0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM32WL55CCU6

STM32WL55CCU6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    UFQFPN-48_7X7MM-EP

  • 描述:

    STM32WL55CCU6

  • 数据手册
  • 价格&库存
STM32WL55CCU6 数据手册
STM32WL55xx STM32WL54xx Multiprotocol LPWAN dual core 32-bit Arm® Cortex®-M4/M0+ LoRa®, (G)FSK, (G)MSK, BPSK, up to 256KB flash, 64KB SRAM Datasheet - production data Features Includes ST state-of-the-art patented technology UFQFPN48 (7 x 7 mm) Radio • Frequency range: 150 MHz to 960 MHz • Modulation: LoRa®, (G)FSK, (G)MSK and BPSK • RX sensitivity: –123 dBm for 2-FSK (at 1.2 Kbit/s), –148 dBm for LoRa® (at 10.4 kHz, spreading factor 12) • Transmitter high output power, programmable up to +22 dBm • Transmitter low output power, programmable up to +15 dBm • Available integrated passive device (IPD) companion chips for optimized matching, filtering and balun, all in one very compact solution covering each package and each main use cases (22 dBm @ 915 MHz, 14 dBm @ 868 MHz, 17 dBm @ 490 MHz) • Compliant with the following radio frequency regulations such as ETSI EN 300 220, EN 300 113, EN 301 166, FCC CFR 47 Part 15, 24, 90, and the Japanese ARIB STD-T30, T-67, T-108 • Compatible with standardized or proprietary protocols such as LoRaWAN®, Sigfox™, W-MBus and more (fully open wireless system-on-chip) Ultra-low-power platform • Active-mode RX: 4.82 mA • Active-mode TX: 15 mA at 10 dBm and 87 mA at 20 dBm (LoRa® 125 kHz) Core • 32-bit Arm® Cortex®-M4 CPU – Adaptive real-time accelerator (ART Accelerator) allowing 0-wait-state execution from flash memory, frequency up to 48 MHz, MPU and DSP instructions – 1.25 DMIPS/MHz (Dhrystone 2.1) • 32-bit Arm®Cortex®-M0+ CPU – Frequency up to 48 MHz, MPU – 0.95 DMIPS/MHz (Dhrystone 2.1) Security and identification • Hardware encryption AES 256-bit • True random number generator (RNG) • Sector protection against read/write operations (PCROP, RDP, WRP) • CRC calculation unit • Unique device identifier (64-bit UID compliant with IEEE 802-2001 standard) • Hardware public key accelerator (PKA) • –40 °C to +105 °C temperature range • Key management services • Shutdown mode: 31 nA (VDD = 3 V) • Secure sub-GHz MAC layer • Standby (+ RTC) mode: 360 nA (VDD = 3 V) • Secure firmware update (SFU) • Stop2 (+ RTC) mode: 1.07 µA (VDD = 3 V) This is information on a product in full production. • Active-mode MCU: < 72 µA/MHz (CoreMark®) • 96-bit unique die identifier • 1.8 V to 3.6 V power supply December 2022 UFBGA73 (5 x 5 mm) • Secure firmware install (SFI) DS13293 Rev 5 1/150 www.st.com STM32WL55/54xx Supply and reset management • 12-bit DAC, low-power sample-and-hold • High-efficiency embedded SMPS step-down converter • 2x ultra-low-power comparators • SMPS to LDO smart switch • Ultra-safe, low-power BOR (brownout reset) with 5 selectable thresholds • Ultra-low-power POR/PDR System peripherals • Mailbox and semaphores for communication between Cortex®-M4 and Cortex®-M0+ firmware • Programmable voltage detector (PVD) Controllers • VBAT mode with RTC and 20x32-bit backup registers • 2x DMA controller (7 channels each) supporting ADC, DAC, SPI, I2C, LPUART, USART, AES and timers Clock sources • 2x USART (ISO 7816, IrDA, SPI) • 32 MHz crystal oscillator • 1x LPUART (low-power) • TCXO support: programmable supply voltage • 2x SPI 16 Mbit/s (1 over 2 supporting I2S) • 32 kHz oscillator for RTC with calibration • 3x I2C (SMBus/PMBus®) • High-speed internal 16 MHz factory trimmed RC (± 1 %) • 2x 16-bit 1-channel timer • Internal low-power 32 kHz RC • 1x 16-bit 4-channel timer (supporting motor control) • Internal multi-speed low-power 100 kHz to 48 MHz RC • 1x 32-bit 4-channel timer • PLL for CPU, ADC and audio clocks • 3x 16-bit ultra-low-power timer • 1x RTC with 32-bit sub-second wakeup counter Memories • 1x independent SysTick • 256-Kbyte flash memory • 1x independent watchdog • 64-Kbyte RAM • 1x window watchdog • 20x32-bit backup register • Bootloader supporting USART and SPI interfaces Up to 43 I/Os, most 5 V-tolerant • OTA (over-the-air) firmware update capable Development support • Sector protection against read/write operations • Serial-wire debug (SWD), JTAG Rich analog peripherals (down to 1.62 V) • Dual CPU cross trigger capabilities All packages ECOPACK2 compliant • 12-bit ADC 2.5 Msps, up to 16 bits with hardware oversampling, conversion range up to 3.6 V Table 1. Device summary Reference 2/150 Part number STM32WL55xx STM32WL55CC, STM32WL55JC STM32WL54xx STM32WL54CC, STM32WL54JC DS13293 Rev 5 STM32WL55/54xx Contents Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Arm Cortex-M cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Adaptive real-time memory accelerator (ART Accelerator) . . . . . . . . . . . 15 3.4 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.5 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.5.1 Embedded flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.5.2 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.6 Security memory management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.7 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.8 Global security controller (GTZC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.9 Sub-GHz radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.10 3.11 3.9.1 Sub-GHz radio introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.9.2 Sub-GHz radio general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.9.3 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.9.4 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.9.5 RF-PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.9.6 Intermediate frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.9.7 IPDs for STM32WL and reference designs . . . . . . . . . . . . . . . . . . . . . . 24 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.10.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.10.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.10.3 Linear voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.10.4 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.11.1 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.12 Peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.13 Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.14 Hardware semaphore (HSEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 DS13293 Rev 5 3/150 6 Contents STM32WL55/54xx 3.15 Inter-processor communication controller (IPCC) . . . . . . . . . . . . . . . . . . 41 3.16 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.17 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.18 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.18.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 42 3.18.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 42 3.19 Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.20 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.20.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.20.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.20.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.21 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.22 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.23 Comparator (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.24 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.25 Advanced encryption standard hardware accelerator (AES) . . . . . . . . . . 45 3.26 Public key accelerator (PKA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.27 Timer and watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.27.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.27.2 General-purpose timers (TIM2, TIM16, TIM17) . . . . . . . . . . . . . . . . . . . 47 3.27.3 Low-power timers (LPTIM1, LPTIM2 and LPTIM3) . . . . . . . . . . . . . . . . 47 3.27.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.27.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.27.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.28 Real-time clock (RTC), tamper and backup registers . . . . . . . . . . . . . . . 48 3.29 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.30 Universal synchronous/asynchronous receiver transmitter (USART/UART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.31 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 50 3.32 Serial peripheral interface (SPI)/integrated-interchip sound interface (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.33 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 Pinouts, pin description and alternate functions . . . . . . . . . . . . . . . . . 53 5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4/150 DS13293 Rev 5 STM32WL55/54xx 5.1 Contents Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3.1 Main performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3.2 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3.3 Sub-GHz radio characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.3.4 Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . 78 5.3.5 Embedded reset and power-control block characteristics . . . . . . . . . . . 79 5.3.6 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3.7 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.3.8 Wakeup time from low-power modes and voltage scaling transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3.9 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.3.12 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.3.14 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.3.18 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.3.19 Analog-to-digital converter characteristics . . . . . . . . . . . . . . . . . . . . . . 120 5.3.20 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.3.21 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.3.22 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 126 5.3.23 Digital-to-analog converter characteristics . . . . . . . . . . . . . . . . . . . . . . 128 5.3.24 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.3.25 Timers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.3.26 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 134 DS13293 Rev 5 5/150 6 Contents 6 STM32WL55/54xx Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.1 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.2 UFBGA73 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.3 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 8 Important security notice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 6/150 DS13293 Rev 5 STM32WL55/54xx List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Main features and peripheral count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Access status versus RDP level and execution mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Sub-GHz radio transmit high output power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 FSK mode intermediate frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 LoRa mode intermediate frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 IPDs for STM32WL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Functionalities depending on system operating mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Low-power mode summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 MCU and sub-GHz radio operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 DMA1 and DMA2 implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 USART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 SPI and SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 STM32WL55/54xx pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Main performances at VDD = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Operating range of RF pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Sub-GHz radio power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Sub-GHz radio power consumption in transmit mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Sub-GHz radio general specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Sub-GHz radio receive mode specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Sub-GHz radio transmit mode specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Sub-GHz radio power management specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Embedded reset and power-control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 79 Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Current consumption in Run and LPRun modes on CPU1, CoreMark code with data running from flash memory, ART enable (cache ON, prefetch OFF) . . . . . . . . . . . . . . . . . 