STM32WB55xx
STM32WB35xx
Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4
with FPU, Bluetooth® 5.2 and 802.15.4 radio solution
Datasheet - production data
Features
.
Include ST state-of-the-art patented
technology
Radio
– 2.4 GHz
– RF transceiver supporting Bluetooth® 5.2
specification, IEEE 802.15.4-2011 PHY
and MAC, supporting Thread and
Zigbee® 3.0
– RX sensitivity: -96 dBm (Bluetooth® Low
Energy at 1 Mbps), -100 dBm (802.15.4)
– Programmable output power up to +6 dBm
with 1 dB steps
– Integrated balun to reduce BOM
– Support for 2 Mbps
– Support advertising extension
– Dedicated Arm® 32-bit Cortex® M0+ CPU
for real-time Radio layer
– Accurate RSSI to enable power control
– Suitable for systems requiring compliance
with radio frequency regulations ETSI EN
300 328, EN 300 440, FCC CFR47 Part 15
and ARIB STD-T66
– Support for external PA
– Available integrated passive device (IPD)
companion chip for optimized matching
solution (MLPF-WB-01E3 or
MLPF-WB-02E3)
Ultra-low-power platform
– 1.71 to 3.6 V power supply
– – 40 °C to 85 / 105 °C temperature ranges
– 13 nA shutdown mode
– 600 nA Standby mode + RTC + 32 KB
RAM
– 2.1 µA Stop mode + RTC + 256 KB RAM
– Active-mode MCU: < 53 µA / MHz when RF
and SMPS on
– Radio: Rx 4.5 mA / Tx at 0 dBm 5.2 mA
January 2022
This is information on a product in full production.
UFQFPN48
7 x 7 mm solder pad
VFQFPN68
8 x 8 mm solder pad
FBGA
WLCSP100
0.4 mm pitch
UFBGA129
0.5 mm pitch
Core: Arm® 32-bit Cortex®-M4 CPU with FPU,
adaptive real-time accelerator (ART
Accelerator) allowing 0-wait-state execution
from Flash memory, frequency up to 64 MHz,
MPU, 80 DMIPS and DSP instructions
Performance benchmark
– 1.25 DMIPS/MHz (Drystone 2.1)
– 219.48 CoreMark® (3.43 CoreMark/MHz at
64 MHz)
Energy benckmark
– 303 ULPMark™ CP score
Supply and reset management
– High efficiency embedded SMPS
step-down converter with intelligent bypass
mode
– Ultra-safe, low-power BOR (brownout
reset) with five selectable thresholds
– Ultra-low-power POR/PDR
– Programmable voltage detector (PVD)
– VBAT mode with RTC and backup registers
Clock sources
– 32 MHz crystal oscillator with integrated
trimming capacitors (Radio and CPU clock)
– 32 kHz crystal oscillator for RTC (LSE)
– Internal low-power 32 kHz (±5%) RC (LSI1)
– Internal low-power 32 kHz (stability
±500 ppm) RC (LSI2)
DS11929 Rev 12
1/194
www.st.com
STM32WB55xx STM32WB35xx
– Internal multispeed 100 kHz to 48 MHz
oscillator, auto-trimmed by LSE (better than
±0.25% accuracy)
– High speed internal 16 MHz factory
trimmed RC (±1%)
– 2x PLL for system clock, USB, SAI and
ADC
Memories
– Up to 1 MB Flash memory with sector
protection (PCROP) against R/W
operations, enabling radio stack and
application
– Up to 256 KB SRAM, including 64 KB with
hardware parity check
– 20x32-bit backup register
– Boot loader supporting USART, SPI, I2C
and USB interfaces
– OTA (over the air) Bluetooth® Low Energy
and 802.15.4 update
– Quad SPI memory interface with XIP
– 1 Kbyte (128 double words) OTP
Rich analog peripherals (down to 1.62 V)
– 12-bit ADC 4.26 Msps, up to 16-bit with
hardware oversampling, 200 µA/Msps
– 2x ultra-low-power comparator
– Accurate 2.5 V or 2.048 V reference
voltage buffered output
System peripherals
– Inter processor communication controller
(IPCC) for communication with Bluetooth®
Low Energy and 802.15.4
– HW semaphores for resources sharing
between CPUs
– 2x DMA controllers (7x channels each)
supporting ADC, SPI, I2C, USART, QSPI,
SAI, AES, timers
– 1x USART (ISO 7816, IrDA, SPI Master,
Modbus and Smartcard mode)
– 1x LPUART (low power)
– 2x SPI 32 Mbit/s
– 2x I2C (SMBus/PMBus®)
– 1x SAI (dual channel high quality audio)
– 1x USB 2.0 FS device, crystal-less, BCD
and LPM
– Touch sensing controller, up to 18 sensors
– LCD 8x40 with step-up converter
– 1x 16-bit, four channels advanced timer
– 2x 16-bit, two channels timer
– 1x 32-bit, four channels timer
– 2x 16-bit ultra-low-power timer
– 1x independent Systick
– 1x independent watchdog
– 1x window watchdog
Security and ID
– Secure firmware installation (SFI) for
Bluetooth® Low Energy and 802.15.4 SW
stack
– 3x hardware encryption AES maximum
256-bit for the application, the Bluetooth®
Low Energy and IEEE802.15.4
– Customer key storage / key manager
services
– HW public key authority (PKA)
– Cryptographic algorithms: RSA,
Diffie-Helman, ECC over GF(p)
– True random number generator (RNG)
– Sector protection against R/W operation
(PCROP)
– CRC calculation unit
– Die information: 96-bit unique ID
– IEEE 64-bit unique ID. Possibility to derive
802.15.4 64-bit and Bluetooth® Low Energy
48-bit EUI
Up to 72 fast I/Os, 70 of them 5 V-tolerant
Development support
– Serial wire debug (SWD), JTAG for the
application processor
– Application cross trigger with input / output
– Embedded Trace Macrocell™ for
application
All packages are ECOPACK2 compliant
Table 1. Device summary
Reference
Part numbers
STM32WB55xx
STM32WB55CC, STM32WB55CE, STM32WB55CG, STM32WB55RC, STM32WB55RE, STM32WB55RG,
STM32WB55VC, STM32WB55VE, STM32WB55VG, STM32WB55VY
STM32WB35xx
STM32WB35CC, STM32WB35CE
2/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Contents
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2
Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1
Adaptive real-time memory accelerator (ART Accelerator) . . . . . . . . . . 19
3.3.2
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.3
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.4
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4
Security and safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5
Boot modes and FW update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6
RF subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7
3.6.1
RF front-end block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6.2
BLE general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6.3
802.15.4 general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6.4
RF pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6.5
Typical RF application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7.1
Power supply distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7.2
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.7.3
Linear voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7.4
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7.5
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7.6
Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.8
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.9
Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.10
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.11
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.12
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.13
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
DS11929 Rev 12
3/194
6
Contents
STM32WB55xx STM32WB35xx
3.14
3.13.1
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 44
3.13.2
Extended interrupts and events controller (EXTI) . . . . . . . . . . . . . . . . . 45
Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.14.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.14.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.15
Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.16
Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.17
Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.18
Liquid crystal display controller (LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.19
True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.20
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.20.1
Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.20.2
General-purpose timers (TIM2, TIM16, TIM17) . . . . . . . . . . . . . . . . . . . 50
3.20.3
Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 51
3.20.4
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.20.5
System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.20.6
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.21
Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 52
3.22
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.23
Universal synchronous/asynchronous receiver transmitter (USART) . . . 54
3.24
Low-power universal asynchronous receiver transmitter (LPUART) . . . . 54
3.25
Serial peripheral interface (SPI1, SPI2) . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.26
Serial audio interfaces (SAI1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.27
Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.28
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.28.1
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.28.2
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.1
4/194
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Contents
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.1
Summary of main performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.2
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.3
RF BLE characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.4
RF 802.15.4 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.5
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 96
6.3.6
Embedded reset and power control block characteristics . . . . . . . . . . . 96
6.3.7
Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.8
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.9
Wakeup time from Low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.10
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.11
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.12
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.13
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.14
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.15
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.16
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.3.17
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3.18
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.3.19
Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3.20
Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . 140
6.3.21
Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 152
6.3.22
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.3.23
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.3.24
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.3.25
SMPS step-down converter characteristics . . . . . . . . . . . . . . . . . . . . . 156
6.3.26
LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.3.27
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.3.28
Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
DS11929 Rev 12
5/194
6
Contents
STM32WB55xx STM32WB35xx
6.3.29
7
Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 158
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.1
UFBGA129 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.2
WLCSP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.3
VFQFPN68 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.4
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.5
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.5.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.5.2
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 184
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
STM32WB55xx and STM32WB35xx devices features and peripheral counts . . . . . . . . . . 14
Access status vs. readout protection level and execution modes . . . . . . . . . . . . . . . . . . . 20
RF pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Typical external components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Power supply typical components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Features over all modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
STM32WB55xx and STM32WB35xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
STM32WB55xx and STM32WB35xx CPU1 peripherals interconnect matrix . . . . . . . . . . . 39
DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
STM32WB55xx pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
STM32WB35xx pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Alternate functions (STM32WB55xx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Alternate functions (STM32WB35xx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Main performance at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
RF transmitter BLE characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
RF transmitter BLE characteristics (1 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
RF transmitter BLE characteristics (2 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
RF receiver BLE characteristics (1 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
RF receiver BLE characteristics (2 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
RF BLE power consumption for VDD = 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
RF transmitter 802.15.4 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
RF receiver 802.15.4 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
RF 802.15.4 power consumption for VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 96
Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART enable (Cache ON Prefetch OFF), VDD = 3.3 V . . . . . . . . . . . 100
Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1, VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF), VDD= 3.3 V . . . . . . . . . . . . 102
Typical current consumption in Run and Low-power run modes,
with different codes running from SRAM1, VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . 103
Current consumption in Sleep and Low-power sleep modes, Flash memory ON . . . . . . 104
Current consumption in Low-power sleep modes, Flash memory in Power down . . . . . . 104
Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
DS11929 Rev 12
7/194
9
List of tables
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
8/194
STM32WB55xx STM32WB35xx
Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Current under Reset condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Wakeup time using USART/LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
HSE crystal requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
HSE clock source requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Low-speed external user clock characteristics – Bypass mode . . . . . . . . . . . . . . . . . . . . 122
HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
LSI1 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
LSI2 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
PLL, PLLSAI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Electrical sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
ADC sampling time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
ADC accuracy - Limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
ADC accuracy - Limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
ADC accuracy - Limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
ADC accuracy - Limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
IWDG min/max timeout period at 32 kHz (LSI1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Quad-SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Quad-SPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Table 97.
Table 98.
Table 99.
Table 100.
Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.
Table 107.
List of tables
USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
JTAG characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
SWD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
UFBGA129 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
UFBGA129 recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
WLCSP100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
WLCSP100 - Recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
VFQFPN68 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
UFQFPN48 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
DS11929 Rev 12
9/194
9
List of figures
STM32WB55xx STM32WB35xx
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
10/194
STM32WB55xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
STM32WB35xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
STM32WB55xx and STM32WB35xx RF front-end block diagram . . . . . . . . . . . . . . . . . . . 23
External components for the RF part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Power distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
STM32WB55xx - Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
STM32WB35xx - Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
STM32WB55Cx and STM32WB35Cx UFQFPN48 pinout(1) (2). . . . . . . . . . . . . . . . . . . . . . 58
STM32WB55Rx VFQFPN68 pinout(1) (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
STM32WB55Vx WLCSP100 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
STM32WB55Vx UFBGA129 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Power supply scheme (all packages except UFBGA129 and WLCSP100) . . . . . . . . . . . . 82
Power supply scheme (UFBGA129 and WLCSP100 packages) . . . . . . . . . . . . . . . . . . . . 83
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Typical link quality indicator code vs. Rx level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Typical energy detection (T = 27°C, VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
VREFINT vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
HSI16 frequency vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Typical current consumption vs. MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
HSI48 frequency vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Quad-SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Quad-SPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
UFBGA129 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
UFBGA129 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
UFBGA129 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
WLCSP100 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
WLCSP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
WLCSP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
VFQFPN68 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
VFQFPN68 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
VFQFPN68 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
UFQFPN48 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Figure 49.
Figure 50.
List of figures
STM32WB55xx UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . 182
STM32WB35xx UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . 182
DS11929 Rev 12
11/194
11
Introduction
1
STM32WB55xx STM32WB35xx
Introduction
This document provides the ordering information and mechanical device characteristics of
the STM32WB55xx and STM32WB35xx microcontrollers, based on Arm® cores(a).
This document must be read in conjunction with the reference manual (RM0434), available
from the STMicroelectronics website www.st.com.
For information on the device errata with respect to the datasheet and reference manual
refer to the STM32WB55xx and STM32WB35xx errata sheet (ES0394), available from the
STMicroelectronics website www.st.com.
For information on the Arm® Cortex®-M4 and Cortex®-M0+ cores, refer, respectively, to the
Cortex®-M4 Technical Reference Manual and to the Cortex®-M0+ Technical Reference
Manual, both available on the www.arm.com website.
For information on 802.15.4 refer to the IEEE website (www.ieee.org).
For information on Bluetooth® refer to www.bluetooth.com.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
12/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
2
Description
Description
The STM32WB55xx and STM32WB35xx multiprotocol wireless and ultra-low-power
devices embed a powerful and ultra-low-power radio compliant with the Bluetooth® Low
Energy SIG specification 5.2 and with IEEE 802.15.4-2011. They contain a dedicated Arm®
Cortex®-M0+ for performing all the real-time low layer operation.
The devices are designed to be extremely low-power and are based on the highperformance Arm® Cortex®-M4 32-bit RISC core operating at a frequency of up to 64 MHz.
This core features a Floating point unit (FPU) single precision that supports all Arm®
single-precision data-processing instructions and data types. It also implements a full set of
DSP instructions and a memory protection unit (MPU) that enhances application security.
Enhanced inter-processor communication is provided by the IPCC with six bidirectional
channels. The HSEM provides hardware semaphores used to share common resources
between the two processors.
The devices embed high-speed memories (up to 1 Mbyte of Flash memory for
STM32WB55xx, up to 512 Kbytes for STM32WB35xx, up to 256 Kbytes of SRAM for
STM32WB55xx, 96 Kbytes for STM32WB35xx), a Quad-SPI Flash memory interface
(available on all packages) and an extensive range of enhanced I/Os and peripherals.
Direct data transfer between memory and peripherals and from memory to memory is
supported by fourteen DMA channels with a full flexible channel mapping by the DMAMUX
peripheral.
The devices feature several mechanisms for embedded Flash memory and SRAM: readout
protection, write protection and proprietary code readout protection. Portions of the memory
can be secured for Cortex® -M0+ exclusive access.
The two AES encryption engines, PKA and RNG enable lower layer MAC and upper layer
cryptography. A customer key storage feature may be used to keep the keys hidden.
The devices offer a fast 12-bit ADC and two ultra-low-power comparators associated with a
high accuracy reference voltage generator.
These devices embed a low-power RTC, one advanced 16-bit timer, one general-purpose
32-bit timer, two general-purpose 16-bit timers, and two 16-bit low-power timers.
In addition, up to 18 capacitive sensing channels are available for STM32WB55xx (not on
UFQFPN48 package). The STM32WB55xx also embed an integrated LCD driver up to 8x40
or 4x44, with internal step-up converter.
The STM32WB55xx and STM32WB35xx also feature standard and advanced
communication interfaces, namely one USART (ISO 7816, IrDA, Modbus and Smartcard
mode), one low- power UART (LPUART), two I2Cs (SMBus/PMBus), two SPIs (one for
STM32WB35xx) up to 32 MHz, one serial audio interface (SAI) with two channels and three
PDMs, one USB 2.0 FS device with embedded crystal-less oscillator, supporting BCD and
LPM and one Quad-SPI with execute-in-place (XIP) capability.
The STM32WB55xx and STM32WB35xx operate in the -40 to +105 °C (+125 °C junction)
and -40 to +85 °C (+105 °C junction) temperature ranges from a 1.71 to 3.6 V power supply.
A comprehensive set of power-saving modes enables the design of low-power applications.
The devices include independent power supplies for analog input for ADC.
DS11929 Rev 12
13/194
57
Description
STM32WB55xx STM32WB35xx
The STM32WB55xx and STM32WB35xx integrate a high efficiency SMPS step-down
converter with automatic bypass mode capability when the VDD falls below VBORx (x = 1, 2,
3, 4) voltage level (default is 2.0 V). It includes independent power supplies for analog input
for ADC and comparators, as well as a 3.3 V dedicated supply input for USB.
A VBAT dedicated supply allows the devices to back up the LSE 32.768 kHz oscillator, the
RTC and the backup registers, thus enabling the STM32WB55xx and STM32WB35xx to
supply these functions even if the main VDD is not present through a CR2032-like battery, a
Supercap or a small rechargeable battery.
The STM32WB55xx offer four packages, from 48 to 129 pins. The STM32WB35xx offer one
package, 48 pins.
Table 2. STM32WB55xx and STM32WB35xx devices features and peripheral counts
Feature
Flash
Memory SRAM
density
(bytes) SRAM1
STM32WB55Cx
256 K 512 K
1M
STM32WB55Rx
256 K 512 K
1M
64 K
192 K
64 K
192 K
1M
64 K
STM32WB35Cx
640 K
256 K
192 K
256 K
512 K
96 K
32 KB
64 K
BLE
5.2 (2 Mbps)
802.15.4
Yes
Advanced
1 (16 bits)
General
purpose
2 (16 bits) + 1 (32 bits)
Low power
2 (16 bits)
SysTick
Communication interfaces
256 K 512 K
128 K 256 K 256 K 128 K 256 K 256 K 128 K 256 K
SRAM2
Timers
STM32WB55Vx
SPI
1
1
2
I2C
2
USART(1)
1
LPUART
1
SAI
1
2 channels
USB FS
Yes
QSPI
1
RTC
1
Tamper pin
1
3
1
Wakeup pin
2
5
2
LCD, COMxSEG
Yes, 4x13
Yes, 4x28
Yes, 8x40 or 4x44
No
GPIOs
30
49
72
30
Capacitive sensing
No
6
18
No
12-bit ADC
Number of channels
13 channels
(incl. 3 internal)
19 channels
(incl. 3 internal)
Yes
Internal Vref
14/194
DS11929 Rev 12
13 channels
(incl. 3 internal)
STM32WB55xx STM32WB35xx
Description
Table 2. STM32WB55xx and STM32WB35xx devices features and peripheral counts (continued)
Feature
STM32WB55Cx
STM32WB55Rx
STM32WB55Vx
2
Max CPU frequency
64 MHz
Operating
temperature
Analog comparator
Ambient
-40 to +85 and -40 to +105 °C
-40 to
-40 to +85 and +85
40 to +105 °C
°C
Junction
-40 to +105 and -40 to +125 °C
-40 to
-40 to +105 and
+105
-40 to +125 °C
°C
Operating voltage
Package
STM32WB35Cx
1.71 to 3.6 V
UFQFPN48
7 mm x 7 mm
0.5 mm pitch,
solder pad
VFQFPN68
8 mm x 8 mm
0.4 mm pitch,
solder pad
WLCSP100
0.4 mm pitch
UFBGA129
0.5 mm pitch
-
UFQFPN48
7 mm x 7 mm
0.5 mm pitch,
solder pad
1. USART peripheral can be used as SPI.
DS11929 Rev 12
15/194
57
Description
STM32WB55xx STM32WB35xx
Figure 1. STM32WB55xx block diagram
AHB Lite
NVIC
Cortex-M0+
AHB
asynchronous
CTI
APB asynchronous
RCC2
BLE IP
802.15.4
BLE / 802.15.4
RF IP
RTC2
LSE
32 kHz
I-WDG
LSI1
32 kHz
TAMP
NVIC
Cortex-M4
(DSP)
CTI
WKUP
BLE
PKA + RAM
HSEM
AHB Lite (Shared)
ETM
HSE2
32 MHz
32 KB SRAM2b
Arbiter + ART
Shared memory
Up to 1 MB
Flash
JTAG/SWD
32 KB SRAM2a
Backup
LSI2
32 kHz
RNG
IPCC
PLL1
and
PLL2
RCC + CSS
HSI 1%
16 MHz
MSI up to
48 MHz
PWR
Power supply POR/
PDR/BOR/PVD/AVD
QSPI - XIP
EXTI
CRS
DMA1 7 channels
AES2
USB FS + RAM
MPU
DMA2 7 channels
DMAMUX
GPIO Ports
A, B, C, D, E, H
AHB Lite
FPU
Up to 192 KB
SRAM1
WWDG
DBG
Temp (oC) sensor
CRC
ADC1 16-bit ULP
4.26 Msps / 19 ch
TSC
LCD
AES1
RC48
SPI1
SPI2
I2C1
APB
I2C3
LPTIM1
TIM1
LPUART1
LPTIM2
TIM2
USART1
SAI1
TIM16, TIM17
SYSCFG/COMP/VREF
MS41407V6
16/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Description
Figure 2. STM32WB35xx block diagram
AHB Lite
NVIC
Cortex-M0+
AHB
asynchronous
CTI
APB asynchronous
RCC2
BLE IP
802.15.4
BLE / 802.15.4
RF IP
CTI
AHB Lite (Shared)
RNG
IPCC
GPIO Ports
A, B, C, E, H
CRC
I-WDG
LSI1
32 kHz
PLL1
And
PLL2
RCC + CSS
AHB Lite
QSPI - XIP
DMAMUX
LSE
32 kHz
HSEM
MPU
DMA2 7 channels
RTC2
TAMP
Cortex-M4
(DSP)
DMA1 7 channels
WKUP
BLE
PKA + RAM
NVIC
FPU
HSE2
32 MHz
32 KB SRAM2b
Arbiter + ART
Shared memory
Up to 512 KB
Flash
JTAG/SWD
32 KB SRAM2a
Backup
LSI2
32 kHz
HSI 1%
16 MHz
MSI up to
48 MHz
PWR
Power supply POR/
PDR/BOR/PVD/AVD
EXTI
CRS
AES2
USB FS + RAM
RC48
WWDG
32 KB SRAM1
DBG
Temp (oC) sensor
ADC1 16-bit ULP
4.26 Msps / 19 ch
SPI1
I2C1
AES1
APB
I2C3
LPTIM1
TIM1
LPUART1
LPTIM2
TIM2
USART1
SAI1
TIM16, TIM17
SYSCFG/COMP
MS53592V1
DS11929 Rev 12
17/194
57
Functional overview
STM32WB55xx STM32WB35xx
3
Functional overview
3.1
Architecture
The STM32WB55xx and STM32WB35xx multiprotocol wireless devices embed a BLE and
an 802.15.4 RF subsystem that interfaces with a generic microcontroller subsystem using
an Arm® Cortex®-M4 CPU (called CPU1) on which the host application resides.
The RF subsystem is composed of an RF analog front end, BLE and 802.15.4 digital MAC
blocks as well as of a dedicated Arm® Cortex®-M0+ microcontroller (called CPU2), plus
proprietary peripherals. The RF subsystem performs all of the BLE and 802.15.4 low layer
stack, reducing the interaction with the CPU1 to high level exchanges.
Some functions are shared between the RF subsystem CPU (CPU2) and the Host CPU
(CPU1):
Flash memories
SRAM1, SRAM2a and SRAM2b (SRAM2a can be retained in Standby mode)
Security peripherals (RNG, AES1, PKA)
Clock RCC
Power control (PWR)
The communication and the sharing of peripherals between the RF subsystem and the
Cortex®-M4 CPU is performed through a dedicated inter processor communication
controller (IPCC) and semaphore mechanism (HSEM).
3.2
Arm® Cortex®-M4 core with FPU
The Arm® Cortex®-M4 with FPU is a processor for embedded systems. It has been
developed to provide a low-cost platform that meets the needs of MCU implementation, with
a reduced pin count and low-power consumption, while delivering outstanding
computational performance and an advanced response to interrupts.
The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional
code-efficiency, delivering the high-performance expected from an Arm® core in the
memory size usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions enabling efficient signal processing and
complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage
development tools, while avoiding saturation.
With its embedded Arm® core, the STM32WB55xx and STM32WB35xx are compatible with
all Arm® tools and software.
Figure 1 and Figure 2 show the general block diagram of, respectively, the STM32WB55xx
and STM32WB35xx devices.
18/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Functional overview
3.3
Memories
3.3.1
Adaptive real-time memory accelerator (ART Accelerator)
The ART Accelerator is a memory accelerator optimized for STM32 industry-standard Arm®
Cortex®-M4 processors. It balances the inherent performance advantage of the Arm®
Cortex®-M4 over Flash memory technologies, which normally require the processor to wait
for the Flash memory at higher frequencies.
To release the processor near 80 DMIPS performance at 64 MHz, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 64 MHz.
3.3.2
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU1 accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to eight protected areas, which can be divided
up into eight subareas. The protection area sizes are between 32 bytes and the whole
4 Gbytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code must be
protected against the misbehavior of other tasks. It is usually managed by an RTOS
(real-time operating system). If a program accesses a memory location prohibited by the
MPU, the RTOS detects it and takes action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
3.3.3
Embedded Flash memory
The STM32WB55xx and STM32WB35xx devices feature, respectively, up to 1 Mbyte and
512 Kbytes of embedded Flash memory available for storing programs and data, as well as
some customer keys.
Flexible protections can be configured thanks to option bytes:
Readout protection (RDP) to protect the whole memory. Three levels are available:
–
Level 0: no readout protection
–
Level 1: memory readout protection: the Flash memory cannot be read from or
written to if either debug features are connected, boot in SRAM or bootloader is
selected
–
Level 2: chip readout protection: debug features (Cortex®-M4 and Cortex®-M0+
JTAG and serial wire), boot in SRAM and bootloader selection are disabled (JTAG
fuse). This selection is irreversible.
DS11929 Rev 12
19/194
57
Functional overview
STM32WB55xx STM32WB35xx
Table 3. Access status vs. readout protection level and execution modes
Area
Debug, boot from SRAM or boot
from system memory (loader)
User execution
Protection
level
Read
Write
Erase
Read
Write
Erase
Main
memory
1
Yes
Yes
Yes
No
No
No
2
Yes
Yes
Yes
N/A
N/A
N/A
System
memory
1
Yes
No
No
Yes
No
No
2
Yes
No
No
N/A
N/A
N/A
Option
bytes
1
Yes
Yes
Yes
Backup
registers
SRAM2a
SRAM2b
2
Yes
(1)
No
1
Yes
Yes
2
Yes
Yes
1
Yes
Yes
2
Yes
Yes
No
Yes
Yes
Yes
(1)
N/A
N/A
N/A
(2)
No
No
N/A(2)
N/A
N/A
N/A
No
No
No(2)
N/A
N/A
N/A
N/A
N/A
(2)
Yes
Yes
1. The option byte can be modified by the RF subsystem.
2. Erased when RDP changes from Level 1 to Level 0.
Write protection (WRP): the protected area is protected against erasing and
programming. Two areas can be selected, with 4-Kbyte granularity.
Proprietary code readout protection (PCROP): two parts of the Flash memory can be
protected against read and write from third parties. The protected area is execute-only:
it can only be reached by the STM32 CPU, as an instruction code, while all other
accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited.
Two areas can be selected, with 2-Kbyte granularity. An additional option bit
(PCROP_RDP) makes possible to select if the PCROP area is erased or not when the
RDP protection is changed from Level 1 to Level 0.
A section of the Flash memory is secured for the RF subsystem CPU2, and cannot be
accessed by the host CPU1.
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
single error detection and correction
double error detection
the address of the ECC fail can be read in the ECC register
The embedded Flash memory is shared between CPU1 and CPU2 on a time sharing basis.
A dedicated HW mechanism allows both CPUs to perform Write/Erase operations.
20/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
3.3.4
Functional overview
Embedded SRAM
The STM32WB55xx devices feature up to 256 Kbytes of embedded SRAM, split in three
blocks:
SRAM1: up to 192 Kbytes mapped at address 0x2000 0000
SRAM2a: 32 Kbytes located at address 0x2003 0000 also mirrored at 0x1000 0000,
with hardware parity check (this SRAM can be retained in Standby mode)
SRAM2b: 32 Kbytes located at address 0x2003 8000 (contiguous with SRAM2a) and
mirrored at 0x1000 8000 with hardware parity check
The STM32WB35xx devices feature 96 Kbytes of embedded SRAM, split in three blocks:
SRAM1: 32 Kbytes mapped at address 0x2000 0000
SRAM2a: 32 Kbytes located at address 0x2003 0000 also mirrored at 0x1000 0000,
with hardware parity check (this SRAM can be retained in Standby mode)
SRAM2b: 32 Kbytes located at address 0x2003 8000 (contiguous with SRAM2a) and
mirrored at 0x1000 8000 with hardware parity check
SRAM2a and SRAM2b can be write-protected, with 1-Kbyte granularity. A section of the
SRAM2a and SRAM2b is secured for the RF sub-system and cannot be accessed by the
host CPU1.
The SRAMs can be accessed in read/write with 0 wait states for all CPU1 and CPU2 clock
speeds.
3.4
Security and safety
The STM32WB55xx and STM32WB35xx contain many security blocks both for the BLE or
IEEE 802.15.4 and the Host application.
It includes:
Customer storage of the BLE and 802.15.4 keys
Secure Flash memory partition for RF subsystem-only access
Secure SRAM partition, that can be accessed only by the RF subsystem
True random number generator (RNG)
Advance encryption standard hardware accelerators (AES-128bit and AES-256bit,
supporting chaining modes ECB, CBC, CTR, GCM, GMAC, CCM)
Private key acceleration (PKA) including:
–
Modular arithmetic including exponentiation with maximum modulo size of 3136
bits
–
Elliptic curves over prime field scalar multiplication, ECDSA signature, ECDSA
verification with maximum modulo size of 521 bits
Cyclic redundancy check calculation unit (CRC)
A specific mechanism is in place to ensure that all the code executed by the RF subsystem
CPU2 can be secure, whatever the Host application. For the AES1 a customer key can be
managed by the CPU2 and used by the CPU1 to encrypt/decrypt data.
DS11929 Rev 12
21/194
57
Functional overview
3.5
STM32WB55xx STM32WB35xx
Boot modes and FW update
At startup, BOOT0 pin and BOOT1 option bit are used to select one of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
The devices always boot on CPU1 core. The embedded bootloader code makes it possible
to boot from various peripherals:
USB
UART
I2C
SPI
Secure Firmware update (especially BLE and 802.15.4) from system boot and over the air is
provided.
3.6
RF subsystem
The STM32WB55xx and STM32WB35xx embed an ultra-low power multi-standard radio
Bluetooth® Low Energy (BLE) and 802.15.4 network processor, compliant with Bluetooth®
specification 5.2 and IEEE® 802.15.4-2011. The BLE features 1 Mbps and 2 Mbps transfer
rates, supports multiple roles simultaneously acting at the same time as BLE sensor and
hub device, embeds Elliptic Curve Diffie-Hellman (ECDH) key agreement protocol, thus
ensuring a secure connection.
The BLE stack and 802.15.4 Low Level layer run on an embedded Arm® Cortex®-M0+ core
(CPU2). The stack is stored on the embedded Flash memory, which is also shared with the
Arm® Cortex®-M4 (CPU1) application, making it possible in-field stack update.
3.6.1
RF front-end block diagram
The RF front-end is based on a direct modulation of the carrier in Tx, and uses a low IF
architecture in Rx mode.
Thanks to an internal transformer at RF pins, the circuit directly interfaces the antenna
(single ended connection, impedance close to 50 Ω). The natural bandpass behavior of the
internal transformer, simplifies outside circuitry aimed for harmonic filtering and out of band
interferer rejection.
In Transmit mode, the maximum output power is user selectable through the programmable
LDO voltage of the power amplifier. A linearized, smoothed analog control offers clean
power ramp-up.
In receive mode the circuit can be used in standard high performance or in reduced power
consumption (user programmable). The Automatic gain control (AGC) is able to reduce the
chain gain at both RF and IF locations, for optimized interference rejection. Thanks to the
use of complex filtering and highly accurate I/Q architecture, high sensitivity and excellent
linearity can be achieved.
The bill of material is reduced thanks to the high degree of integration. The radio frequency
source is synthesized form an external 32 MHz crystal that does not need any external
22/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Functional overview
trimming capacitor network thanks to a dual network of user programmable integrated
capacitors.
AGC
control
Timer and Power
control
AGC
RF control
Interrupt
Wakeup
AHB
G
BLE
modulator
APB
BLE
demodulator
APB
802.15.4
modulator
BP
filter
ADC
BLE
controller
ADC
RF_TX_MOD_EXT_PA
Figure 3. STM32WB55xx and STM32WB35xx RF front-end block diagram
LNA
G
RF1
802.15.4
MAC
PLL
See
notes
PA ramp
generator
Adjust
802.15.4
demodulator
PA
Wakeup
Modulator
Interrupt
Adjust
Trimmed
bias
HSE
SMPS
VDDSMPS VSSSMPS VLXSMPS
OSC_IN
LDO
LDO
VFBSMPS
LDO
Max PA
level
VDDRF
OSC_OUT
32 MHz
Notes:
- UFQFPN48 and VFQFPN68: VSS through exposed pad, and VSSRF pin must be connected to ground plane
- WLCSP100 and UFBGA129: VSSRF pins must be connected to ground plane
MS45477V7
3.6.2
BLE general description
The BLE block is a master/slave processor, compliant with Bluetooth specification 5.2
standard (2 Mbps).
DS11929 Rev 12
23/194
57
Functional overview
STM32WB55xx STM32WB35xx
It integrates a 2.4 GHz RF transceiver and a powerful Cortex®-M0+ core, on which a
complete power-optimized stack for Bluetooth Low Energy protocol runs, providing
master / slave role support
GAP: central, peripheral, observer or broadcaster roles
ATT/GATT: client and server
SM: privacy, authentication and authorization
L2CAP
Link layer: AES-128 encryption and decryption
In addition, according to Bluetooth specification 5.2, the BLE block provides:
Multiple roles simultaneous support
Master/slave and multiple roles simultaneously
LE data packet length extension (making it possible to reach 800 kbps at application
level)
LE privacy 1.2
LE secure connections
Flexible Internet connectivity options
High data rate (2 Mbps)
The devices support Piconet topology (master with up to eight slaves), Scatternet topology
(master with up to six slaves and dynamically as slave with up to two masters, or master
with up to four slaves and dynamically as slave with up to four masters), and multi slave
topology (slave with up to eight masters).
The device allows the applications to meet the tight peak current requirements imposed by
the use of standard coin cell batteries. When the high efficiency embedded SMPS
step-down converter is used, the RF front end consumption (Itmax) is only 7.8 mA at the
highest output power (+6 dBm).
The power efficiency of the subsystem is optimized: while running with the radio and the
applicative cores simultaneously using the SMPS, the Cortex®-M4 core consumption
reaches 53 µA / MHz in active mode.
Ultra-low-power sleep modes and very short transition time between operating modes result
in very low average current consumption during real operating conditions, resulting in longer
battery life.
The BLE block integrates a full bandpass balun, thus reducing the need for external
components.
The link between the Cortex®-M4 application processor (CPU1) running the application, and
the BLE stack running on the dedicated Cortex®-M0+ (CPU2) is performed through a
normalized API, using a dedicated IPCC.
24/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
3.6.3
Functional overview
802.15.4 general description
The STM32WB55xx and STM32WB35xx embed a dedicated 802.15.4 hardware MAC:
Support for 802.15.4 release 2011
Advanced MAC frame filtering; hardwired firewall: Programmable filters based on
source/destination addresses, frame version, security enabled, frame type
256-byte RX FIFO; Up to 8 frames capacity, additional frame information (timing, mean
RSSI, LQI)
128-byte TX FIFO with retention
–
3.6.4
Content not lost, retransmissions possible under CPU2 control
Automatic frame acknowledgment, with programmable delay
Advanced channel access features
–
Full CSMA-CA support
–
Superframe timer
–
Beaconing support (require LSE)
–
Flexible TX control with programmable delay
Configuration registers with retention available down to Standby mode for
software/auto-restore
Autonomous sniffer, Wakeup based on timer or CPU2 request
Automatic frame transmission/reception/sleep periods, Interrupt to the CPU2 on
particular events
RF pin description
The RF block contains dedicated pins, listed in Table 4.
:
Name
Table 4. RF pin list
Type
RF1
Description
RF Input/output, must be connected to the antenna through a low-pass matching network
OSC_OUT
I/O
OSC_IN
RF_TX_
MOD_EXT_PA
VDDRF
(1)
VSSRF
32 MHz main oscillator, also used as HSE source
External PA transmit control
VDD Dedicated supply, must be connected to VDD
VSS
To be connected to GND
1. On packages with exposed pad, this pad must be connected to GND plane for correct RF operation.
3.6.5
Typical RF application schematic
The schematic in Figure 4 and the external components listed in Table 4 are purely
indicative. For more details refer to the “Reference design” provided in separate documents.
DS11929 Rev 12
25/194
57
Functional overview
STM32WB55xx STM32WB35xx
Figure 4. External components for the RF part
OSC_IN
X1
32 MHz
OSC_OUT
VDD
VDDRF
STM32WB
microcontroller
C1
Antenna
VSSRF
(including exposed pad)
Lf1
Cf1
RF1
Cf2
Antenna
filter
Lf2
MS53575V1
Table 5. Typical external components
Component
C1
X1
Antenna filter
Antenna
Description
Decoupling capacitance for RF
32 MHz
crystal(1)
Antenna filter and matching network
2.4 GHz band antenna
Value
100 nF // 100 pF
32 MHz
Refer to AN5165, on www.st.com
-
1. e.g. NDK reference: NX2016SA 32 MHz EXS00A-CS06654.
Note:
For more details refer to AN5165 “Development of RF hardware using STM32WB
microcontrollers” available on www.st.com.
3.7
Power supply management
3.7.1
Power supply distribution
The device integrate an SMPS step-down converter to improve low power performance
when the VDD voltage is high enough. This converter has an intelligent mode that
automatically enters in bypass mode when the VDD voltage falls below a specific BORx
(x = 1, 2, 3 or 4) voltage.
By default, at Reset the SMPS is in bypass mode.
The device can be operated without the SMPS by just wiring its output to VDD. This is the
case for applications where the voltage is low, or where the power consumption is not
critical.
26/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Functional overview
Figure 5. Power distribution
VDD
VDD
VDDSMPS
VDDSMPS
SMPS
SMPS
VLXSMPS SMPS mode or
BYPASS mode
L1
VLXSMPS
LPR
VFBSMPS
VFBSMPS
C2
RFR
(not used)
LPR
MR
RFR
SMPS configuration
MR
LDO configuration
MS41409V4
Table 6. Power supply typical components
Component
C2
L1(2)
Description
Value
SMPS output capacitor(1)
4.7 µF
For 8
SMPS inductance
MHz(3)
2.2 µH
(4)
10 µH
For 4 MHz
1. e.g. GRM155R60J475KE19.
2. To improve the receiver performance an extra 10 nH inductor (e.g Murata LQG15WZ10NJ02D) in series
with L1 is needed.
3. e.g. Wurth 74479774222.
4. e.g. Murata LQM21FN100M70L.
The SMPS can also be switched on or set in bypass mode at any time by the application
software, for example when very accurate ADC measurement are needed.
3.7.2
Power supply schemes
The devices have different voltage supplies (see Figure 7 and Figure 8) and can operate
within the following voltage ranges:
VDD = 1.71 to 3.6 V: external power supply for I/Os (VDDIO), the internal regulator and
system functions such as RF, SMPS, reset, power management and internal clocks. It
is provided externally through VDD pins. VDDRF and VDDSMPS must be always
connected to VDD pins.
VDDA = 1.62 (ADC/COMPs) to 3.6 V: external analog power supply for ADC,
comparators and voltage reference buffer. The VDDA voltage level can be independent
from the VDD voltage. When not used VDDA must be connected to VDD.
VDDUSB = 3.0 to 3.6 V: external independent power supply for USB transceivers. When
not used VDDUSB must be connected to VDD or ground.
VLCD = 2.5 to 3.6 V: the LCD controller can be powered either externally through the
VLCD pin, or internally from an internal voltage generated by the embedded step-up
converter. This converter can generate a VLCD voltage up to 3.6 V if VDD is higher than
2.0 V. Note that the LCD is available only on STM32WB55xx devices.
DS11929 Rev 12
27/194
57
Functional overview
STM32WB55xx STM32WB35xx
During power up/down, the following power sequence requirements must be respected:
When VDD is below 1 V the other power supplies (VDDA, VDDUSB, VLCD), must remain
below VDD + 300 mV
When VDD is above 1 V all power supplies are independent.
Figure 6. Power-up/down sequence
V
3.6
VDDX(1)
VDD
VBOR0
1
0.3
Power-on
Invalid supply area
Operating mode
VDDX < VDD + 300 mV
Power-down
time
VDDX independent from VDD
MSv47490V1
1. VDDX refers to any power supply among VDDA, VDDUSB and VLCD.
During the power down phase, VDD can temporarily become lower than other supplies only
if the energy provided to the MCU remains below 1 mJ. This allows the external decoupling
capacitors to be discharged with different time constants during the power down transient
phase.
Note:
28/194
VDD, VDDRF and VDDSMPS must be wired together, so they can follow the same voltage
sequence.
