STM32WL55xx STM32WL54xx
Multiprotocol LPWAN dual core 32-bit Arm® Cortex®-M4/M0+
LoRa®, (G)FSK, (G)MSK, BPSK, up to 256KB flash, 64KB SRAM
Datasheet - production data
Features
Includes ST state-of-the-art patented
technology
UFQFPN48
(7 x 7 mm)
Radio
• Frequency range: 150 MHz to 960 MHz
• Modulation: LoRa®, (G)FSK, (G)MSK and
BPSK
• RX sensitivity: –123 dBm for 2-FSK
(at 1.2 Kbit/s), –148 dBm for LoRa®
(at 10.4 kHz, spreading factor 12)
• Transmitter high output power, programmable
up to +22 dBm
• Transmitter low output power, programmable
up to +15 dBm
• Available integrated passive device (IPD)
companion chips for optimized matching,
filtering and balun, all in one very compact
solution covering each package and each main
use cases (22 dBm @ 915 MHz,
14 dBm @ 868 MHz, 17 dBm @ 490 MHz)
• Compliant with the following radio frequency
regulations such as ETSI EN 300 220,
EN 300 113, EN 301 166, FCC CFR 47
Part 15, 24, 90, and the Japanese ARIB
STD-T30, T-67, T-108
• Compatible with standardized or proprietary
protocols such as LoRaWAN®, Sigfox™,
W-MBus and more (fully open wireless
system-on-chip)
Ultra-low-power platform
• Active-mode RX: 4.82 mA
• Active-mode TX: 15 mA at 10 dBm and 87 mA
at 20 dBm (LoRa® 125 kHz)
Core
• 32-bit Arm® Cortex®-M4 CPU
– Adaptive real-time accelerator (ART
Accelerator) allowing 0-wait-state
execution from flash memory, frequency up
to 48 MHz, MPU and DSP instructions
– 1.25 DMIPS/MHz (Dhrystone 2.1)
• 32-bit Arm®Cortex®-M0+ CPU
– Frequency up to 48 MHz, MPU
– 0.95 DMIPS/MHz (Dhrystone 2.1)
Security and identification
• Hardware encryption AES 256-bit
• True random number generator (RNG)
• Sector protection against read/write operations
(PCROP, RDP, WRP)
• CRC calculation unit
• Unique device identifier (64-bit UID compliant
with IEEE 802-2001 standard)
• Hardware public key accelerator (PKA)
• –40 °C to +105 °C temperature range
• Key management services
• Shutdown mode: 31 nA (VDD = 3 V)
• Secure sub-GHz MAC layer
• Standby (+ RTC) mode:
360 nA (VDD = 3 V)
• Secure firmware update (SFU)
• Stop2 (+ RTC) mode: 1.07 µA (VDD = 3 V)
This is information on a product in full production.
• Active-mode MCU: < 72 µA/MHz (CoreMark®)
• 96-bit unique die identifier
• 1.8 V to 3.6 V power supply
December 2022
UFBGA73
(5 x 5 mm)
• Secure firmware install (SFI)
DS13293 Rev 5
1/150
www.st.com
STM32WL55/54xx
Supply and reset management
• 12-bit DAC, low-power sample-and-hold
• High-efficiency embedded SMPS step-down
converter
• 2x ultra-low-power comparators
• SMPS to LDO smart switch
• Ultra-safe, low-power BOR (brownout reset)
with 5 selectable thresholds
• Ultra-low-power POR/PDR
System peripherals
• Mailbox and semaphores for communication
between Cortex®-M4 and Cortex®-M0+
firmware
• Programmable voltage detector (PVD)
Controllers
• VBAT mode with RTC and 20x32-bit backup
registers
• 2x DMA controller (7 channels each)
supporting ADC, DAC, SPI, I2C, LPUART,
USART, AES and timers
Clock sources
• 2x USART (ISO 7816, IrDA, SPI)
• 32 MHz crystal oscillator
• 1x LPUART (low-power)
• TCXO support: programmable supply voltage
• 2x SPI 16 Mbit/s (1 over 2 supporting I2S)
• 32 kHz oscillator for RTC with calibration
• 3x I2C (SMBus/PMBus®)
• High-speed internal 16 MHz factory trimmed
RC (± 1 %)
• 2x 16-bit 1-channel timer
• Internal low-power 32 kHz RC
• 1x 16-bit 4-channel timer (supporting
motor control)
• Internal multi-speed low-power 100 kHz to
48 MHz RC
• 1x 32-bit 4-channel timer
• PLL for CPU, ADC and audio clocks
• 3x 16-bit ultra-low-power timer
• 1x RTC with 32-bit sub-second wakeup
counter
Memories
• 1x independent SysTick
• 256-Kbyte flash memory
• 1x independent watchdog
• 64-Kbyte RAM
• 1x window watchdog
• 20x32-bit backup register
• Bootloader supporting USART and SPI
interfaces
Up to 43 I/Os, most 5 V-tolerant
• OTA (over-the-air) firmware update capable
Development support
• Sector protection against read/write operations
• Serial-wire debug (SWD), JTAG
Rich analog peripherals (down to 1.62 V)
• Dual CPU cross trigger capabilities
All packages ECOPACK2 compliant
• 12-bit ADC 2.5 Msps, up to 16 bits with
hardware oversampling, conversion range up
to 3.6 V
Table 1. Device summary
Reference
2/150
Part number
STM32WL55xx
STM32WL55CC, STM32WL55JC
STM32WL54xx
STM32WL54CC, STM32WL54JC
DS13293 Rev 5
STM32WL55/54xx
Contents
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2
Arm Cortex-M cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3
Adaptive real-time memory accelerator (ART Accelerator) . . . . . . . . . . . 15
3.4
Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.1
Embedded flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.2
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6
Security memory management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.8
Global security controller (GTZC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9
Sub-GHz radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.10
3.11
3.9.1
Sub-GHz radio introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9.2
Sub-GHz radio general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9.3
Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9.4
Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9.5
RF-PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9.6
Intermediate frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9.7
IPDs for STM32WL and reference designs . . . . . . . . . . . . . . . . . . . . . . 24
Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10.1
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.10.3
Linear voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.10.4
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.11.1
Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.12
Peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.13
Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.14
Hardware semaphore (HSEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
DS13293 Rev 5
3/150
6
Contents
STM32WL55/54xx
3.15
Inter-processor communication controller (IPCC) . . . . . . . . . . . . . . . . . . 41
3.16
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.17
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.18
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.18.1
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 42
3.18.2
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 42
3.19
Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.20
Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.20.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.20.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.20.3
VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.21
Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.22
Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.23
Comparator (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.24
True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.25
Advanced encryption standard hardware accelerator (AES) . . . . . . . . . . 45
3.26
Public key accelerator (PKA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.27
Timer and watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.27.1
Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.27.2
General-purpose timers (TIM2, TIM16, TIM17) . . . . . . . . . . . . . . . . . . . 47
3.27.3
Low-power timers (LPTIM1, LPTIM2 and LPTIM3) . . . . . . . . . . . . . . . . 47
3.27.4
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.27.5
System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.27.6
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.28
Real-time clock (RTC), tamper and backup registers . . . . . . . . . . . . . . . 48
3.29
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.30
Universal synchronous/asynchronous receiver transmitter
(USART/UART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.31
Low-power universal asynchronous receiver transmitter (LPUART) . . . . 50
3.32
Serial peripheral interface (SPI)/integrated-interchip sound
interface (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.33
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4
Pinouts, pin description and alternate functions . . . . . . . . . . . . . . . . . 53
5
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4/150
DS13293 Rev 5
STM32WL55/54xx
5.1
Contents
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.1
Main performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.2
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.3
Sub-GHz radio characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.4
Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . 78
5.3.5
Embedded reset and power-control block characteristics . . . . . . . . . . . 79
5.3.6
Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.7
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.8
Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.9
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.10
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.11
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3.12
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3.13
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.14
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.15
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.16
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.17
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3.18
Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.19
Analog-to-digital converter characteristics . . . . . . . . . . . . . . . . . . . . . . 120
5.3.20
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3.21
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.3.22
Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 126
5.3.23
Digital-to-analog converter characteristics . . . . . . . . . . . . . . . . . . . . . . 128
5.3.24
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.3.25
Timers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3.26
Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 134
DS13293 Rev 5
5/150
6
Contents
6
STM32WL55/54xx
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.1
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.2
UFBGA73 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8
Important security notice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6/150
DS13293 Rev 5
STM32WL55/54xx
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Main features and peripheral count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Access status versus RDP level and execution mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Sub-GHz radio transmit high output power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
FSK mode intermediate frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
LoRa mode intermediate frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
IPDs for STM32WL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Functionalities depending on system operating mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Low-power mode summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
MCU and sub-GHz radio operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
DMA1 and DMA2 implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
USART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
SPI and SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
STM32WL55/54xx pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Main performances at VDD = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Operating range of RF pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Sub-GHz radio power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Sub-GHz radio power consumption in transmit mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Sub-GHz radio general specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Sub-GHz radio receive mode specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Sub-GHz radio transmit mode specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Sub-GHz radio power management specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Embedded reset and power-control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 79
Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Current consumption in Run and LPRun modes on CPU1, CoreMark code with data
running from flash memory, ART enable (cache ON, prefetch OFF) . . . . . . . . . . . . . . . . . 82
Current consumption in Run and LPRun modes on CPU1 and CPU2, CoreMark code
with data running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Current consumption in Run and LPRun modes on CPU1, CoreMark code
with data running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Typical current consumption in Run and LPRun modes on CPU1, with different codes
running from flash memory, ART enable (cache ON, prefetch OFF) . . . . . . . . . . . . . . . . . 85
Typical current consumption in Run and LPRun modes on CPU1,
with different codes running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Current consumption in Sleep and LPSleep modes on CPU1, flash memory ON . . . . . . . 89
Current consumption in Sleep and LPSleep modes on CPU1 and CPU2,
DS13293 Rev 5
7/150
9
List of tables
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
8/150
STM32WL55/54xx
flash memory ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Current consumption in LPSleep mode on CPU1, flash memory in power-down. . . . . . . . 90
Current consumption in LPSleep mode on CPU1 and CPU2,
flash memory in power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Current consumption during wakeup from Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Current consumption during wakeup from Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Current consumption during wakeup from Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Current consumption during wakeup from Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . 94
Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Current under Reset condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
HSE32 crystal requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
HSE32 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
HSE32 TCXO regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Low-speed external user clock characteristics – Bypass mode . . . . . . . . . . . . . . . . . . . . 104
HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Maximum ADC RAIN values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
DS13293 Rev 5
STM32WL55/54xx
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.
Table 101.
Table 102.
Table 103.
List of tables
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Dynamic JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Dynamic SWD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
UFQFPN48 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
UFBGA73 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
UFBGA recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . . . . 145
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
DS13293 Rev 5
9/150
9
List of figures
STM32WL55/54xx
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
10/150
STM32WL55/54xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Sub-GHz radio system block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
High output power PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Low output power PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
IPDs for STM32WL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Power-up/power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Supply configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
UFBGA73 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Typical current consumption vs. MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
I/O input characteristics - VIL and VIH on all I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Typical connection diagram when using the ADC
with FT/TT pins featuring analog switch function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
VREFOUT_TEMP when VRS = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
VREFOUT_TEMP when VRS = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
SPI timing diagram - Slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
SPI timing diagram - Slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
SPI timing diagram - Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
UFQFPN48 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
UFQFPN48 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
UFBGA73 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
UFBGA73 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
UFBGA73 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
DS13293 Rev 5
STM32WL55/54xx
1
Introduction
Introduction
This document provides information on the STM32WL55/54xx microcontrollers.
For information on the device errata with respect to the datasheet and reference manual,
refer to the STM32WL55/54xx errata sheet (ES0500), available on the STMicroelectronics
website www.st.com.
For information on the Arm®(a) Cortex®-M4 and Cortex®-M0+ cores, refer respectively to the
Cortex®-M4 Technical Reference Manual and to the Cortex®-M0+ Technical Reference
Manual available from the www.arm.com website.
For information on LoRa® modulation, refer to the Semtech website
(https://www.semtech.com/technology/lora).
2
Description
The STM32WL55/54xx long-range wireless and ultra-low-power devices embed a powerful
and ultra-low-power LPWAN-compliant radio solution, enabling the following modulations:
LoRa®, (G)FSK, (G)MSK, and BPSK.
The LoRa® modulation is available in STM32WLx5xx only.
These devices are designed to be extremely low-power and are based on the
high-performance Arm® Cortex®-M4 32-bit RISC core operating at a frequency of up to
48 MHz. This core implements a full set of DSP instructions. It is complemented by an Arm®
Cortex®-M0+ microcontroller. Both cores implement an independent memory protection unit
(MPU) that enhances the application security.
The devices embed high-speed memories (256-Kbyte flash memory, 64-Kbyte SRAM), and
an extensive range of enhanced I/Os and peripherals.
The devices also embed several protection mechanisms for embedded flash memory and
SRAM: readout protection, write protection and proprietary code readout protection.
In addition, the STM32WL55/54xx devices support the following secure services running on
Arm® Cortex-M0+: unique boot entry capable, secure sub-GHz MAC layer, secure firmware
update, secure firmware install and storage and management of secure keys.
These devices offer a 12-bit ADC, a 12-bit DAC low-power sample-and-hold, two
ultra-low-power comparators associated with a high-accuracy reference voltage generator.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS13293 Rev 5
11/150
14
Description
STM32WL55/54xx
The devices embed a low-power RTC with a 32-bit sub-second wakeup counter, one 16-bit
single-channel timer, two 16-bit four-channel timers (supporting motor control), one 32-bit
four-channel timer and three 16-bit ultra-low-power timers.
These devices also embed two DMA controllers (7 channels each) allowing any transfer
combination between memory (flash memory, SRAM1 and SRAM2) and peripheral, using
the DMAMUX1 for flexible DMA channel mapping.
The devices also feature the following standard and advanced communication interfaces:
inter-processor communication controller (mailbox) and semaphores for communication
between the two Arm® Cortex®-M cores, two USARTs (supporting LIN, smartcard, IrDA,
modem control and ISO7816), one low-power UART (LPUART), three I2Cs
(SMBus/PMBus), two SPIs (up to 16 MHz, one supporting I2S).
The operating temperature/voltage ranges are –40 °C to +105 °C (+85 °C with radio)
from a 1.8 V to 3.6 V power supply. A comprehensive set of power-saving modes allows the
design of low-power applications.
The devices integrate a high-efficiency SMPS step-down converter and independent power
supplies for ADC, DAC and comparator analog inputs.
A VBAT dedicated supply allows the LSE 32.768 kHz oscillator, the RTC and the backup
registers to be backed up. The devices can maintain these functions even if the main VDD is
not present, through a CR2032-like battery, a supercap or a small rechargeable battery.
Table 2. Main features and peripheral count
Feature
CPU
STM32WL55Cx
STM32WL55Jx
STM32WL54Cx
STM32WL54Jx
Arm Cortex-M4 and Cortex-M0
Maximum CPU frequency (MHz)
48
Flash memory density (Kbytes)
256
SRAM density (Kbytes)
SRAM1
32
SRAM2
32
Available on STM32WL55xx devices.
Not available on STM32WL54xx devices
LoRa
Radio
(G)FSK
(G)MSK Tx
Yes
BPSK Tx
Radio PA
Timer
12/150
Low output power (up to 15 dBm)
High output power (up to 22 dBm)
Yes
General purpose
4
Low-power
3
SysTick
1
DS13293 Rev 5
STM32WL55/54xx
Description
Table 2. Main features and peripheral count (continued)
Feature
STM32WL55Cx
STM32WL55Jx
STM32WL54Cx
STM32WL54Jx
SPI/I2S
Communication
interface
Watchdog
2 (1 supporting I2S)
I2C
3
USART
2
LPUART
1
Independent
1
Window
1
RTC (with wakeup counter)
1
DMA (7 channels)
2
Mailbox and semaphores
1
Security
AES 256 bits
1
RNG
1
PKA
1
PCROP, RDP, WRP
1
CRC
1
64-bit UID compliant with IEEE
802-2001 standard
1
96-bit die ID
1
Storage and management of
secure keys
1
Secure sub-GHz MAC layer
1
Secure firmware update
1
Secure firmware install
1
Tamper pins
3
Wakeup pins
3
GPIOs
ADC (number of channels, ext + int)
29
43
1 (9 + 4)
1 (12 + 4)
DAC (number of channels)
1 (1)
Internal VREFBUF
No
Yes
Analog comparator
2
Operating voltage
1.8 to 3.6 V
Ambient operating temperature
–40 °C to +105 °C / –40 °C to +85 °C (with radio)(1)
Junction temperature
–40 °C to +125 °C / –40 °C to +105 °C (with radio)
UFQFPN48
(7x7 mm)
Package
UFBGA73
(5x5 mm)
1. Devices with suffix 6 operate up to 85 °C. Devices with suffix 7 can operate up to 105 °C except radio.
DS13293 Rev 5
13/150
14
Description
STM32WL55/54xx
NVIC
SUBGHZ
SPI
CTI
Figure 1. STM32WL55/54xx block diagram
Cortex-M0+
48 MHz
MPU
Sub-GHz
radio
Flash interface arbiter
+
ART Accelerator
256-Kbyte
Flash memory
JTAG/SWD
SRAM2
RTC
TAMP
LSE
32 kHz
Backup
domain
IWDG
LSI
32 kHz
SRAM1
NVIC
Cortex-M4
(DSP)
48 MHz
DMA2 (7 channels)
DMAMUX
AHB3
PWR
EXTI
HSEM
AHB1 and AHB2
DMA1 (7 channels)
HSE32
32 MHz
backup memory
RCC
MPU
LDO/SMPS
IPCC
PLL
HSI 1 %
16 MHz
MSI 5 %
0.1-48MHz
Power supply
POR/PDR/BOR/PVD/PVM
SYSCFG/
COMP/VREF
WWDG
RNG
SPI1
AES
SPI2S2
PKA
GPIO ports A,B,C,H
TZSC
CRC
TZIC
DAC (12 bits)
I2C1
I2C2
I2C3
Temperature sensor
LPUART1
LPTIM1
ADC (12 bits ULP,
2 Msps, 12 channels)
APB1 and APB 2
TIM1
TIM2
LPTIM2
USART1
TIM16
LPTIM3
USART2
TIM17
MSv66957V1
14/150
DS13293 Rev 5
STM32WL55/54xx
Functional overview
3
Functional overview
3.1
Architecture
The devices embed a sub-GHz RF subsystem that interfaces with a generic microcontroller
subsystem using an Arm Cortex-M4 (called CPU1) and an Arm Cortex-M0+ (called CPU2).
An RF low-layer stack is needed and is to be run on CPU1 or CPU2, whereas the host
application code is preferably run on CPU1.
The RF subsystem communication is done through an internal SPI interface.
All secure code must be run by CPU2.
3.2
Arm Cortex-M cores
With its embedded Arm cores, the STM32WL55/54xx devices are compatible with all
Arm tools and software.
Figure 1 shows the general block diagram of the STM32WL55/54xx devices.
Arm Cortex-M4
The Arm Cortex-M4 is a processor for embedded systems. It has been developed to provide
a low-cost platform that meets the needs of MCU implementation, with a reduced pin count
and low-power consumption, while delivering outstanding computational performance and
an advanced response to interrupts.
The Arm Cortex-M4 32-bit RISC processor features exceptional code-efficiency, delivering
the high-performance expected from an Arm core in the memory size usually associated
with 8- and 16-bit devices.
This processor supports a set of DSP instructions that allow efficient signal processing and
complex algorithm execution.
Arm Cortex-M0+
The Arm Cortex-M0+ is an entry-level processor for embedded systems. It has been
developed to provide lowest power consumption in the Cortex-M family, while delivering
good computation performance and response to interrupts.
The Arm Cortex-M0+ 32-bit RISC processor features good code-efficiency with ultra-low
power consumption in the memory size usually associated with 8-bit and 16-bit devices.
3.3
Adaptive real-time memory accelerator (ART Accelerator)
The ART Accelerator is a memory accelerator that is optimized for STM32 industry-standard
Arm Cortex-M4 processor. The ART Accelerator balances the inherent performance
advantage of the Arm Cortex-M4 over flash memory technologies, that normally require the
processor to wait for the flash memory at higher frequencies.
To release the processor near 60 DMIPS performance at 48 MHz, the ART Accelerator
implements an instruction prefetch queue and branch cache, that increases the program
execution speed from the 64-bit flash memory. Based on CoreMark benchmark, the
DS13293 Rev 5
15/150
52
Functional overview
STM32WL55/54xx
performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program
execution from flash memory at a CPU frequency up to 48 MHz.
3.4
Memory protection unit (MPU)
The memory protection unit (MPU) is used to manage the CPU1 and CPU2 accesses to
memory, to prevent one task to accidentally corrupt the memory or resources used by any
other active task. This memory area is organized into up to eight protected areas that can in
turn be divided up into eight subareas. The protection area sizes are between 32 bytes and
the whole 4 Gbytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code must be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
3.5
Memories
3.5.1
Embedded flash memory
The flash memory interface manages the accesses from CPU1 AHB ICode/DCode and
CPU2 AHB Sbus to the flash memory. It implements the access, the erase and program
flash memory operations, and the read and write protection.
The main features of the flash memory are listed below:
•
Memory organization: 1 bank
–
main memory: up to 256 Kbytes
–
page size: 2 Kbytes
•
72-bit wide data read (64 bits plus 8 ECC bits)
•
72-bit wide data write (64 bits plus 8 ECC bits)
•
Page erase and mass erase
Flexible protections can be configured thanks to option bytes:
•
16/150
Readout protection (RDP) to protect the whole memory. Three levels are available:
–
Level 0: no readout protection
–
Level 1: memory readout protection. The flash memory cannot be read from or
written to if either debug features are connected, boot in SRAM or bootloader is
selected.
–
Level 2: chip readout protection. Debug features (JTAG and serial wire), boot in
SRAM and bootloader selection are disabled (JTAG fuse). This selection can only
be reverted by the secure CPU2.
DS13293 Rev 5
STM32WL55/54xx
Functional overview
Table 3. Access status versus RDP level and execution mode
Area
Main memory
System memory
Option bytes
Read
Write
Erase
Read
Write
Erase
1
Yes
Yes
Yes
No
No
No
2
Yes
Yes
Yes
NA
NA
NA
1
Yes
No
No
Yes
No
No
2
Yes
No
No
NA
NA
NA
1
Yes
Yes
Yes
Yes
No(1)
2
Backup registers
SRAM2
Debug, boot from SRAM or boot from
system memory (loader)
User execution
RDP
level
Yes
Yes
Yes
(1)
No
NA
NA
NA
No
No
NA(2)
1
Yes
Yes
NA(2)
2
Yes
Yes
NA
NA
NA
NA
No
No
No(2)
NA
NA
NA
1
Yes
Yes
Yes(2)
2
Yes
Yes
Yes
1. The option byte can be modified by the sub-GHz radio.
2. Erased when RDP changes from Level 1 to Level 0.
•
Write protection (WRP): the protected area is protected against erasing and
programming. Two areas can be selected, with 4-Kbyte granularity.
•
Proprietary code readout protection (PCROP): two parts of the flash memory can be
protected against read and write from third parties. The protected area is execute-only:
it can only be reached by the STM32 CPU1/2, as an instruction code, while all other
accesses (DMA, debug and CPU1/2 data read, write and erase) are strictly prohibited.
Two areas can be selected, with 2-Kbyte granularity. An additional option bit
(PCROP_RDP) is used to select if the PCROP area is erased or not when the RDP
protection is changed from Level 1 to Level 0.
A section of the flash memory can be secured for CPU2, and, in that case, cannot be
accessed by CPU1.
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
•
single error detection and correction
•
double error detection
•
address of the ECC fail can be read in the FLASH_ECCR register
The embedded flash memory is shared between CPU1 and CPU2 on a time sharing basis.
A dedicated hardware mechanism allows both CPUs to suspend write/erase operations.
3.5.2
Embedded SRAM
The devices feature up to 64 Kbytes of embedded SRAM, split in two blocks:
•
SRAM1: up to 32 Kbytes mapped at address 0x2000 0000
•
SRAM2: up to 32 Kbytes located at address 0x2000 8000 (contiguous to SRAM1
in case of SRAM1 32-Kbyte configuration), also mirrored at 0x1000 0000, with
hardware parity check (this SRAM can be retained in Standby mode)
The SRAMs can be accessed in read/write with 0 wait states for all CPU1/2 clock speeds.
DS13293 Rev 5
17/150
52
Functional overview
3.6
STM32WL55/54xx
Security memory management
The devices contain many security blocks both for the sub-GHz MAC layer and the Host
application, such as:
•
securable RNG
•
customer keys storage
•
secure flash memory partition for CPU2 only access
•
secure SRAM partition, that can be accessed only by CPU2
•
securable sub-GHz radio sub-system
•
securable DMA channels
•
securable AES: 128-and 256-bit AES, supporting ECB, CBC, CTR, GCM, GMAC and
CCM chaining modes
•
securable PKA:
•
3.7
–
modular arithmetic including exponentiation with maximum modulo size of
3136 bits
–
elliptic curves over prime field scalar multiplication, ECDSA signature, ECDSA
verification with maximum modulo size of 521 bits
cyclic redundancy check calculation unit (CRC)
Boot modes
At startup, BOOT0 pin and BOOT1 option bit are used to select one of the following boot
options:
•
Boot from user flash memory
•
Boot from boot system memory (where embedded bootloader is located)
•
Boot from embedded SRAM
•
Boot from system memory (where the embedded SFI is located)
The bootloader makes possible to download code from USART or SPI.
If the boot selection uses the BOOT0 pin to boot from the main flash memory, but the first
flash memory location is found empty, the flash empty check mechanism forces boot from
the system memory (containing the embedded bootloader). Then, due to the bootloader
activation, some of the GPIOs are reconfigured from the high-Z state. Refer to the
application note STM32 microcontroller system memory boot mode (AN2606) for more
details concerning the bootloader and GPIOs configuration.
This feature can be disabled by configuring the option bytes (instead of BOOT0 pin) to force
boot from the main flash memory (nSWBOOT0 = 0, nBOOT0 = 1).
18/150
DS13293 Rev 5
STM32WL55/54xx
3.8
Functional overview
Global security controller (GTZC)
The GTZC includes the following sub-blocks:
•
TZSC: security controller
This sub-block defines the secure/privileged state of slave peripherals. It also controls
the unprivileged area size for the watermark memory peripheral controller (MPCWM).
•
TZIC: security illegal access controller
This sub-block gathers all illegal access events in the system and generates a secure
interrupt towards the secure CPU2 NVIC.
These sub-blocks are used to configure the system security and privilege such as:
•
on-chip flash memory and RAM with programmable privileged protection on both
secure and non-secure memory areas
•
AHB and APB peripherals with programmable security and/or privileged access
3.9
Sub-GHz radio
3.9.1
Sub-GHz radio introduction
The sub-GHz radio is an ultra-low-power sub-GHz radio operating in the 150 - 960 MHz ISM
band. LoRa and (G)FSK modulations in transmit and receive, and BPSK/(G)MSK in transmit
only, allow an optimal trade-off between range, data rate and power consumption. This
sub-GHz radio is compliant with the LoRaWAN® specification v1.0 and radio regulations
such as ETSI EN 300 220, EN 300 113, EN 301 166, FCC CFR 47 part 15, 24, 90, 101 and
the ARIB STD-T30, T-67, T-108.
The sub-GHz radio consists of:
3.9.2
•
an analog front-end transceiver, capable of outputting up to + 15 dBm maximum power
on its RFO_LP pin and up to + 22 dBm maximum power on RFO_HP pin
•
a digital modem bank providing the following modulation schemes:
–
LoRa Rx/Tx with bandwidth (BW) from 7.8 - 500 kHz, spreading factor (SF)
5 - 12, bit rate (BR) from 0.013 to 17.4 Kbit/s (real bitrate)
–
FSK and GFSK Rx/Tx with BR from 0.6 to 300 Kbit/s
–
(G)MSK Tx with BR from 0.1 to 10 Kbit/s
–
BPSK Tx only with bitrate for 100 and 600 bit/s
•
a digital control including all data processing and sub-GHz radio configuration control
•
a high-speed clock generation
Sub-GHz radio general description
The sub-GHz radio provides an internal processing unit to handle communication with the
system CPU. Communication is handled by commands sent over the SPI interface, and a
set of interrupts is used to signal events. BUSY information signals operation activity and is
used to indicate when the sub-GHz radio commands cannot be received.
DS13293 Rev 5
19/150
52
Functional overview
STM32WL55/54xx
The block diagram of the sub-GHz radio system is shown in the figure below.
Figure 2. Sub-GHz radio system block diagram
VDDPA
Sub-GHz radio
VR_PA
SUBGHZSPI
FSK
modem
RFO_HP
BUSY
RFO_LP
RFI_P
RFI_N
Interrups
Radio
control
Sub-GHz
RF frontend
LoRa
modem
PB0_VDDTCXO
Data
and
control
HSEON
HSEBYPPWR
(note)
OSC_IN
OSC_OUT
HSERDY
HSE32
hse32
Note: LoRa modem is only available on STM32WL55xx devices.
3.9.3
MSv62614V1
Transmitter
The transmit chain comprises the modulated output from the modem, that directly
modulates the RF-PLL. An optional pre-filtering of the bit stream can be enabled to reduce
the power in the adjacent channel also dependent on the selected modulation scheme. The
modulated signal from the RF-PLL directly drives the high output power PA (HP PA) or low
output power PA (LP PA). The transmitted packet payload size depends on the modulation
scheme.
Transmitter high output power
Transmit high output power up to + 22 dBm, is supported through the RFO_HP RF pin.
20/150
DS13293 Rev 5
STM32WL55/54xx
Functional overview
For this, the REG PA must be supplied directly from VDD on VDDSMPS pin, as shown in the
figure below.
The output power range is programmable in 32 steps of ~ 1 dB. The power amplifier
ramping timing is also programmable.This allows adaptation to meet radio regulation
requirements.
Figure 3. High output power PA
SMPS mode
LDO mode
VDD
VDD
VDDSMPS (1.8 to 3.6V)
VDDSMPS (1.8 to 3.6V)
VLXSMPS
VLXSMPS
LDO/SMPS
LDO/SMPS
VFBSMPS (1.55V)
VFBSMPS (1.55V)
VDD
VDD
VDDPA
VDDPA
VR_PA (up to 3.1V)
REG
PA
VR_PA (up to 3.1V)
REG
PA
RFO_HP
HP PA
RFO_HP
HP PA
Note: Use of the SMPS is optional. When SMPS is not used, the BOM can be reduced by removing the coil
between VLXSMPS and VFBSMPS pins.
MSv62616V2
The table below gives the maximum transmit output power versus the VDDPA supply level.
Table 4. Sub-GHz radio transmit high output power
VDDPA supply (V)
Transmit output power (dBm)
3.3
+ 22
2.7
+ 20
2.4
+ 19
1.8
+ 16
Transmitter low output power
The transmit low output power up to + 15 dBm on full VDD range (1.8 to 3.6 V), is supported
through the RFO_LP RF pin. For this, the REG PA must be supplied from the regulated
VFBSMPS supply at 1.55 V, as shown in the figure below.
The output power range is programmable in 32 steps of ~1 dB. The power amplifier ramping
timing is also programmable.This allows adaptation to meet radio regulation requirements.
DS13293 Rev 5
21/150
52
Functional overview
STM32WL55/54xx
Figure 4. Low output power PA
LDO mode
SMPS mode
VDD
VDD
VDDSMPS (1.8 to 3.6V)
VDDSMPS (1.8 to 3.6V)
VLXSMPS
VLXSMPS
LDO/SMPS
LDO/SMPS
VFBSMPS (1.55V)
VFBSMPS (1.55V)
VDDPA
VDDPA
VR_PA (up to 1.35V)
REG
PA
VR_PA (up to 1.35V)
REG
PA
RFO_LP
RFO_LP
LP PA
LP PA
Note: Use of the SMPS is optional. When SMPS is not used, the BOM can be reduced by removing the coil
between VLXSMPS and VFBSMPS pins.
3.9.4
MSv62617V2
Receiver
The receive chain comprises a differential low-noise amplifier (LNA), a down-converter to
low-IF by mixer operation in quadrature configuration. The I and Q signals are low pass
filtered and a Ʃ∆ ADC converts them into the digital domain. In the digital modem, the
signals are decimated, further down converted and channel filtered. The demodulation is
done according to the selected modulation scheme.
The down mixing to low-IF is done by mixing the receive signal with the local RF-PLL
located in the negative frequency, where -flo = -frf + -fif. (where flo is the local RF-PLL
frequency, frf is the received signal and fif is the intermediate frequency). The wanted signal
is located at frf = flo + fif.
The receiver features automatic I and Q calibration, that improves image rejection. The
calibration is done automatically at startup before using the receiver, and can be requested
by command.
The receiver supports LoRa, (G)MSK and (G)FSK modulations. The received packet
payload size depends on the modulation scheme.
3.9.5
RF-PLL
The RF-PLL is used as the frequency synthesizer for the generation of the local oscillator
frequency (flo) for both transmit and receive chains. The RF-PLL uses auto calibration and
uses the 32 MHz HSE32 reference. The sub-GHz radio covers all continuous frequencies in
the range between 150 to 960 MHz.