82 Current consumption in Run and LPRun modes on CPU1 and CPU2, CoreMark code with data running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Current consumption in Run and LPRun modes on CPU1, CoreMark code with data running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Typical current consumption in Run and LPRun modes on CPU1, with different codes running from flash memory, ART enable (cache ON, prefetch OFF) . . . . . . . . . . . . . . . . . 85 Typical current consumption in Run and LPRun modes on CPU1, with different codes running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Current consumption in Sleep and LPSleep modes on CPU1, flash memory ON . . . . . . . 89 Current consumption in Sleep and LPSleep modes on CPU1 and CPU2, DS13293 Rev 5 7/150 9 List of tables Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. Table 93. 8/150 STM32WL55/54xx flash memory ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Current consumption in LPSleep mode on CPU1, flash memory in power-down. . . . . . . . 90 Current consumption in LPSleep mode on CPU1 and CPU2, flash memory in power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Current consumption during wakeup from Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Current consumption during wakeup from Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Current consumption during wakeup from Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Current consumption during wakeup from Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . 94 Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Current under Reset condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 HSE32 crystal requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 HSE32 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 HSE32 TCXO regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Low-speed external user clock characteristics – Bypass mode . . . . . . . . . . . . . . . . . . . . 104 HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Maximum ADC RAIN values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 DS13293 Rev 5 STM32WL55/54xx Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. Table 101. Table 102. Table 103. List of tables I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Dynamic JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Dynamic SWD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 UFQFPN48 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 UFBGA73 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 UFBGA recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . . . . 145 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 DS13293 Rev 5 9/150 9 List of figures STM32WL55/54xx List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. 10/150 STM32WL55/54xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Sub-GHz radio system block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 High output power PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Low output power PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 IPDs for STM32WL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Power-up/power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Supply configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 UFBGA73 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Typical current consumption vs. MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 I/O input characteristics - VIL and VIH on all I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Typical connection diagram when using the ADC with FT/TT pins featuring analog switch function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 VREFOUT_TEMP when VRS = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 VREFOUT_TEMP when VRS = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 SPI timing diagram - Slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 SPI timing diagram - Slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 SPI timing diagram - Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 UFQFPN48 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 UFQFPN48 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 UFBGA73 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 UFBGA73 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 UFBGA73 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 DS13293 Rev 5 STM32WL55/54xx 1 Introduction Introduction This document provides information on the STM32WL55/54xx microcontrollers. For information on the device errata with respect to the datasheet and reference manual, refer to the STM32WL55/54xx errata sheet (ES0500), available on the STMicroelectronics website www.st.com. For information on the Arm®(a) Cortex®-M4 and Cortex®-M0+ cores, refer respectively to the Cortex®-M4 Technical Reference Manual and to the Cortex®-M0+ Technical Reference Manual available from the www.arm.com website. For information on LoRa® modulation, refer to the Semtech website (https://www.semtech.com/technology/lora). 2 Description The STM32WL55/54xx long-range wireless and ultra-low-power devices embed a powerful and ultra-low-power LPWAN-compliant radio solution, enabling the following modulations: LoRa®, (G)FSK, (G)MSK, and BPSK. The LoRa® modulation is available in STM32WLx5xx only. These devices are designed to be extremely low-power and are based on the high-performance Arm® Cortex®-M4 32-bit RISC core operating at a frequency of up to 48 MHz. This core implements a full set of DSP instructions. It is complemented by an Arm® Cortex®-M0+ microcontroller. Both cores implement an independent memory protection unit (MPU) that enhances the application security. The devices embed high-speed memories (256-Kbyte flash memory, 64-Kbyte SRAM), and an extensive range of enhanced I/Os and peripherals. The devices also embed several protection mechanisms for embedded flash memory and SRAM: readout protection, write protection and proprietary code readout protection. In addition, the STM32WL55/54xx devices support the following secure services running on Arm® Cortex-M0+: unique boot entry capable, secure sub-GHz MAC layer, secure firmware update, secure firmware install and storage and management of secure keys. These devices offer a 12-bit ADC, a 12-bit DAC low-power sample-and-hold, two ultra-low-power comparators associated with a high-accuracy reference voltage generator. a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. DS13293 Rev 5 11/150 14 Description STM32WL55/54xx The devices embed a low-power RTC with a 32-bit sub-second wakeup counter, one 16-bit single-channel timer, two 16-bit four-channel timers (supporting motor control), one 32-bit four-channel timer and three 16-bit ultra-low-power timers. These devices also embed two DMA controllers (7 channels each) allowing any transfer combination between memory (flash memory, SRAM1 and SRAM2) and peripheral, using the DMAMUX1 for flexible DMA channel mapping. The devices also feature the following standard and advanced communication interfaces: inter-processor communication controller (mailbox) and semaphores for communication between the two Arm® Cortex®-M cores, two USARTs (supporting LIN, smartcard, IrDA, modem control and ISO7816), one low-power UART (LPUART), three I2Cs (SMBus/PMBus), two SPIs (up to 16 MHz, one supporting I2S). The operating temperature/voltage ranges are –40 °C to +105 °C (+85 °C with radio) from a 1.8 V to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications. The devices integrate a high-efficiency SMPS step-down converter and independent power supplies for ADC, DAC and comparator analog inputs. A VBAT dedicated supply allows the LSE 32.768 kHz oscillator, the RTC and the backup registers to be backed up. The devices can maintain these functions even if the main VDD is not present, through a CR2032-like battery, a supercap or a small rechargeable battery. Table 2. Main features and peripheral count Feature CPU STM32WL55Cx STM32WL55Jx STM32WL54Cx STM32WL54Jx Arm Cortex-M4 and Cortex-M0 Maximum CPU frequency (MHz) 48 Flash memory density (Kbytes) 256 SRAM density (Kbytes) SRAM1 32 SRAM2 32 Available on STM32WL55xx devices. Not available on STM32WL54xx devices LoRa Radio (G)FSK (G)MSK Tx Yes BPSK Tx Radio PA Timer 12/150 Low output power (up to 15 dBm) High output power (up to 22 dBm) Yes General purpose 4 Low-power 3 SysTick 1 DS13293 Rev 5 STM32WL55/54xx Description Table 2. Main features and peripheral count (continued) Feature STM32WL55Cx STM32WL55Jx STM32WL54Cx STM32WL54Jx SPI/I2S Communication interface Watchdog 2 (1 supporting I2S) I2C 3 USART 2 LPUART 1 Independent 1 Window 1 RTC (with wakeup counter) 1 DMA (7 channels) 2 Mailbox and semaphores 1 Security AES 256 bits 1 RNG 1 PKA 1 PCROP, RDP, WRP 1 CRC 1 64-bit UID compliant with IEEE 802-2001 standard 1 96-bit die ID 1 Storage and management of secure keys 1 Secure sub-GHz MAC layer 1 Secure firmware update 1 Secure firmware install 1 Tamper pins 3 Wakeup pins 3 GPIOs ADC (number of channels, ext + int) 29 43 1 (9 + 4) 1 (12 + 4) DAC (number of channels) 1 (1) Internal VREFBUF No Yes Analog comparator 2 Operating voltage 1.8 to 3.6 V Ambient operating temperature –40 °C to +105 °C / –40 °C to +85 °C (with radio)(1) Junction temperature –40 °C to +125 °C / –40 °C to +105 °C (with radio) UFQFPN48 (7x7 mm) Package UFBGA73 (5x5 mm) 1. Devices with suffix 6 operate up to 85 °C. Devices with suffix 7 can operate up to 105 °C except radio. DS13293 Rev 5 13/150 14 Description STM32WL55/54xx NVIC SUBGHZ SPI CTI Figure 1. STM32WL55/54xx block diagram Cortex-M0+ ”48 MHz MPU Sub-GHz radio Flash interface arbiter + ART Accelerator 256-Kbyte Flash memory JTAG/SWD SRAM2 RTC TAMP LSE 32 kHz Backup domain IWDG LSI 32 kHz SRAM1 NVIC Cortex-M4 (DSP) ”48 MHz DMA2 (7 channels) DMAMUX AHB3 PWR EXTI HSEM AHB1 and AHB2 DMA1 (7 channels) HSE32 32 MHz backup memory RCC MPU LDO/SMPS IPCC PLL HSI 1 % 16 MHz MSI 5 % 0.1-48MHz Power supply POR/PDR/BOR/PVD/PVM SYSCFG/ COMP/VREF WWDG RNG SPI1 AES SPI2S2 PKA GPIO ports A,B,C,H TZSC CRC TZIC DAC (12 bits) I2C1 I2C2 I2C3 Temperature sensor LPUART1 LPTIM1 ADC (12 bits ULP, 2 Msps, 12 channels) APB1 and APB 2 TIM1 TIM2 LPTIM2 USART1 TIM16 LPTIM3 USART2 TIM17 MSv66957V1 14/150 DS13293 Rev 5 STM32WL55/54xx Functional overview 3 Functional overview 3.1 Architecture The devices embed a sub-GHz RF subsystem that interfaces with a generic microcontroller subsystem using an Arm Cortex-M4 (called CPU1) and an Arm Cortex-M0+ (called CPU2). An RF low-layer stack is needed and is to be run on CPU1 or CPU2, whereas the host application code is preferably run on CPU1. The RF subsystem communication is done through an internal SPI interface. All secure code must be run by CPU2. 3.2 Arm Cortex-M cores With its embedded Arm cores, the STM32WL55/54xx devices are compatible with all Arm tools and software. Figure 1 shows the general block diagram of the STM32WL55/54xx devices. Arm Cortex-M4 The Arm Cortex-M4 is a processor for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. The Arm Cortex-M4 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an Arm core in the memory size usually associated with 8- and 16-bit devices. This processor supports a set of DSP instructions that allow efficient signal processing and complex algorithm execution. Arm Cortex-M0+ The Arm Cortex-M0+ is an entry-level processor for embedded systems. It has been developed to provide lowest power consumption in the Cortex-M family, while delivering good computation performance and response to interrupts. The Arm Cortex-M0+ 32-bit RISC processor features good code-efficiency with ultra-low power consumption in the memory size usually associated with 8-bit and 16-bit devices. 