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Functional overview
Figure 7. STM32WB55xx - Power supply overview
Level shifter
Interruptible domain (VDD12I)
IOs
(CPU1, CPU2,
peripherals,
SRAM1,
SRAM2b)
IO
logic
On domain (VDD12O)
SysConfig, AIEC,
RCC, PwrCtrl,
LPTIM, LPUSART
Power
switch
Power
switch
VSS
VSS
VFBSMPS
VLXSMPS
VDDSMPS
VSSSMPS
VSS
MR
SMPS
RFR
LPR
VDDRF
RF domain
Backup domain
Radio
VBKP12
VSSRF
SRAM2a
Power switch
VSS
(including
exposed pad)
VSS
Wakeup domain (VDDIO)
VDD
HSI, HSE,
2xPLL,
LSI1, LSI2,
IWDG, RF
Power switch
VSW
VBAT
VSS
Switch domain (VSW)
VBAT
IOs
LSE, RTC,
backup
registers
IO
logic
VSS
VLCD
VSS
LCD
VDDA
Analog domain
REF_BUF
VREF+
ADC
=
VREF+
=
VREF-
VSSA
VDDUSB
VUSB
IOs
USB
transceiver(1)
USB domain (VUSB)
VSS
VSS
MS41410V8
1. The USB transceiver is powered by VDDUSB, and the GPIOs associated with USB are powered by VDDUSB
when USB alternate function (PA11 and PA12) is selected. When USB alternate function is not selected
the GPIOs associated with USB are powered as standard GPIOs.
DS11929 Rev 12
29/194
57
Functional overview
STM32WB55xx STM32WB35xx
Figure 8. STM32WB35xx - Power supply overview
Level shifter
Interruptible domain (VDD12I)
IOs
(CPU1, CPU2,
peripherals,
SRAM1,
SRAM2b)
IO
logic
On domain (VDD12O)
SysConfig, AIEC,
RCC, PwrCtrl,
LPTIM, LPUSART
Power
switch
Power
switch
VSS
VSS
VFBSMPS
VLXSMPS
VDDSMPS
VSSSMPS
VSS
MR
SMPS
RFR
LPR
VDDRF
RF domain
Backup domain
Radio
VBKP12
VSSRF
SRAM2a
Power switch
VSS
(including exposed pad)
VSS
Wakeup domain (VDDIO)
VDD
HSI, HSE1,
2xPLL,
LSI1, LSI2,
IWDG, RF
Power switch
VSW
VBAT
VSS
Switch domain (VSW)
VBAT
IOs
LSE, RTC,
backup
registers
IO
logic
VSS
VSS
VDDA
Analog domain
ADC
=
VREF+
=
VREFVSS
VDDUSB
VUSB
IOs
USB
transceiver(1)
USB domain (VUSB)
VSS
VSS
MS53593V1
1. The USB transceiver is powered by VDDUSB, and the GPIOs associated with USB are powered by VDDUSB
when USB alternate function (PA11 and PA12) is selected. When USB alternate function is not selected
the GPIOs associated with USB are powered as standard GPIOs.
30/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
3.7.3
Functional overview
Linear voltage regulator
Three embedded linear voltage regulators supply most of the digital and RF circuitries, the
main regulator (MR), the low-power regulator (LPR) and the RF regulator (RFR).
The MR is used in the Run and Sleep modes and in the Stop 0 mode.
The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is
also used to supply the SRAM2a in Standby with retention.
The RFR is used to supply the RF analog part, its activity is automatically managed by
the RF subsystem.
All the regulators are in power-down in Standby and Shutdown modes: the regulator output
is in high impedance, and the kernel circuitry is powered down, inducing zero consumption.
The ultralow-power STM32WB55xx and STM32WB35xx support dynamic voltage scaling to
optimize its power consumption in run mode. The voltage from the main regulator that
supplies the logic (VCORE) can be adjusted according to the system’s maximum operating
frequency.
There are two voltage and frequency ranges:
Range 1, with the CPU running up to 64 MHz
Range 2, with a maximum CPU frequency of 16 MHz (note that HSE can be active in
this mode). All peripheral clocks are also limited to 16 MHz.
VCORE can also be supplied by the low-power regulator, the main regulator being switched
off. The system is then in Low-power run mode. In this case the CPU is running at up to
2 MHz, and peripherals with independent clock can be clocked by HSI16 (in this mode the
RF subsystem is not available).
3.7.4
Power supply supervisor
An integrated ultra-low-power brown-out reset (BOR) is active in all modes except
Shutdown ensuring proper operation after power-on and during power down. The devices
remain in reset mode when the monitored supply voltage VDD is below a specified
threshold, without the need for an external reset circuit.
The lowest BOR level is 1.71 V at power on, and other higher thresholds can be selected
through option bytes.The device features an embedded programmable voltage detector
(PVD) that monitors the VDD power supply and compares it with the VPVD threshold. An
interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
In addition, the devices embed a peripheral voltage monitor (PVM) that compares the
independent supply voltage VDDA with a fixed threshold to ensure that the peripheral is in its
functional supply range.
Any BOR level can also be used to automatically switch the SMPS step-down converter in
bypass mode when the VDD voltage drops below a given voltage level. The mode of
operation is selectable by register bit, the BOR level is selectable by option byte.
3.7.5
Low-power modes
These ultra-low-power devices support several low-power modes to achieve the best
compromise between low-power consumption, short startup time, available peripherals and
available wakeup sources.
DS11929 Rev 12
31/194
57
Functional overview
STM32WB55xx STM32WB35xx
By default, the microcontroller is in Run mode, Range 1, after a system or a power on
Reset. It is up to the user to select one of the low-power modes described below:
Sleep
In Sleep mode, only the CPU1 is stopped. All peripherals, including the RF subsystem,
continue to operate and can wake up the CPU when an interrupt/event occurs.
Low-power run
This mode is achieved with VCORE supplied by the low-power regulator to minimize
the regulator operating current. The code can be executed from SRAM or from the
Flash memory, and the CPU1 frequency is limited to 2 MHz. The peripherals with
independent clock can be clocked by HSI16. The RF subsystem is not available in this
mode and must be OFF.
Low-power sleep
This mode is entered from the low-power run mode. Only the CPU1 clock is stopped.
When wakeup is triggered by an event or an interrupt, the system reverts to the
low-power run mode. The RF subsystem is not available in this mode and must be
OFF.
Stop 0, Stop 1 and Stop 2
Stop modes achieve the lowest power consumption while retaining the content of all
the SRAM and registers. The LSE (or LSI) is still running.
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).
Some peripherals with wakeup capability can enable the HSI16 RC during Stop modes
to detect their wakeup condition.
Three modes are available: Stop 0, Stop 1 and Stop 2. In Stop 2 mode, most of the
VCORE domain is put in a lower leakage mode.
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller
wakeup time but a higher consumption than Stop 2. In Stop 0 mode the main regulator
remains ON, allowing a very fast wakeup time but with higher consumption.
In these modes the RF subsystem can wait for incoming events in all Stop modes.
The system clock when exiting from Stop 0, Stop1 or Stop2 modes can be either MSI
up to 48 MHz or HSI16 if the RF subsystem is disabled. If the RF subsystem or the
SMPS is used the exits must be set to HSI16 only. If used, the SMPS is restarted
automatically.
Standby
The Standby mode is used to achieve the lowest power consumption with BOR. The
internal regulator is switched off so that the VCORE domain is powered off.
The RTC can remain active (Standby mode with RTC).
The brown-out reset (BOR) always remains active in Standby mode.
The state of each I/O during standby mode can be selected by software: I/O with
internal pull-up, internal pull-down or floating.
After entering Standby mode, SRAM1, SRAM2b and register contents are lost except
for registers in the Backup domain and Standby circuitry. Optionally, SRAM2a can be
retained in Standby mode, supplied by the low-power regulator (Standby with 32 KB
SRAM2a retention mode).
The device exits Standby mode when an external reset (NRST pin), an IWDG reset,
WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm,
periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE, or
from the RF system wakeup).
32/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Functional overview
The system clock after wakeup is 16 MHz, derived from the HSI16. If used, the SMPS
is restarted automatically. In this mode the RF can be used.
Shutdown
This mode achieves the lowest power consumption. The internal regulator is switched
off so that the VCORE domain is powered off.
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).
The BOR is not available in Shutdown mode. No power voltage monitoring is possible
in this mode, therefore the switch to Backup domain is not supported.
SRAM1, SRAM2a, SRAM2b and register contents are lost except for registers in the
Backup domain.
The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin
event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic
wakeup, timestamp, tamper).
The system clock after wakeup is 4 MHz, derived from the MSI.
In this mode the RF is no longer operational.
When the RF subsystem is active, it changes the power state according to its needs (Run,
Stop, Standby). This operation is transparent for the CPU1 host application and managed by
a dedicated HW state machine. At any given time the effective power state reached is the
higher one needed by both the CPU1 and RF sub-system.
Table 7 summarizes the peripheral features over all available modes. Wakeup capability is
detailed in gray cells.
Table 7. Features over all modes(1)
Wakeup capability
CPU1
Y
-
Y
-
-
-
-
-
-
-
-
-
-
CPU2
Y
-
Y
-
-
-
-
-
-
-
-
-
-
Y
-
-
Y
Y
Y
Y
O(6) O(6)
R
-
R
-
R
-
R
-
R
R
-
R
-
-
-
-
-
-
-
-
-
-
Radio system
(BLE, 802.15.4)
Flash memory
Y(3)
Y
Y (5)
Y
Y(4) Y(4)
Y
Y
Y
Y(7)
SRAM2a
Y
Y(7)
Y
Y(7)
R
-
R
-
R(8)
SRAM2b
Y
Y(7)
Y
Y(7)
R
-
R
-
-
-
-
-
-
Quad-SPI
O
O
O
O
-
-
-
-
-
-
-
-
-
Backup registers
Y
Y
Y
Y
R
-
R
-
R
-
R
-
R
Brown-out reset (BOR)
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
-
-
Programmable voltage
detector (PVD)
O
O
O
O
O
O
O
O
-
-
-
-
-
SRAM1
(7)
VBAT
Wakeup capability
-
-
Wakeup capability
Wakeup capability
-
Run Range 2
-
Peripheral(2)
Run Range 1
Low-power sleep
Standby Shutdown
Low-power run
Stop 2
Sleep
Stop0/Stop1
DS11929 Rev 12
33/194
57
Functional overview
STM32WB55xx STM32WB35xx
Table 7. Features over all modes(1) (continued)
Wakeup capability
Peripheral voltage monitor
PVMx (x=1, 3)
O
O
O
O
O
O
O
O
-
-
-
-
-
SMPS
O
O
O
O
O(9)
-
-
-
-
-
-
-
-
DMAx (x = 1, 2)
O
O
O
O
-
-
-
-
-
-
-
-
-
High speed internal
(HSI16)
O
O
O
O
O(10)
-
O(10)
-
-
-
-
-
-
Oscillator HSI48
O
O
-
-
-
-
-
-
-
-
-
-
-
High speed external
(HSE)(11)
O
O
O
O
-
-
-
-
-
-
-
-
-
Low speed internal
(LSI1 or LSI2)
O
O
O
O
O
-
O
-
O
-
-
-
-
Low speed external (LSE)
O
O
O
O
O
-
O
-
O
-
O
-
O
VBAT
Wakeup capability
-
-
Wakeup capability
Wakeup capability
-
Run Range 2
-
Peripheral(2)
Run Range 1
Low-power sleep
Standby Shutdown
Low-power run
Stop 2
Sleep
Stop0/Stop1
Multi-speed internal
(MSI)(12)
48
24
O
48
O
-
-
-
-
-
-
-
-
-
PLLx VCO maximum
frequency
344
128
O
-
-
-
-
-
-
-
-
-
-
-
Clock security system
(CSS)
O
O
O
O
O
O(13)
O
O(13)
-
-
-
-
-
Clock security system on
LSE
O
O
O
O
O
O
O
O
O
O
-
-
-
RTC / Auto wakeup
O
O
O
O
O
O
O
O
O
O
O
O
O
Number of RTC
tamper pins
3
3
3
3
3
O
3
O
3
O
3
O
3
LCD
O
O
O
O
O
O
O
O
-
-
-
-
-
O
-
-
-
O
-
-
-
-
-
-
-
(14)
-
-
-
-
-
-
-
USB FS
O
-
USART1
O
O
O
O
O
O(14)
Low-power UART
(LPUART1)
O
O
O
O
O(14)
O(14) O(14) O(14)
-
-
-
-
-
I2C1
O
O
O
O
O(15)
O(15)
-
-
-
-
-
I2C3
O
O
O
O
O(15)
O(15) O(15) O(15)
-
-
-
-
-
SPIx (x=1, 2)
O
O
O
O
-
-
-
-
-
-
-
-
-
SAI1
O
O
O
O
-
-
-
-
-
-
-
-
-
ADC1
O
O
O
O
-
-
-
-
-
-
-
-
-
34/194
DS11929 Rev 12
-
-
STM32WB55xx STM32WB35xx
Functional overview
Table 7. Features over all modes(1) (continued)
Wakeup capability
VREFBUF
O
O
O
O
O
-
-
-
-
-
-
-
-
COMPx (x=1, 2)
O
O
O
O
O
O
O
O
-
-
-
-
-
Temperature sensor
O
O
O
O
-
-
-
-
-
-
-
-
-
Timers TIMx
(x=1, 2, 16, 17)
O
O
O
O
-
-
-
-
-
-
-
-
-
Low-power Timer 1
(LPTIM1)
O
O
O
O
O
O
O
O
-
-
-
-
-
Low-power Timer 2
(LPTIM2)
O
O
O
O
O
O
-
-
-
-
-
-
-
Independent watchdog
(IWDG)
O
O
O
O
O
O
O
O
O
O
-
-
-
Window watchdog
(WWDG)
O
O
O
O
-
-
-
-
-
-
-
-
-
SysTick timer
O
O
O
O
-
-
-
-
-
-
-
-
-
Touch sensing controller
(TSC)
O
O
O
O
-
-
-
-
-
-
-
-
-
O
-
-
-
-
-
-
-
-
-
-
-
True random number
generator (RNG)
O
-
VBAT
Wakeup capability
-
-
Wakeup capability
Wakeup capability
-
Run Range 2
-
Peripheral(2)
Run Range 1
Low-power sleep
Standby Shutdown
Low-power run
Stop 2
Sleep
Stop0/Stop1
AES2 hardware accelerator
O
O
O
O
-
-
-
-
-
-
-
-
-
CRC calculation unit
O
O
O
O
-
-
-
-
-
-
-
-
-
IPCC
O
-
O
-
-
-
-
-
-
-
-
-
-
HSEM
O
-
O
-
-
-
-
-
-
-
-
-
-
PKA
O
O
O
O
-
-
-
-
-
-
-
-
-
GPIOs
O
O
O
O
O
O
O
O
(16)
5
pins
-
5
(17)
pins
1. Legend: Y = Yes (Enabled), O = Optional (Disabled by default, can be enabled by software), R = Data retained,
- = Not available.
2. Available peripherals depend upon package, STM32WB35xx features one SPI, no LCD, no TSC and two wakeup pins. See
Table 2: STM32WB55xx and STM32WB35xx devices features and peripheral counts for more details.
3. Bluetooth® Low Energy not possible in this mode.
4. Standby with SRAM2a retention mode only.
5. Flash memory programming only possible in Range 1 voltage, not in Range 2 and not in Low Power mode.
6. The Flash memory can be configured in Power-down mode. By default, it is not in Power-down mode.
7. The SRAM clock can be gated on or off.
8. SRAM2a content is preserved when the bit RRS is set in PWR_CR3 register.
DS11929 Rev 12
35/194
57
Functional overview
STM32WB55xx STM32WB35xx
9. Stop 0 only. SMPS is automatically switched to Bypass or Open mode during Low power operation.
10. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by
the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not
need it anymore.
11. The HSE can be used by the RF subsystem according with the need to perform RF operation (Tx or Rx).
12. MSI maximum frequency.
13. In case RF will be used and HSE will fail.
14. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or
received frame event.
15. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
16. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
17. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when
exiting the Shutdown mode.
36/194
DS11929 Rev 12
Mode
Run
LPRun
Sleep
LPSleep
Regulator
Range 1
Range 2
LPR
Range 1
Range 2
LPR
DS11929 Rev 12
Clocks
Yes
ON(3)(4)
ON
Any
Yes
ON(3)
ON
Any
except
PLL
No
ON(3)
ON(5)
Any
No
ON(3)
ON(5)
Any
except
PLL
All except RF, RNG and USB-FS
Any interrupt
or event
45 µA/MHz
9 cycles
LSE,
LSI,
HSE(6),
HSI16(7)
RF, BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1, 2)
USART1(8)
LPUART1(8)
I2Cx (x=1, 3)(9)
LPTIMx (x=1, 2), SMPS
All other peripherals are frozen.
Reset pin, all I/Os,
RF, BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1, 2)
USART1
LPUART1
I2Cx (x=1, 3)
LPTIMx (x=1, 2)
USB
100 µA
1.7 µs
LSE,
LSI,
HSE(6),
HSI16(7)
RF, BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1, 2)
USART1(8)
LPUART1(8)
I2Cx (x=1, 3)(9)
LPTIMx (x=1, 2)
All other peripherals are frozen.
Reset pin, all I/Os
RF, BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1, 2)
USART1
LPUART1
I2Cx (x=1, 3)
LPTIMx (x=1, 2)
USB
9.2 µA w/o RTC
9.6 µA w RTC
4.7 µs
No
OFF
ON
Range 2
Stop 1
LPR
No
OFF
ON
All except RNG and USB-FS
N/A
107 µA/MHz
100 µA/MHz
All except RF, RNG and USB-FS
N/A
103 µA/MHz
All
Any interrupt
or event
41 µA/MHz
All except RNG and USB-FS
46 µA/MHz
Wakeup time
N/A
15.33 µs
9 cycles
37/194
Functional overview
SRAM
All
Wakeup source
Consumption(2)
Flash
Range 1
Stop 0
DMA and peripherals(1)
CPU1
STM32WB55xx STM32WB35xx
Table 8. STM32WB55xx and STM32WB35xx modes overview
Mode
Stop 2
Regulator
LPR
CPU1
No
Flash
OFF
No
OFF
OFF
DS11929 Rev 12
Shutdown
OFF
ON
SRAM2a
ON(10)
LPR
Standby
SRAM
OFF
No
OFF
OFF
Clocks
DMA and peripherals(1)
Wakeup source
Consumption(2)
Wakeup time
LSE,
LSI
RF, BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1, 2)
LPUART1(8)
I2C3(9)
LPTIM1
All other peripherals are frozen.
Reset pin, all I/Os
RF, BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1, 2)
LPUART1
I2C3
LPTIM1
1.85 µA w/o RTC
2.1 µA w RTC
5.71 µs
LSE,
LSI
RF, BOR, RTC, IWDG
All other peripherals are
powered off.
I/O configuration can be floating,
pull-up or pull-down
RF, Reset pin
5 I/Os (WKUPx)(11)
BOR, RTC, IWDG
LSE
RTC
All other peripherals are
powered off.
I/O configuration can be floating,
pull-up or pull-down(12)
5 I/Os (WKUPx)(11),
RTC
Functional overview
38/194
Table 8. STM32WB55xx and STM32WB35xx modes overview (continued)
0.32 µA w/o RTC
0.60 µA w RTC
0.11 µA w/o RTC
0.390 µA w RTC
0.028 µA w/o RTC
0.315 µA w/ RTC
51 µs
-
1. Available peripherals depend upon package, STM32WB35xx features one SPI, no LCD, no TSC and two wakeup pins. See Table 2: STM32WB55xx and STM32WB35xx
devices features and peripheral counts for more details.
2. Typical current at VDD = 1.8 V, 25 °C. for STOPx, SHUTDOWN and Standby, else VDD = 3.3 V, 25 °C.
3. The Flash memory controller can be placed in power-down mode if the RF subsystem is not in use and all the program is run from the SRAM.
5. The SRAM1 and SRAM2 clocks can be gated off independently.
6. HSE (32 MHz) automatically used when RF activity is needed by the RF subsystem.
7. HSI16 (16 MHz) automatically used by some peripherals.
8. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, Address match or Received frame event.
9. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
10. SRAM1 and SRAM2b are OFF.
11. I/Os with wakeup from Standby/Shutdown capability: PA0, PC13, PC12, PA2, PC5.
12. I/Os can be configured with internal pull-up, pull-down or floating but the configuration is lost immediately when exiting the Shutdown mode.
STM32WB55xx STM32WB35xx
4. Flash memory programming is only possible in Range 2 voltage.
STM32WB55xx STM32WB35xx
3.7.6
Functional overview
Reset mode
To improve the consumption under reset, the I/Os state under and after reset is “analog
state” (the I/O Schmitt trigger is disabled). In addition, the internal reset pull-up is
deactivated when the reset source is internal.
3.8
VBAT operation
The VBAT pin allows to power the device VBAT domain (RTC, LSE and Backup registers)
from an external battery, an external supercapacitor, or from VDD when no external battery
nor an external supercapacitor are present. Three anti-tamper detection pins are available
in VBAT mode.
VBAT operation is automatically activated when VDD is not present.
An internal VBAT battery charging circuit is embedded and can be activated when VDD is
present.
Note:
When the microcontroller is supplied only from VBAT, external interrupts and RTC
alarm/events do not exit it from VBAT operation.
3.9
Interconnect matrix
Several peripherals have direct connections between them. This allows autonomous
communication between peripherals, saving CPU1 resources and, consequently, reducing
power supply consumption. In addition, these hardware connections result in fast and
predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power
run and Sleep, Stop 0, Stop 1 and Stop 2 modes.
Low-power run
Low-power
Stop 0 / Stop 1
Stop 2
TIMx
Sleep
Source
Run
Table 9. STM32WB55xx and STM32WB35xx CPU1 peripherals interconnect matrix
TIMx
Timers synchronization or chaining
Y
Y
Y
Y
-
-
ADC1
Conversion triggers
Y
Y
Y
Y
-
-
DMA
Memory to memory transfer trigger
Y
Y
Y
Y
-
-
Comparator output blanking
Y
Y
Y
Y
-
-
Timer input channel, trigger, break
from analog signals comparison
Y
Y
Y
Y
-
-
LPTIMERx
Low-power timer triggered by analog
signals comparison
Y
Y
Y
Y
Y
Y(1)
TIM1
Timer triggered by analog watchdog
Y
Y
Y
Y
-
-
Destination
COMPx
COMPx
ADC1
TIM1
TIM2
Action
DS11929 Rev 12
39/194
57
Functional overview
STM32WB55xx STM32WB35xx
Stop 2
CSS
CPU (hard fault)
SRAM (parity error)
Flash memory (ECC error)
COMPx
PVD
Stop 0 / Stop 1
USB
Low-power
All clock sources
(internal and external)
Action
Low-power run
RTC
Destination
Sleep
Source
Run
Table 9. STM32WB55xx and STM32WB35xx CPU1 peripherals interconnect matrix (continued)
TIM16
Timer input channel from RTC events
Y
Y
Y
Y
-
-
LPTIMERx
Low-power timer triggered by RTC
alarms or tampers
Y
Y
Y
Y
Y
Y(1)
TIM2
TIM16, 17
Clock source used as input channel
for RC measurement and trimming
Y
Y
Y
Y
-
-
Timer triggered by USB SOF
Y
Y
-
-
-
-
Timer break
Y
Y
Y
Y
-
-
External trigger
Y
Y
Y
Y
-
(1)
TIM2
TIM1
TIM16,17
TIMx
GPIO
LPTIMERx
ADC1
External trigger
Y
Y
Y
Y
Y
Conversion external trigger
Y
Y
Y
Y
-
1. LPTIM1 only.
40/194
DS11929 Rev 12
Y
-
STM32WB55xx STM32WB35xx
3.10
Functional overview
Clocks and startup
The STM32WB55xx and STM32WB35xx devices integrate several clock sources:
LSE: 32.768 kHz external oscillator, for accurate RTC and calibration with other
embedded RC oscillators
LSI1: 32 kHz on-chip low-consumption RC oscillator
LSI2: almost 32 kHz, on-chip high-stability RC oscillator, can be used by the RF
subsystem instead of LSE
HSE: high quality 32 MHz external oscillator with trimming, needed by the RF
subsystem
HSI16: 16 MHz high accuracy on-chip RC oscillator
MSI: 100 kHz to 48 MHz multiple speed on-chip low power oscillator, can be trimmed
using the LSE signal
HSI48: 48 MHz on-chip RC oscillator, for USB crystal-less purpose
The clock controller (see Figure 9) distributes the clocks coming from the different
oscillators to the core and the peripherals including the RF subsystem. It also manages
clock gating for low power modes and ensures clock robustness. It features:
Clock prescaler: to get the best trade-off between speed and current consumption,
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
System clock source: four different clock sources can be used to drive the master
clock SYSCLK:
–
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can
supply a PLL
–
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate
12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is
available in the system (LSE), the MSI frequency can be automatically trimmed by
hardware to reach better than ±0.25% accuracy. The MSI can supply a PLL.
–
System PLL that can be fed by HSE, HSI16 or MSI, with a maximum frequency of
64 MHz.
Auxiliary clock source: two ultralow-power clock sources that can be used to drive
the LCD controller and the real-time clock:
–
32.768 kHz low-speed external crystal (LSE), supporting four drive capability
modes. The LSE can also be configured in bypass mode for an external clock.
–
32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock accuracy is ±5%. The LSI source can be either the LSI1 or the LSI2
on-chip oscillator.
Peripheral clock sources: Several peripherals (RNG, SAI, USARTs, I2Cs, LPTimers,
ADC) have their own independent clock whatever the system clock. Two PLLs, each
DS11929 Rev 12
41/194
57
Functional overview
STM32WB55xx STM32WB35xx
having three independent outputs for the highest flexibility, can generate independent
clocks for the ADC, the RNG and the SAI.
Startup clock: after reset, the microcontroller restarts by default with an internal 4 MHz
clock (MSI). The prescaler ratio and clock source can be changed by the application
program as soon as the code execution starts.
Clock security system (CSS): this feature can be enabled by software. If an HSE
clock failure occurs, the master clock is automatically switched to HSI16 and a software
interrupt is generated if enabled. LSE failure can also be detected and an interrupt
generated.
Clock-out capability:
–
MCO: microcontroller clock output: it outputs one of the internal clocks for
external use by the application. Low frequency clocks (LSIx, LSE) are available
down to Stop 1 low power state.
–
LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes
down to Standby.
Several prescalers allow the user to configure the AHB frequencies, the high speed APB
(APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and
the APB domains is 64 MHz.
42/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Functional overview
Figure 9. Clock tree
LSI1 RC 32 kHz
to IWDG
LSI
LSI2 RC 32 kHz
LSI
LSCO
to RTC and LCD(1)
LSE
OSC32_OUT
LSE OSC
32.768 kHz
to BLE wakeup
LSE
OSC32_IN
to 802.15.4 wakeup
LSE CSS
LSI1
/32
CPU1
HPRE
/1,2,...,512
LSI2
/32
LSE
HCLK1
to CPU1, AHB1, AHB2, AHB3, and SRAM1
to CPU1 FCLK
HSE
MCO
to CPU1 system timer
/8
SYSCLK
/1 - 16
PLLRCLK
SYS clock
source control
HSI16
APB1
PPRE1
/1,2,4,8,16
PCLK1
APB2
PPRE2
/1,2,4,8,16
PCLK2
MSI
PLLRCLK
RC48
OSC_OUT
OSC_IN
HSI16
HSE OSC
32 MHz
SYSCLK
HSE HSEPRE/1,2
CPU2
C2HPRE
1,2,...,512
MSI
HSE CSS
to APB2
to APB2 TIMx
to CPU2
to CPU2 FCLK
/8
HSI48 RC
48 MHz
x1 or
x2
to APB1
to APB1 TIMx
HCLK2
HSI16 RC
16 MHz
MSI RC
100 kHz - 48 MHz
x1 or
x2
AHB4
SHDHPRE
/1,2,...,512
to CPU2 system timer
to AHB4, Flash memory, SRAM2
HCLK4
to APB3
HSI16
MSI
HSE
HSI16
/M
to AHB5
HCLK5
/2
to RF
PLL
xN
HSI16
MSI
/P
/Q
PLLPCLK
HSI48
SMPSDIV
/1,2,3,4,6,8,12
MSI
to USB
/2
to
SMPS
HSE
PLLQCLK
/3
/R
PLLRCLK
to RNG
SMPS clock
source control
LSI
PCLKn
SYSCLK
LSE
PLLSAI1
xN
/P
HSI16
HSI16
to SAI1
PLLSAI1PCLK
to USART1
to LPUART1
LSE
SAI1_EXTCLK
/Q
PLLSAI1QCLK
PCLKn
PCLKn
/R
PLLSAI1RCLK
to ADC1
SYSCLK
SYSCLK
HSI16
HSI16
to I2Cx
to LPTIMx
LSI
LSE
MS45402V8
1. The LCD is not available on STM32WB35xx devices.
3.11
General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be
achieved thanks to their mapping on the AHB2 bus.
DS11929 Rev 12
43/194
57
Functional overview
STM32WB55xx STM32WB35xx
The I/Os alternate function configuration can be locked, if needed, following a specific
sequence in order to avoid spurious writing to the I/Os registers.
3.12
Direct memory access controller (DMA)
The device embeds two DMAs. Refer to Table 10 for the features implementation.
Direct memory access (DMA) is used to provide high-speed data transfer between
peripherals and memory as well as between memories. Data can be quickly moved by DMA
without any CPU action. This keeps CPU resources free for other operations.
The two DMA controllers have fourteen channels in total, a full cross matrix allows any
peripheral to be mapped on any of the available DMA channels. Each DMA has an arbiter
for handling the priority between DMA requests.
The DMA supports:
fourteen independently configurable channels (requests)
A full cross matrix between peripherals and all the DMA channels exist. There is also a
HW trigger possibility through the DMAMUX.
Priorities between requests from DMA channels are software programmable (four
levels consisting in very high, high, medium and low) or hardware in case of equality
(request 1 has priority over request 2, etc.).
Independent source and destination transfer size (byte, half word, word), emulating
packing and unpacking. Source/destination addresses must be aligned on the data
size.
Support for circular buffer management.
Three event flags (DMA half transfer, DMA transfer complete and DMA transfer error)
logically OR-ed together in a single interrupt request for each channel.
Memory-to-memory transfer.
Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral
transfers.
Access to Flash memory, SRAM, APB and AHB peripherals as source and destination.
Programmable number of data to be transferred: up to 65536.
Table 10. DMA implementation
DMA features
DMA1
DMA2
Number of regular channels
7
7
A DMAMUX block makes it possible to route any peripheral source to any DMA channel.
3.13
Interrupts and events
3.13.1
Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 63 maskable interrupt channels plus the 16 interrupt lines of the
Cortex®-M4 with FPU.
44/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Functional overview
The NVIC benefits are the following:
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal
interrupt latency.
3.13.2
Extended interrupts and events controller (EXTI)
The EXTI manages wakeup through configurable and direct event inputs. It provides
wake-up requests to the Power control, and generates interrupt requests to the CPUx NVIC
and events to the CPUx event input.
Configurable events/interrupts come from peripherals able to generate a pulse, and make it
possible to select the Event/Interrupt trigger edge and/or a SW trigger.
Direct events/interrupts are coming from peripherals having their own clearing mechanism.
3.14
Analog to digital converter (ADC)
The device embeds a successive approximation analog-to-digital converter with the
following features:
12-bit native resolution, with built-in calibration
Up to 16-bit resolution with 256 oversampling ratio
4.26 Msps maximum conversion rate with full resolution
–
Down to 39 ns sampling time
–
Increased conversion rate for lower resolution (up to 7.11 Msps for 6-bit
resolution)
Up to sixteen external channels and three internal channels: internal reference
voltages, temperature sensor
Single-ended and differential mode inputs
Low-power design
–
Capable of low-current operation at low conversion rate (consumption decreases
linearly with speed)
–
Dual clock domain architecture: ADC speed independent from CPU frequency
Highly versatile digital interface
–
Single-shot or continuous/discontinuous sequencer-based scan mode: two groups
of analog signals conversions can be programmed to differentiate background and
high-priority real-time conversions
–
The ADC supports multiple trigger inputs for synchronization with on-chip timers
and external signals
–
Results stored into three data register or in SRAM with DMA controller support
DS11929 Rev 12
45/194
57
Functional overview
3.14.1
STM32WB55xx STM32WB35xx
–
Data pre-processing: left/right alignment and per channel offset compensation
–
Built-in oversampling unit for enhanced SNR
–
Channel-wise programmable sampling time
–
Three analog watchdog for automatic voltage monitoring, generating interrupts
and trigger for selected timers
–
Hardware assistant to prepare the context of the injected channels to allow fast
context switching
Temperature sensor
The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature.
The temperature sensor is internally connected to the ADC1_IN17 input channel, which is
used to convert the sensor output voltage into a digital value.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored in the system memory area, accessible in read-only mode.
Table 11. Temperature sensor calibration values
3.14.2
Calibration value name
Description
Memory address
TS_CAL1
TS ADC raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75A8 - 0x1FFF 75A9
TS_CAL2
TS ADC raw data acquired at a
temperature of 130 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75CA - 0x1FFF 75CB
Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for
the ADC and the comparators. VREFINT is internally connected to the ADC1_IN0 input
channel. The precise voltage of VREFINT is individually measured for each part by ST
during production test and stored in the system memory area. It is accessible in read-only
mode.
Table 12. Internal voltage reference calibration values
46/194
Calibration value name
Description
Memory address
VREFINT
Raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.6 V (± 10 mV)
0x1FFF 75AA - 0x1FFF 75AB
DS11929 Rev 12
STM32WB55xx STM32WB35xx
3.15
Functional overview
Voltage reference buffer (VREFBUF)
The STM32WB55xx devices embed a voltage reference buffer that can be used as voltage
reference for the ADC and also as voltage reference for external components through the
VREF+ pin. The internal voltage reference buffer supports two voltages:
2.048 V
2.5 V
An external voltage reference can be provided through the VREF+ pin when the internal
voltage reference buffer is off. The VREF+ pin is double-bonded with VDDA on UFQFPN48
package, hence the internal voltage reference buffer is not available on a dedicated pin, but
user can still use the VDDA value.
3.16
Comparators (COMP)
The STM32WB55xx and STM32WB35xx devices embed two rail-to-rail comparators with
programmable reference voltage (internal or external), hysteresis and speed (low speed for
low-power) and with selectable output polarity.
The reference voltage can be one of the following:
External I/O
Internal reference voltage or submultiple (1/4, 1/2, 3/4).
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers
and can be also combined into a window comparator.
3.17
Touch sensing controller (TSC)
The touch sensing controller provides a simple solution for adding capacitive sensing
functionality to any application. Capacitive sensing technology is able to detect finger
presence near an electrode which is protected from direct touch by a dielectric such as
glass or plastic. The capacitive variation introduced by the finger (or any conductive object)
is measured using a proven implementation based on a surface charge transfer acquisition
principle.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware
library (free to use) and enables reliable touch sensing functionality in the end application.
DS11929 Rev 12
47/194
57
Functional overview
STM32WB55xx STM32WB35xx
The main features of the touch sensing controller are the following:
Note:
48/194
Proven and robust surface charge transfer acquisition principle
Supports up to 18 capacitive sensing channels
Up to six capacitive sensing channels can be acquired in parallel offering a very good
response time
Spread spectrum feature to improve system robustness in noisy environments
Full hardware management of the charge transfer acquisition sequence
Programmable charge transfer frequency
Programmable sampling capacitor I/O pin
Programmable channel I/O pin
Programmable max count value to avoid long acquisition when a channel is faulty
Dedicated end of acquisition and max count error flags with interrupt capability
One sampling capacitor for up to three capacitive sensing channels to reduce the
system components
Compatible with proximity, touchkey, linear and rotary touch sensor implementation
Designed to operate with STMTouch touch sensing firmware library
The number of capacitive sensing channels is dependent upon the package (not available
on QFPN48) and subject to I/O availability.
DS11929 Rev 12
STM32WB55xx STM32WB35xx
3.18
Functional overview
Liquid crystal display controller (LCD)
The STM32WB55xx devices embed an LCD controller with the following characteristics:
Highly flexible frame rate control.
Supports Static, 1/2, 1/3, 1/4 and 1/8 duty.
Supports Static, 1/2, 1/3 and 1/4 bias.
Double buffered memory allows data in LCD_RAM registers to be updated at any time
by the application firmware without affecting the integrity of the data displayed.
–
LCD data RAM of up to 16 x 32-bit registers which contain pixel information
(active/inactive)
Software selectable LCD output voltage (contrast) from VLCDmin to VLCDmax.
No need for external analog components:
–
A step-up converter is embedded to generate an internal VLCD voltage higher
than VDD (up to 3.6 V if VDD > 2.0 V)
–
Software selection between external and internal VLCD voltage source. In case of
an external source, the internal boost circuit is disabled to reduce power
consumption
–
A resistive network is embedded to generate intermediate VLCD voltages
–
The structure of the resistive network is configurable by software to adapt the
power consumption to match the capacitive charge required by the LCD panel
–
Integrated voltage output buffers for higher LCD driving capability.
The contrast can be adjusted using two different methods:
–
When using the internal step-up converter, the software can adjust VLCD between
VLCDmin and VLCDmax
–
Programmable dead time (up to eight phase periods) between frames.
Full support of low-power modes: the LCD controller can be displayed in Sleep,
Low-power run, Low-power sleep and Stop modes, or can be fully disabled to reduce
power consumption.
Built in phase inversion for reduced power consumption and EMI (electromagnetic
interference).
Start of frame interrupt to synchronize the software when updating the LCD data RAM.
Blink capability:
–
1, 2, 3, 4, 8 or all pixels can be programmed to blink at a configurable frequency
–
Software adjustable blink frequency to achieve around 0.5 Hz, 1 Hz, 2 Hz or 4 Hz.
Used LCD segment and common pins should be configured as GPIO alternate functions
and unused segment and common pins can be used for general purpose I/O or for another
peripheral alternate function.
Note:
When the LCD relies on the internal step-up converter, the VLCD pin should be connected
to VSS with a capacitor. Its typical value is 1 μF.
3.19
True random number generator (RNG)
The devices embed a true RNG that delivers 32-bit random numbers generated by an
integrated analog circuit.
DS11929 Rev 12
49/194
57
Functional overview
3.20
STM32WB55xx STM32WB35xx
Timers and watchdogs
The STM32WB55xx and STM32WB35xx include one advanced 16-bit timer, one generalpurpose 32-bit timer, two 16-bit basic timers, two low-power timers, two watchdog timers
and a SysTick timer. Table 13 compares the features of the advanced control, general
purpose and basic timers.
Table 13. Timer features
Capture/
compare
channels
Complementary
outputs
Up, down,
Up/down
4
3
32-bits
Up, down,
Up/down
4
No
TIM16
16-bits
Up
2
1
General
purpose
TIM17
16-bits
Up
2
1
Low power
LPTIM1
LPTIM2
16-bits
Up
1
1
Timer
type
Timer
Counter
resolution
Counter
type
Advanced
control
TIM1
16-bits
General
purpose
TIM2
General
purpose
3.20.1
Prescaler
factor
Any integer
between 1
and 65536
DMA
request
generation
Yes
Advanced-control timer (TIM1)
The advanced-control timer can be seen as a three-phase PWM multiplexed on six
channels. They have complementary PWM outputs with programmable inserted
dead-times. They can also be seen as complete general-purpose timers. The four
independent channels can be used for:
Input capture
Output compare
PWM generation (edge or center-aligned modes) with full modulation capability (0 to
100%)
One-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs
disabled to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIMx timers (described in
Section 3.20.2) using the same architecture, so the advanced-control timers can work
together with the TIMx timers via the Timer Link feature for synchronization or event
chaining.
3.20.2
General-purpose timers (TIM2, TIM16, TIM17)
There are up to three synchronizable general-purpose timers embedded in the
STM32WB55xx and STM32WB35xx (see Table 13 for differences). Each general-purpose
timer can be used to generate PWM outputs, or act as a simple time base.
TIM2
–
50/194
Full-featured general-purpose timer
DS11929 Rev 12
STM32WB55xx STM32WB35xx
3.20.3
Functional overview
–
Features four independent channels for input capture/output compare, PWM or
one-pulse mode output. Can work together, or with the other general-purpose
timers via the Timer Link feature for synchronization or event chaining.
–
The counter can be frozen in debug mode.
–
Independent DMA request generation, support of quadrature encoders.
TIM16 and TIM17
–
General-purpose timers with mid-range features:
–
16-bit auto-reload upcounters and 16-bit prescalers.
–
1 channel and 1 complementary channel.
–
All channels can be used for input capture/output compare, PWM or one-pulse
mode output.
–
The timers can work together via the Timer Link feature for synchronization or
event chaining. The timers have independent DMA request generation.
–
The counters can be frozen in debug mode.
Low-power timer (LPTIM1 and LPTIM2)
The devices embed two low-power timers, having an independent clock running in Stop
mode if they are clocked by LSE, LSIx or by an external clock. They are able to wakeup the
system from Stop mode.
LPTIM1 is active in Stop 0, Stop 1 and Stop 2 modes.
LPTIM2 is active in Stop 0 and Stop 1 modes.
