 50.5 110 245 21.0 45.0 150.0 330.0 720.0 3.3 5.40 16.0 52.0 115 250 19.0 48.0 160.0 340.0 740.0 IDD(Stop 3 3.6 6.95 17.5 54.5 115 255 25.0 51.0 160.0 340.0 750.0 with RTC) 1.8 5.35 15.0 49.5 110 240 20.0 45.0 150.0 330.0 710.0 2.4 5.40 15.0 49.5 110 240 20.0 45.0 150.0 330.0 710.0 3.0 5.90 15.5 50.5 110 245 21.0 46.0 150.0 330.0 720.0 3.3 5.55 16.0 52.0 115 250 20.0 48.0 160.0 340.0 740.0 3.6 7.20 17.5 54.5 115 255 25.0 51.0 160.0 340.0 750.0 1.8 5.35 15.0 48.5 105 230 - - - - - 2.4 5.45 15.0 49.0 110 235 - - - - - 3.0 5.95 15.5 50.5 110 240 - - - - - 3.3 6.55 16.0 51.5 110 245 - - - - - 3.6 7.20 17.5 54.0 115 250 - - - - - Supply current in Stop 3 mode, RTC(3) clocked by LSI 32 kHz, 8-Kbyte SRAM2 + ICACHE retained DS13086 Rev 6 Supply current in Stop 3 mode, RTC(3) clocked by LSI 250 Hz, 8-Kbyte SRAM2 + ICACHE retained Supply current in Stop 3 mode, RTC(3) clocked by LSE bypassed at 32768 Hz, 8-Kbyte SRAM2 + ICACHE retained Supply current in Stop 3 mode, RTC(3) clocked by LSE quartz in medium low-drive mode, 8-Kbyte SRAM2 + ICACHE retained 2. Tested in production. 3. RTC with default configuration but LPCAL = 1 in RTC_CALR. µA STM32U585xx 1. Evaluated by characterization and not tested in production, unless otherwise specified. Electrical characteristics 184/334 Table 61. Current consumption in Stop 3 mode on LDO (continued) Max(1) Typ Symbol Parameter Unit 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C DS13086 Rev 6 SRAM1 64-Kbyte page x static consumption (SRAM1PDSx = 1 versus SRAM1PDSx = 0) 0.7 1.8 6.4 15.3 35.6 2.7 5.3 20.0 46.0 110.0 IDD(SRAM2_8KB)(3) SRAM2 8-Kbyte page 1 static consumption (SRAM2PDS1 = 1 versus SRAM2PDS1 = 0) 0.2 0.7 2.4 5.8 12.8 1.0 2.1 7.1 18.0 39.0 IDD(SRAM2_56KB)(3) SRAM2 56-Kbyte page 2 static consumption (SRAM2PDS2 = 1 versus SRAM2PDS2 = 0) 0.9 2.2 7.8 18.5 41.7 3.2 6.5 24.0 56.0 130.0 IDD(SRAM3_64kB)(4) SRAM3 64-Kbyte page x static consumption (SRAM3PDSx = 1 versus SRAM3PDSx = 0) 0.7 1.7 6.1 14.8 34.2 2.6 5.2 19.0 45.0 110.0 IDD(SRAM4) SRAM4 static consumption (SRAM4PDS = 1 versus SRAM4PDS = 0) 0.2 0.5 1.7 4.0 8.9 0.8 1.5 5.1 12.0 27.0 IDD(ICRAM) ICACHE SRAM static consumption (ICRAMPDS = 1 versus ICRAMPDS = 0) 0.0 0.3 1.3 2.9 6.3 0.0 1.1 3.9 8.9 19.0 DCACHE1 SRAM static consumption (DC1RAMPDS = 1 versus DC1RAMPDS = 0) 0.0 0.0 0.0 0.3 1.2 0.0 0.0 0.0 1.0 3.7 IDD(DMA2DRAM) DMA2D SRAM static consumption (DMA2DRAMPDS = 1 versus DMA2DRAMPDS = 0) 0.0 0.1 0.3 0.6 1.1 0.2 0.2 1.0 1.9 3.4 IDD(PRAM) FMAC, FDCAN and USB SRAM static consumption (PRAMPDS = 1 versus PRAMPDS = 0) 0.1 0.1 0.4 0.8 1.5 0.2 0.3 1.3 2.3 4.6 PKA SRAM static consumption (PKARAMPDS = 1 versus PKARAMPDS = 0) 0.1 0.2 0.6 1.3 2.8 0.3 0.5 1.9 4.0 8.4 IDD(DC1RAM) IDD(PKARAM) 1. Evaluated by characterization. Not tested in production. 2. SRAM1 total consumption is 3 × IDD(SRAM1_64KB). 3. SRAM2 total consumption is IDD(SRAM2_8KB) + IDD(SRAM2_56KB). 4. SRAM3 total consumption is 8 × IDD(SRAM3_64KB). µA 185/334 Electrical characteristics IDD(SRAM1_64kB)(2) STM32U585xx Table 62. SRAM static power consumption in Stop 3 when supplied by LDO Conditions Symbol Typ Parameter Unit VDD (V) Wakeup clock is MSI 24 MHz QDD(wakeup from Stop 3) Electrical charge consumed during wakeup from Stop 3 mode 25°C 19.2 Wakeup clock is HSI 16 MHz 3.0 18.2 Wakeup clock is MSI 1 MHz nAs 61.8 Electrical characteristics 186/334 Table 63. Current consumption during wakeup from Stop 3 mode on LDO Table 64. Current consumption in Stop 3 mode on SMPS Conditions Symbol Max(1) Typ Parameter DS13086 Rev 6 Supply current in Stop 3 mode, RTC disabled, 8-Kbyte SRAM2 + ICACHE retained IDD(Stop 3) Supply current in Stop 3 mode, RTC disabled, all SRAMs retained Unit VDD (V) 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 1.8 2.10 6.55 22.5 50.5 115.0 7.4 20.0 66.0 150.0 340.0 2.4 1.85 5.95 20.5 46.5 110.0 6.5 18.0 60.0 140.0 320.0 3.0 1.70 5.30 18.5 42.0 98.5 5.9 16.0 54.0 130.0 280.0 3.3 1.80 5.55 18.5 41.5 97.0 6.1 16.0 53.0 120.0 280.0 3.6 2.65 6.55 19.5 42.5 98.0 8.6 19.0 55.0 120.0 280.0 1.8 5.20 15.50 55.0 130.0 355.0 19.0 47.0 170.0 390.0 1100.0 2.4 4.55 14.00 50.0 115.0 275.0 17.0 42.0 150.0 350.0 820.0 36.0 130.0 300.0 690.0 14.0 (2) 3.0 3.90 12.00 42.5 100.0 235.0 3.3 3.65 11.50 40.5 95.0 225.0 13.0 34.0 120.0 280.0 660.0 3.6 4.50 12.00 40.5 92.5 215.0 16.0 35.0 120.0 270.0 630.0 µA STM32U585xx Conditions Symbol Max(1) Typ Parameter Unit 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 1.8 2.40 6.85 22.5 51.0 120.0 8.5 21.0 66.0 150.0 350.0 2.4 2.25 6.30 21.0 47.0 110.0 8.0 19.0 62.0 140.0 320.0 3.0 2.15 5.80 19.0 42.5 99.0 7.5 17.0 55.0 130.0 290.0 3.3 2.30 6.05 19.0 42.0 97.5 7.9 18.0 55.0 120.0 280.0 3.6 3.20 7.10 20.0 43.0 98.5 11.0 20.0 56.0 130.0 280.0 1.8 2.20 6.70 22.5 50.5 115.0 7.8 20.0 66.0 150.0 340.0 2.4 2.00 6.10 20.5 47.0 110.0 7.1 18.0 60.0 140.0 320.0 3.0 1.85 5.45 18.5 42.0 98.5 6.5 16.0 54.0 130.0 280.0 3.3 1.90 5.70 18.5 41.5 97.0 6.4 17.0 53.0 120.0 280.0 IDD(Stop 3 3.6 2.80 6.70 20.0 42.5 98.0 9.2 19.0 56.0 120.0 280.0 with RTC) 1.8 2.30 6.80 22.5 51.0 120.0 8.2 21.0 66.0 150.0 350.0 2.4 2.10 6.20 21.0 47.0 110.0 7.4 19.0 62.0 140.0 320.0 3.0 2.00 5.60 18.5 42.0 99.0 7.0 17.0 54.0 130.0 290.0 3.3 2.05 5.85 18.5 42.0 97.5 7.0 17.0 53.0 120.0 280.0 3.6 3.00 6.90 20.0 43.0 98.5 9.9 20.0 56.0 130.0 280.0 1.8 2.35 6.80 22.5 50.0 115.0 - - - - - 2.4 2.15 6.25 21.0 46.5 105.0 - - - - - 3.0 2.05 5.70 18.5 42.0 96.0 - - - - - 3.3 2.25 5.95 18.5 41.5 95.0 - - - - - 3.6 3.05 6.95 20.0 42.5 96.0 - - - - - Supply current in Stop 3 mode, RTC(3) clocked by LSI 32 kHz, 8-Kbyte SRAM2 + ICACHE retained DS13086 Rev 6 Supply current in Stop 3 mode, RTC(3) clocked by LSI 250 Hz, 8-Kbyte SRAM2 + ICACHE retained Supply current in Stop 3 mode, RTC(3) clocked by LSE bypassed at 32768 Hz, 8-Kbyte SRAM2 + ICACHE retained Supply current in Stop 3 mode, RTC(3) clocked by LSE quartz in medium low-drive mode, 8-Kbyte SRAM2 + ICACHE retained 1. Evaluated by characterization and not tested in production, unless otherwise specificed. 2. Tested in production. 187/334 3. RTC with default configuration but LPCAL = 1 in RTC_CALR. µA Electrical characteristics VDD (V) STM32U585xx Table 64. Current consumption in Stop 3 mode on SMPS (continued) Max(1) Typ Symbol Parameter Unit 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C DS13086 Rev 6 IDD(SRAM1_64kB)(2) SRAM1 64-Kbyte page x static consumption (SRAM1PDSx = 1 versus SRAM1PDSx = 0) 0.2 0.6 2.2 5.4 12.6 0.7 2.0 8.0 17.0 38.0 IDD(SRAM2_8KB)(3) SRAM2 8-Kbyte page 1 static consumption (SRAM2PDS1 = 1 versus SRAM2PDS1 = 0) 0.1 0.2 0.8 2.0 4.6 0.2 1.0 2.5 5.9 14.0 IDD(SRAM2_56KB)(3) SRAM2 56-Kbyte page 2 static consumption (SRAM2PDS2 = 1 versus SRAM2PDS2 = 0) 0.2 0.7 2.7 6.4 14.8 1.0 3.0 8.0 20.0 45.0 IDD(SRAM3_64kB)(4) SRAM3 64-Kbyte page x static consumption (SRAM3PDSx = 1 versus SRAM3PDSx = 0) 0.2 0.6 2.1 5.0 12.0 1.0 2.0 6.3 16.0 36.0 IDD(SRAM4) SRAM4 static consumption (SRAM4PDS = 1 versus SRAM4PDS = 0) 0.0 0.1 0.6 1.4 3.0 0.5 1.0 2.0 4.1 8.9 IDD(ICRAM) ICACHE SRAM static consumption (ICRAMPDS = 1 versus ICRAMPDS = 0) 0.0 0.1 0.4 1.0 2.0 0.1 1.0 2.0 3.0 6.1 DCACHE1 SRAM static consumption (DC1RAMPDS = 1 versus DC1RAMPDS = 0) 0.0 0.1 0.2 0.5 0.9 1.2 1.0 1.0 1.5 2.6 IDD(DMA2DRAM) DMA2D SRAM static consumption (DMA2DRAMPDS = 1 versus DMA2DRAMPDS = 0) 0.0 0.0 0.0 0.1 0.1 0.4 0.1 0.1 0.4 0.4 IDD(PRAM) FMAC, FDCAN and USB SRAM static consumption (PRAMPDS = 1 versus PRAMPDS = 0) 0.0 0.0 0.1 0.2 0.3 0.0 0.1 1.0 0.7 0.8 PKA SRAM static consumption (PKARAMPDS = 1 versus PKARAMPDS = 0) 0.0 0.1 0.2 0.4 0.7 0.0 1.0 1.0 1.3 2.1 IDD(DC1RAM) IDD(PKARAM) Electrical characteristics 188/334 Table 65. SRAM static power consumption in Stop 3 when supplied by SMPS µA 1. Evaluated by characterization. Not tested in production. 2. SRAM1 total consumption is 3 × IDD(SRAM1_64KB). 4. SRAM3 total consumption is 8 × IDD(SRAM3_64KB). STM32U585xx 3. ???SRAM2 total consumption is IDD(SRAM2_8KB) + IDD(SRAM2_56KB). Conditions Symbol Typ Parameter Unit - VDD (V) Wakeup clock is MSI 24 MHz QDD(wakeup from Stop 3) Electrical charge consumed during wakeup from Stop 3 mode Wakeup clock is HSI 16 MHz Wakeup clock is MSI 1 MHz 25°C 7.44 3.0 7.25 STM32U585xx Table 66. Current consumption during wakeup from Stop 3 mode on SMPS nAs 26.0 DS13086 Rev 6 Electrical characteristics 189/334 Conditions Symbol Unit - No IWDG ULPMEN = 1 No IWDG ULPMEN = 0 DS13086 Rev 6 IDD(Standby) Max(1) Typ Parameter Supply current in Standby mode (backup registers retained), RTC disabled with IWDG clocked by LSI 32 kHz ULPMEN = 0 with IWDG clocked by LSI 250 Hz ULPMEN = 0 VDD (V) 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 1.8 0.21 0.71 3.30 9.10 28.40 0.55 1.70 7.40 20.00 58.00 2.4 0.21 0.74 3.47 9.54 29.70 0.58 1.80 7.90 22.00 61.00 3.0 0.36 1.08 4.41 11.50 34.20 1.10 2.70 11.00 27.00 73.00 3.3 0.64 1.69 5.68 13.70 38.40 2.00 4.20 14.00 32.00 83.00 3.6 1.51 3.04 8.07 17.40 44.20 4.80 7.70 20.00 41.00 98.00 1.8 0.28 0.76 3.28 8.95 27.70 0.63 1.70 7.40 20.00 57.00 2.4 0.29 0.83 3.52 9.46 29.10 0.67 1.90 7.90 22.00 61.00 3.0 0.43 1.16 4.43 11.40 33.40 1.10 2.80 11.00 27.00 72.00 3.3 0.75 1.75 5.68 13.60 37.40 2.20 4.30 14.00 32.00 82.00 3.6 1.58 3.10 8.07 17.20 43.30 4.90 7.70 20.00 41.00 97.00 1.8 0.52 1.03 3.55 9.04 26.57 0.79 1.90 7.20 19.00 57.00 2.4 0.64 1.18 3.81 9.51 27.47 0.93 2.10 7.80 20.00 61.00 3.0 0.87 1.62 4.81 11.48 31.63 1.50 3.10 11.00 25.00 72.00 3.3 1.23 2.26 6.12 13.68 35.58 2.60 4.60 14.00 30.00 83.00 3.6 2.13 3.67 8.55 17.34 41.46 5.30 8.10 20.00 39.00 97.00 1.8 0.38 0.88 3.44 9.15 28.00 0.77 1.90 7.60 21.00 57.00 2.4 0.40 0.94 3.63 9.58 29.20 0.79 2.00 8.00 22.00 61.00 3.0 0.55 1.28 4.55 11.50 33.50 1.30 2.90 11.00 27.00 72.00 3.3 0.87 1.90 5.83 13.70 37.50 2.30 4.40 14.00 32.00 82.00 3.6 1.71 3.26 8.22 17.30 43.30 5.10 7.90 20.00 41.00 97.00 Electrical characteristics 190/334 Table 67. Current consumption in Standby mode µA STM32U585xx Conditions Symbol Max(1) Typ Parameter Unit RTC(2) clocked by LSI 32 kHz, no IWDG(3) ULPMEN = 0 DS13086 Rev 6 Supply current in IDD(Standby with Standby mode (backup registers retained), RTC) RTC enabled RTC(2) clocked by LSI 250 Hz, no IWDG ULPMEN = 0 RTC(2) clocked by LSE bypassed at 32768 Hz ULPMEN = 0 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 1.8 0.56 1.05 3.60 9.29 28.10 0.81 1.90 7.50 20.00 57.00 2.4 0.64 1.18 3.88 9.82 29.40 0.93 2.20 8.20 22.00 61.00 3.0 0.88 1.61 4.88 11.80 33.80 1.50 3.20 11.00 27.00 72.00 3.3 1.25 2.26 6.19 14.10 37.80 2.60 4.70 14.00 33.00 83.00 3.6 2.13 3.67 8.63 17.70 43.70 5.30 8.20 20.00 42.00 97.00 1.8 0.39 0.88 3.44 9.14 28.00 0.77 1.90 7.60 21.00 57.00 2.4 0.40 0.94 3.63 9.58 29.20 0.79 2.00 8.00 22.00 61.00 3.0 0.56 1.29 4.56 11.50 33.40 1.30 2.90 11.00 27.00 72.00 3.3 0.89 1.90 5.83 13.70 37.50 2.30 4.40 14.00 32.00 82.00 3.6 1.73 3.27 8.23 17.30 43.30 5.10 7.90 20.00 41.00 97.00 1.8 0.47 0.96 3.51 9.22 28.10 0.95 2.10 7.70 21.00 57.00 2.4 0.50 1.04 3.75 9.72 29.40 1.10 2.30 8.30 22.00 61.00 3.0 0.69 1.42 4.71 11.70 33.80 1.60 3.30 11.00 27.00 73.00 3.3 1.04 2.06 6.00 13.90 37.80 2.70 4.80 15.00 33.00 83.00 3.6 1.91 3.46 8.43 17.60 43.70 5.50 8.30 21.00 42.00 98.00 1.8 0.47 0.97 3.50 9.14 27.20 - - - - - 2.4 0.50 1.05 3.72 9.60 28.20 - - - - - 3.0 0.66 1.40 4.66 11.50 32.50 - - - - - 3.3 0.98 2.01 5.93 13.70 36.50 - - - - - 3.6 1.82 3.37 8.32 17.40 42.30 - - - - - µA 191/334 Electrical characteristics RTC(2) clocked by LSE quartz in medium low-drive mode ULPMEN = 0 VDD (V) STM32U585xx Table 67. Current consumption in Standby mode (continued) Conditions Symbol Parameter Unit - Supply current in IDD(Standby with Standby mode (backup registers retained), RTC) RTC enabled DS13086 Rev 6 Supply current to be added in Standby mode IDD(BKPSRAM) when backup SRAM is retained IDD(SRAM2) Max(1) Typ RTC(2) clocked by LSE quartz in medium low-drive mode ULPMEN = 1 - Supply current to be added in Standby mode when full SRAM2 and BKPSRAM are retained LDO Supply current to be added in Standby mode IDD(SRAM2_8K) when SRAM2 8-Kbyte page 1 and BKPSRAM are retained VDD (V) 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 1.8 0.44 0.97 3.55 9.45 29.20 - - - - - 2.4 0.47 1.03 3.80 10.00 30.00 - - - - - 3.0 0.62 1.37 4.75 12.35 35.20 - - - - - 3.3 0.98 1.96 6.00 14.45 38.90 - - - - - 3.6 1.77 3.40 8.50 17.80 45.40 - - - - - 1.8 0.13 0.22 0.53 1.15 2.50 0.47 0.66 1.60 3.50 7.50 2.4 0.12 0.19 0.47 1.04 2.30 0.45 0.56 1.50 3.20 6.90 3.0 0.13 0.19 0.47 1.00 2.30 0.47 0.58 1.50 3.00 7.00 3.3 0.09 0.20 0.48 1.00 2.40 0.31 0.60 1.50 3.00 7.20 3.6 0.10 0.20 0.48 1.00 2.20 0.37 0.60 1.50 3.00 6.70 1.8 1.62 4.09 11.92 25.75 55.60 5.90 13.00 36.00 78.00 170.00 2.4 1.62 4.05 11.88 25.74 55.60 5.90 13.00 36.00 78.00 170.00 3.0 1.64 4.02 11.87 25.80 55.70 6.00 13.00 36.00 78.00 170.00 3.3 1.65 4.02 11.82 25.70 55.70 6.00 13.00 36.00 78.00 170.00 3.6 1.68 3.99 11.73 25.50 55.20 6.10 12.00 36.00 77.00 170.00 1.8 0.58 1.41 4.02 8.55 18.20 2.10 4.30 13.00 26.00 55.00 2.4 0.63 1.37 3.95 8.44 17.90 2.30 4.10 12.00 26.00 54.00 3.0 0.63 1.36 3.93 8.40 17.90 2.30 4.10 12.00 26.00 54.00 3.3 0.60 1.35 3.90 8.30 17.80 2.20 4.10 12.00 25.00 54.00 3.6 0.69 1.35 3.73 8.10 17.30 2.50 4.10 12.00 25.00 52.00 Electrical characteristics 192/334 Table 67. Current consumption in Standby mode (continued) µA STM32U585xx Conditions Symbol Parameter Unit - IDD(SRAM2) Max(1) Typ Supply current to be added in Standby mode when full SRAM2 and BKPSRAM are retained SMPS DS13086 Rev 6 Supply current to be added in Standby mode IDD(SRAM2_8K) when SRAM2 8-Kbyte page 1 and BKPSRAM are retained VDD (V) 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 1.8 0.97 2.23 6.55 14.25 31.40 3.50 6.70 20.00 43.00 95.00 2.4 0.63 1.48 4.40 9.44 19.50 2.30 4.50 14.00 29.00 59.00 3.0 0.67 1.51 4.50 9.90 21.60 2.50 4.60 14.00 30.00 65.00 3.3 0.56 1.35 4.05 8.90 19.60 2.10 4.10 13.00 27.00 59.00 3.6 0.55 1.19 3.53 7.80 17.40 2.00 3.60 11.00 24.00 53.00 1.8 0.34 0.78 2.21 4.75 10.40 1.30 2.40 6.70 15.00 32.00 2.4 0.24 0.52 1.45 3.04 6.80 0.85 1.60 4.40 9.20 21.00 3.0 0.25 0.50 1.45 3.10 6.80 0.89 1.50 4.40 9.30 21.00 3.3 0.17 0.42 1.23 2.70 6.00 0.63 1.30 3.70 8.10 18.00 3.6 0.18 0.33 0.86 2.10 4.80 0.65 0.99 2.60 6.30 15.00 STM32U585xx Table 67. Current consumption in Standby mode (continued) µA 1. Evaluated by characterization. Not tested in production. 2. RTC with default configuration but LPCAL = 1 in RTC_CALR. 3. Current consumption with IWDG enabled is similar. Table 68. Current consumption during wakeup from Standby mode Conditions Symbol Unit - Electrical charge consumed during wakeup from Standby mode Wakeup clock is MSI 4 MHz Wakeup clock is MSI 1 MHz VDD (V) 3.0 25°C 404 602 nAs 193/334 Electrical characteristics QDD(wakeup from Standby) Typ Parameter Conditions Symbol Unit - Supply current in Shutdown mode (backup IDD(Shutdown) registers retained), RTC disabled - RTC(3) clocked by LSE bypassed at 32768 Hz DS13086 Rev 6 IDD(Shutdown with RTC) Max(1) Typ Parameter Supply current in Shutdown mode (backup registers retained), RTC enabled RTC(3) clocked by LSE quartz in medium low-drive mode VDD (V) 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 1.8 0.16 0.62 2.65 7.05 18.50 0.49 1.60 6.70 18.00 47.00 2.4 0.17 0.68 2.85 7.65 20.00 0.53 1.70 7.20 20.00 50.00 2.70 9.70 25.00 63.00 25.00 0.95 (2) 3.0 0.31 1.05 3.85 9.75 3.3 0.64 1.65 5.15 12.00 29.00 2.00 4.20 13.00 30.00 73.00 3.6 1.55 3.05 7.60 15.50 35.00 4.90 7.70 19.00 39.00 88.00 1.8 0.33 0.80 2.85 7.25 19.00 0.67 1.80 6.90 18.00 47.00 2.4 0.37 0.88 3.10 7.85 20.50 0.75 2.00 7.40 20.00 51.00 3.0 0.57 1.30 4.15 10.00 25.50 1.30 2.90 10.00 25.00 64.00 3.3 0.94 2.00 5.50 12.50 29.50 2.40 4.60 14.00 31.00 74.00 3.6 1.90 3.45 8.00 16.00 35.50 5.20 8.10 20.00 40.00 89.00 1.8 0.39 0.87 3.00 7.60 20.00 - - - - - 2.4 0.43 0.93 3.20 8.05 21.00 - - - - - 3.0 0.57 1.25 4.10 9.95 25.50 - - - - - 3.3 0.89 1.90 5.40 12.00 29.50 - - - - - 3.6 1.75 3.25 7.80 16.00 35.50 - - - - - Electrical characteristics 194/334 Table 69. Current consumption in Shutdown mode µA 1. Evaluated by characterization and not tested in production, unless otherwise specified. 