3.3 Adaptive real-time memory accelerator (ART Accelerator) The ART Accelerator is a memory accelerator that is optimized for STM32 industry-standard Arm Cortex-M4 processor. The ART Accelerator balances the inherent performance advantage of the Arm Cortex-M4 over flash memory technologies, that normally require the processor to wait for the flash memory at higher frequencies. To release the processor near 60 DMIPS performance at 48 MHz, the ART Accelerator implements an instruction prefetch queue and branch cache, that increases the program execution speed from the 64-bit flash memory. Based on CoreMark benchmark, the DS13293 Rev 5 15/150 52 Functional overview STM32WL55/54xx performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program execution from flash memory at a CPU frequency up to 48 MHz. 3.4 Memory protection unit (MPU) The memory protection unit (MPU) is used to manage the CPU1 and CPU2 accesses to memory, to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to eight protected areas that can in turn be divided up into eight subareas. The protection area sizes are between 32 bytes and the whole 4 Gbytes of addressable memory. The MPU is especially helpful for applications where some critical or certified code must be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. 3.5 Memories 3.5.1 Embedded flash memory The flash memory interface manages the accesses from CPU1 AHB ICode/DCode and CPU2 AHB Sbus to the flash memory. It implements the access, the erase and program flash memory operations, and the read and write protection. The main features of the flash memory are listed below: • Memory organization: 1 bank – main memory: up to 256 Kbytes – page size: 2 Kbytes • 72-bit wide data read (64 bits plus 8 ECC bits) • 72-bit wide data write (64 bits plus 8 ECC bits) • Page erase and mass erase Flexible protections can be configured thanks to option bytes: • 16/150 Readout protection (RDP) to protect the whole memory. Three levels are available: – Level 0: no readout protection – Level 1: memory readout protection. The flash memory cannot be read from or written to if either debug features are connected, boot in SRAM or bootloader is selected. – Level 2: chip readout protection. Debug features (JTAG and serial wire), boot in SRAM and bootloader selection are disabled (JTAG fuse). This selection can only be reverted by the secure CPU2. DS13293 Rev 5 STM32WL55/54xx Functional overview Table 3. Access status versus RDP level and execution mode Area Main memory System memory Option bytes Read Write Erase Read Write Erase 1 Yes Yes Yes No No No 2 Yes Yes Yes NA NA NA 1 Yes No No Yes No No 2 Yes No No NA NA NA 1 Yes Yes Yes Yes No(1) 2 Backup registers SRAM2 Debug, boot from SRAM or boot from system memory (loader) User execution RDP level Yes Yes Yes (1) No NA NA NA No No NA(2) 1 Yes Yes NA(2) 2 Yes Yes NA NA NA NA No No No(2) NA NA NA 1 Yes Yes Yes(2) 2 Yes Yes Yes 1. The option byte can be modified by the sub-GHz radio. 2. Erased when RDP changes from Level 1 to Level 0. • Write protection (WRP): the protected area is protected against erasing and programming. Two areas can be selected, with 4-Kbyte granularity. • Proprietary code readout protection (PCROP): two parts of the flash memory can be protected against read and write from third parties. The protected area is execute-only: it can only be reached by the STM32 CPU1/2, as an instruction code, while all other accesses (DMA, debug and CPU1/2 data read, write and erase) are strictly prohibited. Two areas can be selected, with 2-Kbyte granularity. An additional option bit (PCROP_RDP) is used to select if the PCROP area is erased or not when the RDP protection is changed from Level 1 to Level 0. A section of the flash memory can be secured for CPU2, and, in that case, cannot be accessed by CPU1. The whole non-volatile memory embeds the error correction code (ECC) feature supporting: • single error detection and correction • double error detection • address of the ECC fail can be read in the FLASH_ECCR register The embedded flash memory is shared between CPU1 and CPU2 on a time sharing basis. A dedicated hardware mechanism allows both CPUs to suspend write/erase operations. 3.5.2 Embedded SRAM The devices feature up to 64 Kbytes of embedded SRAM, split in two blocks: • SRAM1: up to 32 Kbytes mapped at address 0x2000 0000 • SRAM2: up to 32 Kbytes located at address 0x2000 8000 (contiguous to SRAM1 in case of SRAM1 32-Kbyte configuration), also mirrored at 0x1000 0000, with hardware parity check (this SRAM can be retained in Standby mode) The SRAMs can be accessed in read/write with 0 wait states for all CPU1/2 clock speeds. DS13293 Rev 5 17/150 52 Functional overview 3.6 STM32WL55/54xx Security memory management The devices contain many security blocks both for the sub-GHz MAC layer and the Host application, such as: • securable RNG • customer keys storage • secure flash memory partition for CPU2 only access • secure SRAM partition, that can be accessed only by CPU2 • securable sub-GHz radio sub-system • securable DMA channels • securable AES: 128-and 256-bit AES, supporting ECB, CBC, CTR, GCM, GMAC and CCM chaining modes • securable PKA: • 3.7 – modular arithmetic including exponentiation with maximum modulo size of 3136 bits – elliptic curves over prime field scalar multiplication, ECDSA signature, ECDSA verification with maximum modulo size of 521 bits cyclic redundancy check calculation unit (CRC) Boot modes At startup, BOOT0 pin and BOOT1 option bit are used to select one of the following boot options: • Boot from user flash memory • Boot from boot system memory (where embedded bootloader is located) • Boot from embedded SRAM • Boot from system memory (where the embedded SFI is located) The bootloader makes possible to download code from USART or SPI. If the boot selection uses the BOOT0 pin to boot from the main flash memory, but the first flash memory location is found empty, the flash empty check mechanism forces boot from the system memory (containing the embedded bootloader). Then, due to the bootloader activation, some of the GPIOs are reconfigured from the high-Z state. Refer to the application note STM32 microcontroller system memory boot mode (AN2606) for more details concerning the bootloader and GPIOs configuration. This feature can be disabled by configuring the option bytes (instead of BOOT0 pin) to force boot from the main flash memory (nSWBOOT0 = 0, nBOOT0 = 1). 18/150 DS13293 Rev 5 STM32WL55/54xx 3.8 Functional overview Global security controller (GTZC) The GTZC includes the following sub-blocks: • TZSC: security controller This sub-block defines the secure/privileged state of slave peripherals. It also controls the unprivileged area size for the watermark memory peripheral controller (MPCWM). • TZIC: security illegal access controller This sub-block gathers all illegal access events in the system and generates a secure interrupt towards the secure CPU2 NVIC. These sub-blocks are used to configure the system security and privilege such as: • on-chip flash memory and RAM with programmable privileged protection on both secure and non-secure memory areas • AHB and APB peripherals with programmable security and/or privileged access 3.9 Sub-GHz radio 3.9.1 Sub-GHz radio introduction The sub-GHz radio is an ultra-low-power sub-GHz radio operating in the 150 - 960 MHz ISM band. LoRa and (G)FSK modulations in transmit and receive, and BPSK/(G)MSK in transmit only, allow an optimal trade-off between range, data rate and power consumption. This sub-GHz radio is compliant with the LoRaWAN® specification v1.0 and radio regulations such as ETSI EN 300 220, EN 300 113, EN 301 166, FCC CFR 47 part 15, 24, 90, 101 and the ARIB STD-T30, T-67, T-108. The sub-GHz radio consists of: 3.9.2 • an analog front-end transceiver, capable of outputting up to + 15 dBm maximum power on its RFO_LP pin and up to + 22 dBm maximum power on RFO_HP pin • a digital modem bank providing the following modulation schemes: – LoRa Rx/Tx with bandwidth (BW) from 7.8 - 500 kHz, spreading factor (SF) 5 - 12, bit rate (BR) from 0.013 to 17.4 Kbit/s (real bitrate) – FSK and GFSK Rx/Tx with BR from 0.6 to 300 Kbit/s – (G)MSK Tx with BR from 0.1 to 10 Kbit/s – BPSK Tx only with bitrate for 100 and 600 bit/s • a digital control including all data processing and sub-GHz radio configuration control • a high-speed clock generation Sub-GHz radio general description The sub-GHz radio provides an internal processing unit to handle communication with the system CPU. Communication is handled by commands sent over the SPI interface, and a set of interrupts is used to signal events. BUSY information signals operation activity and is used to indicate when the sub-GHz radio commands cannot be received. DS13293 Rev 5 19/150 52 Functional overview STM32WL55/54xx The block diagram of the sub-GHz radio system is shown in the figure below. Figure 2. Sub-GHz radio system block diagram VDDPA Sub-GHz radio VR_PA SUBGHZSPI FSK modem RFO_HP BUSY RFO_LP RFI_P RFI_N Interrups Radio control Sub-GHz RF frontend LoRa modem PB0_VDDTCXO Data and control HSEON HSEBYPPWR (note) OSC_IN OSC_OUT HSERDY HSE32 hse32 Note: LoRa modem is only available on STM32WL55xx devices. 3.9.3 MSv62614V1 Transmitter The transmit chain comprises the modulated output from the modem, that directly modulates the RF-PLL. An optional pre-filtering of the bit stream can be enabled to reduce the power in the adjacent channel also dependent on the selected modulation scheme. The modulated signal from the RF-PLL directly drives the high output power PA (HP PA) or low output power PA (LP PA). The transmitted packet payload size depends on the modulation scheme. Transmitter high output power Transmit high output power up to + 22 dBm, is supported through the RFO_HP RF pin. 20/150 DS13293 Rev 5 STM32WL55/54xx Functional overview For this, the REG PA must be supplied directly from VDD on VDDSMPS pin, as shown in the figure below. The output power range is programmable in 32 steps of ~ 1 dB. The power amplifier ramping timing is also programmable.This allows adaptation to meet radio regulation requirements. Figure 3. High output power PA SMPS mode LDO mode VDD VDD VDDSMPS (1.8 to 3.6V) VDDSMPS (1.8 to 3.6V) VLXSMPS VLXSMPS LDO/SMPS LDO/SMPS VFBSMPS (1.55V) VFBSMPS (1.55V) VDD VDD VDDPA VDDPA VR_PA (up to 3.1V) REG PA VR_PA (up to 3.1V) REG PA RFO_HP HP PA RFO_HP HP PA Note: Use of the SMPS is optional. When SMPS is not used, the BOM can be reduced by removing the coil between VLXSMPS and VFBSMPS pins. MSv62616V2 The table below gives the maximum transmit output power versus the VDDPA supply level. Table 4. Sub-GHz radio transmit high output power VDDPA supply (V) Transmit output power (dBm) 3.3 + 22 2.7 + 20 2.4 + 19 1.8 + 16 Transmitter low output power The transmit low output power up to + 15 dBm on full VDD range (1.8 to 3.6 V), is supported through the RFO_LP RF pin. For this, the REG PA must be supplied from the regulated VFBSMPS supply at 1.55 V, as shown in the figure below. The output power range is programmable in 32 steps of ~1 dB. The power amplifier ramping timing is also programmable.This allows adaptation to meet radio regulation requirements. DS13293 Rev 5 21/150 52 Functional overview STM32WL55/54xx Figure 4. Low output power PA LDO mode SMPS mode VDD VDD VDDSMPS (1.8 to 3.6V) VDDSMPS (1.8 to 3.6V) VLXSMPS VLXSMPS LDO/SMPS LDO/SMPS VFBSMPS (1.55V) VFBSMPS (1.55V) VDDPA VDDPA VR_PA (up to 1.35V) REG PA VR_PA (up to 1.35V) REG PA RFO_LP RFO_LP LP PA LP PA Note: Use of the SMPS is optional. When SMPS is not used, the BOM can be reduced by removing the coil between VLXSMPS and VFBSMPS pins. 3.9.4 MSv62617V2 Receiver The receive chain comprises a differential low-noise amplifier (LNA), a down-converter to low-IF by mixer operation in quadrature configuration. The I and Q signals are low pass filtered and a Ʃ∆ ADC converts them into the digital domain. In the digital modem, the signals are decimated, further down converted and channel filtered. The demodulation is done according to the selected modulation scheme. The down mixing to low-IF is done by mixing the receive signal with the local RF-PLL located in the negative frequency, where -flo = -frf + -fif. (where flo is the local RF-PLL frequency, frf is the received signal and fif is the intermediate frequency). The wanted signal is located at frf = flo + fif. The receiver features automatic I and Q calibration, that improves image rejection. The calibration is done automatically at startup before using the receiver, and can be requested by command. The receiver supports LoRa, (G)MSK and (G)FSK modulations. The received packet payload size depends on the modulation scheme. 