The low-power timers support the following features:
3.20.4
16-bit up counter with 16-bit autoreload register
16-bit compare register
Configurable output: pulse, PWM
Continuous/ one shot mode
Selectable software/hardware input trigger
Selectable clock source
–
Internal clock sources: LSE, either LSI1 or LSI2, HSI16 or APB clock
–
External clock source over LPTIM input (working even with no internal clock
source running, used by pulse counter application)
Programmable digital glitch filter
Encoder mode (LPTIM1 only)
Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and an 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC (LSI) and as it operates independently
from the main clock, it can operate in Stop and Standby modes. It can be used either as a
watchdog to reset the device when a problem occurs, or as a free running timer for
application timeout management. It is hardware or software configurable through the option
bytes. The counter can be frozen in debug mode.
DS11929 Rev 12
51/194
57
Functional overview
3.20.5
STM32WB55xx STM32WB35xx
System window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.20.6
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
3.21
a 24-bit down counter
autoreload capability
a maskable system interrupt generation when the counter reaches 0
a programmable clock source.
Real-time clock (RTC) and backup registers
The RTC is an independent BCD timer/counter, supporting the following features:
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
Two programmable alarms.
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy.
Three anti-tamper detection pins with programmable filter.
Timestamp feature, which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to
VBAT mode.
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable
resolution and period.
The RTC and the 20 backup registers are supplied through a switch that takes power either
from the VDD supply (when present) or from the VBAT pin.
The backup registers are 32-bit registers used to store 80 bytes of user application data
when VDD power is not present. They are not reset by a system or power reset, or when the
device wakes up from Standby or Shutdown mode.
The RTC clock sources can be:
52/194
a 32.768 kHz external crystal (LSE)
an external resonator or oscillator (LSE)
one of the internal low power RC oscillators (LSI1 or LSI2, with typical frequency of
32 kHz)
the high-speed external clock (HSE) divided by 32.
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Functional overview
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the
LSE. When clocked by one of the LSIs, the RTC is not functional in VBAT mode, but is
functional in all low-power modes except Shutdown mode.
All RTC events (alarm, wakeup timer, timestamp or tamper) can generate an interrupt and
wakeup the device from the low-power modes.
3.22
Inter-integrated circuit interface (I2C)
The devices embed two I2Cs. Refer to Table 14 for the features implementation.
The I2C bus interface handles communications between the microcontroller and the serial
I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
I2C-bus specification and user manual rev. 5 compatibility:
–
Slave and master modes, multimaster capability
–
Standard-mode (Sm), with a bitrate up to 100 kbit/s
–
Fast-mode (Fm), with a bitrate up to 400 kbit/s
–
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
–
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
–
Programmable setup and hold times
–
Optional clock stretching
System Management Bus (SMBus) specification rev 2.0 compatibility:
–
Hardware PEC (packet error checking) generation and verification with ACK
control
–
Address resolution protocol (ARP) support
–
SMBus alert
Power System Management Protocol (PMBus™) specification rev 1.1 compatibility
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming. Refer to
Figure 9: Clock tree.
Wakeup from Stop mode on address match
Programmable analog and digital noise filters
1-byte buffer with DMA capability
Table 14. I2C implementation
I2C features(1)
I2C1
I2C3
Standard-mode (up to 100 kbit/s)
X
X
Fast-mode (up to 400 kbit/s)
X
X
Fast-mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)
X
X
Programmable analog and digital noise filters
X
X
SMBus/PMBus hardware support
X
X
DS11929 Rev 12
53/194
57
Functional overview
STM32WB55xx STM32WB35xx
Table 14. I2C implementation (continued)
I2C features(1)
I2C1
I2C3
Independent clock
X
X
Wakeup from Stop 0 / Stop 1 mode on address match
X
X
Wakeup from Stop 2 mode on address match
-
X
1. X: supported
3.23
Universal synchronous/asynchronous receiver transmitter
(USART)
The devices embed one universal synchronous receiver transmitter.
This interface provides asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and has
LIN Master/Slave capability. It provides hardware management of the CTS and RTS signals,
and RS485 driver enable.
The USART is able to communicate at speeds of up to 4 Mbit/s, and also provides Smart
Card mode (ISO 7816 compliant) and SPI-like communication capability.
The USART supports synchronous operation (SPI mode), and can be used as an SPI
master.
The USART has a clock domain independent from the CPU clock, allowing it to wake up the
MCU from Stop mode using baudrates up to 200 kbaud. The wake up events from Stop
mode are programmable and can be:
the start bit detection
any received data frame
a specific programmed data frame.
The USART interface can be served by the DMA controller.
3.24
Low-power universal asynchronous receiver transmitter
(LPUART)
The device embeds one Low-Power UART, enabling asynchronous serial communication
with minimum power consumption. The LPUART supports half duplex single wire
communication and modem operations (CTS/RTS), allowing multiprocessor
communication.
The LPUART has a clock domain independent from the CPU clock, and can wakeup the
system from Stop mode using baudrates up to 220 kbaud. The wake up events from Stop
mode are programmable and can be:
the start bit detection
any received data frame
a specific programmed data frame.
Only a 32.768 kHz clock (LSE) is needed for LPUART communication up to 9600 baud.
Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an
54/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Functional overview
extremely low energy consumption. Higher speed clock can be used to reach higher
baudrates.
The LPUART interfaces can be served by the DMA controller.
3.25
Serial peripheral interface (SPI1, SPI2)
Two SPI interfaces enable communication up to 32 Mbit/s in master and up to 24 Mbit/s in
slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8
master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI
interfaces support NSS pulse mode, TI mode and Hardware CRC calculation.
The SPI interfaces can be served by the DMA controller.
3.26
Serial audio interfaces (SAI1)
The device embeds a dual channel SAI peripheral that supports full duplex audio operation.
The SAI bus interface handles communications between the microcontroller and the serial
audio protocol.
The SAI peripheral supports:
One independent audio sub-block that can be a transmitter or a receiver, with the
respective FIFO
8-word integrated FIFOs
Synchronous or asynchronous mode
Master or slave configuration
Clock generator to target independent audio frequency sampling when audio sub-block
is configured in master mode
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit
Peripheral with large configurability and flexibility allowing to target as example the
following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF
out
Up to 16 slots available with configurable size and with the possibility to select which
ones are active in the audio frame
Number of bits by frame may be configurable
Frame synchronization active level configurable (offset, bit length, level)
First active bit position in the slot is configurable
LSB first or MSB first for data transfer
Mute mode
Stereo/Mono audio frame capability
Communication clock strobing edge configurable (SCK)
Error flags with associated interrupts if enabled respectively
–
Overrun and underrun detection
–
Anticipated frame synchronization signal detection in slave mode
–
Late frame synchronization signal detection in slave mode
–
Codec not ready for the AC’97 mode in reception
DS11929 Rev 12
55/194
57
Functional overview
STM32WB55xx STM32WB35xx
Interruption sources when enabled:
–
Errors
–
FIFO requests
DMA interface with two dedicated channels to handle access to the dedicated
integrated FIFO of the SAI audio sub-block.
The PDM (Pulse Density Modulation) block allows the user to manage up to three digital
microphone pairs (with two different clocks). This block performs Right and Left microphone
de-interleaving and time alignment through programmable delay lines in order to properly
feed the SAI.
3.27
Quad-SPI memory interface (QUADSPI)
The Quad-SPI is a specialized communication interface targeting single, dual or quad SPI
Flash memories. It can operate in any of the three following modes:
Indirect mode: all the operations are performed using the QUADSPI registers
Status polling mode: the external memory status register is periodically read and an
interrupt can be generated in case of flag setting
Memory-mapped mode: the external Flash memory is mapped and is seen by the
system as if it were an internal memory. This mode can be used for the Execute In
Place (XIP)
The Quad-SPI interface supports:
56/194
Three functional modes: indirect, status-polling, and memory-mapped
SDR and DDR support
Fully programmable opcode for both indirect and memory mapped mode
Fully programmable frame format for both indirect and memory mapped mode
Each of the five following phases can be configured independently (enable, length,
single/dual/quad communication)
–
Instruction phase
–
Address phase
–
Alternate bytes phase
–
Dummy cycles phase
–
Data phase
Integrated FIFO for reception and transmission
8, 16, and 32-bit data accesses are allowed
DMA channel for indirect mode operations
Programmable masking for external Flash memory flag management
Timeout management
Interrupt generation on FIFO threshold, timeout, status match, operation complete, and
access error
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Functional overview
3.28
Development support
3.28.1
Serial wire JTAG debug port (SWJ-DP)
The embedded Arm® SWJ-DP interface is a combined JTAG and serial wire debug port that
enables either a serial wire debug, or a JTAG probe to be connected to the target.
Debug is performed using only two pins instead of the five required by the JTAG (JTAG pins
can then be reused as GPIOs with alternate function): the JTAG TMS and TCK pins are
shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is
used to switch between JTAG-DP and SW-DP.
3.28.2
Embedded Trace Macrocell™
The Arm® Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32WB55xx through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then
formatted for display on the host computer that runs the debugger software. TPA hardware
is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
DS11929 Rev 12
57/194
57
Pinouts and pin description
4
STM32WB55xx STM32WB35xx
Pinouts and pin description
VDD
PB7
PB6
PB5
PB4
PB3
PA15
PA14
VDDUSB
PA13
PA12
PA11
48
47
46
45
44
43
42
41
40
39
38
37
Figure 10. STM32WB55Cx and STM32WB35Cx UFQFPN48 pinout(1)(2)
VBAT
1
36
PA10
PC14-OSC32_IN
2
35
VDD
PC15-OSC32_OUT
3
34
VDDSMPS
PH3-BOOT0
4
33
VLXSMPS
PB8
5
32
VSSSMPS
PB9
6
31
VFBSMPS
NRST
7
30
PE4
VDDA
8
29
PB1
PA0
9
28
PB0
PA1
10
27
AT1
PA2
11
26
AT0
PA3
12
25
OSC_IN
13
14
15
16
17
18
19
20
21
22
23
24
PA4
PA5
PA6
PA7
PA8
PA9
PB2
VDD
RF1
VSSRF
VDDRF
OSC_OUT
UFQFPN48
MS42406V4
1. The above figure shows the package top view.
2. The exposed pad must be connected to ground plane.
VDD
PB7
PB6
PB5
PB4
PB3
PD1
PD0
PC12
PC11
PC10
PA15
PA14
VDDUSB
PA13
PA12
PA11
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
Figure 11. STM32WB55Rx VFQFPN68 pinout(1)(2)
VBAT
1
51
PA10
PC13
2
50
PC6
PC14-OSC32_IN
3
49
PB15
PC15-OSC32_OUT
4
48
PB14
PH3-BOOT0
5
47
PB13
PB8
6
46
PB12
PB9
7
45
VDD
NRST
8
44
VDDSMPS
PC0
9
43
VLXSMPS
PC1
10
42
VSSSMPS
PC2
11
41
VFBSMPS
PC3
12
40
PE4
VREF+
13
39
PB1
VDDA
14
38
PB0
PA0
15
37
AT1
PA1
16
36
AT0
PA2
17
35
OSC_IN
22
23
24
25
26
27
28
29
30
31
32
PA7
PA8
PA9
PC4
PC5
PB2
PB10
PB11
VDD
RF1
VSSRF
34
21
PA6
33
20
PA5
VDDRF
19
PA4
OSC_OUT
18
PA3
VFQFPN68
MS45417V3
1. The above figure shows the package top view.
2. The exposed pad must be connected to ground plane.
58/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Pinouts and pin description
Figure 12. STM32WB55Vx WLCSP100 ballout(1)
1
2
3
4
5
6
7
8
9
10
A
PA11
PA12
PA14
PA15
PA13
PC10
PD2
PD7
PB3
VDD
B
VDD
VSS
VDDUSB
PC9
PA10
PC11
PD5
PD12
VSS
PE1
C
PB13
PD3
PD1
PD0
PC12
PD6
PB4
PE0
PD13
VBAT
D
VDDSMPS
PC6
PD4
PD8
PD9
PB5
PB7
PD14
PC15OSC32_OUT
PC14OSC32_IN
E
VLXSMPS
PB14
PC7
PD10
PD11
PE2
PD15
PH3-BOOT0
PH1
PH0
F
VSSSMPS
VFBSMPS
PB15
PC8
PB6
PA2
PB8
PC0
NRST
PB9
G
PE4
PE3
PB12
PC4
PC13
PA1
PA0
PC1
PC2
PC3
H
PB1
PB0
AT0
AT1
PC5
PA7
PA6
VREF+
VDDA
VSSA
J
OSC_IN
OSC_OUT
VDDRF
VSSRF
VSS
PB11
PA8
PA3
VSS
VDD
K
VSSRF
VSSRF
VSSRF
RF1
VDD
PB10
PB2
PA9
PA5
PA4
Radio
USB
SMPS
VDD
VSS
MS42407V3
1. The above figure shows the package top view.
Figure 13. STM32WB55Vx UFBGA129 ballout(1)
1
2
3
A
PE1
PB6
PB5
B
PE2
PE0
PB4
C
PD13
4
VSS
PA11
PD7
PD4
PD1
PC11
PA15
PA14
VSS
PA10
PC9
PC6
PC8
PC7
PB14
PB13
VLXSMPS
VDDSMPS
VDDSMPS
VLXSMPS
VSSSMPS
VSSSMPS
VFBSMPS
PE3
PE4
VSS_DCAP3
VDD_DCAP3
PC15OSC32_OUT
PC14OSC32_IN
VSS
_DCAP1
F
PH0
G
PH3-BOOT0
PH1
PB8
H
PC1
NRST
PC0
PC2
PC3
VSSA
VDDA
VSS
PA1
PA4
PA9
PA6
N
PA7
No pin
PD6
VSS
VDD
_DCAP1
PA5
13
PA12
PD0
E
PA3
12
VDDUSB
PC12
D
PA2
11
PA13
PC10
PB3
PA0
10
VSS
_DCAP4
PD9
M
9
PD2
PB7
L
8
VDD
_DCAP4
PD8
PD14
VREF+
7
PD10
PD11
PD15
K
6
PD5
PD12
VBAT
J
5
PC13
VSS
VSS
VDD
VSS
PB9
VDD
VDD
VDD
VSS
VSS
PC5
PC4
Power supply
PB15
VSS
VDD
VSS
PA8
PD3
PB12
VSS
VSSRF
AT0
AT1
PB10
VSSRF
VSSRF
VSSRF
VSSRF
VSSRF
VSSRF
PB1
PB11
VSS
_DCAP2
VSSRF
RF1
VSSRF
VSSRF
VSSRF
OSC_IN
PB2
VDD
_DCAP2
VSSRF
VSSRF
VDDRF
OSC_OUT
SMPS
USB
Radio
PB0
MS51777V4
1. The above figure shows the package top view.
DS11929 Rev 12
59/194
80
Pinouts and pin description
STM32WB55xx STM32WB35xx
Table 15. Legend/abbreviations used in the pinout table
Name
Pin name
Pin type
Abbreviation
Definition
Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
TT
3.6 V tolerant I/O
RF
RF I/O
RST
Bidirectional reset pin with weak pull-up resistor
I/O structure
Option for TT or FT I/Os
_f (1)
I/O, Fm+ capable
_l (2)
I/O, with LCD function supplied by VLCD
_u(3)
I/O, with USB function supplied by VDDUSB
_a(4) (5)
Notes
I/O, with Analog switch function supplied by VDDA
Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.
Alternate
Functions selected through GPIOx_AFR registers
functions
Pin
functions Additional
Functions directly selected/enabled through peripheral registers
functions
1. The related I/O structures in Table 16 are: FT_f, FT_fa, FT_fl, FT_fla.
2. The related I/O structures in Table 16 are: FT_l, FT_fl, FT_lu.
3. The related I/O structures in Table 16 are: FT_u, FT_lu.
4. The related I/O structures in Table 16 are: FT_a, FT_la, FT_fa, FT_fla, TT_a, TT_la.
5. Analog switch for the TSC function is supplied by VDD.
60/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Pinouts and pin description
Table 16. STM32WB55xx pin and ball definitions
UFQFPN48
VFQFPN68
WLCSP100
UFBGA129
Pin type
I/O structures
Notes
Pin number
-
-
C8
B2
PE0
I/O
FT_l
-
TIM1_ETR, TSC_G7_IO3,
LCD_SEG36, TIM16_CH1,
CM4_EVENTOUT
-
-
-
B10
A1
PE1
I/O
FT_l
-
TSC_G7_IO2, LCD_SEG37,
TIM17_CH1,
CM4_EVENTOUT
-
-
Pin name
(function after
reset)
Alternate functions
Additional functions
-
-
E6
B1
PE2
I/O
FT_l
-
TRACECK, SAI1_PDM_CK1,
TSC_G7_IO1, LCD_SEG38,
SAI1_MCLK_A,
CM4_EVENTOUT
-
-
C9
C1
PD13
I/O
FT_l
-
TSC_G6_IO4, LCD_SEG33,
LPTIM2_OUT,
CM4_EVENTOUT
-
-
-
D8
D3
PD14
I/O
FT_l
-
TIM1_CH1, LCD_SEG34,
CM4_EVENTOUT
-
-
-
E7
C2
PD15
I/O
FT_l
-
TIM1_CH2, LCD_SEG35,
CM4_EVENTOUT
-
1
1
C10
D2
VBAT
S
-
-
-
2
G5
F4
PC13
I/O
FT
2
3
D10
E3
PC14OSC32_IN
I/O
FT
3
4
D9
E2
PC15OSC32_OUT
I/O
FT
-
-
-
E5
VSS
S
-
-
-
-
-
-
-
F6
VDD
S
-
-
-
-
-
-
E10
F1
PH0
I/O
FT
-
CM4_EVENTOUT
-
-
-
E9
G2
PH1
I/O
FT
-
CM4_EVENTOUT
-
4
5
E8
G1
PH3-BOOT0
I/O
FT
-
CM4_EVENTOUT, LSCO(3)
-
-
TIM1_CH2N,
SAI1_PDM_CK1, I2C1_SCL,
QUADSPI_BK1_IO1,
LCD_SEG16, SAI1_MCLK_A,
TIM16_CH1,
CM4_EVENTOUT
-
5
6
F7
G3
PB8
I/O
(1)
(2)
(1)
(2)
(1)
(2)
FT_fl
-
-
CM4_EVENTOUT
RTC_TAMP1/RTC_TS/
RTC_OUT/WKUP2
CM4_EVENTOUT
OSC32_IN
CM4_EVENTOUT
OSC32_OUT
DS11929 Rev 12
61/194
80
Pinouts and pin description
STM32WB55xx STM32WB35xx
6
7
F10
H4
PB9
7
8
F9
H2
NRST
-
9
F8
H3
PC0
Notes
Pin name
(function after
reset)
Pin type
UFBGA129
WLCSP100
VFQFPN68
UFQFPN48
Pin number
I/O structures
Table 16. STM32WB55xx pin and ball definitions (continued)
Alternate functions
I/O FT_fla
-
TIM1_CH3N, SAI1_PDM_DI2,
I2C1_SDA, SPI2_NSS,
IR_OUT, TSC_G7_IO4,
QUADSPI_BK1_IO0,
LCD_COM3, SAI1_FS_A,
TIM17_CH1,
CM4_EVENTOUT
I/O
-
-
-
LPTIM1_IN1, I2C3_SCL,
LPUART1_RX, LCD_SEG18,
LPTIM2_IN1,
CM4_EVENTOUT
ADC1_IN1
ADC1_IN2
ADC1_IN3
RST
I/O FT_fla
Additional functions
-
-
-
10
G8
H1
PC1
I/O FT_fla
-
LPTIM1_OUT, SPI2_MOSI,
I2C3_SDA, LPUART1_TX,
LCD_SEG19,
CM4_EVENTOUT
-
11
G9
J2
PC2
I/O
FT_la
-
LPTIM1_IN2, SPI2_MISO,
LCD_SEG20,
CM4_EVENTOUT
-
-
-
E7
VSS
S
-
-
-
-
-
-
-
H6
VDD
S
-
-
-
-
-
12 G10
LPTIM1_ETR,
SAI1_PDM_DI1, SPI2_MOSI,
LCD_VLCD, SAI1_SD_A,
ADC1_IN4
LPTIM2_ETR,
CM4_EVENTOUT
J3
PC3
I/O
FT_a
-
-
-
-
-
H10
K2
VSSA
S
-
-
-
13
H8
L1
VREF+
S
-
-
-
-
VREFBUF_OUT
8
14
H9
K3
VDDA
S
-
(4)
-
-
J9
E9
VSS
S
-
-
-
-
-
-
J10
F8
VDD
S
-
-
-
-
9
15
G7
M1
PA0
I/O
FT_a
-
TIM2_CH1, COMP1_OUT,
SAI1_EXTCLK, TIM2_ETR,
CM4_EVENTOUT
COMP1_INM, ADC1_IN5,
RTC_TAMP2/WKUP1
10 16
G6
L2
PA1
I/O
FT_la
-
TIM2_CH2, I2C1_SMBA,
SPI1_SCK, LCD_SEG0,
CM4_EVENTOUT
COMP1_INP, ADC1_IN6
62/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Pinouts and pin description
11 17
12 18
F6
J8
13 19 K10
14 20
15 21
16 22
17 23
18 24
K9
H7
H6
J7
N1
PA2
I/O
Notes
Pin name
(function after
reset)
Pin type
UFBGA129
WLCSP100
VFQFPN68
UFQFPN48
Pin number
I/O structures
Table 16. STM32WB55xx pin and ball definitions (continued)
FT_la
Alternate functions
Additional functions
-
LSCO(3), TIM2_CH3,
LPUART1_TX,
QUADSPI_BK1_NCS,
LCD_SEG1, COMP2_OUT,
CM4_EVENTOUT
COMP2_INM, ADC1_IN7,
WKUP4
COMP2_INP, ADC1_IN8
M2
PA3
I/O
FT_la
-
TIM2_CH4, SAI1_PDM_CK1,
LPUART1_RX,
QUADSPI_CLK, LCD_SEG2,
SAI1_MCLK_A,
CM4_EVENTOUT
L3
PA4
I/O
FT_a
-
SPI1_NSS, SAI1_FS_B,
LPTIM2_OUT, LCD_SEG5,
CM4_EVENTOUT
COMP1_INM,
COMP2_INM, ADC1_IN9
-
TIM2_CH1, TIM2_ETR,
SPI1_SCK, LPTIM2_ETR,
SAI1_SD_B,
CM4_EVENTOUT
COMP1_INM,
COMP2_INM, ADC1_IN10
-
TIM1_BKIN, SPI1_MISO,
LPUART1_CTS,
QUADSPI_BK1_IO3,
LCD_SEG3, TIM16_CH1,
CM4_EVENTOUT
ADC1_IN11
-
TIM1_CH1N, I2C3_SCL,
SPI1_MOSI,
QUADSPI_BK1_IO2,
LCD_SEG4, COMP2_OUT,
TIM17_CH1,
CM4_EVENTOUT
ADC1_IN12
-
MCO, TIM1_CH1,
SAI1_PDM_CK2,
USART1_CK, LCD_COM0,
SAI1_SCK_A, LPTIM2_OUT,
CM4_EVENTOUT
ADC1_IN15
COMP1_INM, ADC1_IN16
COMP1_INM, ADC1_IN13
N2
M3
N3
M4
PA5
PA6
PA7
PA8
I/O
I/O
FT_a
FT_la
I/O FT_fla
I/O
FT_la
K8
L4
PA9
I/O FT_fla
-
TIM1_CH2, SAI1_PDM_DI2,
I2C1_SCL, SPI2_SCK,
USART1_TX, LCD_COM1,
SAI1_FS_A,
CM4_EVENTOUT
LCD_SEG22,
CM4_EVENTOUT
-
25
G4
M5
PC4
I/O
FT_la
-
-
-
-
F3
VSS_DCAP1
S
-
-
-
-
-
-
-
G7
VDD
S
-
-
-
-
DS11929 Rev 12
63/194
80
Pinouts and pin description
STM32WB55xx STM32WB35xx
WLCSP100
UFBGA129
26
H5
L5
19 27
-
28
K7
K6
N6
L6
PC5
I/O
PB2
PB10
I/O
I/O
Notes
VFQFPN68
-
Pin name
(function after
reset)
Pin type
UFQFPN48
Pin number
I/O structures
Table 16. STM32WB55xx pin and ball definitions (continued)
FT_la
-
SAI1_PDM_DI3,
LCD_SEG23,
CM4_EVENTOUT
COMP1_INP, ADC1_IN14,
WKUP5
-
RTC_OUT, LPTIM1_OUT,
I2C3_SMBA, SPI1_NSS,
LCD_VLCD, SAI1_EXTCLK,
CM4_EVENTOUT
COMP1_INP
-
TIM2_CH3, I2C3_SCL,
SPI2_SCK, LPUART1_RX,
TSC_SYNC, QUADSPI_CLK,
LCD_SEG10, COMP1_OUT,
SAI1_SCK_A,
CM4_EVENTOUT
-
TIM2_CH4, I2C3_SDA,
LPUART1_TX,
QUADSPI_BK1_NCS,
LCD_SEG11, COMP2_OUT,
CM4_EVENTOUT
-
FT_a
FT_fl
Alternate functions
Additional functions
-
29
J6
M6
PB11
I/O
FT_fl
-
-
-
-
G5
VSS
S
-
-
-
-
-
-
-
G9
VSS
S
-
-
-
-
K5
H8
VDD
S
-
-
-
-
20 30
-
-
-
N8
VSSRF
S
-
-
-
-
-
-
J4
L7
VSSRF
S
-
-
-
-
-
-
-
L8
VSSRF
S
-
-
-
-
-
-
-
M8
VSSRF
S
-
-
-
-
-
-
21 31
K4
M9
RF1
I/O
RF
(5)
22 32
K3
M10
VSSRF
S
-
-
-
-
-
-
K2
M11
VSSRF
S
-
-
-
-
-
-
-
K8
VSSRF
S
-
-
-
-
-
-
-
L9
VSSRF
S
-
-
-
-
-
-
-
L10
VSSRF
S
-
-
-
-
-
-
-
N11
VSSRF
S
-
-
-
-
J3
N12
VDDRF
S
-
-
-
-
23 33
-
-
K1
K10
VSSRF
S
-
-
-
-
-
-
-
M12
VSSRF
S
-
-
-
-
J2
N13
OSC_OUT
O
RF
(6)
-
-
24 34
64/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Pinouts and pin description
Table 16. STM32WB55xx pin and ball definitions (continued)
WLCSP100
UFBGA129
Pin type
I/O structures
Notes
Alternate functions
25 35
J1
M13
OSC_IN
I
RF
(6)
-
-
L11
VSSRF
S
-
-
-
-
-
-
-
-
UFQFPN48
VFQFPN68
Pin number
-
-
Pin name
(function after
reset)
Additional functions
-
26 36
H3
K11
AT0
O
RF
(7)
27 37
H4
K12
AT1
O
RF
(7)
28 38
H2
L13
PB0
I/O
TT
(8)
COMP1_OUT,
CM4_EVENTOUT,
RF_TX_MOD_EXT_PA
-
29 39
H1
L12
PB1
I/O
TT
(8)
LPUART1_RTS_DE,
LPTIM2_IN1,
CM4_EVENTOUT
-
-
-
J5
-
VSS
S
-
-
-
-
-
-
-
M7
VSS_DCAP2
S
-
-
-
-
-
-
G2
H12
PE3
I/O
FT
-
CM4_EVENTOUT
-
30 40
G1
H13
PE4
I/O
FT
-
CM4_EVENTOUT
-
31 41
F2
H11
VFBSMPS
S
-
-
-
-
-
G13
VSSSMPS
S
-
-
-
-
32 42
F1
G12
VSSSMPS
S
-
-
-
-
33 43
E1
F11
VLXSMPS
S
-
-
-
-
-
G11
VLXSMPS
S
-
-
-
-
D1
F12
VDDSMPS
S
-
-
-
-
-
-
-
-
34 44
-
-
-
F13
VDDSMPS
S
-
-
-
-
-
-
-
K4
VSS
S
-
-
-
-
B1
-
VDD
S
-
-
-
-
35 45
-
-
46
47
G3
C1
H10
E12
PB12
PB13
I/O
I/O
FT_l
FT_fl
-
TIM1_BKIN, I2C3_SMBA,
SPI2_NSS, LPUART1_RTS,
TSC_G1_IO1, LCD_SEG12,
SAI1_FS_A,
CM4_EVENTOUT
-
-
TIM1_CH1N, I2C3_SCL,
SPI2_SCK, LPUART1_CTS,
TSC_G1_IO2, LCD_SEG13,
SAI1_SCK_A,
CM4_EVENTOUT
-
DS11929 Rev 12
65/194
80
Pinouts and pin description
STM32WB55xx STM32WB35xx
48
E11
PB14
Pin type
UFBGA129
WLCSP100
E2
Pin name
(function after
reset)
I/O
FT_fl
Notes
-
VFQFPN68
UFQFPN48
Pin number
I/O structures
Table 16. STM32WB55xx pin and ball definitions (continued)
Alternate functions
Additional functions
-
TIM1_CH2N, I2C3_SDA,
SPI2_MISO, TSC_G1_IO3,
LCD_SEG14, SAI1_MCLK_A,
CM4_EVENTOUT
-
-
-
49
F3
F10
PB15
I/O
FT_l
-
RTC_REFIN, TIM1_CH3N,
SPI2_MOSI, TSC_G1_IO4,
LCD_SEG15, SAI1_SD_A,
CM4_EVENTOUT
-
50
D2
D10
PC6
I/O
FT_l
-
TSC_G4_IO1, LCD_SEG24,
CM4_EVENTOUT
-
-
-
E3
D12
PC7
I/O
FT_l
-
TSC_G4_IO2, LCD_SEG25,
CM4_EVENTOUT
-
-
-
F4
D11
PC8
I/O
FT_l
-
TSC_G4_IO3, LCD_SEG26,
CM4_EVENTOUT
-
TIM1_BKIN, TSC_G4_IO4,
USB_NOE, LCD_SEG27,
SAI1_SCK_B,
CM4_EVENTOUT
-
-
-
B4
C13
PC9
I/O
FT_l
-
-
-
-
K6
VSS
S
-
-
-
-
-
-
B2
-
VSS
S
-
-
-
-
36 51
B5
C12
PA10
I/O
FT_fl
-
TIM1_CH3, SAI1_PDM_DI1,
I2C1_SDA, USART1_RX,
USB_CRS_SYNC,
LCD_COM2, SAI1_SD_A,
TIM17_BKIN,
CM4_EVENTOUT
37 52
A1
B13
PA11
I/O
FT_u
-
TIM1_CH4, TIM1_BKIN2,
SPI1_MISO, USART1_CTS,
USB_DM, CM4_EVENTOUT
-
TIM1_ETR, SPI1_MOSI,
LPUART1_RX,
USART1_RTS_DE, USB_DP,
CM4_EVENTOUT
-
JTMS-SWDIO, IR_OUT,
USB_NOE, SAI1_SD_B,
CM4_EVENTOUT
-
38 53
A2
A13
39 54
A5
A11
40 55
B3
A12
VDDUSB
-
C11
VSS
-
-
66/194
PA12
-
I/O
FT_u
-
PA13
I/O
(JTMS_SWDIO)
FT_u
(9)
S
-
-
-
-
S
-
-
-
-
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Pinouts and pin description
-
-
-
-
58
59
Pin type
Notes
42 57
Alternate functions
Additional functions
FT_l
(9)
JTCK-SWCLK, LPTIM1_OUT,
I2C1_SMBA, LCD_SEG5,
SAI1_FS_B,
CM4_EVENTOUT
-
JTDI, TIM2_CH1, TIM2_ETR,
(9) SPI1_NSS, TSC_G3_IO1,
LCD_SEG17,
CM4_EVENTOUT, MCO
-
UFBGA129
41 56
Pin name
(function after
reset)
WLCSP100
VFQFPN68
UFQFPN48
Pin number
I/O structures
Table 16. STM32WB55xx pin and ball definitions (continued)
A3
PA14
C10
I/O
(JTCK_SWCLK)
A4
C9
PA15
(JTDI)
I/O
FT_l
-
J11
VSS_DCAP3
S
-
A6
B6
B9
C8
PC10
PC11
I/O
I/O
-
FT_l
FT_l
-
-
-
TRACED1, TSC_G3_IO2,
LCD_COM4/LCD_SEG28/
LCD_SEG40,
CM4_EVENTOUT
-
-
TSC_G3_IO3,
LCD_COM5/LCD_SEG29/
LCD_SEG41,
CM4_EVENTOUT
-
-
60
C5
B10
PC12
I/O
FT_l
-
LSCO(3), TRACED3,
TSC_G3_IO4,
LCD_COM6/LCD_SEG30/
LCD_SEG42,
CM4_EVENTOUT
-
61
C4
B11
PD0
I/O
FT
-
SPI2_NSS, CM4_EVENTOUT
-
-
62
C3
C7
PD1
I/O
FT
-
SPI2_SCK, CM4_EVENTOUT
-
-
-
A7
B7
PD2
I/O
FT_l
-
TRACED2, TSC_SYNC,
LCD_COM7/LCD_SEG31/LC
D_SEG43, CM4_EVENTOUT
-
-
-
C2
D8
PD3
I/O
FT
-
SPI2_SCK, SPI2_MISO,
QUADSPI_BK1_NCS,
CM4_EVENTOUT
-
-
-
D3
C6
PD4
I/O
FT
-
SPI2_MOSI, TSC_G5_IO1,
QUADSPI_BK1_IO0,
CM4_EVENTOUT
-
-
TSC_G5_IO2,
QUADSPI_BK1_IO1,
SAI1_MCLK_B,
CM4_EVENTOUT
-
-
-
B7
A6
PD5
I/O
FT
DS11929 Rev 12
RTC_TAMP3/WKUP3
67/194
80
Pinouts and pin description
STM32WB55xx STM32WB35xx
-
-
C6
D6
PD6
I/O
Notes
Pin name
(function after
reset)
Pin type
UFBGA129
WLCSP100
VFQFPN68
UFQFPN48
Pin number
I/O structures
Table 16. STM32WB55xx pin and ball definitions (continued)
FT
Alternate functions
Additional functions
-
SAI1_PDM_DI1,
TSC_G5_IO3,
QUADSPI_BK1_IO2,
SAI1_SD_A,
CM4_EVENTOUT
-
TSC_G5_IO4,
QUADSPI_BK1_IO3,
LCD_SEG39,
CM4_EVENTOUT
-
-
-
A8
C5
PD7
I/O
FT_l
-
-
-
B9
B12
VSS
S
-
-
-
-
D4
B6
PD8
I/O
FT_l
-
TIM1_BKIN2, LCD_SEG28,
CM4_EVENTOUT
-
-
-
D5
D4
PD9
I/O
FT_l
-
TRACED0, LCD_SEG29,
CM4_EVENTOUT
-
-
-
E4
A7
PD10
I/O
FT_l
-
TRIG_INOUT, TSC_G6_IO1,
LCD_SEG30,
CM4_EVENTOUT
-
-
-
E5
B5
PD11
I/O
FT_l
-
TSC_G6_IO2, LCD_SEG31,
LPTIM2_ETR,
CM4_EVENTOUT
-
-
-
B8
B4
PD12
I/O
FT_l
-
TSC_G6_IO3, LCD_SEG32,
LPTIM2_IN1,
CM4_EVENTOUT
-
43 63
44 64
45 65
68/194
A9
C7
D6
C4
B3
A3
PB3
(JTDO)
PB4
(NJTRST)
PB5
I/O
FT_la
-
JTDO-TRACESWO,
TIM2_CH2, SPI1_SCK,
(9)
USART1_RTS_DE,
LCD_SEG7, SAI1_SCK_B,
CM4_EVENTOUT
-
COMP2_INM
NJTRST, I2C3_SDA,
SPI1_MISO, USART1_CTS,
I/O FT_fla (9) TSC_G2_IO1, LCD_SEG8,
COMP2_INP
SAI1_MCLK_B, TIM17_BKIN,
CM4_EVENTOUT
I/O
FT_l
-
LPTIM1_IN1, I2C1_SMBA,
SPI1_MOSI, USART1_CK,
LPUART1_TX, TSC_G2_IO2,
LCD_SEG9, COMP2_OUT,
SAI1_SD_B, TIM16_BKIN,
CM4_EVENTOUT
DS11929 Rev 12
-
STM32WB55xx STM32WB35xx
Pinouts and pin description
46 66
47 67
F5
A2
PB6
D7
C3
PB7
Notes
Pin name
(function after
reset)
Pin type
UFBGA129
WLCSP100
VFQFPN68
UFQFPN48
Pin number
I/O structures
Table 16. STM32WB55xx pin and ball definitions (continued)
I/O FT_fla
I/O FT_fla
Alternate functions
Additional functions
-
LPTIM1_ETR, I2C1_SCL,
USART1_TX, TSC_G2_IO3,
LCD_SEG6, SAI1_FS_B,
TIM16_CH1N, MCO,
CM4_EVENTOUT
COMP2_INP
-
LPTIM1_IN2, TIM1_BKIN,
I2C1_SDA, USART1_RX,
TSC_G2_IO4, LCD_SEG21,
TIM17_CH1N,
CM4_EVENTOUT
COMP2_INM, PVD_IN
-
-
-
J5
VSS
S
-
-
-
-
-
-
-
J7
VSS
S
-
-
-
-
-
-
-
J9
VSS
S
-
-
-
-
-
-
-
B8
VSS_DCAP4
S
-
-
-
-
-
VDD
S
-
-
-
-
48 68 A10
-
-
-
A8
VDD_DCAP4
S
-
-
-
-
-
-
-
F2
VDD_DCAP1
S
-
-
-
-
-
-
-
J12
VDD_DCAP3
S
-
-
-
-
-
-
-
N7
VDD_DCAP2
S
-
-
-
-
1. PC13, PC14 and PC15 are supplied through the power switch. As this switch only sinks a limited amount of current (3 mA),
the use of the PC13, PC14 and PC15 GPIOs in output mode is limited:
- the speed must not exceed 2 MHz with a maximum load of 30 pF
- these GPIOs must not be used as current sources (e.g. to drive a LED).
2. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of
the RTC registers that are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup
domain and RTC register descriptions in the reference manual RM0434, available on www.st.com.
3. The clock on LSCO is available in Run and Stop modes, and on PA2 in Standby and Shutdown modes.
4. On UFQFPN48 VDDA is connected to VREF+.
5. RF pin, use the nominal PCB layout.
6. 32 MHz oscillator pins, use the nominal PCB layout according to reference design (see AN5165).
7. Reserved, must be kept unconnected.
8. High frequency (above 32 kHz) may impact the RF performance. Set output speed GPIOB_OSPEEDRy[1:0] to 00 (y = 0 and
1) during RF operation.
9. After reset these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13 and
PB4 pins and the internal pull-down on PA14 pin are activated.