22/150
DS13293 Rev 5
STM32WL55/54xx
3.9.6
Functional overview
Intermediate frequencies
The sub-GHz radio receiver operates mostly in low-IF configuration, except for specific highbandwidth settings.
Table 5. FSK mode intermediate frequencies
Setting name
Bandwidth (kHz)
RX_BW_467
467.0
RX_BW_234
234.3
RX_BW_117
117.3
RX_BW_58
58.6
RX_BW_29
29.3
RX_BW_14
14.6
RX_BW_7
7.3
RX_BW_373
373.6
RX_BW_187
187.2
RX_BW_93
93.8
RX_BW_46
46.9
RX_BW_23
23.4
RX_BW_11
11.7
RX_BW_5
5.8
RX_BW_312
312.0
RX_BW_156
156.2
RX_BW_78
78.2
RX_BW_39
39.0
RX_BW_19
19.5
RX_BW_9
9.7
RX_BW_4
4.8
fif (kHz)
250
200
167
Table 6. LoRa mode intermediate frequencies
Setting name
Bandwidth (kHz)
fif (kHz)
LORA_BW_500
500
0
LORA_BW_250
250
LORA_BW_125
125
LORA_BW_62
62.5
LORA_BW_41
41.67
167
LORA_BW_31
31.25
250
LORA_BW_20
20.83
167
DS13293 Rev 5
250
23/150
52
Functional overview
STM32WL55/54xx
Table 6. LoRa mode intermediate frequencies (continued)
3.9.7
Setting name
Bandwidth (kHz)
fif (kHz)
LORA_BW_15
15.63
250
LORA_BW_10
10.42
167
LORA_BW_7
7.81
250
IPDs for STM32WL and reference designs
For reference designs covering different packages and performance, cost and complexity
trade-offs, refer to the data brief STM32WL reference designs (DB4597).
The table below lists the IPD variants used to optimize main use cases in term of maximum
output power, frequency range, and PCB characteristics of the target board.
Table 7. IPDs for STM32WL
IPD
Power
Frequency
BALFHB-WL-01D3
BALFHB-WL-02D3
22 dBm
915 MHz
PCB # of
layers
MCU
package
4
UFBGA73
STM32WL part number
STM32WL54JC, STM32WL55JC
4
UFQFPN48 STM32WL54CC, STM32WL55CC
BALFHB-WL-03D3
2
UFQFPN48 STM32WL54CC, STM32WL55CC
BALFHB-WL-04D3
4
15 dBm
BALFHB-WL-05D3
868_915 MHz
BALFHB-WL-06D3
BALFLB-WL-07D3
BALFLB-WL-08D3
BALFLB-WL-09D3
24/150
STM32WL54JC, STM32WL55JC
4
UFQFPN48 STM32WL54CC, STM32WL55CC
2
UFQFPN48 STM32WL54CC, STM32WL55CC
4
17 dBm
490 MHz
UFBGA73
UFBGA73
STM32WL54JC, STM32WL55JC
4
UFQFPN48 STM32WL54CC, STM32WL55CC
2
UFQFPN48 STM32WL54CC, STM32WL55CC
DS13293 Rev 5
STM32WL55/54xx
Functional overview
Figure 5. IPDs for STM32WL
3.10
Power supply management
The devices embed two different regulators: one LDO and one DC/DC (SMPS). The SMPS
can be optionally switched-on by software to improve the power efficiency. As LDO and
SMPS operate in parallel, the SMPS switch-on is transparent to the user and only the power
efficiency is affected.
3.10.1
Power supply schemes
The devices require a VDD operating voltage supply between 1.8 V and 3.6 V. Several
independent supplies (VDDSMPS, VFBSMPS, VDDA, VDDRF) can be provided for specific
peripherals:
•
VDD = 1.8 V to 3.6 V
VDD is the external power supply for the I/Os, the system analog blocks such as reset,
power management, internal clocks and low-power regulator. It is provided externally
through VDD pins.
•
VDDSMPS = 1.8 V to 3.6 V
VDDSMPS is the external power supply for the SMPS step-down converter. It is provided
externally through VDDSMPS supply pin and must be connected to the same supply as
VDD.
•
VFBSMPS = 1.45 V to 1.62 V (1.55 V typical)
VFBSMPS is the external power supply for the main system regulator. It is provided
externally through VFBSMPS pin and is supplied through the SMPS step-down
DS13293 Rev 5
25/150
52
Functional overview
STM32WL55/54xx
converter.
•
VDDA = 0 V to 3.6 V (DAC minimum voltage is 1.71 V without buffer and 1.8 V with
buffer. COMP and ADC minimum voltage is 1.62 V. VREFBUF minimum voltage is
2.4 V)
VDDA is the external analog power supply for A/D converters, D/A converters, voltage
reference buffer, and comparators. The VDDA voltage level is independent from the VDD
voltage (see power-up and power-down limitations below) and must preferably be
connected to VDD when these peripherals are not used.
•
VDDRF = 1.8 V to 3.6 V
VDDRF is an external power supply for the radio. It is provided externally through the
VDDRF pin and must be connected to the same supply as VDD.
•
VDDRF1V5 = 1.45 V to 1.62 V
VDDRF1V5 is an external power supply for the radio. It is provided externally through the
VDDRF1V5 pin and must be connected externally to VFBSMPS.
•
VBAT = 1.55 V to 3.6 V
VBAT is the power supply for RTC, TAMP, external clock 32 kHz oscillator and backup
registers (through power switch) when VDD is not present.
•
VREF-, VREF+
VREF+ is the input reference voltage for ADC and DAC. It is also the output of the
internal voltage reference buffer when enabled.
–
When VDDA < 2 V, VREF+ must be equal to VDDA.
–
When VDDA ≥ 2 V, VREF+ must be between 2 V and VDDA.
VREF+ can be grounded when ADC/DAC is not active. The internal voltage reference
buffer supports the following output voltages, configured with VRS bit in the
VREFBUF_CSR register:
–
VREF+ around 2.048 V: this requires VDDA ≥ 2.4 V.
–
VREF+ around 2.5 V: this requires VDDA ≥ 2.8 V.
During power up and power down, the following power sequence is required:
1.
When VDD < 1 V other power supplies (VDDA) must remain below VDD + 300 mV.
During power down, VDD can temporarily become lower then other supplies only if the
energy provided to the device remains below 1 mJ. This allows external decoupling
capacitors to be discharged with different time constants during this transient phase.
2.
When VDD > 1 V, all other power supplies (VDDA) become independent.
An embedded linear voltage regulator is used to supply the internal digital power VCORE.
VCORE is the power supply for digital peripherals, SRAM1 and SRAM2. The flash memory is
supplied by VCORE and VDD. VCORE is split in two parts: VDDO part and an interruptible part
VDDI.
26/150
DS13293 Rev 5
STM32WL55/54xx
Functional overview
Figure 6. Power-up/power-down sequence
V
3.6
VDDA
VDD
VBOR0
1
0.3
Power-on
Operating mode
Invalid supply area
VDDA < VDD + 300 mV
Power-down
time
VDDA independent from VDD
MSv68044V1
Note:
VDD, VDDRF and VDDSMPS must be wired together, so they can follow the same voltage
sequence.
Figure 7. Power supply overview
VSW
VBAT
VDD
POR
VDDSMPS
en
LDO/SMPS
FW mode
VLXSMPS
mode
VFBSMPS
VDDRF1V5
LPR
MR
RFLDO
VLP
VMAIN
VBKP
VDDO
VRF
VDDI
MSv50973V1
DS13293 Rev 5
27/150
52
Functional overview
STM32WL55/54xx
The different supply configurations are shown in the figure below.
Figure 8. Supply configurations
VDD
VDD
VDDSMPS
VDDSMPS
VLXSMPS
VLXSMPS
LDO/SMPS
VFBSMPS
VDDRF1V5
LDO/SMPS
VFBSMPS
VDDRF1V5
RF
LDO
MR
LPR
LDO/SMPS supply
RF
LDO
MR
LPR
LDO supply
MSv50974V1
The LDO or SMPS step-down converter operating mode can be configured by one of the
following:
•
by the MCU using the SMPSEN setting in PWR control register 5 (PWR_CR5), that
depends upon the MCU system operating mode (Run, Stop, Standby or Shutdown).
•
by the sub-GHz radio using SetRegulatorMode() command and the sub-GHz radio
operating mode (Sleep, Calibrate, Standby, Standby with HSE32 or Active).
After any POR and NRST reset, the LDO mode is selected. The SMPS selection has priority
over LDO selection.
While the sub-GHz radio is in Standby with HSE32 or in Active mode, the supply mode is
not altered until the sub-GHz radio enters Standby or Sleep mode. The sub-GHz radio
activity may add a delay for entering the MCU software requested supply mode.
The LDO or SMPS supply mode can be checked with the SMPSRDY flag in power status
register 2 (PWR_SR2).
Note:
When the radio is active, the supply mode is not changed until after the radio activity is
finished.
During Stop 1, Stop 2 and Standby modes, when the sub-GHz radio is not active, the LDO
or SMPS step-down converter is switched off. When exiting low-power modes (except
Shutdown), the SMPS step-down converter is set by hardware to the mode selected by the
SMPSEN bit in PWR control register 5 (PWR_CR5). SMPSEN is retained in Stop and
Standby modes.
Independently from the MCU software selected supply operating mode, the sub-GHz radio
allows the supply mode selection while the sub-GHz radio is active (thanks to the sub-GHz
radio SetRegulatorMode()command).
The maximum load current delivered by the SMPS can be selected by the sub- GHz radio
SUBGHZ_SMPSC2R register.
The inrush current of the LDO and SMPS step-down converter can be controlled via the
sub- GHz radio SUBGHZ_PCR register. This information is retained in all but the sub-GHz
radio Deep-sleep mode.
28/150
DS13293 Rev 5
STM32WL55/54xx
Functional overview
The SMPS needs a clock to be functional. If for any reason this clock stops, the device may
be destroyed. To avoid this situation, a clock detection is used to, in case of a clock failure,
switch off the SMPS and enable the LDO. The SMPS clock detection is enabled by the
sub-GHz radio SUBGHZ_SMPSC0R.CLKDE. By default, the SMPS clock detection is
disabled and must be enabled before enabling the SMPS.
Danger:
3.10.2
Before enabling the SMPS, the SMPS clock detection must be
enabled in the sub-GHz radio SUBGHZ_SMPSC0R.CLKDE.
Power supply supervisor
The devices integrate a power-on reset/power-down reset, coupled with a Brownout reset
(BOR) circuitry.
BOR0 level cannot be disabled. Other BOR levels can be enabled by user option. When
enabled, BOR is active in all power modes except in Shutdown
Five BOR thresholds can be selected through option bytes.
During power-on, BOR keeps the device under reset until the supply voltage VDD reaches
the specified VBORx threshold:
•
When VDD drops below the selected threshold, a device reset is generated.
•
When VDD is above the VBORx upper limit, the device reset is released and the system
can start.
The devices feature an embedded PVD (programmable voltage detector) that monitors the
VDD power supply and compares it with the VPVD threshold. An interrupt can be generated
when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD
threshold. The interrupt service routine can then generate a warning message and/or put
the MCU into a safe state.
The PVD is enabled by software and can be configured to monitor the VDD supply level
needed for the sub-GHz radio operation. For this, the PVD must select its lowest threshold,
and the PVD and the wakeup must be enabled by the EWPVD bit in PWR_CR3 register.
Only a voltage drop below the PVD level generates a wakeup event.
In addition, the devices embed a PVM (peripheral voltage monitor) that compares the
independent supply voltage VDDA with a fixed threshold to ensure that the peripheral is in its
functional supply range.
Finally, a radio end-of-life monitor provides information on the VDD supply when VDD is too
low to operate the sub-GHz radio. When reaching the EOL level, the software must stop all
radio activity in a safe way.
3.10.3
Linear voltage regulator
Two embedded linear voltage regulators supply all the digital circuitries, except for the
Standby circuitry and the Backup domain. The main regulator (MR) output voltage (VCORE)
can be programmed by software to two different power ranges (range 1 and range 2), to
optimize the consumption depending on the system maximum operating frequency.
DS13293 Rev 5
29/150
52
Functional overview
STM32WL55/54xx
The voltage regulators are always enabled after a reset. Depending on the application
modes, the VCORE supply is provided either by the main regulator or by the low-power
regulator (LPR).
When MR is used, a dynamic voltage scaling is proposed to optimize power as follows:
•
range 1: high-performance range
The system clock frequency can be up to 48 MHz. The flash memory access time for
read access is minimum. Write and erase operations are possible.
•
range 2: low-power range
The system clock frequency can be up to 16 MHz.The flash memory access time for a
read access is increased as compared to range 1. Write and erase operations are
possible.
Note:
MR is supplied by VDD during power-on or at wakeup from Stop1, Stop2, Standby or
Shutdown mode. MR is powered by LDO/SMPS after these transition phases.
3.10.4
VBAT operation
The VBAT pin is used to power the device VBAT domain (RTC, LSE and backup registers)
from an external battery, an external super-capacitor, or from VDD when no external battery
nor an external super-capacitor are present. Three anti-tamper detection pins are available
in VBAT mode.
VBAT operation is automatically activated when VDD is not present.
An internal VBAT battery charging circuit is embedded and can be activated when VDD is
present.
Note:
When the microcontroller is supplied only from VBAT, external interrupts and RTC
alarm/events do not exit it from VBAT operation.
3.11
Low-power modes
The devices support several low-power modes to achieve the best compromise between
low-power consumption, short startup time, available peripherals and available wakeup
sources.
By default, the microcontroller is in Run mode, range 1, after a system or a power-on reset.
It is up to the user to select one of the low-power modes described below:
•
Sleep mode: CPU clock off, all peripherals including CPU core peripherals (among
them NVIC, SysTick) can run and wake up the CPU when an interrupt or an event
occurs.
•
Low-power run mode (LPRun): when the system clock frequency is reduced below
2 MHz. The code is executed from the SRAM or from the flash memory. The regulator
is in low-power mode to minimize the operating current.
•
Low-power sleep mode (LPSleep): entered from the LPRun mode.
•
Stop 0 and Stop 1 modes: the content of SRAM1, SRAM2 and of all registers is
retained. All clocks in the VCORE domain are stopped. PLL, MSI, HSI16 and HSE32 are
disabled. LSI and LSE can be kept running.
RTC can remain active (Stop mode with RTC, Stop mode without RTC). The sub-GHz
radio may remain active independently from the CPUs.
Some peripherals with the wakeup capability can enable HSI16 RC during the Stop
30/150
DS13293 Rev 5
STM32WL55/54xx
Functional overview
mode to detect their wakeup condition.
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller
wakeup time but a higher consumption compared with Stop 2.
In Stop 0 mode, the main regulator remains on, resulting in the fastest wakeup time but
with much higher consumption. The active peripherals and wakeup sources are the
same as in Stop 1 mode that uses the low-power regulator.
The system clock, when exiting Stop 0 or Stop 1 mode, can be either MSI up to 48 MHz
or HSI16, depending on the software configuration.
•
Stop 2 mode: part of the VCORE domain is powered off. Only SRAM1, SRAM2, CPUs
and some peripherals preserve their contents (see Table 8).
All clocks in the VCORE domain are stopped. PLL, MSI, HSI16 and HSE32 are disabled.
LSI and LSE can be kept running.
RTC can remain active (Stop 2 mode with RTC, Stop 2 mode without RTC). The
sub-GHz radio may also remain active independent from the CPUs.
Some peripherals with the wakeup capability can enable HSI16 RC during the Stop 2
mode to detect their wakeup condition (see Table 8).
The system clock when exiting from Stop 2 mode, can be either MSI up to 48 MHz or
HSI16, depending on the software configuration.
•
Standby mode: VCORE domain is powered off. However, it is possible to preserve the
SRAM2 content as detailed below:
–
Standby mode with SRAM2 retention when the RRS bit is set in the PWR control
register 3 (PWR_CR3). In this case, SRAM2 is supplied by the low-power
regulator.
–
Standby mode when the RRS bit is cleared in the PWR control register 3
(PWR_CR3). In this case the main regulator and the low-power regulator are
powered off.
All clocks in the VCORE domain are stopped. PLL, MSI, HSI16 and HSE32 are disabled.
LSI and LSE can be kept running.
Th RTC can remain active (Standby mode with RTC, Standby mode without RTC). The
sub-GHz radio and the PVD may also remain active when enabled independent from
the CPUs. In Standby mode, the PVD selects its lowest level.
The system clock, when exiting Standby modes, is MSI at 4 MHz.
•
Shutdown mode: VCORE domain is powered off. All clocks in the VCORE domain are
stopped. PLL, MSI, HSI16, LSI and HSE32 are disabled. LSE can be kept running. The
system clock when exiting the Shutdown mode, is MSI at 4 MHz. In this mode, the
supply voltage monitoring is disabled and the product behavior is not guaranteed in
case of a power voltage drop.
DS13293 Rev 5
31/150
52
Functional overview
STM32WL55/54xx
The table below summarizes the peripheral features over all available modes. Wakeup
capability is detailed in gray cells.
Table 8. Functionalities depending on system operating mode(1)
Wakeup capability
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
-
CPU1
Y
R
Y
R
R
-
R
-
R
-
-
-
-
-
-
CPU2
Y
R
Y
R
R
-
R
-
R
-
-
-
-
-
-
Sub-GHz radio system
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
(3)
R
-
R
-
R
-
R
-
R
-
R
O(2)
VBAT
-
Peripheral
Wakeup capability
LPSleep
Standby Shutdown
LPRun
Stop 2
Sleep
Stop 1
Run
Stop 0
Flash memory
(256 Kbytes)
Y
Flash memory interface
Y
Y
Y
Y
R
-
R
-
R
-
-
-
-
-
-
SRAM1
Y
O(2)
Y
O(2)
R
-
R
-
R
-
-
-
-
-
-
SRAM2
Y
O(2)
Y
O(2)
R
-
R
-
R
-
O(4)
-
-
-
-
Backup registers
Y
Y
Y
Y
R
-
R
-
R
-
R
-
R
-
R
Brownout reset (BOR)
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
-
-
Programmable voltage
detector (PVD)
O
O
O
O
O
O
O
O
O
O
-
-
-
Peripheral voltage monitor
(PVM3)
O
O
O
O
O
O
O
O
O
O
-
-
-
-
-
DMAx (x = 1, 2)
O
O
O
O
R
-
R
-
-
-
-
-
-
-
-
DMAMUX1
O
O
O
O
R
-
R
-
-
-
-
-
-
-
-
O
O(6)
-
(6)
-
-
-
-
-
-
-
(7)
-
-
-
-
High-speed internal (HSI16)
O
O(2) O(3)
O
O
(7)
O
(7)
O
-
O
(7)
O
-
O
(7)
O
O
High-speed external (HSE32)
O
O
Low-speed internal (LSI)
O
O
O
O
O
-
O
-
O
-
O
-
-
-
-
Low-speed external (LSE)
O
O
O
O
O
-
O
-
O
-
O
-
O
-
O
Multi-speed internal (MSI)
O
O
O
O
O
-
O
-
O
-
-
-
-
-
-
Clock security system (CSS)
O
O
O
O
R
-
R
-
-
-
-
-
-
-
-
Clock security system on LSE
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
RTC/auto wakeup
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Number of tamper pins
3
3
3
3
3
O
3
O
3
O
3
O
3
O
3
USARTx (x= 1, 2)
O
O
O
O
O(8) O(8) O(8) O(8)
-
-
-
-
-
-
-
Low-power UART (LPUART1)
O
O
O
O
O(8) O(8) O(8) O(8) O(8) O(8)
-
-
-
-
-
O
O(9)
O(9)
O(9)
O(9)
-
-
-
-
-
-
-
O
(9)
O(9)
O(9)
O(9)
O(9)
O(9)
-
-
-
-
-
I2Cx (x = 1, 2)
I2C3
32/150
O
O
O
O
O
(7)
(6)
O(5) O(5)
O
O
O
DS13293 Rev 5
STM32WL55/54xx
Functional overview
Table 8. Functionalities depending on system operating mode(1) (continued)
Wakeup capability
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
-
SPI1
O
O
O
O
R
-
R
-
-
-
-
-
-
-
-
SUBGHZSPI
O
O
O
O
R
-
R
-
-
-
-
-
-
-
-
SPI2S2
O
O
O
O
R
-
R
-
-
-
-
-
-
-
-
ADC
O
O
O
O
R
-
R
-
-
-
-
-
-
-
-
DAC
O
O
O
O
R
-
R
-
-
-
-
-
-
-
-
VREFBUF
O
O
O
O
O
-
O
-
R
-
-
-
-
-
-
COMPx (x = 1, 2)
O
O
O
O
O
O
O
O
O
O
-
-
-
-
-
Temperature sensor
O
O
O
O
R
-
R
-
-
-
-
-
-
-
-
TIMx (x = 1, 2, 16, 17)
O
O
O
O
R
-
R
-
-
-
-
-
-
-
-
LPTIM1
O
O
O
O
O
O
O
O
O
O
-
-
-
-
-
LPTIMx (x = 2, 3)
O
O
O
O
O
O
O
O
-
-
-
-
-
-
-
Independent watchdog
(IWDG)
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
Window watchdog (WWDG)
O
O
O
O
R
-
R
-
R
-
-
-
-
-
-
SysTick timer
O
O
O
O
R
-
R
-
R
-
-
-
-
-
-
O
O(1
0)
R
R
R
-
R
-
-
-
-
-
-
-
-
AES hardware accelerator
O
O
O
O
R
-
R
-
-
-
-
-
-
-
-
PKA hardware accelerator
O
O
O
O
R
-
R
-
-
-
-
-
-
-
-
CRC calculation unit
O
O
O
O
R
-
R
-
R
-
-
-
-
-
-
IPCC
O
R
O
R
R
-
R
-
R
-
-
-
-
-
-
HSEM
O
R
O
R
R
-
R
-
-
-
-
-
-
-
-
GTZC TZSC
O
R
O
R
R
-
R
-
R
-
-
-
-
-
-
GTZC TZIC
O
R
O
R
R
-
R
-
R
-
-
-
-
-
-
EXTI
O
O
O
O
R
O
R
O
R
O
-
-
-
-
-
R
3
pin
s
(13)
3
pins
-
True random number
generator (RNG)
GPIOs
(10)
O
O
O
O
O
O
O
O
O
O
(11)
(12)
(12)
VBAT
-
Peripheral
Wakeup capability
LPSleep
Standby Shutdown
LPRun
Stop 2
Sleep
Stop 1
Run
Stop 0
1. Legend: Y = Yes (enabled). O = Optional (disabled by default and can be enabled by software). R = data retained.
- = Not available. Gray cells indicate wakeup capability.
2. The SRAM clock can be gated on or off.
3. Flash memory can be placed in power-down mode.
DS13293 Rev 5
33/150
52
Functional overview
STM32WL55/54xx
4. The SRAM2 content can optionally be retained when the PWR_CR3.RRS bit is set.
5. Only when the sub-GHz radio is active.
6. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by
the peripheral, and only feeds the peripheral that requested it. HSI16 is automatically put off when the peripheral does not
need it anymore.
7. HSE32 can be used by sub-GHz radio system.
8. USART reception is functional in Stop 0 and Stop 1 modes. LPUART1 reception is functional is Stop 0, Stop 1, and Stop 2
modes. LPUART1 generates a wakeup interrupt on Start address match or received frame event.
9. I2Cx (x= 1, 2) address detection is functional in Stop 0 and Stop 1 modes. I2C3 address detection is functional in Stop 0,
Stop 1 and Stop 2 modes. I2C3 generates a wakeup interrupt in case of address match.
10. Voltage scaling range 1 only.
11. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
12. The I/Os with wakeup from Standby/Shutdown capability are PA0, PC13 and PB3.
13. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode, but the configuration is lost when
exiting the Shutdown mode.
Table 9. Low-power mode summary
Mode name
Entry
WFI or return
Sleep
(Sleep-now or from ISR
Sleep-on-exit) WFE
Any interrupt
Wakeup event
LPRun
Set LPR bit
Clear LPR bit
Any interrupt
LPSleep
Set LPR bit +
WFI or return
from ISR
Set LPR bit +
WFE
Wakeup event
Stop 0
LPMS = 0b000 +
SLEEPDEEP bit
+ WFI or return
from ISR or WFE
Stop 1
LPMS = 0b001 +
SLEEPDEEP bit
+ WFI or return
from ISR or WFE
Stop 2
(with I2C3,
LPUART1,
LPTIM1,
SRAM1,
SRAM2)
34/150
LPMS = 0b010+
SLEEPDEEP bit
+ WFI or return
from ISR or WFE
Wakeup
system clock
Wakeup
source(1)
Effect on clocks
Voltage
regulators
MR
LPR
CPU clock OFF
Same as before
entering Sleep mode No effect on other clocks
or analog clock sources
ON
ON
Same as LPRun
clock
None
OFF
ON
Same as before
entering LPSleep
mode
CPU clock OFF
No effect on other clocks
or analog clock sources
OFF
ON
OFF
ON
ON
Any EXTI line
(configured in the
EXTI registers).
Specific
peripherals
events
HSI16 when
STOPWUCK = 1 in
RCC_CFGR.
MSI with the
frequency before
entering the Stop
mode when
STOPWUCK = 0.
DS13293 Rev 5
All clocks OFF
except HSI16, LSI and
LSE
ON
OFF
STM32WL55/54xx
Functional overview
Table 9. Low-power mode summary (continued)
Mode name
Entry
Wakeup
source(1)
Wakeup
system clock
LPMS = 0b011+
Set RRS bit +
Standby (with
SLEEPDEEP bit
SRAM2)
+ WFI or return
from ISR or WFE
Standby
Shutdown
Wakeup PVD,
RFIRQ, wakeup
RFBUSY, WKUP
pin edge, RTC
and TAMP event, MSI 4 MHz
LPMS = 0b011 + LSECSS,
Clear RRS bit + external reset in
SLEEPDEEP bit NRST pin,
+ WFI or return
IWDG reset
from ISR or WFE
WKUP pin edge,
LPMS = 0b1xx +
RTC and TAMP
SLEEPDEEP bit
event, external
+ WFI or return
reset in NRST
from ISR or WFE
pin
MSI 4 MHz
Effect on clocks
Voltage
regulators
MR
LPR
OFF
ON
All clocks OFF
except LSI and LSE
OFF OFF
All clocks OFF
except LSE
OFF OFF
1. Refer to Table 8: Functionalities depending on system operating mode.
Relation between MCU and sub-GHz radio operating modes
The CPUs and sub-GHz radio have their own operating modes (see the table below).
Table 10. MCU and sub-GHz radio operating modes
CPU operating mode
Run, Sleep
LPRun, LPSleep
Stop 0
Stop 1 and Stop 2
Standby
Shutdown
Sub-GHz radio operating mode
Description
Sleep, Calibration, Standby, Active
(FS, TX, RX)(1)
LDO or SMPS regulator active, MCU running in
main regulator (MR) mode
Deep-Sleep
LDO and SMPS regulator off, MCU running in low
power regulator (LPR) mode
Sleep, Calibration, Standby, Active
(FS, TX, RX)
LDO or SMPS regulator active, MCU running in low
power regulator (LPR) mode
Sleep, Calibration, Standby, Active
(FS, TX, RX)(1)
LDO or SMPS regulator active, MCU running in
main regulator (MR) mode
Deep-Sleep
LDO and SMPS regulator off, MCU using low power
regulator (LPR) mode
Sleep, Calibration, Standby, Active
(FS, TX, RX)
LDO or SMPS regulator active, MCU using low
power regulator (LPR) mode
Deep-Sleep
LDO and SMPS regulator off, MCU regulator off or
on in low power (LPR) mode(2).
Sleep, Calibration, Standby, Active
(FS, TX, RX)
LDO or SMPS regulator active, MCU regulator off or
on in low power (LPR) mode(2)
Deep-Sleep(3)
LDO and SMPS regulator off, MCU regulator off
1. In the MCU Run, Sleep and Stop 0 modes, the sub-GHz radio is prevented from entering Deep-sleep mode.
2. When retaining SRAM2 in Standby mode, the MCU uses the low-power regulator (LPR) mode.
DS13293 Rev 5
35/150
52
Functional overview
STM32WL55/54xx
3. When the CPU is in Shutdown mode, the sub-GHz radio cannot be activated and is forced in Deep-sleep mode.
3.11.1
Reset mode
In order to improve the consumption under reset, the I/Os state under and after reset is
"analog state" (the I/O Schmitt trigger is disabled). In addition, the internal reset pull-up is
deactivated when the reset source is internal.
This excludes the five serial-wire JTAG debug ports that are in pull-up/pull-down after reset.
3.12
Peripheral interconnect matrix
Several peripherals have direct connections between them. This allows autonomous
communication between peripherals, saving CPU resources and, consequently, reducing
power-supply consumption. In addition, these hardware connections allow fast and
predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep, LPRun,
LPSleep, Stop 0, Stop 1 and Stop 2 modes.
Table 11. Peripherals interconnect matrix(1) (2)
TIM1
TIM2
TIM16
TIM17
LPTIM1
LPTIM2
LPTIM3
ADC
DAC
COMP1
COMP2
DMAMUX1
IRTIM
SUBGHZSPI
Destination
TIM1
-
X
-
-
-
-
-
X
X
X
X
-
-
-
TIM2
X
-
-
-
-
-
-
X
X
X
X
-
-
-
TIM16
-
-
-
-
-
-
-
-
-
-
-
-
X
-
TIM17
X
-
-
-
-
-
-
-
-
-
-
-
X
-
LPTIM1
-
-
-
-
-
-
X
-
X
-
-
X
-
-
LPTIM2
-
-
-
-
-
-
X
-
X
-
-
X
-
-
LPTIM3
-
-
-
-
-
-
-
-
-
-
-
X
-
X
ADC
X
-
-
-
-
-
-
-
-
-
-
-
-
Temperature
sensor
-
-
-
-
-
-
-
X
-
-
-
-
-
-
VBAT(3)
-
-
-
-
-
-
-
X
-
-
-
-
-
-
VREFINT
-
-
-
-
-
-
-
X
-
-
-
-
-
-
HSE32
-
-
-
X
-
-
-
-
-
-
-
-
-
-
LSE
-
X
X
-
-
-
-
-
-
-
-
-
-
-
MSI
-
-
-
X
-
-
-
-
-
-
-
-
-
-
LSI
-
-
X
-
-
-
-
-
-
-
-
-
-
-
MCO
-
-
-
X
-
-
-
-
-
-
-
-
-
-
Source
36/150
DS13293 Rev 5
STM32WL55/54xx
Functional overview
Table 11. Peripherals interconnect matrix(1) (2) (continued)
TIM1
TIM2
TIM16
TIM17
LPTIM1
LPTIM2
LPTIM3
ADC
DAC
COMP1
COMP2
DMAMUX1
IRTIM
SUBGHZSPI
Destination
GPIO EXTI
-
-
-
-
-
-
-
X
X
-
-
X
-
-
RTC
-
-
X
-
X
X
-
-
-
-
-
-
-
-
TAMP
-
-
-
-
X
X
-
-
-
-
-
-
-
-
COMP1
X
X
X
X
X
X
-
-
-
-
-
-
-
-
COMP2
X
X
X
X
X
X
-
-
-
-
-
-
-
-
SYST ERR
X
-
X
X
-
-
-
-
-
-
-
-
-
-
Source
1. For more details, refer to section “Interconnection details” of the reference manual.
2.
The “-” symbol in grayed cells means no interconnect.
3. VDD on STM32WL55/4UxYx devices.
3.13
Reset and clock controller (RCC)
The following different clock sources can be used to drive the system clock (SYSCLK):
•
HSI16 (high-speed internal) 16 MHz RC oscillator clock
•
MSI (multi-speed internal) RC oscillator clock from 100 kHz to 48 MHz
•
HSE32 (high-speed external) 32 MHz oscillator clock, with trimming capacitors.
•
PLL clock
The MSI is used as system clock source after startup from reset, configured at 4 MHz.
The devices have the following additional clock sources:
•
LSI: 32 kHz low-speed internal RC that may drive the independent watchdog and
optionally the RTC used for auto-wakeup from Stop and Standby modes.
•
LSE: 32.768 kHz low-speed external crystal that optionally drives the RTC used for
auto-wakeup from Stop, Standby and Shutdown modes, or the real-time clock
(RTCCLK).
Each clock source can be switched on or off independently when it is not used, to optimize
power consumption.
Several prescalers can be used to configure the AHB frequencies (HCLK3/PCLK3, HCLK1,
HCLK2), the high-speed APB2 (PCLK2) and the low-speed APB1 (PCLK1) domains. The
maximum frequency of the AHB (HCLK3, HCLK1, and HCLK2), the PCLK1 and the PCLK2
domains is 48 MHz.