3.9.5 RF-PLL The RF-PLL is used as the frequency synthesizer for the generation of the local oscillator frequency (flo) for both transmit and receive chains. The RF-PLL uses auto calibration and uses the 32 MHz HSE32 reference. The sub-GHz radio covers all continuous frequencies in the range between 150 to 960 MHz. 22/150 DS13293 Rev 5 STM32WL55/54xx 3.9.6 Functional overview Intermediate frequencies The sub-GHz radio receiver operates mostly in low-IF configuration, except for specific highbandwidth settings. Table 5. FSK mode intermediate frequencies Setting name Bandwidth (kHz) RX_BW_467 467.0 RX_BW_234 234.3 RX_BW_117 117.3 RX_BW_58 58.6 RX_BW_29 29.3 RX_BW_14 14.6 RX_BW_7 7.3 RX_BW_373 373.6 RX_BW_187 187.2 RX_BW_93 93.8 RX_BW_46 46.9 RX_BW_23 23.4 RX_BW_11 11.7 RX_BW_5 5.8 RX_BW_312 312.0 RX_BW_156 156.2 RX_BW_78 78.2 RX_BW_39 39.0 RX_BW_19 19.5 RX_BW_9 9.7 RX_BW_4 4.8 fif (kHz) 250 200 167 Table 6. LoRa mode intermediate frequencies Setting name Bandwidth (kHz) fif (kHz) LORA_BW_500 500 0 LORA_BW_250 250 LORA_BW_125 125 LORA_BW_62 62.5 LORA_BW_41 41.67 167 LORA_BW_31 31.25 250 LORA_BW_20 20.83 167 DS13293 Rev 5 250 23/150 52 Functional overview STM32WL55/54xx Table 6. LoRa mode intermediate frequencies (continued) 3.9.7 Setting name Bandwidth (kHz) fif (kHz) LORA_BW_15 15.63 250 LORA_BW_10 10.42 167 LORA_BW_7 7.81 250 IPDs for STM32WL and reference designs For reference designs covering different packages and performance, cost and complexity trade-offs, refer to the data brief STM32WL reference designs (DB4597). The table below lists the IPD variants used to optimize main use cases in term of maximum output power, frequency range, and PCB characteristics of the target board. Table 7. IPDs for STM32WL IPD Power Frequency BALFHB-WL-01D3 BALFHB-WL-02D3 22 dBm 915 MHz PCB # of layers MCU package 4 UFBGA73 STM32WL part number STM32WL54JC, STM32WL55JC 4 UFQFPN48 STM32WL54CC, STM32WL55CC BALFHB-WL-03D3 2 UFQFPN48 STM32WL54CC, STM32WL55CC BALFHB-WL-04D3 4 15 dBm BALFHB-WL-05D3 868_915 MHz BALFHB-WL-06D3 BALFLB-WL-07D3 BALFLB-WL-08D3 BALFLB-WL-09D3 24/150 STM32WL54JC, STM32WL55JC 4 UFQFPN48 STM32WL54CC, STM32WL55CC 2 UFQFPN48 STM32WL54CC, STM32WL55CC 4 17 dBm 490 MHz UFBGA73 UFBGA73 STM32WL54JC, STM32WL55JC 4 UFQFPN48 STM32WL54CC, STM32WL55CC 2 UFQFPN48 STM32WL54CC, STM32WL55CC DS13293 Rev 5 STM32WL55/54xx Functional overview Figure 5. IPDs for STM32WL 3.10 Power supply management The devices embed two different regulators: one LDO and one DC/DC (SMPS). The SMPS can be optionally switched-on by software to improve the power efficiency. As LDO and SMPS operate in parallel, the SMPS switch-on is transparent to the user and only the power efficiency is affected. 3.10.1 Power supply schemes The devices require a VDD operating voltage supply between 1.8 V and 3.6 V. Several independent supplies (VDDSMPS, VFBSMPS, VDDA, VDDRF) can be provided for specific peripherals: • VDD = 1.8 V to 3.6 V VDD is the external power supply for the I/Os, the system analog blocks such as reset, power management, internal clocks and low-power regulator. It is provided externally through VDD pins. • VDDSMPS = 1.8 V to 3.6 V VDDSMPS is the external power supply for the SMPS step-down converter. It is provided externally through VDDSMPS supply pin and must be connected to the same supply as VDD. • VFBSMPS = 1.45 V to 1.62 V (1.55 V typical) VFBSMPS is the external power supply for the main system regulator. It is provided externally through VFBSMPS pin and is supplied through the SMPS step-down DS13293 Rev 5 25/150 52 Functional overview STM32WL55/54xx converter. • VDDA = 0 V to 3.6 V (DAC minimum voltage is 1.71 V without buffer and 1.8 V with buffer. COMP and ADC minimum voltage is 1.62 V. VREFBUF minimum voltage is 2.4 V) VDDA is the external analog power supply for A/D converters, D/A converters, voltage reference buffer, and comparators. The VDDA voltage level is independent from the VDD voltage (see power-up and power-down limitations below) and must preferably be connected to VDD when these peripherals are not used. • VDDRF = 1.8 V to 3.6 V VDDRF is an external power supply for the radio. It is provided externally through the VDDRF pin and must be connected to the same supply as VDD. • VDDRF1V5 = 1.45 V to 1.62 V VDDRF1V5 is an external power supply for the radio. It is provided externally through the VDDRF1V5 pin and must be connected externally to VFBSMPS. • VBAT = 1.55 V to 3.6 V VBAT is the power supply for RTC, TAMP, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. • VREF-, VREF+ VREF+ is the input reference voltage for ADC and DAC. It is also the output of the internal voltage reference buffer when enabled. – When VDDA < 2 V, VREF+ must be equal to VDDA. – When VDDA ≥ 2 V, VREF+ must be between 2 V and VDDA. VREF+ can be grounded when ADC/DAC is not active. The internal voltage reference buffer supports the following output voltages, configured with VRS bit in the VREFBUF_CSR register: – VREF+ around 2.048 V: this requires VDDA ≥ 2.4 V. – VREF+ around 2.5 V: this requires VDDA ≥ 2.8 V. During power up and power down, the following power sequence is required: 1. When VDD < 1 V other power supplies (VDDA) must remain below VDD + 300 mV. During power down, VDD can temporarily become lower then other supplies only if the energy provided to the device remains below 1 mJ. This allows external decoupling capacitors to be discharged with different time constants during this transient phase. 2. When VDD > 1 V, all other power supplies (VDDA) become independent. An embedded linear voltage regulator is used to supply the internal digital power VCORE. VCORE is the power supply for digital peripherals, SRAM1 and SRAM2. The flash memory is supplied by VCORE and VDD. VCORE is split in two parts: VDDO part and an interruptible part VDDI. 26/150 DS13293 Rev 5 STM32WL55/54xx Functional overview Figure 6. Power-up/power-down sequence V 3.6 VDDA VDD VBOR0 1 0.3 Power-on Operating mode Invalid supply area VDDA < VDD + 300 mV Power-down time VDDA independent from VDD MSv68044V1 Note: VDD, VDDRF and VDDSMPS must be wired together, so they can follow the same voltage sequence. Figure 7. Power supply overview VSW VBAT VDD POR VDDSMPS en LDO/SMPS FW mode VLXSMPS mode VFBSMPS VDDRF1V5 LPR MR RFLDO VLP VMAIN VBKP VDDO VRF VDDI MSv50973V1 DS13293 Rev 5 27/150 52 Functional overview STM32WL55/54xx The different supply configurations are shown in the figure below. Figure 8. Supply configurations VDD VDD VDDSMPS VDDSMPS VLXSMPS VLXSMPS LDO/SMPS VFBSMPS VDDRF1V5 LDO/SMPS VFBSMPS VDDRF1V5 RF LDO MR LPR LDO/SMPS supply RF LDO MR LPR LDO supply MSv50974V1 The LDO or SMPS step-down converter operating mode can be configured by one of the following: • by the MCU using the SMPSEN setting in PWR control register 5 (PWR_CR5), that depends upon the MCU system operating mode (Run, Stop, Standby or Shutdown). • by the sub-GHz radio using SetRegulatorMode() command and the sub-GHz radio operating mode (Sleep, Calibrate, Standby, Standby with HSE32 or Active). After any POR and NRST reset, the LDO mode is selected. The SMPS selection has priority over LDO selection. While the sub-GHz radio is in Standby with HSE32 or in Active mode, the supply mode is not altered until the sub-GHz radio enters Standby or Sleep mode. The sub-GHz radio activity may add a delay for entering the MCU software requested supply mode. The LDO or SMPS supply mode can be checked with the SMPSRDY flag in power status register 2 (PWR_SR2). Note: When the radio is active, the supply mode is not changed until after the radio activity is finished. During Stop 1, Stop 2 and Standby modes, when the sub-GHz radio is not active, the LDO or SMPS step-down converter is switched off. When exiting low-power modes (except Shutdown), the SMPS step-down converter is set by hardware to the mode selected by the SMPSEN bit in PWR control register 5 (PWR_CR5). SMPSEN is retained in Stop and Standby modes. Independently from the MCU software selected supply operating mode, the sub-GHz radio allows the supply mode selection while the sub-GHz radio is active (thanks to the sub-GHz radio SetRegulatorMode()command). The maximum load current delivered by the SMPS can be selected by the sub- GHz radio SUBGHZ_SMPSC2R register. The inrush current of the LDO and SMPS step-down converter can be controlled via the sub- GHz radio SUBGHZ_PCR register. This information is retained in all but the sub-GHz radio Deep-sleep mode. 28/150 DS13293 Rev 5 STM32WL55/54xx Functional overview The SMPS needs a clock to be functional. If for any reason this clock stops, the device may be destroyed. To avoid this situation, a clock detection is used to, in case of a clock failure, switch off the SMPS and enable the LDO. The SMPS clock detection is enabled by the sub-GHz radio SUBGHZ_SMPSC0R.CLKDE. By default, the SMPS clock detection is disabled and must be enabled before enabling the SMPS. Danger: 3.10.2 Before enabling the SMPS, the SMPS clock detection must be enabled in the sub-GHz radio SUBGHZ_SMPSC0R.CLKDE. Power supply supervisor The devices integrate a power-on reset/power-down reset, coupled with a Brownout reset (BOR) circuitry. BOR0 level cannot be disabled. Other BOR levels can be enabled by user option. When enabled, BOR is active in all power modes except in Shutdown Five BOR thresholds can be selected through option bytes. During power-on, BOR keeps the device under reset until the supply voltage VDD reaches the specified VBORx threshold: • When VDD drops below the selected threshold, a device reset is generated. • When VDD is above the VBORx upper limit, the device reset is released and the system can start. The devices feature an embedded PVD (programmable voltage detector) that monitors the VDD power supply and compares it with the VPVD threshold. An interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software and can be configured to monitor the VDD supply level needed for the sub-GHz radio operation. For this, the PVD must select its lowest threshold, and the PVD and the wakeup must be enabled by the EWPVD bit in PWR_CR3 register. Only a voltage drop below the PVD level generates a wakeup event. In addition, the devices embed a PVM (peripheral voltage monitor) that compares the independent supply voltage VDDA with a fixed threshold to ensure that the peripheral is in its functional supply range. Finally, a radio end-of-life monitor provides information on the VDD supply when VDD is too low to operate the sub-GHz radio. When reaching the EOL level, the software must stop all radio activity in a safe way. 3.10.3 Linear voltage regulator Two embedded linear voltage regulators supply all the digital circuitries, except for the Standby circuitry and the Backup domain. The main regulator (MR) output voltage (VCORE) can be programmed by software to two different power ranges (range 1 and range 2), to optimize the consumption depending on the system maximum operating frequency. DS13293 Rev 5 29/150 52 Functional overview STM32WL55/54xx The voltage regulators are always enabled after a reset. Depending on the application modes, the VCORE supply is provided either by the main regulator or by the low-power regulator (LPR). When MR is used, a dynamic voltage scaling is proposed to optimize power as follows: • range 1: high-performance range The system clock frequency can be up to 48 MHz. The flash memory access time for read access is minimum. Write and erase operations are possible. • range 2: low-power range The system clock frequency can be up to 16 MHz.The flash memory access time for a read access is increased as compared to range 1. Write and erase operations are possible. Note: MR is supplied by VDD during power-on or at wakeup from Stop1, Stop2, Standby or Shutdown mode. MR is powered by LDO/SMPS after these transition phases. 3.10.4 VBAT operation The VBAT pin is used to power the device VBAT domain (RTC, LSE and backup registers) from an external battery, an external super-capacitor, or from VDD when no external battery nor an external super-capacitor are present. Three anti-tamper detection pins are available in VBAT mode. VBAT operation is automatically activated when VDD is not present. An internal VBAT battery charging circuit is embedded and can be activated when VDD is present. Note: When the microcontroller is supplied only from VBAT, external interrupts and RTC alarm/events do not exit it from VBAT operation. 