DS11929 Rev 12
69/194
80
Pinouts and pin description
STM32WB55xx STM32WB35xx
Number
Name (function
after reset)
Pin type
I/O structures
Notes
Table 17. STM32WB35xx pin and ball definitions
Alternate functions
1
VBAT
S
-
-
-
2
PC14-OSC32_IN
I/O
FT
(1) (2)
CM4_EVENTOUT
FT
(1) (2)
CM4_EVENTOUT
Pin
3
PC15-OSC32_OUT I/O
4
5
PH3-BOOT0
PB8
I/O
I/O
FT
FT_f
Additional functions
OSC32_IN
OSC32_OUT
LSCO(3)
-
CM4_EVENTOUT,
-
TIM1_CH2N, SAI1_PDM_CK1,
I2C1_SCL, QUADSPI_BK1_IO1,
SAI1_MCLK_A, TIM16_CH1,
CM4_EVENTOUT
-
TIM1_CH3N, SAI1_PDM_DI2,
I2C1_SDA, IR_OUT,
QUADSPI_BK1_IO0, SAI1_FS_A,
TIM17_CH1, CM4_EVENTOUT
-
-
6
PB9
I/O
FT_f
-
7
NRST
I/O
RST
-
-
-
8
VDDA
S
-
-
-
-
9
PA0
I/O
FT_a
-
TIM2_CH1, COMP1_OUT,
SAI1_EXTCLK, TIM2_ETR,
CM4_EVENTOUT
COMP1_INM, ADC1_IN5,
RTC_TAMP2/WKUP1
10
PA1
I/O
FT_a
-
TIM2_CH2, I2C1_SMBA, SPI1_SCK,
CM4_EVENTOUT
COMP1_INP, ADC1_IN6
11
PA2
I/O
FT_a
-
LSCO(3), TIM2_CH3, LPUART1_TX,
QUADSPI_BK1_NCS, COMP2_OUT,
CM4_EVENTOUT
COMP2_INM, ADC1_IN7,
WKUP4
12
PA3
I/O
FT_a
-
TIM2_CH4, SAI1_PDM_CK1,
LPUART1_RX, QUADSPI_CLK,
SAI1_MCLK_A, CM4_EVENTOUT
COMP2_INP, ADC1_IN8
13
PA4
I/O
FT_a
-
SPI1_NSS, SAI1_FS_B,
LPTIM2_OUT, CM4_EVENTOUT
COMP1_INM,
COMP2_INM, ADC1_IN9
14
PA5
I/O
FT_a
-
TIM2_CH1, TIM2_ETR, SPI1_SCK,
LPTIM2_ETR, SAI1_SD_B,
CM4_EVENTOUT
COMP1_INM,
COMP2_INM, ADC1_IN10
15
PA6
I/O
FT_a
-
TIM1_BKIN, SPI1_MISO,
LPUART1_CTS, QUADSPI_BK1_IO3, ADC1_IN11
TIM16_CH1, CM4_EVENTOUT
16
PA7
I/O
FT_fa
-
TIM1_CH1N, I2C3_SCL, SPI1_MOSI,
QUADSPI_BK1_IO2, COMP2_OUT,
ADC1_IN12
TIM17_CH1, CM4_EVENTOUT
17
PA8
I/O
FT_a
-
MCO, TIM1_CH1, SAI1_PDM_CK2,
USART1_CK, SAI1_SCK_A,
LPTIM2_OUT, CM4_EVENTOUT
70/194
DS11929 Rev 12
ADC1_IN15
STM32WB55xx STM32WB35xx
Pinouts and pin description
Number
Name (function
after reset)
Pin type
I/O structures
Notes
Table 17. STM32WB35xx pin and ball definitions (continued)
18
PA9
I/O
FT_fa
-
TIM1_CH2, SAI1_PDM_DI2,
I2C1_SCL, USART1_TX, SAI1_FS_A, COMP1_INM, ADC1_IN16
CM4_EVENTOUT
19
PB2
I/O
FT_a
-
RTC_OUT, LPTIM1_OUT,
I2C3_SMBA, SPI1_NSS,
SAI1_EXTCLK, CM4_EVENTOUT
20
VDD
S
-
-
-
-
-
-
Pin
Alternate functions
Additional functions
COMP1_INP
21
RF1
I/O
RF
(4)
22
VSSRF
S
-
-
-
-
23
VDDRF
S
-
-
-
-
RF
(5)
-
-
-
-
24
OSC_OUT
O
25
OSC_IN
I
RF
(5)
26
AT0
O
RF
(6)
-
-
-
-
27
AT1
O
RF
(6)
28
PB0
I/O
TT
(7)
COMP1_OUT, CM4_EVENTOUT,
RF_TX_MOD_EXT_PA
-
29
PB1
I/O
TT
(7)
LPUART1_RTS_DE, LPTIM2_IN1,
CM4_EVENTOUT
-
30
PE4
I/O
FT
-
CM4_EVENTOUT
-
31
VFBSMPS
S
-
-
-
-
32
VSSSMPS
S
-
-
-
-
33
VLXSMPS
S
-
-
-
-
34
VDDSMPS
S
-
-
-
-
35
VDD
S
-
-
-
-
36
PA10
I/O
FT_f
-
TIM1_CH3, SAI1_PDM_DI1,
I2C1_SDA, USART1_RX,
USB_CRS_SYNC, SAI1_SD_A,
TIM17_BKIN, CM4_EVENTOUT
37
PA11
I/O
FT_u
-
TIM1_CH4, TIM1_BKIN2,
SPI1_MISO, USART1_CTS,
USB_DM, CM4_EVENTOUT
-
38
PA12
I/O
FT_u
-
TIM1_ETR, SPI1_MOSI,
LPUART1_RX, USART1_RTS_DE,
USB_DP, CM4_EVENTOUT
-
39
PA13
(JTMS-SWDIO)
I/O
FT
(8)
JTMS-SWDIO, IR_OUT, USB_NOE,
SAI1_SD_B, CM4_EVENTOUT
-
40
VDDUSB
S
-
-
-
DS11929 Rev 12
-
-
71/194
80
Pinouts and pin description
STM32WB55xx STM32WB35xx
Number
Name (function
after reset)
Pin type
I/O structures
Notes
Table 17. STM32WB35xx pin and ball definitions (continued)
Alternate functions
41
PA14
(JTCK-SWCLK)
I/O
FT
(8)
JTCK-SWCLK, LPTIM1_OUT,
I2C1_SMBA, SAI1_FS_B,
CM4_EVENTOUT
-
42
PA15 (JTDI)
I/O
FT
(8)
JTDI, TIM2_CH1, TIM2_ETR,
SPI1_NSS, CM4_EVENTOUT, MCO
-
43
PB3 (JTDO)
I/O
FT_a
-
JTDO-TRACESWO, TIM2_CH2,
SPI1_SCK, USART1_RTS_DE,
SAI1_SCK_B, CM4_EVENTOUT
COMP2_INM
44
PB4 (NJTRST)
I/O
FT_fa
(8)
NJTRST, I2C3_SDA, SPI1_MISO,
USART1_CTS, SAI1_MCLK_B,
TIM17_BKIN, CM4_EVENTOUT
COMP2_INP
Pin
45
PB5
I/O
FT_a
-
LPTIM1_IN1, I2C1_SMBA,
SPI1_MOSI, USART1_CK,
LPUART1_TX, COMP2_OUT,
SAI1_SD_B, TIM16_BKIN,
CM4_EVENTOUT
Additional functions
-
46
PB6
I/O
FT_fa
-
LPTIM1_ETR, I2C1_SCL,
USART1_TX, SAI1_FS_B,
TIM16_CH1N, MCO,
CM4_EVENTOUT
47
PB7
I/O
FT_fa
-
LPTIM1_IN2, TIM1_BKIN, I2C1_SDA,
USART1_RX, TIM17_CH1N,
COMP2_INM, PVD_IN
CM4_EVENTOUT
48
VDD
S
-
-
COMP2_INP
-
-
1. PC14 and PC15 are supplied through the power switch. As this switch only sinks a limited amount of current (3 mA), the
use of the PC14 and PC15 GPIOs in output mode is limited:
- the speed must not exceed 2 MHz with a maximum load of 30 pF
- these GPIOs must not be used as current sources (e.g. to drive a LED).
2. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of
the RTC registers that are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup
domain and RTC register descriptions in the reference manual RM0434, available on www.st.com.
3. The clock on LSCO is available in Run and Stop modes, and on PA2 in Standby and Shutdown modes.
4. RF pin, use the nominal PCB layout.
5. 32 MHz oscillator pins, use the nominal PCB layout according to reference design (see AN5165).
6. Reserved, must be kept unconnected.
7. High frequency (above 32 kHz) may impact the RF performance. Set output speed GPIOB_OSPEEDRy[1:0] to 00 (y = 0
and 1) during RF operation.
8. After reset these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13 and
PB4 pins and the internal pull-down on PA14 pin are activated.
72/194
DS11929 Rev 12
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
SYS_AF
TIM1/
TIM2/
LPTIM1
TIM1/
TIM2
SPI2/
SAI1/
TIM1
I2C1/
I2C3
SPI1/
SPI2
RF
USART1
LPUART1
TSC
USB/
QUADSPI
LCD
COMP1/
COMP2/
TIM1
SAI1
TIM2/
TIM16/
TIM17/
LPTIM2
EVENTOUT
PA0
-
TIM2_
CH1
-
-
-
-
-
-
-
-
-
-
COMP1_
OUT
SAI1_
EXTCLK
TIM2_
ETR
CM4_
EVENTOUT
PA1
-
TIM2_
CH2
-
-
I2C1_
SMBA
SPI1_
SCK
-
-
-
-
LCD_SEG0
-
-
-
CM4_
EVENTOUT
PA2
LSCO
TIM2_
CH3
-
-
-
-
-
-
LPUART1
_TX
-
QUADSPI_
BK1_NCS
LCD_SEG1
COMP2_
OUT
-
-
CM4_
EVENTOUT
PA3
-
TIM2_
CH4
-
SAI1_
PDM_CK1
-
-
-
-
LPUART1
_RX
-
QUADSPI_
CLK
LCD_SEG2
-
SAI1
_MCLK_A
-
CM4_
EVENTOUT
PA4
-
-
-
-
SPI1_
NSS
-
-
-
-
-
LCD_SEG5
-
SAI1
_FS_B
LPTIM2_
OUT
CM4_
EVENTOUT
PA5
-
TIM2_
CH1
TIM2_
ETR
-
SPI1_
SCK
-
-
-
-
-
-
-
SAI1
_SD_B
LPTIM2_
ETR
CM4_
EVENTOUT
PA6
-
TIM1_
BKIN
-
-
SPI1_
MISO
-
-
LPUART1
_CTS
-
QUADSPI_
BK1_IO3
LCD_SEG3
TIM1_
BKIN
-
TIM16
_CH1
CM4_
EVENTOUT
PA7
-
TIM1_
CH1N
-
-
I2C3_
SCL
SPI1_
MOSI
-
-
-
-
QUADSPI_
BK1_IO2
LCD_SEG4
COMP2_
OUT
-
TIM17
_CH1
CM4_
EVENTOUT
PA8
MCO
TIM1_
CH1
-
SAI1_
PDM_CK2
-
-
-
USART1_
CK
-
-
LCD_COM0
-
SAI1
_SCK_A
LPTIM2_
OUT
CM4_
EVENTOUT
PA9
-
TIM1_
CH2
-
SAI1_
PDM_DI2
I2C1_
SCL
SPI2_
SCK
-
USART1_
TX
-
-
LCD_COM1
-
SAI1
_FS_A
-
CM4_
EVENTOUT
PA10
-
TIM1_
CH3
-
SAI1_
PDM_DI1
I2C1_
SDA
-
USART1_
RX
-
-
USB_CRS
_SYNC
LCD_COM2
-
SAI1
_SD_A
TIM17
_BKIN
CM4_
EVENTOUT
PA11
-
TIM1_
CH4
TIM1_
BKIN2
-
-
SPI1_
MISO
-
USART1_
CTS
-
-
USB_DM
-
TIM1_
BKIN2
-
-
CM4_
EVENTOUT
PA12
-
TIM1_
ETR
-
-
-
SPI1_
MOSI
-
USART1_
RTS_DE
LPUART1
_RX
-
USB_DP
-
-
-
-
CM4_
EVENTOUT
PA13
JTMSSWDIO
-
-
-
-
-
-
-
IR_OUT
-
USB_NOE
-
-
SAI1
_SD_B
-
CM4_
EVENTOUT
PA14
JTCKSWCLK
LPTIM1_
OUT
-
-
I2C1_
SMBA
-
-
-
-
-
-
LCD_SEG5
-
SAI1
_FS_B
-
CM4_
EVENTOUT
PA15
JTDI
TIM2_
CH1
TIM2_
ETR
-
SPI1_
NSS
MCO
-
-
-
LCD_SEG17
-
-
-
CM4_
EVENTOUT
Port
DS11929 Rev 12
A
73/194
Pinouts and pin description
AF0
STM32WB55xx STM32WB35xx
Table 18. Alternate functions (STM32WB55xx)
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
SYS_AF
TIM1/
TIM2/
LPTIM1
TIM1/
TIM2
SPI2/
SAI1/
TIM1
I2C1/
I2C3
SPI1/
SPI2
RF
USART1
LPUART1
TSC
USB/
QUADSPI
LCD
COMP1/
COMP2/
TIM1
SAI1
TIM2/
TIM16/
TIM17/
LPTIM2
EVENTOUT
PB0
-
-
-
-
-
-
RF_TX_
MOD_
EXT_PA
-
-
-
-
COMP1_
OUT
-
-
CM4_
EVENTOUT
PB1
-
-
-
-
-
-
-
-
LPUART1
_RTS_DE
-
-
-
-
-
LPTIM2_
IN1
CM4_
EVENTOUT
PB2
RTC_
OUT
LPTIM1_
OUT
-
-
I2C3_
SMBA
SPI1_
NSS
-
-
-
-
-
LCD_VLCD
-
SAI1_
EXTCLK
-
CM4_
EVENTOUT
PB3
JTDOTRACE
SWO
TIM2_
CH2
-
-
-
SPI1_
SCK
-
USART1_
RTS_DE
-
-
-
LCD_SEG7
-
SAI1_
SCK_B
-
CM4_
EVENTOUT
PB4
NJTRST
-
-
-
I2C3_
SDA
SPI1_
MISO
-
USART1_
CTS
-
TSC_G2
_IO1
-
LCD_SEG8
-
SAI1_
MCLK_B
TIM17_
BKIN
CM4_
EVENTOUT
PB5
-
LPTIM1_
IN1
-
-
I2C1_
SMBA
SPI1_
MOSI
-
USART1_
CK
LPUART1
_TX
TSC_G2
_IO2
-
LCD_SEG9
COMP2_
OUT
SAI1_
SD_B
TIM16_
BKIN
CM4_
EVENTOUT
PB6
MCO
LPTIM1_
ETR
-
-
I2C1_
SCL
-
-
USART1_
TX
-
TSC_G2
_IO3
-
LCD_SEG6
-
SAI1_
FS_B
TIM16_
CH1N
CM4_
EVENTOUT
PB7
-
LPTIM1_
IN2
-
TIM1_
BKIN
I2C1_
SDA
-
-
USART1_
RX
-
TSC_G2
_IO4
-
LCD_SEG21
-
-
TIM17_
CH1N
CM4_
EVENTOUT
PB8
-
TIM1_
CH2N
-
SAI1_
PDM_CK1
I2C1_
SCL
-
-
-
-
-
QUADSPI_
LCD_SEG16
BK1_IO1
-
SAI1_
MCLK_A
TIM16_
CH1
CM4_
EVENTOUT
PB9
-
TIM1_
CH3N
-
SAI1_
PDM_DI2
I2C1_
SDA
SPI2_
NSS
-
-
IR_OUT
TSC_G7
_IO4
QUADSPI_
BK1_IO0
-
SAI1_
FS_A
TIM17_
CH1
CM4_
EVENTOUT
PB10
-
TIM2_
CH3
-
-
I2C3_
SCL
SPI2_SC
K
-
-
LPUART1
_RX
TSC
_SYNC
QUADSPI_
COMP1_
LCD_SEG10
CLK
OUT
SAI1_
SCK_A
-
CM4_
EVENTOUT
PB11
-
TIM2_
CH4
-
-
I2C3_
SDA
-
-
-
LPUART1
_TX
-
COMP2_
OUT
-
-
CM4_
EVENTOUT
PB12
-
TIM1_
BKIN
-
TIM1_
BKIN
I2C3_
SMBA
SPI2_
NSS
-
-
LPUART1
_RTS
TSC_G1
_IO1
-
LCD_SEG12
-
SAI1_
FS_A
-
CM4_
EVENTOUT
PB13
-
TIM1_
CH1N
-
-
I2C3_
SCL
SPI2_
SCK
-
-
LPUART1
_CTS
TSC_G1
_IO2
-
LCD_SEG13
-
SAI1_
SCK_A
-
CM4_
EVENTOUT
PB14
-
TIM1_
CH2N
-
-
I2C3_
SDA
SPI2_
MISO
-
-
-
TSC_G1
_IO3
-
LCD_SEG14
-
SAI1_
MCLK_A
-
CM4_
EVENTOUT
PB15
RTC_
REFIN
TIM1_
CH3N
-
-
-
SPI2_
MOSI
-
-
-
TSC_G1
_IO4
-
LCD_SEG15
-
SAI1_
SD_A
-
CM4_
EVENTOUT
Port
DS11929 Rev 12
B
LCD_COM3
QUADSPI_
LCD_SEG11
BK1_NCS
STM32WB55xx STM32WB35xx
AF0
Pinouts and pin description
74/194
Table 18. Alternate functions (STM32WB55xx) (continued)
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
SYS_AF
TIM1/
TIM2/
LPTIM1
TIM1/
TIM2
SPI2/
SAI1/
TIM1
I2C1/
I2C3
SPI1/
SPI2
RF
USART1
LPUART1
TSC
USB/
QUADSPI
LCD
COMP1/
COMP2/
TIM1
SAI1
TIM2/
TIM16/
TIM17/
LPTIM2
EVENTOUT
PC0
-
LPTIM1_
IN1
-
-
I2C3
_SCL
-
-
-
LPUART1
_RX
-
-
LCD_SEG18
-
-
LPTIM2_
IN1
CM4_
EVENTOUT
PC1
-
LPTIM1_
OUT
-
SPI2_
MOSI
I2C3
_SDA
-
-
LPUART1
_TX
-
-
LCD_SEG19
-
-
-
CM4_
EVENTOUT
PC2
-
LPTIM1_
IN2
-
-
-
SPI2_
MISO
-
-
-
-
-
LCD_SEG20
-
-
-
CM4_
EVENTOUT
PC3
-
LPTIM1_
ETR
-
SAI1_
PDM_DI1
-
SPI2_
MOSI
-
-
-
-
-
LCD_VLCD
-
SAI1
_SD_A
LPTIM2_
ETR
CM4_
EVENTOUT
PC4
-
-
-
-
-
-
-
-
-
-
-
LCD_SEG22
-
-
-
CM4_
EVENTOUT
PC5
-
-
-
SAI1_
PDM_DI3
-
-
-
-
-
-
-
LCD_SEG23
-
-
-
CM4_
EVENTOUT
PC6
-
-
-
-
-
-
-
-
-
TSC_G4
_IO1
-
LCD_SEG24
-
-
-
CM4_
EVENTOUT
PC7
-
-
-
-
-
-
-
-
-
TSC_G4
_IO2
-
LCD_SEG25
-
-
-
CM4_
EVENTOUT
PC8
-
-
-
-
-
-
-
-
-
TSC_G4
_IO3
-
LCD_SEG26
-
-
-
CM4_
EVENTOUT
PC9
-
-
-
TIM1
_BKIN
-
-
-
-
-
TSC_G4
_IO4
USB_NOE
LCD_SEG27
-
SAI1
_SCK_B
-
CM4_
EVENTOUT
PC10
TRACE
D1
-
-
-
-
-
-
-
-
TSC_G3
_IO2
-
LCD_COM4
LCD_SEG28
LCD_SEG40
-
-
-
CM4_
EVENTOUT
PC11
-
-
-
-
-
-
-
-
-
TSC_G3
_IO3
-
LCD_COM5
LCD_SEG29
LCD_SEG41
-
-
-
CM4_
EVENTOUT
PC12
TRACE
D3
-
-
-
-
-
LSCO
-
-
TSC_G3
_IO4
-
LCD_COM6
LCD_SEG30
LCD_SEG42
-
-
-
CM4_
EVENTOUT
PC13
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
PC14
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
PC15
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
Port
DS11929 Rev 12
C
75/194
Pinouts and pin description
AF0
STM32WB55xx STM32WB35xx
Table 18. Alternate functions (STM32WB55xx) (continued)
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
SYS_AF
TIM1/
TIM2/
LPTIM1
TIM1/
TIM2
SPI2/
SAI1/
TIM1
I2C1/
I2C3
SPI1/
SPI2
RF
USART1
LPUART1
TSC
USB/
QUADSPI
LCD
COMP1/
COMP2/
TIM1
SAI1
TIM2/
TIM16/
TIM17/
LPTIM2
EVENTOUT
PD0
-
-
-
-
-
SPI2_
NSS
-
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
PD1
-
-
-
-
-
SPI2_
SCK
-
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
PD2
TRACE
D2
-
-
-
-
-
-
-
-
TSC_
SYNC
-
LCD_COM7
LCD_SEG31
LCD_SEG43
-
-
-
CM4_
EVENTOUT
PD3
-
-
-
SPI2_SCK
-
SPI2_
MISO
-
-
-
-
QUADSPI_
BK1_NCS
-
-
-
-
CM4_
EVENTOUT
PD4
-
-
-
-
-
SPI2_
MOSI
-
-
-
TSC_
G5_IO1
QUADSPI_
BK1_IO0
-
-
-
-
CM4_
EVENTOUT
PD5
-
-
-
-
-
-
-
-
-
TSC_
G5_IO2
QUADSPI_
BK1_IO1
-
-
SAI1_
MCLK_B
-
CM4_
EVENTOUT
PD6
-
-
-
SAI1_
PDM_DI1
-
-
-
-
-
TSC_
G5_IO3
QUADSPI_
BK1_IO2
-
-
SAI1_
SD_A
-
CM4_
EVENTOUT
PD7
-
-
-
-
-
-
-
-
-
TSC_
G5_IO4
QUADSPI_
LCD_SEG39
BK1_IO3
-
-
-
CM4_
EVENTOUT
PD8
-
-
TIM1
_BKIN2
-
-
-
-
-
-
-
-
LCD_SEG28
-
-
-
CM4_
EVENTOUT
PD9
TRACE
D0
-
-
-
-
-
-
-
-
-
-
LCD_SEG29
-
-
-
CM4_
EVENTOUT
PD10
TRIG
_INOUT
-
-
-
-
-
-
-
-
TSC_
G6_IO1
-
LCD_SEG30
-
-
-
CM4_
EVENTOUT
PD11
-
-
-
-
-
-
-
-
-
TSC_
G6_IO2
-
LCD_SEG31
-
-
LPTIM2_
ETR
CM4_
EVENTOUT
PD12
-
-
-
-
-
-
-
-
-
TSC_
G6_IO3
-
LCD_SEG32
-
-
LPTIM2_
IN1
CM4_
EVENTOUT
PD13
-
-
-
-
-
-
-
-
-
TSC_
G6_IO4
-
LCD_SEG33
-
-
LPTIM2_
OUT
CM4_
EVENTOUT
PD14
-
TIM1_
CH1
-
-
-
-
-
-
-
-
-
LCD_SEG34
-
-
-
CM4_
EVENTOUT
PD15
-
TIM1_
CH2
-
-
-
-
-
-
-
-
-
LCD_SEG35
-
-
-
CM4_
EVENTOUT
Port
DS11929 Rev 12
D
STM32WB55xx STM32WB35xx
AF0
Pinouts and pin description
76/194
Table 18. Alternate functions (STM32WB55xx) (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF11
AF12
AF13
AF14
AF15
SYS_AF
TIM1/
TIM2/
LPTIM1
TIM1/
TIM2
SPI2/
SAI1/
TIM1
I2C1/
I2C3
SPI1/
SPI2
RF
USART1
LPUART1
TSC
USB/
QUADSPI
LCD
COMP1/
COMP2/
TIM1
SAI1
TIM2/
TIM16/
TIM17/
LPTIM2
EVENTOUT
PE0
-
TIM1_
ETR
-
-
-
-
-
-
-
TSC_
G7_IO3
-
LCD_SEG36
-
-
TIM16_
CH1
CM4_
EVENTOUT
PE1
-
-
-
-
-
-
-
-
-
TSC_
G7_IO2
-
LCD_SEG37
-
-
TIM17_
CH1
CM4_
EVENTOUT
PE2
TRACECK
-
-
SAI1_
PDM_CK1
-
-
-
-
-
TSC_
G7_IO1
-
LCD_SEG38
-
SAI1_
MCLK_A
-
CM4_
EVENTOUT
PE3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
PE4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
PH0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
PH1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
PH3
LSCO
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
Port
E
DS11929 Rev 12
H
STM32WB55xx STM32WB35xx
Table 18. Alternate functions (STM32WB55xx) (continued)
Pinouts and pin description
77/194
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF10
AF12
AF13
AF14
AF15
SYS_AF
TIM1/
TIM2/
LPTIM1
TIM1/
TIM2
SAI1/
TIM1
I2C1/
I2C3
SPI1
RF
USART1
LPUART1
USB/
QUADSPI
COMP1/
COMP2/
TIM1
SAI1
TIM2/
TIM16/
TIM17/
LPTIM2
EVENTOUT
PA0
-
TIM2_
CH1
-
-
-
-
-
-
-
-
COMP1_
OUT
SAI1_
EXTCLK
TIM2_
ETR
CM4_
EVENTOUT
PA1
-
TIM2_
CH2
-
-
I2C1_
SMBA
SPI1_
SCK
-
-
-
-
-
-
CM4_
EVENTOUT
PA2
LSCO
TIM2_
CH3
-
-
-
-
-
-
LPUART1
_TX
QUADSPI_ COMP2_
BK1_NCS
OUT
-
-
CM4_
EVENTOUT
PA3
-
TIM2_
CH4
-
SAI1_
PDM_CK1
-
-
-
-
LPUART1
_RX
QUADSPI_
CLK
-
SAI1
_MCLK_A
-
CM4_
EVENTOUT
PA4
-
-
-
-
SPI1_
NSS
-
-
-
-
-
SAI1
_FS_B
LPTIM2_
OUT
CM4_
EVENTOUT
PA5
-
TIM2_
CH1
TIM2_
ETR
-
SPI1_
SCK
-
-
-
-
-
SAI1
_SD_B
LPTIM2_
ETR
CM4_
EVENTOUT
PA6
-
TIM1_
BKIN
-
-
SPI1_
MISO
-
-
LPUART1
_CTS
QUADSPI_
BK1_IO3
TIM1_
BKIN
-
TIM16
_CH1
CM4_
EVENTOUT
PA7
-
TIM1_
CH1N
-
-
I2C3_
SCL
SPI1_
MOSI
-
-
-
-
TIM17
_CH1
CM4_
EVENTOUT
PA8
MCO
TIM1_
CH1
-
SAI1_
PDM_CK2
-
-
-
USART1_
CK
-
-
SAI1
_SCK_A
LPTIM2_
OUT
CM4_
EVENTOUT
PA9
-
TIM1_
CH2
-
SAI1_
PDM_DI2
I2C1_
SCL
-
-
USART1_
TX
-
-
SAI1
_FS_A
-
CM4_
EVENTOUT
PA10
-
TIM1_
CH3
-
SAI1_
PDM_DI1
I2C1_
SDA
-
-
USART1_
RX
-
USB_CRS
_SYNC
-
SAI1
_SD_A
TIM17
_BKIN
CM4_
EVENTOUT
PA11
-
TIM1_
CH4
TIM1_
BKIN2
-
-
SPI1_
MISO
-
USART1_
CTS
-
USB_DM
TIM1_
BKIN2
-
-
CM4_
EVENTOUT
PA12
-
TIM1_
ETR
-
-
-
SPI1_
MOSI
-
USART1_
RTS_DE
LPUART1
_RX
USB_DP
-
-
-
CM4_
EVENTOUT
PA13
JTMSSWDIO
-
-
-
-
-
-
-
IR_OUT
USB_NOE
-
SAI1
_SD_B
-
CM4_
EVENTOUT
PA14
JTCKSWCLK
LPTIM1_
OUT
-
-
I2C1_
SMBA
-
-
-
-
-
-
SAI1
_FS_B
-
CM4_
EVENTOUT
PA15
JTDI
TIM2_
CH1
TIM2_
ETR
-
SPI1_
NSS
MCO
-
-
-
-
-
-
CM4_
EVENTOUT
Port
DS11929 Rev 12
A
QUADSPI_ COMP2_
BK1_IO2
OUT
STM32WB55xx STM32WB35xx
AF0
Pinouts and pin description
78/194
Table 19. Alternate functions (STM32WB35xx)
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF10
AF12
AF13
AF14
AF15
SYS_AF
TIM1/
TIM2/
LPTIM1
TIM1/
TIM2
SAI1/
TIM1
I2C1/
I2C3
SPI1
RF
USART1
LPUART1
USB/
QUADSPI
COMP1/
COMP2/
TIM1
SAI1
TIM2/
TIM16/
TIM17/
LPTIM2
EVENTOUT
PB0
-
-
-
-
-
-
RF_TX_
MOD_EXT_PA
-
-
COMP1_
OUT
-
-
CM4_
EVENTOUT
PB1
-
-
-
-
-
-
-
-
LPUART1
_RTS_DE
-
-
-
LPTIM2_
IN1
CM4_
EVENTOUT
PB2
RTC_
OUT
LPTIM1_
OUT
-
-
I2C3_
SMBA
SPI1_
NSS
-
-
-
-
-
SAI1_
EXTCLK
-
CM4_
EVENTOUT
PB3
JTDOTRACE
SWO
TIM2_
CH2
-
-
-
SPI1_
SCK
-
USART1_
RTS_DE
-
-
-
SAI1_
SCK_B
-
CM4_
EVENTOUT
PB4
NJTRST
-
-
-
I2C3_
SDA
SPI1_
MISO
-
USART1_
CTS
-
-
-
SAI1_
MCLK_B
TIM17_
BKIN
CM4_
EVENTOUT
PB5
-
LPTIM1_
IN1
-
-
I2C1_
SMBA
SPI1_
MOSI
-
USART1_
CK
LPUART1
_TX
-
COMP2_
OUT
SAI1_
SD_B
TIM16_
BKIN
CM4_
EVENTOUT
PB6
MCO
LPTIM1_
ETR
-
-
I2C1_
SCL
-
-
USART1_
TX
-
-
-
SAI1_
FS_B
TIM16_
CH1N
CM4_
EVENTOUT
PB7
-
LPTIM1_
IN2
-
TIM1_
BKIN
I2C1_
SDA
-
-
USART1_
RX
-
-
-
-
TIM17_
CH1N
CM4_
EVENTOUT
PB8
-
TIM1_
CH2N
-
SAI1_
PDM_CK1
I2C1_
SCL
-
-
-
-
QUADSPI_
BK1_IO1
-
SAI1_
MCLK_A
TIM16_
CH1
CM4_
EVENTOUT
PB9
-
TIM1_
CH3N
-
SAI1_
PDM_DI2
I2C1_
SDA
-
-
-
IR_OUT
QUADSPI_
BK1_IO0
-
SAI1_
FS_A
TIM17_
CH1
CM4_
EVENTOUT
PC14
-
-
-
-
-
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
PC15
-
-
-
-
-
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
E
PE4
-
-
-
-
-
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
H
PH3
LSCO
-
-
-
-
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
Port
DS11929 Rev 12
B
C
79/194
Pinouts and pin description
AF0
STM32WB55xx STM32WB35xx
Table 19. Alternate functions (STM32WB35xx) (continued)
Memory mapping
5
STM32WB55xx STM32WB35xx
Memory mapping
The STM32WB55xx and STM32WB35xx devices feature a single physical address space
that can be accessed by the application processor and by the RF subsystem.
A part of the Flash memory and of the SRAM2a and SRAM2b memories are made secure,
exclusively accessible by the CPU2, protected against execution, read and write from CPU1
and DMA.
In case of shared resources the SW should implement arbitration mechanism to avoid
access conflicts. This happens for peripherals Reset and Clock Controller (RCC), Power
Controller (PWC), EXTI and Flash interface, and can be implemented using the built-in
semaphore block (HSEM).
By default the RF subsystem and CPU2 operate in secure mode. This implies that part of
the Flash and of the SRAM2 memories can only be accessed by the RF subsystem and by
the CPU2. In this case the Host processor (CPU1) has no access to these resources.
The detailed memory map and the peripheral mapping can be found in the reference
manual RM0434.
80/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Electrical characteristics
6
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3σ).
6.1.2
Typical values
Unless otherwise specified, typical data are based on VDD = VDDA = VDDRF = 3 V and
TA = 25 °C. They are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ± 2σ).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 14.
6.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 15.
Figure 14. Pin loading conditions
Figure 15. Pin input voltage
MCU pin
MCU pin
C = 50 pF
VIN
MS19210V1
DS11929 Rev 12
MS19211V1
81/194
169
Electrical characteristics
6.1.6
STM32WB55xx STM32WB35xx
Power supply scheme
Figure 16. Power supply scheme (all packages except UFBGA129 and WLCSP100)
VBAT
Backup circuitry
(LSE, RTC and
backup registers)
1.55 V to 3.6 V
Power switch
VDD
VCORE
n x VDD
Regulator
VDDIO1
Level shifter
OUT
GPIOs
n x 100 nF + 1 x 4.7 μF
IN
IO
logic
Kernel logic
(CPU, digital
and memories
VSS
VDDA
VDDA
VREF
10 nF + 1 μF
VREF+(2)
100 nF + 1 μF
ADC
COMPs
VREFVSS
VDD
VDDSMPS
SMPS
SMPS
Regulator
VLXSMPS
4.7 μF
L1
(1)
VFBSMPS
4.7 μF
VSSSMPS
VDD
USB
transceiver
VDDUSB
VDD
100 nF
100 nF
+ 100 pF
VDDRF
Radio
VSSRF
Exposed pad
VSS
To all modules
MS53167V5
1. The value of L1 depends upon the frequency, as indicated in Table 6.
2. VREF+ connection is not available on UFQFPN48 package.
82/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Electrical characteristics
Figure 17. Power supply scheme (UFBGA129 and WLCSP100 packages)
VDD_DCAPx(2)
1 x 100 nF
VSS_DCAPx(2)
Backup circuitry
(LSE, RTC and
backup registers)
VBAT
1.55 to 3.6 V
Power switch
VDD
VCORE
n x VDD
Regulator
OUT
n x 100 nF +
1 x 4.7 μF(3)
GPIOs
IN
Level shifter
VDDIO1
IO
logic
Kernel logic
(CPU, digital
and memories
n x VSS
VDDA
VDDA
VREF
VREF+
10 nF + 1 μF
100 nF 1 μF
VREF-
ADCs
OPAMPs
COMPs
VREFBUF
VSSA
VDD
VDDSMPS
SMPS
SMPS
Regulator
VLXSMPS
4.7 μF
L1(1)
VFBSMPS
4.7 μF
VSSSMPS
VDD
VDDUSB
100 nF
VDD
100 nF
+ 100 pF
USB
transceiver
VDDRF
VSSRF
Radio
MS53132V2
1. The value of L1 depends upon the frequency, as indicated in Table 6.
2. For UFBGA129 package VDD_DCAPx and VSS_DCAPx balls are connected to VDD and VSS internally, to
simplify the 2-layer board layout and especially the ground plane below the BGA.
VDD power supply can be made with a single connection to the center of the BGA on the board bottom
layer. The decoupling 100 nF capacitors are connected without cutting the board ground plane.
3. n x 100 nF only for WLCSP package.
DS11929 Rev 12
83/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Caution:
Each power supply pair (VDD / VSS, VDDA / VSSA etc.) must be decoupled with filtering
ceramic capacitors as shown in Figure 16. These capacitors must be placed as close as
possible to (or below) the appropriate pins on the underside of the PCB to ensure the good
functionality of the device.
6.1.7
Current consumption measurement
Figure 18. Current consumption measurement scheme
IDDSMPS
VDDSMPS
IDDRF
VDDRF
IDDUSB
VDDUSB
IDDVBAT
VBAT
IDD
VDD
IDDA
VDDA
MS45416V1
6.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 20, Table 21 and Table 22
may cause permanent damage to the device. These are stress ratings only and functional
operation of the device at these conditions is not implied. Exposure to maximum rating
conditions for extended periods may affect device reliability.
Device mission profile (application conditions) is compliant with JEDEC JESD47
Qualification Standard, extended mission profiles are available on demand.
84/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Electrical characteristics
Table 20. Voltage characteristics(1)
Symbol
VDDX - VSS
Ratings
External main supply voltage
(including VDD, VDDA, VDDUSB, VLCD, VDDRF,
VDDSMPS, VBAT, VREF+)
Min
Max
-0.3
4.0
Input voltage on FT_xxx pins
VIN(2)
VSS-0.3
Input voltage on TT_xx pins
min (VDD, VDDA, VDDUSB, VLCD,
VDDRF, VDDSMPS) + 4.0(3)(4)
|VSSx-VSS|
V
4.0
Input voltage on any other pin
|∆VDDx|
Unit
4.0
Variations between different VDDX power pins
of the same domain
-
50
Variations between all the different ground
pins(5)
-
50
-
0.4
VREF+ - VDDA Allowed voltage difference for VREF+ > VDDA
mV
V
1. All main power (VDD, VDDRF, VDDA, VDDUSB, VLCD, VBAT) and ground (VSS, VSSA) pins must always be connected to the
external power supply, in the permitted range.
2. VIN maximum must always be respected. Refer to Table 21 for the maximum allowed injected current values.
3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table.
4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
5. Include VREF- pin.
Table 21. Current characteristics
Symbol
Ratings
Max
∑IVDD
Total current into sum of all VDD power lines (source)(1)
130
∑IVSS
Total current out of sum of all VSS ground lines (sink)
(1)
130
IVDD(PIN)
Maximum current into each VDD power pin (source)(1)
100
IVSS(PIN)
Maximum current out of each VSS ground pin (sink)(1)
100
Output current sunk by any I/O and control pin except FT_f
20
Output current sunk by any FT_f pin
20
Output current sourced by any I/O and control pin
20
IIO(PIN)
∑IIO(PIN)
IINJ(PIN)(3)
∑|IINJ(PIN)|
Total output current sunk by sum of all I/Os and control pins(2)
Total output current sourced by sum of all I/Os and control pins
Unit
mA
100
(2)
Injected current on FT_xxx, TT_xx, RST and B pins, except PB0 and PB1
100
–5 / +0(4)
Injected current on PB0 and PB1
-5/0
Total injected current (sum of all I/Os and control pins)(5)
25
1. All main power (VDD, VDDRF, VDDA, VDDUSB, VBAT) and ground (VSS, VSSA) pins must always be connected to the external
power supplies, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count packages.
3. Positive injection (when VIN > VDD) is not possible on these I/Os and does not occur for input voltages lower than the
specified maximum value.
4. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 20: Voltage
characteristics for the maximum allowed input voltage values.
DS11929 Rev 12
85/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
5. When several inputs are submitted to a current injection, the maximum ∑|IINJ(PIN)| is the absolute sum of the negative
injected currents (instantaneous values).
Table 22. Thermal characteristics
Symbol
TSTG
TJ
86/194
Ratings
Storage temperature range
Maximum junction temperature
DS11929 Rev 12
Value
–65 to +150
130
Unit
°C
STM32WB55xx STM32WB35xx
Electrical characteristics
6.3
Operating conditions
6.3.1
Summary of main performance
Table 23. Main performance at VDD = 3.3 V
Parameter
Test conditions
Typ
VBAT (VBAT = 1.8 V, VDD = 0 V)
0.002
Shutdown (VDD = 1.8 V)
0.013
Standby (VDD = 1.8 V, 32 Kbytes RAM retention)
0.320
Stop2
1.85
Sleep (16 MHz)
740
LP run (2 MHz)
320
Run (64 MHz)
5000
Core current
ICORE
consumption
Radio RX
(1)
4500
Radio TX 0 dBm output
IPERI
Peripheral
current
consumption
power(1)
5200
Advertising with Stop 2(2)
(Tx = 0 dBm; Period 1.28 s; 31 bytes, 3 channels)
13
Advertising with Stop 2(2)
(Tx = 0 dBm, 6 bytes; period 10.24 s, 3 channels)
4
LP timers
-
6
I2C3
-
7.1
LPUART
-
7.7
RTC
-
2.5
BLE
Unit
µA
1. Power consumption including RF subsystem and digital processing.
2. Power consumption integrated over 100 s, including Cortex-M4, RF subsystem, digital processing and Cortex-M0+.
6.3.2
General operating conditions
Table 24. General operating conditions
Symbol
Parameter
Conditions
Min
Max
fHCLK
Internal AHB clock frequency
-
0
64
fPCLK1
Internal APB1 clock frequency
-
0
64
fPCLK2
Internal APB2 clock frequency
-
0
64
Standard operating voltage
-
1.71(1)(2)
3.6
VDD
VDDA
VBAT
Analog supply voltage
Backup operating voltage
ADC or COMP used
1.62
VREFBUF used
2.4
ADC, COMP, VREFBUF
not used(3)
1.71
-
DS11929 Rev 12
1.55
3.6
Unit
MHz
V
3.6
87/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Table 24. General operating conditions (continued)
Symbol
Parameter
Conditions
Min
Max
-
1.4
3.6
-
1.71
3.6
3.0
3.6
0
3.6
TT_xx I/O
–0.3
VDD + 0.3
All I/O except TT_xx
–0.3
min (min (VDD, VDDA,
VDDUSB, VLCD) + 3.6 V,
5.5 V)(4)(5)
UFQFPN48
-
803
VFQFPN68
-
425
WLCSP100
-
558
UFBGA129
-
481
VFBSMPS SMPS Feedback voltage
VDDRF
Minimum RF voltage
USB used
VDDUSB USB supply voltage
USB not used
VIN
I/O input voltage
PD
Power dissipation at
TA = 85 °C for suffix 6
or
TA = 105 °C for suffix 7(6)
Ambient temperature for the
suffix 6 version
Maximum power dissipation
Ambient temperature for the
suffix 7 version
Maximum power dissipation
TA
TJ
Junction temperature range
Low-power dissipation(7)
Low-power
dissipation(7)
Suffix 6 version
V
mW
85
–40
105
105
–40
°C
125
105
–40
Suffix 7 version
Unit
125
1. When RESET is released functionality is guaranteed down to VBOR0 Min.
2. When VDDmin is lower then 1.95 V, the SMPS operation mode must be conditioned by enabling the BORH configuration to
force SMPS bypass mode, or the SMPS must not be enabled.
3. When not used, VDDA must be connected to VDD.
4. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table.
Maximum I/O input voltage is the smallest value between min (VDD, VDDA, VDDUSB, VLCD) + 3.6 V and 5.5V.
5. For operation with voltage higher than min (VDD, VDDA, VDDUSB, VLCD) + 0.3 V, the internal pull-up and pull-down resistors
must be disabled.
6. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.5: Thermal
characteristics).
7. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.5:
Thermal characteristics).
6.3.3
RF BLE characteristics
RF characteristics are given at 1 Mbps, unless otherwise specified.