2. Tested in production. 3. RTC with default configuration but LPCAL = 1 in RTC_CALR. Table 70. Current consumption during wakeup from Shutdown mode Unit QDD(wakeup from Shutdown) Typ Parameter Electrical charge consumed during wakeup from Shutdown mode Wakeup clock is MSI 4 MHz VDD (V) 25°C 3.0 3.75 μAs STM32U585xx Conditions Symbol Conditions Symbol Unit - IDD(VBAT) Supply current in VBAT mode (backup registers retained), RTC disabled - RTC(2) clocked by LSE bypassed at 32768 Hz DS13086 Rev 6 IDD(VBAT with RTC) Max(1) Typ Parameter Supply current in VBAT mode (backup registers retained), RTC enabled RTC(2) clocked by LSE bypassed at 32768 Hz, LPCAL = 1 in RTC_CALR 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C 1.8 0.12 0.27 1.00 2.60 7.70 0.36 0.67 2.50 6.50 20.00 2.4 0.13 0.29 1.05 2.70 8.10 0.39 0.72 2.70 6.80 21.00 3.0 0.16 0.37 1.30 3.20 9.10 0.50 0.93 3.30 8.00 23.00 3.3 0.25 0.56 1.80 4.25 11.50 0.78 1.40 4.50 11.00 29.00 3.6 0.46 0.89 2.35 5.00 13.00 1.50 2.30 5.90 13.00 33.00 1.8 0.40 0.56 1.30 2.80 7.65 0.68 0.99 2.90 6.80 20.00 2.4 0.48 0.65 1.45 3.05 8.30 0.78 1.20 3.10 7.20 21.00 3.0 0.62 0.85 1.80 3.75 9.65 1.10 1.50 3.80 8.70 24.00 3.3 0.78 1.10 2.35 4.90 12.50 1.40 2.00 5.20 12.00 30.00 3.6 1.10 1.55 3.00 5.80 13.50 2.20 3.00 6.60 14.00 34.00 1.8 0.31 0.47 1.20 2.70 7.55 0.89 1.30 3.10 6.90 20.00 2.4 0.36 0.53 1.30 2.95 8.15 1.10 1.40 3.40 7.50 21.00 3.0 0.46 0.69 1.65 3.55 9.50 1.40 1.90 4.20 9.00 24.00 3.3 0.60 0.93 2.20 4.70 12.00 1.80 2.40 5.60 12.00 31.00 3.6 0.87 1.35 2.80 5.60 13.50 2.60 3.50 7.10 15.00 34.00 1.8 0.45 0.61 1.35 2.95 8.25 - - - - - 2.4 0.51 0.67 1.45 3.15 8.60 - - - - - 3.0 0.60 0.81 1.75 3.65 9.60 - - - - - 3.3 0.71 1.00 2.25 4.80 12.50 - - - - - 3.6 0.96 1.40 2.85 5.60 13.50 - - - - - µA 195/334 Electrical characteristics RTC(2) clocked by LSE quartz in medium low-drive VBAT (V) 25°C STM32U585xx Table 71. Current consumption in VBAT mode Conditions Symbol Parameter Unit - IDD(VBAT with RTC) Max(1) Typ Supply current in VBAT mode (backup registers retained), RTC enabled RTC(2) clocked by LSE quartz in medium low-drive mode, LPCAL = 1 in RTC_CALR Supply current to be added IDD(BKPSRAM) in VBAT mode when backup SRAM is retained - VBAT (V) 25°C 55°C 85°C 105°C 125°C 30°C 55°C 85°C 105°C 125°C DS13086 Rev 6 1.8 0.37 0.52 1.25 2.90 8.15 - - - - - 2.4 0.39 0.56 1.35 3.00 8.45 - - - - - 3.0 0.44 0.66 1.60 3.50 9.45 - - - - - 3.3 0.54 0.85 2.10 4.60 12.00 - - - - - 3.6 0.76 1.20 2.65 5.40 13.50 - - - - - 1.8 0.12 0.19 0.41 0.85 1.75 0.26 0.44 1.10 2.50 5.20 2.4 0.12 0.19 0.45 0.95 1.90 0.26 0.45 1.30 2.80 5.60 3.0 0.12 0.20 0.50 1.05 2.40 0.28 0.49 1.40 3.10 7.10 3.3 0.13 0.22 0.50 1.10 2.50 0.31 0.54 1.40 3.20 7.40 3.6 0.14 0.22 0.50 1.20 2.50 0.36 0.55 1.40 3.50 7.40 Electrical characteristics 196/334 Table 71. Current consumption in VBAT mode (continued) µA 1. Evaluated by characterization. Not tested in production. 2. RTC with default configuration except otherwise specified STM32U585xx STM32U585xx Electrical characteristics I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up or pull-down generate current consumption when the pin is externally held to the opposite level. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Section 5.3.14: I/O port characteristics. For the output pins, any internal or external pull-up or pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of the ADC input pins, that must be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the on-chip peripheral current consumption (see Table 72 for peripheral current consumption in Run mode), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal and external) connected to the pin: I SW = V DDIOx × f SW × C where: • ISW is the current sunk by a switching I/O to charge/discharge the capacitive load. • VDDIOx is the I/O supply voltage. • fSW is the I/O switching frequency. • C is the total capacitance seen by the I/O pin: C = CINT+ CEXT + CS. • CS is the PCB board capacitance including the pad pin. The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. DS13086 Rev 6 197/334 299 Electrical characteristics STM32U585xx On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in the table below. The MCU is placed under the following conditions: • All I/O pins are in analog mode. • The given value is calculated by measuring the difference of the current consumptions: – when the peripheral is clocked on – when the peripheral is clocked off • The ambient operating temperature and supply voltage conditions are summarized in Table 33. • The power consumption of the digital part of the on-chip peripherals is given in the table below. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet. Table 72. Typical dynamic current consumption of peripherals Range2 Range3 Range4 Stop 1 Stop 2 Range1 Range2 Range3 Range4 Stop 1 Stop 2 AHB1 1.81 1.64 1.48 1.34 - 0.87 0.74 0.61 0.48 - BKPRAM 0.90 0.80 0.74 0.67 - 0.44 0.37 0.31 0.24 - CORDIC 0.56 0.51 0.45 0.41 - 0.27 0.23 0.19 0.15 - CRC 0.34 0.30 0.27 0.25 - 0.17 0.14 0.12 0.09 - DCACHE1 0.74 0.65 0.60 0.56 - 0.36 0.31 0.25 0.19 - DMA2D 1.95 1.76 1.60 1.46 - 0.94 0.80 0.67 0.52 - FLASH 2.21 2.01 1.82 1.65 - 1.07 0.91 0.76 0.59 - FMAC 2.24 2.03 1.84 1.68 - 1.08 0.92 0.77 0.59 - GPDMA1 3.71 3.38 3.05 2.75 - 1.80 1.52 1.27 0.98 - GTZC1 0.39 0.34 0.31 0.30 - 0.18 0.16 0.13 0.10 - ICACHE 0.76 0.68 0.63 0.57 - 0.37 0.32 0.26 0.20 - MDF1 7.65 6.95 6.27 5.67 - 3.69 3.12 2.61 2.01 - MDF1 indep(1) 0.84 0.76 0.68 0.63 - 0.4 0.34 0.29 0.22 - RAMCFG 1.26 1.14 1.03 0.96 - 0.61 0.52 0.43 0.33 - SRAM1 0.82 0.73 0.67 0.62 - 0.40 0.34 0.28 0.22 - TSC 1.11 1.00 0.91 0.83 - 0.54 0.46 0.38 0.29 - AHB2-1 2.08 1.88 1.71 1.54 - 1.00 0.85 0.71 0.55 - ADC1 2.01 1.84 1.65 1.52 - 0.97 0.82 0.69 0.53 - 1.43 1.30 1.17 1.06 - 0.69 0.58 0.48 0.37 - 2.36 2.17 1.94 1.75 - 1.14 0.97 0.81 0.62 - AHB2-1 AHB1 Bus Peripheral ADC1 AES 198/334 SMPS Range1 LDO indep(1) DS13086 Rev 6 Unit µA/ MHz STM32U585xx Electrical characteristics Table 72. Typical dynamic current consumption of peripherals (continued) Range2 Range3 Range4 Stop 1 Stop 2 Range1 Range2 Range3 Range4 Stop 1 Stop 2 DCMI 4.68 4.28 3.87 3.50 - 2.26 1.92 1.61 1.24 - GPIOA 0.08 0.07 0.07 0.05 - 0.04 0.03 0.03 0.02 - GPIOB 0.06 0.05 0.04 0.04 - 0.03 0.02 0.02 0.01 - GPIOC 0.11 0.11 0.08 0.08 - 0.05 0.05 0.04 0.03 - GPIOD 0.07 0.07 0.06 0.06 - 0.04 0.03 0.03 0.02 - GPIOE 0.04 0.05 0.03 0.03 - 0.02 0.02 0.01 0.01 - GPIOF 0.07 0.08 0.06 0.05 - 0.04 0.03 0.03 0.02 - GPIOG 0.22 0.21 0.17 0.16 - 0.11 0.09 0.07 0.05 - GPIOH 0.22 0.21 0.17 0.17 - 0.11 0.09 0.07 0.06 - GPIOI 0.12 0.13 0.10 0.09 - 0.06 0.05 0.04 0.03 - HASH1 1.18 1.10 0.98 0.88 - 0.57 0.49 0.41 0.31 - OTFDEC1 1.86 1.72 1.52 1.38 - 0.90 0.76 0.64 0.49 - OTFDEC2 2.05 1.89 1.68 1.52 - 0.99 0.84 0.70 0.54 - PKA 7.93 7.24 6.54 5.91 - 3.83 3.24 2.72 2.09 - RNG 0.82 0.76 0.67 0.60 - 0.39 0.33 0.28 0.21 - 0.10 0.06 0.06 0.06 - 0.06 0.02 0.02 0.02 - SAES 2.80 2.57 2.30 2.08 - 1.35 1.14 0.96 0.74 - SDMMC1 12.26 11.18 10.11 9.15 - 5.92 5.01 4.20 3.24 - SDMMC1 indep(1) 1.47 1.22 1.09 - 0.71 0.60 0.50 0.40 - SDMMC2 12.48 11.39 10.29 9.31 - 6.02 5.10 4.28 3.30 - SDMMC2 indep 1.59 1.44 1.31 1.18 - 0.76 0.65 0.54 0.44 - SRAM2 1.18 1.10 0.97 0.88 - 0.57 0.48 0.40 0.32 - SRAM3 1.31 1.22 1.07 0.97 - 0.63 0.54 0.45 0.35 - USB_OTG_FS 10.47 9.58 8.67 7.83 - 5.05 4.30 3.61 2.77 - AHB2-2 0.79 0.74 0.64 0.58 - 0.38 0.32 0.26 0.20 - FMC 5.34 4.87 4.42 3.99 - 2.58 2.19 1.84 1.42 - OCTOSPI1 1.58 1.45 1.29 1.18 - 0.76 0.64 0.54 0.42 - OCTOSPI1 indep(1) 1.11 1.01 0.91 0.83 - 0.54 0.45 0.38 0.29 - OCTOSPI2 0.79 0.72 0.65 0.58 - 0.39 0.32 0.28 0.21 - 0.91 0.83 0.75 0.68 - 0.44 0.37 0.31 0.24 - AHB2-1 Bus Peripheral RNG indep (1) (1) AHB2-2 SMPS Range1 LDO OCTOSPI2 indep(1) 1.34 DS13086 Rev 6 Unit µA/ MHz 199/334 299 Electrical characteristics STM32U585xx Table 72. Typical dynamic current consumption of peripherals (continued) Range2 Range3 Range4 Stop 1 Stop 2 Range1 Range2 Range3 Range4 Stop 1 Stop 2 0.96 0.87 0.79 0.72 0.98 0.46 0.39 0.33 0.26 0.35 2.52 2.28 2.06 1.85 1.86 1.21 1.03 0.86 0.66 0.66 ADF1 0.97 0.87 0.79 0.72 0.97 0.47 0.39 0.33 0.25 0.34 ADF1 indep(1) 0.35 0.31 0.28 0.26 0.21 0.17 0.14 0.12 0.09 0.07 AHB3 0.34 0.34 0.28 0.24 - 0.17 0.14 0.11 0.09 - DAC1 1.88 1.70 1.55 1.39 1.66 0.91 0.76 0.64 0.50 0.59 DAC1 indep(1) 1.30 1.17 1.06 0.96 0.92 0.63 0.52 0.44 0.34 0.33 GTZC2 0.34 0.32 0.30 0.29 - 0.16 0.14 0.12 0.11 - LPDMA1 0.43 0.39 0.36 0.32 0.58 0.21 0.17 0.14 0.11 0.20 LPGPIO1 0.10 0.09 0.09 0.08 0.26 0.05 0.04 0.03 0.03 0.09 PWR 0.13 0.12 0.10 0.09 - 0.06 0.05 0.04 0.03 - SRAM4 0.45 0.40 0.37 0.34 0.26 0.21 0.18 0.15 0.12 0.09 APB1 1.50 1.39 1.23 1.10 - 0.73 0.61 0.51 0.40 - CRS 0.30 0.27 0.25 0.22 - 0.15 0.12 0.10 0.08 - DTS 2.07 1.89 1.72 1.53 - 1.00 0.85 0.71 0.55 - 5.09 4.64 4.21 3.79 - 2.46 2.08 1.75 1.35 - 2.70 2.41 2.20 1.99 - 1.30 1.10 0.93 0.71 - I2C1 0.98 0.90 0.81 0.72 - 0.48 0.40 0.34 0.26 - I2C1 indep(1) 2.26 2.06 1.86 1.69 - 1.09 0.92 0.78 0.59 - I2C2 3.24 2.95 2.67 2.40 - 1.57 1.33 1.11 0.86 - 2.30 2.09 1.90 1.72 - 1.11 0.94 0.79 0.61 - I2C4 1.26 1.15 1.04 0.92 - 0.61 0.52 0.43 0.33 - I2C4 indep(1) 2.43 2.21 2.00 1.81 - 1.17 0.99 0.84 0.64 - Bus Peripheral ADC4 AHB3 ADC4 indep (1) FDCAN1 APB1 FDCAN1 indep(1) I2C2 indep 200/334 SMPS Range1 LDO (1) DS13086 Rev 6 Unit µA/ MHz STM32U585xx Electrical characteristics Table 72. Typical dynamic current consumption of peripherals (continued) Range2 Range3 Range4 Stop 1 Stop 2 Range1 Range2 Range3 Range4 Stop 1 Stop 2 1.71 1.56 1.42 1.26 - 0.83 0.70 0.59 0.46 - 4.20 3.83 3.48 3.15 - 2.03 1.72 4.95 1.11 - SPI2 1.90 1.73 1.57 1.40 - 0.92 0.77 0.66 0.51 - SPI2 indep(1) 0.81 0.75 0.68 0.62 - 0.40 0.33 0.28 0.21 - TIM2 4.01 3.64 3.31 2.99 - 1.93 1.64 1.37 1.06 - TIM3 4.51 4.10 3.72 3.35 - 2.18 1.84 1.55 1.19 - TIM4 4.27 3.88 3.52 3.16 - 2.06 1.74 1.46 1.12 - TIM5 3.95 3.60 3.27 2.93 - 1.91 1.62 1.36 1.04 - TIM6 0.95 0.86 0.78 0.69 - 0.46 0.39 0.33 0.25 - TIM7 0.90 0.82 0.75 0.65 - 0.44 0.37 0.31 0.24 - 1.86 1.70 1.54 1.39 - 0.90 0.76 0.64 0.50 - 3.47 3.17 2.87 2.60 - 1.68 1.42 1.19 0.93 - 1.93 1.76 1.60 1.44 - 0.94 0.79 0.66 0.51 - 3.57 3.25 2.95 2.67 - 1.72 1.46 1.23 0.95 - 1.60 1.46 1.33 1.17 - 0.78 0.66 0.55 0.43 - 5.53 5.04 4.57 4.12 - 2.67 2.26 1.91 1.46 - 3.57 3.24 2.95 2.65 - 1.72 1.46 1.22 0.94 - USART3 2.10 1.91 1.73 1.57 - 1.02 0.86 0.72 0.56 - USART3 indep(1) 4.24 3.86 3.5 3.17 - 2.05 1.73 1.45 1.12 - WWDG 0.37 0.34 0.31 0.25 - 0.18 0.15 0.13 0.10 - APB2 0.60 0.58 0.50 0.42 - 0.29 0.25 0.20 0.16 - SAI1 2.10 1.90 1.73 1.55 - 1.01 0.86 0.72 0.55 - SAI1 indep(1) 1.36 1.23 1.11 0.95 - 0.66 0.55 0.46 0.34 - SAI2 1.98 1.80 1.64 1.48 - 0.96 0.81 0.68 0.53 - 1.25 1.14 1.02 0.92 - 0.60 0.51 0.43 0.40 - 2.17 1.97 1.79 1.63 - 1.05 0.89 0.75 0.57 - Bus Peripheral LPTIM2 APB1 LPTIM2 indep (1) UART4 UART4 indep (1) UART5 UART5 indep(1) UCPD1 USART2 USART2 indep APB2 SMPS Range1 LDO SAI2 indep SPI1 (1) (1) DS13086 Rev 6 Unit µA/ MHz 201/334 299 Electrical characteristics STM32U585xx Table 72. Typical dynamic current consumption of peripherals (continued) Range2 Range3 Range4 Stop 1 Stop 2 Range1 Range2 Range3 Range4 Stop 1 Stop 2 SPI1 indep(1) 0.97 0.88 0.79 0.72 - 0.47 0.39 0.33 0.25 - TIM1 6.14 5.59 5.08 4.60 - 2.96 2.52 2.11 1.63 - TIM15 3.37 3.06 2.79 2.51 - 1.63 1.38 1.16 0.89 - TIM16 2.60 2.36 2.15 1.94 - 1.25 1.06 0.90 0.69 - TIM17 2.40 2.18 1.99 1.79 - 1.16 0.98 0.82 0.63 - TIM8 6.24 5.69 5.16 4.66 - 3.01 2.55 2.15 1.65 - USART1 2.38 2.16 1.96 1.76 - 1.14 0.97 0.81 0.62 - USART1 indep(1) 4.48 4.09 3.71 3.35 - 2.17 1.84 1.54 1.19 - APB3 0.49 0.48 0.40 0.36 - 0.24 0.20 0.16 0.13 - COMP 0.20 0.18 0.16 0.14 0.15 0.10 0.08 0.06 0.05 0.05 I2C3 0.79 0.71 0.65 0.58 0.59 0.38 0.32 0.27 0.20 0.21 I2C3 indep(1) 1.84 1.66 1.50 1.36 1.36 0.89 0.75 0.63 0.48 0.48 LPTIM1 0.98 0.89 0.81 0.72 0.73 0.48 0.40 0.33 0.25 0.26 3.08 2.81 2.49 2.29 2.33 1.46 1.24 1.04 0.81 µA/ 0.83 MHz LPTIM3 1.07 0.98 0.89 0.80 0.80 0.52 0.44 0.37 0.28 0.28 LPTIM3 indep(1) 2.85 2.61 2.36 2.15 2.19 1.43 1.22 0.98 0.77 0.78 LPTIM4 0.58 0.52 0.48 0.42 0.43 0.28 0.24 0.20 0.15 0.15 1.67 1.50 1.38 1.26 1.30 0.8 0.70 0.57 0.44 0.46 LPUART1 1.18 1.07 0.97 0.87 0.88 0.57 0.48 0.41 0.31 0.31 LPUART1 indep(1) 1.96 1.78 1.62 1.45 1.46 0.95 0.80 0.67 0.52 0.52 OPAMP 0.19 0.17 0.16 0.12 0.14 0.09 0.07 0.07 0.04 0.05 RTC 2.33 2.12 1.92 1.73 1.63 1.12 0.95 0.80 0.61 0.58 SPI3 1.48 1.34 1.22 1.10 1.10 0.71 0.61 0.51 0.38 0.39 SPI3 indep(1) 0.57 0.52 0.47 0.42 0.42 0.28 0.24 0.20 0.15 0.15 SYSCFG 0.29 0.27 0.24 0.22 0.14 0.12 0.10 0.08 VREFBUF 0.13 0.11 0.10 0.08 0.06 0.05 0.04 0.03 APB2 Bus Peripheral LPTIM1 APB3 SMPS Range1 LDO LPTIM4 indep(1) indep(1) 1. indep = independent clock domain. 202/334 DS13086 Rev 6 0.09 0.03 Unit STM32U585xx 5.3.6 Electrical characteristics Wakeup time from low-power modes and voltage scaling transition times The wakeup times given in the table below are the latency between the event and the execution of the first user instruction (FSTEN = 1 in PWR_CR3 if not mentioned). The device goes in low-power mode after the WFE (wait for event) instruction. Table 73. Low-power mode wakeup timings on LDO(1) Mode twu(Sleep) twu(Stop 0) Parameter Wakeup time from Sleep to Run mode Wakeup time from Stop 0 to Run mode All SRAMs retained Typ (3 V, 30 °C) Max (3 V) Unit SLEEP_PD = 0 14 17 Nb of CPU cycles SLEEP_PD = 1 with MSI = 24 MHz 8.1 8.8 Wakeup in FLASH, range 4, FLASHFWU = 1 and SRAM4FWU = 1 in PWR_CR2 MSI 24 MHz 2.35 2.5 Wakeup in FLASH, range 4, FLASHFWU = 0 and SRAM4FWU = 0 in PWR_CR2 MSI 24 MHz 11.0 12.0 HSI 16 MHz 11.0 12.0 MSI 1 MHz 37.0 39.0 Wakeup in SRAM2, range 4, FLASHFWU = 0 and SRAM4FWU = 0 in PWR_CR2 MSI 24 MHz 4.75 5.00 HSI 16 MHz 6.75 7.4 MSI 1 MHz 34.00 36.0 MSI 24 MHz 13.0 15.0 Wakeup in FLASH, FLASHFWU = 0 and SRAM4FWU = 0 in PWR_CR2 MSI 24 MHz 22.0 24.0 HSI 16 MHz 21.5 24.0 MSI 1 MHz 48.0 51.0 Wakeup in SRAM2, range 4, FLASHFWU = 0 and SRAM4FWU = 0 in PWR_CR2 MSI 24 MHz 15.5 18.0 HSI 16 MHz 17.5 20.0 MSI 1 MHz 45.0 48.0 Conditions Wakeup in FLASH, FLASHFWU = 1 and SRAM4FWU = 1 in PWR_CR2 twu(Stop 1) Wakeup time from Stop 1 to Run mode All SRAMs retained DS13086 Rev 6 µs 203/334 299 Electrical characteristics STM32U585xx Table 73. Low-power mode wakeup timings on LDO(1) (continued) Mode Parameter Wakeup in FLASH, SRAM4FWU = 1 in PWR_CR2 twu(Stop 2) Wakeup time from Stop 2 to Run mode All SRAMs retained Wakeup in FLASH, SRAM4FWU = 0 in PWR_CR2 Wakeup in SRAM2, range 4, SRAM4FWU = 0 in PWR_CR2 Wakeup in FLASH, FSTEN = 0 in PWR_CR3 twu(Stop 3) Wakeup time from Stop 3 to Run mode All SRAMs retained Wakeup in FLASH, FSTEN = 1 in PWR_CR3 Wakeup in SRAM2, range 4, FLASHFWU = 0 and SRAM4FWU = 0 in PWR_CR2 twu(Standby with SRAM2) twu(Standby) twu(Shutdown) Wakeup time from Standby with SRAM2 to Run mode Wakeup time from Standby to Run mode Wakeup time from Shutdown to Run mode Typ (3 V, 30 °C) Max (3 V) MSI 24 MHz 20.0 23.0 MSI 24 MHz 23.0 25.0(2) HSI 16 MHz 22.5 25.0 MSI 1 MHz 57.0 60.0 MSI 24 MHz 16.5 19.0 HSI 16 MHz 18.5 21.0 MSI 1 MHz 54.0 57.0 MSI 24 MHz 68.0 130 MSI 24 MHz 28.50 37.0 HSI 16 MHz 28.0 36.0 MSI 1 MHz 68.50 91.0 MSI 24 MHz 22.50 31.0 HSI 16 MHz 24.0 32.0 MSI 1 MHz 64.5 85.0 MSI 4 MHz 64.5 110 MSI 4 MHz 64.5 83.0 MSI 1 MHz 155 240 MSI 4 MHz 340 420 MSI 4 MHz 100 130 MSI 1 MHz 210 290 MSI 4 MHz 610 710 Conditions Wakeup in FLASH, FSTEN = 0 in PWR_CR3 Wakeup in FLASH, FSTEN = 1 in PWR_CR3 Wakeup in FLASH, FSTEN = 0 in PWR_CR3 Wakeup in FLASH, FSTEN = 1 in PWR_CR3 - 1. Evaluated by characterization and not tested in production, unless otherwise specified. 