3.11 Low-power modes The devices support several low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wakeup sources. By default, the microcontroller is in Run mode, range 1, after a system or a power-on reset. It is up to the user to select one of the low-power modes described below: • Sleep mode: CPU clock off, all peripherals including CPU core peripherals (among them NVIC, SysTick) can run and wake up the CPU when an interrupt or an event occurs. • Low-power run mode (LPRun): when the system clock frequency is reduced below 2 MHz. The code is executed from the SRAM or from the flash memory. The regulator is in low-power mode to minimize the operating current. • Low-power sleep mode (LPSleep): entered from the LPRun mode. • Stop 0 and Stop 1 modes: the content of SRAM1, SRAM2 and of all registers is retained. All clocks in the VCORE domain are stopped. PLL, MSI, HSI16 and HSE32 are disabled. LSI and LSE can be kept running. RTC can remain active (Stop mode with RTC, Stop mode without RTC). The sub-GHz radio may remain active independently from the CPUs. Some peripherals with the wakeup capability can enable HSI16 RC during the Stop 30/150 DS13293 Rev 5 STM32WL55/54xx Functional overview mode to detect their wakeup condition. Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller wakeup time but a higher consumption compared with Stop 2. In Stop 0 mode, the main regulator remains on, resulting in the fastest wakeup time but with much higher consumption. The active peripherals and wakeup sources are the same as in Stop 1 mode that uses the low-power regulator. The system clock, when exiting Stop 0 or Stop 1 mode, can be either MSI up to 48 MHz or HSI16, depending on the software configuration. • Stop 2 mode: part of the VCORE domain is powered off. Only SRAM1, SRAM2, CPUs and some peripherals preserve their contents (see Table 8). All clocks in the VCORE domain are stopped. PLL, MSI, HSI16 and HSE32 are disabled. LSI and LSE can be kept running. RTC can remain active (Stop 2 mode with RTC, Stop 2 mode without RTC). The sub-GHz radio may also remain active independent from the CPUs. Some peripherals with the wakeup capability can enable HSI16 RC during the Stop 2 mode to detect their wakeup condition (see Table 8). The system clock when exiting from Stop 2 mode, can be either MSI up to 48 MHz or HSI16, depending on the software configuration. • Standby mode: VCORE domain is powered off. However, it is possible to preserve the SRAM2 content as detailed below: – Standby mode with SRAM2 retention when the RRS bit is set in the PWR control register 3 (PWR_CR3). In this case, SRAM2 is supplied by the low-power regulator. – Standby mode when the RRS bit is cleared in the PWR control register 3 (PWR_CR3). In this case the main regulator and the low-power regulator are powered off. All clocks in the VCORE domain are stopped. PLL, MSI, HSI16 and HSE32 are disabled. LSI and LSE can be kept running. Th RTC can remain active (Standby mode with RTC, Standby mode without RTC). The sub-GHz radio and the PVD may also remain active when enabled independent from the CPUs. In Standby mode, the PVD selects its lowest level. The system clock, when exiting Standby modes, is MSI at 4 MHz. • Shutdown mode: VCORE domain is powered off. All clocks in the VCORE domain are stopped. PLL, MSI, HSI16, LSI and HSE32 are disabled. LSE can be kept running. The system clock when exiting the Shutdown mode, is MSI at 4 MHz. In this mode, the supply voltage monitoring is disabled and the product behavior is not guaranteed in case of a power voltage drop. DS13293 Rev 5 31/150 52 Functional overview STM32WL55/54xx The table below summarizes the peripheral features over all available modes. Wakeup capability is detailed in gray cells. Table 8. Functionalities depending on system operating mode(1) Wakeup capability - Wakeup capability - Wakeup capability - Wakeup capability - CPU1 Y R Y R R - R - R - - - - - - CPU2 Y R Y R R - R - R - - - - - - Sub-GHz radio system O O O O O O O O O O O O - - - (3) R - R - R - R - R - R O(2) VBAT - Peripheral Wakeup capability LPSleep Standby Shutdown LPRun Stop 2 Sleep Stop 1 Run Stop 0 Flash memory (256 Kbytes) Y Flash memory interface Y Y Y Y R - R - R - - - - - - SRAM1 Y O(2) Y O(2) R - R - R - - - - - - SRAM2 Y O(2) Y O(2) R - R - R - O(4) - - - - Backup registers Y Y Y Y R - R - R - R - R - R Brownout reset (BOR) Y Y Y Y Y Y Y Y Y Y Y Y - - - Programmable voltage detector (PVD) O O O O O O O O O O - - - Peripheral voltage monitor (PVM3) O O O O O O O O O O - - - - - DMAx (x = 1, 2) O O O O R - R - - - - - - - - DMAMUX1 O O O O R - R - - - - - - - - O O(6) - (6) - - - - - - - (7) - - - - High-speed internal (HSI16) O O(2) O(3) O O (7) O (7) O - O (7) O - O (7) O O High-speed external (HSE32) O O Low-speed internal (LSI) O O O O O - O - O - O - - - - Low-speed external (LSE) O O O O O - O - O - O - O - O Multi-speed internal (MSI) O O O O O - O - O - - - - - - Clock security system (CSS) O O O O R - R - - - - - - - - Clock security system on LSE O O O O O O O O O O O O - - - RTC/auto wakeup O O O O O O O O O O O O O O O Number of tamper pins 3 3 3 3 3 O 3 O 3 O 3 O 3 O 3 USARTx (x= 1, 2) O O O O O(8) O(8) O(8) O(8) - - - - - - - Low-power UART (LPUART1) O O O O O(8) O(8) O(8) O(8) O(8) O(8) - - - - - O O(9) O(9) O(9) O(9) - - - - - - - O (9) O(9) O(9) O(9) O(9) O(9) - - - - - I2Cx (x = 1, 2) I2C3 32/150 O O O O O (7) (6) O(5) O(5) O O O DS13293 Rev 5 STM32WL55/54xx Functional overview Table 8. Functionalities depending on system operating mode(1) (continued) Wakeup capability - Wakeup capability - Wakeup capability - Wakeup capability - SPI1 O O O O R - R - - - - - - - - SUBGHZSPI O O O O R - R - - - - - - - - SPI2S2 O O O O R - R - - - - - - - - ADC O O O O R - R - - - - - - - - DAC O O O O R - R - - - - - - - - VREFBUF O O O O O - O - R - - - - - - COMPx (x = 1, 2) O O O O O O O O O O - - - - - Temperature sensor O O O O R - R - - - - - - - - TIMx (x = 1, 2, 16, 17) O O O O R - R - - - - - - - - LPTIM1 O O O O O O O O O O - - - - - LPTIMx (x = 2, 3) O O O O O O O O - - - - - - - Independent watchdog (IWDG) O O O O O O O O O O O O - - - Window watchdog (WWDG) O O O O R - R - R - - - - - - SysTick timer O O O O R - R - R - - - - - - O O(1 0) R R R - R - - - - - - - - AES hardware accelerator O O O O R - R - - - - - - - - PKA hardware accelerator O O O O R - R - - - - - - - - CRC calculation unit O O O O R - R - R - - - - - - IPCC O R O R R - R - R - - - - - - HSEM O R O R R - R - - - - - - - - GTZC TZSC O R O R R - R - R - - - - - - GTZC TZIC O R O R R - R - R - - - - - - EXTI O O O O R O R O R O - - - - - R 3 pin s (13) 3 pins - True random number generator (RNG) GPIOs (10) O O O O O O O O O O (11) (12) (12) VBAT - Peripheral Wakeup capability LPSleep Standby Shutdown LPRun Stop 2 Sleep Stop 1 Run Stop 0 1. Legend: Y = Yes (enabled). O = Optional (disabled by default and can be enabled by software). R = data retained. - = Not available. Gray cells indicate wakeup capability. 2. The SRAM clock can be gated on or off. 3. Flash memory can be placed in power-down mode. DS13293 Rev 5 33/150 52 Functional overview STM32WL55/54xx 4. The SRAM2 content can optionally be retained when the PWR_CR3.RRS bit is set. 5. Only when the sub-GHz radio is active. 6. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by the peripheral, and only feeds the peripheral that requested it. HSI16 is automatically put off when the peripheral does not need it anymore. 7. HSE32 can be used by sub-GHz radio system. 8. USART reception is functional in Stop 0 and Stop 1 modes. LPUART1 reception is functional is Stop 0, Stop 1, and Stop 2 modes. LPUART1 generates a wakeup interrupt on Start address match or received frame event. 9. I2Cx (x= 1, 2) address detection is functional in Stop 0 and Stop 1 modes. I2C3 address detection is functional in Stop 0, Stop 1 and Stop 2 modes. I2C3 generates a wakeup interrupt in case of address match. 10. Voltage scaling range 1 only. 11. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode. 12. The I/Os with wakeup from Standby/Shutdown capability are PA0, PC13 and PB3. 13. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode, but the configuration is lost when exiting the Shutdown mode. Table 9. Low-power mode summary Mode name Entry WFI or return Sleep (Sleep-now or from ISR Sleep-on-exit) WFE Any interrupt Wakeup event LPRun Set LPR bit Clear LPR bit Any interrupt LPSleep Set LPR bit + WFI or return from ISR Set LPR bit + WFE Wakeup event Stop 0 LPMS = 0b000 + SLEEPDEEP bit + WFI or return from ISR or WFE Stop 1 LPMS = 0b001 + SLEEPDEEP bit + WFI or return from ISR or WFE Stop 2 (with I2C3, LPUART1, LPTIM1, SRAM1, SRAM2) 34/150 LPMS = 0b010+ SLEEPDEEP bit + WFI or return from ISR or WFE Wakeup system clock Wakeup source(1) Effect on clocks Voltage regulators MR LPR CPU clock OFF Same as before entering Sleep mode No effect on other clocks or analog clock sources ON ON Same as LPRun clock None OFF ON Same as before entering LPSleep mode CPU clock OFF No effect on other clocks or analog clock sources OFF ON OFF ON ON Any EXTI line (configured in the EXTI registers). Specific peripherals events HSI16 when STOPWUCK = 1 in RCC_CFGR. MSI with the frequency before entering the Stop mode when STOPWUCK = 0. DS13293 Rev 5 All clocks OFF except HSI16, LSI and LSE ON OFF STM32WL55/54xx Functional overview Table 9. Low-power mode summary (continued) Mode name Entry Wakeup source(1) Wakeup system clock LPMS = 0b011+ Set RRS bit + Standby (with SLEEPDEEP bit SRAM2) + WFI or return from ISR or WFE Standby Shutdown Wakeup PVD, RFIRQ, wakeup RFBUSY, WKUP pin edge, RTC and TAMP event, MSI 4 MHz LPMS = 0b011 + LSECSS, Clear RRS bit + external reset in SLEEPDEEP bit NRST pin, + WFI or return IWDG reset from ISR or WFE WKUP pin edge, LPMS = 0b1xx + RTC and TAMP SLEEPDEEP bit event, external + WFI or return reset in NRST from ISR or WFE pin MSI 4 MHz Effect on clocks Voltage regulators MR LPR OFF ON All clocks OFF except LSI and LSE OFF OFF All clocks OFF except LSE OFF OFF 1. Refer to Table 8: Functionalities depending on system operating mode. Relation between MCU and sub-GHz radio operating modes The CPUs and sub-GHz radio have their own operating modes (see the table below). Table 10. MCU and sub-GHz radio operating modes CPU operating mode Run, Sleep LPRun, LPSleep Stop 0 Stop 1 and Stop 2 Standby Shutdown Sub-GHz radio operating mode Description Sleep, Calibration, Standby, Active (FS, TX, RX)(1) LDO or SMPS regulator active, MCU running in main regulator (MR) mode Deep-Sleep LDO and SMPS regulator off, MCU running in low power regulator (LPR) mode Sleep, Calibration, Standby, Active (FS, TX, RX) LDO or SMPS regulator active, MCU running in low power regulator (LPR) mode Sleep, Calibration, Standby, Active (FS, TX, RX)(1) LDO or SMPS regulator active, MCU running in main regulator (MR) mode Deep-Sleep LDO and SMPS regulator off, MCU using low power regulator (LPR) mode Sleep, Calibration, Standby, Active (FS, TX, RX) LDO or SMPS regulator active, MCU using low power regulator (LPR) mode Deep-Sleep LDO and SMPS regulator off, MCU regulator off or on in low power (LPR) mode(2). Sleep, Calibration, Standby, Active (FS, TX, RX) LDO or SMPS regulator active, MCU regulator off or on in low power (LPR) mode(2) Deep-Sleep(3) LDO and SMPS regulator off, MCU regulator off 1. In the MCU Run, Sleep and Stop 0 modes, the sub-GHz radio is prevented from entering Deep-sleep mode. 2. When retaining SRAM2 in Standby mode, the MCU uses the low-power regulator (LPR) mode. DS13293 Rev 5 35/150 52 Functional overview STM32WL55/54xx 3. When the CPU is in Shutdown mode, the sub-GHz radio cannot be activated and is forced in Deep-sleep mode. 3.11.1 Reset mode In order to improve the consumption under reset, the I/Os state under and after reset is "analog state" (the I/O Schmitt trigger is disabled). In addition, the internal reset pull-up is deactivated when the reset source is internal. This excludes the five serial-wire JTAG debug ports that are in pull-up/pull-down after reset. 