Table 25. RF transmitter BLE characteristics
Symbol
Parameter
Test conditions
Min
Typ
Max
Fop
Frequency operating range
-
2402
-
2480
Fxtal
Crystal frequency
-
-
32
-
∆F
Delta frequency
-
-
250
-
88/194
DS11929 Rev 12
Unit
MHz
kHz
STM32WB55xx STM32WB35xx
Electrical characteristics
Table 25. RF transmitter BLE characteristics (continued)
Symbol
Rgfsk
PLLres
Parameter
Test conditions
Min
Typ
Max
Unit
On Air data rate
-
-
1
2
Mbps
RF channel spacing
-
-
2
-
MHz
Table 26. RF transmitter BLE characteristics (1 Mbps)(1)
Symbol
Parameter
Test conditions
Maximum output power
Prf
Pband
BW6dB
IBSE
fd
Min
Typ
Max
SMPS Bypass (VDD > 1.71 V) or
ON (VFBSMPS = 1.7 V and
VDD > 1.95 V)(2)
-
6.0
-
SMPS Bypass (VDD > 1.71 V) or
ON (VFBSMPS = 1.4 V and
VDD > 1.95 V), Code 29(2)(3)
-
3.7
-
-
-
0
-
Minimum output power
-
-
-20
-
-0.5
-
0.4
dB
kHz
Output power variation over the band Tx = 0 dBm - Typical
Tx = maximum output power
6 dB signal bandwidth
In band spurious emission
-
670
-
®
-
-50
-
®
Bluetooth Low Energy: -30 dBm
-
-53
-
Bluetooth® Low Energy: ±50 kHz
-50
-
+50
kHz
kHz/
50 µs
Bluetooth Low Energy: -20 dBm
2 MHz
≥ 3 MHz
Frequency drift
Maximum drift rate
Bluetooth Low Energy:
±20 kHz / 50 µs
-20
-
+20
Frequency offset
Bluetooth® Low Energy:
±150 kHz
-150
-
+150
∆f1
Frequency deviation average
Bluetooth® Low Energy:
between 225 and 275 kHz
225
-
275
∆fa
Frequency deviation
∆f2 (average) / ∆f1 (average)
Bluetooth® Low Energy:> 0.80
0.80
-
-
fo
OBSE(4)
dBm
0 dBm output power
®
maxdr
Unit
Out of band
spurious emission
dBm
kHz
< 1 GHz
-
-
-61
-
≥ 1 GHz
-
-
-46
-
dBm
1. Measured in conducted mode, based on reference design (see AN5165), using output power specific external RF filter and
impedance matching networks to interface with a 50 Ω antenna.
2. VFBSMPS and VDD must be set to different voltage levels, depending upon the desired TX signal (see AN5246 Usage of
SMPS on STM32WB Series microcontrollers, available on www.st.com).
3. Code 29 means Tx Power (PA_Level) selection of 29 (25 being 0 dBm).
4. Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440
Class 2 (Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan).
DS11929 Rev 12
89/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Table 27. RF transmitter BLE characteristics (2 Mbps)(1)
Symbol
Parameter
Test conditions
Maximum output power
Prf
Pband
BW6dB
maxdr
fo
SMPS Bypass (VDD > 1.71 V)
or ON (VFBSMPS = 1.7 V and
VDD > 1.95 V)(2)
-
6.0
-
SMPS Bypass or ON
(VFBSMPS = 1.4 V and
VDD > 1.71 V), Code 29(2)(3)
-
3.7
-
Unit
dBm
-
0
-
Minimum output power
-
-
-20
-
-0.5
-
0.4
dB
kHz
Output power variation over the band
Tx = 0 dBm - Typical
6 dB signal bandwidth
Tx = maximum output power
-
670
-
Bluetooth® Low Energy: -20 dBm
-
-56
-
-
-57
-
dBm
In band spurious emission
5 MHz
®
Bluetooth Low Energy: -20 dBm
®
Bluetooth Low Energy: -30 dBm
-58
Frequency drift
Bluetooth® Low Energy: ±50 kHz
-50
-
50
kHz
Maximum drift rate
Bluetooth® Low Energy:
±20 kHz / 50 µs
-20
-
20
kHz/
50 µs
Frequency offset
Bluetooth® Low Energy: ±150 kHz -150
-
150
∆f1
Frequency deviation average
∆fa
Frequency deviation
∆f2 (average) / ∆f1 (average)
OBSE(4)
Max
-
≥ 6 MHz
fd
Typ
0 dBm output power
4 MHz
IBSE
Min
Out of band
spurious emission
Bluetooth®
Low Energy:
between 450 and 550 kHz
450
-
550
Bluetooth® Low Energy:> 0.80
0.80
-
-
< 1 GHz
-
-
-61
-
≥ 1 GHz
-
-
-46
-
kHz
dBm
1. Measured in conducted mode, based on reference design (see AN5165), using output power specific external RF filter and
impedance matching networks to interface with a 50 Ω antenna.
2. VFBSMPS and VDD must be set to different voltage levels, depending upon the desired TX signal (see AN5246 Usage of
SMPS on STM32WB Series microcontrollers, available on www.st.com).
3. Code 29 means Tx Power (PA_Level) selection of 29 (25 being 0 dBm).
4. Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440
Class 2 (Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan).
90/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Electrical characteristics
Table 28. RF receiver BLE characteristics (1 Mbps)
Symbol
Prx_max
Psens(1)
Parameter
Test conditions
Maximum input signal
PER 3.5 MHz
-
-35
-
dB
Maximum output power(1)
Prf
Pband
Output power variation over the band Tx = 0 dBm - Typical
EVMrms EVM rms
Txpd
Transmit power density
Unit
dBm
1. Measured in conducted mode, based on reference design (see AN5165), using output power specific
external RF filter and impedance matching networks to interface with a 50 Ω antenna.
Table 32. RF receiver 802.15.4 characteristics
Symbol
Parameter
Prx_max
Maximum input signal
Sensitivity (SMPS Bypass)
Rsens
Conditions
Typ
Min: -20 dBm and PER < 1%
-10
Max: -85 dBm and PER < 1%
Sensitivity (SMPS ON)
-100
Unit
dBm
-98
C/adj
Adjacent channel rejection
-
35
C/alt
Alternate channel rejection
-
46
dB
Figure 19. Typical link quality indicator code vs. Rx level
240
220
TEST_NAME
TP/154/PHY24/RECEIVERͲ06/Ch11(2405MHz)
200
180
LQI
160
TP/154/PHY24/RECEIVERͲ06/Ch19(2445MHz)
TP/154/PHY24/RECEIVERͲ06/Ch26(2480MHz)
140
120
100
80
60
40
20
0
-120 -115-110 -105-100 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20
Pin (dBm)
PARAM2
94/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Electrical characteristics
Figure 20. Typical energy detection (T = 27°C, VDD = 3.3 V)
240
224
208
192
176
160
128
ED
144
112
96
80
64
48
32
16
0
Input power
Table 33. RF 802.15.4 power consumption for VDD = 3.3 V(1)
Symbol
Itxmax
Itx0dbm
Irxlo
Parameter
Typ
TX maximum output power consumption (SMPS Bypass)
11.7
TX maximum output power consumption (SMPS On, VFBSMPS = 1.7 V)
6.5
TX 0 dBm output power consumption (SMPS Bypass)
9.1
TX 0 dBm output power consumption (SMPS On, VFBSMPS = 1.4 V)
4.5
Rx consumption (SMPS Bypass)
9.2
Rx consumption (SMPS On)
4.5
Unit
mA
1. Power consumption including RF subsystem and digital processing.
DS11929 Rev 12
95/194
169
Electrical characteristics
6.3.5
STM32WB55xx STM32WB35xx
Operating conditions at power-up / power-down
The parameters given in Table 34 are derived from tests performed under the ambient
temperature condition summarized in Table 24.
Table 34. Operating conditions at power-up / power-down
Symbol
tVDD
tVDDA
tVDDUSB
tVDDRF
6.3.6
Parameter
Conditions
VDD rise time rate
-
VDD fall time rate
VDDA rise time rate
-
VDDA fall time rate
VDDUSB rise time rate
VDDUSB fall time rate
VDDRF rise time rate
-
-
VDDRF fall time rate
Min
Max
-
∞
10
∞
0
∞
10
∞
0
∞
10
∞
-
∞
-
∞
Unit
µs/V
Embedded reset and power control block characteristics
The parameters given in Table 35 are derived from tests performed under the ambient
temperature conditions summarized in Table 24: General operating conditions.
Table 35. Embedded reset and power control block characteristics
Symbol
tRSTTEMPO(2)
Parameter
Min
Typ
Max
Unit
-
250
400
μs
Rising edge
1.62
1.66
1.70
Falling edge
1.60
1.64
1.69
Rising edge
2.06
2.10
2.14
Falling edge
1.96
2.00
2.04
Rising edge
2.26
2.31
2.35
Falling edge
2.16
2.20
2.24
Rising edge
2.56
2.61
2.66
Falling edge
2.47
2.52
2.57
Rising edge
2.85
2.90
2.95
Falling edge
2.76
2.81
2.86
Rising edge
2.10
2.15
2.19
Falling edge
2.00
2.05
2.10
Rising edge
2.26
2.31
2.36
Falling edge
2.15
2.20
2.25
Rising edge
2.41
2.46
2.51
Falling edge
2.31
2.36
2.41
Reset temporization after BOR0 is detected VDD rising
VBOR0(2)
Brown-out reset threshold 0
VBOR1
Brown-out reset threshold 1
VBOR2
Brown-out reset threshold 2
VBOR3
Brown-out reset threshold 3
96/194
Conditions(1)
VBOR4
Brown-out reset threshold 4
VPVD0
Programmable voltage detector threshold 0
VPVD1
PVD threshold 1
VPVD2
PVD threshold 2
DS11929 Rev 12
V
STM32WB55xx STM32WB35xx
Electrical characteristics
Table 35. Embedded reset and power control block characteristics (continued)
Symbol
Parameter
VPVD3
PVD threshold 3
VPVD4
PVD threshold 4
VPVD5
PVD threshold 5
VPVD6
PVD threshold 6
Vhyst_BORH0
Hysteresis voltage of BORH0
Conditions(1)
Min
Typ
Max
Rising edge
2.56
2.61
2.66
Falling edge
2.47
2.52
2.57
Rising edge
2.69
2.74
2.79
Falling edge
2.59
2.64
2.69
Rising edge
2.85
2.91
2.96
Falling edge
2.75
2.81
2.86
Rising edge
2.92
2.98
3.04
Falling edge
2.84
2.90
2.96
Hysteresis in
continuous mode
-
20
-
Hysteresis in
other mode
-
30
-
Hysteresis voltage of BORH (except
BORH0) and PVD
-
-
100
-
BOR(3) (except BOR0) and PVD
consumption from VDD
-
-
1.1
1.6
VPVM1
VDDUSB peripheral voltage monitoring
-
1.18
1.22
1.26
VPVM3
VDDA peripheral voltage monitoring
Rising edge
1.61
1.65
1.69
Falling edge
1.6
1.64
1.68
Vhyst_BOR_PVD
IDD (BOR_PVD)(2)
Vhyst_PVM3
PVM3 hysteresis
-
-
10
-
Vhyst_PVM1
PVM1 hysteresis
-
-
10
-
IDD (PVM1)(2)
PVM1 consumption from VDD
-
-
0.2
-
(PVM3)(2)
PVM3 consumption from VDD
-
-
2
-
IDD
Unit
V
mV
µA
V
mV
µA
1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.
2. Guaranteed by design.
3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply current
characteristics tables.
DS11929 Rev 12
97/194
169
Electrical characteristics
6.3.7
STM32WB55xx STM32WB35xx
Embedded voltage reference
The parameters given in Table 36 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 24: General operating
conditions.
Table 36. Embedded internal voltage reference
Symbol
VREFINT
Parameter
Internal reference voltage
Conditions
Min
Typ
Max
Unit
–40 °C < TA < +125 °C
1.182
1.212
1.232
V
tS_vrefint (1)
ADC sampling time when reading
the internal reference voltage
-
4(2)
-
-
tstart_vrefint
Start time of reference voltage
buffer when ADC is enabled
-
-
8
12(2)
IDD(VREFINTBUF)
VREFINT buffer consumption from
VDD when converted by ADC
-
-
12.5
20(2)
µA
∆VREFINT
Internal reference voltage spread
over the temperature range
VDD = 3 V
-
5
7.5(2)
mV
–40 °C < TA < +125 °C
-
30
50(2)
ppm/°C
300
1000(2)
ppm
-
250
1200(2)
ppm/V
24
25
26
49
50
51
74
75
76
TCoeff
ACoeff
VDDCoeff
Temperature coefficient
Long term stability
µs
1000 hours, T = 25 °C
Voltage coefficient
VREFINT_DIV1
1/4 reference voltage
VREFINT_DIV2
1/2 reference voltage
VREFINT_DIV3
3/4 reference voltage
3.0 V < VDD < 3.6 V
-
-
%
VREFINT
1. The shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
Figure 21. VREFINT vs. temperature
V
1.235
1.23
1.225
1.22
1.215
1.21
1.205
1.2
1.195
1.19
1.185
-40
-20
0
20
40
Mean
60
Min
80
100
120
°C
Max
MSv40169V1
98/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
6.3.8
Electrical characteristics
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 18: Current consumption
measurement scheme.
Typical and maximum current consumption
The MCU is put under the following conditions:
All I/O pins are in analog input mode
All peripherals are disabled except when explicitly mentioned
The Flash memory access time is adjusted with the minimum wait states number,
depending on the fHCLK frequency (refer to the table “Number of wait states according
to CPU clock (HCLK) frequency” available in the reference manual).
When the peripherals are enabled fPCLK = fHCLK
For Flash memory and shared peripherals fPCLK = fHCLK = fHCLKS
The parameters given in Table 37 to Table 48 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 24: General
operating conditions.
DS11929 Rev 12
99/194
169
Conditions
Symbol
Parameter
-
Voltage
scaling
Range 2
IDD(Run)
DS11929 Rev 12
fHCLK = fHSI16 up to
16 MHz included,
Supply
fHCLK = fHSE = 32 MHz Range 1
current in fHSI16 + PLL ON
Run mode above 32 MHz
All peripherals
disabled
SMPS
Range 1
Supply
current in fHCLK = fMSI
IDD(LPRun)
Low-power All peripherals disabled
run mode
Max(1)
Typ
Unit
fHCLK
25 °C
55 °C 85 °C 105 °C 25 °C 85 °C 105 °C
16 MHz
1.90
1.90
2.00
2.20
2.40
2.52
2.96
2 MHz
0.960
0.985
1.10
1.25
1.25
1.57
2.05
64 MHz
8.15
8.25
8.40
8.60
9.30
9.60
10.02
32 MHz
4.20
4.25
4.40
4.65
4.25
4.63
5.17
16 MHz
2.25
2.30
2.40
2.65
2.65
2.91
3.52
64 MHz
5.00
5.00
5.10
5.20
-
-
-
32 MHz
3.15
3.15
3.25
3.35
-
-
-
16 MHz
2.30
2.30
2.35
2.45
-
-
-
2 MHz
0.335
0.360 0.470
0.670
0.480 0.910
1.47
1 MHz
0.170
0.210 0.325
0.520
0.270 0.730
1.31
400 kHz 0.0815 0.120 0.230
0.425
0.140 0.590
1.18
100 kHz 0.0415 0.076 0.190
0.385
0.070 0.550
1.14
Electrical characteristics
100/194
Table 37. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART enable (Cache ON Prefetch OFF), VDD = 3.3 V
mA
1. Guaranteed by characterization results, unless otherwise specified.
STM32WB55xx STM32WB35xx
Conditions
Symbol
Parameter
-
Voltage
scaling
Range 2
IDD(Run)
fHCLK = fHSI16 up to
16 MHz included,
Supply
fHCLK = fHSE = 32 MHz Range 1
current in fHSI16 + PLL ON
Run mode above 32 MHz
All peripherals
disabled
SMPS
Range 1
DS11929 Rev 12
Supply
current in fHCLK = fMSI
IDD(LPRun)
Low-power All peripherals disabled
run mode
Max(1)
Typ
Unit
fHCLK
25 °C
55 °C
85 °C 105 °C 25 °C 85 °C 105 °C
16 MHz
2.00
2.05
2.15
2.30
2.57
3.04
3.64
2 MHz
0.970
1.00
1.10
1.25
1.62
1.90
2.55
64 MHz
8.80
8.90
9.00
9.20
10.50 10.80
11.30
32 MHz
4.50
4.55
4.70
4.90
4.63
4.89
5.62
16 MHz
2.40
2.40
2.55
2.70
2.50
2.70
3.21
64 MHz
5.25
5.30
5.35
5.45
-
-
-
32 MHz
3.25
3.25
3.35
3.45
-
-
-
16 MHz
2.35
2.35
2.40
2.45
-
-
-
2 MHz
0.265
0.285
0.385
0.550
0.440 0.940
1.620
1 MHz
0.135
0.170
0.270
0.430
0.290 0.760
1.480
400 kHz 0.066
0.097
0.195
0.360
0.200 0.670
1.380
100 kHz 0.031 0.0625 0.160
0.325
0.170 0.470
1.330
STM32WB55xx STM32WB35xx
Table 38. Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1, VDD = 3.3 V
mA
1. Guaranteed by characterization results, unless otherwise specified.
Electrical characteristics
101/194
Electrical characteristics
STM32WB55xx STM32WB35xx
Table 39. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF), VDD= 3.3 V
Conditions
IDD(Run)
Supply current in
Run mode
Supply current in
IDD(LPRun)
Low-power run
Code
25 °C
Reduced code(1)
1.90
119
Coremark
1.85
116
Dhrystone 2.1
1.85
Fibonacci
1.75
109
1.60
100
Reduced code
8.15
127
Coremark
8.00
125
Dhrystone 2.1
8.10
Fibonacci
7.60
119
While(1)
6.85
107
5.00
78
Coremark
4.95
77
Dhrystone 2.1
4.95
Fibonacci
4.75
74
While(1)
4.40
69
Reduced code(1)
4.07
64
Coremark
3.99
62
Dhrystone 2.1
4.04
Fibonacci
3.79
59
While(1)
3.42
53
Reduced code(1)
320
160
Coremark
350
175
Dhrystone 2.1
350
Fibonacci
390
195
While(1)
225
113
While(1)
Reduced
code(1)
1. Reduced code used for characterization results provided in Table 37 and Table 38.
2. Value computed. MCU consumption when RF TX and SMPS are ON.
102/194
Unit
25 °C
(1)
fHCLK = fMSI = 2 MHz
All peripherals disable
TYP
Unit
Voltage
scaling
Range 2
fHCLK = 16 MHz
fHCLK = fHSI16 up to 16 MHz included, fHSI16 + PLL ON above 32 MHz
All peripherals disable
-
Range 1
fHCLK = 64 MHz
Parameter
Range 1, SMPS On
fHCLK = 64 MHz, Range 1, SMPS On
When RF Tx
fHCLK = 64 MHz
level = 0 dBm(2)
Symbol
TYP
DS11929 Rev 12
mA
mA
mA
mA
µA
116
127
77
63
175
µA/MHz
µA/MHz
µA/MHz
µA/MHz
µA/MHz
STM32WB55xx STM32WB35xx
Electrical characteristics
Table 40. Typical current consumption in Run and Low-power run modes,
with different codes running from SRAM1, VDD = 3.3 V
Conditions
IDD(Run)
IDD(LPRun)
Supply current in
Run mode
Supply current in
Low-power run
fHCLK = fMSI = 2 MHz
All peripherals disable
TYP
Unit
Voltage
scaling
Range 2
fHCLK = 16 MHz
fHCLK = fHSI16 up to 16 MHz included, fHSI16 + PLL ON above 32 MHz
All peripherals disable
-
Range 1
fHCLK = 64 MHz
Parameter
Range 1, SMPS On
fHCLK = 64 MHz, Range 1, SMPS On
When RF Tx
fHCLK = 64 MHz
level = 0 dBm(2)
Symbol
TYP
Unit
Code
25 °C
25 °C
Reduced code(1)
2.00
125
Coremark
1.75
109
Dhrystone 2.1
1.95
Fibonacci
1.85
116
1.85
116
8.80
138
Coremark
7.50
117
Dhrystone 2.1
8.60
Fibonacci
7.90
123
8.00
125
5.25
82
Coremark
4.65
73
Dhrystone 2.1
5.15
Fibonacci
4.85
76
While(1)
4.90
77
Reduced code(1)
4.39
69
Coremark
3.74
58
Dhrystone 2.1
4.29
Fibonacci
3.94
62
While(1)
3.99
62
Reduced code(1)
255
128
Coremark
205
103
Dhrystone 2.1
250
Fibonacci
230
115
While(1)
220
110
While(1)
Reduced
code(1)
While(1)
Reduced
code(1)
mA
mA
mA
mA
µA
122
134
80
67
125
µA/MHz
µA/MHz
µA/MHz
µA/MHz
µA/MHz
1. Reduced code used for characterization results provided in Table 37 and Table 38.
2. Value computed. MCU consumption when RF TX and SMPS are ON.
DS11929 Rev 12
103/194
169
Conditions
Symbol
Parameter
-
IDD(Sleep)
DS11929 Rev 12
IDD(LPSleep)
fHCLK = fHSI16 up
to 16 MHz
included,
fHCLK = fHSE up to
Supply
32 MHz
current in
+ PLL ON
f
sleep mode, HSI16
above 32 MHz
All peripherals
disabled
Supply
current in
low-power
sleep mode
MAX(1)
TYP
Unit
Voltage
scaling
fHCLK
25 °C
55 °C
85 °C
105 °C
25 °C
85 °C
105 °C
Range 2
16 MHz
0.740
0.765
0.865
1.05
0.840
1.210
1.810
64 MHz
2.65
2.70
2.80
3.00
3.00
3.33
3.91
32 MHz
1.40
1.45
1.60
1.80
1.55
1.86
2.49
16 MHz
0.845
0.875
0.990
1.20
0.970
1.40
2.02
64 MHz
2.60
2.60
2.65
2.75
-
-
-
32 MHz
1.90
1.95
2.00
2.10
-
-
-
16 MHz
1.70
1.70
1.75
1.80
-
-
-
2 MHz
0.090
0.125
0.235
0.430
0.130
0.600
1.19
1 MHz
0.058
0.093
0.205
0.400
0.090
0.570
1.16
400 kHz
0.044
0.0725
0.185
0.380
0.070
0.540
1.11
100 kHz
0.0315 0.0635 0.0175
0.370
0.055
0.530
1.13
Range 1
SMPS
Range 1
fHCLK = fMSI
All peripherals disabled
Electrical characteristics
104/194
Table 41. Current consumption in Sleep and Low-power sleep modes, Flash memory ON
mA
1. Guaranteed by characterization results, unless otherwise specified.
Table 42. Current consumption in Low-power sleep modes, Flash memory in Power down
Symbol
MAX(1)
TYP
Parameter
Supply
current in
IDD
(LPSleep) low-power
sleep mode
Unit
-
fHCLK
25 °C
55 °C
85 °C
105 °C
25 °C
85 °C
105 °C
fHCLK = fMSI
All peripherals
disabled
2 MHz
94.0
115
200
335
135
610
1201
1 MHz
56.5
86.0
170
305
94.2
560
1171
400 kHz
40.5
66.5
150
285
68.0
540
1129
100 kHz
27.5
57.5
140
275
54.6
539
1131
1. Guaranteed by characterization results, unless otherwise specified.
µA
STM32WB55xx STM32WB35xx
Conditions
Symbol
Parameter
Supply current
in Stop 2
IDD
(Stop 2) mode, RTC
disabled
Conditions
LCD disabled
BLE disabled
DS11929 Rev 12
IDD
(Stop 2
with
RTC)
Supply current
in Stop 2
mode, RTC
enabled, BLE
disabled
VDD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C
1.8 V 1.00 1.85
3.15
5.95
21.5
50.0
2.4 V 1.10 1.85
3.20
6.00
22.0
51.0
3.0 V 1.10 1.85
3.25
6.10
22.0
52.0
3.6 V 1.15 1.95
3.35
6.25
23.0
53.0
2.00
3.35
6.10
22.0
50.5
2.00
3.40
6.20
22.0
51.0
-
-
2.10
3.45
6.30
22.5
52.0
1.85 4.41
58.1
135.8
LCD enabled(2) 1.8 V 1.20
2.4 V 1.20
and clocked
by LSI
3.0 V 1.25
BLE disabled
3.6 V 1.30
RTC clocked
by LSI,
LCD disabled
MAX(1)
TYP
1.58 4.12
56.9
132.7
-
-
1.60 4.17
57.9
135.6
1.69 4.40
58.6
135.7
1.76 4.30
57.1
133.3
-
-
-
-
2.15
3.60
6.55
23.0
53.5
1.97 4.66
59.4
136.6
1.8 V 1.30 2.10
3.45
6.25
22.0
50.5
1.91 4.50
57.2
133.0
2.4 V 1.45 2.25
3.55
6.40
22.5
51.5
-
-
-
-
3.0 V 1.50 2.30
3.70
6.55
22.5
52.5
2.11
4.64
58.3
136.1
3.6 V 1.75 2.50
3.95
6.85
23.5
53.5
2.26 5.12
59.7
136.9
1.8 V 1.35 2.20
3.55
6.30
22.0
50.5
1.99 4.57
57.4
133.8
3.65
6.50
22.5
51.5
-
-
3.85
6.65
23.0
52.5
2.17 4.87
58.4
136.3
4.05
6.95
23.5
54.0
2.41
5.11
59.9
137.1
1.91 4.29
57.1
133.5
-
-
RTC clocked
2.4 V 1.50 2.35
by LSI,
(2) 3.0 V 1.70 2.45
LCD enabled
3.6 V 1.80 2.60
RTC clocked by 1.8 V 1.35
LSE quartz(3) 2.4 V 1.45
in low drive
3.0 V 1.55
mode
3.6 V 1.70
-
-
2.20
3.50
6.25
22.0
50.5
2.25
3.65
6.40
22.5
51.5
2.45
3.80
6.65
23.0
52.5
2.01 4.31
58.0
135.9
2.55
4.05
6.95
23.5
54.0
2.16 4.40
81.6
137.0
-
-
Unit
STM32WB55xx STM32WB35xx
Table 43. Current consumption in Stop 2 mode
µA
Electrical characteristics
105/194
Symbol
Parameter
Conditions
-
MAX(1)
TYP
VDD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C
Wakeup clock is
HSI16, voltage 3.0 V
Range 2. See(4).
Supply current Wakeup clock is
IDD
MSI = 32 MHz,
during
(wakeup
3.0 V
voltage
wakeup from
from
(4)
Stop 2 mode Range 1. See .
Stop 2)
bypass mode Wakeup clock is
MSI = 4 MHz,
3.0 V
voltage
(4)
Range 2. See .
-
389
-
-
-
-
-
-
-
-
-
320
-
-
-
-
-
-
-
-
-
528
-
-
-
-
-
-
-
-
Unit
µA
Electrical characteristics
106/194
Table 43. Current consumption in Stop 2 mode (continued)
1. Guaranteed based on test during characterization, unless otherwise specified.
DS11929 Rev 12
2. LCD enabled with external voltage source. Consumption from VLCD excluded. Refer to LCD controller characteristics for IVLCD
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading
capacitors.
4. Wakeup with code execution from Flash memory. Average value given for a typical wakeup time as specified in Table 51: Low-power mode
wakeup timings.
STM32WB55xx STM32WB35xx
Symbol
Parameter
Supply
current in
IDD
Stop 1 mode,
(Stop 1)
RTC
disabled
DS11929 Rev 12
IDD
(Stop 1
with
RTC)
Conditions
-
MAX(1)
TYP
VDD
0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C
1.8 V 5.05 9.20
15.5
28.0
96.0
210
2.4 V 5.10 9.25
15.5
28.5
96.5
215
3.0 V 5.15 9.30
15.5
28.5
97.0
215
3.6 V 5.25 9.45
16.0
29.0
97.5
215
1.8 V 5.05 9.30
15.5
28.5
96.0
210
2.4 V 5.10 9.35
16.0
28.5
96.5
215
-
-
3.0 V 5.20 9.65
16.0
28.5
97.0
215
7.26 29.6
345.0
747.0
3.6 V 5.55 9.85
16.0
29.0
98.5
215
7.62 29.8
349.0
750.8
1.8 V 5.30 9.35
16.0
28.5
96.5
215
7.30 29.5
343.7
739.2
RTC clocked by LSI 2.4 V 5.40 9.45
LCD disabled
3.0 V 5.70 9.55
16.0
28.5
97.0
215
16.5
29.0
98.5
220
BLE disabled
LCD disabled
BLE disabled
LCD enabled(2),
clocked by LSI
Supply
current in
Stop 1 mode, RTC clocked by LSI
LCD enabled(2)
RTC
enabled,
BLE disabled
RTC clocked by
LSE quartz(3) in
Low drive mode
7.00 28.4
105 °C
343.7
738.6
-
-
7.07 28.5
346.8
746.0
7.30 28.8
351.0
749.4
7.10 28.7
344.4
739.0
-
-
-
-
-
-
7.69 29.7
-
-
347.2
746.1
3.6 V 5.85 10.0
16.5
29.5
96.5
215
8.08 29.8
349.9
751.1
1.8 V 5.25 9.60
16.0
28.5
96.5
215
7.10 29.0
344.3
739.9
2.4 V 5.30 9.75
16.0
29.0
97.0
215
-
-
3.0 V 5.85 9.80
16.5
29.0
97.5
215
7.53 29.8
347.4
746.2
3.6 V 5.90 10.5
16.5
29.0
98.5
220
8.18 29.9
350.6
751.8
6.00 28.7
343.9
738.7
-
-
-
-
1.8 V 5.35 9.55
16.0
28.5
96.5
215
2.4 V 5.40 9.70
16.0
29.0
96.5
215
3.0 V 5.75 9.70
16.0
29.0
97.5
215
7.40 28.9
346.6
743.8
3.6 V 5.90 10.0
16.5
29.5
99.0
220
7.58 29.2
349.0
749.9
-
-
Unit
STM32WB55xx STM32WB35xx
Table 44. Current consumption in Stop 1 mode
µA
Electrical characteristics
107/194
Symbol
IDD
(wakeup
from
Stop1)
Parameter
Supply
current
during
wakeup from
Stop 1
bypass mode
Conditions
-
MAX(1)
TYP
VDD
0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C
105 °C
Wakeup clock
HSI16,
voltage Range 2.
See (4).
3.0 V
-
129
-
-
-
-
-
-
-
-
Wakeup clock
MSI = 32 MHz,
voltage Range 1.
See (4).
3.0 V
-
124
-
-
-
-
-
-
-
-
Wakeup clock
MSI = 4 MHz,
voltage Range 2.
See (4).
3.0 V
-
207
-
-
-
-
-
-
-
-
Unit
µA
Electrical characteristics
108/194
Table 44. Current consumption in Stop 1 mode (continued)
DS11929 Rev 12
1. Guaranteed based on test during characterization, unless otherwise specified.
2. LCD enabled with external voltage source. Consumption from VLCD excluded. Refer to LCD controller characteristics for IVLCD
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
4. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 51: Low-power mode wakeup
timings.
STM32WB55xx STM32WB35xx
Symbol
Parameter
Supply current
in Stop 0 mode,
RTC disabled,
BLE disabled,
LCD disabled
IDD
(Stop 0)
Conditions
-
--
MAX(1)
TYP
VDD
0 °C 25 °C 40 °C 55 °C 85 °C 105 °C
0 °C
25 °C 85 °C 105 °C
1.8 V 95.5
100
110
120
195
315
110.0 114.2 458.1
2.4 V 97.5
105
110
125
195
315
3.0 V 98.5
105
110
125
195
320
117.3 134.3 461.8
880.0
3.6 V 100
105
115
125
200
320
165.0 135.7 494.0
884.1
-
-
-
Unit
874.8
-
DS11929 Rev 12
Wakeup clock
HSI16,
3.0 V
voltage Range 2.
(2).
See
-
331
-
-
-
-
-
-
-
-
Supply current Wakeup clock is
during wakeup MSI = 32 MHz,
3.0 V
voltage Range 1.
from Stop 0
(2).
See
Bypass mode
-
349
-
-
-
-
-
-
-
-
Wakeup clock is
MSI = 4 MHz,
3.0 V
voltage Range 2.
(2).
See
-
196
-
-
-
-
-
-
-
-
STM32WB55xx STM32WB35xx
Table 45. Current consumption in Stop 0 mode
µA
1. Guaranteed by characterization results, unless otherwise specified.
2. Wakeup with code execution from Flash memory. Average value given for a typical wakeup time as specified in Table 51: Low-power mode
wakeup timings.
Electrical characteristics
109/194
Symbol
IDD
(Standby)
Parameter
Conditions
-
BLE disabled
Supply current No independent
in Standby
watchdog
mode (backup
registers and
SRAM2a
BLE disabled
retained),
With
RTC disabled independent
watchdog
DS11929 Rev 12
Supply current
in Standby
mode (backup
IDD
registers and
(Standby with
SRAM2a
RTC)
retained),
RTC enabled
BLE disabled
RTC clocked by
LSI, no
independent
watchdog
RTC clocked by
LSI, with
independent
watchdog
VDD
0 °C
25 °C 40 °C 55 °C 85 °C 105 °C
0 °C
25 °C 85 °C 105 °C
1.8 V 0.270 0.320 0.515 0.920
3.45
8.20
2.4 V 0.270 0.350 0.540 0.955
3.50
8.80
3.0 V 0.270 0.370 0.575
1.00
3.85
9.50
0.380 0.945 8.505 21.200
3.6 V 0.300 0.410 0.645
1.15
4.20
10.50
0.400 1.040 8.980 22.400
0.520 1.095 8.041 19.500
Unit
0.300 0.828 7.850 19.300
-
-
-
-
1.8 V 0.265 0.525 0.710
1.10
3.90
8.40
2.4 V 0.280 0.595 0.790
1.20
4.00
9.05
3.0 V 0.290 0.670 0.855
1.35
4.15
9.80
0.730 1.253 8.774 21.400
3.6 V 0.295 0.770 0.990
1.50
4.60
11.00
0.851 1.356 9.360 22.840
1.8 V 0.500 0.600 0.780
1.20
3.70
8.45
0.680 1.165 8.143 19.660
2.4 V 0.630 0.705 0.910
1.30
3.80
9.10
3.0 V 0.725 0.825 1.050
1.50
3.95
9.90
0.930 1.463 8.977 21.440
3.6 V 0.860 0.970 1.200
1.70
4.25
11.00
1.050 1.628 9.634 23.080
1.8 V 0.565 0.655 0.830
1.25
3.75
8.55
0.734 1.196 8.187 19.710
2.4 V 0.635 0.790 0.975
1.40
4.10
9.20
3.0 V 0.725 0.915 1.100
1.55
4.50
10.00
1.028 1.573 9.072 21.810
-
-
-
-
-
-
-
-
-
-
-
-
3.6 V 0.870 1.050 1.300
1.80
4.90
11.00
1.144 1.723 9.730 23.200
1.8 V 0.525 0.625 0.840
1.25
3.75
8.60
0.600 1.061 8.029 19.610
2.4 V 0.665 0.755 0.960
1.35
4.05
9.25
-
-
-
µA
-
3.0 V 0.775 0.880 1.100
1.55
4.40
10.00
0.600 1.100 8.719 21.570
3.6 V 0.935 1.050 1.300
1.80
5.00
11.00
0.750 1.171 9.460 23.030
STM32WB55xx STM32WB35xx
RTC clocked by
LSE quartz (2) in
low drive mode
MAX(1)
TYP
Electrical characteristics
110/194
Table 46. Current consumption in Standby mode
Symbol
Parameter
Supply
current to be
subtracted in
IDD
Standby
(3)
(SRAM2a)
mode when
SRAM2a is
not retained
Conditions
-
MAX(1)
TYP
VDD
0 °C
25 °C 40 °C 55 °C 85 °C 105 °C
0 °C
25 °C 85 °C 105 °C
1.8 V 0.160 0.210 0.380 0.660 2.30
5.15
-
-
-
-
2.4 V 0.165 0.245 0.375 0.650 2.15
5.20
-
-
-
-
3.0 V 0.155 0.250 0.385 0.630 2.25
5.20
-
-
-
-
3.6 V 0.155 0.235 0.375 0.670 2.20
5.20
-
-
-
-
-
-
-
-
-
µA
-
Supply current
Wakeup clock is
IDD
during
HSI16. See (4).
(wakeup from
wakeup from
Standby)
SMPS OFF
Standby mode
Unit
3.0 V
-
1.73
-
-
-
STM32WB55xx STM32WB35xx
Table 46. Current consumption in Standby mode (continued)
mA
DS11929 Rev 12
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading
capacitors.
3. The supply current in Standby with SRAM2a mode is: IDD(Standby) + IDD(SRAM2a). The supply current in Standby with RTC with
SRAM2a mode is: IDD(Standby + RTC) + IDD(SRAM2a).
4. Wakeup with code execution from Flash memory. Average value given for a typical wakeup time as specified in Table 51.
Electrical characteristics
111/194
Symbol
Parameter
IDD
(Shutdown)
Supply current in
Shutdown mode
(backup
registers
retained) RTC
disabled
Conditions
-
MAX(1)
TYP
VDD
0 °C
25 °C 40 °C 55 °C 85 °C
1.8 V
0.039
0.013
0.030
0.100
2.4 V
0.059
0.014
0.055
3.0 V
0.064
0.037
3.6 V
0.071
1.8 V
105 °C
0 °C
25 °C 85 °C 105 °C
0.635
1.950
-
-
2.099
6.200
0.120
0.785
2.350
-
-
-
-
0.070
0.180
1.000
2.900
-
0.185
2.670
7.490
0.093
0.140
0.280
1.300
3.700
-
0.247
3.120
8.450
0.320
0.315
0.355
0.420
0.985
2.300
-
0.572
2.702
6.180
2.4 V
0.425
0.405
0.460
0.540
1.200
2.800
-
-
-
-
3.0 V
0.535
0.535
0.595
0.700
1.500
3.450
-
0.664
2.990
7.800
3.6 V
0.695
0.720
0.790
0.940
2.000
4.350
-
0.790
3.730
9.140
Unit
-
Electrical characteristics
112/194
Table 47. Current consumption in Shutdown mode
µA
IDD
(Shutdown
with RTC)
DS11929 Rev 12
Supply current in
Shutdown mode
(backup
registers
retained) RTC
enabled
RTC clocked
by LSE
quartz (2) in low
drive mode
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
Table 48. Current consumption in VBAT mode
Symbol
Parameter
Conditions
-
Backup
domain
IDD(VBAT)
supply
current
RTC enabled
and clocked
by LSE
quartz(2)
VBAT 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C
1.8 V 1.00
2.00
4.00
10.0
52.0
145
-
-
-
-
-
-
2.4 V 1.00
2.00
5.00
12.0
60.0
165
-
-
-
-
-
-
3.0 V 2.00
4.00
7.00
16.0
75.0
225
-
-
-
-
-
-
3.6 V 7.00
15.0
23.0
42.0
170
450
-
-
-
-
-
-
1.8 V
295
305
315
325
380
480
-
-
-
-
-
-
2.4 V
385
395
400
415
475
595
-
-
-
-
-
-
3.0 V
495
505
515
530
600
765
-
-
-
-
-
-
3.6 V
630
645
660
685
830
1150
-
-
-
-
-
-
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
Unit
nA
STM32WB55xx STM32WB35xx
RTC disabled
MAX(1)
TYP
Symbol
IDD(RST)
Conditions
MAX(1)
TYP
0 °C
25 °C
40 °C
55 °C
85 °C
105 °C
0 °C
25 °C
40 °C
55 °C
85 °C
105 °C
1.8 V
-
410
-
-
-
-
-
-
-
-
-
-
2.4 V
-
-
-
-
-
-
-
-
-
-
-
-
3.0 V
-
550
-
-
-
-
-
750
-
-
-
-
3.6 V
-
750
-
-
-
-
-
-
-
-
-
-
1. Guaranteed by characterization results, unless otherwise specified.
Unit
µA
STM32WB55xx STM32WB35xx
Table 49. Current under Reset condition
DS11929 Rev 12
Electrical characteristics
113/194
Electrical characteristics
STM32WB55xx STM32WB35xx
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 72: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 50: Peripheral current consumption, the I/Os used by an application also contribute to
the current consumption. When an I/O pin switches, it uses the current from the I/O supply
voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or
external) connected to the pin:
I SW = V DD f SW C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the I/O supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CIO+ CEXT
CIO is the I/O pin capacitance
CEXT is the PCB board capacitance plus any connected external device pin
capacitance.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
114/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Electrical characteristics
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 50. The MCU is placed
under the following conditions:
All I/O pins are in Analog mode
The given value is calculated by measuring the difference of the current consumptions:
–
when the peripheral is clocked on
–
when the peripheral is clocked off
Ambient operating temperature and supply voltage conditions summarized in Table 20:
Voltage characteristics
The power consumption of the digital part of the on-chip peripherals is given in
Table 50. The power consumption of the analog part of the peripherals (where
applicable) is indicated in each related section of the datasheet.