2. Tested in production at 130°C. 204/334 DS13086 Rev 6 Unit µs STM32U585xx Electrical characteristics Table 74. Low-power mode wakeup timings on SMPS(1) Mode twu(Sleep) twu(Stop 0) Typ (3 V, 30 °C) Max (3 V) Unit SLEEP_PD = 0 14 17 Nb of CPU cycles SLEEP_PD = 1 with MSI = 24 MHz 8.1 8.8 Wakeup in FLASH, range 4, FLASHFWU = 1 and SRAM4FWU = 1 in PWR_CR2 MSI 24 MHz 2.35 2.5 Wakeup in FLASH, range 4, Wakeup time from Stop 0 FLASHFWU = 0 and to Run mode SRAM4FWU = 0 in All SRAMs retained PWR_CR2 MSI 24 MHz 11.0 12.0 HSI 16 MHz 11.0 12.0 MSI 1 MHz 37.0 39.0 Wakeup in SRAM2, range 4, FLASHFWU = 0 and SRAM4FWU = 0 in PWR_CR2 MSI 24 MHz 4.75 5.0 HSI 16 MHz 6.75 7.4 MSI 1 MHz 34.0 36.0 MSI 24 MHz 7.7 8.3 MSI 24 MHz 16.5 18.0 HSI 16 MHz 16.0 18.0 MSI 1 MHz 42.5 45.0 MSI 24 MHz 10.0 11.0 HSI 16 MHz 12.0 13.0 MSI 1 MHz 39.5 42.0 MSI 24 MHz 17.5 19.0 MSI 24 MHz 20.5 22.0 HSI 16 MHz 20.0 22.0 MSI 1 MHz 54.0 70.0 MSI 24 MHz 14.0 16.0 HSI 16 MHz 16.0 18.0 MSI 1 MHz 51.5 74.0 Parameter Wakeup time from Sleep to Run mode Conditions Wakeup in FLASH, FLASHFWU = 1 and SRAM4FWU = 1 in PWR_CR2 twu(Stop 1) Wakeup in FLASH Wakeup time from Stop 1 FLASHFWU = 0 and to Run mode SRAM4FWU = 0 in All SRAMs retained PWR_CR2 Wakeup in SRAM2, range 4, FLASHFWU = 0 and SRAM4FWU = 0 in PWR_CR2 Wakeup in FLASH SRAM4FWU = 1 in PWR_CR2 twu(Stop 2) Wakeup in FLASH Wakeup time from Stop 2 SRAM4FWU = 0 in to Run mode PWR_CR2 All SRAMs retained Wakeup in SRAM2, range 4, SRAM4FWU = 0 in PWR_CR2 DS13086 Rev 6 µs 205/334 299 Electrical characteristics STM32U585xx Table 74. Low-power mode wakeup timings on SMPS(1) (continued) Mode Parameter Wakeup in FLASH, FSTEN = 0 in PWR_CR3 twu(Stop 3) Wakeup in FLASH, Wakeup time from Stop 3 FSTEN = 1 in PWR_CR3 to Run mode All SRAMs retained Wakeup in SRAM2, range 4 twu(Standby with SRAM2) twu(Standby) twu(Shutdown) Wakeup time from Standby with SRAM2 to Run mode Wakeup time from Standby to Run mode Typ (3 V, 30 °C) Max (3 V) MSI 24 MHz 130 160 MSI 24 MHz 32.5 37.0 HSI 16 MHz 32.0 36.0 MSI 1 MHz 72.5 94.0 MSI 24 MHz 26.5 31.0 HSI 16 MHz 28.0 32.0 MSI 1 MHz 68.5 89.0 MSI 4 MHz 61.5 80.0 MSI 4 MHz 61.5 80.0 MSI 1 MHz 150 240 MSI 4 MHz 340 420 MSI 4 MHz 100 130 MSI 1 MHz 210 290 MSI 4 MHz 610 710 Conditions Wakeup in FLASH, FSTEN = 0 in PWR_CR3 Wakeup in FLASH, FSTEN = 1 in PWR_CR3 Wakeup in FLASH, FSTEN = 0 in PWR_CR3 Wakeup in FLASH, FSTEN = 1 in PWR_CR3 Wakeup time from Shutdown to Run mode - Unit µs 1. Evaluated by characterization. Not tested in production. Table 75. Regulator mode transition times(1) Symbol tLDO(2) tSMPS(2) 206/334 Parameter SMSP to LDO transition time LDO to SMPS transition time Conditions Typ (3 V, 30 °C) Max (3 V) Range 4 16.0 Range 3 15.0 17.0 Range 2 14.0 18.0 Range 1 14.0 16.0 Range 4 14.0 16.0(3) Range 3 17.0 20.0 Range 2 16.0 19.0 Range 1 16.0 19.0 DS13086 Rev 6 Unit (3) 20.0 µs STM32U585xx Electrical characteristics Table 75. Regulator mode transition times(1) (continued) Symbol Parameter Range 4 to range 3 Range 3 to range 2 tVOST(4) Range 2 to range 1 Range 4 to range 1 Conditions Typ (3 V, 30 °C) Max (3 V) LDO 19.0 21.0 SMPS 25.0 38.0 LDO 13.0 15.0 SMPS 13.0 23.0 LDO 12.0 14.0 SMPS 12.0 17.0 LDO 42.0 47.0 SMPS 48.0 76.0 Unit µs 1. Evaluated by characterization and not tested in production, unless otherwise specified. 2. Time to REGS change in PWR_SVMSR. 3. Tested in production at 30°C. 4. Time to VOSRDY = 1 in PWR_VOSR. Table 76. Wakeup time using USART/LPUART(1) Symbol Parameter Typ Max Unit - (2) μs Wakeup time needed to calculate the maximum USART/LPUART baudrate that tWUUSART is needed to wake up from Stop mode when the USART/LPUART kernel clock tWULPUART source is HSI16/MSI. 1. Specified by design. Not tested in production. 2. This wakeup time is the HSI16 (see Table 81) or the MSI (see Table 82) oscillator maximum startup time. 5.3.7 External clock timing characteristics High-speed external user clock generated from an external source In bypass mode, the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 5.3.14: I/O port characteristics. However, the recommended clock input waveform is shown in the figure below. Table 77. High-speed external user clock characteristics(1) Symbol Parameter Conditions Min Typ Max Voltage scaling range 1, 2, 3 - - 55 Voltage scaling range 4 - - 25 Unit fHSE_ext User external clock source frequency VHSEH OSC_IN input pin high-level voltage - 0.7 × VDD - VDD VHSEL OSC_IN input pin low level voltage - VSS - 0.3 × VDD Voltage scaling range 1, 2, 3 7 - - Voltage scaling range 4 18 - - tw(HSEH) OSC_IN high or low time tw(HSEL) MHz V ns 1. Specified by design. Not tested in production. DS13086 Rev 6 207/334 299 Electrical characteristics STM32U585xx Figure 28. AC timing diagram for high-speed external clock source VHSE tw(HSEH) VHSEH 70% VHSEL 30% t tw(HSEL) THSE MSv67850V3 Low-speed external user clock generated from an external source In bypass mode, the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 5.3.14: I/O port characteristics. However, the recommended clock input waveform is shown in Figure 29 and Figure 30. Table 78. Low-speed external user clock characteristics(1) Symbol fLSE_ext VLSE_ext_PP Parameter Min Typ Max Unit 5 32.768 40 kHz 0.3 - VSW(2) User external clock source frequency OSC32_IN peak-to-peak amplitude VLSE_ext OSC32_IN input range 0 - VSW(2) tw(LSEH) tw(LSEL) OSC32_IN high or low time for square signal input 10 - - 1. Specified by design. Not tested in production. 2. VSW = VDD when VDD is above VBOR0, and VSW=VBAT when VDD is below VBOR0. Figure 29. AC timing diagram for low-speed external square clock source VLSE_ext tw(LSEH) VLSEH 70% VLSE_ext_PP VLSEL 30% tLSE = 1/fLSE_ext tw(LSEL) t MSv67851V3 208/334 DS13086 Rev 6 V μs STM32U585xx Electrical characteristics Figure 30. AC timing diagram for low-speed external sinusoidal clock source VLSE_ext VLSE_ext_PP t tLSE_ext = 1/fLSE_ext MSv69160V1 High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in the table below. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins, in order to minimize the output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 79. HSE oscillator characteristics(1) Symbol fOSC_IN RF Conditions(2) Min Typ Max Unit - 4 - 50 MHz - - 200 - kΩ - - 8 VDD = 3 V, Rm = 30 Ω, CL = 10 pF @ 4 MHz - 670 - VDD = 3 V, Rm = 30 Ω, CL = 10 pF @ 8 MHz - 530 - VDD = 3 V, Rm = 45 Ω, CL = 10 pF @ 8 MHz - 580 - VDD = 3 V, Rm = 30 Ω, CL = 5 pF @ 48 MHz - 980 - VDD = 3 V, Rm = 30 Ω, CL = 10 pF @ 48 MHz - 1700 - VDD = 3 V, Rm = 30 Ω, CL = 20 pF @ 48 MHz - 2700 - Maximum critical crystal Startup transconductance Gm - - 1.5 mA/V Startup time - 2 - ms Parameter Oscillator frequency Feedback resistor During startup IDD(HSE) Gmcritmax tsu(HSE) (4) HSE current consumption (3) VDD stabilized μA 1. Specified by design. Not tested in production. DS13086 Rev 6 209/334 299 Electrical characteristics STM32U585xx 2. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time. 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see the figure below). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance that is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Note: For information on selecting the crystal, refer to the application note ‘Oscillator design guide for STM8AF/AL/S, STM32 MCUs and MPUs’ (AN2867). Figure 31. Typical application with a 8 MHz crystal Resonator with integrated capacitors CL1 OSC_IN 8 MHz resonator CL2 REXT (1) fHSE RF Bias controlled gain OSC_OUT MS19876V1 1. REXT value depends on the crystal characteristics. Low-speed external clock generated from a crystal resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in the table below. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 80. LSE oscillator characteristics (fLSE = 32.768 kHz)(1) Symbol IDD(LSE) 210/334 Parameter LSE current consumption Conditions(2) Min Typ Max LSEDRV[1:0] = 01, medium low-drive capability - 350 - LSEDRV[1:0] = 10, medium high-drive capability - 450 - LSEDRV[1:0] = 11, high-drive capability - 600 - DS13086 Rev 6 Unit nA STM32U585xx Electrical characteristics Table 80. LSE oscillator characteristics (fLSE = 32.768 kHz)(1) (continued) Symbol Conditions(2) Parameter Maximum critical Gmcritmax crystal Gm CS_PARA Min Typ Max LSEDRV[1:0] = 01, medium low-drive capability - - 0.75 LSEDRV[1:0] = 10, medium high-drive capability - - 1.7 LSEDRV[1:0] = 11, high-drive capability - - 2.7 - 3 - pF - 2 - s Internal stray parasitic capacitance(3) - tSU(LSE)(4) Startup time VDD is stabilized Unit µA/V 1. Specified by design. Not tested in production. 2. Refer to the note below this table. 3. CS_PARA is the equivalent capacitance seen by the crystal due to OSC32_IN and OSC32_OUT internal parasitic capacitances. 4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer Note: For information on selecting the crystal, refer to the application note ‘Oscillator design guide for STM8AF/AL/S, STM32 MCUs and MPUs’ (AN2867). Figure 32. Typical application with a 32.768 kHz crystal Resonator with integrated capacitors CL1 OSC32_IN 32.768 kHz resonator fLSE Drive programmable amplifier CS OSC32_OUT CL2 Note: CL1 and CL2 are external load capacitances. Cs (stray capacitance) is the sum of the device OSC32_IN/OSC32_OUT pins equivalent parasitic capacitance (CS_PARA), and the PCB parasitic capacitance. Note: MSv70418V1 An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. DS13086 Rev 6 211/334 299 Electrical characteristics 5.3.8 STM32U585xx Internal clock timing characteristics The parameters given in the table below are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 33. The provided curves are characterization results, not tested in production. High-speed internal (HSI16) RC oscillator Table 81. HSI16 oscillator characteristics Symbol Parameter Conditions fHSI16 fHSI16(1) TRIM(2) DuCy(HSI16)(2) tsu(HSI16) (2) HSI16 frequency after factory calibration Min Typ Max VDD = 3.0 V, TJ = 30 °C 15.92 16 16.08 TJ = –10 °C to 100 °C, 1.58 ≤ VDD ≤ 3.6 V 15.84 - 16.16 TJ = –40 °C to 130 °C, 1.58 ≤ VDD ≤ 3.6 V 15.65 - 16.25 MHz HSI16 user trimming step - 18 29 40 kHz Duty cycle - 45 - 55 % HSI16 oscillator startup time - - 2.5 3.6 At 1% of target frequency - 4 6 - - 150 210 tstab(HSI16)(2) HSI16 oscillator stabilization time IDD(HSI16)(2) HSI16 oscillator power consumption 1. Evaluated by characterization. Not tested in production. It does not take into account package and soldering effects. 2. Specified by design. Not tested in production. 212/334 Unit DS13086 Rev 6 μs μA STM32U585xx Electrical characteristics Multi-speed internal (MSI) RC oscillator Table 82. MSI oscillator characteristics(1) Symbol Parameter Conditions MSI mode fMSI MSI frequency after factory calibration VDD = 3 V TJ = 30 °C Min Typ Max MSI range 0 (MSIRC0) 47.74 48 48.70 MSI range 1 23.87 24 24.35 MSI range 2 15.91 16 16.23 MSI range 3 11.93 12 12.17 MSI range 4 (MSIRC1) 3.98 4 4.06 MSI range 5 1.99 2 2.03 MSI range 6 1.33 1.33 1.35 MSI range 7 0.99 1 1.01 MSI range 8 (MSIRC2) 3.05 3.08 3.12 MSI range 9 1.53 1.54 1.56 MSI range 10 1.02 1.03 1.04 MSI range 11 0.76 0.77 0.78 MSI range 12 (MSIRC3) 397.68 400 405.71 MSI range 13 198.84 200 202.86 MSI range 14 132.56 133 135.24 MSI range 15 99.42 100 101.43 MSI range 0 (MSIRC0) - 48.005 - MSI range 1 - 24.003 - MSI range 2 - 16.002 - MSI range 3 - 12.001 - MSI range 4 (MSIRC1) - 3.998 - - 1.999 - - 1.333 - - 0.999 - MSI range 8 (MSIRC2) - 3.08 - MSI range 9 - 1.54 - MSI range 10 - 1.027 - MSI range 11 - 0.77 - PLL mode(2) MSI range 5 XTAL = 32.768 kHz MSI range 6 MSI range 7 DS13086 Rev 6 Unit MHz kHz MHz 213/334 299 Electrical characteristics STM32U585xx Table 82. MSI oscillator characteristics(1) (continued) Symbol Parameter fMSI (cont’d) DuCy(MSI) (3) TRIM MSI frequency after factory calibration Duty cycle ∆FSAMPLING (MSI) (3)(4) CC jitter(MSI)(3) MSI range 12 (MSIRC3) RMS cycle-to-cycle jitter Max Unit - 393 - MHz 196.6 - - 131 - MSI range 15 - 98.3 - MSI range 0, 4, 8, or 12 38 - 62 MSI range 2, 6, 10, or 14 31 - 69 Other MSI ranges 48 - 52 - - 0.4 - TJ = –40 to 130 °C -4 - 2 MSI mode MSI mode PLL mode P jitter(MSI)(3) RMS period jitter PLL mode 214/334 Typ - VDD = 3 V TJ = 30 °C MSI oscillator frequency drift MSI mode over VDD (reference is 3V) MSI frequency variation in sampling mode (MSIBIAS = 1) Min PLL mode MSI range 13 XTAL = 32.768 kHz MSI range 14 User trimming step MSI oscillator frequency drift over (4) ∆TEMP(MSI) temperature (reference is 30 °C) ∆VDD(MSI)(4) Conditions MSI range 0 to 3 1.58 ≤ VDD ≤ 3.6 V -4 - 1 2.4 ≤ VDD ≤ 3.6 V -1 - 1 MSI range 4 to 7 1.58 ≤ VDD ≤ 3.6 V -3 - 1 2.4 ≤ VDD ≤ 3.6 V -1 - 1 MSI range 8 to 11 1.58 ≤ VDD ≤ 3.6 V -3 - 1 2.4 ≤ VDD ≤ 3.6 V -1 - 1 MSI range 12 to 15 1.58 ≤ VDD ≤ 3.6 V -3 - 1 2.4 ≤ VDD ≤ 3.6 V -1 - 1 TJ = –40 to 130 °C - - 0.2 MSI range 0 - 60 - MSI range 4 - 160 - MSI range 8 - 200 - MSI range 12 - 1100 - MSI range 0 - 40 - MSI range 4 - 130 - MSI range 8 - 170 - MSI range 12 - 800 - DS13086 Rev 6 kHz % ps STM32U585xx Electrical characteristics Table 82. MSI oscillator characteristics(1) (continued) Conditions MSI range 0 to 3 MSI oscillator transition time(6) MSI oscillator PLL mode, stabilization time MSIPLL FAST = 0 PLL mode, MSIPLL FAST = 1 (3) _PLLFAST) - 4 MSIRC1 cycles + 11 MSI cycles - 4 MSIRC2 cycles + 11 MSI cycles - 4 MSIRC3 cycles + 11 MSI cycles - - 3 destination MSI cycles - - 10 - - 200 - - 0.8 - MSI PLL-mode oscillator power consumption when MSI is disabled with PLL accuracy retention - - Normal mode IDD(MSI_OFF - 13 MSIRC0 cycles + 11 MSI cycles MSI oscillator startup time(5) MSI range 12 to 15 tstab(MSI)(3) Max - MSI range 8 to 11 tswitch(MSI)(3) Typ - MSI range 4 to 7 tsu(MSI)(3) Min Continuous mode(7) Sampling mode(8) All MSI ranges Final frequency 1% of final frequency µs All MSI ranges LDO MSIPLL EN = 1 and MSIPLL FAST = 1 SMPS 2 MSI range 0 to 3 - 6.6 - MSI range 4 to 7 - 1.6 - MSI range 8 to 11 - 1.4 - MSI range 12 to 15 - 0.8 - MSI range 0 to 3 - 4.7 - MSI range 4 to 7 - 1.4 - MSI range 8 to 11 - 1.3 - MSI range 12 to 15 - 0.8 - DS13086 Rev 6 Unit cycles Parameter ms cycles Symbol µA 215/334 299 Electrical characteristics STM32U585xx Table 82. MSI oscillator characteristics(1) (continued) Symbol Parameter Conditions Min Typ Max MSI range 0 to 3 - 21 + 2.5 µA/MHz - MSI range 4 to 15 - 19 + 2.5 µA/MHz - MSI range 0 to 3 - 21 + 1,3 µA/MHz - MSI range 4 to 15 - 19 + 1,3 µA/MHz - Range 0 to 3 - 3 + 2.5 µA/MHz - Range 4 to 15 - 1+ 2.5µA/ MHz - Range 0 to 3 - 3+1 µA/MHz - Range 4 to 15 - 1+1 µA/MHz - LDO Continuous mode(7) SMPS(9) IDD(MSI)(3) MSI oscillator power consumption LDO Sampling mode(8) SMPS Unit µA 1. Evaluated by characterization and not tested in production, unless otherwise specified. 2. In PLL mode, the MSI accuracy is the LSE crystal accuracy. 3. Specified by design. Not tested in production. 4. This is a deviation for an individual part once the initial frequency has been measured. 5. The MSI startup time is the time when the four MSIRCs are in power down. 6. This delay is the time to switch from one MSIRC to another one. In case the destination MSIRC is in power down, the total delay is tsu(MSI) + tswitch(MSI). 7. The MSI is in continuous mode when the internal regulator is in voltage range 1, 2 or 3. 8. The MSI is in sampling mode when MSIBIAS = 1 in RCC_ICSCR1, and the regulator is in voltage range 4, or when the device is in Stop 1 or Stop 2 mode. 9. SMPS efficiency in range 1, based on VCORE current = 19.4 mA (CoreMark current on VCORE at 160 MHz). High-speed internal 48 MHz (HSI48) RC oscillator Table 83. HSI48 oscillator characteristics Symbol fHSI48 216/334 Parameter Conditions HSI48 frequency after factory calibration VDD = 3.0 V, TJ = 30 °C DS13086 Rev 6 Min Typ Max Unit 47.5 48 48.5 MHz STM32U585xx Electrical characteristics Table 83. HSI48 oscillator characteristics (continued) Symbol TRIM (1) Parameter Max - - 0.12 0.18 ±4.5 ±7.56 - 45 - 55 - ACCHSI48_REL Accuracy of the HSI48 oscillator over temperature (factory calibrated) Reference is 3 V and 30 °C(3). ∆VDD(HSI48)(1) HSI48 frequency drift with VDD(4) NT jitter(1) Next transition jitter Accumulated jitter on 28 cycles(5) PT jitter(1) tsu(HSI48)(1) IDD(HSI48) Typ ±63 steps DuCy(HSI48)(1) Duty cycle (1) Min User trimming step USER TRIM User trimming coverage COVERAGE(2) (2) Conditions Unit % 1.58 V ≤ VDD ≤ 3.6 V, TJ = –40 to 125 °C -3 - 2 3.0 V ≤ VDD ≤ 3.6 V - 0.025 0.05 1.58 V ≤ VDD ≤ 3.6 V - 0.05 0.1 - - ±0.15 - Paired transition jitter Accumulated jitter on 56 cycles(5) - - ±0.25 - HSI48 oscillator startup time - - 2.5 6 μs HSI48 oscillator power consumption - - 350 400 μA ns 1. Specified by design. Not tested in production. 