3.12 Peripheral interconnect matrix Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources and, consequently, reducing power-supply consumption. In addition, these hardware connections allow fast and predictable latency. Depending on peripherals, these interconnections can operate in Run, Sleep, LPRun, LPSleep, Stop 0, Stop 1 and Stop 2 modes. Table 11. Peripherals interconnect matrix(1) (2) TIM1 TIM2 TIM16 TIM17 LPTIM1 LPTIM2 LPTIM3 ADC DAC COMP1 COMP2 DMAMUX1 IRTIM SUBGHZSPI Destination TIM1 - X - - - - - X X X X - - - TIM2 X - - - - - - X X X X - - - TIM16 - - - - - - - - - - - - X - TIM17 X - - - - - - - - - - - X - LPTIM1 - - - - - - X - X - - X - - LPTIM2 - - - - - - X - X - - X - - LPTIM3 - - - - - - - - - - - X - X ADC X - - - - - - - - - - - - Temperature sensor - - - - - - - X - - - - - - VBAT(3) - - - - - - - X - - - - - - VREFINT - - - - - - - X - - - - - - HSE32 - - - X - - - - - - - - - - LSE - X X - - - - - - - - - - - MSI - - - X - - - - - - - - - - LSI - - X - - - - - - - - - - - MCO - - - X - - - - - - - - - - Source 36/150 DS13293 Rev 5 STM32WL55/54xx Functional overview Table 11. Peripherals interconnect matrix(1) (2) (continued) TIM1 TIM2 TIM16 TIM17 LPTIM1 LPTIM2 LPTIM3 ADC DAC COMP1 COMP2 DMAMUX1 IRTIM SUBGHZSPI Destination GPIO EXTI - - - - - - - X X - - X - - RTC - - X - X X - - - - - - - - TAMP - - - - X X - - - - - - - - COMP1 X X X X X X - - - - - - - - COMP2 X X X X X X - - - - - - - - SYST ERR X - X X - - - - - - - - - - Source 1. For more details, refer to section “Interconnection details” of the reference manual. 2. The “-” symbol in grayed cells means no interconnect. 3. VDD on STM32WL55/4UxYx devices. 3.13 Reset and clock controller (RCC) The following different clock sources can be used to drive the system clock (SYSCLK): • HSI16 (high-speed internal) 16 MHz RC oscillator clock • MSI (multi-speed internal) RC oscillator clock from 100 kHz to 48 MHz • HSE32 (high-speed external) 32 MHz oscillator clock, with trimming capacitors. • PLL clock The MSI is used as system clock source after startup from reset, configured at 4 MHz. The devices have the following additional clock sources: • LSI: 32 kHz low-speed internal RC that may drive the independent watchdog and optionally the RTC used for auto-wakeup from Stop and Standby modes. • LSE: 32.768 kHz low-speed external crystal that optionally drives the RTC used for auto-wakeup from Stop, Standby and Shutdown modes, or the real-time clock (RTCCLK). Each clock source can be switched on or off independently when it is not used, to optimize power consumption. Several prescalers can be used to configure the AHB frequencies (HCLK3/PCLK3, HCLK1, HCLK2), the high-speed APB2 (PCLK2) and the low-speed APB1 (PCLK1) domains. The maximum frequency of the AHB (HCLK3, HCLK1, and HCLK2), the PCLK1 and the PCLK2 domains is 48 MHz. DS13293 Rev 5 37/150 52 Functional overview STM32WL55/54xx Most peripheral clocks are derived from their bus clock (HCLK, PCLK) except the following: • • The clock used for true RNG, is derived (selected by software) from one of the following sources: – PLL VCO (PLLQCLK) (only available in Run mode) – MSI (only available in Run mode) – LSI clock – LSE clock The ADC clock is derived (selected by software) from one of the following sources: – system clock (SYSCLK) (only available in Run mode) – HSI16 clock (only available in Run mode) – PLL VCO (PLLPCLK) (only available in Run mode) • The DAC uses the LSI clock in sample and hold mode • The (LP)U(S)ARTs clocks are derived (selected by software) from one of the following sources: – system clock (SYSCLK) (only available in Run mode) – HSI16 clock (available in Run and Stop modes) – LSE clock (available in Run and Stop modes) – APB clock (PCLK depending on which APB the U(S)ART is mapped) (available in CRun and CSleep when also enabled in (LP)U(S)ARTxSMEN) The wakeup from Stop mode is supported only when the clock is HSI16 or LSE. • The I2Cs clocks are derived (selected by software) from one of the following sources: – system clock (SYSCLK) (only available in Run mode) – HSI16 clock (available in Run and Stop modes) – APB clock (PCLK depending on which APB the I2C is mapped) (available in CRun and CSleep when also enabled in I2CxSMEN.) The wakeup from Stop mode is supported only when the clock is HSI16. • • The SPI2S2 I2S clock is derived (selected by software) from one of the following sources: – HSI16 clock (only available in Run mode) – PLL VCO (PLLQCLK) (only available in Run mode) – external input I2S_CK (available in Run and Stop modes) The low-power timers (LPTIMx) clock is derived (selected by software) from one of the following sources: – LSI clock (available in Run and Stop modes) – LSE clock (available in Run and Stop modes) – HSI16 clock (only available in Run mode) – APB clock (PCLK depending on which APB the LPTIMx is mapped) (available in Run and CStop when enabled in LPTIMxSMEN.) – external clock mapped on LPTIMx_IN1 (available in Run and Stop modes) The functionality in Stop mode (including wakeup) is supported only when the clock is LSI or LSE, or in external clock mode. 38/150 DS13293 Rev 5 STM32WL55/54xx • Functional overview The RTC clock is derived (selected by software) from one of the following sources: – LSE clock – LSI clock – HSE32 clock divided by 32 The functionality in Stop mode (including wakeup) is supported only when the clock is LSI or LSE. • The IWDG clock is always the LSI clock. The RCC feeds the CPU1 system timer (SysTick) external clock with the AHB clock (HCLK1) divided by eight. The SysTick can work either with this clock or directly with the CPU1 clock (HCLK1), configurable in the SysTick control and status register. FCLK1 acts as CPU1 free-running clock. For more details, refer to the programming manual STM32 Cortex-M4 MCUs and MPUs programming manual (PM0214). The RCC feeds the CPU2 system timer (SysTick) external clock with the AHB clock (HCLK2) divided by eight. The SysTick can work either with this clock or directly with the CPU2 clock (HCLK2), configurable in the SysTick control and status register. FCLK2 acts as CPU2 free-running clock. DS13293 Rev 5 39/150 52 Functional overview STM32WL55/54xx Figure 9. Clock tree LSIPRE /1,128 LSI RCC 32 kHz to IWDG LSCO OSC32_OUT LSI LSE OSC 32.768 kHz LSE to RTC OSC32_IN LSE CSS LSI LSE CPU1 HPRE /1,2,...,512 /32 HSE32 to CPU1, AHB1, AHB2 HCLK1 to CPU1 FCLK SYSCLK MCO to CPU1 system timer /8 PLLRCLK /1 - 16 PLLQCLK APB1 PPRE1 /1,2,4,8,16 SYS clock source control PLLPCLK PCLK1 x1 or x2 to APB1 to APB1 TIMx HSI16 PLLRCLK APB2 PPRE2 /1,2,4,8,16 MSI OSC_OUT OSC_IN HSE32 OSC 32 MHz MSI SYSCLK HSE CSS HSE32 HSEPRE /1,2 HSI16 RC 16 MHz CPU2 C2HPRE 1,2,...,512 PCLK2 x1 or x2 to APB2 to APB2 TIMx to CPU2 HCLK2 to CPU2 FCLK HSI16 to CPU2 system timer /8 MSI RC 100 kHz - 48 MHz AHB3 SHDHPRE /1,2,...,512 MSI to AHB3, Flash, SRAM1, SRAM2 HCLK3 PCLK3 to APB3 HSI16 /M to RF PCLKn PCLKn HSI16 SYSCLK SYSCLK PLL xN to ADC HSI16 /P /Q PLLPCLK LSE PLLQCLK to SPI2S2 LSE to LPTIM1 to LPTIM2 to LPTIM3 LSE to RNG SYSCLK PLLRCLK I2S_CKIN LSI PCLKn LSI HSI16 /R HSI16 to USART1 to USART2 to LPUART1 MSI HSI16 LSI DAC to I2C1 to I2C2 to I2C3 MSv62604V2 1. The ADC clock can additionally be derived from the AHB clock of the ADC bus interface, divided by a programmable factor (1, 2 or 4). When the programmable factor is 1, the AHB prescaler must be equal to 1. 3.14 Hardware semaphore (HSEM) The HSEM provides a 16- (32-bit) register based semaphores. The semaphores can be used to ensure synchronization between different processes running between different cores. The HSEM provides a non blocking mechanism to lock semaphores in an atomic way. The following functions are provided: • • 40/150 Locking a semaphore can be done in two ways: – 2-step lock: by writing COREID and PROCID to the semaphore, followed by a read check – 1-step lock: by reading the COREID from the semaphore Interrupt generation when a semaphore is unlocked: Each semaphore may generate an interrupt on one of the interrupt lines. DS13293 Rev 5 STM32WL55/54xx 3.15 Functional overview • Semaphore clear protection: A semaphore is only unlocked when COREID and PROCID match. • Global semaphore clear per COREID Inter-processor communication controller (IPCC) The IPCC is used for communicating data between two processors. The IPCC block provides a non blocking signaling mechanism to post and retrieve communication data in an atomic way. It provides the signaling for twelve channels: • six channels in the direction from processor 1 to processor 2 • six channels in the opposite direction It is then possible to have two different communication types in each direction. The IPCC communication data must be located in a common memory, that is not part of the IPCC block. 3.16 General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be achieved thanks to their mapping on the AHB2 bus. The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. 3.17 Direct memory access controller (DMA) The DMA (direct memory access) is used to provide high-speed data transfer between peripherals and memory, as well as memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps CPU resources free for other operations. The DMA controller has 14 channels in total. A full cross matrix allows the peripherals, with DMA support, to be mapped on any of the available DMA channels. Each DMA channel has an arbiter for handling the priority between DMA requests. The DMA main features are listed below: • 14 independently configurable channels (requests) • a full cross matrix between peripherals and all 14 channels and an hardware trigger possibility through the DMAMUX1 • software programmable priorities between requests from channels of one DMA (four levels: very-high, high, medium, low), plus hardware priorities management in case of equality (example: request 1 has priority over request 2) • independent source and destination transfer size (byte, half-word, word), emulating packing and unpacking. Source/destination addresses must be aligned on the data size. • support for circular buffer management DS13293 Rev 5 41/150 52 Functional overview STM32WL55/54xx • three event flags (DMA half-transfer, DMA transfer complete and DMA transfer error), logically ORed together in a single interrupt request for each channel • memory-to-memory transfer • peripheral-to-memory, memory-to-peripheral, and peripheral-to-peripheral transfers • access to flash memory, SRAM, APB and AHB peripherals, as source and destination • programmable number of data to be transferred (up to 65536) • secure and privileged support per channel level configuration Table 12. DMA1 and DMA2 implementation Feature Number of channels DMA1 DMA2 7 7 DMAMUX1 is used to route the peripherals with DMA source support, to any DMA channel. 3.18 Interrupts and events 3.18.1 Nested vectored interrupt controller (NVIC) The devices embed an NIVC able to manage 16 priority levels, and to handle up to 62 maskable interrupt channels plus the 16 interrupt lines of the Cortex-M4. The device also embeds an NVIC able to manage four priority levels, and handles up to 32 maskable interrupt channels plus the 16 interrupt lines of the Cortex-M0+. The NVIC benefits are the following: • low-latency interrupt processing • interrupt entry vector table address passed directly to the core • early processing of interrupts • processing of late-arriving higher-priority interrupts • support for tail chaining • processor state automatically saved • interrupt entry restored on interrupt exit, with no instruction overhead The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency. 3.18.2 Extended interrupt/event controller (EXTI) The EXTI manages wakeup through configurable and direct event inputs. It provides wakeup requests to the power control, and generates interrupt requests to the CPU1/2 NVIC and events to the CPU1/2 event input. Configurable events/interrupts come from peripherals that are able to generate a pulse and allow the selection between the event/interrupt trigger edge and a software trigger. Direct events/interrupts come from peripherals having their own clearing mechanism. 42/150 DS13293 Rev 5 STM32WL55/54xx 3.19 Functional overview Cyclic redundancy check (CRC) The CRC calculation unit is used to get a CRC code from 8-, 16- or 32-bit data word and a generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the functional safety standards, they offer a means of verifying the flash memory integrity. The CRC calculation unit helps to compute a signature of he software during runtime, to be compared with a reference signature generated at link time and stored at a given memory location. 