Table 50. Peripheral current consumption
Range 1
Range 2
Low-power
run and sleep
Bus matrix(1)
2.40
2.00
1.80
TSC
1.25
1.05
1.05
CRC
0.465
0.375
0.380
DMA1
1.90
1.55
1.80
DMA2
2.00
1.65
1.80
DMAMUX
4.15
3.40
4.45
All AHB1 peripherals
12.0
10.0
11.5
AES1
4.00
3.30
3.90
ADC1 independent clock domain
2.55
2.10
2.10
ADC1 clock domain
2.25
1.90
1.90
All AHB2 peripherals
7.45
6.20
6.60
QSPI
7.60
6.25
7.10
TRNG independent clock domain
3.80
N/A
N/A
TRNG clock domain
2.00
N/A
N/A
SRAM2
1.70
1.35
1.35
AHB Shared FLASH
8.35
6.90
8.45
AES2
6.95
5.75
7.00
PKA
4.40
3.65
4.25
All AHB shared peripherals
17.5
14.5
16.0
Peripheral
AHB1
AHB2(2)
AHB3
DS11929 Rev 12
Unit
µA/MHz
115/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Table 50. Peripheral current consumption (continued)
Range 1
Range 2
Low-power
run and sleep
RTCA
1.10
0.88
1.25
CRS
0.24
0.20
0.20
USB FS independent clock domain
3.20
N/A
N/A
USB FS clock domain
2.05
N/A
N/A
I2C1 independent clock domain
2.50
4.40
4.40
I2C1 clock domain
4.80
4.00
5.50
I2C3 independent clock domain
2.10
3.50
3.55
I2C3 clock domain
3.70
3.10
3.55
LCD
1.35
1.10
2.10
SPI2
1.65
1.40
2.25
LPTIM1 independent clock domain
2.10
3.40
3.00
LPTIM1 clock domain
3.60
3.00
3.80
TIM2
5.65
4.70
4.90
LPUART1 independent clock domain
2.70
4.15
3.85
LPUART1 clock domain
4.45
3.70
5.25
LPTIM2 clock domain
3.95
3.25
4.50
LPTIM2 independent clock domain
2.20
3.70
3.80
WWDG
0.335
0.285
0.965
27.0
22.5
25.5
AHB to APB2
1.10
0.885
1.35
TIM1
8.20
6.80
7.25
TIM17
2.85
2.40
2.40
TIM16
2.75
2.30
2.55
USART1 independent clock domain
4.40
7.80
7.00
USART1 clock domain
8.80
7.30
7.75
SPI1
1.75
1.45
1.45
SAI1 independent clock domain
2.50
1.50
3.50
SAI1 clock domain
2.40
N/A
N/A
All APB2 on
28.0
23.0
25.5
97.5
80.5
90.0
Peripheral
APB1
All APB1 peripherals
(3)
APB2
ALL
1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).
2. GPIOs consumption during read and write accesses.
3. The AHB to APB2 bridge is automatically active when at least one peripheral is ON on the APB2.
116/194
DS11929 Rev 12
Unit
µA/MHz
STM32WB55xx STM32WB35xx
6.3.9
Electrical characteristics
Wakeup time from Low-power modes and voltage scaling
transition times
The wakeup times given in Table 51 are the latency between the event and the execution of
the first user instruction.
The device goes in Low-power mode after the WFE (Wait For Event) instruction.
Table 51. Low-power mode wakeup timings(1)
Symbol
tWUSLEEP
Parameter
Wakeup time from
Sleep mode
to Run mode
Conditions
Typ
Max
-
9
10
Wakeup time from
Wakeup in Flash with memory in power-down
tWULPSLEEP Low-power sleep mode during low-power sleep mode (FPDS = 1 in
to Low-power run mode PWR_CR1) and with clock MSI = 2 MHz
Wake up time from
Stop 0 mode
to Run mode in Flash
memory
Range 1
Range 2
tWUSTOP0
Wake up time from
Stop 0 mode
to Run mode in SRAM1
Range 1
Range 2
Range 1
Wake up time from
Stop 1 mode
to Run in Flash memory
SMPS bypassed
Range 2
tWUSTOP1
Wake up time from
Stop 1 mode
to Run in SRAM1
SMPS bypassed
Wake up time from
Stop 1 mode to
Low-power run mode
in Flash memory
Wake up time from
Stop 1 mode to
Low-power run mode
in SRAM1
Range 1
Range 2
Regulator in
Low-power
mode (LPR = 1
in PWR_CR1)
9
10
Wakeup clock MSI = 32 MHz
2.38
2.96
Wakeup clock HSI16 = 16 MHz
1.69
2.00
Wakeup clock HSI16 = 16 MHz
1.70
2.01
Wakeup clock MSI = 4 MHz
7.43
8.59
Wakeup clock MSI = 32 MHz
2.63
3.00
Wakeup clock HSI16 = 16 MHz
1.80
2.00
Wakeup clock HSI16 = 16 MHz
1.82
2.02
Wakeup clock MSI = 4 MHz
7.58
8.70
Wakeup clock MSI = 32 MHz
4.67
5.56
Wakeup clock HSI16 = 16 MHz
5.09
6.03
Wakeup clock HSI16 = 16 MHz
5.08
6.00
Wakeup clock MSI = 4 MHz
8.36
9.28
Wakeup clock MSI = 32 MHz
4.88
5.55
Wakeup clock HSI16 = 16 MHz
5.29
5.95
Wakeup clock HSI16 = 16 MHz
5.28
5.96
Wakeup clock MSI = 4 MHz
8.49
9.30
7.96
9.59
8.00
9.47
Unit
No. of
CPU
cycles
µs
Wakeup clock MSI = 4 MHz
DS11929 Rev 12
117/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Table 51. Low-power mode wakeup timings(1) (continued)
Symbol
Parameter
Conditions
Wake up time from
Stop 2 mode
to Run mode in Flash
memory
SMPS bypassed
Range 1
Range 2
tWUSTOP2
Wake up time from
Stop 2 mode to Run
mode in SRAM1
SMPS bypassed
tWUSTBY
Wakeup time from
Standby mode
to Run mode
SMPS Bypassed
Range 1
Range 2
Range 1
Typ
Max
Wakeup clock MSI = 32 MHz
5.27
6.07
Wakeup clock HSI16 = 16 MHz
5.71
6.52
Wakeup clock HSI16 = 16 MHz
5.72
6.52
Wakeup clock MSI = 4 MHz
9.10
9.93
Wakeup clock MSI = 32 MHz
5.20
5.94
Wakeup clock HSI16 = 16 MHz
5.64
6.42
Wakeup clock HSI16 = 16 MHz
5.64
6.43
Wakeup clock MSI = 4 MHz
9.05
9.85
Wakeup clock HSI16 = 16 MHz
51.0
58.1
Unit
µs
µs
1. Guaranteed by characterization results (VDD = 3 V, .T = 25 °C).
Table 52. Regulator modes transition times(1)
Symbol
tWULPRUN
tVOST
Parameter
Conditions
Typ
Max
Wakeup time from Low-power run mode to
Code run with MSI 2 MHz
Run mode(2)
15.33
16.30
Regulator transition time from Range 2 to
Range 1 or Range 1 to Range 2(3)
21.4
28.9
Code run with HSI16
Unit
µs
1. Guaranteed by characterization results (VDD = 3 V, T = 25 °C).
2. Time until REGLPF flag is cleared in PWR_SR2.
3. Time until VOSF flag is cleared in PWR_SR2.
Table 53. Wakeup time using USART/LPUART(1)
Symbol
tWUUSART
tWULPUART
Parameter
Conditions
Wakeup time needed to calculate the maximum
Stop mode 0
USART/LPUART baud rate allowing to wakeup from
Stop modes when USART/LPUART clock source is
Stop mode 1/2
HSI16
1. Guaranteed by design.
118/194
DS11929 Rev 12
Typ
Max
-
1.7
-
8.5
Unit
µs
STM32WB55xx STM32WB35xx
6.3.10
Electrical characteristics
External clock source characteristics
High-speed external user clock generated from an external source
The high-speed external (HSE) clock is supplied with a 32 MHz crystal oscillator or a sine or
a square wave.
The devices include internal programmable capacitances that can be used to tune the
crystal frequency in order to compensate the PCB parasitic one.
The characteristics in Table 54 and Table 55 are measured over recommended operating
conditions, unless otherwise specified. Typical values are referred to TA = 25 °C and
VDD = 3.0 V.
Table 54. HSE crystal requirements(1)
Symbol
Parameter
fNOM
Oscillator frequency
fTOL
Frequency tolerance
CL
ESR
Conditions
Min
Typ
Max
Unit
-
-
32
-
MHz
-
-
(2)
ppm
Includes initial accuracy, stability over
temperature, aging and frequency pulling
due to incorrect load capacitance.
Load capacitance
-
6
-
8
pF
Equivalent series resistance
-
-
-
100
Ω
1. 32 MHz XTAL is specified for two specific references: NX2016SA and NX1612SA.
2. Refer to the standard specification: 50 ppm for BLE, 40 ppm for 802.15.4 and when both BLE and 802.15.4 are used.
Table 55. HSE clock source requirements(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
fHSE_ext
User external clock source
frequency
-
-
32
-
MHz
-
-
(2)
ppm
fTOL
Frequency tolerance
Includes initial accuracy, stability
over temperature and aging.
VHSE
Clock input voltage limits
Sine or square wave, AC-coupled(3)
0.4
-
1.6
VPP
-
45
50
55
%
10% - 90% square wave
-
-
15 * VPP
ns
Offset = 10 kHz
-
-
-127
Offset = 100 kHz
-
-
-135
Offset = 1 MHz
-
-
-138
DuCy(HSE) Duty cycle
tr, tf
φn(HSE)
Rise and fall times
Phase noise for 32 MHz
dBc/Hz
1. Guaranteed by design.
2. Refer to the standard specification: 50 ppm for BLE, 40 ppm for 802.15.4 and when both BLE and 802.15.4 are used.
3. Only AC coupled is supported (capacitor 470 pF to 100 nF).
DS11929 Rev 12
119/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Table 56. HSE oscillator characteristics
Symbol
Parameter
tSUA(HSE)
Startup time
for 80% amplitude stabilization
tSUR(HSE)
Startup time
for XOREADY signal
IDDRF(HSE) HSE current consumption
Conditions
Min
Typ
Max
VDDRF stabilized,
XOTUNE=000000,
-40 to +125 °C range
-
1000
-
-
250
-
HSEGMC=000, XOTUNE=000000
-
50
-
-
1
5
±20
±40
-
-
6
-
bit
-
-
0.1
ms
µs
XOTg(HSE) XOTUNE granularity
XOTfp(HSE) XOTUNE frequency pulling
XOTnb(HSE) XOTUNE number of tuning bits
Capacitor bank
XOTst(HSE) XOTUNE setting time
Note:
Unit
µA
ppm
For information about oscillator trimming refer to AN5165 “Development of RF hardware
using STM32WB microcontrollers”, available from www.st.com.
Low-speed external user clock generated from an external source
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. The information provided in this section is based on design simulation results
obtained with typical external components specified in Table 57. In the application, the
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins to minimize output distortion and startup stabilization time.
Refer to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Table 57. Low-speed external user clock characteristics(1)
Symbol
IDD(LSE)
Gmcritmax
tSU(LSE)(2)
120/194
Parameter
LSE current consumption
Maximum critical crystal gm
Startup time
Conditions
Min
Typ
Max
LSEDRV[1:0] = 00
Low drive capability
-
250
-
LSEDRV[1:0] = 01
Medium low drive capability
-
315
-
LSEDRV[1:0] = 10
Medium high drive capability
-
500
-
LSEDRV[1:0] = 11
High drive capability
-
630
-
LSEDRV[1:0] = 00
Low drive capability
-
-
0.50
LSEDRV[1:0] = 01
Medium low drive capability
-
-
0.75
LSEDRV[1:0] = 10
Medium high drive capability
-
-
1.70
LSEDRV[1:0] = 11
High drive capability
-
-
2.70
VDD stabilized
-
2
-
DS11929 Rev 12
Unit
nA
µA/V
s
STM32WB55xx STM32WB35xx
Electrical characteristics
1. Guaranteed by design.
2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) until a stable 32 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer.
Note:
For information on selecting the crystal refer to application note AN2867 “Oscillator design
guide for STM8S, STM8A and STM32 microcontrollers” available from www.st.com.
Figure 22. Typical application with a 32.768 kHz crystal
Resonator with integrated
capacitors
CL1
OSC32_IN
fLSE
Drive
programmable
amplifier
32.768 kHz
resonator
OSC32_OUT
CL2
MS30253V2
Note:
No external resistors are required between OSC32_IN and OSC32_OUT, and it is forbidden
to add one.
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics detailed in Section 6.3.17.
The recommend clock input waveform is shown in Figure 23.
Figure 23. Low-speed external clock source AC timing diagram
tw(LSEH)
VLSEH
90%
VLSEL
10%
tr(LSE)
tf(LSE)
t
tw(LSEL)
TLSE
MS19215V2
DS11929 Rev 12
121/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Table 58. Low-speed external user clock characteristics(1) – Bypass mode
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
kHz
fLSE_ext
User external clock
source frequency
-
21.2
32.768
44.4
VLSEH
OSC32_IN input pin
high level voltage
-
0.7 VDDx
-
VDDx
VLSEL
OSC32_IN input pin
low level voltage
-
VSS
-
0.3 VDDx
OSC32_IN high or
low time
-
250
-
-
ns
-500
-
+500
ppm
tw(LSEH)
tw(LSEL)
ftolLSE
V
Includes initial
accuracy, stability over
Frequency tolerance
temperature, aging and
frequency pulling
1. Guaranteed by design.
6.3.11
Internal clock source characteristics
The parameters given in Table 59 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 24: General operating
conditions. The provided curves are characterization results, not tested in production.
High-speed internal (HSI16) RC oscillator
Table 59. HSI16 oscillator characteristics(1)
Symbol
fHSI16
TRIM
Parameter
HSI16 Frequency
HSI16 user trimming step
Conditions
Min
Typ
Max
Unit
VDD=3.0 V, TA=30 °C
15.88
-
16.08
MHz
Trimming code is not
a multiple of 64
0.2
0.3
0.4
Trimming code is a
multiple of 64
-4
-6
-8
45
-
55
DuCy(HSI16)(2) Duty Cycle
-
∆Temp(HSI16)
HSI16 oscillator frequency drift over
temperature
TA= 0 to 85 °C
-1
-
1
TA= -40 to 125 °C
-2
-
1.5
∆VDD(HSI16)
HSI16 oscillator frequency drift over VDD
VDD=1.62 V to 3.6 V
-0.1
-
0.05
tsu(HSI16)(2)
HSI16 oscillator start-up time
-
-
0.8
1.2
tstab(HSI16)(2)
HSI16 oscillator stabilization time
-
-
3
5
IDD(HSI16)(2)
HSI16 oscillator power consumption
-
-
155
190
1. Guaranteed by characterization results.
2. Guaranteed by design.
122/194
DS11929 Rev 12
%
μs
μA
STM32WB55xx STM32WB35xx
Electrical characteristics
Figure 24. HSI16 frequency vs. temperature
MHz
16.4
+2%
16.3
+1.5%
16.2
+1%
16.1
16
15.9
-1%
15.8
-1.5%
15.7
-2%
15.6
-40
-20
0
20
40
min
mean
60
80
100
120 °C
max
MSv39299V1
DS11929 Rev 12
123/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Multi-speed internal (MSI) RC oscillator
Table 60. MSI oscillator characteristics(1)
Symbol
Parameter
Conditions
MSI mode
fMSI
∆TEMP(MSI)(2)
124/194
MSI frequency
after factory
calibration, done
at VDD=3 V and
TA=30 °C
MSI oscillator
frequency drift
over temperature
Min
Typ
Max
Range 0
98.7
100
101.3
Range 1
197.4
200
202.6
Range 2
394.8
400
405.2
Range 3
789.6
800
810.4
Range 4
0.987
1
1.013
Range 5
1.974
2
2.026
Range 6
3.948
4
4.052
Range 7
7.896
8
8.104
Range 8
15.79
16
16.21
Range 9
23.69
24
24.31
Range 10
31.58
32
32.42
Range 11
47.38
48
48.62
Range 0
-
98.304
-
Range 1
-
196.608
-
Range 2
-
393.216
-
Range 3
-
786.432
-
Range 4
-
1.016
-
PLL mode Range 5
XTAL=
32.768 kHz Range 6
-
1.999
-
-
3.998
-
Range 7
-
7.995
-
Range 8
-
15.991
-
Range 9
-
23.986
-
Range 10
-
32.014
-
Range 11
-
48.005
-
-3.5
-
3
-8
-
6
MSI mode
TA= -0 to 85 °C
TA= -40 to 125 °C
DS11929 Rev 12
Unit
kHz
MHz
kHz
MHz
%
STM32WB55xx STM32WB35xx
Electrical characteristics
Table 60. MSI oscillator characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
VDD =
1.62 to 3.6 V
-1.2
-
VDD =
2.4 to 3.6 V
-0.5
-
VDD =
1.62 to 3.6 V
-2.5
-
VDD =
2.4 to 3.6 V
-0.8
-
VDD =
1.62 to 3.6 V
-5
-
VDD =
2.4 to 3.6 V
-1.6
-
TA= -40 to 85 °C
-
1
2
TA= -40 to 125 °C
-
2
4
Range 0 to 3
∆VDD(MSI)(2)
MSI oscillator
frequency drift
MSI mode
over VDD
(reference is 3 V)
Range 4 to 7
Range 8 to 11
∆FSAMPLING
(MSI)(2)(6)
P_USB
Jitter(MSI)(6)
MT_USB
Jitter(MSI)(6)
CC jitter(MSI)(6)
P jitter(MSI)(6)
tSU(MSI)(6)
tSTAB(MSI)(6)
Frequency
MSI mode
variation in
sampling mode(3)
Period jitter for
USB clock(4)
PLL mode
Range 11
Medium term jitter PLL mode
for USB clock(5)
Range 11
Max
0.5
0.7
%
1
For next
transition
-
-
-
3.458
For paired
transition
-
-
-
3.916
For next
transition
-
-
-
2
For paired
transition
-
-
-
1
ns
RMS cycle-tocycle jitter
PLL mode Range 11
-
-
60
-
RMS period jitter
PLL mode Range 11
-
-
50
-
Range 0
-
-
10
20
Range 1
-
-
5
10
Range 2
-
-
4
8
Range 3
-
-
3
7
Range 4 to 7
-
-
3
6
Range 8 to 11
-
-
2.5
6
10 % of final
frequency
-
-
0.25
0.5
5 % of final
frequency
-
-
0.5
1.25
1 % of final
frequency
-
-
-
2.5
MSI oscillator
start-up time
MSI oscillator
stabilization time
PLL mode
Range 11
DS11929 Rev 12
Unit
ps
μs
ms
125/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Table 60. MSI oscillator characteristics(1) (continued)
Symbol
IDD(MSI)(6)
Parameter
MSI oscillator
power
consumption
Conditions
MSI and
PLL mode
Min
Typ
Max
Range 0
-
-
0.6
1
Range 1
-
-
0.8
1.2
Range 2
-
-
1.2
1.7
Range 3
-
-
1.9
2.5
Range 4
-
-
4.7
6
Range 5
-
-
6.5
9
Range 6
-
-
11
15
Range 7
-
-
18.5
25
Range 8
-
-
62
80
Range 9
-
-
85
110
Range 10
-
-
110
130
Range 11
-
-
155
190
Unit
µA
1. Guaranteed by characterization results.
2. This is a deviation for an individual part once the initial frequency has been measured.
3. Sampling mode means Low-power run/Low-power sleep modes with Temperature sensor disable.
4. Average period of MSI at 48 MHz is compared to a real 48 MHz clock over 28 cycles. It includes frequency tolerance + jitter
of MSI at 48 MHz clock.
5. Only accumulated jitter of MSI at 48 MHz is extracted over 28 cycles.
For next transition: min. and max. jitter of 2 consecutive frame of 28 cycles of the MSI at 48 MHz, for 1000 captures over
28 cycles.
For paired transitions: min. and max. jitter of 2 consecutive frame of 56 cycles of the MSI at 48 MHz, for 1000 captures over
56 cycles.
6. Guaranteed by design.
126/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Electrical characteristics
Figure 25. Typical current consumption vs. MSI frequency
High-speed internal 48 MHz (HSI48) RC oscillator
Table 61. HSI48 oscillator characteristics(1)
Symbol
fHSI48
TRIM
USER TRIM
COVERAGE
Parameter
HSI48 frequency
Min
Typ
Max
Unit
VDD = 3.0 V, TA = 30 °C
-
48
-
MHz
-
0.11(2)
0.18(2)
±3(3)
±3.5(3)
-
45(2)
-
55(2)
VDD = 3.0 V to 3.6 V,
TA = –15 to 85 °C
-
-
±3(3)
VDD = 1.65 V to 3.6 V,
TA = –40 to 125 °C
-
-
±4.5(3)
VDD = 3 V to 3.6 V
-
0.025(3)
0.05(3)
VDD = 1.65 V to 3.6 V
-
0.05(3)
0.1(3)
HSI48 user trimming step
-
HSI48 user trimming coverage
±32 steps
DuCy(HSI48) Duty cycle
-
Accuracy of the HSI48 oscillator
ACCHSI48_REL over temperature
(factory calibrated)
DVDD(HSI48)
Conditions
HSI48 oscillator frequency drift
with VDD
%
tsu(HSI48)
HSI48 oscillator start-up time
-
-
2.5(2)
6(2)
μs
IDD(HSI48)
HSI48 oscillator power consumption
-
-
340(2)
380(2)
μA
DS11929 Rev 12
127/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Table 61. HSI48 oscillator characteristics(1) (continued)
Symbol
Parameter
NT jitter
Next transition jitter
Accumulated jitter on 28 cycles(4)
PT jitter
Paired transition jitter
Accumulated jitter on 56 cycles(4)
Conditions
Min
Typ
Max
-
-
±0.15(2)
-
-
(2)
Unit
ns
-
±0.25
-
1. VDD = 3 V, TA = –40 to 125 °C unless otherwise specified.
2. Guaranteed by design.
3. Guaranteed by characterization results.
4. Jitter measurement are performed without clock source activated in parallel.
Figure 26. HSI48 frequency vs. temperature
%
6
4
2
0
-2
-4
-6
-50
-30
-10
10
30
50
Avg
70
min
90
110
130
°C
max
MSv40989V1
Low-speed internal (LSI) RC oscillator
Table 62. LSI1 oscillator characteristics(1)
Symbol
fLSI
tSU(LSI1)(2)
Parameter
LSI1 frequency
Conditions
Min
Typ
Max
VDD = 3.0 V, TA = 30 °C
31.04
-
32.96
VDD = 1.62 to 3.6 V, TA = -40 to 125 °C
29.5
-
34
-
-
80
130
-
125
180
-
110
180
LSI1 oscillator start-up time
tSTAB(LSI1)(2) LSI1 oscillator stabilization time 5% of final frequency
IDD(LSI1)(2)
LSI1 oscillator power
consumption
-
1. Guaranteed by characterization results.
2. Guaranteed by design.
128/194
DS11929 Rev 12
Unit
kHz
μs
nA
STM32WB55xx STM32WB35xx
Electrical characteristics
Table 63. LSI2 oscillator characteristics(1)
Symbol
fLSI2
Parameter
LSI2 frequency
Conditions
Min
Typ
Max Unit
VDD = 3.0 V, TA = 30 °C
21.6
-
44.2
VDD = 1.62 to 3.6 V, TA = -40 to 125 °C
21.2
-
44.4
kHz
tSU(LSI2)(2)
LSI2 oscillator start-up time
-
0.7
-
3.5
ms
IDD(LSI2)(2)
LSI2 oscillator power
consumption
-
-
500
1180
nA
1. Guaranteed by characterization results.
2. Guaranteed by design.
6.3.12
PLL characteristics
The parameters given in Table 64 are derived from tests performed under temperature and
VDD supply voltage conditions summarized in Table 24: General operating conditions.
Table 64. PLL, PLLSAI1 characteristics(1)
Symbol
fPLL_IN
Parameter
Conditions
Min
Typ
Max
Unit
PLL input clock(2)
-
2.66
-
16
MHz
PLL input clock duty cycle
-
45
-
55
%
Voltage scaling Range 1
2
-
64
Voltage scaling Range 2
2
-
16
Voltage scaling Range 1
8
-
64
Voltage scaling Range 2
8
-
16
Voltage scaling Range 1
8
-
64
Voltage scaling Range 2
8
-
16
Voltage scaling Range 1
96
-
344
Voltage scaling Range 2
64
-
128
-
15
40
-
40
-
-
30
-
VCO freq = 96 MHz
-
200
260
VCO freq = 192 MHz
-
300
380
VCO freq = 344 MHz
-
520
650
fPLL_P_OUT PLL multiplier output clock P
fPLL_Q_OUT PLL multiplier output clock Q
fPLL_R_OUT PLL multiplier output clock R
fVCO_OUT
tLOCK
Jitter
IDD(PLL)
PLL VCO output
PLL lock time
RMS cycle-to-cycle jitter
RMS period jitter
PLL power consumption
on VDD(1)
System clock 64 MHz
MHz
μs
ps
μA
1. Guaranteed by design.
2. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between the two PLLs.
DS11929 Rev 12
129/194
169
Electrical characteristics
6.3.13
STM32WB55xx STM32WB35xx
Flash memory characteristics
Table 65. Flash memory characteristics(1)
Symbol
tprog
Parameter
Conditions
Typ
Max
Unit
-
81.7
90.8
µs
Normal programming
5.2
5.5
Fast programming
3.8
4.0
Normal programming
41.8
43.0
Fast programming
30.4
31.0
64-bit programming time
tprog_row
One row (64 double word)
programming time
tprog_page
One page (4 Kbytes)
programming time
Page (4 Kbytes) erase time
-
22.0
24.5
tME
Mass erase time
-
22.1
25.0
IDD
Average consumption from VDD
Write mode
3.4
-
Erase mode
3.4
-
tERASE
ms
mA
1. Guaranteed by design.
Table 66. Flash memory endurance and data retention
Symbol
NEND
Parameter
Endurance
Conditions
TA = –40 to +105 °C
1
tRET
Data retention
kcycle(2)
Unit
10
kcycles
at TA = 85 °C
30
1 kcycle
(2)
at TA = 105 °C
15
1 kcycle
(2)
at TA = 125 °C
7
10 kcycles(2) at TA = 55 °C
30
10 kcycles(2) at TA = 85 °C
15
10 kcycles
(2)
at TA = 105 °C
1. Guaranteed by characterization results.
2. Cycling performed over the whole temperature range.
130/194
Min(1)
DS11929 Rev 12
10
Years
STM32WB55xx STM32WB35xx
6.3.14
Electrical characteristics
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operation to be resumed.
The test results are given in Table 67. They are based on the EMS levels and classes
defined in AN1709 “EMC design guide for STM8, STM32 and Legacy MCUs”, available on
www.st.com.
Table 67. EMS characteristics
Symbol
Parameter
Conditions
Level/Class
VFESD
VDD = 3.3 V, TA = +25 °C,
Voltage limits to be applied on any I/O pin
fHCLK = 64 MHz,
to induce a functional disturbance
conforming to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 64 MHz,
conforming to IEC 61000-4-4
5A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software.
Good EMC performance is highly dependent on the user application and the software in
particular. Therefore it is recommended that the user applies EMC software optimization
and prequalification tests in relation with the EMC level requested for the application.
Software recommendations
The software flow must include the management of runaway conditions such as:
corrupted program counter
unexpected reset
critical data corruption (e.g. control registers)
DS11929 Rev 12
131/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for
1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling two LEDs through the I/O ports). This emission test is compliant with the
IEC 61967-2 standard, which specifies the test board and the pin loading.
Table 68. EMI characteristics
Symbol
Parameter
Monitored
frequency band
Conditions
Peripheral ON
SMPS OFF or ON
[fHSE / fCPUM4, fCPUM0]
Unit
32 MHz / 64 MHz, 32 MHz
SEMI
Peak level
VDD = 3.6 V, TA = 25 °C,
WLCSP100 package
compliant with IEC 61967-2
0.1 MHz to 30 MHz
1
30 MHz to 130 MHz
4
130 MHz to 1 GHz
-1
1 GHz to 2 GHz
7
EMI level
6.3.15
dBµV
1.5
-
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the ANSI/JEDEC standard.
Table 69. ESD absolute maximum ratings
Symbol
Ratings
Conditions
VESD(HBM)
Electrostatic discharge voltage
(human body model)
TA = +25 °C, conforming to
ANSI/ESDA/JEDEC JS-001
VESD(CDM)
Electrostatic discharge voltage
(charge device model)
TA = +25 °C, conforming to
ANSI/ESD STM5.3.1 JS-002
1. Guaranteed by characterization results.
2. UFQFPN48, VFQPN68 and WLCSP100 packages.
3. UFBGA129 package.
132/194
DS11929 Rev 12
Class
Maximum value(1)
2
2000
C2a(2)
500(2)
C1(3)
250(3)
Unit
V
STM32WB55xx STM32WB35xx
Electrical characteristics
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
a supply overvoltage is applied to each power supply pin
a current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 70. Electrical sensitivity
Symbol
LU
6.3.16
Parameter
Static latch-up class
Conditions
Class
TA = +105 °C conforming to JESD78A
II
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3.3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of the -5 µA / 0 µA range) or other functional failure (for example reset occurrence or
oscillator frequency deviation).
The characterization results are given in Table 71.
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
Table 71. I/O current injection susceptibility(1)
Functional susceptibility
Symbol
IINJ
Description
Negative
injection
Positive
injection
Injected current on all pins except PB0, PB1
-5
N/A(2)
Injected current on PB0, PB1 pins
-5
0
Unit
mA
1. Guaranteed by characterization results.
2. Injection not possible.
DS11929 Rev 12
133/194
169
Electrical characteristics
6.3.17
STM32WB55xx STM32WB35xx
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 72 are derived from tests
performed under the conditions summarized in Table 24: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant.
Table 72. I/O static characteristics
Symbol
VIL
VIH
Vhys
Parameter
Conditions
I/O input
low level voltage(1)
Typ
Max
-
-
0.3 x VDD
I/O input
low level voltage(2)
I/O input
high level voltage(1)
V
0.7 x VDD
-
-
0.49 x VDD + 0.26
-
-
-
200
-
-
-
±100
-
-
650
-
-
200(7)
-
-
±150
-
-
2500
-
-
250
-
-
±150
-
-
2000
1.62 V < VDD < 3.6 V
I/O input
high level voltage(2)
TT_xx, FT_xxx
and NRST I/O
input hysteresis
Max(VDDXXX) ≤ VIN ≤
FT_xx
Max(VDDXXX) +1 V(2)(3)(4)
input leakage current
Max(VDDXXX) +1 V < VIN ≤
5.5 V(2)(3)(4)(5)(6)
0 ≤ VIN ≤ Max(VDDXXX)(3)
Max(VDDXXX) ≤ VIN ≤
FT_lu, FT_u and
PC3 IO
Max(VDDXXX) +1 V(2)(3)
input leakage current
Max(VDDXXX) +1 V < VIN ≤
5.5 V(1)(3)(4)(8)
VIN ≤ Max(VDDXXX)(3)
TT_xx
input leakage current Max(VDDXXX) ≤ VIN <
3.6 V(3)
RPU
Weak pull-up
equivalent resistor(1)
VIN = VSS
25
40
55
RPD
Weak pull-down
equivalent resistor(1)
VIN = VDD
25
40
55
CIO
I/O pin capacitance
-
5
-
mV
nA
kΩ
-
1. Tested in production.
2. Guaranteed by design, not tested in production.
3. Represents the pad leakage of the I/O itself. The total product pad leakage is given by
ITotal_Ileak_max = 10 μA + number of I/Os where VIN is applied on the pad x Ilkg(Max).
4. Max(VDDXXX) is the maximum value among all the I/O supplies.
5. VIN must be lower than [Max(VDDXXX) + 3.6 V].
6. Refer to Figure 27: I/O input characteristics.
134/194
Unit
0.39 x VDD - 0.06
0 ≤ VIN ≤ Max(VDDXXX)(3)
Ilkg
Min
DS11929 Rev 12
pF
STM32WB55xx STM32WB35xx
Electrical characteristics
7. To sustain a voltage higher than Min(VDD, VDDA, VDDUSB, VLCD) + 0.3 V, the internal pull-up and pull-down resistors must
be disabled. All FT_xx IO except FT_lu, FT_u and PC3.
8. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS, whose
contribution to the series resistance is minimal (~10%).
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters, as shown
in Figure 27 .
Figure 27. I/O input characteristics
Vil-Vih (all IO except BOOT0)
3
2.5
TTL requirement Vih min = 2V
2
Voltage
cmos vil spec 30%
cmos vih spec 70%
ttl vil spec ttl
1.5
ttl vih spec ttl
datasheet Vil_rule
datasheet Vih_rule
1
TTL requirement Vil min = 0.8V
0.5
0
1.5
2
2.5
3
3.5
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ± 20 mA (with a relaxed VOL / VOH).
In the user application, the number of I/O pins that can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2.
The sum of the currents sourced by all the I/Os on VDD, plus the maximum
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 20: Voltage characteristics).
The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of
the MCU sunk on VSS, cannot exceed the absolute maximum rating ΣIVSS (see
Table 20: Voltage characteristics).
Output voltage levels
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 24: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT or TT
unless otherwise specified).
DS11929 Rev 12
135/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Table 73. Output voltage characteristics(1)
Symbol
Parameter
Conditions
VOL(2)
Output low level voltage for an I/O pin
VOH(2)
Output high level voltage for an I/O pin
VOL(2)
Output low level voltage for an I/O pin
VOH(2)
Output high level voltage for an I/O pin
VOL(2)
Output low level voltage for an I/O pin
VOH(2)
Output high level voltage for an I/O pin
VOL(2)
Output low level voltage for an I/O pin
VOH(2)
Output high level voltage for an I/O pin
VOLFM+(2)
Min
CMOS port(3)
|IIO| = 8 mA
VDD ≥ 2.7 V
Max Unit
-
0.4
VDD - 0.4
-
-
0.4
2.4
-
-
1.3
VDD - 1.3
-
-
0.4
VDD - 0.45
-
|IIO| = 20 mA
VDD ≥ 2.7 V
-
0.4
|IIO| = 10 mA
Output low level voltage for an FT I/O
pin in FM+ mode (FT I/O with “f” option) VDD ≥ 1.62 V
-
0.4
-
0.4
TTL port(3)
|IIO| = 8 mA
VDD ≥ 2.7 V
|IIO| = 20 mA
VDD ≥ 2.7 V
|IIO| = 4 mA
VDD ≥ 1.62 V
|IIO| = 2 mA
1.62 V ≥ VDD ≥ 1.08 V
V
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified
in Table 20: Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports
and control pins) must always respect the absolute maximum ratings Σ IIO.
2. Guaranteed by design.
3. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Table 74.
Unless otherwise specified, the parameters given are derived from tests performed under
the ambient temperature and supply voltage conditions summarized in Table 24: General
operating conditions.
Table 74. I/O AC characteristics(1)(2)
Speed Symbol
Fmax
Parameter
Maximum frequency
00
Tr/Tf
136/194
Output rise and fall time
Conditions
Min
Max
C=50 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
5
C=50 pF, 1.62 V ≤ VDD ≤ 2.7 V
-
1
C=10 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
10
C=10 pF, 1.62 V ≤ VDD ≤ 2.7 V
-
1.5
C=50 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
25
C=50 pF, 1.62 V ≤ VDD ≤ 2.7 V
-
52
C=10 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
17
C=10 pF, 1.62 V ≤ VDD ≤ ≤2.7 V
-
37
DS11929 Rev 12
Unit
MHz
ns
STM32WB55xx STM32WB35xx
Electrical characteristics
Table 74. I/O AC characteristics(1)(2) (continued)
Speed Symbol
Fmax
Parameter
Maximum frequency
01
Tr/Tf
Fmax
Output rise and fall time
Maximum frequency
10
Tr/Tf
Fmax
Output rise and fall time
Maximum frequency
11
Tr/Tf
Output rise and fall time
Conditions
Min
Max
C=50 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
25
C=50 pF, 1.62 V ≤ VDD ≤ ≤2.7 V
-
10
C=10 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
50
C=10 pF, 1.62 V ≤ VDD ≤ 2.7 V
-
15
C=50 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
9
C=50 pF, 1.62 V ≤ VDD ≤ 2.7 V
-
16
C=10 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
4.5
C=10 pF, 1.62 V ≤ VDD ≤ 2.7 V
-
9
C=50 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
50
C=50 pF, 1.62 V ≤ VDD ≤ 2.7 V
-
25
C=10 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
100(3)
C=10 pF, 1.62 V ≤ VDD ≤ 2.7 V
-
37.5
C=50 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
5.8
C=50 pF, 1.62 V ≤ VDD ≤ 2.7 V
-
11
C=10 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
2.5
C=10 pF, 1.62 V ≤ VDD ≤ 2.7 V
-
5
C=30 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
120(3)
C=30 pF, 1.62 V ≤ VDD ≤ 2.7 V
-
50
C=10 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
180(3)
C=10 pF, 1.62 V ≤ VDD ≤ 2.7 V
-
75(3)
C=30 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
3.3
C=30 pF, 1.62 V ≤ VDD ≤ 2.7 V
-
6
C=10 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
1.7
C=10 pF, 1.62 V ≤ VDD ≤ 2.7 V
-
3.3
Unit
MHz
ns
MHz
ns
MHz
ns
1. The maximum frequency is defined with (Tr+ Tf) ≤ 2/3 T, and Duty cycle comprised between 45 and 55%.
2. The fall and rise time are defined, respectively, between 90 and 10%, and between 10 and 90% of the
output waveform.
3. This value represents the I/O capability but the maximum system frequency is limited to 64 MHz.
6.3.18
NRST pin characteristics
The NRST pin input driver uses the CMOS technology. It is connected to a permanent
pull-up resistor, RPU.
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 24: General operating conditions.
DS11929 Rev 12
137/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Table 75. NRST pin characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
VIL(NRST)
NRST input
low level voltage
-
-
-
0.3 x VDD
VIH(NRST)
NRST input
high level voltage
-
0.7 x VDD
-
-
Vhys(NRST)
NRST Schmitt trigger
voltage hysteresis
-
-
200
-
mV
RPU
Weak pull-up
equivalent resistor(2)
VIN = VSS
25
40
55
kΩ
-
-
-
70
1.71 V ≤ VDD ≤ 3.6 V
350
-
-
VF(NRST)
NRST input
filtered pulse
VNF(NRST)
NRST input
not filtered pulse
1.
Unit
V
ns
Guaranteed by design.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to
the series resistance is minimal (~10%).
Figure 28. Recommended NRST pin protection
External
reset circuit(1)
VDD
RPU
NRST(2)
Internal reset
Filter
0.1 μF
MS19878V3
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 75, otherwise the reset will not be taken into account by the device.
3. The external capacitor on NRST must be placed as close as possible to the device.
138/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
6.3.19
Electrical characteristics
Analog switches booster
Table 76. Analog switches booster characteristics(1)
Symbol
VDD
tSU(BOOST)
IDD(BOOST)
Parameter
Min
Typ
Max
Unit
1.62
-
3.6
V
Booster startup time
-
-
240
µs
Booster consumption for
1.62 V ≤ VDD ≤ 2.0 V
-
-
250
Booster consumption for
2.0 V ≤ VDD ≤ 2.7 V
-
-
500
Booster consumption for
2.7 V ≤ VDD ≤ 3.6 V
-
-
900
Supply voltage
µA
1. Guaranteed by design.
DS11929 Rev 12
139/194
169
Electrical characteristics
6.3.20
STM32WB55xx STM32WB35xx
Analog-to-Digital converter characteristics
Unless otherwise specified, the parameters given in Table 77 are preliminary values derived
from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage
conditions summarized in Table 24: General operating conditions.
Note:
It is recommended to perform a calibration after each power-up.
Table 77. ADC characteristics(1) (2) (3)
Symbol
Parameter
VDDA
Analog supply voltage
VREF+
Positive reference
voltage
VREF-
Negative reference
voltage
fADC
ADC clock frequency
Sampling rate
for FAST channels
fs
Sampling rate
for SLOW channels
fTRIG
External trigger
frequency
Conditions
Min
Typ
Max
Unit
-
1.62
-
3.6
V
2
-
VDDA
V
VDDA ≥ 2 V
VDDA < 2 V
VDDA
V
-
VSSA
V
Range 1
0.14
-
64
Range 2
0.14
-
16
Resolution = 12 bits
-
-
4.26
Resolution = 10 bits
-
-
4.92
Resolution = 8 bits
-
-
5.81
Resolution = 6 bits
-
-
7.11
Resolution = 12 bits
-
-
3.36
Resolution = 10 bits
-
-
4.00
Resolution = 8 bits
-
-
4.57
Resolution = 6 bits
-
-
7.11
fADC = 64 MHz
Resolution = 12 bits
-
-
4.26
MHz
Resolution = 12 bits
-
-
15
1/fADC
(VREF++
VREF-) / 2
- 0.18
(VREF++
VREF-) / 2
(VREF++
VREF-) / 2
+ 0.18
V
Differential mode
MHz
Msps
VCMIN
Input common mode
VAIN (4)
Conversion voltage
range(2)
-
0
-
VREF+
V
RAIN
External input
impedance
-
-
-
50
kΩ
CADC
Internal sample and hold
capacitor
-
-
5
-
pF
tSTAB
Power-up time
-
tCAL
Calibration time
140/194
fADC = 64 MHz
-
DS11929 Rev 12
1
Conversion
cycle
1.8125
µs
116
1 / fADC
STM32WB55xx STM32WB35xx
Electrical characteristics
Table 77. ADC characteristics(1) (2) (3) (continued)
Symbol
tLATR
tLATRINJ
ts
tADCVREG_STUP
tCONV
IDDA(ADC)
IDDV_S(ADC)
IDDV_D(ADC)
Parameter
Min
Typ
Max
CKMODE = 00
Trigger conversion
CKMODE = 01
latency Regular and
injected channels
CKMODE = 10
without conversion abort
CKMODE = 11
1.5
2
2.5
-
-
2.0
-
-
2.25
-
-
2.125
CKMODE = 00
2.5
3
3.5
CKMODE = 01
-
-
3.0
CKMODE = 10
-
-
3.25
CKMODE = 11
-
-
3.125
fADC = 64 MHz
0.039
-
10.0
µs
-
2.5
-
640.5
1/fADC
-
-
-
20
µs
0.234
-
1.019
µs
Trigger conversion
latency Injected
channels aborting a
regular conversion
Sampling time
ADC voltage regulator
start-up time
Conditions
fADC = 64 MHz
Resolution = 12 bits
Total conversion time
(including sampling time)
Resolution = 12 bits
ADC consumption from
the VDDA supply
ADC consumption from
the VREF+ single ended
mode
ADC consumption from
the VREF+ differential
mode
ts + 12.5 cycles for successive
approximations = 15 to 653
fs = 4.26 Msps
-
730
830
fs = 1 Msps
-
160
220
fs = 10 ksps
-
16
50
fs = 4.26 Msps
-
130
160
fs = 1 Msps
-
30
40
fs = 10 ksps
-
0.6
2
fs = 4.26 Msps
-
250
310
fs = 1 Msps
-
60
70
fs = 10 ksps
-
1.3
3
Unit
1/fADC
1/fADC
1/fADC
µA
µA
µA
1. Guaranteed by design
2. The I/O analog switch voltage booster is enabled when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4V). It is disable when VDDA ≥ 2.4 V.