2. Evaluated by characterization. Not tested in production. 3. ∆fHSI = ACCHSI48_REL + ∆VDD. 4. These values are obtained with one of the following formula: (Freq(3.6 V) - Freq(3.0 V)) / Freq(3.0 V) or (Freq(3.6 V) - Freq(1.58 V)) / Freq(1.58 V). 5. Jitter measurements are performed without clock source activated in parallel. Figure 33. HSI48 frequency versus temperature MSv69123V1 DS13086 Rev 6 217/334 299 Electrical characteristics STM32U585xx Secure high-speed internal (SHSI) RC oscillator Table 84. SHSI oscillator characteristics(1) Symbol Conditions Min Typ Max Unit SHSI frequency - - 48 - MHz tSU(SHSI) SHSI oscillator startup time - - 2.5 6 μs IDD(SHSI) SHSI oscillator power consumption - - 350 400 μA fSHSI Parameter 1. Specified by design. Not tested in production. Low-speed internal (LSI) RC oscillator Table 85. LSI oscillator characteristics Symbol fLSI Parameter Conditions Min Typ Max VDD = 3.0 V, TJ = 30 °C, LSIPREDIV = 0 31.4 - 32.6 VDD = 3.0 V, TJ = 30 °C, LSIPREDIV = 1 0.245 - 0.255 1.58 V≤ VDD ≤ 3.6 V, TJ = –40 to 125 °C 30.4(1) - 33.6(1) - 50 - - - 230 260 LSI oscillator stabilization time 5% of final frequency - 230 260 LSIPREDIV = 0 - 140 255 LSIPREDIV = 1 - 130 240 LSI frequency DuCy(LSI) LSI duty cycle tSU(LSI) (2) tSTAB(LSI) (2) IDD(LSI)(2) LSIPREDIV = 1 LSI oscillator startup time LSI oscillator power consumption Unit kHz % μs nA 1. Evaluated by characterization. Not tested in production. 2. Specified by design. Not tested in production. 5.3.9 PLL characteristics The parameters given in the table below are derived from tests performed under temperature and VDD supply voltage conditions summarized in Table 33. Table 86. PLL characteristics(1) Symbol fPLL_IN fPLL_OUT Parameter Conditions Min Typ Max Unit PLL input clock - 4 - 16 MHz PLL input clock duty cycle - 10 - 90 % Voltage scaling range 1 1 - 160(2) Voltage scaling range 2 1 - 110 Voltage scaling range 3 1 - 55 Voltage scaling range 1, 2 128 - 544 Voltage scaling range 3 128 - 330 Duty cycle with division 1 40 - 60 PLL P, Q, R output clock fVCO_OUT PLL VCO output 218/334 DS13086 Rev 6 MHz % STM32U585xx Electrical characteristics Table 86. PLL characteristics(1) (continued) Symbol Parameter tLOCK(3)(4) PLL lock time RMS cycle-tocycle jitter Jitter RMS period jitter Long-term jitter(5), fPLL_IN = 8 MHz IDD(PLL) IDD(PLL) PLL power consumption on VDD with LDO PLL power consumption on VDD with SMPS Conditions Min Typ Max Integer mode - 25 50 Fractional mode - 40 65 Integer mode, VCO = 544 MHz - 20 - Fractional mode, VCO = 544 MHz - 70 - Integer mode, VCO = 544 MHz - 35 - Fractional mode, VCO = 544 MHz - 45 - Integer mode, VCO = 544 MHz - 160 - Fractional mode, VCO = 544 MHz - 170 - VCO freq = 160 MHz, Range 1 1 clock output - 370 - VCO freq = 160 MHz, Range 1 3 clock outputs - 390 - - 460 - - 435 - - 410 - VCO freq = 336 MHz, Range 1 1 clock output - 710 - VCO freq = 544 MHz, Range 1 1 clock output - 1100 - VCO freq = 160 MHz, Range 1, IVCORE(6) = 19.4 mA 1 clock output - 260 - VCO freq = 160 MHz, Range 1, IVCORE(6) = 19.4 mA 3 clock outputs - 270 - Range 1, IVCORE(6) = 19.4 mA - 320 - - 300 - - 290 - VCO freq = 336 MHz, Range 1, IVCORE(6) = 19.4 mA 1 clock output - 470 - VCO freq = 544 MHz, Range 1, IVCORE(6) = 19.4 mA 1 clock output - 730 - Range 1 VCO freq = 200 MHz, Range 2 1 clock output Range 3 VCO freq = 200 MHz, Range 2, IVCORE(6) = 11.7 mA 1 clock output Range 3, IVCORE(6) = 5.74 mA Unit μs ±ps μA 1. Specified by design and not tested in production, unless otherwise specified. 2. PLL1 output Q and PLL2 output Q can be up to 200 MHz only when selected as OCTOSPI clock. 3. Evaluated by characterization. Not tested in production. 4. Lock time is the duration until PLLxRDY flag (2% of final frequency). 5. Measured on 5000 cycles. 6. SMPS efficiency based on CoreMark RUN current on VCORE at max frequency of each voltage range. DS13086 Rev 6 219/334 299 Electrical characteristics 5.3.10 STM32U585xx Flash memory characteristics Table 87. Flash memory characteristics(1) Symbol tprog 128-bit programming time tprog_bank One 1-Mbyte bank programming time tME Max(2) Normal mode 118 118 Burst mode 48 48 fAHB = 160 MHz, normal mode 60.2 - fAHB = 160 MHz, burst mode 24.5 - fAHB = 160 MHz, normal mode 7710 - fAHB = 160 MHz, burst mode 3140 - 10 k endurance cycles 1.5 2.4 100 k endurance cycles 1.7 3.4 195 308 390 616 Write mode 2.1 - Erase mode 1.3 - Write mode 2.6 - Erase mode 3.0 - Conditions tprog_page One 8-Kbyte page programming time tERASE Typ Parameter One 8-Kbyte page erase time Mass erase time (one bank) 10 k endurance cycles Mass erase time (two banks) Average consumption from VDD IDD(3) Maximum current (peak) Unit µs ms mA 1. Specified by design. Not tested in production. 2. Evaluated by characterization after cycling. Not tested in production. 3. Evaluated by characterization. Not tested in production. Table 88. Flash memory endurance and data retention Symbol NEND Parameter Endurance Min(1) Conditions Whole bank Limited to 256 Kbytes per bank 10 TA = –40 to 125 °C 100 TA = 85 °C after 1 kcycle(2) TA = 125 °C after 1 15 kcycle(2) 10 tRET (2) 30 TA = 85 °C after 10 kcycles(2) 15 TA = 55 °C after 10 kcycles Data retention (2) 10 TA = 55 °C after 100 kcycles(2) 30 Limited to 256 Kbytes per bank TA = 85 °C after 100 kcycles(2) 15 TA = 105 °C after 10 kcycles TA = 105 °C after 100 kcycles(2) 1. Evaluated by characterization. Not tested in production. 2. Cycling performed over the whole temperature range. 220/334 DS13086 Rev 6 kcycles 30 (2) TA = 105 °C after 1 kcycle Whole bank Unit 10 Years STM32U585xx 5.3.11 Electrical characteristics EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling two LEDs through the I/O ports), the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs as follows: • Electrostatic discharge (ESD) (positive and negative): applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB (fast transient voltage burst) (positive and negative): applied to VDD and VSS pins through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in the table below. They are based on the EMS levels and classes defined in application note EMC design guide for STM8, STM32 and Legacy MCUs (AN1709). Table 89. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VDD = 3.3 V, TA = +25 °C, fHCLK = 160 MHz, BGA169 conforming to IEC 61000-4-2 3B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, TA = +25 °C, fHCLK = 160 MHz, BGA169 conforming to IEC 61000-4-4 5A Designing hardened software to avoid noise problems The EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. Note that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for the application. Software recommendations The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical data corruption (control registers) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened DS13086 Rev 6 221/334 299 Electrical characteristics STM32U585xx to prevent unrecoverable errors occurring. See application note Software techniques for improving microcontrollers EMC performance (AN1015) for more details. Electromagnetic Interference (EMI) The electromagnetic field emitted by the device is monitored while a simple application is executed (toggling two LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard that specifies the test board and the pin loading. Table 90. EMI characteristics for fHSE = 8 MHz and fHCLK = 160 MHz Symbol Parameter SEMI Peak(1) Conditions VDD = 3.6 V, TA = 25 °C, BGA169 package compliant with IEC 61967-2 Level(2) Monitored frequency band Value 0.1 MHz to 30 MHz 5 30 MHz to 130 MHz 6 130 MHz to 1 GHz 6 1 GHz to 2 GHz 7 0.1 MHz to 2 GHz 2 Unit dBμV - 1. Refer to the EMI radiated test section of the application note EMC design guide for STM8, STM32 and Legacy MCUs (AN1709). 2. Refer to the EMI level classification section of the application note EMC design guide for STM8, STM32 and Legacy MCUs (AN1709). 5.3.12 Electrical sensitivity characteristics Based on three different tests (ESD, latch-up) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/JEDEC standard. Table 91. ESD absolute maximum ratings(1) Symbol VESD(HBM) Ratings Electrostatic discharge voltage (human body model) Packages Class TA = 25 °C, conforming to ANSI/ESDA/JEDEC JS-001 All 2 2000 LQFP100 LQFP144 C1 250 UFQFPN48 LQFP48 LQFP64 C2A 500 WLCSP90 UFBGA132 UFBGA169 C2B 750 Electrostatic discharge TA = 25 °C, conforming to VESD(CDM) voltage (charge device model) ANSI/ESDA/JEDEC JS-002 1. Evaluated by characterization. Not tested in production. 222/334 Max Unit value Conditions DS13086 Rev 6 V STM32U585xx Electrical characteristics Static latch-up The following complementary static tests are required on three parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin. • A current injection is applied to each input, output and configurable I/O pin. These tests are compliant with EIA/JESD 78E IC latch-up standard. Table 92. Electrical sensitivities(1) Symbol LU Parameter Static latch-up class Conditions Class TJ = 130 °C conforming to JESD78E 2 1. Evaluated by characterization. Not tested in production. 5.3.13 I/O current injection characteristics As a general rule, the current injection to the I/O pins, due to external voltage below VSS or above VDDIOx (for standard, 3.3 V-capable I/O pins) must be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller if abnormal injection accidentally happens, some susceptibility tests are performed on a sample basis during the device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating-input mode. While this current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out-of-range parameter, such as an ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 µA/+0 µA range), or other functional failure (for example reset occurrence or oscillator frequency deviation). The characterization results are given in the table below. The negative induced leakage current is caused by the negative injection. The positive induced leakage current is caused by the positive injection. Table 93. I/O current injection susceptibility(1)(2) Functional susceptibility Symbol IINJ Description Unit Negative injection Positive injection Injected current on OPAMP1_VINM, OPAMP2_VINM, PA4, PA5, PB0, PE7, PB15, PC11, and PD0 pins 0 0 Injected current on all other pins 5 N/A mA 1. Evaluated by characterization. Not tested in production. 2. The I/O structure options listed in this table can be a concatenation of options including the option explicitly listed. For instance TT_a refers to any TT I/O with _a option. TT_xx refers to any TT I/O and FT_xx refers to any FT I/O. DS13086 Rev 6 223/334 299 Electrical characteristics 5.3.14 STM32U585xx I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in the table below are derived from tests performed under the conditions summarized in Table 33. All I/Os are designed as CMOS- and TTL-compliant. Note: For information on GPIO configuration, refer to the application note ‘STM32 GPIO configuration for hardware settings and low-power consumption’ (AN4899). Sym -bol VIL(2) VIH (2) Parameter I/O input low-level voltage I/O input high-level voltage Vhys Input (3) hysteresis Conditions Min Typ Max 1.08 V ≤ VDDIOx ≤ 3.6 V - - 0.3 VDDIOx All I/Os except FT_c - - 0.38 VDDIOx(3) FT_c I/Os - - 0.3 VDDIOx 1.08 V ≤ VDDIOx ≤ 3.6 V 0.7 VDDIOx - - All I/Os except FT_c 0.5 VDDIOx + 0.2(3) - - FT_c I/Os 0.7 VDDIOx - - - 250 - VIN ≤ Max (VDDXXX)(5) - - 150 Max (VDDXXX) < VIN ≤ Max (VDDXXX) + 1 V(6) - - 2000 Max (VDDXXX) + 1 V < VIN ≤ 5.5 V(6) - - 500 VIN ≤ Max (VDDXXX)(5) - - 200 - 2500 TT_xx, FT_xx I/Os all I/Os except FT_u, FT_c, FT_d, FT_t, TT_xx FT_u I/Os Input (3)(4) leakage current Ilkg FT_c I/Os FT_d I/Os FT_t I/Os 224/334 Max (VDDXXX) < VIN ≤ Max (VDDXXX) + 1 V(6) Max (VDDXXX) + 1 V < VIN ≤ 5.5 V(6) - - 500 VIN ≤ Max (VDDXXX) - - 1500 Max (VDDXXX) < VIN ≤ 5 V(6) - - 2000 VIN ≤ Max (VDDXXX) - - 1500 Max (VDDXXX) < VIN ≤ 5.5 V(6) - - 5000 V mV nA VIN ≤ Max (VDDXXX) 300 Max (VDDXXX) < VIN ≤ Max (VDDXXX) + 1 V(6) 3000 Max (VDDXXX) + 1 V < VIN ≤ 5.5 V(6) 600 DS13086 Rev 6 Unit Table 94. I/O static characteristics(1) STM32U585xx Electrical characteristics Sym -bol Parameter Input (3)(4) leakage current Ilkg Conditions TT_xx I/Os except OPAMPx_VINM (x = 1, 2) VIN ≤ Max (VDDXXX) Min Typ Max - - 500 nA OPAMPx_VINM (x = 1, 2) dedicated input leakage current - - (7) 30 40 50 Weak pull-up RPU equivalent resistor(8) - Weak pull-down RPD equivalent resistor(8) - 30 40 50 - - 5 - CIO I/O pin capacitance Unit Table 94. I/O static characteristics(1) (continued) kΩ pF 1. The I/O structure options listed in this table can be a concatenation of options including the option explicitly listed. For instance TT_a refers to any TT I/O with _a option. TT_xx refers to any TT I/O and FT_xx refers to any FT I/O. 2. Refer to Figure 34: I/O input characteristics (all I/Os except BOOT0 and FT_c). 3. Specified by design. Not tested in production. 4. This parameter represents the pad leakage of the I/O itself. The total product pad leakage is provided by the following formula: ITotal_Ileak_max = 10 μA+ [number of I/Os where VIN is applied on the pad] ₓ Ilkg max. 5. Max (VDDXXX) is the maximum value of all the I/O supplies. The I/O supplies depend on the I/O structure options, as described in Table 26: Legend/abbreviations used in the pinout table. 6. To sustain a voltage higher than Min (VDD, VDDA, VDDUSB, VDDIO2) +0.3 V, the internal pull-up and pull-down resistors must be disabled. 7. Refer to Ibias in the OPAMP characteristics table for the values of the OPAMP dedicated input leakage current. 8. The pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order). DS13086 Rev 6 225/334 299 Electrical characteristics STM32U585xx All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in the figure below. Figure 34. I/O input characteristics (all I/Os except BOOT0 and FT_c) MSv69136V1 226/334 DS13086 Rev 6 STM32U585xx Electrical characteristics Output driving current The GPIOs (except PC13, PC14, PC15) can sink or source up to ±8 mA, and sink or source up to ± 20 mA (with a relaxed VOL/VOH). PC13, PC14, PC15 are limited to ±3 mA shared between the three I/Os. In the user application, the number of I/O pins tat can drive current must be limited to respect the absolute maximum rating specified in Section 5.2: Absolute maximum ratings: • The sum of the currents sourced by all the I/Os on VDDIOx, plus the maximum consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating ΣIVDD (see Table 31: Current characteristics). • The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of the MCU sunk on VSS, cannot exceed the absolute maximum rating ΣIVSS (see Table 31: Current characteristics). Output voltage levels Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 33. All I/Os are CMOS- and TTL-compliant (FT OR TT unless otherwise specified). Table 95. Output voltage characteristics(1)(2)(3) Symbol Parameter VOL Output low-level voltage VOH Output high-level voltage VOL(5) Output low-level voltage VOH(5) Output high-level voltage VOL(5) Output low-level voltage VOH(5) Output high-level voltage VOL(5) Output low-level voltage VOH(5) Output high-level voltage VOL(5) Output low-level voltage VOH(5) Output high-level voltage VOLFM+(5) Output low-level voltage for a FT_f I/O pin in FM+ mode Conditions Min Max - 0.4 VDDIOx - 0.4 - - 0.4 2.4 - - 1.3 VDDIOx - 1.3 - - 0.4 VDDIOx - 0.4 - - 0.4 VDDIOx - 0.4 - |IIO| = 20 mA, 2.7 V ≤ VDDIOx ≤ 3.6 V - 0.4 |IIO| = 10 mA, 1.58 V ≤ VDDIOx ≤ 3.6 V - 0.4 |IIO| = 2 mA, 1.08 V ≤ VDDIOx < 3.6 V - 0.4 CMOS port(4), |IIO| = 8 mA, 2.7 V ≤ VDDIOx ≤ 3.6 V TTL port(4),|IIO| = 8 mA, 2.7 V ≤ VDDIOx ≤ 3.6 V All I/Os, |IIO| = 20 mA, 2.7 V ≤ VDDIOx ≤ 3.6 V |IIO| = 4 mA, 1.58 V ≤ VDDIOx ≤ 3.6 V |IIO| = 1 mA, 1.08 V ≤ VDDIOx @ ' WVX 1:$,79&/.