DS13293 Rev 5
37/150
52
Functional overview
STM32WL55/54xx
Most peripheral clocks are derived from their bus clock (HCLK, PCLK) except the following:
•
•
The clock used for true RNG, is derived (selected by software) from one of the following
sources:
–
PLL VCO (PLLQCLK) (only available in Run mode)
–
MSI (only available in Run mode)
–
LSI clock
–
LSE clock
The ADC clock is derived (selected by software) from one of the following sources:
–
system clock (SYSCLK) (only available in Run mode)
–
HSI16 clock (only available in Run mode)
–
PLL VCO (PLLPCLK) (only available in Run mode)
•
The DAC uses the LSI clock in sample and hold mode
•
The (LP)U(S)ARTs clocks are derived (selected by software) from one of the following
sources:
–
system clock (SYSCLK) (only available in Run mode)
–
HSI16 clock (available in Run and Stop modes)
–
LSE clock (available in Run and Stop modes)
–
APB clock (PCLK depending on which APB the U(S)ART is mapped) (available in
CRun and CSleep when also enabled in (LP)U(S)ARTxSMEN)
The wakeup from Stop mode is supported only when the clock is HSI16 or LSE.
•
The I2Cs clocks are derived (selected by software) from one of the following sources:
–
system clock (SYSCLK) (only available in Run mode)
–
HSI16 clock (available in Run and Stop modes)
–
APB clock (PCLK depending on which APB the I2C is mapped) (available in CRun
and CSleep when also enabled in I2CxSMEN.)
The wakeup from Stop mode is supported only when the clock is HSI16.
•
•
The SPI2S2 I2S clock is derived (selected by software) from one of the following
sources:
–
HSI16 clock (only available in Run mode)
–
PLL VCO (PLLQCLK) (only available in Run mode)
–
external input I2S_CK (available in Run and Stop modes)
The low-power timers (LPTIMx) clock is derived (selected by software) from one of the
following sources:
–
LSI clock (available in Run and Stop modes)
–
LSE clock (available in Run and Stop modes)
–
HSI16 clock (only available in Run mode)
–
APB clock (PCLK depending on which APB the LPTIMx is mapped) (available in
Run and CStop when enabled in LPTIMxSMEN.)
–
external clock mapped on LPTIMx_IN1 (available in Run and Stop modes)
The functionality in Stop mode (including wakeup) is supported only when the clock is
LSI or LSE, or in external clock mode.
38/150
DS13293 Rev 5
STM32WL55/54xx
•
Functional overview
The RTC clock is derived (selected by software) from one of the following sources:
–
LSE clock
–
LSI clock
–
HSE32 clock divided by 32
The functionality in Stop mode (including wakeup) is supported only when the clock is
LSI or LSE.
•
The IWDG clock is always the LSI clock.
The RCC feeds the CPU1 system timer (SysTick) external clock with the AHB clock
(HCLK1) divided by eight. The SysTick can work either with this clock or directly with the
CPU1 clock (HCLK1), configurable in the SysTick control and status register.
FCLK1 acts as CPU1 free-running clock. For more details, refer to the programming manual
STM32 Cortex-M4 MCUs and MPUs programming manual (PM0214).
The RCC feeds the CPU2 system timer (SysTick) external clock with the AHB clock
(HCLK2) divided by eight. The SysTick can work either with this clock or directly with the
CPU2 clock (HCLK2), configurable in the SysTick control and status register.
FCLK2 acts as CPU2 free-running clock.
DS13293 Rev 5
39/150
52
Functional overview
STM32WL55/54xx
Figure 9. Clock tree
LSIPRE
/1,128
LSI RCC 32 kHz
to IWDG
LSCO
OSC32_OUT
LSI
LSE OSC
32.768 kHz
LSE
to RTC
OSC32_IN
LSE CSS
LSI
LSE
CPU1
HPRE
/1,2,...,512
/32
HSE32
to CPU1, AHB1, AHB2
HCLK1
to CPU1 FCLK
SYSCLK
MCO
to CPU1 system timer
/8
PLLRCLK
/1 - 16
PLLQCLK
APB1
PPRE1
/1,2,4,8,16
SYS clock
source
control
PLLPCLK
PCLK1
x1 or
x2
to APB1
to APB1 TIMx
HSI16
PLLRCLK
APB2
PPRE2
/1,2,4,8,16
MSI
OSC_OUT
OSC_IN
HSE32 OSC
32 MHz
MSI
SYSCLK
HSE CSS
HSE32 HSEPRE
/1,2
HSI16 RC
16 MHz
CPU2
C2HPRE
1,2,...,512
PCLK2
x1 or
x2
to APB2
to APB2 TIMx
to CPU2
HCLK2
to CPU2 FCLK
HSI16
to CPU2 system timer
/8
MSI RC
100 kHz - 48 MHz
AHB3
SHDHPRE
/1,2,...,512
MSI
to AHB3, Flash, SRAM1, SRAM2
HCLK3
PCLK3
to APB3
HSI16
/M
to RF
PCLKn
PCLKn
HSI16
SYSCLK
SYSCLK
PLL
xN
to ADC
HSI16
/P
/Q
PLLPCLK
LSE
PLLQCLK
to SPI2S2
LSE
to LPTIM1
to LPTIM2
to LPTIM3
LSE
to RNG
SYSCLK
PLLRCLK
I2S_CKIN
LSI
PCLKn
LSI
HSI16
/R
HSI16
to USART1
to USART2
to LPUART1
MSI
HSI16
LSI
DAC
to I2C1
to I2C2
to I2C3
MSv62604V2
1. The ADC clock can additionally be derived from the AHB clock of the ADC bus interface, divided by a programmable factor
(1, 2 or 4). When the programmable factor is 1, the AHB prescaler must be equal to 1.
3.14
Hardware semaphore (HSEM)
The HSEM provides a 16- (32-bit) register based semaphores. The semaphores can be
used to ensure synchronization between different processes running between different
cores. The HSEM provides a non blocking mechanism to lock semaphores in an atomic
way. The following functions are provided:
•
•
40/150
Locking a semaphore can be done in two ways:
–
2-step lock: by writing COREID and PROCID to the semaphore, followed by a
read check
–
1-step lock: by reading the COREID from the semaphore
Interrupt generation when a semaphore is unlocked: Each semaphore may generate
an interrupt on one of the interrupt lines.
DS13293 Rev 5
STM32WL55/54xx
3.15
Functional overview
•
Semaphore clear protection: A semaphore is only unlocked when COREID and
PROCID match.
•
Global semaphore clear per COREID
Inter-processor communication controller (IPCC)
The IPCC is used for communicating data between two processors.
The IPCC block provides a non blocking signaling mechanism to post and retrieve
communication data in an atomic way. It provides the signaling for twelve channels:
•
six channels in the direction from processor 1 to processor 2
•
six channels in the opposite direction
It is then possible to have two different communication types in each direction.
The IPCC communication data must be located in a common memory, that is not part of the
IPCC block.
3.16
General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be
achieved thanks to their mapping on the AHB2 bus.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
3.17
Direct memory access controller (DMA)
The DMA (direct memory access) is used to provide high-speed data transfer between
peripherals and memory, as well as memory to memory. Data can be quickly moved by
DMA without any CPU actions. This keeps CPU resources free for other operations.
The DMA controller has 14 channels in total. A full cross matrix allows the peripherals, with
DMA support, to be mapped on any of the available DMA channels. Each DMA channel has
an arbiter for handling the priority between DMA requests.
The DMA main features are listed below:
•
14 independently configurable channels (requests)
•
a full cross matrix between peripherals and all 14 channels and an hardware trigger
possibility through the DMAMUX1
•
software programmable priorities between requests from channels of one DMA (four
levels: very-high, high, medium, low), plus hardware priorities management in case of
equality (example: request 1 has priority over request 2)
•
independent source and destination transfer size (byte, half-word, word), emulating
packing and unpacking. Source/destination addresses must be aligned on the data
size.
•
support for circular buffer management
DS13293 Rev 5
41/150
52
Functional overview
STM32WL55/54xx
•
three event flags (DMA half-transfer, DMA transfer complete and DMA transfer error),
logically ORed together in a single interrupt request for each channel
•
memory-to-memory transfer
•
peripheral-to-memory, memory-to-peripheral, and peripheral-to-peripheral transfers
•
access to flash memory, SRAM, APB and AHB peripherals, as source and destination
•
programmable number of data to be transferred (up to 65536)
•
secure and privileged support per channel level configuration
Table 12. DMA1 and DMA2 implementation
Feature
Number of channels
DMA1
DMA2
7
7
DMAMUX1 is used to route the peripherals with DMA source support, to any DMA channel.
3.18
Interrupts and events
3.18.1
Nested vectored interrupt controller (NVIC)
The devices embed an NIVC able to manage 16 priority levels, and to handle up to
62 maskable interrupt channels plus the 16 interrupt lines of the Cortex-M4.
The device also embeds an NVIC able to manage four priority levels, and handles up to
32 maskable interrupt channels plus the 16 interrupt lines of the Cortex-M0+.
The NVIC benefits are the following:
•
low-latency interrupt processing
•
interrupt entry vector table address passed directly to the core
•
early processing of interrupts
•
processing of late-arriving higher-priority interrupts
•
support for tail chaining
•
processor state automatically saved
•
interrupt entry restored on interrupt exit, with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal
interrupt latency.
3.18.2
Extended interrupt/event controller (EXTI)
The EXTI manages wakeup through configurable and direct event inputs. It provides wakeup requests to the power control, and generates interrupt requests to the CPU1/2 NVIC and
events to the CPU1/2 event input.
Configurable events/interrupts come from peripherals that are able to generate a pulse and
allow the selection between the event/interrupt trigger edge and a software trigger.
Direct events/interrupts come from peripherals having their own clearing mechanism.
42/150
DS13293 Rev 5
STM32WL55/54xx
3.19
Functional overview
Cyclic redundancy check (CRC)
The CRC calculation unit is used to get a CRC code from 8-, 16- or 32-bit data word and a
generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the functional safety standards, they offer a means of
verifying the flash memory integrity. The CRC calculation unit helps to compute a signature
of he software during runtime, to be compared with a reference signature generated at link
time and stored at a given memory location.
3.20
Analog-to-digital converter (ADC)
A native 12-bit ADC is embedded into the devices. It can be extended to 16-bit resolution
through hardware oversampling. The ADC has up to 12 external channels and four internal
channels (temperature sensor, voltage reference, VBAT(a) monitoring, DAC output). The
ADC performs conversions in single-shot or scan mode. In scan mode, automatic
conversion is performed on a selected group of analog inputs.
The ADC frequency is independent from the CPU1/2 frequency, allowing maximum
sampling rate of ~2 Msps even with a low CPU speed. An auto-shutdown function
guarantees that the ADC is powered off except during the active conversion phase.
The ADC can be served by the DMA controller. It can operate in the whole VDD supply
range.
The ADC features a hardware oversampler up to 256 samples, improving the resolution to
16 bits. Refer to the application note Improving STM32F1 Series, STM32F3 Series and
STM32Lx Series ADC resolution by oversampling (AN2668).
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all scanned channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the general-purpose timers (TIMx) can be internally connected to
the ADC start triggers, to allow the application to synchronize A/D conversions with timers.
3.20.1
Temperature sensor
The temperature sensor (TS) generates a VTS voltage that varies linearly with temperature.
The temperature sensor is internally connected to the ADC VIN[12] input channel, to
convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor may
vary from part to part due to process variation, the uncalibrated internal temperature sensor
is suitable only for relative temperature measurements.
To improve the accuracy of the temperature sensor, each part is individually factorycalibrated by ST. The resulting calibration data is stored in the device engineering bytes,
accessible in read-only mode.
a. VDD on STM32WL55/54UxYx devices.
DS13293 Rev 5
43/150
52
Functional overview
STM32WL55/54xx
Table 13. Temperature sensor calibration values
Calibration value
name
3.20.2
Description
Memory address
TS_CAL1
TS ADC raw data acquired at 30 °C (± 5 °C),
VDDA = VREF+ = 3.3 V (± 10 mV)
0x1FFF 75A8 - 0x1FFF 75A9
TS_CAL2
TS ADC raw data acquired at 130 °C (± 5 °C),
VDDA = VREF+ = 3.3 V (± 10 mV)
0x1FFF 75C8 - 0x1FFF 75C9
Internal voltage reference (VREFINT)
VREFINT provides a stable (bandgap) voltage output for the ADC and comparators. VREFINT
is internally connected to the ADC VIN[13] input channel.
VREFINT is individually and precisely measured, for each part, by ST, during production test
and stored in the device engineering bytes. It is accessible in read-only mode.
Table 14. Internal voltage reference calibration values
Calibration value name
VREFINT_CAL
3.20.3
Description
Raw data acquired at 30 °C (± 5 °C),
VDDA = VREF+ = 3.3 V (± 10 mV)
Memory address
0x1FFF 75AA - 0x1FFF 75AB
VBAT battery voltage monitoring
This embedded hardware feature allows the application to measure the VBAT(a) battery
voltage using the ADC VIN[14] input channel. As VBAT may be higher than VDDA, and thus
outside the ADC input range, the VBAT pin is internally connected to a bridge divider by
three. As a consequence, the converted digital value is one third the VBAT voltage.
3.21
Digital-to-analog converter (DAC)
The 1-channel 12-bit buffered DAC converts a digital value into an analog voltage available
on the channel output. The architecture of each channel is based on an integrated resistor
string and an inverting amplifier. The digital circuitry is common for both channels.
DAC main features:
•
1 DAC output channel
•
8-bit or 12-bit output mode
•
buffer offset calibration (factory and user trimming)
•
left or right data alignment in 12-bit mode
•
synchronized update capability
•
noise-wave generation
•
triangular-wave generation
•
independent or simultaneous conversion for DAC channels
a. VDD on STM32WL55/54UxYx devices.
44/150
DS13293 Rev 5
STM32WL55/54xx
Functional overview
•
DMA capability for either DAC channel
•
triggering with timer events, synchronized with DMA
•
triggering with external events
Sample-and-hold low-power mode, with internal or external capacitor
3.22
Voltage reference buffer (VREFBUF)
The devices embed a voltage reference buffer that can be used as voltage reference for
ADC, and also as voltage reference for external components through the VREF+ pin.
VREFBUF supports two voltages: 2.048 V and 2.5 V.
An external voltage reference can be provided through the VREF+ pin when VREFBUF
is off.
3.23
Comparator (COMP)
The devices embed two rail-to-rail comparators with programmable reference voltage
(internal or external), hysteresis and speed (low speed for low-power) and with selectable
output polarity.
The reference voltage can be one of the following:
•
external I/O
•
internal reference voltage or submultiple (1/4, 1/2, 3/4)
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers,
and can be also combined into a window comparator.
3.24
True random number generator (RNG)
The devices embed a true RNG that delivers 32-bit random numbers generated by an
integrated analog circuitry.
The RNG is a true random number generator that provides full entropy outputs to the
application as 32-bit samples. It is composed of a live entropy source (analog) and an
internal conditioning component.
3.25
Advanced encryption standard hardware accelerator (AES)
The AES encrypts or decrypts data, using an algorithm and implementation fully compliant
with the advanced encryption standard (AES) defined in FIPS (federal information
processing standards) publication 197.
Multiple chaining modes are supported (ECB, CBC, CTR, GCM, GMAC, CCM), for key
sizes of 128 or 256 bits. The AES supports DMA single transfers for incoming and outgoing
data (two DMA channels required).
DS13293 Rev 5
45/150
52
Functional overview
3.26
STM32WL55/54xx
Public key accelerator (PKA)
The PKA is used to compute cryptographic public key primitives, specifically those related to
RSA (Rivest, Shamir and Adleman), Diffie-Hellmann or ECC (elliptic curve cryptography)
over GF(p) (Galois fields). These operations are executed in the Montgomery domain.
3.27
Timer and watchdog
The devices include one advanced 16-bit timer, one general-purpose 32-bit timer, two 16-bit
basic timers, three low-power timers, two watchdog timers and a SysTick timer.
The table below compares the features of the advanced control, general purpose and basic
timers.
Table 15. Timer features
Timer type
Timer
name
Counter
resolution
(bits)
Advanced
control
TIM1
16
TIM2
32
General
purpose
Counter
type
Prescaler
factor
Up, down
and
up/down
TIM16
TIM17
Capture/
compare
channels
4
Complementary
outputs
3
NA
Any integer
between
1 and 65536
16
DMA
request
generation
Yes
2
Up
1
Low power
LPTIM1
LPTIM2
LPTIM3
3.27.1
Advanced-control timer (TIM1)
1
The advanced-control timer TIM1 can be seen as a three-phase PWM multiplexed on six
channels. Each channel has complementary PWM outputs with programmable inserted
dead-times. Each channel can also be seen as complete general-purpose timers.
The four independent channels can be used for:
•
input capture
•
output compare
•
PWM generation (edge or center-aligned modes) with full modulation capability
(0 - 100 %)
•
one-pulse mode output
In debug mode, the TIM1 counter can be frozen and the PWM outputs disabled to turn off
any power switches driven by these outputs.
Many features are shared with those of the general-purpose timers (described in the next
section) using the same architecture. TIM1 can then work together with TIM2 via the
peripheral interconnect matrix, for synchronization or event chaining.
46/150
DS13293 Rev 5
STM32WL55/54xx
3.27.2
Functional overview
General-purpose timers (TIM2, TIM16, TIM17)
Each general-purpose timer can be used to generate PWM outputs, or act as a simple time
base.
TIM2 main features:
•
full-featured general-purpose timer
•
four independent channels for input capture/output compare, PWM or one-pulse mode
output
•
counter that can be frozen in debug mode
•
independent DMA request generation, support of quadrature encoders
TIM16 and TIM17 main features:
3.27.3
•
general-purpose timers with mid-range features
•
16-bit auto-reload upcounters and 16-bit prescalers
•
1 channel and 1 complementary channel
•
channels that can all be used for input capture/output compare, PWM or one-pulse
mode output
•
counter that can be frozen in debug mode
•
independent DMA request generation
Low-power timers (LPTIM1, LPTIM2 and LPTIM3)
These low-power timers have an independent clock and run in Stop mode if they are
clocked by LSE, LSI, or by an external clock. They are able to wake up the system from
Stop mode.
LPTIM1 is active in Stop 0, Stop 1 and Stop 2 modes.
LPTIM2 and LPTIM3 are active in Stop 0 and Stop 1 modes.
LPTIM1/2/3 main features:
3.27.4
•
16-bit up counter with 16-bit autoreload register
•
16-bit compare register
•
configurable output: pulse, PWM
•
continuous/one-shot mode
•
selectable software/hardware input trigger
•
selectable clock source
•
internal clock sources: LSE, either LSI, HSI16 or APB clock
•
external clock source over LPTIM input (works even with no internal clock source
running, used by pulse counter application)
•
programmable digital glitch filter
•
encoder mode (LPTIM1 only)
Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and a 8-bit prescaler. The
IWDG is clocked from an independent 32 kHz internal RC (LSI). As the IWDG operates
independently from the main clock, it can operate in Stop and Standby modes.
DS13293 Rev 5
47/150
52
Functional overview
STM32WL55/54xx
The IWDG can be used either as a watchdog to reset the device when a problem occurs, or
as a free running timer for application timeout management. The IWDG is hardware or
software configurable through the option bytes. The counter can be frozen in debug mode.
3.27.5
System window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free running. The
WWDG can be used as a watchdog to reset the device when a problem occurs.
The WWDG is clocked from the main clock and has an early warning interrupt capability.
The counter can be frozen in debug mode.
3.27.6
SysTick timer
This timer is dedicated to real-time operating systems, but can also be used as a standard
down counter.
SysTick timer main features:
3.28
•
24-bit down counter
•
autoreload capability
•
maskable system interrupt generation when the counter reaches 0
•
programmable clock source
Real-time clock (RTC), tamper and backup registers
The RTC is an independent BCD timer/counter. The RTC provides a time-of-day
clock/calendar with programmable alarm interrupts.
As long as the supply voltage remains in the operating range, the RTC never stops,
regardless of the device status (Run mode, low-power mode or under reset).
The RTC provides an automatic wakeup to manage all low-power modes.
The RTC is functional in VBAT mode.
Twenty 32-bit backup registers are retained in all low-power modes and also in VBAT mode.
These registers can be used to store sensitive data as their content is protected by a tamper
detection circuit.
Three tamper pins and four internal tampers are available for anti-tamper detection. The
external tamper pins can be configured for edge or level detection with or without filtering.
3.29
Inter-integrated circuit interface (I2C)
The device embeds three I2Cs, with features implementation listed in the he table below.
The I2C bus interface handles communications between the microcontroller and the serial
I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
•
48/150
I2C bus specification and user manual rev. 5 compatibility:
–
slave and master modes, multimaster capability
–
Standard-mode (Sm), with a bitrate up to 100 Kbit/s
DS13293 Rev 5
STM32WL55/54xx
•
Functional overview
–
Fast-mode (Fm), with a bitrate up to 400 Kbit/s
–
Fast-mode plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
–
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
–
programmable setup and hold times
–
clock stretching (optional)
SMBus (system management bus) specification rev 2.0 compatibility:
–
hardware PEC (packet error checking) generation and verification with ACK
control
–
address resolution protocol (ARP) support
–
SMBus alert
•
PMBus (power system management protocol) specification rev 1.1 compatibility
•
independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming (see Figure 9)
•
wakeup from Stop mode on address match
•
programmable analog and digital noise filters
•
1-byte buffer with DMA capability
Table 16. I2C implementation
I2C features(1)
I2C1(2)
I2C2(2)
I2C3
7-bit addressing mode
X
X
X
10-bit addressing mode
X
X
X
Standard-mode (up to 100 Kbit/s)
X
X
X
Fast-mode (up to 400 Kbit/s)
X
X
X
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)
X
X
X
Independent clock
X
X
X
X(3)
X(3)
X(4)
X
X
X
Wakeup from Stop mode
SMBus/PMBus
1. X = supported.
2. The register content is lost in Stop 2 mode.
3. Wakeup supported from Stop 0 and Stop 1 modes.
4. Wakeup supported from Stop 0, Stop 1 and Stop 2 modes.
3.30
Universal synchronous/asynchronous receiver transmitter
(USART/UART)
The devices embed two universal synchronous receiver transmitters, USART1 and
USART2 (see Table 17 for the implementation details).
Each USART provides asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode. Each
USART has LIN Master/Slave capability and provides hardware management of the CTS
and RTS signals, and RS485 driver enable.
DS13293 Rev 5
49/150
52
Functional overview
STM32WL55/54xx
The USART is able to communicate at speeds of up to 4 Mbit/s, and also provides
Smart Card mode (ISO 7816 compliant) and SPI-like communication capability.
The USART supports synchronous operation (SPI mode), and can be used as an SPI
master.
The USART has a clock domain independent from the CPU clock, allowing the USART to
wake up the MCU from Stop mode, using baudrates up to 200 kbaud.
The wakeup events from Stop mode are programmable and can be one of the following:
•
start bit detection
•
any received data frame
•
a specific programmed data frame
The USART interface can be served by the DMA controller.
3.31
Low-power universal asynchronous receiver transmitter
(LPUART)
The devices embed one low-power UART (LPUART1) that enables asynchronous serial
communication with minimum power consumption. The LPUART supports half-duplex
single-wire communication and modem operations (CTS/RTS), allowing multiprocessor
communication.
The LPUART has a clock domain independent from the CPU clock, and can wake up the
system from Stop mode using baudrates up to 220 Kbaud. The wakeup events from Stop
mode are programmable and can be one of the following:
•
start bit detection
•
any received data frame
•
a specific programmed data frame
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to
9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame
while having an extremely low-energy consumption. Higher speed clock can be used to
reach higher baudrates.
The LPUART interface can be served by the DMA controller.
Table 17. USART/LPUART features
USART modes/features(1)
50/150
USART1/2
LPUART1
Hardware flow control for modem
X
X
Continuous communication using DMA
X
X
Multiprocessor communication
X
X
Synchronous mode (Master/Slave)
X
-
Smartcard mode
X
-
Single-wire half-duplex communication
X
X
IrDA SIR ENDEC block
X
-
LIN mode
X
-
DS13293 Rev 5
STM32WL55/54xx
Functional overview
Table 17. USART/LPUART features (continued)
USART modes/features(1)
USART1/2
LPUART1
Dual clock domain and wakeup from low-power mode
X
X
Receiver timeout interrupt
X
-
Modbus communication
X
-
Auto baud rate detection
X
-
Driver enable
X
X
USART data length
7, 8 and 9 bits
Tx/Rx FIFO
X
Tx/Rx FIFO size
X
8
1. X = supported.
3.32
Serial peripheral interface (SPI)/integrated-interchip sound
interface (I2S)
The SPI/I2S interface can be used to communicate with external devices using the SPI
protocol or the I2S audio protocol. SPI or I2S mode is selectable by software. SPI Motorola®
mode is selected by default after a device reset.
The SPI protocol supports half-duplex, full-duplex and simplex synchronous, serial
communication with external devices. The SPI interface can be configured as master and, in
this case, it provides the communication clock (SCK) to the external slave device. The SPI
interface can also operate in multimaster configuration.
The I2S protocol is also a synchronous serial communication interface. It can operate in
slave or master mode with half-duplex communication. It can address four different audio
standards including the Philips I2S standard, the MSB- and LSB-justified standards and the
PCM standard.
Table 18. SPI and SPI/I2S implementation(1)
Features
SPI1
Enhanced NSSP and TI modes
SPI2S2
SUBGHZSPI
Yes
Hardware CRC calculation
Yes
Yes
No
I2S support
No
Yes
No
Data size configurable (bits)
from 4 to 16
Rx/Tx FIFO size (bits)
32
Wakeup capability from LPSleep
Yes
1. The SPI1 and SPI2S2 instances are general purpose type while the SUBGHZSPI instance is dedicated for
Sub-GHz radio control exclusively. Radio is controlled internally through SUBGHZSPI and, for debug
purpose only, from the external.
DS13293 Rev 5
51/150
52
Functional overview
3.33
STM32WL55/54xx
Development support
Serial-wire JTAG debug port (SWJ-DP)
The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial-wire debug
port, that enables either a serial-wire debug or a JTAG probe to be connected to the target.
The debug is performed using only two pins instead of the five required by the JTAG (JTAG
pins can then be reused as GPIOs with alternate function). The JTAG TMS and TCK pins
are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin
is used to switch between JTAG-DP and SW-DP.
52/150
DS13293 Rev 5
STM32WL55/54xx
Pinouts, pin description and alternate functions
VSSSMPS
VLXSMPS
VDDSMPS
VFBSMPS
VDD
PA15
PA14
VDDA
PC15-OSC32_OUT
PC14-OSC32_IN
PC13
VBAT
48
47
46
45
44
43
42
41
40
39
38
37
Figure 10. UFQFPN48 pinout
PB3
1
36
PA13
PB4
2
35
PA12
PB5
3
34
PA11
PB6
4
33
PA10
PB7
5
32
PB12
PB8
6
31
PB2
PA0
7
30
PB0-VDD_TCXO
PA1
8
29
VDDRF1V55
PA2
9
28
VDDRF
PA3
10
27
OSC_OUT
VDD
11
26
OSC_IN
PA4
12
25
VDDPA
13
14
15
16
17
18
19
20
21
22
23
24
PA6
PA7
PA8
PA9
NRST
PH3-BOOT0
RFI_P
RFI_N
RFO_LP
RFO_HP
VR_PA
UFQFPN48
PA5
4
Pinouts, pin description and alternate functions
MSv48144V4
1. The above figure shows the package top view.
2. The exposed pad must be connected to the ground plain.
DS13293 Rev 5
53/150
64
Pinouts, pin description and alternate functions
STM32WL55/54xx
Figure 11. UFBGA73 pinout
1
2
A
VSSSMPS
VDDSMPS
B
VLXSMPS
VFBSMPS
C
PB3
D
3
4
5
6
7
8
9
PA14
VDDA
VDD
VBAT
PA12
PA15
PB15
VREF+
PC14OSC32_IN
VSS
PA13
PA11
PB4
PB7
PB9
PC15OSC32
_OUT
PB14
PC13
PA10
PB5
PB8
PC2
PC3
PA0
PB13
PB2
VSS
VDD
E
PB6
VDD
VSS
PC5
PA9
PB12
PB1
VDDRF
F
PC1
PC0
PC4
PA6
NRST
PB0VDD_TCXO
VDDRF
1V55
OSC_OUT
PC6
PA1
PB11
VSS
VSSRF
VSSRF
VSSRF
OSC_IN
PB10
VDD
VSSRF
RFI_N
VDDPA
VR_PA
PH3BOOT0
RFI_P
RFO_LP
RFO_HP
G
H
PA3
PA2
PA7
J
PA4
PA5
PA8
MSv48145V4
1. The above figure shows the package top view.
Table 19. Legend/abbreviations used in the pinout table
Name
Pin name
Pin type
Abbreviation
Unless otherwise specified in brackets below the pin name, the pin function during and
after reset is the same as the actual pin name
S
Supply pin
I
Input only pin
I/O
Input / output pin
O
Output only pin
FT
5 V tolerant I/O
RF
Radio RF pin
TT
3 V tolerant I/O
I/O structure
54/150
Definition
Option for FT I/Os
_f
I/O, Fm+ capable
_a
I/O, with Analog switch function supplied by VDDA
DS13293 Rev 5
STM32WL55/54xx
Pinouts, pin description and alternate functions
Table 19. Legend/abbreviations used in the pinout table (continued)
Name
Abbreviation
Unless otherwise specified by a note, all I/Os are set as analog inputs during and after
reset.