3. SMPS in bypass mode.
4. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package.
Refer to Section 4: Pinouts and pin description for further details.
DS11929 Rev 12
141/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Table 78. ADC sampling time(1)(2)
Fast channel
Resolution
(bits)
12
10
8
142/194
RAIN
(kΩ)
Slow channel
Minimum sampling
time (ns)
Sampling
cycles
Minimum sampling
time (ns)
Sampling
cycles
0
33
6.5
57
6.5
0.05
37
6.5
62
6.5
0.1
42
6.5
67
6.5
0.2
51
6.5
76
6.5
0.5
78
6.5
104
12.5
1
123
12.5
151
12.5
5
482
47.5
526
47.5
10
931
92.5
994
92.5
20
1830
247.5
1932
247.5
50
4527
640.5
4744
640.5
100
9021
640.5
9430
640.5
0
27
2.5
47
6.5
0.05
30
2.5
51
6.5
0.1
34
6.5
55
6.5
0.2
41
6.5
62
6.5
0.5
64
6.5
85
6.5
1
100
12.5
124
12.5
5
395
47.5
431
47.5
10
763
92.5
816
92.5
20
1500
247.5
1584
247.5
50
3709
640.5
3891
640.5
100
7391
640.5
7734
640.5
0
21
2.5
37
2.5
0.05
24
2.5
40
6.5
0.1
27
2.5
43
6.5
0.2
32
6.5
49
6.5
0.5
50
6.5
67
6.5
1
78
6.5
97
6.5
5
308
47.5
337
24.5
10
595
92.5
637
47.5
20
1169
247.5
1237
92.5
50
2891
247.5
3037
247.5
100
5762
640.5
6038
640.5
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Electrical characteristics
Table 78. ADC sampling time(1)(2) (continued)
Fast channel
Resolution
(bits)
6
RAIN
(kΩ)
Slow channel
Minimum sampling
time (ns)
Sampling
cycles
Minimum sampling
time (ns)
Sampling
cycles
0
15
2.5
26
2.5
0.05
17
2.5
28
2.5
0.1
19
2.5
31
2.5
0.2
23
2.5
35
2.5
0.5
36
6.5
48
6.5
1
56
6.5
69
6.5
5
221
24.5
242
24.5
10
427
47.5
458
47.5
20
839
92.5
890
92.5
50
2074
247.5
2184
247.5
100
4133
640.5
4342
640.5
1. Guaranteed by design.
2. VDD = 1.62 V, Cpcb = 4.7 pF, 125 °C, booster enabled.
DS11929 Rev 12
143/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Table 79. ADC accuracy - Limited test conditions 1(1)(2)(3)
Symbol
ET
Conditions(4)
Parameter
Single
ended
Total
unadjusted
error
Differential
Single
ended
EO
Offset error
Differential
Single
ended
EG
Gain error
ED
EL
ENOB
SINAD
SNR
Differential
linearity
error
Integral
linearity
error
Effective
number of
bits
Signal-tonoise and
distortion
ratio
Signal-tonoise ratio
ADC clock frequency ≤ 64 MHz,
Sampling rate ≤ 4.26 Msps,
VDDA = VREF+ = 3 V,
TA = 25 °C
Differential
Single
ended
Differential
Single
ended
Differential
Single
ended
Differential
Single
ended
Differential
Single
ended
Differential
144/194
Min
Typ
Max
Fast channel (max speed)
-
4
5
Slow channel (max speed)
-
4
5
Fast channel (max speed)
-
3.5
4.5
Slow channel (max speed)
-
3.5
4.5
Fast channel (max speed)
-
1
2.5
Slow channel (max speed)
-
1
2.5
Fast channel (max speed)
-
1.5
2.5
Slow channel (max speed)
-
1.5
2.5
Fast channel (max speed)
-
2.5
4.5
Slow channel (max speed)
-
2.5
4.5
Fast channel (max speed)
-
2.5
3.5
Slow channel (max speed)
-
2.5
3.5
Fast channel (max speed)
-
1
1.5
Slow channel (max speed)
-
1
1.5
Fast channel (max speed)
-
1
1.2
Slow channel (max speed)
-
1
1.2
Fast channel (max speed)
-
1.5
2.5
Slow channel (max speed)
-
1.5
2.5
Fast channel (max speed)
-
1
2
Slow channel (max speed)
-
1
2
Fast channel (max speed)
10.4
10.5
-
Slow channel (max speed)
10.4
10.5
-
Fast channel (max speed)
10.8
10.9
-
Slow channel (max speed)
10.8
10.9
-
Fast channel (max speed)
64.4
65
-
Slow channel (max speed)
64.4
65
-
Fast channel (max speed)
66.8
67.4
-
Slow channel (max speed)
66.8
67.4
-
Fast channel (max speed)
65
66
-
Slow channel (max speed)
65
66
-
Fast channel (max speed)
67
68
-
Slow channel (max speed)
67
68
-
DS11929 Rev 12
Unit
LSB
bits
dB
STM32WB55xx STM32WB35xx
Electrical characteristics
Table 79. ADC accuracy - Limited test conditions 1(1)(2)(3) (continued)
THD
Conditions(4)
Parameter
Total
harmonic
distortion
ADC clock frequency ≤ 64 MHz,
Sampling rate ≤ 4.26 Msps,
VDDA = VREF+ = 3 V,
TA = 25 °C
Symbol
Min
Typ
Max
Fast channel (max speed)
-
-74
-73
Slow channel (max speed)
-
-74
-73
Unit
Single
ended
dB
Fast channel (max speed)
-
-79
-76
Slow channel (max speed)
-
-79
-76
Differential
1. Guaranteed by design.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4 V). It is disable when VDDA ≥ 2.4 V. No oversampling.
DS11929 Rev 12
145/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Table 80. ADC accuracy - Limited test conditions 2(1)(2)(3)
Symbol
ET
Conditions(4)
Parameter
Single
ended
Total
unadjusted
error
Differential
Single
ended
EO
Offset error
Differential
Single
ended
EG
Gain error
ED
EL
ENOB
SINAD
SNR
Differential
linearity
error
Integral
linearity
error
Effective
number of
bits
Signal-tonoise and
distortion
ratio
Signal-tonoise ratio
ADC clock frequency ≤ 64 MHz,
Sampling rate ≤ 4.26 Msps,
VDDA ≥ 2 V
TA = 25 °C
Differential
Single
ended
Differential
Single
ended
Differential
Single
ended
Differential
Single
ended
Differential
Single
ended
Differential
146/194
Min
Typ
Max
Fast channel (max speed)
-
4
6.5
Slow channel (max speed)
-
4
6.5
Fast channel (max speed)
-
3.5
5.5
Slow channel (max speed)
-
3.5
5.5
Fast channel (max speed)
-
1
4.5
Slow channel (max speed)
-
1
5
Fast channel (max speed)
-
1.5
3
Slow channel (max speed)
-
1.5
3
Fast channel (max speed)
-
2.5
6
Slow channel (max speed)
-
2.5
6
Fast channel (max speed)
-
2.5
3.5
Slow channel (max speed)
-
2.5
3.5
Fast channel (max speed)
-
1
1.5
Slow channel (max speed)
-
1
1.5
Fast channel (max speed)
-
1
1.2
Slow channel (max speed)
-
1
1.2
Fast channel (max speed)
-
1.5
3.5
Slow channel (max speed)
-
1.5
3.5
Fast channel (max speed)
-
1
3
Slow channel (max speed)
-
1
2.5
Fast channel (max speed)
10
10.5
-
Slow channel (max speed)
10
10.5
-
Fast channel (max speed)
10.7
10.9
-
Slow channel (max speed)
10.7
10.9
-
Fast channel (max speed)
62
65
-
Slow channel (max speed)
62
65
-
Fast channel (max speed)
66
67.4
-
Slow channel (max speed)
66
67.4
-
Fast channel (max speed)
64
66
-
Slow channel (max speed)
64
66
-
Fast channel (max speed)
66.5
68
-
Slow channel (max speed)
66.5
68
-
DS11929 Rev 12
Unit
LSB
bits
dB
STM32WB55xx STM32WB35xx
Electrical characteristics
Table 80. ADC accuracy - Limited test conditions 2(1)(2)(3) (continued)
THD
Conditions(4)
Parameter
Total
harmonic
distortion
ADC clock frequency ≤ 64 MHz,
Sampling rate ≤ 4.26 Msps,
VDDA ≥ 2 V
TA = 25 °C
Symbol
Min
Typ
Max
Fast channel (max speed)
-
-74
-65
Slow channel (max speed)
-
-74
-67
Unit
Single
ended
dB
Fast channel (max speed)
-
-79
-70
Slow channel (max speed)
-
-79
-71
Differential
1. Guaranteed by design.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4 V). It is disable when VDDA ≥ 2.4 V. No oversampling.
DS11929 Rev 12
147/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Table 81. ADC accuracy - Limited test conditions 3(1)(2)(3)
Symbol
ET
Conditions(4)
Parameter
Single
ended
Total
unadjusted
error
Differential
Single
ended
EO
Offset error
Differential
Single
ended
EG
Gain error
ED
EL
ENOB
SINAD
SNR
Differential
linearity
error
Integral
linearity
error
Effective
number of
bits
Signal-tonoise and
distortion
ratio
Signal-tonoise ratio
ADC clock frequency ≤ 64 MHz,
Sampling rate ≤ 4.26 Msps,
1.65 V ≤ VDDA = VREF+ ≤ 3.6 V,
Voltage scaling Range 1
Differential
Single
ended
Differential
Single
ended
Differential
Single
ended
Differential
Single
ended
Differential
Single
ended
Differential
148/194
Min
Typ
Max
Fast channel (max speed)
-
5.5
7.5
Slow channel (max speed)
-
4.5
6.5
Fast channel (max speed)
-
4.5
7.5
Slow channel (max speed)
-
4.5
5.5
Fast channel (max speed)
-
2
5
Slow channel (max speed)
-
2.5
5
Fast channel (max speed)
-
2
3.5
Slow channel (max speed)
-
2.5
3
Fast channel (max speed)
-
4.5
7
Slow channel (max speed)
-
3.5
6
Fast channel (max speed)
-
3.5
4
Slow channel (max speed)
-
3.5
5
Fast channel (max speed)
-
1.2
1.5
Slow channel (max speed)
-
1.2
1.5
Fast channel (max speed)
-
1
1.2
Slow channel (max speed)
-
1
1.2
Fast channel (max speed)
-
3
3.5
Slow channel (max speed)
-
2.5
3.5
Fast channel (max speed)
-
2
2.5
Slow channel (max speed)
-
2
2.5
Fast channel (max speed)
10
10.4
-
Slow channel (max speed)
10
10.4
-
Fast channel (max speed)
10.6
10.7
-
Slow channel (max speed)
10.6
10.7
-
Fast channel (max speed)
62
64
-
Slow channel (max speed)
62
64
-
Fast channel (max speed)
65
66
-
Slow channel (max speed)
65
66
-
Fast channel (max speed)
63
65
-
Slow channel (max speed)
63
65
-
Fast channel (max speed)
66
67
-
Slow channel (max speed)
66
67
-
DS11929 Rev 12
Unit
LSB
bits
dB
STM32WB55xx STM32WB35xx
Electrical characteristics
Table 81. ADC accuracy - Limited test conditions 3(1)(2)(3) (continued)
THD
Conditions(4)
Parameter
Total
harmonic
distortion
ADC clock frequency ≤ 64 MHz,
Sampling rate ≤ 4.26 Msps,
1.65 V ≤ VDDA = VREF+ ≤ 3.6 V,
Voltage scaling Range 1
Symbol
Min
Typ
Max
Fast channel (max speed)
-
-69
-67
Slow channel (max speed)
-
-71
-67
Unit
Single
ended
dB
Fast channel (max speed)
-
-72
-71
Slow channel (max speed)
-
-72
-71
Differential
1. Guaranteed by design.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4 V). It is disable when VDDA ≥ 2.4 V. No oversampling.
DS11929 Rev 12
149/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Table 82. ADC accuracy - Limited test conditions 4(1)(2)(3)
Symbol
ET
Conditions(4)
Parameter
Single
ended
Total
unadjusted
error
Differential
Single
ended
EO
Offset error
Differential
Single
ended
EG
Gain error
ED
EL
ENOB
SINAD
SNR
Differential
linearity
error
Integral
linearity
error
Effective
number of
bits
Signal-tonoise and
distortion
ratio
Signal-tonoise ratio
ADC clock frequency ≤ 16 MHz,
1.65 V ≤ VDDA = VREF+ ≤ 3.6 V,
Voltage scaling Range 2
Differential
Single
ended
Differential
Single
ended
Differential
Single
ended
Differential
Single
ended
Differential
Single
ended
Differential
150/194
Min
Typ
Max
Fast channel (max speed)
-
5
5.4
Slow channel (max speed)
-
4
5
Fast channel (max speed)
-
4
5
Slow channel (max speed)
-
3.5
4.5
Fast channel (max speed)
-
2
4
Slow channel (max speed)
-
2
4
Fast channel (max speed)
-
2
3.5
Slow channel (max speed)
-
2
3.5
Fast channel (max speed)
-
4
4.5
Slow channel (max speed)
-
4
4.5
Fast channel (max speed)
-
3
4
Slow channel (max speed)
-
3
4
Fast channel (max speed)
-
1
1.5
Slow channel (max speed)
-
1
1.5
Fast channel (max speed)
-
1
1.2
Slow channel (max speed)
-
1
1.2
Fast channel (max speed)
-
2.5
3
Slow channel (max speed)
-
2.5
3
Fast channel (max speed)
-
2
2.5
Slow channel (max speed)
-
2
2.5
Fast channel (max speed)
10.2 10.5
-
Slow channel (max speed)
10.2 10.5
-
Fast channel (max speed)
10.6 10.7
-
Slow channel (max speed)
10.6 10.7
-
Fast channel (max speed)
63
65
-
Slow channel (max speed)
63
65
-
Fast channel (max speed)
65
66
-
Slow channel (max speed)
65
66
-
Fast channel (max speed)
64
65
-
Slow channel (max speed)
64
65
-
Fast channel (max speed)
66
67
-
Slow channel (max speed)
66
67
-
DS11929 Rev 12
Unit
LSB
bits
dB
STM32WB55xx STM32WB35xx
Electrical characteristics
Table 82. ADC accuracy - Limited test conditions 4(1)(2)(3) (continued)
THD
Conditions(4)
Parameter
ADC clock frequency ≤ 16 MHz,
1.65 V ≤ VDDA = VREF+ ≤ 3.6 V,
Voltage scaling Range 2
Symbol
Total
harmonic
distortion
Min
Typ
Max
Fast channel (max speed)
-
-71
-69
Slow channel (max speed)
-
-71
-69
Unit
Single
ended
dB
Fast channel (max speed)
-
-73
-72
Slow channel (max speed)
-
-73
-72
Differential
1. Guaranteed by design.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins that may potentially inject negative current.
4. The I/O analog switch voltage booster is enabled when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4 V). It is disabled when VDDA ≥ 2.4 V. No oversampling.
Figure 29. ADC accuracy characteristics
VREF+
[1LSB =
2n
Output code
VDDA
(or
)]
2n
EG
(1) Example of an actual transfer curve
(2) Ideal transfer curve
(3) End-point correlation line
2n-1
2n-2
2n-3
(2)
(3)
ET
EL
EO
ED
(2n/2n)*VREF+
(2n-1/2n)*VREF+
(2n-2/2n)*VREF+
(2n-3/2n)*VREF+
(7/2n)*VREF+
(6/2n)*VREF+
(5/2n)*VREF+
(4/2n)*VREF+
(3/2n)*VREF+
1 LSB ideal
(2/2n)*VREF+
0
VSSA
(1)
(1/2n)*VREF+
7
6
5
4
3
2
1
n = ADC resolution
ET = total unadjusted error: maximum deviation
between the actual and ideal transfer curves
EO = offset error: maximum deviation between the first
actual transition and the first ideal one
EG = gain error: deviation between the last ideal
transition and the last actual one
ED = differential linearity error: maximum deviation
between actual steps and the ideal one
EL = integral linearity error: maximum deviation between
any actual transition and the end point correlation line
VREF+ (VDDA)
MSv19880V6
DS11929 Rev 12
151/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Figure 30. Typical connection diagram using the ADC
VREF+(4)
VDDA(4)
Sample-and-hold ADC converter
I/O
analog
switch
RAIN(1)
RADC
Converter
VAIN
Cparasitic(2)
Ilkg(3)
VSS
CADC
Sampling
switch with
multiplexing
VSSA
VSS
MSv67871V3
1. Refer to Table 77: ADC characteristics for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (refer to Table 72: I/O static characteristics for the value of the pad capacitance). A high
Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced.
3. Refer to Table 72: I/O static characteristics for the values of Ilkg.
4. Refer to Figure 16 and Figure 17.
General PCB design guidelines
Power supply decoupling has to be performed as shown in Figure 16: Power supply scheme
(all packages except UFBGA129 and WLCSP100). The 10 nF capacitor needs to be
ceramic (good quality), placed as close as possible to the chip.
6.3.21
Voltage reference buffer characteristics
Table 83. VREFBUF characteristics(1)
Symbol
Parameter
Conditions
Normal mode
VDDA
Analog supply
voltage
Degraded mode(2)
(3)
Normal mode
VREFBUF_
OUT
Voltage
reference output
Degraded mode(2)
Min
Typ
Max
VRS = 0
2.4
-
3.6
VRS = 1
2.8
-
3.6
VRS = 0
1.65
-
2.4
VRS = 1
1.65
-
2.8
VRS = 0
2.046
2.048
2.049
VRS = 1
2.498
2.500
2.502
VRS = 0
VDDA-150 mV
-
2.049
VRS = 1
VDDA-150 mV
-
2.502
Unit
V
Trim step
resolution
-
-
-
±0.05
±0.1
%
CL
Load capacitor
-
-
0.5
1
1.5
µF
esr
Equivalent
series resistor
of Cload
-
-
-
-
2
Ω
TRIM
152/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Electrical characteristics
Table 83. VREFBUF characteristics(1) (continued)
Symbol
Iload
Parameter
Conditions
Static load
current
-
Min
Typ
Max
Unit
-
-
-
4
mA
Iload = 500 µA
-
200
1000
Iload = 4 mA
-
100
500
500
Iline_reg
Line regulation
2.8 V ≤ VDDA ≤ 3.6 V
Iload_reg
Load regulation
500 μA ≤ Iload ≤4 mA Normal mode
-
50
-40 °C < TJ < +125 °C
-
-
vrefint
-
-
Tcoeff_
vrefint +
50
DC
40
60
-
100 kHz
25
40
-
CL = 0.5 µF(4)
-
300
350
(4)
-
500
650
CL = 1.5 µF(4)
-
650
800
-
8
-
Iload = 0 µA
-
16
25
Iload = 500 µA
-
18
30
Iload = 4 mA
-
35
50
TCoeff
Temperature
coefficient
0 °C < TJ < +50 °C
PSRR
tSTART
IINRUSH
Power supply
rejection
Start-up time
CL = 1.1 µF
Control of
maximum DC
current drive on
VREFBUF_OUT
during start-up
phase (5)
VREFBUF
IDDA
consumption
(VREFBUF)
from VDDA
-
-
Tcoeff_
+
50
ppm/V
ppm/mA
ppm/ °C
dB
µs
mA
µA
1. Guaranteed by design, unless otherwise specified.
2. In degraded mode the voltage reference buffer cannot maintain accurately the output voltage that will follow (VDDA - drop
voltage).
3. VDDA = 3 V, TJ = 30 °C, Iload = 100 μA.
4. The capacitive load must include a 100 nF capacitor in order to cut-off the high frequency noise.
5. To correctly control the VREFBUF in-rush current during start-up phase and scaling change, the VDDA voltage must be in
the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for VRS = 0 and VRS = 1.
DS11929 Rev 12
153/194
169
Electrical characteristics
6.3.22
STM32WB55xx STM32WB35xx
Comparator characteristics
Table 84. COMP characteristics(1)
Symbol
Conditions
Min
Typ
Max
Analog supply voltage
-
1.62
-
3.6
VIN
Comparator
input voltage range
-
0
-
VDDA
V
VBG(2)
Scaler input voltage
-
VSC
Scaler offset voltage
-
VDDA
IDDA(SCALER)
Parameter
±5
±10
mV
-
200
300
nA
-
0.8
1
µA
-
100
200
µs
VDDA ≥ 2.7 V
-
-
5
VDDA < 2.7 V
-
-
7
VDDA ≥ 2.7 V
-
-
15
VDDA < 2.7 V
-
-
25
-
-
40
VDDA ≥ 2.7 V
-
55
80
VDDA < 2.7 V
-
55
100
Medium mode
-
0.55
0.9
Ultra-low-power mode
-
4
7
Full common mode range
-
±5
±20
No hysteresis
-
0
-
Low hysteresis
-
8
-
Medium hysteresis
-
15
-
High hysteresis
-
27
-
Static
-
400
600
With 50 kHz ±100 mV
overdrive square signal
-
1200
-
Static
-
5
7
With 50 kHz ±100 mV
overdrive square signal
-
6
-
Static
-
70
100
With 50 kHz ±100 mV
overdrive square signal
-
75
-
tSTART_SCALER Scaler startup time
tSTART
High-speed
mode
Medium mode
Ultra-low-power mode
tD
(3)
Voffset
Vhys
Propagation delay with
100 mV overdrive
Comparator offset error
Comparator hysteresis
High-speed
mode
Ultra-lowpower mode
IDDA(COMP)
Comparator consumption
from VDDA
Medium
mode
High-speed
mode
1. Guaranteed by design, unless otherwise specified.
2. Refer to Table 36: Embedded internal voltage reference.
3. Guaranteed by characterization results.
154/194
VREFINT
-
Scaler static consumption BRG_EN=0 (bridge disable)
from VDDA
BRG_EN=1 (bridge enable)
Comparator startup time
to reach propagation
delay specification
Unit
DS11929 Rev 12
µs
ns
µs
mV
mV
nA
µA
STM32WB55xx STM32WB35xx
6.3.23
Electrical characteristics
Temperature sensor characteristics
Table 85. TS characteristics
Symbol
Parameter
TL(1)
VTS linearity with temperature
(2)
Avg_Slope
Average slope
Voltage at 30 °C (±5 °C)(3)
V30
Min
Typ
Max
Unit
-
±1
±2
°C
2.3
2.5
2.7
mV / °C
0.742
0.76
0.785
V
tSTART
(TS_BUF)(1)
Sensor buffer start-up time in continuous mode(4)
-
8
15
µs
tSTART(1)
Start-up time when entering in continuous mode(4)
-
70
120
µs
tS_temp(1)
ADC sampling time when reading the temperature
5
-
-
µs
IDD(TS)(1)
Temperature sensor consumption from VDD, when
selected by ADC
-
4.7
7
µA
1. Guaranteed by design.
2. Guaranteed by characterization results.
3. Measured at VDDA = 3.0 V ±10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 11:
Temperature sensor calibration values.
4.
Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.
6.3.24
VBAT monitoring characteristics
Table 86. VBAT monitoring characteristics(1)
Symbol
Parameter
Min
Typ
Max
Unit
R
Resistor bridge for VBAT
-
3 x 39
-
kΩ
Q
Ratio on VBAT measurement
-
3
-
-
Error on Q
-10
-
10
%
ADC sampling time when reading VBAT
12
-
-
µs
Er
(2)
tS_vbat(2)
1. 1.55 < VBAT < 3.6 V.
2. Guaranteed by design.
Table 87. VBAT charging characteristics
Symbol
RBC
Parameter Conditions
Battery
charging
resistor
Min
Typ
Max
VBRS = 0
-
5
-
VBRS = 1
-
1.5
-
DS11929 Rev 12
Unit
kΩ
155/194
169
Electrical characteristics
6.3.25
STM32WB55xx STM32WB35xx
SMPS step-down converter characteristics
The SMPS step-down converter characteristic are given at 4 MHz clock, with a 20 mA load
(unless otherwise specified), using a 10 µH inductor and a 4.7 µF capacitor.
6.3.26
LCD controller characteristics
The STM32WB55xx devices embed a built-in step-up converter to provide a constant LCD
reference voltage independently from the VDD voltage. An external capacitor Cext must be
connected to the VLCD pin to decouple this converter.
Table 88. LCD controller characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
VLCD
LCD external voltage
-
-
3.6
VLCD0
LCD internal reference voltage 0
-
2.62
-
VLCD1
LCD internal reference voltage 1
-
2.76
-
VLCD2
LCD internal reference voltage 2
-
2.89
-
VLCD3
LCD internal reference voltage 3
-
3.04
-
VLCD4
LCD internal reference voltage 4
-
3.19
-
VLCD5
LCD internal reference voltage 5
-
3.32
-
VLCD6
LCD internal reference voltage 6
-
3.46
-
VLCD7
LCD internal reference voltage 7
-
3.62
-
Buffer OFF
(BUFEN=0 is LCD_CR register)
0.2
-
2
Buffer ON
(BUFEN=1 is LCD_CR register)
1
-
2
Supply current from VDD at
VDD = 2.2 V
Buffer OFF
(BUFEN=0 is LCD_CR register)
-
3
-
Supply current from VDD at
VDD = 3.0 V
Buffer OFF
(BUFEN=0 is LCD_CR register)
-
1.5
-
Buffer OFF
(BUFFEN = 0, PON = 0)
-
0.5
-
Buffer ON
(BUFFEN = 1, 1/2 Bias)
-
0.6
-
Buffer ON
(BUFFEN = 1, 1/3 Bias)
-
0.8
-
Buffer ON
(BUFFEN = 1, 1/4 Bias)
-
1
-
Cext
ILCD(2)
IVLCD
VLCD external capacitance
Supply current from VLCD
(VLCD = 3 V)
Unit
V
μF
μA
μA
RHN
Total High resistor value for Low drive resistive network
-
5.5
-
MΩ
RLN
Total Low resistor value for High drive resistive network
-
240
-
kΩ
156/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Electrical characteristics
Table 88. LCD controller characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
V44
Segment/Common highest level voltage
-
VLCD
-
V34
Segment/Common 3/4 level voltage
-
3/4 VLCD
-
V23
Segment/Common 2/3 level voltage
-
2/3 VLCD
-
V12
Segment/Common 1/2 level voltage
-
1/2 VLCD
-
V13
Segment/Common 1/3 level voltage
-
1/3 VLCD
-
V14
Segment/Common 1/4 level voltage
-
1/4 VLCD
-
V0
Segment/Common lowest level voltage
-
0
-
Unit
V
1. Guaranteed by design.
2. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio = 64, all pixels active, no LCD connected.
6.3.27
Timer characteristics
The parameters given in the following tables are guaranteed by design. Refer to
Section 6.3.17 for details on the input/output alternate function characteristics (output
compare, input capture, external clock, PWM output).
Table 89. TIMx(1) characteristics
Symbol
Parameter
tres(TIM)
Timer resolution time
fEXT
ResTIM
tCOUNTER
tMAX_COUNT
Conditions
Min
Max
Unit
-
1
-
tTIMxCLK
15.625
-
ns
0
fTIMxCLK/2
0
40
TIM1, TIM16, TIM17
-
16
TIM2
-
32
1
65536
tTIMxCLK
0.015625
1024
µs
-
65536 × 65536
tTIMxCLK
-
67.10
s
fTIMxCLK = 64 MHz
Timer external clock frequency
on CH1 to CH4
fTIMxCLK = 64 MHz
Timer resolution
16-bit counter clock period
Maximum possible count with
32-bit counter
fTIMxCLK = 64 MHz
fTIMxCLK = 64 MHz
MHz
bit
1. TIMx, is used as a general term where x stands for 1, 2, 16 or 17.
DS11929 Rev 12
157/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Table 90. IWDG min/max timeout period at 32 kHz (LSI1)(1)
Prescaler divider
PR[2:0] bits
Min timeout RL[11:0] = 0x000
Max timeout RL[11:0] = 0xFFF
/4
0
0.125
512
/8
1
0.250
1024
/16
2
0.500
2048
/32
3
1.0
4096
/64
4
2.0
8192
/128
5
4.0
16384
/256
6 or 7
8.0
32768
Unit
ms
1. The exact timings still depend on the phasing of the APB interface clock vs. the LSI clock, hence there is always a full RC
period of uncertainty.
6.3.28
Clock recovery system (CRS)
The devices embed a special block for the automatic trimming of the internal 48 MHz
oscillator to guarantee its optimal accuracy over the whole device operational range.
This automatic trimming is based on the external synchronization signal, which can be
derived from USB Sart Of Frame (SOF) signalization, from LSE oscillator, from an external
signal on CRS_SYNC pin or generated by user software.
For faster lock-in during startup it is also possible to combine automatic trimming with
manual trimming action.
6.3.29
Communication interfaces characteristics
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
Standard-mode (Sm): bit rate up to 100 kbit/s
Fast-mode (Fm): bit rate up to 400 kbit/s
Fast-mode Plus (Fm+): bit rate up to 1 Mbit/s.
Table 91. Minimum I2CCLK frequency in all I2C modes
Symbol
Parameter
Condition
Standard-mode
f(I2CCLK)
I2CCLK
frequency
Fast-mode
Fast-mode Plus
Min
-
2
Analog filter ON, DNF = 0
9
Analog filter OFF, DNF = 1
9
Analog filter ON, DNF = 0
19
Analog filter OFF, DNF = 1
16
Unit
MHz
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (see the reference manual).
158/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Electrical characteristics
The SDA and SCL I/O requirements are met with the following restriction: the SDA and SCL
I/O pins are not “true” open-drain. When configured as open-drain, the PMOS connected
between the I/O pin and VDD is disabled, but is still present. The 20 mA output drive
requirement in Fast-mode Plus is supported partially.
This limits the maximum load Cload supported in Fast-mode Plus, given by these formulas:
tr(SDA/SCL) = 0.8473 x Rp x Cload
Rp(min) = [VDD - VOL(max)] / IOL(max)
where Rp is the I2C lines pull-up. Refer to Section 6.3.17 for the I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter, refer to Table 92 for its characteristics.
Table 92. I2C analog filter characteristics(1)
Symbol
Parameter
Min
Max
Unit
tAF
Maximum pulse width of spikes that
are suppressed by the analog filter
50(2)
110(3)
ns
1. Guaranteed by design.
2. Spikes with widths below tAF(min) are filtered.
3. Spikes with widths above tAF(max) are not filtered
SPI characteristics
Unless otherwise specified, the parameters given in Table 93 for SPI are derived from tests
performed under the ambient temperature, fPCLKx frequency and supply voltage conditions
summarized in Table 24: General operating conditions.
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5 ₓ VDD
Refer to Section 6.3.17 for more details on the input/output alternate function characteristics
(NSS, SCK, MOSI, MISO for SPI).
DS11929 Rev 12
159/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Table 93. SPI characteristics(1)
Symbol
fSCK
1/tc(SCK)
Parameter
SPI clock frequency
Conditions
Min
Typ
Max
Master mode
1.65 < VDD < 3.6 V
Voltage Range 1
32
Master transmitter mode
1.65 < VDD < 3.6 V
Voltage Range 1
32
Slave receiver mode
1.65 < VDD < 3.6 V
Voltage Range 1
-
-
32
Slave mode transmitter/full duplex
2.7 < VDD < 3.6 V
Voltage Range 1
32(2)
Slave mode transmitter/full duplex
1.65 < VDD < 3.6 V
Voltage Range 1
20.5(2)
Voltage Range 2
Slave mode, SPI prescaler = 2
4xTPCLK
-
-
th(NSS)
Slave mode, SPI prescaler = 2
2xTPCLK
-
-
Master mode
TPCLK - 1.5
TPCLK
TPCLK + 1
Master mode
1.5
-
-
Slave mode
1
-
-
Master mode
5
-
-
Slave mode
1
-
-
9
-
34
9
-
16
Slave mode 2.7 < VDD < 3.6 V
Voltage Range 1
-
14.5
15.5
Slave mode 1.65 < VDD < 3.6 V
Voltage Range 1
-
15.5
24
Slave mode 1.65 < VDD < 3.6 V
Voltage Range 2
-
19.5
26
Master mode (after enable edge)
-
2.5
3
Slave mode (after enable edge)
8
-
-
Master mode (after enable edge)
1
-
-
tw(SCKH)
SCK high and low time
tw(SCKL)
tsu(MI)
tsu(SI)
th(MI)
th(SI)
Data input setup time
Data input hold time
ta(SO)
Data output access time
tdis(SO)
Data output disable time
tv(SO)
Data output valid time
tv(MO)
th(SO)
th(MO)
Data output hold time
Slave mode
MHz
8
tsu(NSS) NSS setup time
NSS hold time
Unit
-
ns
ns
1. Guaranteed by characterization results.
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI), which has to fit into SCK low
or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master
having tsu(MI) = 0 while Duty(SCK) = 50 %.
160/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Electrical characteristics
Figure 31. SPI timing diagram - slave mode and CPHA = 0
SCK input
NSS input
MISO
OUTPUT
MSB OUT
BIT6 OUT
MSB IN
BIT1 IN
LSB OUT
(SI)
MOSI
INPUT
LSB IN
(SI)
Figure 32. SPI timing diagram - slave mode and CPHA = 1
NSS input
SCK input
tSU(NSS)
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tw(SCKH)
tw(SCKL)
th(SO)
tv(SO)
ta(SO)
MISO
OUTPUT
MSB OUT
BIT6 OUT
tr(SCK)
tf(SCK)
tdis(SO)
LSB OUT
th(SI)
tsu(SI)
MOSI
INPUT
th(NSS)
tc(SCK)
MSB IN
BIT 1 IN
LSB IN
ai14135b
1. Measurement points are set at CMOS levels: 0.3 VDD and 0.7 VDD.
DS11929 Rev 12
161/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Figure 33. SPI timing diagram - master mode
High
NSS input
SCK Output
CPHA= 0
CPOL=0
SCK Output
tc(SCK)
CPHA=1
CPOL=0
CPHA= 0
CPOL=1
CPHA=1
CPOL=1
tsu(MI)
MISO
INP UT
tw(SCKH)
tw(SCKL)
MSB IN
tr(SCK)
tf(SCK)
BIT6 IN
LSB IN
th(MI)
MOSI
OUTPUT
MSB OUT
B I T1 OUT
tv(MO)
LSB OUT
th(MO)
ai14136c
1. Measurement points are set at CMOS levels: 0.3 VDD and 0.7 VDD.
162/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Electrical characteristics
Quad-SPI characteristics
Unless otherwise specified, the parameters given in Table 94 and Table 95 for Quad-SPI
are derived from tests performed under the ambient temperature, fAHB frequency and VDD
supply voltage conditions summarized in Table 24: General operating conditions, with the
following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load C = 15 or 20 pF
Measurement points are set at CMOS levels: 0.5 ₓ VDD
Refer to Section 6.3.17 for more details on the input/output alternate function
characteristics.
Table 94. Quad-SPI characteristics in SDR mode(1)
Symbol
FCK
1/t(CK)
tw(CKH)
tw(CKL)
Parameter
Quad-SPI
clock frequency
Quad-SPI clock
high and low time
ts(IN)
Data input setup time
th(IN)
Data input hold time
tv(OUT)
Data output valid time
th(OUT)
Data output hold time
Conditions
Min
Typ
Max
1.65 < VDD< 3.6 V, CLOAD = 20 pF
Voltage Range 1
-
-
40
1.65 < VDD< 3.6 V, CLOAD = 15 pF
Voltage Range 1
-
-
48
2.7 < VDD< 3.6 V, CLOAD = 15 pF
Voltage Range 1
-
-
60
1.65 < VDD < 3.6 V CLOAD = 20 pF
Voltage Range 2
-
-
16
t(CK)/2 - 0.5
-
t(CK)/2 + 1
t(CK)/2 - 1
-
t(CK)/2 + 0.5
Voltage Range 1
2
-
-
Voltage Range 2
3.5
-
-
Voltage Range 1
4.5
-
-
Voltage Range 2
6
-
-
Voltage Range 1
-
1
1.5
Voltage Range 2
-
1
1.5
Voltage Range 1
0
-
-
Voltage Range 2
0
-
-
fAHBCLK= 48 MHz, presc=1
Unit
MHz
ns
1. Guaranteed by characterization results.
DS11929 Rev 12
163/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Table 95. Quad-SPI characteristics in DDR mode(1)
Symbol
FCK
1/t(CK)
Parameter
Quad-SPI clock
frequency
tw(CKH) Quad-SPI clock
high and low time
t
Conditions
Min
Typ
Max
1.65 < VDD < 3.6 V, CLOAD = 20 pF
Voltage Range 1
-
-
40
2.0 < VDD < 3.6 V, CLOAD = 20 pF
Voltage Range 1
-
-
50
1.65 < VDD < 3.6 V, CLOAD = 15 pF
Voltage Range 1
-
-
48
1.65 < VDD < 3.6 V CLOAD = 20 pF
Voltage Range 2
-
-
16
t(CK)/2
-
t(CK)/2 + 1
t(CK)/2 - 1
-
t(CK)/2
-
-
-
-
-
-
-
-
4
5.5
fAHBCLK = 48 MHz, presc=0
w(CKL)
MHz
tsr(IN)
Voltage Range 1
Data input setup
time on rising edge Voltage Range 2
2.5
tsf(IN)
Voltage Range 1
Data input setup
time on falling edge Voltage Range 2
2.5
thr(IN)
Voltage Range 1
Data input hold
time on rising edge Voltage Range 2
5.5
thf(IN)
Voltage Range 1
Data input hold
time on falling edge Voltage Range 2
5
Voltage Range 1
Data output valid
tvr(OUT)
time on rising edge
Voltage Range 2
Voltage Range 1
Data output valid
tvf(OUT)
time on falling edge
Voltage Range 2
Voltage Range 1
Data output hold
thr(OUT)
time on rising edge
Voltage Range 2
Voltage Range 1
Data output hold
thf(OUT)
time on falling edge
Voltage Range 2
3.5
1.5
6.5
6
DHHC=0
DHHC=1
DHHC=0
DHHC=0
7
4
6
t(CK)/2 + 1
t(CK)/2 + 2
6
7.5
-
-
-
-
3.5
-
-
3
-
-
-
-
-
-
-
2
DHHC=1 t(CK)/2 + 0.5
5
DS11929 Rev 12
t(CK)/2 + 1 t(CK)/2 + 1.5
4.5
DHHC=1 t(CK)/2 + 0.5
1. Guaranteed by characterization results.
164/194
-
DHHC=0
DHHC=1
Unit
ns
STM32WB55xx STM32WB35xx
Electrical characteristics
Figure 34. Quad-SPI timing diagram - SDR mode
tr(CK)
t(CK)
tw(CKH)
tw(CKL)
tf(CK)
Clock
tv(OUT)
th(OUT)
Data output
D1
D0
ts(IN)
Data input
D0
D2
th(IN)
D1
D2
MSv36878V1
Figure 35. Quad-SPI timing diagram - DDR mode
tr(CLK)
t(CLK)
tw(CLKH)
tw(CLKL)
tf(CLK)
Clock
tvf(OUT)
Data output
thr(OUT)
IO0
tvr(OUT)
IO1
IO2
thf(OUT)
IO3
tsf(IN) thf(IN)
Data input
IO0
IO1
IO4
IO5
tsr(IN) thr(IN)
IO2
IO3
IO4
IO5
MSv36879V3
SAI characteristics
Unless otherwise specified, the parameters given in Table 96 for SAI are derived
from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized inTable 24: General operating conditions, with
the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement are performed at CMOS levels: 0.5 ₓ VDD
Refer to Section 6.3.17 for more details on the input/output alternate function
characteristics (CK,SD,FS).