+ ' WK &/.+1:$,79 WG &/.+1%/+ )0&B1%/ 06Y9 Table 136. Synchronous multiplexed PSRAM write timings(1) Symbol tw(CLK) Parameter FMC_CLK period, 2.7 V ≤ VDD ≤ 3.6 V td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x = 0..2) td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x = 0..2) td(CLKL-NADVL) FMC_CLK low to FMC_NADV low DS13086 Rev 6 Min Max 2 × tHCLK - 0.5 - - 2 tHCLK + 1.5 - - 2 Unit ns 275/334 299 Electrical characteristics STM32U585xx Table 136. Synchronous multiplexed PSRAM write timings(1) (continued) Symbol Parameter Min Max FMC_CLK low to FMC_NADV high 1 - td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x = 16..25) - 3 td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x = 16..25) tHCLK - - 2.5 tHCLK + 1 - td(CLKL-NADVH) td(CLKL-NWEL) FMC_CLK low to FMC_NWE low td(CLKH-NWEH) FMC_CLK high to FMC_NWE high td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid - 2 td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 - td(CLKL-DATA) FMC_A/D[15:0] valid data after FMC_CLK low - 3 td(CLKL-NBLL) FMC_CLK low to FMC_NBL low - 2 td(CLKH-NBLH) FMC_CLK high to FMC_NBL high tHCLK + 0.5 - 3 - 2.5 - tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 1. Evaluated by characterization. Not tested in production. Figure 57. Synchronous non-multiplexed NOR/PSRAM read timings tw(CLK) tw(CLK) FMC_CLK td(CLKL-NExL) td(CLKH-NExH) Data latency = 0 FMC_NEx td(CLKL-NADVL) td(CLKL-NADVH) FMC_NADV td(CLKH-AIV) td(CLKL-AV) FMC_A[25:0] td(CLKL-NOEL) td(CLKH-NOEH) FMC_NOE tsu(DV-CLKH) th(CLKH-DV) tsu(DV-CLKH) FMC_D[15:0] FMC_NWAIT (WAITCFG = 1b, WAITPOL + 0b) FMC_NWAIT (WAITCFG = 0b, WAITPOL + 0b) D1 tsu(NWAITV-CLKH) tsu(NWAITV-CLKH) tsu(NWAITV-CLKH) th(CLKH-DV) D2 th(CLKH-NWAITV) t h(CLKH-NWAITV) th(CLKH-NWAITV) MS32759V1 276/334 DS13086 Rev 6 Unit ns STM32U585xx Electrical characteristics Table 137. Synchronous non-multiplexed NOR/PSRAM read timings(1) Symbol Parameter tw(CLK) FMC_CLK period Min Max tHCLK - 0.5 - - 1 tHCLK - 0.5 - td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x = 0..2) td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x = 0…2) td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 1.5 td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 1 - td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x = 0…25) - 2.5 td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x = 0…25) tHCLK - 0.5 - - 1.5 tHCLK + 1 - td(CLKL-NOEL) FMC_CLK low to FMC_NOE low td(CLKH-NOEH) FMC_CLK high to FMC_NOE high tsu(DV-CLKH) FMC_D[15:0] valid data before FMC_CLK high 3 - th(CLKH-DV) FMC_D[15:0] valid data after FMC_CLK high 4 - tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 1 - th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 2.5 - Unit ns 1. Evaluated by characterization. Not tested in production. Figure 58. Synchronous non-multiplexed PSRAM write timings WZ &/. WZ &/. )0&B&/. WG &/./1([/ WG &/.+1([+ 'DWDODWHQF\  )0&B1([ WG &/./1$'9/ WG &/./1$'9+ )0&B1$'9 WG &/.+$,9 WG &/./$9 )0&B$>@ WG &/.+1:(+ WG &/./1:(/ )0&B1:( WG &/./'DWD WG &/./'DWD )0&B'>@ ' ' )0&B1:$,7 :$,7&)* E:$,732/E WVX 1:$,79&/.+ WG &/.+1%/+ WK &/.+1:$,79 )0&B1%/ 06Y9 DS13086 Rev 6 277/334 299 Electrical characteristics STM32U585xx Table 138. Synchronous non-multiplexed PSRAM write timings(1) Symbol tw(CLK) Parameter FMC_CLK period Min Max 2 × tHCLK - 0.5 - - 3 tHCLK + 1.5 - td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x = 0..2) td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x = 0..2) td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 2 td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 1 - td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x = 16..25) - 3 td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x = 16..25) tHCLK - - 2.5 tHCLK + 1 - td(CLKL-NWEL) FMC_CLK low to FMC_NWE low td(CLKH-NWEH) FMC_CLK high to FMC_NWE high td(CLKL-Data) FMC_D[15:0] valid data after FMC_CLK low - 3 td(CLKL-NBLL) FMC_CLK low to FMC_NBL low - 2 td(CLKH-NBLH) FMC_CLK high to FMC_NBL high tHCLK + 0.5 - 3 - 2.5 - tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high Unit ns 1. Evaluated by characterization. Not tested in production. NAND controller waveforms and timings Figure 59 to Figure 62 represent synchronous waveforms, and Table 139/Table 140 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration: • COM.FMC_SetupTime = 0x01 • COM.FMC_WaitSetupTime = 0x03 • COM.FMC_HoldSetupTime = 0x02 • COM.FMC_HiZSetupTime = 0x01 • ATT.FMC_SetupTime = 0x01 • ATT.FMC_WaitSetupTime = 0x03 • ATT.FMC_HoldSetupTime = 0x02 • ATT.FMC_HiZSetupTime = 0x01 • Bank = FMC_Bank_NAND • MemoryDataWidth = FMC_MemoryDataWidth_16b • ECC = FMC_ECC_Enable • ECCPageSize = FMC_ECCPageSize_512Bytes • TCLRSetupTime = 0 • TARSetupTime = 0 In all timing tables, the THCLK is the HCLK clock period. 278/334 DS13086 Rev 6 STM32U585xx Electrical characteristics Figure 59. NAND controller waveforms for read access FMC_NCEx ALE (FMC_A17) CLE (FMC_A16) FMC_NWE th(NOE-ALE) td(NCE-NOE) FMC_NOE (NRE) tsu(D-NOE) th(NOE-D) FMC_D[15:0] MSv38003V1 Figure 60. NAND controller waveforms for write access FMC_NCEx ALE (FMC_A17) CLE (FMC_A16) th(NWE-ALE) td(NCE-NWE) FMC_NWE FMC_NOE (NRE) th(NWE-D) tv(NWE-D) FMC_D[15:0] MSv38004V1 Figure 61. NAND controller waveforms for common memory read access FMC_NCEx ALE (FMC_A17) CLE (FMC_A16) th(NOE-ALE) td(NCE-NOE) FMC_NWE tw(NOE) FMC_NOE tsu(D-NOE) th(NOE-D) FMC_D[15:0] MSv38005V1 DS13086 Rev 6 279/334 299 Electrical characteristics STM32U585xx Figure 62. NAND controller waveforms for common memory write access FMC_NCEx ALE (FMC_A17) CLE (FMC_A16) td(NCE-NWE) tw(NWE) th(NOE-ALE) FMC_NWE FMC_NOE td(D-NWE) tv(NWE-D) th(NWE-D) FMC_D[15:0] MSv38006V1 Table 139. Switching characteristics for NAND Flash read cycles(1) Symbol tw(N0E) Parameter FMC_NOE low width Min Max 4 × tHCLK - 0.5 4 × tHCLK + 0.5 tsu(D-NOE) FMC_D[15-0] valid data before FMC_NOE high 10 - th(NOE-D) FMC_D[15-0] valid data after FMC_NOE high 0 - td(ALE-NOE) FMC_ALE valid before FMC_NOE low - 3 × tHCLK + 0.5 th(NOE-ALE) FMC_NWE high to FMC_ALE invalid 4 × tHCLK - 1 - Unit ns 1. Evaluated by characterization. Not tested in production. Table 140. Switching characteristics for NAND Flash write cycles(1) Symbol tw(NWE) Parameter FMC_NWE low width Min Max 4 × tHCLK - 0.5 4 × tHCLK + 0.5 0 - tv(NWE-D) FMC_NWE low to FMC_D[15-0] valid th(NWE-D) FMC_NWE high to FMC_D[15-0] invalid 2 × tHCLK + 1 - td(D-NWE) FMC_D[15-0] valid before FMC_NWE high 5 × tHCLK - 5 - - 3 × tHCLK + 0.5 2 × tHCLK - 0.5 - td(ALE_NWE) FMC_ALE valid before FMC_NWE low th(NWE-ALE) FMC_NWE high to FMC_ALE invalid 1. Evaluated by characterization. Not tested in production. 280/334 DS13086 Rev 6 Unit ns STM32U585xx 5.3.33 Electrical characteristics OCTOSPI characteristics Unless otherwise specified, the parameters given in Table 141 toTable 143 are derived from tests performed under the ambient temperature, fAHB frequency and VDD supply voltage conditions summarized in Table 33, with the following configuration: • Output speed set to OSPEEDRy[1:0] = 10 • Delay block enabled for DTR (with DQS)/HyperBus • Measurement points done at 0.5 × VDD level • I/O compensation cell activated • HSLV activated when VDD ≤ 2.7 V • Voltage scaling range 1 unless otherwise specified Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics. Table 141. OCTOSPI characteristics in SDR mode(1)(2)(3) Symbol f(CLK) Parameter OCTOSPI clock frequency Conditions Min Typ Max 1.71 V ≤ VDD ≤ 3.6 V Voltage range 1 CL = 15 pF - - 93 2.7 V ≤ VDD ≤ 3.6 V Voltage range1 CL = 15 pF - - 100 1.71 V ≤ VDD ≤ 3.6 V Voltage range 4 CL = 15 pF - - 24 t(CLK)/2 - 0.5 - t(CLK)/2 t(CLK)/2 - 0.5 - t(CLK)/2 (n/2) × t(CLK) /(n+1) - 0.5 - (n/2) × t(CLK) /(n+1) ((n/2)+1) × t(CLK) /(n+1) - 0.5 - ((n/2)+1) × t(CLK) /(n+1) Voltage range 1 2.75 - - Voltage range 4 3 - - Voltage range 1 0.5 - - Voltage range 4 1 - - Voltage range 1 - 0.5 1 Voltage range 4 - 1.5 2.5 Voltage range 1 0.5 - - Voltage range 4 -0.25 - - tw(CLKH) OCTOSPI clock high and low time tw(CLKL) (even division) PRESCALER[7:0] = n (n = 1, 3, 5,..255) tw(CLKH) OCTOSPI clock high and low time (odd division) t PRESCALER[7:0] = n (n = 2, 4, 6,..254) w(CLKL) ts(IN) Data input setup time th(IN) Data input hold time tv(OUT) Data output valid time th(OUT) Data output hold time Unit MHz ns 1. Evaluated by characterization. Not tested in production. 2. Measured values in this table apply to Octo- and Quad-SPI data modes. 3. Delay block bypassed. DS13086 Rev 6 281/334 299 Electrical characteristics STM32U585xx Table 142. OCTOSPI characteristics in DTR mode (no DQS)(1)(2)(3) Sym bol f(CLK) Parameter OCTOSPI clock frequency tw(CLKH) OCTOSPI clock high and low time tw(CLKL) (even division) tw(CLKH) OCTOSPI clock high and low time (odd division) t Conditions Min Typ Max 1.71 V ≤ VDD ≤ 3.6 V Voltage range 1, CL = 15 pF - - 93(4) 2.7 V ≤ VDD ≤ 3.6 V Voltage range1, CL = 15 pF - - 100(4) 1.71 V ≤ VDD ≤ 3.6 V Voltage range 4, CL = 15 pF - - 24(4) t(CLK)/2 - 0.5 - t(CLK)/2 + 0.5 t(CLK)/2 - 0.5 - t(CLK)/2 + 0.5 (n/2) × t(CLK) /(n+1) - 0.5 - (n/2) × t(CLK) /(n+1) + 0.5 ((n/2)+1) × t(CLK) /(n+1) - 0.5 - ((n/2)+1) × t(CLK) /(n+1) + 0.5 PRESCALER[7:0] = n (n = 1, 3, 5,..255) PRESCALER[7:0] = n (n = 2, 4, 6,..254) w(CLKL) tsr(IN) tsf(IN) Data input setup time Voltage range 1 3.25 - - Voltage range 4 3.75 - - thr(IN) thf(IN) Data input hold time Voltage range 1 1 - - Voltage range 4 1.5 - - Data output valid time, DHQC = 0 Voltage range 1 - 6 9.25 Voltage range 4 - 13.25 19.75 Data output valid time, DHQC = 1 Voltage range 1 All prescaler values (except 0) - t(CLK)/4 + 0.75 t(CLK)/4 + 1.5 Data output hold time DHQC = 0 Voltage range 1 4 - - Voltage range 4 8 - - Data output hold time DHQC = 1 Voltage range 1 All prescaler values (except 0) t(CLK)/4 - 0.5 - - tvr(OUT) tvf(OUT) thr(OUT) thf(OUT) 1. Evaluated by characterization. Not tested in production. 2. Measured values in this table apply to Octo- and Quad-SPI data modes. 3. Delay block bypassed. 4. Activating DHQC is mandatory to reach this frequency. 282/334 DS13086 Rev 6 Unit MHz ns STM32U585xx Electrical characteristics Table 143. OCTOSPI characteristics in DTR mode (with DQS)/HyperBus(1)(2) Symbol f(CLK) tw(CLKH) tw(CLKL) tw(CLKH) tw(CLKL) Parameter OCTOSPI clock frequency Conditions Min Typ Max 1.71 V ≤ VDD ≤ 3.6 V Voltage range 1 CL = 15 pF - - 93(3)(4) 2.7 V ≤ VDD ≤ 3.6 V Voltage range1 CL = 15 pF - - 100(3)(4) 1.71 V ≤ VDD ≤ 3.6 V Voltage range 4 CL = 15 pF - - 24(4) t(CLK)/2 - 0.5 - t(CLK)/2 + 0.5 t(CLK)/2 - 0.5 - t(CLK)/2 + 0.5 (n/2) × t(CLK) /(n+1) - 0.5 - (n/2) × t(CLK) /(n+1) + 0.5 ((n/2)+1) × t(CLK) /(n+1) - 0.5 - ((n/2)+1) × t(CLK) /(n+1) + 0.5 OCTOSPI clock high and low time (even division) PRESCALER[7:0] = n (n = 1, 3, 5,..255) OCTOSPI clock high and low time (odd division) PRESCALER[7:0] = n (n = 2, 4, 6,..254) tv(CLK) Clock valid time - - - t(CLK) + 2 th(CLK) Clock hold time - t(CLK)/2 - 0.5 - - 975 - 1120 CLK, NCLK crossing level on CLK rising edge VDD = 1.8 V (5) CLK, NCLK crossing level on CLK falling edge VDD = 1.8 V tw(CS) Chip select high time tv(DQ) Data input valid time tv(DS) Data strobe input valid time th(DS) Data strobe input hold time Data strobe output valid time VODr(CLK) (5) VODf(CLK) tv(RWDS) tsr(DQ) tsf(DQ) Data input setup time thr(DQ) thf(DQ) Data input hold time Unit MHz ns mV 845 - 990 - 3 × t(CLK) - - - 0 - - 0 - - - 0 - - - - - 3 × t(CLK) Voltage range 1 -0.5 - t(CLK)/2 - 1.5(6) Voltage range 4 -0.25 - t(CLK)/2 - 1.75(6) Voltage range 1 1.5 - - Voltage range 4 1.75 - - DS13086 Rev 6 ns 283/334 299 Electrical characteristics STM32U585xx Table 143. OCTOSPI characteristics in DTR mode (with DQS)/HyperBus(1)(2) (continued) Symbol tvr(OUT) tvf(OUT) Parameter Conditions Data output valid time DHQC = 0 Data output valid time DHQC = 1 thr(OUT) thf(OUT) Data output hold time DHQC = 0 thr(OUT) Data output hold time DHQC = 1 Min Typ Max Voltage range 1 - 6 9.5 Voltage range 4 - 13 19.5 Voltage range 1 All prescaler values (except 0) - t(CLK)/4 + 0.5 t(CLK)/4 + 1.25 Voltage range 1 4 - - Voltage range 4 7.75 - - t(CLK)/4 - 0.5 - - Voltage range 1 All prescaler values (except 0) 1. Evaluated by characterization. Not tested in production. 2. Delay block activated. 3. Maximum frequency values are given for a RWDS to DQ skew of maximum ±1.0 ns. 4. Activating DHQC is mandatory to reach this frequency. 5. Crossing results are in line with specification, except for PA3/PB5 CLK that exceed slightly the specification. 6. Data input maximum setup time does not take into account the data level switching duration. Figure 63. OCTOSPI timing diagram - SDR mode tr(CLK) t(CLK) tw(CLKH) tw(CLKL) tf(CLK) Clock tv(OUT) th(OUT) Data output D0 D1 ts(IN) Data input D2 th(IN) D0 D1 D2 MSv36878V3 Figure 64. OCTOSPI timing diagram - DDR mode tr(CLK) t(CLK) tw(CLKH) tw(CLKL) tf(CLK) Clock tvf(OUT) Data output thr(OUT) D0 tvr(OUT) D1 D2 thf(OUT) D3 tsf(IN) thf(IN) Data input D0 D1 D4 D5 tsr(IN) thr(IN) D2 D3 D4 D5 MSv36879V4 284/334 DS13086 Rev 6 Unit ns STM32U585xx Electrical characteristics Figure 65. OCTOSPI HyperBus clock tr(CLK) tf(NCLK) tw(CLKH) tw(NCLKL) t(CLK) t(NCLK) tw(CLKL) tw(NCLKH) tf(CLK) tr(NCLK) NCLK VOD(CLK) CLK MSv47732V3 Figure 66. OCTOSPI HyperBus read tw(CS) NCS tv(CLK) th(CLK) t ACC= Initial access CLK, NCLK tv(RWDS) tv(DS) th(DS) RWDS tv(OUT) 47:40 39:32 DQ[7:0] th(OUT) 31:24 23:16 Latency count 15:8 7:0 Command address tv(DQ) ts(DQ) th(DQ) Dn A Dn+1 A Dn B Dn+1 B Memory drives DQ[7:0] and RWDS. Host drives DQ[7:0] and the memory drives RWDS. MSv47733V3 Figure 67. OCTOSPI HyperBus read with double latency NCS tRWR=Read/write recovery Additional latency tACC = Access CLK, NCLK tCKDS RWDS DQ[7:0] High = 2x latency count Low = 1x latency count 47:40 39:32 31:24 23:16 15:8 RWDS and data are edge aligned Dn A 7:0 Command address Dn B Dn+1 Dn+1 A B Memory drives DQ[7:0] and RWDS. Host drives DQ[7:0] and the memory drives RWDS. DS13086 Rev 6 MSv49351V3 285/334 299 Electrical characteristics STM32U585xx Figure 68. OCTOSPI HyperBus write tw(CS) NCS Read write recovery Access latency tv(CLK) th(CLK) CLK, NCLK tv(RWDS) High = 2x latency count tv(OUT) th(OUT) tv(OUT) th(OUT) Low = 1x latency count RWDS Latency count DQ[7:0] tv(OUT) th(OUT) 47:40 31:24 39:32 23:16 15:8 Dn A 7:0 Command address Dn B Dn+1 A Dn+1 B Host drives DQ[7:0] and RWDS. Host drives DQ[7:0] and the memory drives RWDS. MSv47734V3 5.3.34 SD/SDIO/e•MMC card host interfaces (SDMMC) characteristics Unless otherwise specified, the parameters given in Table 144 and Table 145 are derived from tests performed under the ambient temperature, fAHB frequency and VDD supply voltage conditions summarized in Table 33, with the following configuration: • Output speed set to OSPEEDRy[1:0] = 10 • Capacitive load CL = 30 pF • Measurement points done at 0.5 × VDD level • I/O compensation cell activated • HSLV activated when VDD ≤ 2.7 V • Voltage scaling range 1 Refer to Section 5.3.14: I/O port characteristics for more details on the input/output characteristics. Table 144. SD/e•MMC characteristics (VDD = 2.7 V to 3.6 V)(1)(2) Symbol fPP Parameter Clock frequency in data transfer mode Conditions Min Typ Max Unit - 0 - 100(3) MHz tW(CKL) Clock low time fPP = 52 MHz 8.5 9.5 - tW(CKH) Clock high time fPP = 52 MHz 8.5 9.5 - ns CMD, D inputs (referenced to CK) in e•MMC legacy/SDR/DDR and SD HS/SDR(4)/DDR(4) modes tISU Input setup time HS - 3.5 - - tIH Input hold time HS - 1.5 - - Input valid window (variable window) - 4.5 - - tIDW(5) 286/334 DS13086 Rev 6 ns STM32U585xx Electrical characteristics Table 144. SD/e•MMC characteristics (VDD = 2.7 V to 3.6 V)(1)(2) (continued) Symbol Parameter Conditions Min Typ Max Unit CMD, D outputs (referenced to CK) in e•MMC legacy/SDR/DDR and SD HS/SDR(4)/DDR(4) modes tOV Output valid time HS - - 5.5 6 tOH Output hold time HS - 4 - - ns CMD, D inputs (referenced to CK) in SD default mode tISU Input setup time SD - 3.5 - - tIH Input hold time SD - 1.5 - - ns CMD, D outputs (referenced to CK) in SD default mode tOV Output valid default time SD - - 0.5 2 tOH Output hold default time SD - 0 - - ns 1. Evaluated by characterization. Not tested in production. 