3.20 Analog-to-digital converter (ADC) A native 12-bit ADC is embedded into the devices. It can be extended to 16-bit resolution through hardware oversampling. The ADC has up to 12 external channels and four internal channels (temperature sensor, voltage reference, VBAT(a) monitoring, DAC output). The ADC performs conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC frequency is independent from the CPU1/2 frequency, allowing maximum sampling rate of ~2 Msps even with a low CPU speed. An auto-shutdown function guarantees that the ADC is powered off except during the active conversion phase. The ADC can be served by the DMA controller. It can operate in the whole VDD supply range. The ADC features a hardware oversampler up to 256 samples, improving the resolution to 16 bits. Refer to the application note Improving STM32F1 Series, STM32F3 Series and STM32Lx Series ADC resolution by oversampling (AN2668). An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all scanned channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start triggers, to allow the application to synchronize A/D conversions with timers. 3.20.1 Temperature sensor The temperature sensor (TS) generates a VTS voltage that varies linearly with temperature. The temperature sensor is internally connected to the ADC VIN[12] input channel, to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor may vary from part to part due to process variation, the uncalibrated internal temperature sensor is suitable only for relative temperature measurements. To improve the accuracy of the temperature sensor, each part is individually factorycalibrated by ST. The resulting calibration data is stored in the device engineering bytes, accessible in read-only mode. a. VDD on STM32WL55/54UxYx devices. DS13293 Rev 5 43/150 52 Functional overview STM32WL55/54xx Table 13. Temperature sensor calibration values Calibration value name 3.20.2 Description Memory address TS_CAL1 TS ADC raw data acquired at 30 °C (± 5 °C), VDDA = VREF+ = 3.3 V (± 10 mV) 0x1FFF 75A8 - 0x1FFF 75A9 TS_CAL2 TS ADC raw data acquired at 130 °C (± 5 °C), VDDA = VREF+ = 3.3 V (± 10 mV) 0x1FFF 75C8 - 0x1FFF 75C9 Internal voltage reference (VREFINT) VREFINT provides a stable (bandgap) voltage output for the ADC and comparators. VREFINT is internally connected to the ADC VIN[13] input channel. VREFINT is individually and precisely measured, for each part, by ST, during production test and stored in the device engineering bytes. It is accessible in read-only mode. Table 14. Internal voltage reference calibration values Calibration value name VREFINT_CAL 3.20.3 Description Raw data acquired at 30 °C (± 5 °C), VDDA = VREF+ = 3.3 V (± 10 mV) Memory address 0x1FFF 75AA - 0x1FFF 75AB VBAT battery voltage monitoring This embedded hardware feature allows the application to measure the VBAT(a) battery voltage using the ADC VIN[14] input channel. As VBAT may be higher than VDDA, and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by three. As a consequence, the converted digital value is one third the VBAT voltage. 3.21 Digital-to-analog converter (DAC) The 1-channel 12-bit buffered DAC converts a digital value into an analog voltage available on the channel output. The architecture of each channel is based on an integrated resistor string and an inverting amplifier. The digital circuitry is common for both channels. DAC main features: • 1 DAC output channel • 8-bit or 12-bit output mode • buffer offset calibration (factory and user trimming) • left or right data alignment in 12-bit mode • synchronized update capability • noise-wave generation • triangular-wave generation • independent or simultaneous conversion for DAC channels a. VDD on STM32WL55/54UxYx devices. 44/150 DS13293 Rev 5 STM32WL55/54xx Functional overview • DMA capability for either DAC channel • triggering with timer events, synchronized with DMA • triggering with external events Sample-and-hold low-power mode, with internal or external capacitor 3.22 Voltage reference buffer (VREFBUF) The devices embed a voltage reference buffer that can be used as voltage reference for ADC, and also as voltage reference for external components through the VREF+ pin. VREFBUF supports two voltages: 2.048 V and 2.5 V. An external voltage reference can be provided through the VREF+ pin when VREFBUF is off. 3.23 Comparator (COMP) The devices embed two rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) and with selectable output polarity. The reference voltage can be one of the following: • external I/O • internal reference voltage or submultiple (1/4, 1/2, 3/4) All comparators can wake up from Stop mode, generate interrupts and breaks for the timers, and can be also combined into a window comparator. 3.24 True random number generator (RNG) The devices embed a true RNG that delivers 32-bit random numbers generated by an integrated analog circuitry. The RNG is a true random number generator that provides full entropy outputs to the application as 32-bit samples. It is composed of a live entropy source (analog) and an internal conditioning component. 3.25 Advanced encryption standard hardware accelerator (AES) The AES encrypts or decrypts data, using an algorithm and implementation fully compliant with the advanced encryption standard (AES) defined in FIPS (federal information processing standards) publication 197. Multiple chaining modes are supported (ECB, CBC, CTR, GCM, GMAC, CCM), for key sizes of 128 or 256 bits. The AES supports DMA single transfers for incoming and outgoing data (two DMA channels required). DS13293 Rev 5 45/150 52 Functional overview 3.26 STM32WL55/54xx Public key accelerator (PKA) The PKA is used to compute cryptographic public key primitives, specifically those related to RSA (Rivest, Shamir and Adleman), Diffie-Hellmann or ECC (elliptic curve cryptography) over GF(p) (Galois fields). These operations are executed in the Montgomery domain. 3.27 Timer and watchdog The devices include one advanced 16-bit timer, one general-purpose 32-bit timer, two 16-bit basic timers, three low-power timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers. Table 15. Timer features Timer type Timer name Counter resolution (bits) Advanced control TIM1 16 TIM2 32 General purpose Counter type Prescaler factor Up, down and up/down TIM16 TIM17 Capture/ compare channels 4 Complementary outputs 3 NA Any integer between 1 and 65536 16 DMA request generation Yes 2 Up 1 Low power LPTIM1 LPTIM2 LPTIM3 3.27.1 Advanced-control timer (TIM1) 1 The advanced-control timer TIM1 can be seen as a three-phase PWM multiplexed on six channels. Each channel has complementary PWM outputs with programmable inserted dead-times. Each channel can also be seen as complete general-purpose timers. The four independent channels can be used for: • input capture • output compare • PWM generation (edge or center-aligned modes) with full modulation capability (0 - 100 %) • one-pulse mode output In debug mode, the TIM1 counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs. Many features are shared with those of the general-purpose timers (described in the next section) using the same architecture. TIM1 can then work together with TIM2 via the peripheral interconnect matrix, for synchronization or event chaining. 46/150 DS13293 Rev 5 STM32WL55/54xx 3.27.2 Functional overview General-purpose timers (TIM2, TIM16, TIM17) Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base. TIM2 main features: • full-featured general-purpose timer • four independent channels for input capture/output compare, PWM or one-pulse mode output • counter that can be frozen in debug mode • independent DMA request generation, support of quadrature encoders TIM16 and TIM17 main features: 3.27.3 • general-purpose timers with mid-range features • 16-bit auto-reload upcounters and 16-bit prescalers • 1 channel and 1 complementary channel • channels that can all be used for input capture/output compare, PWM or one-pulse mode output • counter that can be frozen in debug mode • independent DMA request generation Low-power timers (LPTIM1, LPTIM2 and LPTIM3) These low-power timers have an independent clock and run in Stop mode if they are clocked by LSE, LSI, or by an external clock. They are able to wake up the system from Stop mode. LPTIM1 is active in Stop 0, Stop 1 and Stop 2 modes. LPTIM2 and LPTIM3 are active in Stop 0 and Stop 1 modes. LPTIM1/2/3 main features: 3.27.4 • 16-bit up counter with 16-bit autoreload register • 16-bit compare register • configurable output: pulse, PWM • continuous/one-shot mode • selectable software/hardware input trigger • selectable clock source • internal clock sources: LSE, either LSI, HSI16 or APB clock • external clock source over LPTIM input (works even with no internal clock source running, used by pulse counter application) • programmable digital glitch filter • encoder mode (LPTIM1 only) Independent watchdog (IWDG) The independent watchdog is based on a 12-bit downcounter and a 8-bit prescaler. The IWDG is clocked from an independent 32 kHz internal RC (LSI). As the IWDG operates independently from the main clock, it can operate in Stop and Standby modes. DS13293 Rev 5 47/150 52 Functional overview STM32WL55/54xx The IWDG can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. The IWDG is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. 3.27.5 System window watchdog (WWDG) The window watchdog is based on a 7-bit downcounter that can be set as free running. The WWDG can be used as a watchdog to reset the device when a problem occurs. The WWDG is clocked from the main clock and has an early warning interrupt capability. The counter can be frozen in debug mode. 3.27.6 SysTick timer This timer is dedicated to real-time operating systems, but can also be used as a standard down counter. SysTick timer main features: 3.28 • 24-bit down counter • autoreload capability • maskable system interrupt generation when the counter reaches 0 • programmable clock source Real-time clock (RTC), tamper and backup registers The RTC is an independent BCD timer/counter. The RTC provides a time-of-day clock/calendar with programmable alarm interrupts. As long as the supply voltage remains in the operating range, the RTC never stops, regardless of the device status (Run mode, low-power mode or under reset). The RTC provides an automatic wakeup to manage all low-power modes. The RTC is functional in VBAT mode. Twenty 32-bit backup registers are retained in all low-power modes and also in VBAT mode. These registers can be used to store sensitive data as their content is protected by a tamper detection circuit. Three tamper pins and four internal tampers are available for anti-tamper detection. The external tamper pins can be configured for edge or level detection with or without filtering. 3.29 Inter-integrated circuit interface (I2C) The device embeds three I2Cs, with features implementation listed in the he table below. The I2C bus interface handles communications between the microcontroller and the serial I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing. The I2C peripheral supports: • 48/150 I2C bus specification and user manual rev. 5 compatibility: – slave and master modes, multimaster capability – Standard-mode (Sm), with a bitrate up to 100 Kbit/s DS13293 Rev 5 STM32WL55/54xx • Functional overview – Fast-mode (Fm), with a bitrate up to 400 Kbit/s – Fast-mode plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os – 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses – programmable setup and hold times – clock stretching (optional) SMBus (system management bus) specification rev 2.0 compatibility: – hardware PEC (packet error checking) generation and verification with ACK control – address resolution protocol (ARP) support – SMBus alert • PMBus (power system management protocol) specification rev 1.1 compatibility • independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming (see Figure 9) • wakeup from Stop mode on address match • programmable analog and digital noise filters • 1-byte buffer with DMA capability Table 16. I2C implementation I2C features(1) I2C1(2) I2C2(2) I2C3 7-bit addressing mode X X X 10-bit addressing mode X X X Standard-mode (up to 100 Kbit/s) X X X Fast-mode (up to 400 Kbit/s) X X X Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X X X Independent clock X X X X(3) X(3) X(4) X X X Wakeup from Stop mode SMBus/PMBus 1. X = supported. 2. The register content is lost in Stop 2 mode. 3. Wakeup supported from Stop 0 and Stop 1 modes. 4. Wakeup supported from Stop 0, Stop 1 and Stop 2 modes. 