Notes
Pin
functions
Definition
Alternate
functions
Functions selected through GPIOx_AFR registers
Additional
functions
Functions directly selected/enabled through peripheral registers
Table 20. STM32WL55/54xx pin definition
1
2
C1
C2
VSS
S
PB3
PB4
I/O
I/O
Notes
-
I/O structure
UFBGA73
-
Pin name
(function after
reset)
Pin type
UFQFPN48
Pin number
Alternate functions
Additional functions
-
-
-
-
-
JTDO/TRACESWO, TIM2_CH2,
SPI1_SCK, RF_IRQ0,
USART1_RTS,
DEBUG_RF_DTB1,
CM4_EVENTOUT
COMP1_INM,
COMP2_INM,
ADC_IN2,
TAMP_IN3/WKUP3
-
NJTRST, I2C3_SDA,
SPI1_MISO, USART1_CTS,
COMP1_INP,
DEBUG_RF_LDORDY,
COMP2_INP, ADC_IN3
TIM17_BKIN, CM4_EVENTOUT
-
FT_a
FT_fa
3
D2
PB5
I/O
FT_a
-
LPTIM1_IN1, I2C1_SMBA,
SPI1_MOSI, RF_IRQ1,
USART1_CK, COMP2_OUT,
TIM16_BKIN, CM4_EVENTOUT
-
E3
VSS
S
-
-
-
-
-
E2
VDD
S
-
-
-
-
4
E1
PB6
I/O
FT_f
-
LPTIM1_ETR, I2C1_SCL,
USART1_TX, TIM16_CH1N,
CM4_EVENTOUT
-
-
5
C3
PB7
I/O
FT_f
-
LPTIM1_IN2, TIM1_BKIN,
I2C1_SDA, USART1_RX,
TIM17_CH1N,
CM4_EVENTOUT
6
D3
PB8
I/O
FT_f
-
TIM1_CH2N, I2C1_SCL,
RF_IRQ2, TIM16_CH1,
CM4_EVENTOUT
-
-
C4
PB9
I/O
FT_f
-
TIM1_CH3N, I2C1_SDA,
SPI2_NSS/I2S2_WS, IR_OUT,
TIM17_CH1, CM4_EVENTOUT
-
DS13293 Rev 5
55/150
64
Pinouts, pin description and alternate functions
STM32WL55/54xx
Table 20. STM32WL55/54xx pin definition (continued)
PC0
I/O
Notes
F2
I/O structure
UFBGA73
-
Pin name
(function after
reset)
Pin type
UFQFPN48
Pin number
Alternate functions
Additional functions
FT_f
-
LPTIM1_IN1, I2C3_SCL,
LPUART1_RX, LPTIM2_IN1,
CM4_EVENTOUT
-
-
-
F1
PC1
I/O
FT_f
-
LPTIM1_OUT,
SPI2_MOSI/I2S2_SD,
I2C3_SDA, LPUART1_TX,
CM4_EVENTOUT
-
D4
PC2
I/O
FT
-
LPTIM1_IN2, SPI2_MISO,
CM4_EVENTOUT
-
-
-
D5
PC3
I/O
FT
-
LPTIM1_ETR,
SPI2_MOSI/I2S2_SD,
LPTIM2_ETR,
CM4_EVENTOUT
-
F3
PC4
I/O
FT
-
CM4_EVENTOUT
-
-
E4
PC5
I/O
FT
-
CM4_EVENTOUT
-
-
G2
PC6
I/O
FT
-
I2S2_MCK, CM4_EVENTOUT
-
-
TIM2_CH1, I2C3_SMBA,
I2S_CKIN, USART2_CTS,
COMP1_OUT,
DEBUG_PWR_REGLP1S,
TIM2_ETR, CM4_EVENTOUT
TAMP_IN2/WKUP1
-
TIM2_CH2, LPTIM3_OUT,
I2C1_SMBA, SPI1_SCK,
USART2_RTS, LPUART1_RTS,
DEBUG_PWR_REGLP2S,
CM4_EVENTOUT
-
LSCO
7
8
D6
G3
PA0
PA1
I/O
I/O
FT_a
FT_a
9
H2
PA2
I/O
FT_a
-
LSCO, TIM2_CH3,
USART2_TX, LPUART1_TX,
COMP2_OUT,
DEBUG_PWR_LDORDY,
CM4_EVENTOUT
10
H1
PA3
I/O
FT_a
-
TIM2_CH4, I2S2_MCK,
USART2_RX, LPUART1_RX,
CM4_EVENTOUT
-
-
G5
VSS
S
-
-
-
-
11
H5
VDD
S
-
-
-
-
56/150
DS13293 Rev 5
STM32WL55/54xx
Pinouts, pin description and alternate functions
Table 20. STM32WL55/54xx pin definition (continued)
13
14
15
16
17
J1
J2
F4
H3
J3
E5
PA4
PA5
PA6
PA7
PA8
PA9
I/O
I/O
I/O
I/O
I/O
I/O
I/O structure
Pin type
Pin name
(function after
reset)
FT
FT
FT
FT_fa
FT_a
FT_fa
Notes
12
UFBGA73
UFQFPN48
Pin number
Alternate functions
Additional functions
-
RTC_OUT2, LPTIM1_OUT,
SPI1_NSS, USART2_CK,
DEBUG_SUBGHZSPI_
NSSOUT, LPTIM2_OUT,
CM4_EVENTOUT
-
-
TIM2_CH1, TIM2_ETR,
SPI2_MISO, SPI1_SCK,
DEBUG_SUBGHZSPI_
SCKOUT, LPTIM2_ETR,
CM4_EVENTOUT
-
-
TIM1_BKIN, I2C2_SMBA,
SPI1_MISO, LPUART1_CTS,
DEBUG_SUBGHZSPI_
MISOOUT, TIM16_CH1,
CM4_EVENTOUT
-
-
TIM1_CH1N, I2C3_SCL,
SPI1_MOSI, COMP2_OUT,
DEBUG_SUBGHZSPI_
MOSIOUT, TIM17_CH1,
CM4_EVENTOUT
-
-
MCO, TIM1_CH1,
SPI2_SCK/I2S2_CK,
USART1_CK, LPTIM2_OUT,
CM4_EVENTOUT
-
-
TIM1_CH2,
SPI2_NSS/I2S2_WS,
I2C1_SCL, SPI2_SCK/I2S2_CK,
USART1_TX, CM4_EVENTOUT
-
-
-
H4
PB10
I/O
FT_f
-
TIM2_CH3, I2C3_SCL,
SPI2_SCK/I2S2_CK,
LPUART1_RX, COMP1_OUT,
CM4_EVENTOUT
-
G4
PB11
I/O
FT_f
-
TIM2_CH4, I2C3_SDA,
LPUART1_TX, COMP2_OUT,
CM4_EVENTOUT
-
18
F5
NRST
I/O
FT
-
-
-
19
J5
PH3-BOOT0
I/O
FT
-
CM4_EVENTOUT
BOOT0
-
-
VDD
S
-
-
-
-
-
-
VSS
S
-
-
-
-
-
H6
VSSRF
S
-
-
-
-
DS13293 Rev 5
57/150
64
Pinouts, pin description and alternate functions
STM32WL55/54xx
Table 20. STM32WL55/54xx pin definition (continued)
UFQFPN48
UFBGA73
Pin type
I/O structure
Notes
Pin number
Alternate functions
-
G6
VSSRF
S
-
-
-
-
20
J6
RFI_P
I
RF
-
-
-
21
H7
RFI_N
I
RF
-
-
-
-
G7
VSSRF
S
-
-
-
-
-
-
VSSRF
S
-
-
-
-
22
J8
RFO_LP
O
RF
-
-
-
-
G8
VSSRF
S
-
-
-
-
23
J9
RFO_HP
O
RF
-
-
-
-
-
VSSRF
S
-
-
-
-
24
H9
VR_PA
S
-
-
-
-
25
H8
VDDPA
S
-
-
-
-
-
-
VSSRF
S
-
-
-
-
26
G9
OSC_IN
I
RF
-
-
-
27
F8
OSC_OUT
O
RF
-
-
-
-
-
VSSRF
S
-
-
-
-
28
E8
VDDRF
S
-
-
-
-
29
F7
VDDRF1V55
S
-
-
-
-
-
D9
VSS
S
-
-
-
-
-
E9
VDD
S
-
-
-
-
30
F6
PB0-VDD_TCXO
I/O
TT
-
COMP1_OUT,
CM4_EVENTOUT
-
-
E7
PB1
I/O
FT_a
-
31
32
58/150
D8
E6
Pin name
(function after
reset)
PB2
PB12
I/O
I/O
FT_a
FT
Additional functions
LPUART1_RTS_DE,
COMP2_INP, ADC_IN5
LPTIM2_IN1, CM4_EVENTOUT
-
LPTIM1_OUT, I2C3_SMBA,
SPI1_NSS,
DEBUG_RF_SMPSRDY,
CM4_EVENTOUT
COMP1_INP,
COMP2_INM,
ADC_IN4
-
TIM1_BKIN, I2C3_SMBA,
SPI2_NSS/I2S2_WS,
LPUART1_RTS,
CM4_EVENTOUT
-
DS13293 Rev 5
STM32WL55/54xx
Pinouts, pin description and alternate functions
Table 20. STM32WL55/54xx pin definition (continued)
Alternate functions
-
D7
PB13
I/O
FT_fa
-
TIM1_CH1N, I2C3_SCL,
SPI2_SCK/I2S2_CK,
LPUART1_CTS,
CM4_EVENTOUT
-
C6
PB14
I/O
FT_fa
-
TIM1_CH2N, I2S2_MCK,
I2C3_SDA, SPI2_MISO,
CM4_EVENTOUT
33
34
UFBGA73
Notes
I/O structure
Pin name
(function after
reset)
Pin type
UFQFPN48
Pin number
C8
B9
PA10
PA11
I/O
I/O
FT_fa
FT_fa
-
Additional functions
ADC_IN0
ADC_IN1
RTC_REFIN, TIM1_CH3,
I2C1_SDA,
COMP1_INM,
SPI2_MOSI/I2S2_SD,
COMP2_INM,
USART1_RX,
DAC_OUT1, ADC_IN6
DEBUG_RF_HSE32RDY,
TIM17_BKIN, CM4_EVENTOUT
-
TIM1_CH4, TIM1_BKIN2,
LPTIM3_ETR, I2C2_SDA,
SPI1_MISO, USART1_CTS,
DEBUG_RF_NRESET,
CM4_EVENTOUT
COMP1_INM,
COMP2_INM,
ADC_IN7
ADC_IN8
35
A9
PA12
I/O
FT_fa
-
TIM1_ETR, LPTIM3_IN1,
I2C2_SCL, SPI1_MOSI,
RF_BUSY, USART1_RTS,
CM4_EVENTOUT
36
B8
PA13
I/O
FT_a
-
JTMS-SWDIO, I2C2_SMBA,
IR_OUT, CM4_EVENTOUT
ADC_IN9
-
B7
VSS
S
-
-
-
-
-
A7
VDD
S
-
-
-
-
37
A8
VBAT
S
-
-
-
-
38
C7
PC13
I/O
FT
(1)(2)
CM4_EVENTOUT
TAMP_IN1/
RTC_OUT1/RTC_TS/
WKUP2
39
B6
PC14-OSC32_IN
I/O
FT
(1)(2)
CM4_EVENTOUT
OSC32_IN
40
C5
PC15OSC32_OUT
I/O
FT
(1)(2)
CM4_EVENTOUT
OSC32_OUT
-
B5
VREF+
S
-
-
-
-
41
A5
VDDA
S
-
-
-
-
-
-
VSS
S
-
-
-
-
42
A4
PA14
I/O
FT_a
-
JTCK-SWCLK, LPTIM1_OUT,
I2C1_SMBA, CM4_EVENTOUT
ADC_IN10
DS13293 Rev 5
59/150
64
Pinouts, pin description and alternate functions
STM32WL55/54xx
Table 20. STM32WL55/54xx pin definition (continued)
UFQFPN48
UFBGA73
Pin type
I/O structure
Notes
Pin number
Alternate functions
43
B3
PA15
I/O
FT_fa
-
JTDI, TIM2_CH1, TIM2_ETR,
I2C2_SDA, SPI1_NSS,
CM4_EVENTOUT
-
B4
PB15
I/O
FT_f
44
-
VDD
S
-
-
-
-
-
-
VSS
S
-
-
-
-
49(3)
-
VSS
S
-
-
-
-
45
B2
VFBSMPS
S
-
-
-
-
46
A2
VDDSMPS
S
-
-
-
-
47
B1
VLXSMPS
S
-
-
-
-
48
A1
VSSSMPS
S
-
-
-
-
Pin name
(function after
reset)
Additional functions
COMP1_INM,
COMP2_INP,
ADC_IN11
TIM1_CH3N, I2C2_SCL,
SPI2_MOSI/I2S2_SD,
CM4_EVENTOUT
-
1. PC13, PC14, and PC15 are supplied through the power switch. As this switch only sinks a limited amount of current (3 mA),
the use of these GPIOs in output mode is limited. The speed must not exceed 2 MHz with a maximum load of 30 pF.
These GPIOs must not be used as current sources (for example to drive a LED).
2. After a backup domain power-up, PC13, PC14, and PC15 operate as GPIOs. Their function depends on the content of
RTC registers that are not reset by the system reset. For details on how to manage these GPIOs, refer to the backup
domain and RTC register descriptions in the product reference manual.
3. Pin 49 is an exposed pad that must be connected to VSS.
60/150
DS13293 Rev 5
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
SYS_
AF
TIM1/
TIM2/
LPTIM1
TIM1/
TIM2
SPI2S2/
TIM1/
LPTIM3
I2C1/
I2C2/
I2C3
SPI1/
SPI2S2
RF
USART1
/
USART2
LPUART1
-
-
PA0
-
TIM2_
CH1
-
-
I2C3_
SMBA
I2S_
CKIN
-
USART2_
CTS
-
-
PA1
-
TIM2_
CH2
-
LPTIM3_
OUT
I2C1_
SMBA
SPI1_
SCK
-
USART2_
RTS
LPUART1_
RTS
PA2
LSCO
TIM2_
CH3
-
-
-
-
-
USART2_
TX
PA3
-
TIM2_
CH4
-
-
-
I2S2_
MCK
-
PA4
RTC_
OUT2
LPTIM1
_OUT
-
-
-
SPI1_
NSS
PA5
-
TIM2_
CH1
TIM2_
ETR
SPI2_
MISO
-
PA6
-
TIM1_
BKIN
-
-
PA7
-
TIM1_
CH1N
-
PA8
MCO
TIM1_
CH1
PA9
-
PA10
PA11
DS13293 Rev 5
Port A
Port
AF10 AF11
AF12
AF13
AF14
AF15
-
COMP1/
COMP2/
TIM1
DEBUG
TIM2/
TIM16/
TIM17/
LPTIM2
EVENOUT
-
-
COMP1_
OUT
-
-
-
LPUART1_
TX
-
-
USART2_
RX
LPUART1_
RX
-
-
USART2_
CK
-
SPI1_
SCK
-
-
I2C2_
SMBA
SPI1_
MISO
-
-
I2C3_
SCL
SPI1_
MOSI
-
-
-
TIM1_
CH2
-
SPI2_
NSS/
I2S2_WS
RTC_
REFIN
TIM1_
CH3
-
-
TIM1_
CH4
TIM1_
BKIN2
DEBUG_PWR
TIM2_ETR
_REGLP1S
CM4_
EVENTOUT
-
DEBUG_PWR
_REGLP2S
-
CM4_
EVENTOUT
-
COMP2_
OUT
DEBUG_PWR
_LDORDY
-
CM4_
EVENTOUT
-
-
-
-
-
CM4_
EVENTOUT
-
-
-
-
DEBUG_
SUBGHZSPI_
NSSOUT
LPTIM2_
OUT
CM4_
EVENTOUT
-
-
-
-
-
DEBUG_
SUBGHZSPI_
SCKOUT
LPTIM2_
ETR
CM4_
EVENTOUT
-
LPUART1_
CTS
-
-
-
TIM1_
BKIN
DEBUG_
SUBGHZSPI_
MISOOUT
TIM16_
CH1
CM4_
EVENTOUT
-
-
-
-
-
-
COMP2_
OUT
DEBUG_
SUBGHZSPI_
MOSIOUT
TIM17_
CH1
CM4_
EVENTOUT
SPI2_
SCK/
I2S2_CK
-
USART1_
CK
-
-
-
-
-
-
LPTIM2_
OUT
CM4_
EVENTOUT
I2C1_
SCL
SPI2_
SCK/
I2S2_CK
-
USART1_
TX
-
-
-
-
-
-
-
CM4_
EVENTOUT
-
I2C1_
SDA
SPI2_
MOSI/
I2S2_SD
-
USART1_
RX
-
-
-
-
-
DEBUG_RF_
HSE32RDY
TIM17_
BKIN
CM4_
EVENTOUT
LPTIM3_
ETR
I2C2_
SDA
SPI1_
MISO
-
USART1_
CTS
-
-
-
-
TIM1_
BKIN2
DEBUG_RF_
NRESET
-
CM4_
EVENTOUT
61/150
Pinouts, pin description and alternate functions
AF0
STM32WL55/54xx
Table 21. Alternate functions
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_
AF
TIM1/
TIM2/
LPTIM1
TIM1/
TIM2
SPI2S2/
TIM1/
LPTIM3
I2C1/
I2C2/
I2C3
PA12
-
TIM1_
ETR
-
LPTIM3_
IN1
PA13
JTMSSWDIO
-
-
PA14
JTCKSWCLK
LPTIM1_
OUT
PA15
JTDI
PB0
Port A (continued)
DS13293 Rev 5
Port B
AF9
AF10 AF11
SPI1/
SPI2S2
RF
USART1
/
USART2
LPUART1
-
-
I2C2_
SCL
SPI1_
MOSI
RF_BUSY
USART1_
RTS
-
-
-
I2C2_
SMBA
-
-
-
IR_OUT
-
-
I2C1_
SMBA
-
-
-
TIM2_
CH1
TIM2_
ETR
-
I2C2_
SDA
SPI1_
NSS
-
-
-
-
-
-
-
PB1
-
-
-
-
-
PB2
-
LPTIM1_
OUT
-
-
PB3
JTDO/
TRACE
SWO
TIM2_
CH2
-
PB4
NJTRST
-
PB5
-
PB6
AF12
AF14
AF15
-
COMP1/
COMP2/
TIM1
DEBUG
TIM2/
TIM16/
TIM17/
LPTIM2
EVENOUT
-
-
-
-
-
CM4_
EVENTOUT
-
-
-
-
-
-
CM4_
EVENTOUT
-
-
-
-
-
-
-
CM4_
EVENTOUT
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
-
-
-
-
-
-
COMP1_
OUT
-
-
CM4_
EVENTOUT
-
-
-
LPUART1_
RTS_DE
-
-
-
-
-
LPTIM2_
IN1
CM4_
EVENTOUT
I2C3_
SMBA
SPI1_
NSS
-
-
-
-
-
-
-
DEBUG_RF_
SMPSRDY
-
CM4_
EVENTOUT
-
-
SPI1_
SCK
RF_IRQ0
USART1_
RTS
-
-
-
-
-
DEBUG_RF_
DTB1
-
CM4_
EVENTOUT
-
-
I2C3_
SDA
SPI1_
MISO
-
USART1_
CTS
-
-
-
-
-
DEBUG_RF_
LDORDY
TIM17_
BKIN
CM4_
EVENTOUT
LPTIM1_
IN1
-
-
I2C1_
SMBA
SPI1_
MOSI
RF_IRQ1
USART1_
CK
-
-
-
-
COMP2_
OUT
-
TIM16_
BKIN
CM4_
EVENTOUT
-
LPTIM1_
ETR
-
-
I2C1_
SCL
-
-
USART1_
TX
-
-
-
-
-
-
TIM16_
CH1N
CM4_
EVENTOUT
PB7
-
LPTIM1_
IN2
-
TIM1_
BKIN
I2C1_
SDA
-
-
USART1_
RX
-
-
-
-
-
-
TIM17_
CH1N
CM4_
EVENTOUT
PB8
-
TIM1_
CH2N
-
-
I2C1_
SCL
-
RF_IRQ2
-
-
-
-
-
-
-
TIM16_
CH1
CM4_
EVENTOUT
PB9
-
TIM1_
CH3N
-
-
I2C1_
SDA
SPI2_
NSS/
I2S2_WS
-
-
IR_OUT
-
-
-
-
-
TIM17_
CH1
CM4_
EVENTOUT
PB10
-
TIM2_
CH3
-
-
I2C3_
SCL
SPI2_
SCK/
I2S2_CK
-
-
LPUART1_
RX
-
-
-
COMP1_
OUT
-
-
CM4_
EVENTOUT
STM32WL55/54xx
AF13
Port
AF8
Pinouts, pin description and alternate functions
62/150
Table 21. Alternate functions (continued)
AF0
AF1
AF2
AF3
AF4
AF5
SYS_
AF
TIM1/
TIM2/
LPTIM1
TIM1/
TIM2
SPI2S2/
TIM1/
LPTIM3
I2C1/
I2C2/
I2C3
PB11
-
TIM2_
CH4
-
-
PB12
-
TIM1_
BKIN
-
PB13
-
TIM1_
CH1N
PB14
-
PB15
-
Port B (continued)
Port
AF7
AF8
AF9
AF10 AF11
SPI1/
SPI2S2
RF
USART1
/
USART2
LPUART1
-
-
I2C3_
SDA
-
-
-
LPUART1_
TX
-
TIM1_
BKIN
I2C3_
SMBA
SPI2_
NSS/
I2S2_WS
-
-
LPUART1_
RTS
-
-
I2C3_
SCL
SPI2_
SCK/
I2S2_CK
-
-
TIM1_
CH2N
-
I2S2_MCK
I2C3_
SDA
SPI2_
MISO
-
TIM1_
CH3N
-
-
I2C2_
SCL
SPI2_
MOSI/
I2S2_SD
-
AF12
AF13
AF14
AF15
-
COMP1/
COMP2/
TIM1
DEBUG
TIM2/
TIM16/
TIM17/
LPTIM2
EVENOUT
-
-
COMP2_
OUT
-
-
CM4_
EVENTOUT
-
-
-
-
-
-
CM4_
EVENTOUT
LPUART1_
CTS
-
-
-
-
-
-
CM4_
EVENTOUT
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
63/150
Pinouts, pin description and alternate functions
DS13293 Rev 5
AF6
STM32WL55/54xx
Table 21. Alternate functions (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
SYS_
AF
TIM1/
TIM2/
LPTIM1
TIM1/
TIM2
SPI2S2/
TIM1/
LPTIM3
I2C1/
I2C2/
I2C3
SPI1/
SPI2S2
RF
USART1
/
USART2
LPUART1
-
-
PC0
-
LPTIM1_
IN1
-
-
I2C3_
SCL
-
-
-
LPUART1_
RX
-
PC1
-
LPTIM1_
OUT
-
SPI2_
MOSI/
I2S2_SD
I2C3_
SDA
-
-
-
LPUART1_
TX
PC2
-
LPTIM1_
IN2
-
-
-
SPI2_
MISO
-
-
PC3
-
LPTIM1_
ETR
-
-
-
SPI2_
MOSI/
I2S2_SD
-
PC4
-
-
-
-
-
-
PC5
-
-
-
-
-
PC6
-
-
-
-
PC13
-
-
-
PC14
-
-
PC15
-
PH3
-
Port H
DS13293 Rev 5
Port C
Port
AF8
AF9
AF10 AF11
AF12
AF13
AF14
AF15
-
COMP1/
COMP2/
TIM1
DEBUG
TIM2/
TIM16/
TIM17/
LPTIM2
EVENOUT
-
-
-
-
LPTIM2_
IN1
CM4_
EVENTOUT
-
-
-
-
-
-
CM4_
EVENTOUT
-
-
-
-
-
-
-
CM4_
EVENTOUT
-
-
-
-
-
-
-
LPTIM2_
ETR
CM4_
EVENTOUT
-
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
-
-
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
-
I2S2_
MCK
-
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CM4_
EVENTOUT
Pinouts, pin description and alternate functions
64/150
Table 21. Alternate functions (continued)
STM32WL55/54xx
STM32WL55/54xx
Electrical characteristics
5
Electrical characteristics
5.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS and, for parameter values
based on characterization results, measurements are performed on the UFQFPN48
package.
5.1.1
Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies, by tests in production
on 100 % of the devices, with an ambient temperature at TA = 25 °C and TA = TAmax (given
by the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3σ).
5.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = VBAT = 3 V.
Typical values are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95 % of the devices have an
error less than or equal to the value indicated (mean ± 2σ).
5.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
5.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 12.
5.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 13.
Figure 12. Pin loading conditions
Figure 13. Pin input voltage
MCU pin
MCU pin
C = 50 pF
VIN
MSv68045V1
DS13293 Rev 5
MSv68046V1
65/150
139
Electrical characteristics
5.1.6
STM32WL55/54xx
Power supply scheme
Figure 14. Power supply scheme
1.55 to 3.6 V
VBAT
VBAT
Backup circuitry
(LSE, RTC and
backup registers)
Power switch
VDD
VCORE
n x VDD
OUT
GPIOs
n x 100 nF + 1 x 4.7 μF
Level shifter
LPR
IN
I/O
logic
Kernel logic
(CPU, digital
and memories
n x VSS
VDDA
VDDA
MR
VREF
VREF+
10 nF + 1 μF
100 nF 1 μF
VREF-
ADC
DAC
COMPs
VREFBUF
VSS
VDDRF
VDD
VDDSMPS
VLXSMPS
4.7 μF
SMPS
LDO/SMPS
Sub-GHz radio
15 μH
VFBSMPS
470 nF
VDDRF1V5
RFLDO
VSSSMPS
VDDPA (= VDDRF1V5 or VDDSMPS)
REG PA
Exposed pad
To all modules (VSS/VSSRF)
MSv64325V5
Caution:
Each power supply pair (such as VDD/VSS or VDDA/VSS) must be decoupled with filtering
ceramic capacitors as shown in the above figure. These capacitors must be placed as close
as possible to (or below) the appropriate pins on the underside of the PCB to ensure the
good functionality of the device.
Note:
For the UFQFPN48 package, VREF+ is internally connected to VDDA.
66/150
DS13293 Rev 5
STM32WL55/54xx
5.1.7
Electrical characteristics
Current consumption measurement
Figure 15. Current consumption measurement scheme
IDDSMPS
VDDSMPS
VDDSMPS
IDDRF
VDDRF
VDDRF
IDDVBAT
VBAT
VBAT
VDD
VDD
IDD
IDDA
VDDA
VDDA
MSv64326V2
5.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in the tables below, may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Device mission profile (application conditions) is compliant with JEDEC JESD47
Qualification Standard, extended mission profiles are available on demand.
Table 22. Voltage characteristics(1)
Symbol
VDDX - VSS
Ratings
External main supply voltage
(including VDD, VDDA, VDDRF,
VDDSMPS, VBAT, VREF+)
Min
Max
–0.3
3.9
min (VDD, VDDA, VDDRF, VDDSMPS) + 3.9(3)(4)
Input voltage on FT_xx pins
VIN(2)
VSS - 0.3
Input voltage on TT pins
Input voltage on any other pin
V
3.9
3.9
|∆VDDx|
Variations between different VDDX
power pins of the same domain
-
|VSSx-VSS|
Variations between all the different
ground pins(5)
-
50
Allowed voltage difference for
VREF+ > VDDA
-
0.4
VREF+ - VDDA
Unit
50
mV
V
1. All main power (VDD, VDDRF, VDDA, VBAT) and ground (VSS) pins must always be connected to the external power
supply, in the permitted range.
DS13293 Rev 5
67/150
139
Electrical characteristics
STM32WL55/54xx
2. VIN maximum must always be respected. Refer to the next table for the maximum allowed injected current values.
3. This formula must be applied only on the power supplies related to the I/O structure described in Table 20:
STM32WL55/54xx pin definition.
4. To sustain a voltage higher than 4 V, the internal pull-up/pull-down resistors must be disabled.
5. Include VREF- pin.
Table 23. Current characteristics
Symbol
Ratings
Max
∑IVDD
Total current into sum of all VDD power lines (source)(1)
130
∑IVSS
(sink)(1)
130
IVDD(PIN)
IVSS(PIN)
IIO(PIN)
∑IIO(PIN)
IINJ(PIN)(3)
∑|IINJ(PIN)|
Total current out of sum of all VSS ground lines
(1)
130
(sink)(1)
100
Maximum current into each VDD power pin (source)
Maximum current out of each VSS ground pin
Output current sunk by any I/O and control pin, except FT_f
20
Output current sunk by any FT_f pin
20
Output current sourced by any I/O and control pin
20
Total output current sunk by sum of all I/Os and control pins(2)
100
Total output current sourced by sum of all I/Os and control pins(2)
100
Unit
mA
–5 / +0(4)
Injected current on FT_xx, TT and RST pins, except PB0
Injected current on PB0
-5/0
Total injected current (sum of all I/Os and control
pins)(5)
25
1. All main power (VDD, VDDRF, VDDA, VBAT) and ground (VSS) pins must always be connected to the external power
supplies, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins.
3. Positive injection (when VIN > VDD) is not possible on these I/Os and does not occur for input voltages lower than the
specified maximum value.
4. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to the previous table for the
maximum allowed input voltage values.
5. When several inputs are submitted to a current injection, the maximum ∑|IINJ(PIN)| is the absolute sum of the negative
injected currents (instantaneous values).
Table 24. Thermal characteristics
Symbol
TSTG
TJ
68/150
Ratings
Storage temperature range
Maximum junction temperature
DS13293 Rev 5
Value
-65 to +150
125
Unit
°C
STM32WL55/54xx
Electrical characteristics
5.3
Operating conditions
5.3.1
Main performances
Table 25. Main performances at VDD = 3 V
Parameter
ICORE
Test conditions
Core current consumption
Rx boosted
Tx low power
Tx high power
5.3.2
Typ
VBAT (VBAT = 3V, VDD = 0 V)
0.005
Shutdown
0.031
Standby (32-Kbyte RAM retention)
0.360
Stop 2, RTC enabled
1
Sleep (16 MHz)
770
LPRun (2 MHz)
220
Run, SMPS ON (48 MHz)
3450
LoRa 125 kHz, SMPS ON
4.82
434 to 490 MHz, 14 dBm, 3.3 V
21
868 to 915 MHz, 14 dBm, 3.3 V
26
434 to 490 MHz, 22 dBm, 3.3 V
110.5
868 to 915 MHz, 22 dBm, 3.3 V
120
Unit
µA
mA
General operating conditions
Table 26. General operating conditions
Symbol
Parameter
Conditions
fHCLK
Internal AHB clock frequency
-
fPCLK1
Internal APB1 clock frequency
-
fPCLK2
Internal APB2 clock frequency
-
Standard operating voltage
-
VDD
VDDA
Analog supply voltage
VIN
0
48
MHz
1.8(1)
3.6
DAC used
1.71
VREFBUF used
2.4
Backup operating voltage
3.6
1.55
3.6
-
1.4
3.6
-
1.8
3.6
TT I/O
–0.3
VDD + 0.3
All I/O except TT
–0.3
min between
min (VDD, VDDA) + 3.6 V
and 5.5 V(2)(3)
DS13293 Rev 5
V
0
-
Minimum RF voltage
I/O input voltage
Unit
1.62
VFBSMPS SMPS feedback voltage
VDDRF
Max
ADC or COMP used
ADC, DAC, COMP and
VREFBUF not used
VBAT
Min
V
69/150
139
Electrical characteristics
STM32WL55/54xx
Table 26. General operating conditions (continued)
Symbol
Parameter
PD
Power dissipation at
TA = 85 °C for suffix 6 version
or TA = 105 °C for suffix 7(4)
Ambient temperature for
suffix 6 version
TA
Ambient temperature for the
suffix 7 version
TJ
Junction temperature range
Conditions
UFBGA73
Maximum power
dissipation
Min
Max
Unit
-
392.0
mW
–40
85
Low-power dissipation(5)
105
Maximum power
dissipation
105
Low-power
–40
dissipation(5)
Suffix 6 version
Suffix 7 version
125
–40
105
125
1. When the reset is released, the functionality is guaranteed down to VBOR0 min.
2. This formula has to be applied only on the power supplies related to the I/O structure described in Table 20:
STM32WL55/54xx pin definition. Maximum I/O input voltage is the smallest value between min (VDD, VDDA) + 3.6 V and
5.5 V.
3. For operation with voltage higher than min (VDD, VDDA) + 0.3 V, the internal pull-up and pull-down resistors must be
disabled.
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 102: Package thermal
characteristics).
5. In low-power dissipation state, TA can be extended to this range, as long as TJ does not exceed TJ max (see Table 102:
Package thermal characteristics).
70/150
DS13293 Rev 5
°C
°C
STM32WL55/54xx
5.3.3
Electrical characteristics
Sub-GHz radio characteristics
Electrical characteristics of the sub-GHz radio are given with the following conditions unless
otherwise specified:
•
VDD = 3.3 V. The current consumption is measured as described in Figure 15.
IDD includes current consumption of all supplies (VDDRF, VDDSMPS, VDD, VDDA, VBAT).
All peripherals except Sub-GHz radio are disabled and the system is in Standby mode.
•
Temperature = 25 °C
•
HSE32 = 32 MHz
•
FRF = 434/868/915 MHz
•
All RF impedances matched using reference design
•
Reference design implementing a 32 MHz crystal oscillator
•
Transmit mode output power defined in 50 Ω load
•
FSK BER (bit error rate) = 0.1 %, 2-level FSK modulation without pre-filtering,
BR = 4.8 Kbit/s, FDA = 5 kHz, BW_F = 20 kHz
•
LoRa PER (packet error rate) = 1 %, packet of 64 bytes, preamble of 8 bytes, error
correction code CR = 4/5, CRC on payload enabled, no reduced encoding, no implicit
header
•
Sensitivities given using highest LNA gain step
•
Power consumption measured with -140 dBm signal and AGC ON
•
Blocking immunity, ACR and co-channel rejection, given for a single tone interferer and
referenced to sensitivity +6 dB, blocking tests performed with unmodulated signal
•
Bandwidth expressed on DSB (double-sided band)
Table 27. Operating range of RF pads
Pad
Description
RFI_P/RFI_N
RF input power when in RX operation
RFO_LP/RFO_HP/VR_PA
Voltage standing wave ratio (VSWR)
mode(1)
Max
Unit
0
dBm
10:1
-
1. When not in RX operation mode (typically on DirectTie implementations), up to 22 dBm is accepted.
DS13293 Rev 5
71/150
139
Electrical characteristics
STM32WL55/54xx
Table 28. Sub-GHz radio power consumption
Symbol
Mode
Min
Typ
Max
All blocks off
-
50
-
Sleep mode
(with warm
start)(2)(3)
Configuration retained
-
140
-
Configuration retained + RC64k
-
810
-
Sleep, LDO
mode(4)
LDO, band-gap,
RC 13 MHz on
HSE32 off
-
414
-
HSE32 on
-
564
-
Sleep, SMPS
mode(4)
Band-gap,
RC 13 MHz on,
SMPS 40 mA max
HSE32 off
-
700
-
HSE32 on
-
950
-
Standby mode
(RC 13 MHz on)
RC 13 MHz on, HSE32 off
-
0.7
-
Standby mode
(HSE32)
SMPS mode
-
1.05
-
LDO mode
-
0.99
-
Synthesizer
mode
SMPS mode used with 40 mA drive capability
-
2.66
-
LDO mode
-
4.05
-
FSK 4.8 Kbit/s
-
4.47
-
LoRa 125 kHz
-
4.82
-
Rx boosted, FSK 4.8 Kbit/s
-
5.12
-
RX boosted, LoRa 125 kHz
-
5.46
-
-
8.18
-
Deep-Sleep
mode (Sleep
with cold
start)(1)(2)
IDD
Receive mode,
SMPS mode
used
Conditions
nA
SMPS 40 mA max
40 mA max settings
FSK 4.8 Kbit/s
LoRa 125 kHz
Receive mode,
LDO mode used
RX boosted
8.90
FSK 4.8 Kbit/s
9.52
LoRa 125 kHz
10.22
1. Cold start is equivalent to device at POR or when the device wakes up from Sleep mode with all blocks off.
2. Only Sub-GHz radio power consumption.
3. Warm start only happens when the device wakes up from Sleep mode with its configuration retained,
4. System in Stop 0 mode range 2.
72/150
Unit
DS13293 Rev 5
µA
mA
mA
STM32WL55/54xx
Electrical characteristics
Table 29. Sub-GHz radio power consumption in transmit mode
Symbol
Frequency band (MHz)
PA match (conditions)
Low power
(optimized for 14 dBm)
868 to 915
Low power
(optimal settings)(2)
Low power
(optimized for 14 dBm)
434 to 490
Low power (optimal settings)
IDD
868 to 915
434 to 490
Low-power PA, SMPS OFF
High power
(optimized for 22 dBm)
868 to 915
High power (optimal settings)
High power
(optimized for 22 dBm)
434 to 490
High power (optimal settings)
Power output(1)
Typ
+14 dBm, VDDRF = 3.3 V
23.5
+10 dBm, VDDRF = 3.3 V
17.5
+14 dBm, VDDRF = 1.8 V
41.5
+10 dBm, VDDRF = 1.8 V
28.5
+15 dBm, VDDRF = 3.3 V
25.5
+10 dBm, VDDRF = 3.3 V
15
+15 dBm, VDDRF = 1.8 V
51
+10 dBm, VDDRF = 1.8 V
25
+14 dBm, VDDRF = 3.3 V
22.5
+10 dBm, VDDRF = 3.3 V
13.5
+14 dBm, VDDRF = 1.8
39.5
+10 dBm, VDDRF = 1.8 V
22.5
+15 dBm, VDDRF = 3.3 V
24.5
+10 dBm, VDDRF = 3.3 V
13.5
+15 dBm, VDDRF = 1.8 V
43
+10 dBm, VDDRF = 1.8 V
21.5
+14 dBm, VDDRF = 3.3 V
Unit
mA
45.5
43.5
+22 dBm, VDDRF = 3.3 V
120
+20 dBm, VDDRF = 3.3 V
107.5
+17 dBm, VDDRF = 3.3 V
98
+14 dBm, VDDRF = 3.3 V
92
+20 dBm, VDDRF = 3.3 V
92.5
+17 dBm, VDDRF = 3.3 V
58
+14 dBm, VDDRF = 3.3 V
45.5
+22 dBm, VDDRF = 3.3 V
110.5
+20 dBm, VDDRF = 3.3 V
90
+17 dBm, VDDRF = 3.3 V
71
+14 dBm, VDDRF = 3.3 V
59
+20 dBm, VDDRF = 3.3 V
72
+17 dBm, VDDRF = 3.3 V
43.5
+14 dBm, VDDRF = 3.3 V
38
1. These power outputs correspond to the settings programmed in the device. Depending on the board, up to 2 dB less than
the setting are expected.