2. For SDMMC2 in SD/e.MMC DDR mode, the clock OSPEEDRy[1:0] is set to 01 while data OSPEEDRy[1:0] remains at 10. 3. With capacitive load CL = 20 pF. 4. For SD 1.8 V support, an external voltage converter is needed. 5. Minimum window of time where the data needs to be stable for proper sampling in tuning mode. Table 145. e•MMC characteristics (VDD = 1.71 V to 1.9 V)(1)(2) Symbol fPP Parameter Conditions Clock frequency in data transfer mode Min Typ Max All modes except DDR - - 84 DDR mode - - 40(3) tW(CKL) Clock low time fPP = 52 MHz 8.5 9.5 - tW(CKH) Clock high time fPP = 52 MHz 8.5 9.5 - Unit MHz ns CMD, D inputs (referenced to CK) in e•MMC mode tISU Input setup time HS - 2.5 - - tIH Input hold time HS - 2 - - Input valid window (variable window) - 4 - - tIDW(4) ns CMD, D outputs (referenced to CK) in e•MMC mode tOV Output valid time HS - - 10.5 13/15(5) tOH Output hold time HS - 7 - - ns 1. Evaluated by characterization. Not tested in production. 2. With capacitive load CL = 20 pF. 3. For DDR mode, the maximum frequency is 40 MHz and HSLV must be OFF. 4. Minimum window of time where the data needs to be stable for proper sampling in tuning mode. 5. tOV = 13 ns for SDMMC1 and tOV = 15 ns for SDMMC2. DS13086 Rev 6 287/334 299 Electrical characteristics STM32U585xx Figure 69. SD high-speed mode tC(CK) tW(CKH) tW(CKL) CK tOH tOV D, CMD output tIH tISU D, CMD input MSv69709V1 Figure 70. SD default mode CK tOV tOH D, CMD output MSv69710V1 Figure 71. SDMMC DDR mode Valid data D input tISU Valid data tIH tISU tIH tW(CKH) CK tW(CKL) tOV tOV tOH tOH D output Valid data Valid data MSv69158V1 288/334 DS13086 Rev 6 STM32U585xx 5.3.35 Electrical characteristics Delay block characteristics Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage conditions summarized in Table 33. Table 146. Delay block characteristics(1) Symbol Parameter Conditions Min Typ Max tinit Initial delay - 900 1300 2100 t∆ Unit delay - 34 41 51 Unit ps 1. Evaluated by characterization. Not tested in production. 5.3.36 I2C interface characteristics The I2C interface meets the timings requirements of the I2C-bus specification and user manual rev. 03 for: • Standard-mode (Sm): with a bitrate up to 100 Kbit/s • Fast-mode (Fm): with a bitrate up to 400 Kbit/s • Fast-mode Plus (Fm+): with a bitrate up to 1 Mbit/s The I2C timings requirements are specified by design, not tested in production, when the I2C peripheral is properly configured (refer to the product reference manual). The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is disabled, but is still present. Only FT_f I/O pins support Fm+ low-level output-current maximum requirement. Refer to Section 5.3.14: I/O port characteristics for the I2C I/Os characteristics. All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics. Table 147. I2C analog filter characteristics(1) Symbol tAF Parameter Maximum pulse width of spikes that are suppressed by the analog filter Min Max Unit 50(2) 115(3) ns 1. Specified by design. Not tested in production. 2. Spikes with widths below tAF min are filtered. 3. Spikes with width above tAF max are not filtered. DS13086 Rev 6 289/334 299 Electrical characteristics 5.3.37 STM32U585xx USART characteristics Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 33, with the following configuration: • Output speed set to OSPEEDRy[1:0] = 10 • Capacitive load CL = 30pF • Measurement points done at 0.5 × VDD level • I/O compensation cell activated • HSLV activated when VDD ≤ 2.7 V • Voltage scaling range 1 Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, CK, TX, RX for USART). Table 148. USART characteristics(1) Symbol fCK Parameter USART clock frequency Conditions Min Typ Max Master mode, 1.71 V ≤ VDD ≤ 3.6 V - - 20 Slave receiver, 1.71 V ≤ VDD ≤ 3.6 V - - 53 Slave transmitter, 1.71 V ≤ VDD ≤ 3.6 V - - 28.5 Slave transmitter, 2.7 V ≤ VDD ≤ 3.6 V - - 32 Tker(2) + 2 - - Slave mode 2 - - Master mode 1/fCK / 2 - 1 1/fCK / 2 1/fCK / 2 + 1 Master mode 14 - - Slave mode 1 - - 4 - - 1 - - Slave mode, 2.7 V ≤ VDD ≤ 3.6 V - 11 17.5 Slave mode, 1.71 V ≤ VDD ≤ 3.6 V - 11 15.5 Master mode - 2.5 6.5 Slave mode 8.5 - - Master mode 2 - - tsu(NSS) NSS setup time Slave mode th(NSS) NSS hold time tw(CKH) CK high and tw(CKL) low time tsu(RX) th(RX) th(RX) tv(TX) Data input setup time Data input hold Master mode time Slave mode Data output valid time tv(TX) th(TX) th(TX) Data output hold time 1. Evaluated by characterization. Not tested in production. 2. Tker is the usart_ker_ck_pres clock period. 290/334 DS13086 Rev 6 Unit MHz ns STM32U585xx Electrical characteristics Figure 72. USART timing diagram in master mode CK output CK output 1/fCK CPHA = 0 CPOL = 0 CPHA = 0 CPOL = 1 CPHA = 1 CPOL = 0 CPHA = 1 CPOL = 1 tw(CKH) tw(CKL) tsu(RX) RX INPUT MSB IN BIT6 IN LSB IN th(RX) TX OUTPUT MSB OUT tv(TX) BIT1 OUT LSB OUT th(TX) MSv65386V4 Figure 73. USART timing diagram in slave mode NSS input 1/fCK CK input tsu(NSS) th(NSS) tw(CKH) CPHA = 0 CPOL = 0 CPHA = 0 CPOL = 1 tw(CKL) tv(TX) First bit OUT TX output th(TX) Next bits OUT Last bit OUT th(RX) tsu(RX) RX input First bit IN Next bits IN Last bit IN MSv65387V4 5.3.38 SPI characteristics Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature, fPCLKx frequency and supply voltage conditions summarized in Table 33. • Output speed set to OSPEEDRy[1:0] = 10 • Capacitive load CL = 30 pF • Measurement points done at 0.5 × VDD level • I/O compensation cell activated • HSLV activated when VDD ≤ 2.7 V Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI). DS13086 Rev 6 291/334 299 Electrical characteristics STM32U585xx Table 149. SPI characteristics(1) Symbol Parameter fSCK SPI clock frequency 1/tc(SCK) Conditions Min Typ Max Master mode, 2.7 V ≤ VDD ≤ 3.6 V, voltage range 1 - - 80 or 50(2) Master mode, 1.71 V ≤ VDD < 2.7 V voltage range 1 - - 75 or 50(2) Master mode, 1.08 V ≤ VDD ≤ 1.32 V(3) - - 15 Master transmitter mode, 2.7 V ≤ VDD ≤ 3.6 V, voltage range 1 - - 80 or 50(2) Master transmitter mode, 1.71 V ≤ VDD ≤ 2.7 V, voltage range 1 - - 75 or 50(2) Slave receiver mode, 1.71 V ≤ VDD ≤ 3.6 V, voltage range 1 - - 100 Slave mode transmitter/full duplex(4), 1.71 V ≤ VDD < 2.7 V, voltage range 1 - - 41.5 or 25.5(5) Slave mode transmitter/full duplex(4), 2.7 V ≤ VDD ≤ 3.6 V, voltage range 1 - - 38.5 or 24(5) 1.71 V ≤ VDD ≤ 3.6 V, voltage range 4 - - 12.5 - - 15 1.08 V ≤ VDD ≤ 1.32 V(3) tsu(NSS) NSS setup time Slave mode 4 - - th(NSS) NSS hold time Slave mode 3 - - tw(SCKH) SCK high and low time Master mode tw(SCKL) tsu(MI) tsu(SI) th(MI) th(SI) Data input setup time Data input hold time MHz tSCK(6)/2 - 1 tSCK/2 tSCK/2 + 1 Master mode 4.5 - - Slave mode 2.5 - - Master mode 3 - - Slave mode 1 - - ta(SO) Data output access time Slave mode 9 - 34 tdis(SO) Data output disable time Slave mode 9 - 16 292/334 Unit DS13086 Rev 6 ns STM32U585xx Electrical characteristics Table 149. SPI characteristics(1) (continued) Symbol Parameter tv(SO) Data output valid time tv(MO) th(SO) Data output hold time th(MO) Conditions Min Typ Max Unit Slave mode, 2.7 V ≤ VDD ≤ 3.6 V, voltage range 1 - 10 13 or 20.5(5) Slave mode, 1.71 V ≤ VDD < 2.7 V, voltage range 1 - 10 12 or 19.5(5) Slave mode, 1.71 V ≤ VDD ≤ 3.6 V, voltage range 4 - 17 19.5 or 27(5) Slave mode, 1.08 V ≤ VDD ≤ 1.32 V(3) - 21 22.5 or 30(5) Master mode - 1.5 2 or 9.5(7) or 12.5(8) Slave mode, 1.71 V ≤ VDD ≤ 3.6 V 7 - - Slave mode, 1.08 V ≤ VDD ≤ 1.32 V(3) 18 - - Master mode 0 - - ns 1. Evaluated by characterization. Not tested in production. 2. When using PA5, PA9, PC10, PB3, PB13. 3. The SPI is mapped on port G I/Os, that is supplied by VDDIO2 specified down to 1.08V. The SPI is tested at this value. 4. The maximum frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) that has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%. 5. When using PA11, PB4, PB14. 6. tSCK = tspi_ker_ck × baudrate prescaler. 7. When using PA12. 8. When using PB15. Figure 74. SPI timing diagram - slave mode and CPHA = 0 NSS input tc(SCK) SCK input tsu(NSS) th(NSS) tw(SCKH) tr(SCK) CPHA=0 CPOL=0 CPHA=0 CPOL=1 ta(SO) tw(SCKL) tv(SO) First bit OUT MISO output th(SO) Next bits OUT tf(SCK) tdis(SO) Last bit OUT th(SI) tsu(SI) MOSI input First bit IN Next bits IN Last bit IN MSv41658V1 DS13086 Rev 6 293/334 299 Electrical characteristics STM32U585xx Figure 75. SPI timing diagram - slave mode and CPHA = 1 NSS input tc(SCK) tsu(NSS) tw(SCKH) ta(SO) tw(SCKL) tf(SCK) th(NSS) SCK input CPHA=1 CPOL=0 CPHA=1 CPOL=1 tv(SO) th(SO) First bit OUT MISO output tsu(SI) tr(SCK) Next bits OUT tdis(SO) Last bit OUT th(SI) First bit IN MOSI input Next bits IN Last bit IN MSv41659V1 1. Measurement points are done at 0.3 VDD and 0.7 VDD levels. Figure 76. SPI timing diagram - master mode High NSS input SCK Output CPHA= 0 CPOL=0 SCK Output tc(SCK) CPHA=1 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=1 tsu(MI) MISO INP UT tw(SCKH) tw(SCKL) tr(SCK) tf(SCK) BIT6 IN MSB IN LSB IN th(MI) MOSI OUTPUT B I T1 OUT MSB OUT tv(MO) LSB OUT th(MO) ai14136d 1. Measurement points are done at 0.3 VDD and 0.7 VDD levels. 294/334 DS13086 Rev 6 STM32U585xx 5.3.39 Electrical characteristics SAI characteristics Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized inTable 33, with the following configuration: • Output speed set to OSPEEDRy[1:0] = 10 • Capacitive load CL = 30 pF • Measurement points done at 0.5 × VDD level • I/O compensation cell activated • HSLV activated when VDD ≤ 2.7 V • Voltage scaling range 1 Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (SCK, SD, FS). Table 150. SAI characteristics(1) Symbol fMCK fSCK Parameter Conditions Min Max - - 50 Master transmitter, 2.7 V ≤ VDD ≤ 3.6 V - 26 Master transmitter, 1.71 V ≤ VDD ≤ 3.6 V - 18 Master receiver, 1.71 V ≤ VDD ≤ 3.6 V - 21.5 Slave transmitter, 2.7 V ≤ VDD ≤ 3.6 V - 30 Slave transmitter, 1.71 V ≤ VDD ≤ 3.6 V - 20.5 Slave receiver, 1.71 V ≤ VDD ≤ 3.6 V - 50 Master mode, 2.7 V ≤ VDD ≤ 3.6 V - 16 Master mode 1.71 V ≤ VDD ≤ 3.6 V - 23 SAI main clock output SAI clock frequency(2) tv(FS) FS valid time th(FS) FS hold time Master mode 7 - tsu(FS) FS setup time Slave mode 2.5 - th(FS) FS hold time Slave mode 1 - tsu(SD_A_MR) Data input setup time t Master receiver 4 - Slave receiver 3 - th(SD_A_MR) Data input hold time t Master receiver 1 - Slave receiver 1 - Slave transmitter (after enable edge), 2.7 V ≤ VDD ≤ 3.6 V - 16.5 Slave transmitter (after enable edge), 1.71 V ≤ VDD ≤ 3.6 V - 24 Slave transmitter (after enable edge) 8 - su(SD_B_SR) h(SD_B_SR) tv(SD_B_ST) Data output valid time th(SD_B_ST) Data output hold time DS13086 Rev 6 Unit MHz ns 295/334 299 Electrical characteristics STM32U585xx Table 150. SAI characteristics(1) (continued) Symbol Parameter Data output valid tv(SD_A_MT) time th(SD_A_MT) Data output hold time Conditions Min Max Master transmitter (after enable edge), 2.7 V ≤ VDD ≤ 3.6 V - 19 Master transmitter (after enable edge), 1.71 V ≤ VDD ≤ 3.6 V - 27.5 Master transmitter (after enable edge) 8 - 1. Evaluated by characterization. Not tested in production. 2. APB clock frequency that must be at least twice SAI clock frequency. Figure 77. SAI master timing diagram 1/fSCK SAI_SCK_X th(FS) SAI_FS_X (output) tv(FS) th(SD_MT) tv(SD_MT) SAI_SD_X (transmit) Slot n tsu(SD_MR) SAI_SD_X (receive) Slot n+2 th(SD_MR) Slot n MS32771V1 Figure 78. SAI slave timing digram 1/fSCK SAI_SCK_X tw(CKH_X) SAI_FS_X (input) tw(CKL_X) tsu(FS) th(FS) SAI_SD_X (transmit) Slot n tsu(SD_SR) SAI_SD_X (receive) th(SD_ST) tv(SD_ST) Slot n+2 th(SD_SR) Slot n MS32772V1 296/334 DS13086 Rev 6 Unit ns STM32U585xx 5.3.40 Electrical characteristics OTG_FS characteristics Table 151. OTG_FS characteristics Symbol Conditions Min Typ Max Unit USB transceiver operating supply voltage - 3.0(1) - 3.6 V RPUI Embedded USB_DP pullup value during idle - 900 - 1575 RPUR Embedded USB_DP pullup value during reception - 1425 - 3090 ZDRV Output driver impedance(2) High and low driver 28 36 44 VDDUSB Parameter Ω 1. USB functionality is ensured down to 2.7 V, but some USB electrical characteristics are degraded in 2.7 to 3.0 V range. 2. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-). The matching impedance is already included in the embedded driver. 5.3.41 UCPD characteristics UCPD controller complies with USB Type-C Rev 1.2 and USB Power Delivery Rev 3.0 specifications. Table 152. UCPD characteristics Symbol Parameter VDD UCPD operating supply voltage 5.3.42 Conditions Sink mode only Sink and source mode Min Typ Max 3.0 3.3 3.6 3.135 3.3 3.465 Unit V JTAG/SWD interface characteristics Unless otherwise specified, the parameters given in the tables below are derived from tests performed under the ambient temperature, fHCLKx frequency and VDD supply voltage conditions summarized in Table 33, with the following configuration: • Output speed set to OSPEEDRy[1:0] = 10 • Capacitive load CL = 30 pF • Measurement points done at 0.5 × VDD level Refer to Section 5.3.14: I/O port characteristics for more details on the input/output characteristics. Table 153. JTAG characteristics(1) Symbol Parameter Conditions Min Typ Max 2.7 V ≤ VDD ≤ 3.6 V - - 38 1.71 V ≤ VDD ≤ 3.6 V - - 26 FTCK TCK clock frequency tisu(TMS) TMS input setup time - 1 - - tih(TMS) TMS input hold time - 3 - - tisu(TDI) TDI input setup time - 2 - - tih(TDI) TDI input hold time - 1 - - DS13086 Rev 6 Unit MHz ns 297/334 299 Electrical characteristics STM32U585xx Table 153. JTAG characteristics(1) (continued) Symbol Parameter tov(TDO) TDO output valid time toh(TDO) TDO output hold time Conditions Min Typ Max 2.7 V ≤ VDD ≤ 3.6 V - 9 13 1.71 V ≤ VDD ≤ 3.6 V - 9 19 7 - - Min Typ Max 2.7 V ≤ VDD ≤ 3.6 V - - 66.5 1.71 V ≤ VDD ≤ 3.6 V - - 43 - 1 - - - 2.5 - - 2.7 V ≤ VDD ≤ 3.6 V - 10.5 15 1.71 V ≤ VDD ≤ 3.6 V - 10.5 23 7.5 - - - Unit ns 1. Evaluated by characterization. Not tested in production. Table 154. SWD characteristics(1) Symbol Parameter FSWCLK Conditions SWCLK clock frequency tisu(SWDIO) SWDIO input setup time tih(SWDIO) SWDIO input hold time tov(SWDIO) SWDIO output valid time toh(SWDIO) SWDIO output hold time - 1. Evaluated by characterization. Not tested in production. Figure 79. JTAG timing diagram tc(TCK) TCK tsu(TMS/TDI) th(TMS/TDI) tw(TCKL) tw(TCKH) TDI/TMS tov(TDO) toh(TDO) TDO MSv40458V1 298/334 DS13086 Rev 6 Unit MHz ns STM32U585xx Electrical characteristics Figure 80. SWD timing diagram tc(SWCLK) SWCLK tsu(SWDIO) th(SWDIO) twSWCLKL) tw(SWCLKH) SWDIO (receive) tov(SWDIO) toh(SWDIO) SWDIO (transmit) MSv40459V1 DS13086 Rev 6 299/334 299 Package information 6 STM32U585xx Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 6.1 UFQFPN48 package information This UFQFPN is a 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package Figure 81. UFQFPN48 - Outline Pin 1 identifier laser marking area D A E E T ddd A1 Seating plane b e Detail Y D Exposed pad area Y D2 1 L 48 C 0.500x45° pin1 corner E2 R 0.125 typ. Detail Z 1 Z 48 A0B9_ME_V3 1. Drawing is not to scale. 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life. 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground. 