DS11929 Rev 12
165/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
Table 96. SAI characteristics(1)
Symbol
Parameter
Conditions
Min
Max
fMCLK
SAI main clock output
-
-
50
Master transmitter
2.7 V ≤ VDD ≤ 3.6 V
Voltage Range 1
-
23.5
Master transmitter
1.65 V ≤ VDD ≤ 3.6 V
Voltage Range 1
-
16
Master receiver
Voltage Range 1
-
16
fCK
tv(FS)
SAI clock frequency(2) Slave transmitter
2.7 V ≤ VDD ≤ 3.6 V
Voltage Range 1
FS valid time
-
26
Slave transmitter
1.65 V ≤ VDD ≤ 3.6 V
Voltage Range 1
-
20
Slave receiver
Voltage Range 1
-
32
Voltage Range 2
-
8
Master mode
2.7 V ≤ VDD ≤ 3.6 V
-
21
Master mode
1.65 V ≤ VDD ≤ 3.6 V
-
30
FS hold time
Master mode
10
-
tsu(FS)
FS setup time
Slave mode
1.5
-
th(FS)
FS hold time
Slave mode
2.5
-
Master receiver
1
-
Slave receiver
1.5
-
Master receiver
6.5
-
Slave receiver
2.5
-
Slave transmitter (after enable edge)
2.7 V ≤ VDD ≤ 3.6 V
-
19
Slave transmitter (after enable edge)
1.65 V ≤ VDD ≤ 3.6 V
-
25
Slave transmitter (after enable edge)
10
-
Master transmitter (after enable edge)
2.7 V ≤ VDD ≤ 3.6 V
-
18.5
Master transmitter (after enable edge)
1.65 V ≤ VDD ≤ 3.6 V
-
25
Master transmitter (after enable edge)
10
-
tsu(SD_B_SR)
th(SD_A_MR)
th(SD_B_SR)
tv(SD_B_ST)
th(SD_B_ST)
tv(SD_A_MT)
th(SD_A_MT)
Data input setup time
Data input hold time
Data output valid time
Data output hold time
Data output valid time
Data output hold time
1. Guaranteed by characterization results.
2. APB clock frequency must be at least twice SAI clock frequency.
166/194
MHz
th(FS)
tsu(SD_A_MR)
DS11929 Rev 12
Unit
ns
STM32WB55xx STM32WB35xx
Electrical characteristics
Figure 36. SAI master timing waveforms
1/fSCK
SAI_SCK_X
th(FS)
SAI_FS_X
(output)
tv(FS)
th(SD_MT)
tv(SD_MT)
SAI_SD_X
(transmit)
Slot n
tsu(SD_MR)
SAI_SD_X
(receive)
Slot n+2
th(SD_MR)
Slot n
MS32771V1
Figure 37. SAI slave timing waveforms
1/fSCK
SAI_SCK_X
tw(CKH_X)
SAI_FS_X
(input)
tw(CKL_X)
tsu(FS)
th(FS)
th(SD_ST)
tv(SD_ST)
SAI_SD_X
(transmit)
Slot n
tsu(SD_SR)
SAI_SD_X
(receive)
Slot n+2
th(SD_SR)
Slot n
MS32772V1
DS11929 Rev 12
167/194
169
Electrical characteristics
STM32WB55xx STM32WB35xx
USB characteristics
The STM32WB55xx and STM32WB35xx USB interface is fully compliant with the USB
specification version 2.0, and is USB-IF certified (for Full-speed device operation).
Table 97. USB electrical characteristics(1)
Symbol
VDDUSB
Parameter
Conditions
Min
Max
Unit
-
3.6
V
°C
USB transceiver operating voltage
-
USB crystal-less
operation temperature
-
-15
-
85
RPUI
Embedded USB_DP pull-up value
during idle
-
900
1250
1600
RPUR
Embedded USB_DP pull-up value
during reception
-
1400
2300
3200
Driving high and low
28
36
44
Tcrystal_less
ZDRV(3)
Output driver impedance(4)
3.0
Typ
(2)
Ω
1. TA = -40 to 125 °C unless otherwise specified.
2. The STM32WB55xx and STM32WB35xx USB functionality is ensured down to 2.7 V, but the full USB
electrical characteristics are degraded in the 2.7 to 3.0 V voltage range.
3. Guaranteed by design.
4. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching
impedance is already included in the embedded driver.
JTAG/SWD interface characteristics
Unless otherwise specified, the parameters given in Table 98 and Table 99 are derived from
tests performed under the ambient temperature, fPCLKx frequency and supply voltage
conditions summarized in Table 24: General operating conditions, with the following
configuration:
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5 ₓ VDD
Table 98. JTAG characteristics
Symbol
168/194
Parameter
Conditions
Min
Typ
Max
2.7 < VDD < 3.6 V
-
-
29
1.65 < VDD < 3.6 V
-
-
21
1/tc(TCK)
TCK clock frequency
tisu(TMS)
TMS input setup time
-
2.5
-
-
tih(TMS)
TMS input hold time
-
2
-
-
tisu(TDI)
TDI input setup time
-
1.5
-
-
tih(TDI)
TDI input hold time
-
2
-
-
2.7 < VDD < 3.6 V
-
13.5
16.5
1.65 < VDD < 3.6 V
-
13.5
23
-
11
-
-
tov(TDO)
TDO output valid time
toh(TDO)
TDO output hold time
DS11929 Rev 12
Unit
MHz
ns
STM32WB55xx STM32WB35xx
Electrical characteristics
Table 99. SWD characteristics
Symbol
Parameter
1/tc(SWCLK) SWCLK clock frequency
Conditions
Min
Typ
Max
2.7 < VDD < 3.6 V
-
-
55
1.65 < VDD < 3.6 V
-
-
35
tisu(TMS)
SWDIO input setup time
-
2.5
-
-
tih(TMS)
SWDIO input hold time
-
2
-
-
tov(TDO)
SWDIO output valid time
2.7 < VDD < 3.6 V
-
16
18
1.65 < VDD < 3.6 V
-
16
28
toh(TDO)
SWDIO output hold time
-
13
-
-
Unit
MHz
ns
Refer to Section 6.3.17 for more details on the input/output alternate function characteristics
(CK, SD, WS).
DS11929 Rev 12
169/194
169
Package information
7
STM32WB55xx STM32WB35xx
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
7.1
UFBGA129 package information
This UFBGA is a 129-ball, 7 x 7 mm, 0.5 mm fine pitch, square ball grid array package.
Figure 38. UFBGA129 package outline
C
A4
A1 corner index area
B
A
b (129 balls)
A B
fff M C
A2
B C D E F G H J K L M N
1
2
3
4
5
6
7
8
9
10
11
12
13
eee M C
SEATING
PLANE
b
e
E1
e
F
E
F
A1
A
A
D1
D
ddd
BOTTOM VIEW
B09R_UFBGA129_ME_V2
1. Drawing is not to scale.
2. The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metalized
markings, or other feature of package body or integral heat slug.
A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1
corner. Exact shape of each corner is optional.
Table 100. UFBGA129 mechanical data
inches(1)
millimeters
Symbol
170/194
Min
Typ
Max
Min
Typ
Max
A(2)
-
-
0.60
-
-
0.024
A1
-
-
0.11
-
-
0.004
A2
-
0.13
-
-
0.005
-
A4
-
0.32
-
-
0.013
-
b(3)
0.24
0.29
0.34
0.009
0.011
0.013
DS11929 Rev 12
C
STM32WB55xx STM32WB35xx
Package information
Table 100. UFBGA129 mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
D
6.85
7.00
7.15
0.270
0.276
0.281
E
6.85
7.00
7.15
0.270
0.276
0.281
D1
-
6.00
-
-
0.236
-
E1
-
6.00
-
-
0.236
-
e
-
0.50
-
-
0.020
-
F
-
0.50
-
-
0.020
-
-
-
0.08
-
-
0.003
-
-
0.15
-
-
0.006
-
-
0.05
-
-
0.002
ddd
eee
(4)
fff(5)
1. Values in inches are converted from mm and rounded to four decimal digits.
2. - UFBGA stands for Ultra Thin Profile Fine Pitch Ball Grid Array.
- Ultra thin profile: 0.50 < A ≤ 0.65 mm / Fine pitch: e < 1.00 mm pitch.
- The total profile height (Dim A) is measured from the seating plane to the top of the component
- The maximum total package height is calculated by the following methodology:
A Max = A1 Typ + A2 Typ + A4 Typ + √ (A1² + A2² + A4² tolerance values).
3. The typical balls diameters before mounting is 0.20 mm.
4. The tolerance of position that controls the location of the pattern of balls with respect to datum A and B.
For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true
position with respect to datum A and B as defined by e. The axis perpendicular to datum C of each ball
must lie within this tolerance zone.
5. The tolerance of position that controls the location of the balls within the matrix with respect to each other.
For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position
as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each
tolerance zone fff in the array is contained entirely in the respective zone eee above The axis of each ball
must lie simultaneously in both tolerance zones.
Figure 39. UFBGA129 recommended footprint
Dpad
Dsm
BGA_WLCSP_FT_V1
DS11929 Rev 12
171/194
185
Package information
STM32WB55xx STM32WB35xx
Table 101. UFBGA129 recommended PCB design rules
Dimension
Recommended values
Pitch
0.5 mm
Dpad
0,275 mm
Dsm
0.400 mm typ. (depends on soldermask registration tolerance)
Stencil opening
0.300 mm
Stencil thickness
0.100 mm
Device marking for UFBGA129
Figure 40 gives an example of topside marking orientation versus pin 1 identifier location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 40. UFBGA129 marking example (package top view)
STM32WB
Product identification(1)
55V
Y WW
Y
Additional
information
Pin 1 identifier
Date code
MS53511V1
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
172/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
7.2
Package information
WLCSP100 package information
This WLCSP is a 100-ball, 4.40 x 4.38 mm, 0.4 mm pitch, wafer level chip scale package.
Figure 41. WLCSP100 outline
e1
A1
A1 BALL LOCATION
F
10
1
G
A
DETAIL A
e4
e2 E
E
e
K
K
e
e3
H
A3
A
D
D
BOTTOM VIEW
A2
TOP VIEW
SIDE VIEW
A2
BUMP
FRONT VIEW
A1
DETAIL A
ROTATED 90
SEATING PLANE
A08S_WLCSP100_ME_V1
1. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
2. Bump position designation per JESD 95-1, SPP-010.
DS11929 Rev 12
173/194
185
Package information
STM32WB55xx STM32WB35xx
Table 102. WLCSP100 mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
0.59
-
-
0.023
A1
-
0.18
-
-
0.007
-
A2
-
0.38
-
-
0.015
-
-
-
0.001
-
(2)
A3
-
0.025
(3)
b
0.22
0.25
0.28
0.009
0.010
0.011
D
4.38
4.40
4.42
0.1724
0.1732
0.1740
E
4.36
4.38
4.40
0.1716
0.1724
0.1732
e
-
0.40
-
-
0.016
-
e1
-
3.60
-
-
0.142
-
e2
-
3.60
-
-
0.142
-
e3
-
0.08
-
-
0.003
-
e4
-
0.08
F
-
-
-
0.001
-
0.480
(4)
-
-
0.0189
-
(4)
-
-
0.0120
-
G
-
0.306
H
-
0.320(4)
-
-
0.0126
-
K
-
(4)
-
-
0.0187
-
aaa
-
-
0.10
-
-
0.004
bbb
-
-
0.10
-
-
0.004
ccc
-
-
0.10
-
-
0.004
ddd
-
-
0.05
-
-
0.002
eee
-
-
0.05
-
-
0.002
0.474
1. Values in inches are converted from mm and rounded to the third decimal place.
2. Back side coating.
3. Nominal dimension rounded to the third decimal place results from process capability.
4. Dimensions are calculated and rounded to the third decimal place.
174/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Package information
Figure 42. WLCSP100 recommended footprint
Dpad
Dsm
BGA_WLCSP_FT_V1
Table 103. WLCSP100 - Recommended PCB design rules
Dimension
Recommended values
Pitch
0.4 mm
Dpad (PCB Cu pad diameter)
0.250 mm
Dsm
0.325 mm typ. (depends on the soldermask registration tolerance)
Stencil opening
0.250 mm
Stencil thickness
0.100 mm
Device marking for WLCSP100
Figure 43 gives an example of topside marking orientation versus pin 1 identifier location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
DS11929 Rev 12
175/194
185
Package information
STM32WB55xx STM32WB35xx
Figure 43. WLCSP100 marking example (package top view)
Pin 1 identifier
WB55V
Product
identification(1)
Y ww Y
Date code
MS53512V1
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
176/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
7.3
Package information
VFQFPN68 package information
VFQFPN68 is a 8 x 8 mm, 0.4 mm pitch, very thin fine pitch quad flat package.
Figure 44. VFQFPN68 package outline
PIN 1 IDENTIFIER
LASER MARKING
ddd C
D
A
A1
A2
68 67
1
2
E
(2X)
E
0.10 C
SEATING
PLANE
C
SIDE VIEW
TOP VIEW
L
D2
E2
2
1
PIN 1 ID
C 0.30 X 45'
68 67
e
b
EXPOSED PAD AREA
BOTTOM VIEW
B029_VFQFPN68_ME_V1
1. VFQFPN stands for Thermally Enhanced Very thin Fine pitch Quad Flat Packages No lead. Sawed
version. Very thin profile: 0.80 < A ≤ 1.00 mm.
2. The pin #1 identifier must be existed on the top surface of the package by using indentation mark or other
feature of package body. Exact shape and size of this feature is optional.
Table 104. VFQFPN68 mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.80
0.90
1.00
0.0315
0.0354
0.0394
A1
0
0.02
0.05
0
0.0008
0.0020
A3
-
0.20
-
-
0.0008
-
b
0.15
0.20
0.25
0.0059
0.0079
0.0098
D
7.85
8.00
8.15
0.3091
0.3150
0.3209
D2
6.30
6.40
6.50
0.2480
0.2520
0.2559
DS11929 Rev 12
177/194
185
Package information
STM32WB55xx STM32WB35xx
Table 104. VFQFPN68 mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
E
7.85
8.00
8.15
0.3091
0.3150
0.3209
E2
6.30
6.40
6.50
0.2480
0.2520
0.2559
e
-
0.40
-
-
0.0157
-
L
0.40
0.50
0.60
0.0157
0.0197
0.0236
ddd
-
-
0.08
-
-
0.0031
1. Values in inches are converted from mm and rounded to four decimal digits.
Figure 45. VFQFPN68 recommended footprint
8.30
7.00
6.65
6.40
0.15
8.30
7.00
6.65
6.40
0.25
0.82
0.65
0.40
B029_VFQFPN68_FP_V2
1. Dimensions are expressed in millimeters.
Device marking for VFQFPN68
Figure 45 gives an example of topside marking orientation versus pin 1 identifier location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
178/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Package information
Figure 46. VFQFPN68 marking example (package top view)
Product
identification(1)
STM32WB55
R
Y
Pin 1 identifier
MS53514V1
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
DS11929 Rev 12
179/194
185
Package information
7.4
STM32WB55xx STM32WB35xx
UFQFPN48 package information
UFQFPN48 is a 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package.
Figure 47. UFQFPN48 outline
Pin 1 identifier
laser marking area
D
A
E
E
T
ddd
A1
Seating
plane
b
e
Detail Y
D
Exposed pad
area
Y
D2
1
L
48
C 0.500x45°
pin1 corner
E2
R 0.125 typ.
Detail Z
1
Z
48
A0B9_ME_V3
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package, it must be electrically connected to
the PCB ground.
180/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Package information
Table 105. UFQFPN48 mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
D
6.900
7.000
7.100
0.2717
0.2756
0.2795
E
6.900
7.000
7.100
0.2717
0.2756
0.2795
D2
5.500
5.600
5.700
0.2165
0.2205
0.2244
E2
5.500
5.600
5.700
0.2165
0.2205
0.2244
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
T
-
0.152
-
-
0.0060
-
b
0.200
0.250
0.300
0.0079
0.0098
0.0118
e
-
0.500
-
-
0.0197
-
ddd
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to four decimal digits.
Figure 48. UFQFPN48 recommended footprint
7.30
6.20
48
37
1
36
5.60
0.20
7.30
5.80
6.20
5.60
0.30
12
25
13
24
0.50
0.55
5.80
0.75
A0B9_FP_V2
1. Dimensions are expressed in millimeters.
DS11929 Rev 12
181/194
185
Package information
STM32WB55xx STM32WB35xx
Device marking for UFQFPN48
Figure 49 and Figure 50 give examples of topside marking orientation versus pin 1 identifier
location. The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 49. STM32WB55xx UFQFPN48 marking example (package top view)
Product
identification(1)
STM32WB55
CGU6
Y
Date code
WW
X
Pin 1 identifier
Revision code
MS51581V3
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
Figure 50. STM32WB35xx UFQFPN48 marking example (package top view)
Product
identification(1)
STM32WB35
CCU6
Y
WW
A
Pin 1 identifier
Date code
Revision code
MS53143V2
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
182/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
7.5
Package information
Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 24: General operating conditions.
The maximum chip-junction temperature, TJ max, in degrees Celsius, can be calculated
using the equation:
TJ max = TA max + (PD max x ΘJA)
where:
TA max is the maximum ambient temperature in °C,
ΘJA is the package junction-to-ambient thermal resistance, in °C / W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/O max),
PINT max is the product of IDD and VDD, expressed in Watt. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins:
PI/O max = Σ (VOL × IOL) + Σ ((VDD – VOH) × IOH)
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Note:
When the SMPS is used, a portion of the power consumption is dissipated into the external
inductor, therefore reducing the chip power dissipation. This portion depends mainly on the
inductor ESR characteristics.
Note:
As the radiated RF power is quite low (< 4 mW), it is not necessary to remove it from the
chip power consumption.
Table 106. Package thermal characteristics
Symbol
ΘJA
ΘJB
Parameter
Value
Thermal resistance junction-ambient
UFQFPN48 - 7 mm x 7 mm
24.9
Thermal resistance junction-ambient
VFQFPN68 - 8 mm x 8 mm
47.0
Thermal resistance junction-ambient
WLCSP100 - 0.4 mm pitch
35.8
Thermal resistance junction-ambient
UFBGA129 - 0.5 mm pitch
41.5
Thermal resistance junction-board
UFQFPN48 - 7 mm x 7 mm
13.0
Thermal resistance junction-board
VFQFPN68 - 8 mm x 8 mm
36.1
Thermal resistance junction-board
WLCSP100 - 0.4 mm pitch
N/A
Thermal resistance junction-board
UFBGA129 - 0.5 mm pitch
16.2
DS11929 Rev 12
Unit
°C/W
°C/W
183/194
185
Package information
STM32WB55xx STM32WB35xx
Table 106. Package thermal characteristics (continued)
Symbol
ΘJC
7.5.1
Parameter
Value
Thermal resistance junction-case
UFQFPN48 - 7 mm x 7 mm
1.3
Thermal resistance junction-case
VFQFPN68 - 8 mm x 8 mm
13.7
Thermal resistance junction-case
WLCSP100 - 0.4 mm pitch
N/A
Thermal resistance junction-case
UFBGA129 - 0.5 mm pitch
34.9
Unit
°C/W
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org
7.5.2
Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the information
scheme shown in Section 8.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and to a specific maximum junction temperature.
As applications do not commonly use the device at maximum dissipation, it is useful to
calculate the exact power consumption and junction temperature to determine the
temperature range that best suits the application.
The following examples show how to calculate the temperature range needed for a given
application.
Example 1: High-performance application
Assuming the following application conditions:
Maximum ambient temperature TA max = 82 °C (measured according to JESD51-2),
IDD max = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at
low level with IOL = 8 mA, VOL = 0.4 V and maximum 8 I/Os used at the same time in
output at low level with IOL = 20 mA, VOL= 1.3 V
PINT max = 50 mA × 3.5 V = 175 mW
PIO max = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW
This gives: PINT max = 175 mW and PIO max = 272 mW
PD max = 175 + 272 = 447 mW
Using the values obtained in Table 106 TJ max is calculated as follows:
–
For VFQFPN68, 47 °C / W
TJ max = 82 °C + (47 °C / W × 447 mW) = 82 °C + 21 °C = 103 °C
This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C), see Section 8.
In this case, parts must be ordered at least with the temperature range suffix 6.
184/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Note:
Package information
With this given PD max user can find the TA max allowed for a given device temperature
range (order code suffix 7).
Suffix 7: TA max = TJ max - (47 °C / W × 447 mW) = 125 °C - 21 °C = 103 °C
Example 2: High-temperature application
Using the same rules, it is possible to address applications running at high ambient
temperatures with a low dissipation, as long as junction temperature TJ remains within the
specified range.
Assuming the following application conditions:
Maximum ambient temperature TA max = 100 °C (measured according to JESD51-2),
IDD max = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at
low level with IOL = 8 mA, VOL= 0.4 V
PINT max = 50 mA × 3.5 V = 175 mW
PIO max = 20 × 8 mA × 0.4 V = 64 mW
This gives: PINTmax = 175 mW and PIO max = 64 mW
PD max = 175 + 64 = 239 mW
Thus: PD max = 239 mW
Using the values obtained in Table 106 TJ max is calculated as follows:
–
For UFQFPN48, 24.9 °C / W
TJ max = 100 °C + (24.9 °C / W × 239 mW) = 100 °C + 6 °C = 106 °C
This is above the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 7 (see
Section 8), unless user reduces the power dissipation to be able to use suffix 6 parts.
DS11929 Rev 12
185/194
185
Ordering information
8
STM32WB55xx STM32WB35xx
Ordering information
Example:
STM32
WB
55
V
G
V
6 A TR
Device family
STM32 = Arm® based 32-bit microcontroller
Product type
WB = Wireless Bluetooth®
Device subfamily
55 = Die 5, full set of features
35 = Die 3, full set of features(1)
Pin count
C = 48 pins
R = 68 pins
V = 100 or 129 pins
Flash memory size
C = 256 Kbytes
E = 512 Kbytes
Y(2) = 640 Kbytes
G = 1 Mbyte
Package
U = UFQFPN48 7 x 7 mm
V = VFQFPN68 8 x 8 mm
Y = WLCSP100 0.4 mm pitch
Q = UFBGA129 0.5 mm pitch
Temperature range
6 = Industrial temperature range, -40 to 85 °C (105 °C junction)
7 = Industrial temperature range, -40 to 105 °C (125 °C junction)
Identification code
A = Proprietary identification code
blank = Non-proprietary identification code
Packing
TR = tape and reel
xxx = programmed parts
1. STM32WB35xx only available with 48-pin UFQFPN48 package, 256 or 512 Kbytes Flash
memory.
2. Only STM32WB55VY, WLCSP100 package, temperature range -40 to 85 °C (105 °C junction).
186/194
DS11929 Rev 12
STM32WB55xx STM32WB35xx
9
Revision history
Revision history
Table 107. Document revision history
Date
Revision
25-Jul-2017
1
Initial release.
2
Updated document title, Features, Section 1: Introduction, Section 2:
Description, Section 3.1: Architecture, Section 3.3.2: Memory protection
unit, Section 3.3.3: Embedded Flash memory, Section 3.4: Security and
safety, Section 3.6: RF subsystem, Section 3.6.1: RF front-end block
diagram, Section 3.6.2: BLE general description, Section 3.7.1: Power
supply distribution, Section 3.7.2: Power supply schemes, Section 3.7.4:
Power supply supervisor, Section 3.10: Clocks and startup, Section 3.14:
Analog to digital converter (ADC), Section 3.19: True random number
generator (RNG), Section 5: Memory mapping, Section 6.3.25: SMPS
step-down converter characteristics and Section 7.5.2: Selecting the
product temperature range.
Updated Table 2: STM32WB55xx devices features and peripheral
counts, Table 6: Power supply typical components, Table 7: Features
over all modes, Table 8: STM32WB55xx modes overview, Table 13:
Timer features, Table 15: Legend/abbreviations used in the pinout table,
Table 16: STM32WB55xx pin and ball definitions, Table 17: Alternate
functions, Table 23: RF transmitter BLE characteristics, Table 26: RF
receiver BLE characteristics (1 Mbps) and added footnote to it, Table 28:
RF BLE power consumption for VDD = 3.3 V, Table 31: RF 802.15.4
power consumption for VDD = 3.3 V, Table 37: Typical current
consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF), VDD= 3.3 V,
Table 38: Typical current consumption in Run and Low-power run modes,
with different codes running from SRAM1, VDD = 3.3 V, Table 40:
Current consumption in Low-power sleep modes, Flash memory in Power
down, Table 41: Current consumption in Stop 2 mode, Table 42: Current
consumption in Stop 1 mode, Table 43: Current consumption in Stop 0
mode, Table 44: Current consumption in Standby mode, Table 45:
Current consumption in Shutdown mode, Table 48: Peripheral current
consumption, Table 104: Package thermal characteristics and Table 97:
STM32WB55xx ordering information scheme.
Added Table 47: Current under Reset condition.
Updated Figure 1: STM32WB55xx block diagram, Figure 2:
STM32WB55xx RF front-end block diagram, Figure 4: Power distribution,
Figure 6: Power supply overview, Figure 7: Clock tree, Figure 8:
STM32WB55Cx UFQFPN48 pinout(1)(2), Figure 9: STM32WB55Rx
VFQFPN68 pinout(1)(2), Figure 10: STM32WB55Vx WLCSP100 ballout(1)
and Figure 14: Power supply scheme (all packages except UFBGA129).
04-Apr-2018
Changes
DS11929 Rev 12
187/194
193
Revision history
STM32WB55xx STM32WB35xx
Table 107. Document revision history (continued)
Date
08-Oct-2018
188/194
Revision
Changes
3
Changed document classification to Public.
Updated Features, Section 3.6.2: BLE general description, Section 3.7.2:
Power supply schemes, Section 3.7.3: Linear voltage regulator,
Section 3.10: Clocks and startup, Section 6.3.10: External clock source
characteristics, Section 6.3.20: Analog-to-Digital converter
characteristics, Section 6.3.29: Communication interfaces characteristics,
Section 7.2: WLCSP100 package information and Section 7.5: Thermal
characteristics.
Replaced VDDIOx with VDD throughout the whole document.
Updated Table 5: Typical external components, footnote 2 of Table 7:
Features over all modes, Table 8: STM32WB55xx modes overview and
its footnote 5, Table 12: Internal voltage reference calibration values,
Table 16: STM32WB55xx pin and ball definitions and its footnote 6,
Table 17: Alternate functions, Table 20: Thermal characteristics,
Table 21: Main performance at VDD = 3.3 V, Table 21: Main performance
at VDD = 3.3 V, Table 22: General operating conditions, Table 23: RF
transmitter BLE characteristics and its footnote, Table 26: RF receiver
BLE characteristics (1 Mbps), Table 28: RF BLE power consumption for
VDD = 3.3 V, Table 29: RF transmitter 802.15.4 characteristics and its
footnote 1, Table 30: RF receiver 802.15.4 characteristics, Table 31: RF
802.15.4 power consumption for VDD = 3.3 V, Table 34: Embedded
internal voltage reference, Table 35: Current consumption in Run and
Low-power run modes, code with data processing running from Flash,
ART enable (Cache ON Prefetch OFF), VDD = 3.3 V, Table 36: Current
consumption in Run and Low-power run modes, code with data
processing running from SRAM1, VDD = 3.3 V, Table 37: Typical current
consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF), VDD= 3.3 V,
Table 38: Typical current consumption in Run and Low-power run modes,
with different codes running from SRAM1, VDD = 3.3 V, Table 39:
Current consumption in Sleep and Low-power sleep modes, Flash
memory ON, Table 40: Current consumption in Low-power sleep modes,
Flash memory in Power down, Table 41: Current consumption in Stop 2
mode, Table 42: Current consumption in Stop 1 mode, Table 43: Current
consumption in Stop 0 mode, Table 44: Current consumption in Standby
mode, Table 45: Current consumption in Shutdown mode, Table 46:
Current consumption in VBAT mode, Table 47: Current under Reset
condition, Table 48: Peripheral current consumption, Table 49: Lowpower mode wakeup timings, Table 50: Regulator modes transition times,
Table 51: Wakeup time using LPUART, Table 53: HSE clock source
requirements and added footnote to it, Table 61: LSI2 oscillator
characteristics, Table 63: Flash memory characteristics, Table 65: EMS
characteristics, Table 67: ESD absolute maximum ratings, Table 69: I/O
current injection susceptibility, Table 70: I/O static characteristics and its
footnotes, Table 71: Output voltage characteristics, Table 72: I/O AC
characteristics and its footnotes 1 and 2, Table 73: NRST pin
characteristics, Table 77: ADC accuracy - Limited test conditions 1,
Table 78: ADC accuracy - Limited test conditions 2, Table 79: ADC
accuracy - Limited test conditions 3, Table 80: ADC accuracy - Limited
test conditions 4, Table 82: COMP characteristics, Table 90: I2C analog
filter characteristics, Table 91: SPI characteristics, Table 92: Quad-SPI
characteristics in SDR mode, Table 93: Quad-SPI characteristics in DDR
mode and Table 94: SAI characteristics.
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Revision history
Table 107. Document revision history (continued)
Date
08-Oct-2018
20-Feb-2019
Revision
Changes
3
(cont’d)
Updated Figure 2: STM32WB55xx RF front-end block diagram,
Figure 14: Power supply scheme (all packages except UFBGA129),
Figure 18: Typical energy detection (T = 27°C, VDD = 3.3 V) and
Figure 25: I/O input characteristics.
Added Figure 5: Power-up/down sequence, Figure 17: Typical link quality
indicator code vs. Rx level and Figure 18: Typical energy detection (T =
27°C, VDD = 3.3 V).
Added Table 24: RF transmitter BLE characteristics (1 Mbps), Table 25:
RF transmitter BLE characteristics (2 Mbps), Table 27: RF receiver BLE
characteristics (2 Mbps), Table 52: HSE crystal requirements and
Table 89: Minimum I2CCLK frequency in all I2C modes.
Added Device marking for UFQFPN48.
Removed former Figure 22: I/O AC characteristics definition(1) and
Figure 27: SMPS efficiency - VDDSMPS = 3.6 V.
4
Updated document title.
Product status moved to Production data.
Introduced BGA129 package, hence updated image on cover page,
Table 16: STM32WB55xx pin and ball definitions and Section 8: Ordering
information, and added Figure 11: STM32WB55Vx UFBGA129 ballout(1)
and Section 7.1: UFBGA129 package information.
Updated Features, Section 3.3.4: Embedded SRAM, Section 3.17: Touch
sensing controller (TSC) and Section 3.24: Low-power universal
asynchronous receiver transmitter (LPUART).
Added Section 6.3.28: Clock recovery system (CRS).
Added Table 76: ADC sampling time.
Removed former Table 75: Maximum ADC RAIN and Table 84: SMPS
step-down converter characteristics.
Updated captions of figures 8, 9 and 10.
Updated Figure 43: VFQFPN68 recommended footprint.
DS11929 Rev 12
189/194
193
Revision history
STM32WB55xx STM32WB35xx
Table 107. Document revision history (continued)
Date
20-Feb-2019
04-Oct-2019
190/194
Revision
Changes
4
(cont’d)
Updated Table 2: STM32WB55xx devices features and peripheral
counts, Table 8: STM32WB55xx modes overview and its footnotes,
Table 21: Main performance at VDD = 3.3 V, Table 22: General operating
conditions, Table 23: RF transmitter BLE characteristics, Table 24: RF
transmitter BLE characteristics (1 Mbps), Table 25: RF transmitter BLE
characteristics (2 Mbps), Table 26: RF receiver BLE characteristics (1
Mbps), Table 27: RF receiver BLE characteristics (2 Mbps), Table 28: RF
BLE power consumption for VDD = 3.3 V, Table 29: RF transmitter
802.15.4 characteristics, Table 31: RF 802.15.4 power consumption for
VDD = 3.3 V, Table 35: Current consumption in Run and Low-power run
modes, code with data processing running from Flash, ART enable
(Cache ON Prefetch OFF), VDD = 3.3 V, Table 36: Current consumption
in Run and Low-power run modes, code with data processing running
from SRAM1, VDD = 3.3 V, Table 37: Typical current consumption in Run
and Low-power run modes, with different codes running from Flash, ART
enable (Cache ON Prefetch OFF), VDD= 3.3 V, Table 38: Typical current
consumption in Run and Low-power run modes, with different codes
running from SRAM1, VDD = 3.3 V, Table 39: Current consumption in
Sleep and Low-power sleep modes, Flash memory ON, Table 40: Current
consumption in Low-power sleep modes, Flash memory in Power down,
Table 41: Current consumption in Stop 2 mode, Table 42: Current
consumption in Stop 1 mode, Table 43: Current consumption in Stop 0
mode, Table 44: Current consumption in Standby mode, Table 45:
Current consumption in Shutdown mode, Table 46: Current consumption
in VBAT mode, Table 47: Current under Reset condition, Table 48:
Peripheral current consumption and its footnotes, Table 49: Low-power
mode wakeup timings, Table 50: Regulator modes transition times and its
footnote 1, Table 65: EMS characteristics, Table 66: EMI characteristics,
Table 67: ESD absolute maximum ratings, Table 69: I/O current injection
susceptibility, Table 75: ADC characteristics, Table 77: ADC accuracy Limited test conditions 1, Table 78: ADC accuracy - Limited test
conditions 2, Table 79: ADC accuracy - Limited test conditions 3,
Table 80: ADC accuracy - Limited test conditions 4 and Table 104:
Package thermal characteristics.
5
Updated Features, Section 2: Description, Section 6.1.6: Power supply
scheme, Section 6.2: Absolute maximum ratings and Section 7.2:
WLCSP100 package information.
Updated Table 6: Power supply typical components, Table 7: Features
over all modes, Table 11: Temperature sensor calibration values,
Table 16: STM32WB55xx pin and ball definitions, Table 17: Alternate
functions, Table 21: Main performance at VDD = 3.3 V, Table 26: RF
receiver BLE characteristics (1 Mbps), Table 34: Embedded internal
voltage reference, Table 62: PLL, PLLSAI1 characteristics and Table 67:
ESD absolute maximum ratings.
Updated Figure 6: Power supply overview and Figure 33: Quad-SPI
timing diagram - DDR mode.
Added Figure 15: Power supply scheme (UFBGA129 package) and
Figure 21: Low-speed external clock source AC timing diagram.
Added Table 56: Low-speed external user clock characteristics – Bypass
mode.
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Revision history
Table 107. Document revision history (continued)
Date
19-Feb-2020
10-Apr-2020
17-Jun-2020
Revision
Changes
6
Updated Features, Section 2: Description, I/O system current
consumption, Section 3.17: Touch sensing controller (TSC), Section 7.1:
UFBGA129 package information, Section 7.2: WLCSP100 package
information, Section 7.3: VFQFPN68 package information, Section 7.4:
UFQFPN48 package information, Section 7.5: Thermal characteristics
and Section 8: Ordering information.
Added JTAG/SWD interface characteristics, Device marking for
UFBGA129, Device marking for WLCSP100 and Device marking for
VFQFPN68.
Updated Table 2: STM32WB55xx devices features and peripheral
counts, Table 7: Features over all modes, Table 16: STM32WB55xx pin
and ball definitions, Table 17: Alternate functions, Table 18: Voltage
characteristics, Table 22: General operating conditions, Table 26: RF
receiver BLE characteristics (1 Mbps), Table 27: RF receiver BLE
characteristics (2 Mbps), Table 30: RF receiver 802.15.4 characteristics,
Table 47: Current under Reset condition, Table 61: LSI2 oscillator
characteristics and Table 104: Package thermal characteristics.
Added footnote 5 to Table 15: Legend/abbreviations used in the pinout
table.
Updated Figure 2: STM32WB55xx RF front-end block diagram, Figure 6:
Power supply overview, Figure 7: Clock tree, Figure 11: STM32WB55Vx
UFBGA129 ballout(1), Figure 14: Power supply scheme (all packages
except UFBGA129), Figure 36: UFBGA129 package outline and
Figure 47: UFQFPN48 marking example (package top view).
7
Updated Section 3.6.5: Typical RF application schematic and
Section 6.3.10: External clock source characteristics.
Updated Table 16: STM32WB55xx pin and ball definitions and Table 54:
HSE crystal requirements.
Updated Figure 11: STM32WB55Vx UFBGA129 ballout(1) and Figure 14:
Power supply scheme (all packages except UFBGA129).
Minor text edits across the whole document.
8
Introduced STM32WB55VY.
Updated Section 3.3.4: Embedded SRAM, Section 3.4: Security and
safety, Section 3.14: Analog to digital converter (ADC), Section 6.3.10:
External clock source characteristics and Section 8: Ordering
information.
Updated Table 1: Device summary, Table 2: STM32WB55xx and
STM32WB35xx devices features and peripheral counts, Table 26: RF
transmitter BLE characteristics (1 Mbps), Table 27: RF transmitter BLE
characteristics (2 Mbps), Table 65: Flash memory characteristics and
Table 77: ADC characteristics.
Updated Figure 10: STM32WB55Cx and STM32WB35Cx UFQFPN48
pinout(1)(2), Figure 11: STM32WB55Rx VFQFPN68 pinout(1)(2) and
Figure 17: Power supply scheme (UFBGA129 and WLCSP100
packages).
Updated footnote 5 of Table 15: Legend/abbreviations used in the pinout
table and footnote 8 of Table 16: STM32WB55xx pin and ball definitions.
Added footnote 3 to Table 16, footnote 2 to Figure 16, footnote 1 to
Table 86 and footnotes to tables 23, 30 and 33.
Added Table 55: HSE clock source requirements.
DS11929 Rev 12
191/194
193
Revision history
STM32WB55xx STM32WB35xx
Table 107. Document revision history (continued)
Date
02-Jul-2020
23-Nov-2020
07-Apr-2021
192/194
Revision
Changes
9
Added STM32WB35xx devices.
Updated Section 2: Description, Section 3.3.4: Embedded SRAM and
Section 8: Ordering information.
Updated Table 1: Device summary, Table 2: STM32WB55xx and
STM32WB35xx devices features and peripheral counts, Table 7:
Features over all modes and Table 106: Package thermal characteristics.
Added Table 17: STM32WB35xx pin and ball definitions and Table 19:
Alternate functions (STM32WB35xx).
Added Figure 2: STM32WB35xx block diagram, Figure 8:
STM32WB35xx - Power supply overview and Figure 50: STM32WB35xx
UFQFPN48 marking example (package top view),
Updated Figure 1: STM32WB55xx block diagram, Figure 4: External
components for the RF part, Figure 16: Power supply scheme (all
packages except UFBGA129 and WLCSP100), Figure 17: Power supply
scheme (UFBGA129 and WLCSP100 packages) and added footnote to
Figure 9: Clock tree.
Added footnote 1 to Table 8: STM32WB55xx and STM32WB35xx modes
overview.
10
Updated Features, Section 3.15: Voltage reference buffer (VREFBUF)
and Section 3.28.2: Embedded Trace Macrocell™.
Updated Table 9: STM32WB55xx and STM32WB35xx CPU1 peripherals
interconnect matrix, Table 17: STM32WB35xx pin and ball definitions,
Table 26: RF transmitter BLE characteristics (1 Mbps), Table 27: RF
transmitter BLE characteristics (2 Mbps), Table 31: RF transmitter
802.15.4 characteristics, Table 50: Peripheral current consumption,
Table 54: HSE crystal requirements, Table 55: HSE clock source
requirements, footnote 2 of Table 57: Low-speed external user clock
characteristics and Table 86: VBAT monitoring characteristics.
Added footnote 2 to Table 24, footnote 2 to Table 26 and footnote 2 to
Table 27.
Updated Figure 9: Clock tree and Figure 13: STM32WB55Vx UFBGA129
ballout(1).
Minor text edits across the whole document.
11
Updated document title, Features, Section 1: Introduction, Section 2:
Description, Section 3.3.4: Embedded SRAM, Section 3.6: RF
subsystem, Section 3.6.2: BLE general description and Section 6.1.2:
Typical values, Section 6.3.10: External clock source characteristics.
Updated Table 2: STM32WB55xx and STM32WB35xx devices features
and peripheral counts, Table 16: STM32WB55xx pin and ball definitions,
Table 17: STM32WB35xx pin and ball definitions, Table 18: Alternate
functions (STM32WB55xx), Table 19: Alternate functions
(STM32WB35xx), Table 23: Main performance at VDD = 3.3 V, Table 50:
Peripheral current consumption, Table 53: Wakeup time using
USART/LPUART and Table 55: HSE clock source requirements.
Updated Figure 3: STM32WB55xx and STM32WB35xx RF front-end
block diagram, Figure 9: Clock tree, Figure 16: Power supply scheme (all
packages except UFBGA129 and WLCSP100), Figure 17: Power supply
scheme (UFBGA129 and WLCSP100 packages) and Figure 29: ADC
accuracy characteristics.
Removed former footnote 3 from Table 83: VREFBUF characteristics.
DS11929 Rev 12
STM32WB55xx STM32WB35xx
Revision history
Table 107. Document revision history (continued)
Date
11-Jan-2022
Revision
Changes
12
Updated Features, Section 3.6.2: BLE general description, Section 3.10:
Clocks and startup and Section 7.5: Thermal characteristics.
Updated Figure 7: STM32WB55xx - Power supply overview, Figure 29:
ADC accuracy characteristics, Figure 30: Typical connection diagram
using the ADC and its footnotes, Figure 41: WLCSP100 outline and its
footnotes, Figure 42: WLCSP100 recommended footprint and Figure 49:
STM32WB55xx UFQFPN48 marking example (package top view).
Updated Table 24: General operating conditions, Table 26: RF transmitter
BLE characteristics (1 Mbps), Table 27: RF transmitter BLE
characteristics (2 Mbps), Table 83: VREFBUF characteristics, Table 101:
UFBGA129 recommended PCB design rules, Table 102: WLCSP100
mechanical data and Table 103: WLCSP100 - Recommended PCB
design rules.
Minor text edits across the whole document.
DS11929 Rev 12
193/194
193
STM32WB55xx STM32WB35xx
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2022 STMicroelectronics – All rights reserved
194/194
DS11929 Rev 12