2. Optimal settings can be used to optimize power consumption when the output power is NOT 22 dBm (high power) or
14 dBm (low power). In that case, a dedicated firmware configuration associated to a dedicated board matching network
(see AN5457 for details) corresponding to the custom output power, can be used.
DS13293 Rev 5
73/150
139
Electrical characteristics
STM32WL55/54xx
Table 30. Sub-GHz radio general specifications
Symbol
FR
Description
(2)
TS_FS
Min
Typ
Max
Unit
150
-
960
MHz
-
095
-
Hz
100 kHz offset
-
–100
-
1 MHz offset
-
–120
-
10 MHz offset
-
–135
-
From Standby, HSE32 mode
-
40
-
10 MHz step
-
40
-
-
170
-
Frequency synthesizer range Low-power PA
FSTEP Frequency synthesizer step
PHN(1)
Conditions
Synthesizer phase noise
(868 to 915 MHz)
Synthesizer wakeup time
TS_HO
Synthesizer hop time
P
TS_OS Crystal oscillator wakeup
C
time
High-resolution mode HSE32 / 2
(2)(5)
(3) normal mode from
From Standby, RC
HSE32 off
dBc/Hz
µs
OSC_
TRM
Crystal oscillator trimming
range for crystal frequency
error compensation(4)
Min/max XTAL specifications
±15
±30
-
ppm
BR_F
Bitrate, FSK
Programmable
(min modulation index is 0.5)
0.6
-
300(5)
Kbit/s
FDA
Frequency deviation, FSK
Programmable
(FDA + BR_F/2 ≤ 250 kHz)
0.6
-
200
kHz
BR_L
Bitrate, LoRa
Min for SF12, BW_L = 7.8 kHz
Max for SF5, BW_L = 500 kHz
0.018
-
62.5(6)
Kbit/s
BW_L
Signal BW, LoRa
Programmable
7.8
-
500(6)
kHz
5
-
12
-
SF
Spreading factor for LoRa
Programmable, chips/symbol =
2SF
1. Phase Noise specifications are given for the recommended PLL bandwidth to be used for the specific modulation/BR,
optimized settings may be used for specific applications.
2. Phase Noise is not constant over frequency, due to the topology of the PLL. For two frequencies close to each other, the
phase noise may change significantly
3. Wakeup time till crystal oscillator frequency is within ±10 ppm.
4. OSC_TRIM is the available trimming range to compensate for crystal initial frequency error and to allow crystal temperature
compensation implementation. The total available trimming range is higher and allows the compensation for all device
process variations
5. Maximum bit rate is assumed to scale with the RF frequency: for example 300 Kbit /s in the 869-to-915 MHz frequency
band and only 50 Kbit/s at 150 MHz.
6. For RF frequencies below 400 MHz, there is a scaling between the frequency and supported bandwidth. Some bandwidths
may not be available below 400 MHz.
74/150
DS13293 Rev 5
STM32WL55/54xx
Electrical characteristics
Table 31. Sub-GHz radio receive mode specifications
Symbol
Description
Conditions
Min
Typ
Max
BR = 0.6 Kbit/s, FDA = 0.8 kHz,
BW = 4 kHz
-
–125
-
BR = 1.2 Kbit/s, FDA = 5 kHz,
BW = 20 kHz
-
–123
-
-
–117
-
-
–108
-
BR = 250 Kbit/s, FDA = 125 kHz,
BW = 500 kHz
-
–103
-
BW = 10.4 kHz, SF = 7
-
–135
-
BW = 10.4 kHz, SF = 12
-
–148
-
BW = 125 kHz, SF = 7
-
–125
-
-
–138
-
-
–122
-
-
–135
-
BW = 500 kHz, SF = 7
-
–118
-
BW = 500 kHz, SF = 12
-
–130
-
Sensitivity 2-FSK,
RX boosted gain,
BR = 4.8 Kbit/s, FDA = 5 kHz,
RXS_2FB
split RF paths for RX and Tx,
BW = 20 kHz
RF switch insertion loss excluded
BR = 38.4 Kbit/s, FDA = 40 kHz,
BW = 160 kHz
RXS_LB
Sensitivity LoRa,
BW = 125 kHz, SF = 12
RX boosted gain,
split RF paths for RX and Tx,
BW = 250 kHz, SF = 7
RF switch insertion loss excluded
BW = 250 kHz, SF = 12
RSX_2F
Sensitivity 2-FSK, RX power
saving gain with direct tie
connection between RX and Tx
BR = 4.8 Kbit/s, FDA = 5 kHz,
BW = 20 kHz
-
–115
-
RXS_L
Sensitivity LoRa, RX power
saving gain with direct tie
connection between RX and Tx
BW = 125 kHz, SF = 12
-
–135
-
CCR_F
Co-channel rejection, FSK
-
-
–9
-
CCR_L
Co-channel rejection, LoRa
SF = 7
-
7
-
SF = 12
-
19
-
ACR_F
Adjacent channel rejection, FSK
Offset = ±50 kHz
-
44
-
Offset = ±1.5 x BW_L,
BW = 125 kHz, SF = 7
-
60
-
Offset = ±1.5 x BW_L,
BW = 125 kHz, SF = 12
-
71
-
Offset = ±1 MHz, BR = 4.8 Kbit/s,
FDA = 5 kHz, BW = 20 kHz
-
67
-
Offset = ±2 MHz, BR = 4.8 Kbit/s,
FDA = 5 kHz, BW = 20 kHz
-
70
-
Offset = ±10 MHz, BR = 4.8 Kbit/s,
FDA = 5 kHz, BW = 20 kHz
-
76
-
ACR_L
BI_F
Adjacent channel rejection, LoRa
Blocking immunity, FSK
DS13293 Rev 5
Unit
dBm
dB
75/150
139
Electrical characteristics
STM32WL55/54xx
Table 31. Sub-GHz radio receive mode specifications (continued)
Symbol
BI_L
IIP3
IMA
Description
Conditions
Blocking immunity, LoRa
Third order input intercept point
Image attenuation
Min
Typ
Max
Unit
Offset = ±1 MHz, BW = 125 kHz,
SF = 12
-
87
-
Offset = ±2 MHz, BW = 125 kHz,
SF = 12
-
91
-
Offset = ±10 MHz, BW = 125 kHz,
SF = 12
-
96
-
Unwanted tones are 1 MHz and
1.96 MHz above LO.
868 to 915 MHz band
-
–9
-
Unwanted tones are 1 MHz and
1.96 MHz above LO.
433 MHz band
-
–15
-
Without IQ calibration
-
30
-
With IQ calibration
-
54
-
4.8
-
467
kHz
dB
dBm
dB
BW_F
DSB channel filter BW, FSK
Programmable, typical values
TS_RX
Receiver wakeup time
FS to RX
-
41
-
µs
Maximum tolerated frequency
offset between transmitter and
receiver, SF7 to SF12
All bandwidths, ±25 % of BW.
The tighter limit between this line
and the three lines below applies.
-
±25
-
BW
SF12
–50
-
50
SF11
–100
-
100
SF10
–200
-
200
FERR_L
Maximum tolerated frequency
offset between transmitter and
receiver, SF10 to SF12
ppm
Table 32. Sub-GHz radio transmit mode specifications
Symbol
TXOP
TXDRP
Description
Max RF output power
RF output power drop
versus supply voltage
TXPRNG RF output power range
TXACC
76/150
RF output power step
accuracy
Conditions
Min
Typ
Max
Highest power step setting
for low-power PA (LP PA)
-
+15(1)
-
Highest power step setting
for high-power PA (HP PA)
-
+22
-
LP PA, under SMPS or LDO
VDDop range from 1.8 to 3.7 V
-
0.5
-
HP PA, +22 dBm, VDD = 2.7 V
-
2
-
HP PA, +22 dBm, VDD = 2.4 V
-
3
-
HP PA, +22 dBm, VDD = 1.8 V
-
6
-
TXOP-31
-
-
±2
Programmable in 31 steps,
typical value
-
DS13293 Rev 5
Unit
dBm
dB
TXOP dBm
-
dB
STM32WL55/54xx
Electrical characteristics
Table 32. Sub-GHz radio transmit mode specifications (continued)
Symbol
Description
Conditions
TXRMP
PA ramping time
Programmable
TS_TX
TX wakeup time
Frequency synthesizer
enabled
Min
Typ
Max
10
-
3400
-
36 + PA ramping
-
Unit
µs
1. For low-power PA, +15 dBm maximum RF output power can be reached with optimal settings.
Table 33. Sub-GHz radio power management specifications
Symbol
Description
Frequency
(MHz)
Conditions
Unit
470
490
868
50
100
-
TRPOR
Required POR reset pulse duration
For VDD ≥ 1.8 V
VEOLL
End-of-life low-threshold voltage
-
1.81 1.89 1.96
VEOLH
End-of-life high-threshold voltage
-
1.86 1.94
VEOLD
End-of-life hysteresis voltage
VEOLH - VEOLL
VREG
Main regulated supply
LDO or SMPS over process,
voltage and temperature range
LDTRSMPS
ILSMPS
IDDSMPS
EFFSMPS
50
53
2.1
56
1.47 1.55 1.62
Load transient for ILSMPS 100 µA to
100 mA in 10 µs
LDO running
High BW mode
-
25
-
Low BW mode
-
47
-
SMPS load current
-
-
-
100
SMPS high power, VDD = 3.3 V
-
538
-
SMPS low power, VDD = 3.3 V
-
460
-
SMPS 100 mA max VDD = 3.3 V,
ILSMPS = 6 mA
-
71
-
SMPS 100 mA max VDD = 3.3 V,
ILSMPS = 50 mA
-
89
-
SMPS 100 mA max VDD = 1.8 V,
ILSMPS = 6 mA
-
88
-
SMPS 100 mA max VDD = 2.0 V,
ILSMPS = 50 mA
-
91
-
SMPS 100 mA max VDD = 3.3 V,
ILSMPS = 100 mA
-
86
-
SMPS quiescent current
SMPS converter average efficiency
EFF = VREG x ILOAD /
VDDSMPS x IDD
µs
V
mV
V
mV
mA
µA
%
Cout
Shared between LDO and SMPS
±20 % tolerance
-
470
-
nF
Lout
SMPS inductor
-
-
15
-
µH
Sleep and Sleep, SMPS startup time
For ILIM = 50 mA
-
70
-
µs
TSSMPS
DS13293 Rev 5
77/150
139
Electrical characteristics
STM32WL55/54xx
Table 33. Sub-GHz radio power management specifications (continued)
Symbol
Description
Frequency
(MHz)
Conditions
Unit
470
490
868
VDD = 3.3 V,
ILOAD = 0 to 100 mA,
current limiter off
-
95
-
VDD = 3.3 V, ILOAD = 100 mA,
current limiter on
-
380
-
VDD = 3.3 V, ILOAD = 50 mA,
current limiter on
-
280
-
LDO load current
-
-
100
-
mA
LDTRLDO
Load transient for ILDO 100 µA to
100 mA in 10 µs
-
-
25
-
mV
TSLDO
Sleep and Sleep, LDO startup time
For ILIM = 50 mA
-
60
-
µs
Digital regulator target voltage
-
1.14
1.2
1.26
V
Current limiter max value
-
25
50
200
mA
IDDLDO
ILDO
VDIG
ILM
(1)
LDO quiescent current
µA
1. The default current limiter value is set to 50 mA.
5.3.4
Operating conditions at power-up/power-down
Parameters given in the table below are derived from tests performed under the ambient
temperature condition summarized in Table 26: General operating conditions.
Table 34. Operating conditions at power-up/power-down
Symbol
tVDD
tVDDA
tVDDRF
78/150
Parameter
Min
Max
VDD rise time rate
-
∞
VDD fall time rate
10
∞
VDDA rise time rate
0
∞
VDDA fall time rate
10
∞
VDDRF rise time rate
-
∞
VDDRF fall time rate
-
∞
DS13293 Rev 5
Unit
µs/V
STM32WL55/54xx
5.3.5
Electrical characteristics
Embedded reset and power-control block characteristics
Parameters given in the table below are derived from tests performed under the ambient
temperature conditions summarized in Table 26: General operating conditions.
Table 35. Embedded reset and power-control block characteristics
Symbol
tRSTTEMPO(2)
Conditions(1)
Parameter
Brownout reset threshold 0
VBOR1
Brownout reset threshold 1
VBOR2
Brownout reset threshold 2
VBOR3
Brownout reset threshold 3
VBOR4
Brownout reset threshold 4
VPVD0
Programmable voltage detector threshold 0
VPVD1
PVD threshold 1
VPVD2
PVD threshold 2
VPVD3
PVD threshold 3
VPVD4
PVD threshold 4
VPVD5
PVD threshold 5
VPVD6
PVD threshold 6
Vhyst_BOR_PVD
IDD (BOR_PVD)(2)
Typ
Max
Unit
-
250
400
μs
Rising edge
1.72
1.76
1.80
Falling edge
1.70
1.74
1.78
Rising edge
2.06
2.10
2.14
Falling edge
1.96
2.00
2.04
Rising edge
2.26
2.31
2.35
Falling edge
2.16
2.20
2.24
Rising edge
2.56
2.61
2.66
Falling edge
2.47
2.52
2.57
Rising edge
2.85
2.90
2.95
Falling edge
2.76
2.81
2.86
Rising edge
1.88
1.95
2.02
Falling edge
1.83
1.90
1.97
Rising edge
2.26
2.31
2.36
Falling edge
2.15
2.20
2.25
Rising edge
2.41
2.46
2.51
Falling edge
2.31
2.36
2.41
Rising edge
2.56
2.61
2.66
Falling edge
2.47
2.52
2.57
Rising edge
2.69
2.74
2.79
Falling edge
2.59
2.64
2.69
Rising edge
2.85
2.91
2.96
Falling edge
2.75
2.81
2.86
Rising edge
2.92
2.98
3.04
Falling edge
2.84
2.90
2.96
Hysteresis in
continuous mode
-
20
-
Hysteresis in
other mode
-
30
-
Reset temporization after BOR0 is detected VDD rising
VBOR0(2)
Vhyst_BORH0
Min
Hysteresis voltage of BORH0
Hysteresis voltage of BORH (except
BORH0) and PVD
-
-
100
-
BOR(3) (except BOR0) and PVD
consumption from VDD
-
-
1.1
1.6
DS13293 Rev 5
V
V
mV
µA
79/150
139
Electrical characteristics
STM32WL55/54xx
Table 35. Embedded reset and power-control block characteristics (continued)
Symbol
Conditions(1)
Parameter
VPVM3
VDDA peripheral voltage monitoring
Vhyst_PVM3
IDD (PVM3)
(2)
Min
Typ
Max
Rising edge
1.61
1.65
1.69
Falling edge
1.6
1.64
1.68
Unit
V
PVM3 hysteresis
-
-
10
-
mV
PVM3 consumption from VDD
-
-
2
-
µA
1. Continuous mode means Run and Sleep modes, or temperature sensor enable in LPRun and LPSleep modes.
2. Guaranteed by design.
3. BOR0 is enabled in all modes (except Shutdown) and its consumption is therefore included in the supply current
characteristics tables.
5.3.6
Embedded voltage reference
Parameters given in the table below are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 26: General operating
conditions.
Table 36. Embedded internal voltage reference
Symbol
VREFINT
Parameter
Internal reference voltage
Conditions
Min
Typ
Max
Unit
–40 °C < TJ < +105 °C
1.182
1.212
1.232
V
tS_vrefint (1)
ADC sampling time when reading
the internal reference voltage
-
4(2)
-
-
tstart_vrefint
Start time of reference voltage
buffer when ADC is enable
-
-
8
12(2)
IDD(VREFINTBUF)
VREFINT buffer consumption from
VDD when converted by ADC
-
-
12.5
20(2)
µA
∆VREFINT
Internal reference voltage spread
over the temperature range
VDD = 3.3 V
-
5
7.5(2)
mV
–40 °C < TJ < +105 °C
-
30
50(2)
ppm/°C
ppm
ppm/V
TCoeff
Temperature coefficient
µs
ACoeff
Long term stability
1000 hours, T = 25 °C
-
300
1000(2)
VDDCoeff
Voltage coefficient
3.0 V < VDD < 3.6 V
-
250
1200(2)
24
25
26
49
50
51
74
75
76
VREFINT_DIV1
1/4 reference voltage
VREFINT_DIV2
1/2 reference voltage
VREFINT_DIV3
3/4 reference voltage
-
1. The shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
80/150
DS13293 Rev 5
%
VREFINT
STM32WL55/54xx
Electrical characteristics
Figure 16. VREFINT versus temperature
V
1.235
1.23
1.225
1.22
1.215
1.21
1.205
1.2
1.195
1.19
1.185
-40
-20
0
20
40
Mean
5.3.7
60
Min
80
100
Max
120 °C
MSv66005V3
Supply current characteristics
The current consumption is a function of several parameters and factors such as operating
voltage, ambient temperature, I/O pin loading, device software configuration, operating
frequencies, I/O pin switching rate, program location in memory and executed binary code.
The current consumption is measured as described in Figure 15.
Typical and maximum current consumption
The device is put under the following conditions:
•
All I/O pins are in analog input mode.
•
All peripherals are disabled, except when explicitly mentioned.
•
The flash memory access time is adjusted with the minimum wait-states number,
depending on the fHCLK frequency. Refer to the table ‘Number of wait states according
to flash clock (HCLK3) frequency’ in the reference manual (RM0461).
•
fPCLK = fHCLK when the peripherals are enabled.
•
fPCLK = fHCLK = fHCLKS for the flash memory and shared peripherals.
Parameters given in the tables below (Table 37 to Table 56) are derived from tests
performed under ambient temperature and supply voltage conditions summarized in
Table 26: General operating conditions.
DS13293 Rev 5
81/150
139
Conditions
Symbol
Parameter
-
Voltage
scaling
Range 2
IDD (Run)
DS13293 Rev 5
f
=f
Supply current HCLK MSI
All
peripherals
in Run mode
disabled
SMPS
Range 2
Range 1
SMPS
Range 1
IDD
(LPRun)
Supply current fHCLK = fMSI
in LPRun mode All peripherals disabled
Max(1)
Typ
Unit
fHCLK
(MHz)
25 °C
55 °C
85 °C
105 °C
25 °C
85 °C
105 °C
16
1.85
1.90
1.95
2.10
2.20
2.40
2.80
8
1.10
1.15
1.20
1.30
1.40
1.60
1.90
2
0.585
0.610
0.670
0.760
-
-
-
16
1.50
1.45
1.65
1.70
-
-
-
8
1.00
1.05
1.05
1.10
-
-
-
2
0.730
0.750
0.780
0.830
-
-
-
48
5.55
5.65
5.80
5.95
7.40
11.0
14.0
32
3.85
3.95
4.05
4.20
5.60
8.40
13.0
16
2.15
2.20
2.30
2.45
3.70
6.60
11.0
48
3.40
3.45
3.55
3.60
-
-
-
32
2.50
2.55
2.60
2.65
-
-
-
16
1.60
1.60
1.65
1.70
-
-
-
2
0.220
0.235
0.290
0.380
0.270
0.490
0.880
1
0.120
0.135
0.185
0.275
0.150
0.390
0.780
0.4
0.058
0.0715
0.120
0.210
0.084
0.330
0.710
Electrical characteristics
82/150
Table 37. Current consumption in Run and LPRun modes on CPU1, CoreMark code with data
running from flash memory, ART enable (cache ON, prefetch OFF)
mA
1. Guaranteed by characterization results, unless otherwise specified.
STM32WL55/54xx
Conditions
Symbol
Parameter
-
IDD
(Run)
DS13293 Rev 5
IDD
(LPRun)
Supply current in
Run mode
Supply current in
LPRun mode
fHCLK = fMSI
All peripherals
disabled
fHCLK = fMSI
All peripherals disabled
Typ
Unit
Voltage
scaling
fHCLK
(MHz)
25 °C
55 °C
85 °C
105 °C
Range 2
16
2.5
2.55
2.65
2.75
48
8.00
8.15
8.35
8.55
32
5.80
5.90
6.05
6.25
48
4.75
4.85
4.95
5.00
32
3.50
3.60
3.65
3.75
16
2.20
2.25
2.30
2.40
2
0.350
-
-
-
1
0.185
-
-
-
0.4
0.0805
-
-
-
Range 1
SMPS
Range 1
STM32WL55/54xx
Table 38. Current consumption in Run and LPRun modes on CPU1 and CPU2, CoreMark code
with data running from SRAM1
mA
Electrical characteristics
83/150
Conditions
Symbol
Parameter
-
Voltage
scaling
Range 2
IDD
(Run)
Supply current
in Run mode
fHCLK = fMSI
All peripherals
disabled
SMPS
Range 2
DS13293 Rev 5
Range 1
SMPS
Range 1
IDD
(LPRun)
Supply current fHCLK = fMSI
in LPRun mode All peripherals disabled
Max(1)
Typ
Unit
fHCLK
(MHz)
25 °C
55 °C
85 °C
105 °C
25 °C
85 °C
105 °C
16
1.90
1.90
2.00
2.10
2.20
2.40
2.80
8
1.10
1.15
1.20
1.30
1.40
1.60
2.00
2
-
-
-
-
-
-
-
16
1.40
1.45
1.50
1.55
-
-
-
8
1.00
1.05
1.05
1.10
-
-
-
2
0.730
0.750
0.780
0.825
-
-
-
48
5.65
5.75
5.90
6.05
6.50
6.70
7.10
32
3.90
4.00
4.10
4.25
4.60
4.80
5.20
16
2.20
2.25
2.30
2.45
2.50
2.80
3.20
48
3.45
3.50
3.60
3.65
-
-
-
32
2.50
2.55
2.60
2.70
-
-
-
16
1.60
1.60
1.65
1.70
-
-
-
2
0.220
0.230
0.285
0.375
0.240
0.480
0.860
1
0.120
0.130
0.180
0.270
0.140
0.380
0.770
0.4
0.052
0.064
0.115
0.205
0.077
0.320
0.710
Electrical characteristics
84/150
Table 39. Current consumption in Run and LPRun modes on CPU1, CoreMark code
with data running from SRAM1
mA
1. Guaranteed by characterization results, unless otherwise specified.
STM32WL55/54xx
Conditions
Symbol
Typ
Parameter
-
Voltage scaling
Code
1.90
118.75
1.85
115.63
Dhrystone 2.1
1.85
115.63
Fibonacci
1.80
112.50
While(1)
1.60
100.00
1.45
90.63
1.40
87.50
Dhrystone 2.1
1.40
87.50
Fibonacci
1.40
87.50
While(1)
1.30
Reduced code
5.70
CoreMark(1)
5.55
115.63
Dhrystone 2.1
5.50
114.58
Fibonacci
5.40
112.50
While(1)
4.65
96.88
Reduced code
3.50
72.92
CoreMark(1)
3.40
70.83
Dhrystone 2.1
3.40
70.83
Fibonacci
3.30
68.75
While(1)
2.90
60.42
(1)
Reduced code
DS13293 Rev 5
SMPS
Range 2
fHCLK = 16 MHz
Supply current in fHCLK = fMSI
Run mode
All peripherals disabled
Range 1
fHCLK = 48 MHz
SMPS
Range 1
fHCLK = 48 MHz
CoreMark
(1)
mA
81.25
118.75
µA/MHz
85/150
Electrical characteristics
25 °C
CoreMark
Range 2
fHCLK = 16 MHz
Unit
25 °C
Reduced code
IDD(Run)
Typ
Unit
STM32WL55/54xx
Table 40. Typical current consumption in Run and LPRun modes on CPU1, with different codes
running from flash memory, ART enable (cache ON, prefetch OFF)
Conditions
Symbol
Typ
Unit
-
IDD(LPRun)
Typ
Parameter
Voltage scaling
Supply current in fHCLK = fMSI = 2 MHz
LPRun mode
All peripherals disabled
Code
Unit
25 °C
25 °C
Reduced code
0.225
112.50
CoreMark(1)
0.220
110.00
Dhrystone 2.1
0.220
Fibonacci
0.240
120.00
While(1)
0.175
87.50
mA
110.00
µA/MHz
Electrical characteristics
86/150
Table 40. Typical current consumption in Run and LPRun modes on CPU1, with different codes
running from flash memory, ART enable (cache ON, prefetch OFF) (continued)
1. CoreMark used for characterization results provided in Table 37 and Table 40.
DS13293 Rev 5
STM32WL55/54xx
Conditions
Symbol
Typ
Parameter
-
Voltage scaling
Code
1.95
121.88
CoreMark
1.90
118.75
Dhrystone 2.1
1.90
118.75
Fibonacci
1.90
118.75
While(1)
1.75
109.38
1.45
90.63
CoreMark
1.45
90.63
Dhrystone 2.1
1.45
90.63
Fibonacci
1.45
90.63
While(1)
1.35
Reduced code
5.90
CoreMark(1)
5.65
117.71
Dhrystone 2.1
5.70
118.75
Fibonacci
5.65
117.71
While(1)
5.10
106.25
Reduced code
3.60
75.00
CoreMark(1)
3.45
71.88
Dhrystone 2.1
3.50
72.92
Fibonacci
3.45
71.88
While(1)
3.15
65.63
Reduced code
DS13293 Rev 5
Range 2
SMPS ON
fHCLK = 16 MHz
Supply current
in Run mode
fHCLK = fMSI
All peripherals disabled
Range 1
fHCLK = 48 MHz
Range 1
SMPS ON
fHCLK = 48 MHz
(1)
mA
84.38
122.92
µA/MHz
87/150
Electrical characteristics
25 °C
(1)
Range 2
fHCLK = 16 MHz
Unit
25 °C
Reduced code
IDD(Run)
Typ
Unit
STM32WL55/54xx
Table 41. Typical current consumption in Run and LPRun modes on CPU1,
with different codes running from SRAM1
Conditions
Symbol
Typ
Parameter
-
(2)
IDD(LPRun)
Typ
Unit
Voltage scaling
Supply current fHCLK = fMSI = 2 MHz
in LPRun mode All peripherals disabled
Code
Unit
25 °C
25 °C
Reduced code
0.225
112.50
CoreMark(1)
0.220
110.00
Dhrystone 2.1
0.225
Fibonacci
0.225
112.50
While(1)
0.195
97.50
mA
112.50
µA/MHz
Electrical characteristics
88/150
Table 41. Typical current consumption in Run and LPRun modes on CPU1,
with different codes running from SRAM1 (continued)
1. CoreMark used for characterization results provided in Table 37 and Table 40.
2. Flash memory in power-down mode.
DS13293 Rev 5
STM32WL55/54xx
Conditions
Symbol
Parameter
-
Voltage
scaling
Range 2
IDD(Sleep)
Supply current fHCLK = fMSI
in Sleep mode All peripherals disabled
Range 1
DS13293 Rev 5
SMPS
Range 1
Supply current
fHCLK = fMSI
in LPSleep
IDD(LPSleep)
All peripherals disabled
mode
Max(1)
Typ
Unit
fHCLK
(MHz)
25 °C
55 °C
85 °C
105 °C
25 °C
85 °C
105 °C
16
0.770
0.800
0.860
0.955
1.00
1.30
1.60
8
0.570
0.600
0.655
0.745
0.780
0.990
1.40
2
0.445
0.470
0.525
0.615
0.650
0.860
1.30
48
1.70
1.70
1.80
1.90
2.10
2.30
2.70
32
1.25
1.30
1.40
1.50
1.60
1.90
2.30
16
0.845
0.875
0.945
1.05
1.10
1.40
1.80
48
1.35
1.40
1.45
1.50
-
-
-
32
1.15
1.15
1.20
1.25
-
-
-
16
0.895
0.915
0.950
1.00
-
-
-
2
0.068
0.0805
0.130
0.220
0.095
0.330
0.720
1
0.044
0.0565
0.105
0.195
0.069
0.310
0.700
0.4
0.0225
0.040
0.0885
0.180
0.052
0.290
0.680
0.1
0.018
0.032
0.081
0.170
0.045
0.280
0.670
STM32WL55/54xx
Table 42. Current consumption in Sleep and LPSleep modes on CPU1, flash memory ON
mA
1. Guaranteed by characterization results, unless otherwise specified.
Electrical characteristics
89/150
Conditions
Symbol
Typ
Parameter
Unit
-
Voltage scaling
fHCLK (MHz)
25 °C
16
0.790
8
0.585
2
0.450
48
1.75
32
1.30
16
0.870
48
1.40
32
1.15
16
0.905
0.1
0.0165
Range 2
Supply current in
Sleep mode
IDD(Sleep)
fHCLK = fMSI
All peripherals disabled
Range 1
DS13293 Rev 5
SMPS Range 1
Supply current in
LPSleep mode
IDD(LPSleep)
fHCLK = fMSI
All peripherals disabled
Electrical characteristics
90/150
Table 43. Current consumption in Sleep and LPSleep modes on CPU1 and CPU2,
flash memory ON
mA
Table 44. Current consumption in LPSleep mode on CPU1, flash memory in power-down
Conditions
Symbol
Unit
-
IDD
(LPSleep)
Max(1)
Typ
Parameter
=f
f
Supply current in HCLK MS
All peripherals
LPSleep mode
disabled
25 °C
55 °C
85 °C
105 °C
25 °C
85 °C
105 °C
2
58.0
74.5
125
215
86.0
330
710
1
35.5
50.5
99.0
190
60.0
300
690
0.4
18.5
33.5
81.5
170
41.0
280
670
0.1
11.0
26.5
74.5
165
36.0
280
660
1. Guaranteed by characterization results, unless otherwise specified.
µA
STM32WL55/54xx
fHCLK (MHz)
Conditions
Symbol
Typ
Parameter
Unit
-
IDD(LPSleep)
Supply current in
LPSleep mode
STM32WL55/54xx
Table 45. Current consumption in LPSleep mode on CPU1 and CPU2,
flash memory in power-down
fHCLK = fMS
All peripherals disabled
fHCLK (MHz)
25 °C
2
59.5
1
36.0
0.4
21.5
0.1
12.5
µA
Table 46. Current consumption in Stop 2 mode
Symbol
DS13293 Rev 5
IDD
(Stop 2)
IDD
(Stop 2 with
RTC)
Parameter
Supply current in Stop 2 mode
RTC disabled
Supply current in Stop 2 mode
RTC enabled, clocked by LSI(2)
Conditions
Max(1)
Typ
VDD (V)