300/334 DS13086 Rev 6 STM32U585xx Package information Table 155. UFQFPN48 - Mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 D 6.900 7.000 7.100 0.2717 0.2756 0.2795 E 6.900 7.000 7.100 0.2717 0.2756 0.2795 D2 5.500 5.600 5.700 0.2165 0.2205 0.2244 E2 5.500 5.600 5.700 0.2165 0.2205 0.2244 L 0.300 0.400 0.500 0.0118 0.0157 0.0197 T - 0.152 - - 0.0060 - b 0.200 0.250 0.300 0.0079 0.0098 0.0118 e - 0.500 - - 0.0197 - ddd - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 82. UFQFPN48 - Recommended footprint 7.30 6.20 48 37 1 36 5.60 0.20 7.30 5.80 6.20 5.60 0.30 12 25 13 24 0.50 0.55 5.80 0.75 A0B9_FP_V2 1. Dimensions are expressed in millimeters. DS13086 Rev 6 301/334 328 Package information STM32U585xx Device marking for UFQFPN48 The following figure gives an example of topside marking versus pin 1 position identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below. Figure 83. UFQFPN48 marking example (package top view) STM32U585 Product identification(1) CIU6 Y WW Pin 1 identifier Date code R Revision code MSv64351V2 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 302/334 DS13086 Rev 6 STM32U585xx 6.2 Package information LQFP48 package information This LQFP is a 48-pin, 7 x 7 mm low-profile quad flat package Note: See list of notes in the notes section. Figure 84. LQFP48 - Outline(15) BOTTOM VIEW 4x N/4 TIPS aaa C A-B D   (2) R1 R2 N TI O (6) B SE C D 1/4 BB H GAUGE PLANE 0.25 E 1/4 S B bbb H A-B D 4x  0.05 A (13) (N – 4)x e C A2 A1 (12) ddd b (10) (3) A (1) (11) SECTION A-A (4) D1 D (3) N 1 2 3 (L1) ccc C C A-B D D (2) (5) L b (9) (11) WITH PLATING E 1/4 B (3) (6) c D 1/4 E1 E (2) (5) A c1 (11) (11) (4) A b1 (Section A-A) (11) BASE METAL SECTION B-B TOP VIEW 5B_LQFP48_ME_V1 DS13086 Rev 6 303/334 328 Package information STM32U585xx Table 156. LQFP48 - Mechanical data inches(14) millimeters Symbol A A1 (12) A2 Min Typ Max Min Typ Max - - 1.60 - - 0.0630 0.05 - 0.15 0.0020 - 0.0059 1.35 1.40 1.45 0.0531 0.0551 0.0571 (9)(11) 0.17 0.22 0.27 0.0067 0.0087 0.0106 (11) 0.17 0.20 0.23 0.0067 0.0079 0.0090 0.09 - 0.20 0.0035 - 0.0079 0.09 - 0.16 0.0035 - 0.0063 b b1 (11) c c1(11) (4) 9.00 BSC 0.3543 BSC (2)(5) D 7.00 BSC 0.2756 BSC E(4) 9.00 BSC 0.3543 BSC E1(2)(5) 7.00 BSC 0.2756 BSC e 0.50 BSC 0.1970 BSC D1 L 0.45 L1 0.60 0.75 1.00 REF 0.0236 0.0295 0.0394 REF N(13) 48 θ 0° 3.5° 7° 0° 3.5° 7° θ1 0° - - 0° - - θ2 10° 12° 14° 10° 12° 14° θ3 10° 12° 14° 10° 12° 14° R1 0.08 - - 0.0031 - - R2 0.08 - 0.20 0.0031 - 0.0079 S 0.20 - - 0.0079 - - aaa(1)(7) 0.20 0.0079 bbb(1)(7) 0.20 0.0079 (1)(7) 0.08 0.0031 (1)(7) 0.08 0.0031 ccc ddd 304/334 0.0177 DS13086 Rev 6 STM32U585xx Package information Notes: 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994. 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm. 3. Datums A-B and D to be determined at datum plane H. 4. To be determined at seating datum plane C. 5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is “0.25 mm” per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch. 6. Details of pin 1 identifier are optional but must be located within the zone indicated. 7. All Dimensions are in millimeters. 8. No intrusion allowed inwards the leads. 9. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum “b” dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages. 10. Exact shape of each corner is optional. 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip. 12. A1 is defined as the distance from the seating plane to the lowest point on the package body. 13. “N” is the number of terminal positions for the specified body size. 14. Values in inches are converted from mm and rounded to 4 decimal digits. 15. Drawing is not to scale. Figure 85. LQFP48 - Recommended footprint 0.50 1.20 36 25 37 24 0.30 0.20 9.70 7.30 48 13 12 1 5.80 9.70 5B_LQFP48_FP_V1 1. Dimensions are expressed in millimeters. DS13086 Rev 6 305/334 328 Package information STM32U585xx Device marking for LQFP48 The following figure gives an example of topside marking versus pin 1 position identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below. Figure 86. LQFP48 marking example (package top view) STM32U585 Product identification(1) CIT6 Y WW Pin 1 identifier Date code R Revision code MSv67814V1 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 306/334 DS13086 Rev 6 STM32U585xx 6.3 Package information LQFP64 package information This LQFP is 64-pin, 10 x 10 mm low-profile quad flat package. Note: See list of notes in the notes section. Figure 87. LQFP64 - Outline(15) BOTTOM VIEW   (2) R1 R2 GAUGE PLANE 0.25 B D 1/4 SE C TI O N BB H (6) S B E 1/4 4x N/4 TIPS aaa C A-B D  L (L1) (1) (11) bbb H A-B D 4x SECTION A-A (13) (N – 4)x e C A 0.05 A2 A1 (12) b ddd C A-B D ccc C D (9) (11) D (3) (10) b (4) N E 1/4 1 2 3 (3) A (4) D1 (5) (2) WITH PLATING (11) (11) c D 1/4 B (3) (6) (5) (2) E1 A (Section A-A) c1 A E b1 (11) BASE METAL SECTION B-B 5W_LQFP64_ME_V1 TOP VIEW DS13086 Rev 6 307/334 328 Package information STM32U585xx Table 157. LQFP64 - Mechanical data Symbol inches(14) millimeters Min Typ Max Min Typ Max A - - 1.60 - - 0.0630 A1(12) 0.05 - 0.15 0.0020 - 0.0059 A2 1.35 1.40 1.45 0.0531 0.0551 0.0570 (9)(11) 0.17 0.22 0.27 0.0067 0.0087 0.0106 (11) b 0.17 0.20 0.23 0.0067 0.0079 0.0091 c(11) 0.09 - 0.20 0.0035 - 0.0079 c1(11) 0.09 - 0.16 0.0035 - 0.0063 b1 (4) 12.00 BSC 0.4724 BSC (2)(5) 10.00 BSC 0.3937 BSC 12.00 BSC 0.4724 BSC 10.00 BSC 0.3937 BSC 0.50 BSC 0.1970 BSC D D1 E(4) (2)(5) E1 e L 0.45 L1 0.60 0.75 0.0236 0.0295 0.0394 REF N(13) θ 0.0177 1.00 REF 64 0° 3.5° 7° 0° 3.5° 7° θ1 0° - - 0° - - θ2 10° 12° 14° 10° 12° 14° θ3 10° 12° 14° 10° 12° 14° R1 0.08 - - 0.0031 - - R2 0.08 - 0.20 0.0031 - 0.0079 S 0.20 - - 0.0079 - - (1) 0.20 0.0079 (1) 0.20 0.0079 ccc (1) 0.08 0.0031 ddd(1) 0.08 0.0031 aaa bbb Notes: 308/334 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994. 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm. 3. Datums A-B and D to be determined at datum plane H. 4. To be determined at seating datum plane C. 5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is “0.25 mm” per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch. 6. Details of pin 1 identifier are optional but must be located within the zone indicated. 7. All Dimensions are in millimeters. 8. No intrusion allowed inwards the leads. DS13086 Rev 6 STM32U585xx Package information 9. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum “b” dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages. 10. Exact shape of each corner is optional. 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip. 12. A1 is defined as the distance from the seating plane to the lowest point on the package body. 13. “N” is the number of terminal positions for the specified body size. 14. Values in inches are converted from mm and rounded to 4 decimal digits. 15. Drawing is not to scale. Figure 88. LQFP64 - Recommended footprint 48 33 0.30 0.5 49 32 12.70 10.30 10.30 17 64 1.20 16 1 7.80 12.70 5W_LQFP64_FP_V2 1. Dimensions are expressed in millimeters. DS13086 Rev 6 309/334 328 Package information STM32U585xx Device marking for LQFP64 The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which also depend on supply chain operations, are not indicated below. Figure 89. LQFP64 marking example (package top view) STM32U585 Product identification(1) RIT6 Y WW Pin 1 identifier Date code R Revision code MSv64352V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 310/334 DS13086 Rev 6 STM32U585xx 6.4 Package information WLSCP90 package information WLCSP is a 90 balls, 4.20 x 3.95 mm, 0.4 mm pitch, wafer level chip scale package. Figure 90. WLCSP90 - Outline bbb Z A1 BALL LOCATION A1 DETAIL A e1 F aaa (4x) G A1 B4 B2 e2 E e e A2 A D BOTTOM VIEW TOP VIEW A3 A2 SIDE VIEW BUMP A1 b eee Z FRONT VIEW Z b (90x) ccc Z X Y ddd Z DETAIL A ROTATED 90 SEATING PLANE B01C_WLCSP90_ME_V2 1. Drawing is not to scale. 2. Dimension is measured at the maximum bump diameter parallel to primary datum Z. 3. Primary datum Z and seating plane are defined by the spherical crowns of the bump. 4. Bump position designation per JESD 95-1, SPP-010. DS13086 Rev 6 311/334 328 Package information STM32U585xx Table 158. WLCSP90 - Mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A(2) - - 0.59 - - 0.023 A1 - 0.18 - - 0.007 - A2 - 0.38 - - 0.015 - - 0.025 - - 0.001 - b 0.22 0.25 0.28 0.009 0.010 0.011 D 4.19 4.20 4.21 0.165 0.165 0.166 E 3.93 3.95 3.97 0.155 0.156 0.156 e - 0.40 - - 0.016 - e1 - 3.40 - - 0.134 - e2 - 3.12 - - 0.123 - F(4) - 0.400 - - 0.016 - G(4) - 0.416 - - 0.016 - aaa - - 0.10 - - 0.004 bbb - - 0.10 - - 0.004 ccc - - 0.10 - - 0.004 ddd - - 0.05 - - 0.002 eee - - 0.05 - - 0.002 (3) A3 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. The maximum total package height is calculated by the RSS method (Root Sum Square) using nominal and tolerances values of A1 and A2. 3. Back side coating. Nominal dimension is rounded to the 3rd decimal place resulting from process capability. 4. Calculated dimensions are rounded to the 3rd decimal place Figure 91. WLCSP90 - Recommended footprint Dpad Dsm B03P_WLCSP36_DIE464_FP_V1 312/334 DS13086 Rev 6 STM32U585xx Package information Table 159. WLCSP90 - Recommended PCB design rules Dimension Recommended values Pitch 0.4 mm Dpad 0,225 mm Dsm 0.290 mm typ. (depends on soldermask registration tolerance) Stencil opening 0.250 mm Stencil thickness 0.100 mm Device marking for WLCSP90 The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which also depend on supply chain operations, are not indicated below. Figure 92. WLCSP90 marking example (package top view) Pin 1 identifier Product identification(1) Date code U585OI6Q Y WW R Revision code MSv67815V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DS13086 Rev 6 313/334 328 Package information 6.5 STM32U585xx LQFP100 package information This LQFP is 100 lead, 14 x 14 mm low-profile quad flat package. Note: See list of notes in the notes section. Figure 93. LQFP100 - Outline(15) θ1 θ2 (2) R1 R2 (6) B D1/4 SE C TI O N BB H GAUGE PLANE S θ3 4x N/4 TIPS L 4x aaa C A-B D (L1) bbb H A-B D (1) (11) SECTION A-A BOTTOM VIEW (N-4) x e (13) C A 0.05 θ B E1/4 (9) (11) b A2 A1 (12) aaa b ccc C C A-BD WITH PLATING SIDE VIEW D D1 (2) (5) (4) (11) D (3) (10) c c1 (11) (4) N b1 BASE METAL (11) 1 2 3 E1/4 D1/4 SECTION B-B (2) (6) B A (5) E1 E SECTION A-A A A TOP VIEW 314/334 1L_LQFP100_ME_V3 DS13086 Rev 6 STM32U585xx Package information Table 160. LQFP100 - Mechanical data inches(14) millimeters Symbol A (12) A1 A2 Min Typ Max Min Typ Max - 1.50 1.60 - 0.0590 0.0630 0.05 - 0.15 0.0019 - 0.0059 1.35 1.40 1.45 0.0531 0.0551 0.0570 (9)(11) 0.17 0.22 0.27 0.0067 0.0087 0.0106 (11) 0.17 0.20 0.23 0.0067 0.0079 0.0090 0.09 - 0.20 0.0035 - 0.0079 0.09 - 0.16 0.0035 - 0.0063 b b1 (11) c c1(11) (4) 16.00 0.6299 (2)(5) D 14.00 0.5512 E(4) 16.00 0.6299 E1(2)(5) 14.00 0.5512 D1 L1 e - 0.50 - - 0.0197 - L 0.45 0.60 0.75 0.177 0.0236 0.0295 - 0.0394 - (1)(11) 1.00 N 100 θ 0° 3.5° 7° 0° 3.5° 7° θ1 0° - - 0° - - θ2 10° 12° 14° 10° 12° 14° θ3 10° 12° 14° 10° 12° 14° R1 0.08 - - 0.0031 - - R2 0.08 - 0.20 0.0031 - 0.0079 S 0.20 - - 0.0079 - - aaa 0.20 0.0079 bbb 0.20 0.0079 ccc 0.08 0.0031 ddd 0.08 0.0031 DS13086 Rev 6 315/334 328 Package information STM32U585xx Notes: 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994. 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm. 3. Datums A-B and D to be determined at datum plane H. 4. To be determined at seating datum plane C. 5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is “0.25 mm” per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch. 6. Details of pin 1 identifier are optional but must be located within the zone indicated. 7. All Dimensions are in millimeters. 8. No intrusion allowed inwards the leads. 9. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum “b” dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages. 10. Exact shape of each corner is optional. 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip. 12. A1 is defined as the distance from the seating plane to the lowest point on the package body. 13. “N” is the number of terminal positions for the specified body size. 14. Values in inches are converted from mm and rounded to 4 decimal digits. 15. Drawing is not to scale. Figure 94. LQFP100 - Recommended footprint 75 76 51 50 0.5 0.3 16.7 14.3 100 26 1.2 1 25 12.3 16.7 1L_LQFP100_FP_V1 1. Dimensions are expressed in millimeters. 316/334 DS13086 Rev 6 STM32U585xx Package information Device marking for LQFP100 The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which also depend on supply chain operations, are not indicated below. Figure 95. LQFP100 marking example (package top view) STM32U Product identification(1) 585VIT6 R Y WW Revision code Date code Pin 1 identifier MSv64353V2 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DS13086 Rev 6 317/334 328 Package information 6.6 STM32U585xx UFBGA132 package information This UFBGA is a 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array package. Figure 96. UFBGA132 - Outline A1 ball identifier A B E1 e E Z A Z D1 D e M 12 BOTTOM VIEW 1 Øb (132 balls) Øeee M C A B Ø fff M C TOP VIEW A4 ddd C A2 A3 A1 A b SEATING PLANE UFBGA132_A0G8_ME_V2 1. Drawing is not to scale. Table 161. UFBGA132 - Mechanical data inches(1) millimeters Symbol 318/334 Min Typ Max Min Typ Max A - - 0.600 - - 0.0236 A1 - - 0.110 - - 0.0043 A2 - 0.450 - - 0.0177 - A3 - 0.130 - - 0.0051 - A4 - 0.320 - - 0.0126 - b 0.240 0.290 0.340 0.0094 0.0114 0.0134 D 6.850 7.000 7.150 0.2697 0.2756 0.2815 D1 - 5.500 - - 0.2165 - E 6.850 7.000 7.150 0.2697 0.2756 0.2815 E1 - 5.500 - - 0.2165 - DS13086 Rev 6 STM32U585xx Package information Table 161. UFBGA132 - Mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max e - 0.500 - - 0.0197 - Z - 0.750 - - 0.0295 - ddd - 0.080 - - 0.0031 - eee - 0.150 - - 0.0059 - fff - 0.050 - - 0.0020 - 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 97. UFBGA132 - Recommended footprint Dpad Dsm UFBGA132_A0G8_FP_V1 Table 162. UFBGA132 - Recommended PCB design rules (0.5 mm pitch BGA) Dimension Recommended values Pitch 0.5 mm Dpad 0.280 mm Dsm 0.370 mm typ. (depends on the soldermask registration tolerance) Stencil opening 0.280 mm Stencil thickness Between 0.100 mm and 0.125 mm Pad trace width 0.100 mm Ball diameter 0.280 mm DS13086 Rev 6 319/334 328 Package information STM32U585xx Device marking for UFBGA132 The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which also depend on supply chain operations, are not indicated below. Figure 98. UFBGA132 marking example (package top view) STM32U Product identification(1) 585QII6 Date code Y WW R Revision code Pin 1 identifier MSv64354V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 320/334 DS13086 Rev 6 STM32U585xx 6.7 Package information LQFP144 package information This LQFP is a 144-pin, 20 x 20 mm low-profile quad flat package. Note: See list of notes in the notes section. Figure 99. LQFP144 - Outline(15) BOTTOM VIEW   (2) R1 R2 B GAUGE PLANE 0.25 (6) SE C TI O N BB H D 1/4 S B L  E 1/4 (L1) (1) (11) 4x N/4 TIPS aaa C A-B D SECTION A-A bbb H A-B D 4x (N-4)x e C A 0.05 A2 A1 (12) b ddd C A-B D D D1 (3) (10) ccc C (4) (2) (5) D 1 2 3 (9) (11) (4) N b WITH PLATING E 1/4 (11) D 1/4 (6) c1 (11) (2) (5) B (3) (3) A c E1 E b1 (11) BASE METAL SECTION B-B A (Section A-A) A TOP VIEW 1A_LQFP144_ME_V2 DS13086 Rev 6 321/334 328 Package information STM32U585xx Table 163. LQFP144 - Mechanical data inches(14) millimeters Symbol A (12) A1 A2 b Min Typ Max Min Typ Max - - 1.60 - - 0.0630 0.05 - 0.15 0.0020 - 0.0059 1.35 1.40 1.45 0.0531 0.0551 0.0571 (9)(11) 0.17 0.22 0.27 0.0067 0.0087 0.0106 (11) 0.17 0.20 0.23 0.0067 0.0079 0.0090 0.09 - 0.20 0.0035 - 0.0079 0.09 - 0.16 0.0035 - 0.0063 b1 c (11) c1(11) (4) 22.00 BSC 0.8661 BSC (2)(5) D 20.00 BSC 0.7874 BSC E(4) 22.00 BSC 0.8661 BSC E1(2)(5) 20.00 BSC 0.7874 BSC e 0.50 BSC 0.0197 BSC D1 L 0.45 L1 0.60 0.75 0.0177 1.00 REF 0.0236 0.0295 0.0394 REF N(13) 144 θ 0° 3.5° 7° 0° 3.5° 7° θ1 0° - - 0° - - θ2 10° 12° 14° 10° 12° 14° θ3 10° 12° 14° 10° 12° 14° R1 0.08 - - 0.0031 - - R2 0.08 - 0.20 0.0031 - 0.0079 S 0.20 - - 0.0079 - - aaa 0.20 0.0079 bbb 0.20 0.0079 ccc 0.08 0.0031 ddd 0.08 0.0031 Notes: 322/334 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994. 