0 °C
25 °C
55 °C
85 °C
105 °C
0 °C
25 °C
85 °C
105 °C
1.8
0.545
0.830
2.45
8.45
13.5
1.20
2.20
24.0
66.0
2.4
0.525
0.850
2.60
8.80
14.0
-
-
-
-
3.0
0.605
0.885
2.80
9.25
14.5
1.10
2.60
26.0
69.0
3.6
0.630
0.935
3.10
9.75
15.5
1.40
2.80
26.0
71.0
1.8
0.650
0.880
2.55
8.25
13.5
1.30
2.30
24.0
66.0
2.4
0.630
0.945
2.70
8.85
14.0
-
-
-
-
3.0
0.715
1.00
2.90
9.70
15.0
1.40
2.80
26.0
69.0
3.6
0.750
1.10
3.15
10.5
15.5
1.50
3.00
26.0
71.0
Unit
µA
1. Guaranteed based on test during characterization, unless otherwise specified.
91/150
Electrical characteristics
2. LSI using LSIPRE = 1 configuration.
Typ at 25 °C
Conditions
VDD = 1.8 V
VDD = 2.4 V
VDD = 3.0 V
VDD = 3.6 V
Wakeup clock: MSI 4 MHz, voltage range 2
2.93
3.22
3.45
4.79
Wakeup clock: MSI 2 MHz, voltage range 2
4.44
5.03
5.82
7.36
Wakeup clock: MSI 4 MHz, voltage range 1
3.03
3.14
3.51
4.66
Wakeup clock: MSI 16 MHz, voltage range 1
1.75
1.95
2.00
3.06
Wakeup clock: MSI 48 MHz, voltage range 1
1.75
1.82
1.89
2.80
Unit
nAs
Electrical characteristics
92/150
Table 47. Current consumption during wakeup from Stop 2 mode
Table 48. Current consumption in Stop 1 mode
Symbol
DS13293 Rev 5
IDD
(Stop 1)
IDD
(Stop 1with
RTC)
Parameter
Supply current in Stop 1 mode
RTC disabled
Supply current in Stop 1 mode
RTC enabled, clocked by LSI(2)
Conditions
Max(1)
Typ
VDD (V)
0 °C
25 °C
55 °C
85 °C
105 °C
0 °C
25 °C
85 °C
105 °C
1.8
2.05
4.00
14.0
47.0
74.5
6.10
20.0
200
480
2.4
2.15
3.95
14.0
47.0
75.0
-
-
-
-
3.0
2.15
4.15
14.0
47.5
75.5
5.90
20.0
200
490
3.6
2.25
4.20
14.0
48.0
76.5
6.20
20.0
200
490
1.8
2.15
4.10
14.0
47.0
75.0
6.30
20.0
200
480
2.4
2.15
4.10
14.0
47.5
75.5
-
-
-
-
3.0
2.25
4.20
14.0
47.5
76.0
6.40
21.0
200
490
3.6
2.30
4.15
14.5
48.5
77.0
6.70
21.0
200
490
Unit
µA
1. Guaranteed based on test during characterization, unless otherwise specified.
2. LSI using LSIPRE = 1 configuration.
STM32WL55/54xx
Typ at 25 °C
Conditions
Wakeup clock: MSI 4 MHz, voltage range 2
VDD = 1.8 V
VDD = 2.4 V
VDD = 3.0 V
VDD = 3.6 V
1.05
1.15
1.09
1.18
Wakeup clock: MSI 2 MHz, voltage range 2
1.81
1.81
2.12
2.40
Wakeup clock: MSI 4 MHz, voltage range 1
0.766
1.23
1.34
1.49
Wakeup clock: MSI 16 MHz, voltage range 1
0.310
0.71
0.935
0.836
Wakeup clock: MSI 48 MHz, voltage range 1
0.0707
0.461
0.533
0.565
Unit
nAs
STM32WL55/54xx
Table 49. Current consumption during wakeup from Stop 1 mode
Table 50. Current consumption in Stop 0 mode
Conditions
Symbol
DS13293 Rev 5
IDD
(Stop 0)
Parameter
-
Supply current in Stop 0 mode
RTC disabled
Max(1)
Typ
VDD
(V)
0 °C
25 °C
55 °C
85 °C
105 °C
0 °C
25 °C
85 °C
105 °C
1.8
335
345
365
415
455
480
500
740
1200
2.4
360
370
395
445
485
-
-
-
-
3.0
390
400
425
475
515
540
570
800
1200
3.6
425
435
460
515
550
580
600
840
1300
Unit
µA
1. Guaranteed based on test during characterization, unless otherwise specified.
Table 51. Current consumption during wakeup from Stop 0 mode
Conditions
Typ at 25 °C
VDD = 2.4 V
VDD = 3.0 V
VDD = 3.6 V
Wakeup clock: MSI 4 MHz, voltage range 2
3.45
3.76
3.45
4.04
Wakeup clock: MSI 2 MHz, voltage range 2
3.05
3.20
3.74
3.35
Wakeup clock: MSI 4 MHz, voltage range 1
3.20
3.25
3.30
4.11
Wakeup clock: MSI 16 MHz, voltage range 1
1.07
1.25
1.71
1.80
Wakeup clock: MSI 48 MHz, voltage range 1
0.867
1.13
1.39
0.949
Unit
nAs
93/150
Electrical characteristics
VDD = 1.8 V
Conditions
Symbol
Parameter
Supply current in
Standby mode
IDD
RTC disabled
(Standby) Backup registers
retained
-
No retention
SRAM2 retained
DS13293 Rev 5
RTC clocked by LSI
Supply current in (PREDIV = 1)
Standby mode
IDD
(backup registers
(Standby
and SRAM2
with RTC)
retained)
RTC clocked by LSE
RTC enabled
quartz(2) in low drive
mode
Max(1)
Typ
VDD
(V)
0 °C
25 °C
55 °C
85 °C
105 °C
0 °C
25 °C
85 °C
105 °C
1.8
0.009
0.027
0.245
1.00
2.40
-
-
-
-
2.4
0.022
0.051
0.340
1.35
2.85
-
-
-
-
3.0
0.046
0.071
0.470
1.75
3.40
-
-
-
-
3.6
0.075
0.125
0.650
2.30
4.05
-
-
-
-
1.8
0.130
0.205
0.820
2.90
5.55
0.200
0.550
8.20
24.0
2.4
0.140
0.225
0.915
3.25
6.05
-
-
-
-
3.0
0.165
0.255
1.05
3.70
6.60
0.280
0.710
9.40
27.0
3.6
0.190
0.300
1.20
4.25
7.25
0.330
0.770
10.0
28.0
1.8
0.215
0.295
0.895
3.10
5.30
-
-
-
-
2.4
0.230
0.325
0.990
3.45
5.95
-
-
-
-
3.0
0.260
0.360
1.15
3.95
6.85
-
-
-
-
3.6
0.305
0.425
1.30
4.55
7.85
-
-
-
-
1.8
0.270
0.350
0.975
3.15
5.80
-
-
-
-
2.4
0.295
0.390
1.10
3.50
6.25
-
-
-
-
3.0
0.345
0.445
1.25
4.00
6.85
-
-
-
-
3.6
0.415
0.535
1.45
4.60
7.55
-
-
-
-
Unit
Electrical characteristics
94/150
Table 52. Current consumption in Standby mode
µA
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
Table 53. Current consumption during wakeup from Standby mode
Symbol
Typ at 25 °C
VDD = 1.8 V
VDD = 2.4 V
VDD = 3.0 V
VDD = 3.6 V
Wakeup clock: MSI 4 MHz
23.5
81.3
111
114
Wakeup clock: MSI 8 MHz
15.2
15.7
17.3
19.6
Unit
nAs
STM32WL55/54xx
IDD (wakeup from Standby)
Conditions
Conditions
Symbol
Parameter
-
Supply current in Shutdown mode
IDD
RTC disabled
(Shutdown)
Backup registers retained
DS13293 Rev 5
IDD
(Shutdown
with RTC)
Supply current
in Shutdown
mode (backup
registers
retained)
RTC enabled
RTC clocked by
an external clock
RTC clocked by
LSE quartz (2) in
low drive mode
Max(1)
Typ
VDD
(V)
0 °C
25 °C
55 °C
85 °C
105 °C
0 °C
25 °C
85 °C
105 °C
1.8
0.001
0.008
0.105
0.380
0.995
0.001
0.043
1.70
6.40
2.4
0.008
0.018
0.135
0.445
1.20
-
-
-
-
3.0
0.018
0.031
0.180
0.545
1.45
0.078
0.150
2.40
8.50
3.6
0.041
0.062
0.260
0.690
1.80
0.110
0.190
2.90
9.90
1.8
0.054
0.065
0.145
0.545
1.35
-
-
-
-
2.4
0.090
0.105
0.200
0.665
1.60
-
-
-
-
3.0
0.160
0.175
0.295
0.860
1.95
-
-
-
-
3.6
0.250
0.280
0.440
1.15
2.45
-
-
-
-
1.8
0.140
0.155
0.270
0.605
1.20
-
-
-
-
2.4
0.165
0.185
0.315
0.705
1.40
-
-
-
-
3.0
0.205
0.225
0.380
0.855
1.70
-
-
-
-
3.6
0.265
0.295
0.500
1.10
2.10
-
-
-
-
Unit
STM32WL55/54xx
Table 54. Current consumption in Shutdown mode
µA
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
Electrical characteristics
95/150
Conditions
Symbol
Parameter
Typ
-
RTC disabled
IDD(VBAT)
Backup domain
supply current
RTC enabled and
clocked by LSE quartz(1)
Max
VBAT
(V)
0 °C
25 °C
55 °C
85 °C
105 °C
105 °C
1.8
1.00
3.00
19.0
95.0
180
1.00
2.4
1.00
3.00
22.0
110
200
1.00
3.0
1.00
5.00
31.0
150
270
1.00
3.6
3.00
11.0
50.0
220
380
3.00
1.8
140
150
180
275
390
140
2.4
155
170
200
310
435
155
3.0
185
200
235
375
545
185
3.6
230
245
295
485
710
230
Unit
nA
Electrical characteristics
96/150
Table 55. Current consumption in VBAT mode
1. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
DS13293 Rev 5
Table 56. Current under Reset condition
Symbol
IDD(RST)
Conditions
Typ
VDD (V)
25 °C
1.8 V
600
2.4 V
650
3.0 V
700
3.6 V
780
Unit
µA
STM32WL55/54xx
STM32WL55/54xx
Electrical characteristics
I/O system current consumption
The current consumption of the I/O system has two components: a static and a dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 76: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, these pins must either be configured in analog mode, or forced internally to a
definite digital value. This can be done either by using pull-up/down resistors or by
configuring the pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 57: Peripheral current consumption, the I/Os used by an application also contribute to
the current consumption. When an I/O pin switches, it uses the current from the I/O supply
voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or
external) connected to the pin:
I SW = V DD × f SW × C
where
•
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load.
•
VDD is the I/O supply voltage.
•
fSW is the I/O switching frequency.
•
C is the total capacitance seen by the I/O pin: C = CIo+ CEXT .
•
CEXT is the PCB board capacitance plus any connected external device pin
capacitance.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
DS13293 Rev 5
97/150
139
Electrical characteristics
STM32WL55/54xx
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in the table below. The device is
placed under the following conditions:
•
All I/O pins are in analog mode.
•
The given value is calculated by measuring the difference of the current consumptions:
–
when the peripheral is clocked on
–
when the peripheral is clocked off
•
Ambient operating temperature and supply voltage conditions summarized in Table 22:
Voltage characteristics.
•
The power consumption of the digital part of the on-chip peripherals is given in the table
below. The power consumption of the analog part of the peripherals (where applicable)
is indicated in each related section of the datasheet.
Table 57. Peripheral current consumption
Peripheral
AHB1
AHB2
AHB3
Range 1
Range 2
LPRun and LPSleep
CRC1
0.42
0.38
1.00
DMA1
2.29
1.88
1.45
DMA2
2.50
1.94
1.50
DMAMUX1
3.96
3.38
2.50
All AHB1 peripherals
9.17
7.50
9.30
GPIOA
0.01
0.12
0.20
GPIOB
0.01
0.12
0.15
GPIOC
0.01
0.12
0.15
GPIOH
0.01
0.06
0.10
All AHB2 peripherals
0.62
0.56
0.40
AES1
2.50
2.13
1.80
FLASH
7.92
6.56
11.3
PKA
3.33
2.75
2.15
RNG1
1.04
N/A
N/A
RNG1 independent clock domain
0.62
N/A
N/A
SRAM1
0.62
0.38
0.55
0.42
0.37
0.50
16.0
13.4
16.0
DAC
0.83
0.69
0.50
I2C1
1.67
1.37
1.05
I2C1 independent clock domain
2.29
1.94
1.40
I2C2
1.67
1.37
1.05
I2C2 independent clock domain
2.50
2.00
1.60
I2C3
1.67
1.37
0.90
SRAM2
All AHB3 peripherals
APB1
98/150
(1)
DS13293 Rev 5
Unit
µA/MHz
µA/MHz
µA/MHz
µA/MHz
STM32WL55/54xx
Electrical characteristics
Table 57. Peripheral current consumption (continued)
Peripheral
APB1
Range 1
Range 2
LPRun and LPSleep
I2C3 independent clock domain
2.29
1.87
1.30
LPTIM1
1.67
1.44
1.50
LPTIM1 independent clock domain
2.50
2.19
1.45
LPTIM2
1.67
1.37
0.90
LPTIM2 independent clock domain
2.50
2.12
1.55
LPTIM3
0.83
0.69
0.65
LPTIM3 independent clock domain
2.29
1.94
0.65
LPUART1
2.08
1.81
3.55
LPUART1 independent clock
domain
2.50
2.06
1.35
RTCAPB
2.08
1.81
1.50
SPI2
1.46
1.19
0.90
TIM2
4.58
3.81
2.95
USART2
1.88
1.56
1.35
USART2 independent clock domain
4.58
3.75
3.05
WWDG1
0.42
0.31
0.05
19.6
16.1
20.2
ADC
1.25
1.00
0.70
ADC independent clock domain
0.21
0.13
0.30
SPI1
1.25
1.06
0.90
TIM1
6.25
5.19
8.30
TIM16
2.29
1.94
1.35
TIM17
2.29
1.87
1.25
USART1
1.67
1.38
1.00
4.17
3.38
2.90
15.8
13.0
15.8
SUBGHZSPI
1.46
1.25
1.10
All APB3 peripherals
1.46
1.25
1.10
62.9
52.3
59.7
All APB1 peripherals
APB2
(1)
USART1 independent clock domain
All APB2 peripherals
APB3
All
peripherals(1)
(1)
Unit
µA/MHz
µA/MHz
µA/MHz
1. Without independent clocks.
5.3.8
Wakeup time from low-power modes and voltage scaling
transition times
The wakeup times given in the table below, are the latency between the event and the
execution of the first user instruction.
The device goes in low-power mode after the WFE (wait for event) instruction.
DS13293 Rev 5
99/150
139
Electrical characteristics
STM32WL55/54xx
Table 58. Low-power mode wakeup timings(1)
Symbol
tWUSLEEP
Parameter
Wakeup time from
Sleep to Run mode
Wakeup time from
tWULPSLEEP LPSleep to LPRun
mode
tWUSTOP0
Conditions
Wakeup time from
Stop 0 mode in flash
memory(2)
Wakeup in flash with memory in power-down during
LPSleep mode (FPDS = 1 in PWR_CR1) and with
clock MSI = 2 MHz
To Run mode
(Range 1)
To LPRun mode
tWUSTOP1
Wakeup time from
Stop 1 mode in flash
memory(2)
To Run mode
(Range 1)
To LPRun mode
tWUSTOP2
tWUSTBY
tWUSHUTD
Wakeup time from
Stop 2 mode in flash
memory(2)
Wakeup time from
Standby to Run mode
To Run mode
(Range 1)
Range 1
Wakeup time from
Range 1
Shutdown to Run mode
Typ
Max
Unit
0.188 0.222
µs
3.81
4.38
Wakeup clock MSI = 48 MHz
2.14
2.90
Wakeup clock MSI = 16 MHz
2.78
3.58
Wakeup clock HSI16 = 16 MHz
1.99
-
Wakeup clock HSI16 = 16 MHz
with HSIKERON enabled
1.01
1.13
Wakeup clock MSI = 4 MHz
6.79
8.21
Wakeup clock MSI = 2 MHz
10.4
12.2
Wakeup clock MSI = 2 MHz
10.5
12.3
Wakeup clock MSI = 48 MHz
5.15
6.55
Wakeup clock MSI = 16 MHz
5.73
7.14
Wakeup clock HSI16 = 16 MHz
5.71
7.10
Wakeup clock HSI16 = 16 MHz
with HSIKERON enabled
4.57
6.52
Wakeup clock MSI = 4 MHz
8.43
9.93
Wakeup clock MSI = 2 MHz
11.9
13.7
Wakeup clock MSI = 2 MHz
10.6
13.9
Wakeup clock MSI = 48 MHz
5.56
6.85
Wakeup clock MSI = 16 MHz
6.32
7.59
Wakeup clock HSI16 = 16 MHz
6.28
7.51
Wakeup clock HSI16 = 16 MHz
with HSIKERON enabled
6.26
7.53
Wakeup clock MSI = 4 MHz
9.69
10.9
Wakeup clock MSI = 2 MHz
14.0
15.4
Wakeup clock MSI = 4 MHz
34.3
39.2
Wakeup clock MSI = 8 MHz
22.4
25.6
Wakeup clock MSI = 4 MHz
264
316
µs
µs
µs
µs
1. Guaranteed by characterization results (VDD = 3 V, T = 25 °C).
2. Wakeup time is equivalent when code is executed from SRAM1 compared to flash memory. It is also equivalent when going
to Range 2 rather than Range 1.
100/150
DS13293 Rev 5
STM32WL55/54xx
Electrical characteristics
Table 59. Regulator modes transition times(1)
Symbol
tWULPRUN
tVOST
Parameter
Conditions
Transition time from LPRun to Run
mode(2)
Code run with MSI = 2 MHz
Regulator transition time from Range 2 to
Range 1(3)
Regulator transition time from Range 1 to
Range 2(3)
Typ
Max
19.6
-
21.9
32.2
23.1
33.9
Unit
µs
Code run with HSI16
1. Guaranteed by characterization results (VDD = 3 V, T = 25 °C).
2. Time until REGLPF flag is cleared in PWR_SR2.
3. Time until VOSF flag is cleared in PWR_SR2.
5.3.9
External clock source characteristics
High-speed external user clock generated from an external source
The high-speed external (HSE32) clock can be supplied with a 32 MHz crystal oscillator or
by a TCXO (temperature controlled crystal oscillator).
Crystal oscillator
The devices include internal programmable capacitances that can be used to tune the
crystal frequency in order to compensate the PCB parasitic one.
Characteristics in the tables below, are measured over recommended operating conditions,
unless otherwise specified. Typical values are referred to TA = 25 °C and VDD = 3 V.
Table 60. HSE32 crystal requirements(1)
Symbol
fnom
fTOL
Parameter
Oscillator frequency
Frequency accuracy(2)
Conditions
Min
Typ
Max
Unit
-
MHz
-
32
-
Initial(3)
-
-
±10
Over temperature(4)
-
-
±30
Aging over 10 years
-
-
±10
ppm
CLoad
Load
capacitance(5)
-
9.5
10
10.5
CShunt
Crystal shunt capacitance
-
0.3
0.6
2
Cmotion
Crystal motional capacitance
-
1.3
1.89
2.5
fF
Crystal equivalent series
resistance
-
-
30
60
Ω
PD
Drive level
-
-
-
100
µW
Gm
Oscillator transconductance
11.3
-
-
mA/V
ESR
Startup
pF
1. 32 MHz XTAL is specified for two specific references: NX2016SA and NX1612SA.
2. Crystal frequency accuracy can also be further restricted by the protocols support by the application.
3. Initial accuracy can be compensated by initial calibration. See the application note AN5646.
4. Frequency over temperature can be partially compensated by firmware.
DS13293 Rev 5
101/150
139
Electrical characteristics
5.
STM32WL55/54xx
Load capacitance can be managed by internal programmable capacitances at calibration phase. No need to add external
foot capacitances. The values indicated take into account the combination of the two foot capacitances.
Table 61. HSE32 oscillator characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
1000
-
tSUA(HSE)
Startup time for 80% amplitude
stabilization
VDDRF stabilized,
SUBGHZ_HSEINTRIMR = 0x12,
-40 to +105 °C temperature range
-
tSUR(HSE)
Startup time
for HSEREADY signal
VDDRF stabilized,
SUBGHZ_HSEINTRIMR = 0x12,
-40 to +105 °C temperature range
-
180
-
HSEGMC = 000,
SUBGHZ_HSEINTRIMR = 0x12
-
50
-
IDDRF(HSE) HSE32 current consumption
Unit
µs
µA
XOTg(HSE)
SUBGHZ_HSEINTRIMR
granularity
-
1
5
XOTfp(HSE)
SUBGHZ_HSEINTRIMR
frequency pulling
±15
±30
-
XOTnb(HSE)
SUBGHZ_HSEINTRIMR
number of tuning bits
-
6
-
bit
XOTst(HSE)
SUBGHZ_HSEINTRIMR setting
time
-
-
0.1
ms
ppm
Capacitor bank
For more information about the trimming methodology of the oscillator, refer to the
application note HSE trimming for STM32 wireless MCUs (AN5042).
For more information about the crystal selection, refer to the application note Oscillator
design guide for STM8AF/AL/S, STM32 MCUs and MPUs (AN2867).
TCXO regulator
Table 62. HSE32 TCXO regulator characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
1.6
1.7
3.3
V
-
1.5
4
mA
From enable to regulated voltage
within 25 mV from target
-
-
50
µs
Quiescent current
-
-
70
µA
Relative to load current
-
1.6
2
%
0.4
0.6
1.2(2)
Vpk-pk
VTCXO
Regulated voltage range for
TCXO voltage supply
ILTCXO
Load current for TCXO regulator -
TSVTCXO Startup time for TCXO regulator
IDDTCXO
Current consumption for TCXO
regulator
ATCXO
Amplitude voltage for external
TCXO applied to OSC_IN pin
VDDOP > VTCXO + 200 mV
Provided through a 220 Ω resistor
in series with a capacitance
(voltage divider)(1)
1. In order to minimize spurious injection, the capacitance value must be calculated such that an amplitude of
0.4 to 0.5 Vpk-pk on OSC_IN is obtained. For TCXO output voltage of 0.8 Vpk-pk, 10 pF can be used.
2. Clipped-sine output TCXO is required, with the output amplitude not exceeding 1.2 V peak-to-peak.
102/150
DS13293 Rev 5
STM32WL55/54xx
Electrical characteristics
Low-speed external user clock generated from an external source
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. The information provided in this section is based on design simulation results
obtained with typical external components specified in the table below. In the application,
the resonator and the load capacitors have to be placed as close as possible to the
oscillator pins to minimize output distortion and startup stabilization time.
Refer to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Table 63. Low-speed external user clock characteristics(1)
Symbol
IDD(LSE)
Gmcritmax
tSU(LSE)
(2)
Parameter
LSE current
consumption
Maximum
critical crystal
gm
Startup time
Conditions
Min
Typ
Max
LSEDRV[1:0] = 00 - Low drive capability
-
250
-
LSEDRV[1:0] = 01 - Medium-low drive capability
-
315
-
LSEDRV[1:0] = 10 - Medium-high drive capability
-
500
-
LSEDRV[1:0] = 11 - High drive capability
-
630
-
LSEDRV[1:0] = 00 - Low drive capability
-
-
0.50
LSEDRV[1:0] = 01 - Medium-low drive capability
-
-
0.75
LSEDRV[1:0] = 10 - Medium-high drive capability
-
-
1.70
LSEDRV[1:0] = 11 - High drive capability
-
-
2.70
VDD stabilized
-
2
-
Unit
nA
µA/V
s
1. Guaranteed by design.
2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) until a stable 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer.
For more information on the crystal selection, refer to application note Oscillator design
guide for STM8AF/AL/S, STM32 MCUs and MPUs (AN2867).
Figure 17. Typical application with a 32.768 kHz crystal
Resonator with integrated
capacitors
CL1
OSC32_IN
fLSE
Drive
programmable
amplifier
32.768 kHz
resonator
OSC32_OUT
CL2
MS30253V2
Note:
No external resistors are required between OSC32_IN and OSC32_OUT, and it is forbidden
to add one.
In bypass mode, the LSE oscillator is switched off and the input pin is a standard GPIO.
DS13293 Rev 5
103/150
139
Electrical characteristics
STM32WL55/54xx
The external clock signal has to respect the I/O characteristics detailed in Section 5.3.16:
I/O port characteristics.The recommend clock input waveform is shown in the figure below.
Figure 18. Low-speed external clock source AC timing diagram
tw(LSEH)
VLSEH
90%
10%
VLSEL
tr(LSE)
t
tf(LSE)
tw(LSEL)
TLSE
MS19215V2
Table 64. Low-speed external user clock characteristics(1) – Bypass mode
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
kHz
fLSE_ext
User external clock source
frequency
-
21.2
32.768
44.4
VLSEH
OSC32_IN input pin highlevel voltage
-
0.7 x
VDDx
-
VDDx
VLSEL
OSC32_IN input pin lowlevel voltage
-
VSS
-
0.3 x VDDx
OSC32_IN high or low time
-
250
-
-
ns
–500
-
+500
ppm
tw(LSEH)
tw(LSEL)
ftolLSE
Frequency tolerance
Includes initial accuracy,
stability over temperature,
aging and frequency pulling
V
1. Guaranteed by design.
5.3.10
Internal clock source characteristics
Parameters given in the table below are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 26: General operating
conditions. The provided curves are characterization results, not tested in production.
High-speed internal (HSI16) RC oscillator
Table 65. HSI16 oscillator characteristics(1)
Symbol
fHSI16
104/150
Parameter
HSI16 frequency
Conditions
Min
VDD = 3.0 V, TA = 30 °C 15.88
DS13293 Rev 5
Typ
Max
Unit
-
16.08
MHz
STM32WL55/54xx
Electrical characteristics
Table 65. HSI16 oscillator characteristics(1) (continued)
Symbol
Parameter
TRIM
HSI16 user trimming step
DuCy(HSI16)
Conditions
Min
Typ
Max
Trimming code is not a
multiple of 48
0.2
0.3
0.4
Trimming code is a
multiple of 48
–4
–6
–8
45
-
55
Tj = 0 to 85 °C
–1
-
1
Tj = -40 to 125 °C
–2
-
1.5
–0.1
-
0.05
Duty cycle
(2)
-
∆Temp(HSI16)
HSI16 oscillator frequency drift
∆VDD(HSI16)
HSI16 oscillator frequency drift over VDD VDD = 1.8 V to 3.6 V
(HSI16)(2)
HSI16 oscillator start-up time
-
-
0.8
1.2
tstab(HSI16)(2)
HSI16 oscillator stabilization time
-
-
3
5
IDD(HSI16)(2)
HSI16 oscillator power consumption
-
-
155
190
tsu
Unit
%
μs
μA
1. Guaranteed by characterization results.
2. Guaranteed by design.
Figure 19. HSI16 frequency versus temperature
MHz
16.4
+2 %
16.3
+1.5 %
16.2
+1 %
16.1
16
15.9
-1 %
15.8
-1.5 %
15.7
-2 %
15.6
-40
-20
0
20
Mean
40
60
Min
DS13293 Rev 5
80
100
Max
120 °C
MSv66006V3
105/150
139
Electrical characteristics
STM32WL55/54xx
Multi-speed internal (MSI) RC oscillator
Table 66. MSI oscillator characteristics(1)
Symbol
Parameter
Conditions
MSI mode
fMSI
∆TEMP(MSI)(2)
106/150
MSI frequency
after factory
calibration, done
at VDD= 3 V and
TA= 30 °C
MSI oscillator
frequency drift
over temperature
Min
Typ
Max
Range 0
98.7
100
101.3
Range 1
197.4
200
202.6
Range 2
394.8
400
405.2
Range 3
789.6
800
810.4
Range 4
0.987
1
1.013
Range 5
1.974
2
2.026
Range 6
3.948
4
4.052
Range 7
7.896
8
8.104
Range 8
15.79
16
16.21
Range 9
23.69
24
24.31
Range 10
31.58
32
32.42
Range 11
47.38
48
48.62
Range 0
-
98.304
-
Range 1
-
196.608
-
Range 2
-
393.216
-
Range 3
-
786.432
-
Range 4
-
1.016
-
PLL mode Range 5
XTAL=
32.768 kHz Range 6
-
1.999
-
-
3.998
-
Range 7
-
7.995
-
Range 8
-
15.991
-
Range 9
-
23.986
-
Range 10
-
32.014
-
Range 11
-
48.005
-
–3.5
-
3
–8
-
6
MSI mode
Tj = 0 to 85 °C
Tj = -40 to 125 °C
DS13293 Rev 5
Unit
kHz
MHz
kHz
MHz
%
STM32WL55/54xx
Electrical characteristics
Table 66. MSI oscillator characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
VDD =
1.8 to 3.6 V
–1.2
-
VDD =
2.4 to 3.6 V
–0.5
-
VDD =
1.8 to 3.6 V
–2.5
-
VDD =
2.4 to 3.6 V
–0.8
-
VDD =
1.8 to 3.6 V
–5
-
VDD =
2.4 to 3.6 V
–1.6
-
Tj = -40 to 85 °C
-
1
2
Tj = -40 to 125 °C
-
2
4
Range 0 to 3
∆VDD(MSI)(2)
MSI oscillator
frequency drift
MSI mode
over VDD
(reference is 3 V)
Range 4 to 7
Range 8 to 11
∆FSAMPLING
(MSI)(2)(4)
CC jitter(MSI)(4)
P jitter(MSI)(4)
tSU(MSI)(4)
tSTAB(MSI)(4)
Frequency
MSI mode
variation in
sampling mode(3)
Max
0.5
0.7
%
1
RMS cycle-tocycle jitter
PLL mode Range 11
-
-
60
-
RMS period jitter
PLL mode Range 11
-
-
50
-
Range 0
-
-
10
20
Range 1
-
-
5
10
Range 2
-
-
4
8
Range 3
-
-
3
7
Range 4 to 7
-
-
3
6
Range 8 to 11
-
-
2.5
6
10 % of final
frequency
-
-
0.25
0.5
5 % of final
frequency
-
-
0.5
1.25
1 % of final
frequency
-
-
-
2.5
MSI oscillator
start-up time
MSI oscillator
stabilization time
PLL mode
Range 11
DS13293 Rev 5
Unit
ps
μs
ms
107/150
139
Electrical characteristics
STM32WL55/54xx
Table 66. MSI oscillator characteristics(1) (continued)
Symbol
IDD(MSI)(4)
Parameter
MSI oscillator
power
consumption
Conditions
MSI and
PLL mode
Typ
Max
Range 0
-
-
0.6
1
Range 1
-
-
0.8
1.2
Range 2
-
-
1.2
1.7
Range 3
-
-
1.9
2.5
Range 4
-
-
4.7
6
Range 5
-
-
6.5
9
Range 6
-
-
11
15
Range 7
-
-
18.5
25
Range 8
-
-
62
80
Range 9
-
-
85
110
Range 10
-
-
110
130
Range 11
-
-
155
190
1. Guaranteed by characterization results.
2. This is a deviation for an individual part once the initial frequency has been measured.
3. Sampling mode means LPRun and LPSleep modes with temperature sensor disabled.
4. Guaranteed by design.
108/150
Min
DS13293 Rev 5
Unit
µA
STM32WL55/54xx
Electrical characteristics
Figure 20. Typical current consumption vs. MSI frequency
Low-speed internal (LSI) RC oscillator
Table 67. LSI oscillator characteristics(1)
Symbol
fLSI
Parameter
LSI frequency
tSU(LSI)(2)
(2)
tSTAB(LSI)
IDD(LSI)(2)
Conditions
Min
Typ
Max
VDD = 3 V, TA = 30 °C
31.04
-
32.96
VDD = 1.8 to 3.6 V, Tj = -40 to 125 °C
29.5
-
34
-
80
130
-
125
180
-
110
180
LSI oscillator startup time
LSI oscillator stabilization time
5 % of final frequency
LSI oscillator power
consumption
-
Unit
kHz
μs
nA
1. Guaranteed by characterization results.
2. Guaranteed by design.
DS13293 Rev 5
109/150
139
Electrical characteristics
5.3.11
STM32WL55/54xx
PLL characteristics
Parameters given in the table below are derived from tests performed under temperature
and VDD supply voltage conditions summarized in Table 26: General operating conditions.
Table 68. PLL characteristics(1)
Symbol
fPLL_IN
Parameter
Conditions
Min
Typ
Max
Unit
PLL input clock(2)
-
2.66
-
16
MHz
PLL input clock duty cycle
-
45
-
55
%
Voltage scaling Range 1
3
-
48
Voltage scaling Range 2
3
-
16
Voltage scaling Range 1
12
-
48
Voltage scaling Range 2
12
-
16
Voltage scaling Range 1
12
-
48
Voltage scaling Range 2
12
-
16
Voltage scaling Range 1
96
-
344
Voltage scaling Range 2
96
-
128
-
15
40
-
40
-
-
30
-
VCO freq = 96 MHz
-
200
260
VCO freq = 192 MHz
-
300
380
VCO freq = 344 MHz
-
520
650
fPLL_P_OUT PLL multiplier output clock P
fPLL_Q_OUT PLL multiplier output clock Q
fPLL_R_OUT PLL multiplier output clock R
fVCO_OUT
tLOCK
Jitter
IDD(PLL)
PLL VCO output
PLL lock time
-
RMS cycle-to-cycle jitter
RMS period jitter
PLL power consumption on
VDD(1)
System clock 48 MHz
MHz
μs
ps
μA
1. Guaranteed by design.
2. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between the two PLLs.
5.3.12
Flash memory characteristics
Table 69. Flash memory characteristics(1)
Symbol
tprog
tprog_row
tprog_page
tERASE
tME
110/150
Parameter
Conditions
Typ
Max
Unit
-
81.7
90.8
µs
5.2
5.5
Fast programming
3.8
4.0
Normal
programming
41.8
43.0
Fast programming
30.4
31.0
64-bit programming time
Normal
One row (64 double-words) programming time programming
One 2-Kbyte page programming time
2-Kbyte page erase time
-
22.0
24.5
Mass erase time
-
22.1
25.0
DS13293 Rev 5
ms
STM32WL55/54xx
Electrical characteristics
Table 69. Flash memory characteristics(1) (continued)
Symbol
Parameter
Conditions
Average consumption from VDD
IDD
Maximum current (peak)
Typ
Max
Write mode
3.4
-
Erase mode
3.4
-
Write mode
7 (for 6 µs)
-
Erase mode
7 (for 67 µs)
-
Unit
mA
1. Guaranteed by design.
Table 70. Flash memory endurance and data retention
Symbol
NEND
Min(1)
Unit
TA = -40 to +105 °C
10
kcycles
1 kcycle(2) at TA = 85 °C
30
Parameter
Endurance
Conditions
(2)
at TA = 105 °C
1 kcycle
tRET
Data retention
10
15
kcycles(2)
at TA = 55 °C
30
(2)
at TA = 85 °C
15
10 kcycles
10 kcycles(2) at TA = 105 °C
Years
10
1. Guaranteed by characterization results.
2. Cycling performed over the whole temperature range.
5.3.13
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling two LEDs through I/O ports).
the device is stressed by the following electromagnetic events until a failure occurs (failure
indicated by the LEDs):
•
ESD (electrostatic discharge, positive and negative) applied to all device pins until a
functional disturbance occurs (test compliant with IEC 61000-4-2 standard)
•
FTB (burst of fast transient voltage, positive and negative) applied to VDD and VSS
pins, through a 100 pF capacitor, until a functional disturbance occurs (test compliant
with IEC 61000-4-4 standard)
A device reset allows normal operations to be resumed.
The test results given in the table below, are based on the EMS levels and classes defined
in application note EMC design guide for STM8, STM32 and Legacy MCUs (AN1709).
DS13293 Rev 5
111/150
139
Electrical characteristics
STM32WL55/54xx
Table 71. EMS characteristics
Symbol
Parameter
Conditions
Level/Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, TA = +25 °C, fHCLK = 48 MHz,
conforming to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, TA = +25 °C, fHCLK = 48 MHz,
conforming to IEC 61000-4-4
5A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software.
Note:
Good EMC performance is highly dependent on the user application and the software in
particular.It is then recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for the application.
Software recommendations
The software flow must include the management of runaway conditions such as:
•
corrupted program counter
•
unexpected reset
•
critical data corruption (control registers)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 s.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring. For more details, refer to the application note
Software techniques for improving microcontrollers EMC performance (AN1015).
Electromagnetic interference (EMI)
The electromagnetic field emitted by the device is monitored while a simple application is
executed (toggling two LEDs through the I/O ports). This emission test is compliant with the
IEC 61967-2 standard, that specifies the test board and the pin loading.
112/150
DS13293 Rev 5
STM32WL55/54xx
Electrical characteristics
Table 72. EMI characteristics
Symbol
Parameter
Monitored
frequency band
Conditions
Peripheral ON
SMPS OFF
fHSE = /fCPUM4, fCPUM0]
Unit
fHSE = 32 MHz
fCPU1 = fCPU2 = 48 MHz
SEMI
5.3.14
Peak level
VDD = 3.6 V, TA = 25 °C,
UFBGA73 package
compliant with IEC 61967-2
0.1 MHz to 30 MHz
1
30 MHz to 130 MHz
4
130 MHz to 1 GHz
0
1 GHz to 2 GHz
7
EMI level
2
dBµV
-
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 s) are applied to
the pins of each sample according to each pin combination. The sample size depends on
the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to
the ANSI/JEDEC standard.
Table 73. ESD absolute maximum ratings
Symbol
Ratings
VESD(HBM)
Electrostatic discharge voltage
(human body model)
Electrostatic discharge voltage
VESD(CDM)
(charge device model)
Class
Maximum value(1)
TA = +25 °C, conforming to
ANSI/ESDA/JEDEC JS-001
2
2000
TA = +25 °C, conforming to
ANSI/ESD STM5.3.1 JS-002
C2a
Conditions
Unit
V
500
1. Guaranteed by characterization results.
Static latch-up
The following complementary static tests are required on three parts to assess the latch-up
performance:
•
A supply overvoltage is applied to each power supply pin.
•
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 74. Electrical sensitivities
Symbol
LU
Parameter
Static latch-up class
Conditions
TA = +105 °C conforming to JESD78A
DS13293 Rev 5
Class
Level A
113/150
139
Electrical characteristics
5.3.15
STM32WL55/54xx
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3V-capable I/O pins), must be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
case abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating-input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out-of-range parameter: ADC error above a certain limit
(higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent
pins (out of the -5 µA/0 µA range) or other functional failure (for example reset occurrence
or oscillator frequency deviation).
The characterization results are given in the table below.
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
Table 75. I/O current injection susceptibility(1)
Functional susceptibility
Symbol
IINJ
Description
Negative
injection
Positive
injection
Injected current on all pins except PB0
–5
N/A(2)
Injected current on PB0 pin
–5
0
Unit
mA
1. Guaranteed by characterization results.
2. Injection not possible.
5.3.16
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the conditions summarized in Table 26: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant.
Note:
114/150
For information on GPIO configuration, refer to the application note STM32 GPIO
configuration for hardware settings and low-power consumption (AN4899).
DS13293 Rev 5
STM32WL55/54xx
Electrical characteristics
Table 76. I/O static characteristics
Symbol
Parameter
Conditions
I/O input low-level voltage(1)
VIL
Vhys
Typ
Max
-
-
0.3 x VDD
0.7 x VDD
-
-
0.49 x VDD
+ 0.26
-
-
-
200
-
0 ≤ VIN ≤ Max(VDDXXX)(3)(4)
-
-
±100
Max(VDDXXX) ≤ VIN ≤
Max(VDDXXX) +1 V(2)(3)(4)
-
-
650
Max(VDDXXX) +1 V < VIN ≤
5.5 V(2)(3)(4)(5)(6)
-
-
200(7)
VIN ≤ Max(VDDXXX)(3)
-
-
±150
-
-
2000
1.8 V < VDD < 3.6 V
I/O input high-level voltage(2)
TT, FT_xx and NRST I/O
input hysteresis
FT_xx input leakage current
Ilkg
TT input leakage current
Unit
0.39 x VDD
- 0.06
I/O input low-level voltage(2)
I/O input high-level voltage(1)
VIH
Min
Max(VDDXXX) ≤ VIN < 3.6
V(3)
RPU
Weak pull-up equivalent
resistor(1)
VIN = VSS
25
40
55
RPD
Weak pull-down equivalent
resistor(1)
VIN = VDD
25
40
55
CIO
I/O pin capacitance
-
5
-
V
mV
nA
kΩ
-
pF
1. Tested in production.
2. Guaranteed by design, not tested in production.
3. Represents the pad leakage of the I/O itself. The total product pad leakage is given by
ITotal_Ileak_max = 10 μA + number of I/Os where VIN is applied on the pad x Ilkg(Max).
4. Max(VDDXXX) is the maximum value among all the I/O supplies.
5. VIN must be lower than [Max(VDDXXX) + 3.6 V].
6. Refer to the figure below.
7. To sustain a voltage higher than [Min(VDD, VDDA) + 0.3 V], the internal pull-up and pull-down resistors must be disabled on
all FT_xx I/O.
DS13293 Rev 5
115/150
139
Electrical characteristics
STM32WL55/54xx
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters, as shown
in the figure below.
Figure 21. I/O input characteristics - VIL and VIH on all I/Os
VIH spec 70 %
VIL spec 30 %
VIH rule
VIL rule
VIH spec TTL
VIL spec TTL
MSv64346V1
Output driving current
The GPIOs can sink or source up to ±8 mA, and sink or source up to ± 20 mA (with a
relaxed VOL/VOH).
In the user application, the number of I/O pins that can drive current must be limited to
respect the absolute maximum rating specified in Section 5.2: Absolute maximum ratings.
The sum of the currents sourced by all the I/Os on VDD, plus the maximum consumption of
the MCU sourced on VDD, cannot exceed the absolute maximum rating ΣIVDD (see
Table 22: Voltage characteristics).
The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of the
MCU sunk on VSS, cannot exceed the absolute maximum rating ΣIVSS (see Table 22:
Voltage characteristics).
Output voltage levels
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 26: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT or TT
unless otherwise specified).
116/150
DS13293 Rev 5
STM32WL55/54xx
Electrical characteristics
Table 77. Output voltage characteristics(1)
Symbol
Parameter
Conditions
VOL(2)
Output low-level voltage for an I/O pin
Min
Max
-
0.4
VDD - 0.4
-
-
0.4
2.4
-
-
1.3
VDD - 1.3
-
-
0.4
VDD - 0.45
-
|IIO| = 20 mA, VDD ≥ 2.7 V
-
0.4
|IIO| = 10 mA, VDD ≥ 1.8 V
-
0.4
VOH(2)
CMOS port(3)
|I
Output high-level voltage for an I/O pin IO| = 8 mA, VDD ≥ 2.7 V
VOL(2)
Output low-level voltage for an I/O pin
VOH(2)
TTL port(3)
Output high-level voltage for an I/O pin |IIO| = 8 mA, VDD ≥ 2.7 V
VOL(2)
Output low-level voltage for an I/O pin
VOH(2)
Output high-level voltage for an I/O pin
VOL(2)
Output low-level voltage for an I/O pin
VOH(2)
Output high-level voltage for an I/O pin
Output low-level voltage for an FT I/O
VOLFM+(2) pin in FM+ mode
(FT I/O with “f” option)
|IIO| = 20 mA, VDD ≥ 2.7 V
|IIO| = 4 mA, VDD ≥ 1.8 V
Unit
V
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 22:
Voltage characteristics. The sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always
respect the absolute maximum ratings Σ IIO.
2. Guaranteed by design.
3. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
Input/output AC characteristics
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 26: General operating conditions.
Table 78. I/O AC characteristics(1)(2)
OSPEEDx[1:0](3)
Symbol
Fmax
Parameter
Maximum
frequency
0b00
Tr/Tf
Output rise and
fall time
Conditions
Min
Max
C = 50 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
5
C = 50 pF, 1.8 V ≤ VDD ≤ 2.7 V
-
1
C = 10 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
10
C = 10 pF, 1.8 V ≤ VDD ≤ 2.7 V
-
1.5
C = 50 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
25
C = 50 pF, 1.8 V ≤ VDD ≤ 2.7 V
-
52
C = 10 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
17
C = 10 pF, 1.8 V ≤ VDD ≤ 2.7 V
-
37
DS13293 Rev 5
Unit
MHz
ns
117/150
139
Electrical characteristics
STM32WL55/54xx
Table 78. I/O AC characteristics(1)(2) (continued)
OSPEEDx[1:0](3)
Symbol
Fmax
Parameter
Conditions
Maximum
frequency
0b01
Tr/Tf
Fmax
Output rise and
fall time
Maximum
frequency
0b10
Tr/Tf
Fmax
Output rise and
fall time
Maximum
frequency
0b11
Tr/Tf
Output rise and
fall time
Min
Max
C = 50 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
25
C = 50 pF, 1.8 V ≤ VDD ≤ 2.7 V
-
10
C = 10 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
50
C = 10 pF, 1.8 V ≤ VDD ≤ 2.7 V
-
15
C = 50 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
9
C = 50 pF, 1.8 V ≤ VDD ≤ 2.7 V
-
16
C = 10 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
4.5
C = 10 pF, 1.8 V ≤ VDD ≤ 2.7 V
-
9
C = 50 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
50
C = 50 pF, 1.8 V ≤ VDD ≤ 2.7 V
-
25
C = 10 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
100(4)
C = 10 pF, 1.8 V ≤ VDD ≤ 2.7 V
-
37.5
C = 50 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
5.8
C = 50 pF, 1.8 V ≤ VDD ≤ 2.7 V
-
11
C = 10 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
2.5
C = 10 pF, 1.8 V ≤ VDD ≤ 2.7 V
-
5
C = 30 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
120(4)
C = 30 pF, 1.8 V ≤ VDD ≤ 2.7 V
-
50
C = 10 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
180(4)
C = 10 pF, 1.8 V ≤ VDD ≤ 2.7 V
-
75(4)
C = 30 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
3.3
C = 30 pF, 1.8 V ≤ VDD ≤ 2.7 V
-
6
C = 10 pF, 2.7 V ≤ VDD ≤ 3.6 V
-
1.7
C = 10 pF, 1.8 V ≤ VDD ≤ 2.7 V
-
3.3
Unit
MHz
ns
MHz
ns
MHz
ns
1. The maximum frequency is defined with (Tr+ Tf) ≤ 2/3 T, and duty cycle comprised between 45 and 55 %.
2. The fall and rise time are defined, respectively, between 90 and 10 %, and between 10 and 90 % of the output waveform.
3. OSPEED0[1:0] in GPIOA_OSPEEDR, GPIOB_OSPEEDR and GPIOC_OSPEEDR. OSPEED3[1:0] in GPIOH_OSPEEDR
4. This value represents the I/O capability but the maximum system frequency is limited to 48 MHz.
5.3.17
NRST pin characteristics
The NRST pin input driver uses the CMOS technology. It is connected to a permanent
pull-up resistor, RPU.
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 26: General operating conditions.
118/150
DS13293 Rev 5
STM32WL55/54xx
Electrical characteristics
Table 79. NRST pin characteristics(1)
Symbol
Conditions
Min
Typ
Max
VIL(NRST) NRST input low level voltage
-
-
-
0.3 x VDD
VIH(NRST) NRST input high level voltage
-
0.7 x VDD
-
-
Vhys(NRST) NRST Schmitt trigger voltage hysteresis
-
-
200
-
mV
VIN = VSS
25
40
55
kΩ
-
-
-
70
1.8 V ≤ VDD ≤ 3.6 V
350
-
-
RPU
VF(NRST)
Parameter
Weak pull-up equivalent resistor(2)
NRST input, filtered pulse
VNF(NRST) NRST input, not filtered pulse
1.
Unit
V
ns
Guaranteed by design.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is minimal (~10 %).
Figure 22. Recommended NRST pin protection
External
reset circuit(1)
VDD
RPU
NRST(2)
Internal reset
Filter
0.1 μF
MS19878V3
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in the above table.
Otherwise the reset is not be taken into account by the device.
3. The external capacitor on NRST must be placed as close as possible to the device.
5.3.18
Analog switches booster
Table 80. Analog switches booster characteristics(1)
Symbol
Min
Typ
Max
Unit
1.8
-
3.6
V
-
-
240
µs
Booster consumption for 1.8 V ≤ VDD ≤ 2.0 V
-
-
250
IDD(BOOST) Booster consumption for 2.0 V ≤ VDD ≤ 2.7 V
-
-
500
Booster consumption for 2.7 V ≤ VDD ≤ 3.6 V
-
-
900
VDD
Parameter
Supply voltage
tSU(BOOST) Booster startup time
µA
1. Guaranteed by design.
DS13293 Rev 5
119/150
139
Electrical characteristics
5.3.19
STM32WL55/54xx
Analog-to-digital converter characteristics
Unless otherwise specified, the parameters given in the table below are preliminary values
derived from tests performed under ambient temperature, fPCLK frequency and VDDA supply
voltage conditions summarized in Table 26: General operating conditions.
Note:
It is recommended to perform a calibration after each power-up.
Table 81. ADC characteristics(1)
Symbol
Parameter
Conditions(2)
Min
Typ
Max
VDDA
Analog supply voltage
-
1.62
-
3.6
VREF+
Positive reference
voltage
2
-
VDDA
fADC
fs
fTRIG
ADC clock frequency
Sampling rate
External trigger
frequency
VDDA ≥ 2 V
VDDA < 2 V
Unit
V
VDDA
Range 1
0.14
-
35
Range 2
0.14
-
16
12 bits, VDDA > 2 V
-
-
2.50
10 bits, VDDA > 2 V
-
-
2.92
8 bits, VDDA > 2 V
-
-
3.50
6 bits, VDDA > 2 V
-
-
4.38
12 bits, VDDA ≤ 2 V
-
-
2.18
10 bits, VDDA ≤ 2 V
-
-
2.50
8 bits, VDDA ≤ 2 V
-
-
2.92
6 bits, VDDA ≤ 2 V
-
-
3.50
fADC = 35 MHz,
12 bits, VDDA > 2 V
-
-
2.35
fADC = 35 MHz,
12 bits, VDDA ≤ 2 V
-
-
2.18
12 bits, VDDA > 2 V
-
-
fADC/15
12 bits, VDDA ≤ 2 V
-
-
fADC/17
MHz
Msps
MHz
VAIN
Conversion voltage
range
-
VSS
-
VREF+
V
RAIN
External input
impedance
-
-
-
50
kΩ
CADC
Internal sample and
hold capacitor
-
-
5
-
pF
tSTAB
ADC power-up time
-
tCAL
Calibration time
120/150
fADC = 35 MHz
-
DS13293 Rev 5
2
Conversion
cycle
2.35
µs
82
1/fADC
STM32WL55/54xx
Electrical characteristics
Table 81. ADC characteristics(1) (continued)
Symbol
Parameter
Conditions(2)
Min
Typ
Max
Unit
2
-
3
1/fADC
CKMODE = 00
tLATR
ts
Trigger conversion
latency
CKMODE = 01
6.5
CKMODE = 10
12.5
CKMODE = 11
3.5
fADC = 35 MHz
Sampling time
ADC voltage regulator
tADCVREG_STUP start-up time
tCONV
tIDLE
IDDA(ADC)
IDDV(ADC)
Total conversion time
(including sampling
time)
ADC consumption
from VDDA
ADC consumption
from VREF+
single ended mode
0.043
-
4.59
µs
-
1.5
-
160.5
1/fADC
-
-
-
20
µs
0.40
-
4.95
µs
fADC = 35 MHz
Resolution = 12 bits
Resolution = 12 bits
Laps of time allowed
between two
conversions without
rearm
1/fPCLK
ts + 12.5 cycles for successive
approximation
= 14 to 173
-
-
-
100
fs = 2.5 Msps
-
410
-
fs = 1 Msps
-
164
-
fs = 10 ksps
-
17
-
fs = 2.5 Msps
-
65
-
fs = 1 Msps
-
26
-
fs = 10 ksps
-
0.26
-
1/fADC
µs
µA
µA
1. Guaranteed by design
2. I/O analog switch voltage booster must be enabled (BOOSTEN = 1 in the SYSCFG_CFGR1) when VDDA < 2.4 V and
disabled when VDDA ≥ 2.4 V.
Table 82. Maximum ADC RAIN values
Resolution
12 bits
Sampling cycle at 35 MHz (ns)
Sampling time at 35 MHz (ns)
Max. RAIN(1)(2)(Ω)
1.5(3)
43
50
3.5
100
680
7.5
214
2200
12.5
357
4700
19.5
557
8200
39.5
1129
15000
79.5
2271
33000
160.5
4586
50000
DS13293 Rev 5
121/150
139
Electrical characteristics
STM32WL55/54xx
Table 82. Maximum ADC RAIN values (continued)
Resolution
Sampling cycle at 35 MHz (ns)
Sampling time at 35 MHz (ns)
Max. RAIN(1)(2)(Ω)
1.5(3)
43
68
3.5
100
820
7.5
214
3300
12.5
357
5600
19.5
557
10000
39.5
1129
22000
79.5
2271
39000
160.5
4586
50000
43
82
3.5
100
1500
7.5
214
3900
12.5
357
6800
19.5
557
12000
39.5
1129
27000
79.5
2271
50000
160.5
4586
50000
43
390
3.5
100
2200
7.5
214
5600
12.5
357
10000
19.5
557
15000
39.5
1129
33000
79.5
2271
50000
160.5
4586
50000
10 bits
(3)
1.5
8 bits
(3)
1.5
6 bits
1. Guaranteed by design.
2. I/O analog switch voltage booster must be enabled (BOOSTEN = 1 in the SYSCFG_CFGR1) when VDDA < 2.4 V and
disabled when VDDA ≥ 2.4 V.
3. Only allowed with VDDA > 2 V
Table 83. ADC accuracy(1)(2)(3)
Symbol
ET
122/150
Parameter
Total
unadjusted
error
Conditions(4)
Min
Typ
VDDA = VREF+ = 3 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = 25 °C
-
3
4
2 V < VDDA, VREF+ < 3.6 V,
fADC = 35 MHz; fs ≤ 2.5 Msps, TA = entire range
-
3
6.5
1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range
Range 1: fADC = 35 MHz, fs ≤ 2.2 Msps
Range 2: fADC = 16 MHz, fs ≤ 1.1 Msps
-
DS13293 Rev 5
Max Unit
LSB
3
7.5
STM32WL55/54xx
Electrical characteristics
Table 83. ADC accuracy(1)(2)(3) (continued)
Symbol
EO
EG
ED
Parameter
Offset error
Gain error
Conditions(4)
Min
Typ
VDDA = VREF+ = 3 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = 25 °C
-
1.5
2
2 V < VDDA, VREF+ < 3.6 V,
fADC = 35 MHz; fs ≤ 2.5 Msps, TA = entire range
-
1.5
4.5
1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range
Range 1: fADC = 35 MHz, fs ≤ 2.2 Msps
Range 2: fADC = 16 MHz, fs ≤ 1.1 Msps
-
1.5
5.5
VDDA = VREF+ = 3 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = 25 °C
-
3
3.5
2 V < VDDA, VREF+ < 3.6 V,
fADC = 35 MHz, fs ≤ 2.5 Msps, TA = entire range
-
3
5
1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range
Range 1: fADC = 35 MHz, fs ≤ 2.2 Msps
Range 2: fADC = 16 MHz, fs ≤ 1.1 Msps
-
3
6.5
VDDA = VREF+ = 3 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = 25 °C
-
1.2
1.5
-
1.2
1.5
2 V < VDDA, VREF+ < 3.6 V,
Differential fADC = 35 MHz, fs ≤ 2.5 Msps, TA = entire range
linearity error
1.62 V < VDDA = VREF+ < 3.6 V,TA = entire range
Range 1: fADC = 35 MHz, fs ≤ 2.2 Msps
Range 2: fADC = 16 MHz, fs ≤ 1.1 Msps
VDDA = VREF+ = 3 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = 25 °C
EL
ENOB
SINAD
SNR
2 V < VDDA, VREF+ < 3.6 V,
Integral
fADC = 35 MHz, fs ≤ 2.5 Msps, TA = entire range
linearity error
1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range
Range 1: fADC = 35 MHz, fs ≤ 2.2 Msps
Range 2: fADC = 16 MHz, fs ≤ 1.1 Msps
Effective
number of
bits
Signal-tonoise and
distortion
ratio
Signal-tonoise ratio
Max Unit
LSB
LSB
LSB
-
1.2
1.5
-
2.5
3
-
2.5
3
LSB
-
2.5
3.5
VDDA = VREF+ = 3 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = 25 °C
10.1 10.2
-
2 V < VDDA, VREF+ < 3.6 V,
fADC = 35 MHz, fs ≤ 2.5 Msps, TA = entire range
9.6
-
1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range
Range 1: fADC = 35 MHz, fs ≤ 2.2 Msps
Range 2: fADC = 16 MHz, fs ≤ 1.1 Msps
9.5
10.2
-
VDDA = VREF+ = 3 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = 25 °C
62.5
63
-
2 V < VDDA, VREF+ < 3.6 V,
fADC = 35 MHz, fs ≤ 2.5 Msps, TA = entire range
59.5
63
-
10.2
bit
dB
1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range
Range 1: fADC = 35 MHz, fs ≤ 2.2 Msps
Range 2: fADC = 16 MHz, fs ≤ 1.1 Msps
59
63
-
VDDA = VREF+ = 3 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = 25 °C
63
64
-
2 V < VDDA, VREF+ < 3.6 V,
fADC = 35 MHz, fs ≤ 2.5 Msps, TA = entire range
60
64
-
1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range
Range 1: fADC = 35 MHz, fs ≤ 2.2 Msps
Range 2: fADC = 16 MHz, fs ≤ 1.1 Msps
60
DS13293 Rev 5
dB
64
-
123/150
139
Electrical characteristics
STM32WL55/54xx
Table 83. ADC accuracy(1)(2)(3) (continued)
Symbol
THD
Conditions(4)
Min
Typ
Max Unit
VDDA = VREF+ = 3 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = 25 °C
-
-74
-73
2 V < VDDA, VREF+ < 3.6 V,
fADC = 35 MHz, fs ≤ 2.5 Msps, TA = entire range
-
-74
-70
1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range
Range 1: fADC = 35 MHz, fs ≤ 2.2 Msps
Range 2: fADC = 16 MHz, fs ≤ 1.1 Msps
-
Parameter
Total
harmonic
distortion
dB
-74
-70
1. Based on characterization results, not tested in production.
2. ADC DC accuracy values are measured after internal calibration.
3. Injecting negative current on any analog input pin significantly reduces the accuracy of A-to-D conversion of signal on
another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins susceptible to receive
negative current.
4. I/O analog switch voltage booster enabled (BOOSTEN = 1 in the SYSCFG_CFGR1) when VDDA < 2.4 V and disabled when
VDDA ≥ 2.4 V.
Figure 23. ADC accuracy characteristics
VREF+
[1LSB =
2n
Output code
VDDA
(or
)]
2n
EG
(1) Example of an actual transfer curve
(2) Ideal transfer curve
(3) End-point correlation line
2n-1
2n-2
2n-3
(2)
(3)
ET
EL
EO
ED
(2n/2n)*VREF+
(2n-1/2n)*VREF+
(2n-2/2n)*VREF+
(2n-3/2n)*VREF+
(7/2n)*VREF+
(6/2n)*VREF+
(5/2n)*VREF+
(4/2n)*VREF+
(3/2n)*VREF+
1 LSB ideal
(2/2n)*VREF+
0
VSSA
(1)
(1/2n)*VREF+
7
6
5
4
3
2
1
n = ADC resolution
ET = total unadjusted error: maximum deviation
between the actual and ideal transfer curves
EO = offset error: maximum deviation between the first
actual transition and the first ideal one
EG = gain error: deviation between the last ideal
transition and the last actual one
ED = differential linearity error: maximum deviation
between actual steps and the ideal one
EL = integral linearity error: maximum deviation between
any actual transition and the end point correlation line
VREF+ (VDDA)
MSv19880V6
124/150
DS13293 Rev 5
STM32WL55/54xx
Electrical characteristics
Figure 24. Typical connection diagram when using the ADC
with FT/TT pins featuring analog switch function
VREF+(4)
VDDA(4)
Sample-and-hold ADC converter
I/O
analog
switch
RAIN(1)
RADC
Converter
Cparasitic(2)
VAIN
Ilkg(3)
VSS
CADC
Sampling
switch with
multiplexing
VSS
VSSA
MSv67871V3
1. Refer to Table 83: ADC accuracy for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance
(refer to Table 76: I/O static characteristics for the value of the pad capacitance). A high Cparasitic value downgrades the
conversion accuracy. To remedy this, fADC must be reduced.
3. Refer to Table 76: I/O static characteristics for the values of Ilkg.
4. Refer to Section 3.10.1: Power supply schemes.
General PCB design guidelines
Power supply decoupling must be performed as shown in Figure 14: Power supply scheme.
The 100 nF capacitor must be ceramic (good quality) and must be placed as close as
possible to the chip.
5.3.20
Temperature sensor characteristics
Table 84. TS characteristics
Symbol
TL(1)
Avg_Slope(2)
Parameter
VTS linearity with temperature
Typ
Max
Unit
-
±1
±2
°C
2.3
2.5
2.7
mV/°C
°C)(3)
0.742
0.76
0.785
V
tSTART
(TS_BUF)(1)
Sensor buffer startup time in continuous mode(4)
-
8
15
µs
tSTART(1)
Startup time when entering in continuous mode(4)
-
70
120
µs
tS_temp(1)
ADC sampling time when reading the temperature
5
-
-
µs
IDD(TS)(1)
Temperature sensor consumption from VDD, when
selected by the ADC
-
4.7
7
µA
V30
Average slope
Min
Voltage at 30 °C (±5
1. Guaranteed by design.
2. Guaranteed by characterization results.
3. Measured at VDDA = 3.3 V ±10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to
Table 13: Temperature sensor calibration values.
4.
Continuous mode means Run and Sleep modes, or temperature sensor enable in LPRun and LPSleep modes.
DS13293 Rev 5
125/150
139
Electrical characteristics
5.3.21
STM32WL55/54xx
VBAT monitoring characteristics
Table 85. VBAT monitoring characteristics(1)
Symbol
Parameter
Min
Typ
Max
Unit
R
Resistor bridge for VBAT(2)
-
3 * 39
-
kΩ
Q
Ratio on VBAT measurement
-
3
-
-
Error on Q
-10
-
10
%
ADC sampling time when reading VBAT
12
-
-
µs
Er
(3)
(3)
tS_vbat
1. 1.55 V < VBAT < 3.6 V.
2. VDD on STM32WL55/4UxYx devices.
3. Guaranteed by design.
Table 86. VBAT charging characteristics
Symbol
RBC
5.3.22
Parameter
Conditions
Battery charging resistor
Min
Typ
Max
VBRS = 0
-
5
-
VBRS = 1
-
1.5
-
Unit
kΩ
Voltage reference buffer characteristics
Table 87. VREFBUF characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
VRS = 0
2.4
-
3.6
VRS = 1
2.8
-
3.6
VRS = 0
1.62
-
2.4
VRS = 1
1.62
-
2.8
VRS = 0
2.044
2.048
2.052
VRS = 1
2.495
2.5
2.505
VRS = 0
Normal mode
Voltage
reference output ILOAD=100 μA,
-40 °C < TJ < 125 °C VRS = 1
2.030
2.048
2.057
2.478
2.500
2.509
VRS = 0
VDDA - 250 mV
-
VDDA
VRS = 1
VDDA - 250 mV
-
VDDA
Normal mode
VDDA
Analog supply
voltage
Degraded mode(2)
Normal mode
ILOAD=100 μA,
TJ = 30 °C
VREFBUF_
OUT
Degraded mode(2)
Unit
V
Trim step
resolution
-
-
-
±0.05
±0.1
%
CL
Load capacitor
-
-
0.5
1
1.5
µF
esr
Equivalent
series resistor
of Cload
-
-
-
-
2
Ω
Iload
Static load
current
-
-
-
-
4
mA
TRIM
126/150
DS13293 Rev 5
STM32WL55/54xx
Electrical characteristics
Table 87. VREFBUF characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Iline_reg
Line regulation
2.8 V ≤ VDDA ≤ 3.6 V
Normal
mode
-
-
2000
ppm
/V
Iload_reg
Load regulation
500 μA ≤ Iload ≤ 4 mA
Normal
mode
-
50
500
ppm
/mA
-40 °C < TJ < +105 °C
-
-
0 °C < TJ < +50 °C
-
-
DC
40
55
-
100 kHz
25
40
-
CL = 0.5 µF(3)
-
300
350
(3)
-
500
650
µF(3)
-
650
800
-
8
-
Iload = 0 µA
-
16
25
Iload = 500 µA
-
18
30
Iload = 4 mA
-
35
50
Tcoeff
PSRR
tSTART
Temperature
coefficient
Power supply
rejection
Startup time
CL = 1.1 µF
CL = 1.5
IINRUSH
Control of
maximum DC
current drive on
VREFBUF_OUT
during start-up
phase (4)
VREFBUF
IDDA
consumption
(VREFBUF)
from VDDA
-
-
±[Tcoeff _ vrefint
+ 50]
ppm
/°C
±[T
coeff_vrefint
+ 50]
dB
µs
mA
µA
1. Guaranteed by design or characterization. Not tested in production.
2. In degraded mode, VREFBUF cannot maintain accurately the output voltage that follows (VDDA - drop voltage).
3. The capacitive load must include a 100 nF capacitor in order to cut-off the high-frequency noise.
4. To correctly control the VREFBUF in-rush current during start-up phase and scaling change, the VDDA voltage must be in
the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for VRS = 0 and VRS = 1.