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm. 3. Datums A-B and D to be determined at datum plane H. 4. To be determined at seating datum plane C. DS13086 Rev 6 STM32U585xx Package information 5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is “0.25 mm” per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch. 6. Details of pin 1 identifier are optional but must be located within the zone indicated. 7. All Dimensions are in millimeters. 8. No intrusion allowed inwards the leads. 9. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum “b” dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages. 10. Exact shape of each corner is optional. 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip. 12. A1 is defined as the distance from the seating plane to the lowest point on the package body. 13. “N” is the number of terminal positions for the specified body size. 14. Values in inches are converted from mm and rounded to 4 decimal digits. 15. Drawing is not to scale. Figure 100. LQFP144 - Recommended footprint 108 109 73 1.35 72 0.35 0.50 19.90 17.85 22.60 144 37 1 36 19.90 22.60 1A_LQFP144_FP 1. Dimensions are expressed in millimeters. DS13086 Rev 6 323/334 328 Package information STM32U585xx Device marking for LQFP144 The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which also depend on supply chain operations, are not indicated below. Figure 101. LQFP144 marking example (package top view) Product identification(1) STM32U585ZIT6 R Y WW Revision code Date code Pin 1 identifier MSv64355V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 324/334 DS13086 Rev 6 STM32U585xx 6.8 Package information UFBGA169 package information This UFBGA is a 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package. Figure 102. UFBGA169 - Outline Z Seating plane A2 A4 ddd Z A A3 A1 b SIDE VIEW A1 ball identifier A1 ball index area X E E1 e F A F D D1 e Y N 13 1 BOTTOM VIEW TOP VIEW Øb (169 balls) Ø eee M Z X Y Ø fff M Z A0YV_ME_V2 1. Drawing is not to scale. Table 164. UFBGA169 - Mechanical data inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. A 0.460 0.530 0.600 0.0181 0.0209 0.0236 A1 0.050 0.080 0.110 0.0020 0.0031 0.0043 A2 0.400 0.450 0.500 0.0157 0.0177 0.0197 A3 - 0.130 - - 0.0051 - A4 0.270 0.320 0.370 0.0106 0.0126 0.0146 b 0.230 0.280 0.330 0.0091 0.0110 0.0130 D 6.950 7.000 7.050 0.2736 0.2756 0.2776 D1 5.950 6.000 6.050 0.2343 0.2362 0.2382 E 6.950 7.000 7.050 0.2736 0.2756 0.2776 E1 5.950 6.000 6.050 0.2343 0.2362 0.2382 e - 0.500 - - 0.0197 - F 0.450 0.500 0.550 0.0177 0.0197 0.0217 DS13086 Rev 6 325/334 328 Package information STM32U585xx Table 164. UFBGA169 - Mechanical data (continued) inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. ddd - - 0.100 - - 0.0039 eee - - 0.150 - - 0.0059 fff - - 0.050 - - 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 103. UFBGA169 - Recommended footprint Dpad Dsm MS18965V2 Table 165. UFBGA169 - Recommended PCB design rules (0.5 mm pitch BGA) Dimension Note: Recommended values Pitch 0.5 mm Dpad 0.27 mm Dsm 0.35 mm typ. (depends on the soldermask registration tolerance) Solder paste 0.27 mm aperture diameter. Non-solder mask defined (NSMD) pads are recommended. 4 to 6 mils solder paste screen printing process. 326/334 DS13086 Rev 6 STM32U585xx Package information Device marking for UFBGA169 The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which also depend on supply chain operations, are not indicated below. Figure 104. UFBGA169 marking example (package top view) Pin 1 identifier STM32U Product identification(1) 585AII6 Date code Y WW R Revision code MSv64356V1 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 6.9 Package thermal characteristics The maximum chip-junction temperature, TJ max, in degrees Celsius, can be calculated using the following equation: TJ max = TA max + (PD max × ΘJA) where: • TA max is the maximum ambient temperature in °C. • ΘJA is the package junction-to-ambient thermal resistance in °C/W. • PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/O max). • PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins: PI/O max = ∑(VOL × IOL) + ∑((VDDIOx - VOH) × IOH) taking into account the actual VOL/IOL and VOH/IOH of the I/Os at low and high level in the application. DS13086 Rev 6 327/334 328 Package information STM32U585xx Table 166. Package thermal characteristics Symbol ΘJA ΘJB ΘJC 328/334 Parameter Package Thermal resistance junction-ambient Thermal resistance junction-board Thermal resistance junction-top case Value LQFP48 7 x 7 mm 45.8 UFQFPN48 7 x 7 mm 26.9 LQFP64 10 x 10 mm 39.6 WLCSP90 4.2 x 3.95 mm 42.3 LQFP100 - 14 × 14 m 34.4 UFBGA132 7 x 7 mm 35.2 LQFP144 20 x 20 mm 35.9 UFBGA169 7 x 7 mm 33.7 LQFP48 7 x 7 mm 23.4 UFQFPN48 7 x 7 mm 11.2 LQFP64 10 x 10 mm 22 WLCSP90 4.2 x 3.95 mm 27.5 LQFP100 - 14 × 14 m 20.3 UFBGA132 7 x 7 mm 20.7 LQFP144 20 x 20 mm 24.8 UFBGA169 7 x 7 mm 19.3 LQFP48 7 x 7 mm 10.7 UFQFPN48 7 x 7 mm 8 LQFP64 10 x 10 mm 9.0 WLCSP90 4.2 x 3.95 mm 1.6 LQFP100 - 14 × 14 m 7.4 UFBGA132 7 x 7 mm 8.3 LQFP144 20 x 20 mm 7.6 UFBGA169 7 x 7 mm 8.3 DS13086 Rev 6 Unit °C/W STM32U585xx 7 Ordering information Ordering information Example: STM32 U 585 V I T 6 Q TR Device family STM32 = Arm based 32-bit microcontroller Product type U = ultra-low-power Device subfamily 585 = STM32U585xx with OTG and AES hardware encryption Pin count C = 48 pins R = 64 pins O = 90 pins V = 100 pins Q = 132 balls Z = 144 pins A = 169 balls Flash memory size I = 2 Mbytes Package T = LQFP I = UFBGA (7 x 7 mm) U = UFQFPN Y = WLCSP Temperature range 6 = Industrial temperature range, –40 to 85 °C (105 °C junction) 3 = Industrial temperature range, –40 to 125 °C (130 °C junction) Dedicated pinout Q = Dedicated pinout supporting SMPS step-down converter Packing TR = tape and reel xxx = programmed parts For a list of available options (such as speed or package) or for further information on any aspect of this device, contact the nearest ST sales office. DS13086 Rev 6 329/334 329 Important security notice 8 STM32U585xx Important security notice The STMicroelectronics group of companies (ST) places a high value on product security, which is why the ST product(s) identified in this documentation may be certified by various security certification bodies and/or may implement our own security measures as set forth herein. However, no level of security certification and/or built-in security measures can guarantee that ST products are resistant to all forms of attacks. As such, it is the responsibility of each of ST's customers to determine if the level of security provided in an ST product meets the customer needs both in relation to the ST product alone, as well as when combined with other components and/or software for the customer end product or application. In particular, take note that: 330/334 • ST products may have been certified by one or more security certification bodies, such as Platform Security Architecture (www.psacertified.org) and/or Security Evaluation standard for IoT Platforms (www.trustcb.com). For details concerning whether the ST product(s) referenced herein have received security certification along with the level and current status of such certification, either visit the relevant certification standards website or go to the relevant product page on www.st.com for the most up to date information. As the status and/or level of security certification for an ST product can change from time to time, customers should re-check security certification status/level as needed. If an ST product is not shown to be certified under a particular security standard, customers should not assume it is certified. • Certification bodies have the right to evaluate, grant and revoke security certification in relation to ST products. These certification bodies are therefore independently responsible for granting or revoking security certification for an ST product, and ST does not take any responsibility for mistakes, evaluations, assessments, testing, or other activity carried out by the certification body with respect to any ST product. • Industry-based cryptographic algorithms (such as AES, DES, or MD5) and other open standard technologies which may be used in conjunction with an ST product are based on standards which were not developed by ST. ST does not take responsibility for any flaws in such cryptographic algorithms or open technologies or for any methods which have been or may be developed to bypass, decrypt or crack such algorithms or technologies. • While robust security testing may be done, no level of certification can absolutely guarantee protections against all attacks, including, for example, against advanced attacks which have not been tested for, against new or unidentified forms of attack, or against any form of attack when using an ST product outside of its specification or intended use, or in conjunction with other components or software which are used by customer to create their end product or application. ST is not responsible for resistance against such attacks. As such, regardless of the incorporated security features and/or any information or support that may be provided by ST, each customer is solely responsible for determining if the level of attacks tested for meets their needs, both in relation to the ST product alone and when incorporated into a customer end product or application. • All security features of ST products (inclusive of any hardware, software, documentation, and the like), including but not limited to any enhanced security features added by ST, are provided on an "AS IS" BASIS. AS SUCH, TO THE EXTENT PERMITTED BY APPLICABLE LAW, ST DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, unless the applicable written and signed contract terms specifically provide otherwise. DS13086 Rev 6 STM32U585xx 9 Revision history Revision history Table 167. Document revision history Date Revision 02-Sep-2021 1 Initial release. 2 Updated: – Figure 24 and Figure 25: STM32U585xQ power supply scheme (with SMPS) – Figure 28: AC timing diagram for high-speed external clock source – Figure 29: AC timing diagram for low-speed external square clock source – VDDCoeff values in Table 36: Embedded internal voltage reference – IDD(RUN) Range 2 values in Table 37 and Table 38 – New consumption Table 40, Table 42, Table 45, Table 46, Table 50, Table 52, Table 54, Table 56, Table 58, Table 60, Table 66, Table 68 – All values in consumption Table 53, Table 55, Table 57, Table 59, Table 65 – All values in Table 71, Table 72, Table 73 – USER TROM COVERAGE removed in Table 80: MSI oscillator characteristics – Table 84: PLL characteristics 3 Updated: – Security and cryptography – ‘legacy’ replaced by ‘without SMPS’ in Table 2: STM32U585xx features and peripheral counts – PSSI in Table 10: Functionalities depending on the working mode – Table 38 and new Table 39: Current consumption in Run mode on SMPS, code with data processing running from Flash memory, ICACHE ON (1-way), prefetch ON, VDD = 3.0 V – Table 45 and new Table 46: Current consumption in Sleep mode on SMPS, Flash memory in power down, VDD = 3.0 V – Table 47: SRAM1/SRAM3 current consumption in Run/Sleep mode with LDO and SMPS – twu(Sleep) max in Table 74: Low-power mode wakeup timings on SMPS – Footnote 8 on Table 82: MSI oscillator characteristics – tSU(RX) in Table 147: USART characteristics – Section 6.5: LQFP100 package information 4 Updated: – FMC_A16 and FMC_A17 in Table 26: STM32U585xx pin definitions and Table 28: Alternate function AF8 to AF15 – New tVBAT_BOR_sampling in Table 34: Embedded reset and power control block characteristics – CS_PARA in Table 79: LSE oscillator characteristics (fLSE = 32.768 kHz) – Figure 32: Typical application with a 32.768 kHz crystal 5 Updated: – GPIOs and capacitive sensing in Table 2: STM32U585xx features and peripheral counts – Figure 1: STM32U585xx block diagram – VBAT in Section 3.9.1: Power supply schemes 24-Sep-2021 19-Nov-2021 13-Dec-2021 13-Mar-2022 Changes DS13086 Rev 6 331/334 333 Revision history STM32U585xx Table 167. Document revision history (continued) Date 13-Mar-2022 332/334 Revision Changes – Backup domain in Figure 2 and Figure 3: STM32U585xx power supply overview (without SMPS) – IWDG in Table 10: Functionalities depending on the working mode – New sentence beg. of Section 3.25: Octo-SPI interface (OCTOSPI) – Section 3.25.1: OCTOSPI TrustZone security – Figure 9: UFQFPN48_SMPS pinout – PB2 I/O structure in Table 27: STM32U585xx pin definitions – Notes of Table 51: Current consumption in Stop 1 mode on LDO – Table 52: Current consumption during wakeup from Stop 1 mode on LDO – Notes of Table 53: Current consumption in Stop 1 mode on SMPS – Table 54: Current consumption during wakeup from Stop 1 mode on SMPS – Table SRAM static power consumption in Stop 2 when supplied by LDO moved – Notes of Table 55: Current consumption in Stop 2 mode on LDO – Table 57: Current consumption during wakeup from Stop 2 mode on LDO – Table SRAM static power consumption in Stop 2 when supplied by SMPS moved – Table 60: Current consumption during wakeup from Stop 2 mode on SMPS – Notes of Table 58: Current consumption in Stop 2 mode on SMPS – Table SRAM static power consumption in Stop 3 when supplied by LDO moved – Table 63: Current consumption during wakeup from Stop 3 mode on LDO – Table SRAM static power consumption in Stop 3 when supplied by SMPS moved – Notes of Table 64: Current consumption in Stop 3 mode on SMPS – Table 66: Current consumption during wakeup from Stop 3 mode on SMPS 5 (cont’d) – Table 68: Current consumption during wakeup from Standby mode – Notes of Table 69: Current consumption in Shutdown mode – Table 70: Current consumption during wakeup from Shutdown mode – twu(Sleep) and notes of Table 73: Low-power mode wakeup timings on LDO – Notes Table 75: Regulator mode transition times – Output driving current – Notes of Table 95: Output voltage characteristics – New Table 96: Output voltage characteristics for FT_t I/Os in VBAT mode – Notes of Table 97: Output AC characteristics, HSLV OFF (all I/Os except FT_c) – Notes of Table 98: Output AC characteristics, HSLV ON (all I/Os except FT_c) – Table 100: Output AC characteristics for FT_t I/Os in VBAT mode – fAHB_CAL removed from Table 104: 14-bit ADC1 characteristics – Table 114: DAC characteristics – RLoad and en in Table 118: OPAMP characteristics – New Figure 44: OPAMP voltage noise density, normal mode, RLOAD = 3.9 kΩ and Figure 45: OPAMP voltage noise density, low-power mode, RLOAD = 20 kΩ – tLv(NOE_NE) in Table 131: Asynchronous multiplexed PSRAM/NOR read timings – Section 6.2: LQFP48 package information – Section 6.3: LQFP64 package information – Section 6.5: LQFP100 package information – Section 6.7: LQFP144 package information – Disclaimer DS13086 Rev 6 STM32U585xx Revision history Table 167. Document revision history (continued) Date 2-Jun-2022 Revision Changes 6 Added: – Section 8: Important security notice Updated: – Up to 22 capacitive sensing channels – Section 2: Description – Table 2.: STM32U585xx features and peripheral counts – Section 3.36: Touch sensing controller (TSC) – TSC_G3_IO1/TSC_G1_IO4 are removed from PC2/PC3 in Table 27.: STM32U585xx pin definitions and Table 29.: Alternate function AF8 to AF15 – Table 72.: Typical dynamic current consumption of peripherals – Table 90: EMI characteristics for fHSE = 8 MHz and fHCLK = 160 MHz – Minimum value added for PSSR in Table 118.: OPAMP characteristics – Disclaimer DS13086 Rev 6 333/334 333 STM32U585xx IMPORTANT NOTICE – READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2022 STMicroelectronics – All rights reserved 334/334 DS13086 Rev 6
STM32U585QII3 价格&库存

很抱歉,暂时无法提供与“STM32U585QII3”相匹配的价格&库存,您可以联系我们找货

免费人工找货