Figure 25. VREFOUT_TEMP when VRS = 0
V
2.06
Max
2.055
2.05
2.045
Mean
2.04
2.035
Min
2.03
2.025
-40
-20
0
20
40
60
80
100
120 °C
MSv62522V2
DS13293 Rev 5
127/150
139
Electrical characteristics
STM32WL55/54xx
Figure 26. VREFOUT_TEMP when VRS = 1
V
2.51
Max
2.505
2.5
2.495
Mean
2.49
2.485
2.48
Min
2.475
-40
5.3.23
-20
0
20
40
60
80
120 °C
100
MSv62523V2
Digital-to-analog converter characteristics
Table 88. DAC characteristics(1)
Symbol
VDDA
VREF+
Parameter
Analog supply voltage for
DAC ON
Positive reference voltage
Conditions
Min
Typ
Max
Unit
DAC output buffer OFF, DAC_OUT
pin not connected (internal
connection only)
1.71
3.6
V
Other modes
1.80
-
DAC output buffer OFF, DAC_OUT
pin not connected (internal
connection only)
1.71
VDDA
V
Other modes
1.80
-
Connected to VSS
5
-
-
Connected to VDDA
25
-
-
9.6
11.7
13.8
RL
Resistive load
DAC output
buffer ON
RO
Output impedance
DAC output buffer OFF
Output impedance sampleand-hold mode, output
buffer ON
VDD = 2.7 V
-
-
2
RBON
VDD = 2.0 V
-
-
3.5
Output impedance sample
and hold mode, output
buffer OFF
VDD = 2.7 V
-
-
16.5
RBOFF
VDD = 2.0 V
-
-
18.0
DAC output buffer ON
-
-
50
pF
Sample-and-hold mode
-
0.1
1
µF
DAC output buffer ON
0.2
-
VREF+
- 0.2
V
DAC output buffer OFF
0
-
VREF+
CL
CSH
VDAC_OUT
128/150
Capacitive load
Voltage on DAC_OUT
output
DS13293 Rev 5
kΩ
STM32WL55/54xx
Electrical characteristics
Table 88. DAC characteristics(1) (continued)
Symbol
Parameter
Conditions
±0.5 LSB
Normal
mode
Settling time (full scale: for
±1 LSB
DAC output
a 12-bit code transition
±2 LSB
between the lowest and the buffer ON
tSETTLING highest input codes, when CL ≤ 50 pF
±4 LSB
RL ≥ 5 kΩ
DAC_OUT reaches final
±8 LSB
value ±0.5 LSB, ±1 LSB,
±2 LSB, ±4 LSB, ±8 LSB)
Normal mode DAC output buffer
OFF, ±1LSB, CL = 10 pF
Min
Typ
Max
-
1.7
3
-
1.6
2.9
-
1.55
2.85
-
1.48
2.8
-
1.4
2.75
-
2
2.5
4.2
7.5
Wakeup time from off state
(setting the ENx bit in the
DAC control register) until
final value ±1 LSB
Normal mode DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
-
Normal mode DAC output buffer
OFF, CL ≤ 10 pF
-
2
5
PSRR
VDDA supply rejection ratio
Normal mode DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ, DC
-
-80
-28
DAC_MCR:MODEx[2:0] = 000 or 001
CL ≤ 50 pF, RL ≥ 5 kΩ
1
-
-
TW_to_W
Minimum time between two
consecutive writes into the
DAC_DORx register to
guarantee a correct
DAC_OUT for a small
variation of the input code
(1 LSB)
DAC_MCR:MODEx[2:0] = 010 or 011
CL ≤ 10 pF
1.4
-
-
-
0.7
3.5
tWAKEUP
(2)
tSAMP
Sampling time in sample
and hold mode (code
transition between the
lowest input code and the
highest input code when
DACOUT reaches final
value ±1LSB)
DAC output buffer
DAC_OUT pin ON, CSH = 100 nF
connected
DAC output buffer
Unit
µs
µs
dB
µs
ms
-
10.5
18
DAC_OUT pin
not connected
DAC output buffer
(internal
OFF
connection
only)
-
2
3.5
µs
Sample and hold mode,
DAC_OUT pin connected
-
-
-(3)
nA
5.2
7
8.8
pF
50
-
-
µs
-
1500
-
-
750
-
OFF, CSH = 100 nF
Ileak
Output leakage current
CIint
Internal sample and hold
capacitor
tTRIM
Middle code offset trim time DAC output buffer ON
Voffset
Middle code offset for 1 trim VREF+ = 3.6 V
code step
VREF+ = 1.8 V
-
DS13293 Rev 5
µV
129/150
139
Electrical characteristics
STM32WL55/54xx
Table 88. DAC characteristics(1) (continued)
Symbol
Parameter
Conditions
DAC output
buffer ON
DAC consumption from
IDDA(DAC)
VDDA
DAC output
buffer OFF
Min
Typ
Max
No load, middle
code (0x800)
-
315
500
No load, worst code
(0xF1C)
-
450
670
No load, middle
code (0x800)
-
-
0.2
Sample and hold mode, CSH =
100 nF
DAC output
buffer ON
DAC consumption from
IDDV(DAC)
VREF+
DAC output
buffer OFF
-
No load, middle
code (0x800)
-
185
240
No load, worst code
(0xF1C)
-
340
400
No load, middle
code (0x800)
-
155
205
µA
Sample and hold mode, buffer ON,
CSH = 100 nF, worst case
-
400 x
185 x
Ton/(Ton Ton/(Ton
+Toff)(4) +Toff)(4)
Sample and hold mode, buffer OFF,
CSH = 100 nF, worst case
-
205 x
155 x
Ton/(Ton Ton/(Ton
+Toff)(4) +Toff)(4)
2. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).
3. Refer to Table 76: I/O static characteristics.
4. Ton is the Refresh phase duration. Toff is the Hold phase duration. Refer to the reference manual for more details.
Figure 27. 12-bit buffered/non-buffered DAC
Buffered/non-buffered DAC
Buffer(1)
RLOAD
DAC_OUTx
CLOAD
(1) The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads
directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in
the DAC_CR register.
130/150
DS13293 Rev 5
µA
315 x
670 x
Ton/(Ton Ton/(Ton
+Toff)(4) +Toff)(4)
1. Guaranteed by design.
12-bit
digital-to-analog
converter
Unit
MSv47959V2
STM32WL55/54xx
Electrical characteristics
Table 89. DAC accuracy(1)
.
Symbol
DNL
-
INL
Offset
Offset1
Parameter
Conditions
-
-
±2
DAC output buffer OFF
-
-
±2
Monotonicity
10 bits
Integral non linearity
Offset error at code
0x800(3)
Offset error at code
0x001(4)
TUE
Total unadjusted error
SINAD
Total unadjusted error
after calibration
Signal-to-noise ratio
Total harmonic
distortion
Signal-to-noise and
distortion ratio
Unit
Guaranteed
DAC output buffer ON, CL ≤ 50 pF, RL ≥ 5 kΩ
-
-
±4
DAC output buffer OFF, CL ≤ 50 pF, no RL
-
-
±4
VREF+ = 3.6 V
-
-
±12
VREF+ = 1.8 V
-
-
±25
DAC output buffer OFF, CL ≤ 50 pF, no RL
-
-
±8
DAC output buffer OFF, CL ≤ 50 pF, no RL
-
-
±5
VREF+ = 3.6 V
-
-
±5
VREF+ = 1.8 V
-
-
±7
DAC output buffer ON, CL ≤ 50 pF, RL ≥ 5 kΩ
-
-
±0.5
DAC output buffer OFF, CL ≤ 50 pF, no RL
-
-
±0.5
DAC output buffer ON, CL ≤ 50 pF, RL ≥ 5 kΩ
-
-
±30
DAC output buffer OFF, CL ≤ 50 pF no RL
-
-
±12
DAC output buffer ON, CL ≤ 50 pF, RL ≥ 5 kΩ
-
-
±23
DAC output buffer ON, CL ≤ 50 pF, RL ≥ 5 kΩ,
1 kHz, BW 500 kHz
-
71.2
-
DAC output buffer OFF, CL ≤ 50 pF, no RL,
1 kHz, BW 500 kHz
-
71.6
-
DAC output buffer ON, CL ≤ 50 pF, RL ≥ 5 kΩ,
1 kHz
-
-78
-
DAC output buffer OFF, CL ≤ 50 pF, no RL,
1 kHz
-
-79
-
DAC output buffer ON, CL ≤ 50 pF, RL ≥ 5 kΩ,
1 kHz
-
70.4
-
DAC output buffer OFF, CL ≤ 50 pF, no RL,
1 kHz
-
(3)
Gain error(5)
THD
Max
DAC output buffer ON
Gain
SNR
Typ
Differential non
linearity (2)
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
Offset Error at code
DAC output buffer ON
OffsetCal
0x800 after calibration CL ≤ 50 pF, RL ≥ 5 kΩ
TUECal
Min
DS13293 Rev 5
LSB
%
LSB
LSB
dB
dB
dB
71
-
131/150
139
Electrical characteristics
STM32WL55/54xx
Table 89. DAC accuracy(1) (continued)
Symbol
ENOB
Parameter
Effective number of
bits
Conditions
Min
Typ
Max
DAC output buffer ON, CL ≤ 50 pF, RL ≥ 5 kΩ,
1 kHz
-
11.4
-
DAC output buffer OFF, CL ≤ 50 pF, no RL,
1 kHz
-
Unit
bits
11.5
-
1. Guaranteed by design.
2. Difference between two consecutive codes - 1 LSB.
3. Difference between measured value at code i and the value at code i on a line drawn between code 0 and last code 4095.
4. Difference between the value measured at code (0x001) and the ideal value.
5. Difference between the ideal slope of the transfer function and the measured slope computed from code 0x000 and 0xFFF
when buffer is OFF, and from code giving 0.2 V and (VREF+ – 0.2) V when buffer is ON.
5.3.24
Comparator characteristics
Table 90. COMP characteristics(1)
Symbol
Conditions
Min
Typ
Max
Analog supply voltage
-
1.62
-
3.6
VIN
Comparator
input voltage range
-
0
-
VDDA
V
VBG(2)
Scaler input voltage
-
VSC
Scaler offset voltage
-
VDDA
IDDA(SCALER)
Parameter
±5
±10
mV
-
200
300
nA
-
0.8
1
µA
-
100
200
µs
VDDA ≥ 2.7 V
-
-
5
VDDA < 2.7 V
-
-
7
VDDA ≥ 2.7 V
-
-
15
VDDA < 2.7 V
-
-
25
-
-
40
VDDA ≥ 2.7 V
-
55
80
VDDA < 2.7 V
-
55
100
Medium mode
-
0.55
0.9
Ultra-low-power mode
-
4
7
Full common mode range
-
±5
±20
No hysteresis
-
0
-
Low hysteresis
-
8
-
Medium hysteresis
-
15
-
High hysteresis
-
27
-
tSTART_SCALER Scaler startup time
tSTART
High-speed
mode
Medium mode
Ultra-low-power mode
tD
(3)
Voffset
Vhys
132/150
Propagation delay with
100 mV overdrive
Comparator offset error
Comparator hysteresis
VREFINT
-
Scaler static consumption BRG_EN = 0 (bridge disabled)
from VDDA
BRG_EN = 1 (bridge enabled)
Comparator startup time
to reach propagation
delay specification
Unit
High-speed
mode
DS13293 Rev 5
µs
ns
µs
mV
mV
STM32WL55/54xx
Electrical characteristics
Table 90. COMP characteristics(1) (continued)
Symbol
Parameter
Conditions
Ultra-lowpower mode
IDDA(COMP)
Comparator consumption
from VDDA
Medium
mode
High-speed
mode
Min
Typ
Max
Static
-
400
600
With 50 kHz ±100 mV
overdrive square signal
-
1200
-
Static
-
5
7
With 50 kHz ±100 mV
overdrive square signal
-
6
-
Static
-
70
100
With 50 kHz ±100 mV
overdrive square signal
-
75
-
Unit
nA
µA
1. Guaranteed by design, unless otherwise specified.
2. Refer to Table 36: Embedded internal voltage reference.
3. Guaranteed by characterization results.
5.3.25
Timers characteristics
Parameters given in the following tables are guaranteed by design. Refer to Section 5.3.16:
I/O port characteristics for details on the input/output alternate function characteristics
(output compare, input capture, external clock, PWM output).
Table 91. TIMx(1) characteristics
Symbol
Parameter
tres(TIM)
Timer resolution time
fEXT
ResTIM
tCOUNTER
tMAX_COUNT
Conditions
Min
Max
Unit
-
1
-
tTIMxCLK
15.625
-
ns
0
fTIMxCLK/2
0
40
TIM1, TIM16, TIM17
-
16
TIM2
-
32
1
65536
tTIMxCLK
0.015625
1024
µs
-
65536 × 65536
tTIMxCLK
-
67.10
s
fTIMxCLK = 48 MHz
Timer external clock frequency
on CH1 to CH4
fTIMxCLK = 48 MHz
Timer resolution
16-bit counter clock period
Maximum possible count with
32-bit counter
fTIMxCLK = 48 MHz
fTIMxCLK = 48 MHz
MHz
bit
1. TIMx, is used as a general term where x stands for 1, 2, 16 or 17.
DS13293 Rev 5
133/150
139
Electrical characteristics
STM32WL55/54xx
Table 92. IWDG min/max timeout period at 32 kHz (LSI)(1)
Prescaler divider
PR[2:0] bits
Min timeout (RL[11:0] = 0x000)
Max timeout (RL[11:0] = 0xFFF)
/4
0x0
0.125
512
/8
0x1
0.250
1024
/16
0x2
0.500
2048
/32
0x3
1.0
4096
/64
0x4
2.0
8192
/128
0x5
4.0
16384
/256
0x6 or 0x7
8.0
32768
Unit
ms
1. The exact timings still depend on the phasing of the APB interface clock versus the LSI clock, hence there is always a full
RC period of uncertainty.
5.3.26
Communication interfaces characteristics
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
•
Standard-mode (Sm): bitrate up to 100 Kbit/s
•
Fast-mode (Fm): bitrate up to 400 Kbit/s
•
Fast-mode Plus (Fm+): bitrate up to 1 Mbit/s
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to the reference manual) and when the II2CCLK frequency is greater than
the minimum shown in the table below.
Table 93. Minimum I2CCLK frequency in all I2C modes
Symbol
Parameter
Conditions
Standard-mode
f(I2CCLK)
I2CCLK frequency
Fast-mode
Fast-mode Plus
Min
-
2
Analog filter ON, DNF = 0
8
Analog filter OFF, DNF = 1
9
Analog filter ON, DNF = 0
18
Analog filter OFF, DNF = 1
16
Unit
MHz
The SDA and SCL I/O requirements are met with the following restrictions:
•
The SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain,
the PMOS connected between the I/O pin and VDD is disabled, but is still present.
•
The 20 mA output drive requirement in Fast-mode Plus is partially supported. This
limits the maximum load Cload supported in Fast-mode Plus, given by these formulas:
–
tr(SDA/SCL) = 0.8473 x Rp x Cload
–
Rp(min) = [VDD - VOL(max)] / IOL(max)
where Rp is the I2C lines pull-up. Refer to Section 5.3.16: I/O port characteristics
for more details.
134/150
DS13293 Rev 5
STM32WL55/54xx
Electrical characteristics
All I2C SDA and SCL I/Os embed an analog filter (refer to the table below for its
characteristics).
Table 94. I2C analog filter characteristics(1)
Symbol
tAF
Parameter
Min
(2)
Maximum pulse width of spikes that are suppressed by the analog filter
50
Max
100
(3)
Unit
ns
1. Guaranteed by characterization.
2. Spikes with widths below tAF(min) filtered.
3. Spikes with widths above tAF(max) not filtered.
USART characteristics
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature, fPCLKx frequency and supply voltage conditions
summarized in Table 26: General operating conditions, with the following configuration:
•
OSPEEDRy[1:0] set to 10 (output speed)
•
capacitive load C = 30 pF
•
measurement points at CMOS levels: 0.5 x VDD
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, CK, TX, and RX for USART).
Table 95. USART characteristics
Symbol
fCK
Parameter
USART clock frequency
Conditions
Min
Typ
Max
Master mode
-
-
6
Slave mode
-
-
16
tsu(NSS)
NSS setup time
Slave mode
tker + 5
-
-
th(NSS)
NSS hold time
Slave mode
2
-
-
tw(CKH)
CK high time
tw(CKL)
CK low time
Master mode
1 / fCK / 2 - 1
1 / fCK / 2
1 / fCK / 2 + 1
tsu(RX)
Data input setup time
Master mode
22
-
-
Slave mode
3
-
-
Master mode
0
-
-
Slave mode
1
-
-
Master mode
-
13
22
Slave mode
-
0.5
1
Master mode
10
-
-
Slave mode
0
-
-
th(RX)
Data input hold time
tv(TX)
Data output valid time
th(TX)
Data output hold time
DS13293 Rev 5
Unit
MHz
ns
135/150
139
Electrical characteristics
STM32WL55/54xx
SPI characteristics
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature, fPCLKx frequency and supply voltage conditions
summarized in Table 26: General operating conditions, with the following configuration:
•
output speed set to OSPEEDRy[1:0] = 11
•
capacitive load C = 30 pF
•
measurements done at CMOS levels: 0.5 x VDD
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
Table 96. SPI characteristics(1)
Symbol
Parameter
fSCK
SPI clock frequency
1/tc(SCK)
Conditions
Min
Typ
Max
Master mode
1.8 < VDD < 3.6 V, Range 1
24
Master transmitter mode
1.8 < VDD < 3.6 V, Range 1
24
Slave receiver mode
1.8 < VDD < 3.6 V, Range 1
-
-
24
Slave mode transmitter/full duplex
2.7 < VDD < 3.6 V, Range 1
24(2)
Slave mode transmitter/full duplex
1.8 < VDD < 3.6 V, Range 1
24(2)
tsu(NSS) NSS setup time
Slave mode, SPI prescaler = 2
3 x TPCLK
-
-
th(NSS)
Slave mode, SPI prescaler = 2
2 x TPCLK
-
-
Master mode
TPCLK - 1
TPCLK
TPCLK + 1
Master mode
1
-
-
Slave mode
1
-
-
Master mode
6
-
-
Slave mode
2
-
-
9
12
34
9
10
16
NSS hold time
tw(SCKH)
SCK high and low time
tw(SCKL)
tsu(MI)
tsu(SI)
th(MI)
th(SI)
Data input setup time
Data input hold time
ta(SO)
Data output access time
tdis(SO)
Data output disable time
136/150
Slave mode
DS13293 Rev 5
Unit
MHz
-
ns
STM32WL55/54xx
Electrical characteristics
Table 96. SPI characteristics(1) (continued)
Symbol
tv(SO)
Parameter
Data output valid time
tv(MO)
th(SO)
th(MO)
Data output hold time
Conditions
Min
Typ
Max
Slave mode, 2.7 < VDD < 3.6 V
Range 1
-
10
13.5
Slave mode, 2.7 < VDD < 3.6 V
Range 2
-
17
18
Slave mode, 1.8 < VDD < 3.6 V
Range 1
-
10
20
Slave mode, 1.8 < VDD < 3.6 V
Range 2
-
17
24
Master mode (after enable edge)
-
1
1.5
Slave mode (after enable edge)
8
-
-
Master mode (after enable edge)
0
-
-
Unit
ns
1. Guaranteed by characterization results.
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI), that has to fit into SCK low or
high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master
having tsu(MI) = 0 while Duty(SCK) = 50 %.
Figure 28. SPI timing diagram - Slave mode and CPHA = 0
SCK input
NSS input
MISO
OUTPUT
MSB OUT
BIT6 OUT
MSB IN
BIT1 IN
LSB OUT
(SI)
MOSI
INPUT
LSB IN
(SI)
DS13293 Rev 5
137/150
139
Electrical characteristics
STM32WL55/54xx
Figure 29. SPI timing diagram - Slave mode and CPHA = 1
NSS input
SCK input
tSU(NSS)
CPHA=1
CPOL=0
CPHA=1
CPOL=1
th(NSS)
tc(SCK)
tw(SCKH)
tw(SCKL)
th(SO)
tv(SO)
ta(SO)
MISO
OUTPUT
MSB OUT
tdis(SO)
LSB OUT
th(SI)
tsu(SI)
MOSI
INPUT
BIT6 OUT
tr(SCK)
tf(SCK)
MSB IN
BIT 1 IN
LSB IN
ai14135b
1. Measurement points are set at CMOS levels: 0.3 VDD and 0.7 VDD.
Figure 30. SPI timing diagram - Master mode
High
NSS input
SCK Output
SCK Output
tc(SCK)
CPHA=0
CPOL=0
CPHA=0
CPOL=1
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tsu(MI)
MISO
INPUT
tw(SCKH)
tw(SCKL)
MSB IN
tr(SCK)
tf(SCK)
BIT6 IN
LSB IN
th(MI)
MOSI
OUTPUT
MSB OUT
BIT1 OUT
LSB OUT
th(MO)
tv(MO)
ai14136c
1. Measurement points are set at CMOS levels: 0.3 VDD and 0.7 VDD.
138/150
DS13293 Rev 5
STM32WL55/54xx
Electrical characteristics
JTAG/SWD characteristics
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature, fPCLKx frequency and supply voltage conditions
summarized in Table 26: General operating conditions, with the following configuration:
•
capacitive load C = 30 pF
•
measurement done at CMOS levels: 0.5 x VDD.
Refer to Section 5.3.16: I/O port characteristics for more details.
Table 97. Dynamic JTAG characteristics
Symbol
fPP
1/tc(TCK)
Parameter
Conditions
TCK clock frequency
Min
Typ
Max
2.7 V < VDD < 3.6 V
-
-
33
1.8 V < VDD < 3.6 V
-
-
25
tisu(TMS)
TMS input setup time
-
0.5
-
-
tih(TMS)
TMS input hold time
-
1
-
-
tisu(TDI)
TDI input setup time
-
1
-
-
tih(TDI)
TDI input hold time
-
2.5
-
-
2.7 V < VDD < 3.6 V
-
12
15
1.8 V< VDD < 3.6 V
-
12
20
10
-
-
Min
Typ
Max
2.7 V < VDD < 3.6 V
-
-
58
1.8 < VDD < 3.6 V
-
-
41
tisu(SWDIO) SWDIO input setup time
-
1
-
-
tih(SWDIO)
-
2
-
-
2.7 V < VDD < 3.6 V
-
15
17
1.8 V < VDD < 3.6 V
-
15
24
-
9
-
-
tov(TDO)
TDO output valid time
toh(TDO)
TDO output hold time
-
Unit
MHz
ns
Table 98. Dynamic SWD characteristics
Symbol
fPP
1/tc(SWCLK)
Parameter
SWCLK clock frequency
SWDIO input hold time
tov(SWDIO) SWDIO output valid time
toh(SWDIO) SWDIO output hold time
Conditions
DS13293 Rev 5
Unit
MHz
ns
139/150
139
Package information
6
STM32WL55/54xx
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at www.st.com. ECOPACK
is an ST trademark.
6.1
UFQFPN48 package information
This UFQFPN is a 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package.
Figure 31. UFQFPN48 - Outline
Pin 1 identifier
laser marking area
D
A
E
E
T
ddd
A1
Seating
plane
b
e
Detail Y
D
Exposed pad
area
Y
D2
1
L
48
C 0.500x45°
pin1 corner
E2
R 0.125 typ.
Detail Z
1
Z
48
A0B9_ME_V3
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this back-side pad to PCB ground.
140/150
DS13293 Rev 5
STM32WL55/54xx
Package information
Table 99. UFQFPN48 - Mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
D
6.900
7.000
7.100
0.2717
0.2756
0.2795
E
6.900
7.000
7.100
0.2717
0.2756
0.2795
D2
5.500
5.600
5.700
0.2165
0.2205
0.2244
E2
5.500
5.600
5.700
0.2165
0.2205
0.2244
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
T
-
0.152
-
-
0.0060
-
b
0.200
0.250
0.300
0.0079
0.0098
0.0118
e
-
0.500
-
-
0.0197
-
ddd
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 32. UFQFPN48 - Recommended footprint
7.30
6.20
48
37
1
36
5.60
0.20
7.30
5.80
6.20
5.60
0.30
12
25
13
24
0.50
0.55
5.80
0.75
A0B9_FP_V2
1. Dimensions are expressed in millimeters.
DS13293 Rev 5
141/150
146
Package information
STM32WL55/54xx
Device marking for UFQFPN48
The following figure gives an example of topside marking versus pin 1 position identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 33. UFQFPN48 marking example (package top view)
STM32WL55
Product identification(1)
CCU6
Y WW
R
Pin 1 identifier
Date code
Revision code
MSv66088V1
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
142/150
DS13293 Rev 5
STM32WL55/54xx
6.2
Package information
UFBGA73 package information
This UFBGA is a 73 balls, 5 × 5 mm, ultra thin fine pitch ball grid array package.
Figure 34. UFBGA73 - Outline
C
SEATING PLANE
C
ddd
A4
A2
A1
SIDE VIEW
A
E
B
E1
A
F
e
F
J
H
G
F
E
D
D1
D
C
B
e
A
1 2 3 4 5 6 7 8 9
A1 INDEX CORNER AREA
b (73 BALLS)
eee M C A B
BOTTOM VIEW
fff M C
B08E_UFBGA73_ME_V1
1. Drawing is not to scale.
2. - The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metalized
markings, or other feature of package body or integral heat slug.
- A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1
corner. Exact shape of each corner is optional.
Table 100. UFBGA73 - Mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A(2)
-
-
0.60
-
-
0.236
A1
-
-
0.11
-
-
0.0043
A2
-
0.13
-
-
0.0051
-
A4
-
0.32
-
-
0.0126
-
b(3)
0.24
0.29
0.34
0.0094
0.0114
0.0134
DS13293 Rev 5
143/150
146
Package information
STM32WL55/54xx
Table 100. UFBGA73 - Mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
D
4.85
5.00
5.15
0.1909
0.1969
0.2028
D1
-
4.00
-
-
0.1575
-
E
4.85
5.00
5.15
0.1909
0.1969
0.2028
E1
-
4.00
-
-
0.1575
-
e
-
0.50
-
-
0.0197
-
F
-
0.50
-
-
0.0197
-
-
-
0.08
-
-
0.0031
-
-
0.15
-
-
0.0059
-
-
0.05
-
-
0.0020
ddd
eee
(4)
fff(5)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. - UFBGA stands for Ultra-Thin Profile Fine Pitch Ball Grid Array.
- Ultra Thin profile: 0.50 < A ≤ 0.65mm / Fine pitch: e < 1.00mm pitch.
- The total profile height (Dim A) is measured from the seating plane to the top of the component
- The maximum total package height is calculated by the following methodology:
A Max = A1 Typ + A2 Typ + A4 Typ + √ (A1²+A2²+A4² tolerance values)
3. The typical balls diameters before mounting is 0.20 mm.
4. The tolerance of position that controls the location of the pattern of balls with respect to datum A and B. For
each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true position
with respect to datum A and B as defined by e. The axis perpendicular to datum C of each ball must lie
within this tolerance zone.
5. The tolerance of position that controls the location of the balls within the matrix with respect to each other.
For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position
as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each
tolerance zone fff in the array is contained entirely in the respective zone eee above. The axis of each ball
must lie simultaneously in both tolerance zones.
Figure 35. UFBGA73 - Recommended footprint
Dpad
Dsm
MSv62396V1
144/150
DS13293 Rev 5
STM32WL55/54xx
Package information
Table 101. UFBGA recommended PCB design rules (0.5 mm pitch BGA)
Dimension
Recommended values
Pitch
0.5 mm
Dpad
0.230 mm
Dsm
0.330 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening
0.280 mm
Stencil thickness
Between 0.100 mm and 0.125 mm
Pad trace width
0.100 mm
Ball diameter
0.280 mm
Device marking for UFBGA73
The following figure gives an example of topside marking versus pin 1 position identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 36. UFBGA73 marking example (package top view)
Product identification(1)
WL55JCI6
Date code
Y WW
R
Revision code
Pin 1 identifier
MSv66089V1
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
DS13293 Rev 5
145/150
146
Package information
6.3
STM32WL55/54xx
Package thermal characteristics
The maximum chip junction temperature (TJ max) must never exceed the values given in
Table 26: General operating conditions.
The maximum chip-junction temperature, TJ max (in °C), can be calculated using the
equation:
TJ max = TA max + (PD max x ΘJA)
where:
•
TA max is the maximum ambient temperature in °C.
•
ΘJA is the package junction-to-ambient thermal resistance, in °C/W.
•
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/O max).
•
PINT max is the product of IDD and VDD, expressed in Watt. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins:
PI/O max = Σ (VOL × IOL) + Σ ((VDD – VOH) × IOH)
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
When the SMPS is used, a portion of the power consumption is dissipated into the external
inductor, therefore reducing the device power dissipation. This portion depends mainly on
the inductor ESR characteristics.
As the radiated RF power is quite low (< 4 mW), it is not necessary to remove it from the
device power consumption.
RF characteristics (such as sensitivity, Tx power consumption) are provided up to 85 °C.
Table 102. Package thermal characteristics
Symbol
146/150
Parameter
Value
ΘJA
Thermal resistance junction-ambient
UFBGA73 - 5 x 5 mm
UFQFPN48 - 7 x 7 mm
43.4
27.4
ΘJB
Thermal resistance junction-board
UFBGA73 - 5 x 5 mm
UFQFPN48 - 7 x 7 mm
27.2
11.7
ΘJC
Thermal resistance junction-top case
UFBGA73 - 5 x 5 mm
UFQFPN48 - 7 x 7 mm
11
8.5
DS13293 Rev 5
Unit
°C/W
STM32WL55/54xx
7
Ordering information
Ordering information
Example:
STM32
WL
55
J
C
I
6 TR
Device family
STM32 = Arm based 32-bit microcontroller
Product type
WL = wireless long range
Device subfamily
55 = Cortex-M4, Cortex-M0+, full set of modulations
54 = Cortex-M4, Cortex-M0+, full set of modulations except LoRa
Pin/ball count
C = 48
J = 73
Flash memory size
C = 256 Kbytes
Package
I = UFBGA
U= UFQFPN
Temperature range
6 = -40 to 85 °C (105 °C junction)
7 = -40 to 105 °C (125 °C junction)
Packing
TR = tape and reel
xxx = programmed parts
For a list of available options (such as speed or package) or for further information on any
aspect of this device, contact the nearest ST sales office.
DS13293 Rev 5
147/150
147
Important security notice
8
STM32WL55/54xx
Important security notice
The STMicroelectronics group of companies (ST) places a high value on product security,
which is why the ST product(s) identified in this documentation may be certified by various
security certification bodies and/or may implement our own security measures as set forth
herein. However, no level of security certification and/or built-in security measures can
guarantee that ST products are resistant to all forms of attacks. As such, it is the
responsibility of each of ST's customers to determine if the level of security provided in an
ST product meets the customer needs both in relation to the ST product alone, as well as
when combined with other components and/or software for the customer end product or
application. In particular, take note that:
148/150
•
ST products may have been certified by one or more security certification bodies, such
as Platform Security Architecture (www.psacertified.org) and/or Security Evaluation
standard for IoT Platforms (www.trustcb.com). For details concerning whether the ST
product(s) referenced herein have received security certification along with the level
and current status of such certification, either visit the relevant certification standards
website or go to the relevant product page on www.st.com for the most up to date
information. As the status and/or level of security certification for an ST product can
change from time to time, customers should re-check security certification status/level
as needed. If an ST product is not shown to be certified under a particular security
standard, customers should not assume it is certified.
•
Certification bodies have the right to evaluate, grant and revoke security certification in
relation to ST products. These certification bodies are therefore independently
responsible for granting or revoking security certification for an ST product, and ST
does not take any responsibility for mistakes, evaluations, assessments, testing, or
other activity carried out by the certification body with respect to any ST product.
•
Industry-based cryptographic algorithms (such as AES, DES, or MD5) and other open
standard technologies which may be used in conjunction with an ST product are based
on standards which were not developed by ST. ST does not take responsibility for any
flaws in such cryptographic algorithms or open technologies or for any methods which
have been or may be developed to bypass, decrypt or crack such algorithms or
technologies.
•
While robust security testing may be done, no level of certification can absolutely
guarantee protections against all attacks, including, for example, against advanced
attacks which have not been tested for, against new or unidentified forms of attack, or
against any form of attack when using an ST product outside of its specification or
intended use, or in conjunction with other components or software which are used by
customer to create their end product or application. ST is not responsible for resistance
against such attacks. As such, regardless of the incorporated security features and/or
any information or support that may be provided by ST, each customer is solely
responsible for determining if the level of attacks tested for meets their needs, both in
relation to the ST product alone and when incorporated into a customer end product or
application.
•
All security features of ST products (inclusive of any hardware, software,
documentation, and the like), including but not limited to any enhanced security
features added by ST, are provided on an "AS IS" BASIS. AS SUCH, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, ST DISCLAIMS ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, unless the
applicable written and signed contract terms specifically provide otherwise.
DS13293 Rev 5
STM32WL55/54xx
9
Revision history
Revision history
Table 103. Document revision history
Date
Revision
9-Nov-2020
1
Initial release.
2
Updated:
– One sentence at the beginning of Features
– Table 26: Operating range of RF pads
– One sentence at the end of Section 3.9.3: Transmitter and Section 3.9.4: Receiver
– Section 3.9.1: Sub-GHz radio introduction
– Tx HP values in Table 24: Main performances at VDD = 3 V
– IDD (868-915MHz, +22 dBm) in Table 28: Sub-GHz radio power consumption in
transmit mode
– 48 MHz, 2.4 V in Table 46: Current consumption during wakeup from Stop 2 mode
– 16 MHz, 2.4 V in Table 48: Current consumption during wakeup from Stop 1 mode
– 4 MHz, range 1, 2.4 V in Table 50: Current consumption during wakeup from Stop 0
mode
– Table 59: HSE32 crystal requirements
– Reference added after Table 60: HSE32 oscillator characteristics
– ATCXO in Table 61: HSE32 TCXO regulator characteristics
– Figure 22: ADC accuracy characteristics and Figure 23: Typical connection diagram
when using the ADC with FT/TT pins featuring analog switch function
– Table 101: Package thermal characteristics
3
Updated:
– Table 2: Main features and peripheral count
– Section 3.9.1: Sub-GHz radio introduction
– Table 26: Operating range of RF pads
– WLCSP59 information removed from the whole document
4
Updated:
– Features and Table 1: Device summary
– Section 2: Description
– Section 3.5.2: Embedded SRAM
– new Section 3.9.7: IPDs for STM32WL and reference designs
– Table 29: Sub-GHz radio power consumption in transmit mode
– Section 7: Ordering information
– new Section 8: Important security notice
5
Updated:
– One note removed Figure 9: Clock tree
– New notes on Table 20: STM32WL55/54xx pin definition
1-Jul-2021
21-Mar-2022
5-Oct-2022
19-Dec-2022
Changes
DS13293 Rev 5
149/150
149
STM32WL55/54xx
IMPORTANT NOTICE – READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgment.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product
or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2022 STMicroelectronics – All rights reserved
150/150
DS13293 Rev 5