3.30 Universal synchronous/asynchronous receiver transmitter (USART/UART) The devices embed two universal synchronous receiver transmitters, USART1 and USART2 (see Table 17 for the implementation details). Each USART provides asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode. Each USART has LIN Master/Slave capability and provides hardware management of the CTS and RTS signals, and RS485 driver enable. DS13293 Rev 5 49/150 52 Functional overview STM32WL55/54xx The USART is able to communicate at speeds of up to 4 Mbit/s, and also provides Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. The USART supports synchronous operation (SPI mode), and can be used as an SPI master. The USART has a clock domain independent from the CPU clock, allowing the USART to wake up the MCU from Stop mode, using baudrates up to 200 kbaud. The wakeup events from Stop mode are programmable and can be one of the following: • start bit detection • any received data frame • a specific programmed data frame The USART interface can be served by the DMA controller. 3.31 Low-power universal asynchronous receiver transmitter (LPUART) The devices embed one low-power UART (LPUART1) that enables asynchronous serial communication with minimum power consumption. The LPUART supports half-duplex single-wire communication and modem operations (CTS/RTS), allowing multiprocessor communication. The LPUART has a clock domain independent from the CPU clock, and can wake up the system from Stop mode using baudrates up to 220 Kbaud. The wakeup events from Stop mode are programmable and can be one of the following: • start bit detection • any received data frame • a specific programmed data frame Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low-energy consumption. Higher speed clock can be used to reach higher baudrates. The LPUART interface can be served by the DMA controller. Table 17. USART/LPUART features USART modes/features(1) 50/150 USART1/2 LPUART1 Hardware flow control for modem X X Continuous communication using DMA X X Multiprocessor communication X X Synchronous mode (Master/Slave) X - Smartcard mode X - Single-wire half-duplex communication X X IrDA SIR ENDEC block X - LIN mode X - DS13293 Rev 5 STM32WL55/54xx Functional overview Table 17. USART/LPUART features (continued) USART modes/features(1) USART1/2 LPUART1 Dual clock domain and wakeup from low-power mode X X Receiver timeout interrupt X - Modbus communication X - Auto baud rate detection X - Driver enable X X USART data length 7, 8 and 9 bits Tx/Rx FIFO X Tx/Rx FIFO size X 8 1. X = supported. 3.32 Serial peripheral interface (SPI)/integrated-interchip sound interface (I2S) The SPI/I2S interface can be used to communicate with external devices using the SPI protocol or the I2S audio protocol. SPI or I2S mode is selectable by software. SPI Motorola® mode is selected by default after a device reset. The SPI protocol supports half-duplex, full-duplex and simplex synchronous, serial communication with external devices. The SPI interface can be configured as master and, in this case, it provides the communication clock (SCK) to the external slave device. The SPI interface can also operate in multimaster configuration. The I2S protocol is also a synchronous serial communication interface. It can operate in slave or master mode with half-duplex communication. It can address four different audio standards including the Philips I2S standard, the MSB- and LSB-justified standards and the PCM standard. Table 18. SPI and SPI/I2S implementation(1) Features SPI1 Enhanced NSSP and TI modes SPI2S2 SUBGHZSPI Yes Hardware CRC calculation Yes Yes No I2S support No Yes No Data size configurable (bits) from 4 to 16 Rx/Tx FIFO size (bits) 32 Wakeup capability from LPSleep Yes 1. The SPI1 and SPI2S2 instances are general purpose type while the SUBGHZSPI instance is dedicated for Sub-GHz radio control exclusively. Radio is controlled internally through SUBGHZSPI and, for debug purpose only, from the external. DS13293 Rev 5 51/150 52 Functional overview 3.33 STM32WL55/54xx Development support Serial-wire JTAG debug port (SWJ-DP) The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial-wire debug port, that enables either a serial-wire debug or a JTAG probe to be connected to the target. The debug is performed using only two pins instead of the five required by the JTAG (JTAG pins can then be reused as GPIOs with alternate function). The JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 52/150 DS13293 Rev 5 STM32WL55/54xx Pinouts, pin description and alternate functions VSSSMPS VLXSMPS VDDSMPS VFBSMPS VDD PA15 PA14 VDDA PC15-OSC32_OUT PC14-OSC32_IN PC13 VBAT 48 47 46 45 44 43 42 41 40 39 38 37 Figure 10. UFQFPN48 pinout PB3 1 36 PA13 PB4 2 35 PA12 PB5 3 34 PA11 PB6 4 33 PA10 PB7 5 32 PB12 PB8 6 31 PB2 PA0 7 30 PB0-VDD_TCXO PA1 8 29 VDDRF1V55 PA2 9 28 VDDRF PA3 10 27 OSC_OUT VDD 11 26 OSC_IN PA4 12 25 VDDPA 13 14 15 16 17 18 19 20 21 22 23 24 PA6 PA7 PA8 PA9 NRST PH3-BOOT0 RFI_P RFI_N RFO_LP RFO_HP VR_PA UFQFPN48 PA5 4 Pinouts, pin description and alternate functions MSv48144V4 1. The above figure shows the package top view. 2. The exposed pad must be connected to the ground plain. DS13293 Rev 5 53/150 64 Pinouts, pin description and alternate functions STM32WL55/54xx Figure 11. UFBGA73 pinout 1 2 A VSSSMPS VDDSMPS B VLXSMPS VFBSMPS C PB3 D 3 4 5 6 7 8 9 PA14 VDDA VDD VBAT PA12 PA15 PB15 VREF+ PC14OSC32_IN VSS PA13 PA11 PB4 PB7 PB9 PC15OSC32 _OUT PB14 PC13 PA10 PB5 PB8 PC2 PC3 PA0 PB13 PB2 VSS VDD E PB6 VDD VSS PC5 PA9 PB12 PB1 VDDRF F PC1 PC0 PC4 PA6 NRST PB0VDD_TCXO VDDRF 1V55 OSC_OUT PC6 PA1 PB11 VSS VSSRF VSSRF VSSRF OSC_IN PB10 VDD VSSRF RFI_N VDDPA VR_PA PH3BOOT0 RFI_P RFO_LP RFO_HP G H PA3 PA2 PA7 J PA4 PA5 PA8 MSv48145V4 1. The above figure shows the package top view. Table 19. Legend/abbreviations used in the pinout table Name Pin name Pin type Abbreviation Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin O Output only pin FT 5 V tolerant I/O RF Radio RF pin TT 3 V tolerant I/O I/O structure 54/150 Definition Option for FT I/Os _f I/O, Fm+ capable _a I/O, with Analog switch function supplied by VDDA DS13293 Rev 5 STM32WL55/54xx Pinouts, pin description and alternate functions Table 19. Legend/abbreviations used in the pinout table (continued) Name Abbreviation Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset. Notes Pin functions Definition Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers Table 20. STM32WL55/54xx pin definition 1 2 C1 C2 VSS S PB3 PB4 I/O I/O Notes - I/O structure UFBGA73 - Pin name (function after reset) Pin type UFQFPN48 Pin number Alternate functions Additional functions - - - - - JTDO/TRACESWO, TIM2_CH2, SPI1_SCK, RF_IRQ0, USART1_RTS, DEBUG_RF_DTB1, CM4_EVENTOUT COMP1_INM, COMP2_INM, ADC_IN2, TAMP_IN3/WKUP3 - NJTRST, I2C3_SDA, SPI1_MISO, USART1_CTS, COMP1_INP, DEBUG_RF_LDORDY, COMP2_INP, ADC_IN3 TIM17_BKIN, CM4_EVENTOUT - FT_a FT_fa 3 D2 PB5 I/O FT_a - LPTIM1_IN1, I2C1_SMBA, SPI1_MOSI, RF_IRQ1, USART1_CK, COMP2_OUT, TIM16_BKIN, CM4_EVENTOUT - E3 VSS S - - - - - E2 VDD S - - - - 4 E1 PB6 I/O FT_f - LPTIM1_ETR, I2C1_SCL, USART1_TX, TIM16_CH1N, CM4_EVENTOUT - - 5 C3 PB7 I/O FT_f - LPTIM1_IN2, TIM1_BKIN, I2C1_SDA, USART1_RX, TIM17_CH1N, CM4_EVENTOUT 6 D3 PB8 I/O FT_f - TIM1_CH2N, I2C1_SCL, RF_IRQ2, TIM16_CH1, CM4_EVENTOUT - - C4 PB9 I/O FT_f - TIM1_CH3N, I2C1_SDA, SPI2_NSS/I2S2_WS, IR_OUT, TIM17_CH1, CM4_EVENTOUT - DS13293 Rev 5 55/150 64 Pinouts, pin description and alternate functions STM32WL55/54xx Table 20. STM32WL55/54xx pin definition (continued) PC0 I/O Notes F2 I/O structure UFBGA73 - Pin name (function after reset) Pin type UFQFPN48 Pin number Alternate functions Additional functions FT_f - LPTIM1_IN1, I2C3_SCL, LPUART1_RX, LPTIM2_IN1, CM4_EVENTOUT - - - F1 PC1 I/O FT_f - LPTIM1_OUT, SPI2_MOSI/I2S2_SD, I2C3_SDA, LPUART1_TX, CM4_EVENTOUT - D4 PC2 I/O FT - LPTIM1_IN2, SPI2_MISO, CM4_EVENTOUT - - - D5 PC3 I/O FT - LPTIM1_ETR, SPI2_MOSI/I2S2_SD, LPTIM2_ETR, CM4_EVENTOUT - F3 PC4 I/O FT - CM4_EVENTOUT - - E4 PC5 I/O FT - CM4_EVENTOUT - - G2 PC6 I/O FT - I2S2_MCK, CM4_EVENTOUT - - TIM2_CH1, I2C3_SMBA, I2S_CKIN, USART2_CTS, COMP1_OUT, DEBUG_PWR_REGLP1S, TIM2_ETR, CM4_EVENTOUT TAMP_IN2/WKUP1 - TIM2_CH2, LPTIM3_OUT, I2C1_SMBA, SPI1_SCK, USART2_RTS, LPUART1_RTS, DEBUG_PWR_REGLP2S, CM4_EVENTOUT - LSCO 7 8 D6 G3 PA0 PA1 I/O I/O FT_a FT_a 9 H2 PA2 I/O FT_a - LSCO, TIM2_CH3, USART2_TX, LPUART1_TX, COMP2_OUT, DEBUG_PWR_LDORDY, CM4_EVENTOUT 10 H1 PA3 I/O FT_a - TIM2_CH4, I2S2_MCK, USART2_RX, LPUART1_RX, CM4_EVENTOUT - - G5 VSS S - - - - 11 H5 VDD S - - - - 56/150 DS13293 Rev 5 STM32WL55/54xx Pinouts, pin description and alternate functions Table 20. STM32WL55/54xx pin definition (continued) 13 14 15 16 17 J1 J2 F4 H3 J3 E5 PA4 PA5 PA6 PA7 PA8 PA9 I/O I/O I/O I/O I/O I/O I/O structure Pin type Pin name (function after reset) FT FT FT FT_fa FT_a FT_fa Notes 12 UFBGA73 UFQFPN48 Pin number Alternate functions Additional functions - RTC_OUT2, LPTIM1_OUT, SPI1_NSS, USART2_CK, DEBUG_SUBGHZSPI_ NSSOUT, LPTIM2_OUT, CM4_EVENTOUT - - TIM2_CH1, TIM2_ETR, SPI2_MISO, SPI1_SCK, DEBUG_SUBGHZSPI_ SCKOUT, LPTIM2_ETR, CM4_EVENTOUT - - TIM1_BKIN, I2C2_SMBA, SPI1_MISO, LPUART1_CTS, DEBUG_SUBGHZSPI_ MISOOUT, TIM16_CH1, CM4_EVENTOUT - - TIM1_CH1N, I2C3_SCL, SPI1_MOSI, COMP2_OUT, DEBUG_SUBGHZSPI_ MOSIOUT, TIM17_CH1, CM4_EVENTOUT - - MCO, TIM1_CH1, SPI2_SCK/I2S2_CK, USART1_CK, LPTIM2_OUT, CM4_EVENTOUT - - TIM1_CH2, SPI2_NSS/I2S2_WS, I2C1_SCL, SPI2_SCK/I2S2_CK, USART1_TX, CM4_EVENTOUT - - - H4 PB10 I/O FT_f - TIM2_CH3, I2C3_SCL, SPI2_SCK/I2S2_CK, LPUART1_RX, COMP1_OUT, CM4_EVENTOUT - G4 PB11 I/O FT_f - TIM2_CH4, I2C3_SDA, LPUART1_TX, COMP2_OUT, CM4_EVENTOUT - 18 F5 NRST I/O FT - - - 19 J5 PH3-BOOT0 I/O FT - CM4_EVENTOUT BOOT0 - - VDD S - - - - - - VSS S - - - - - H6 VSSRF S - - - - DS13293 Rev 5 57/150 64 Pinouts, pin description and alternate functions STM32WL55/54xx Table 20. STM32WL55/54xx pin definition (continued) UFQFPN48 UFBGA73 Pin type I/O structure Notes Pin number Alternate functions - G6 VSSRF S - - - - 20 J6 RFI_P I RF - - - 21 H7 RFI_N I RF - - - - G7 VSSRF S - - - - - - VSSRF S - - - - 22 J8 RFO_LP O RF - - - - G8 VSSRF S - - - - 23 J9 RFO_HP O RF - - - - - VSSRF S - - - - 24 H9 VR_PA S - - - - 25 H8 VDDPA S - - - - - - VSSRF S - - - - 26 G9 OSC_IN I RF - - - 27 F8 OSC_OUT O RF - - - - - VSSRF S - - - - 28 E8 VDDRF S - - - - 29 F7 VDDRF1V55 S - - - - - D9 VSS S - - - - - E9 VDD S - - - - 30 F6 PB0-VDD_TCXO I/O TT - COMP1_OUT, CM4_EVENTOUT - - E7 PB1 I/O FT_a - 31 32 58/150 D8 E6 Pin name (function after reset) PB2 PB12 I/O I/O FT_a FT Additional functions LPUART1_RTS_DE, COMP2_INP, ADC_IN5 LPTIM2_IN1, CM4_EVENTOUT - LPTIM1_OUT, I2C3_SMBA, SPI1_NSS, DEBUG_RF_SMPSRDY, CM4_EVENTOUT COMP1_INP, COMP2_INM, ADC_IN4 - TIM1_BKIN, I2C3_SMBA, SPI2_NSS/I2S2_WS, LPUART1_RTS, CM4_EVENTOUT - DS13293 Rev 5 STM32WL55/54xx Pinouts, pin description and alternate functions Table 20. STM32WL55/54xx pin definition (continued) Alternate functions - D7 PB13 I/O FT_fa - TIM1_CH1N, I2C3_SCL, SPI2_SCK/I2S2_CK, LPUART1_CTS, CM4_EVENTOUT - C6 PB14 I/O FT_fa - TIM1_CH2N, I2S2_MCK, I2C3_SDA, SPI2_MISO, CM4_EVENTOUT 33 34 UFBGA73 Notes I/O structure Pin name (function after reset) Pin type UFQFPN48 Pin number C8 B9 PA10 PA11 I/O I/O FT_fa FT_fa - Additional functions ADC_IN0 ADC_IN1 RTC_REFIN, TIM1_CH3, I2C1_SDA, COMP1_INM, SPI2_MOSI/I2S2_SD, COMP2_INM, USART1_RX, DAC_OUT1, ADC_IN6 DEBUG_RF_HSE32RDY, TIM17_BKIN, CM4_EVENTOUT - TIM1_CH4, TIM1_BKIN2, LPTIM3_ETR, I2C2_SDA, SPI1_MISO, USART1_CTS, DEBUG_RF_NRESET, CM4_EVENTOUT COMP1_INM, COMP2_INM, ADC_IN7 ADC_IN8 35 A9 PA12 I/O FT_fa - TIM1_ETR, LPTIM3_IN1, I2C2_SCL, SPI1_MOSI, RF_BUSY, USART1_RTS, CM4_EVENTOUT 36 B8 PA13 I/O FT_a - JTMS-SWDIO, I2C2_SMBA, IR_OUT, CM4_EVENTOUT ADC_IN9 - B7 VSS S - - - - - A7 VDD S - - - - 37 A8 VBAT S - - - - 38 C7 PC13 I/O FT (1)(2) CM4_EVENTOUT TAMP_IN1/ RTC_OUT1/RTC_TS/ WKUP2 39 B6 PC14-OSC32_IN I/O FT (1)(2) CM4_EVENTOUT OSC32_IN 40 C5 PC15OSC32_OUT I/O FT (1)(2) CM4_EVENTOUT OSC32_OUT - B5 VREF+ S - - - - 41 A5 VDDA S - - - - - - VSS S - - - - 42 A4 PA14 I/O FT_a - JTCK-SWCLK, LPTIM1_OUT, I2C1_SMBA, CM4_EVENTOUT ADC_IN10 DS13293 Rev 5 59/150 64 Pinouts, pin description and alternate functions STM32WL55/54xx Table 20. STM32WL55/54xx pin definition (continued) UFQFPN48 UFBGA73 Pin type I/O structure Notes Pin number Alternate functions 43 B3 PA15 I/O FT_fa - JTDI, TIM2_CH1, TIM2_ETR, I2C2_SDA, SPI1_NSS, CM4_EVENTOUT - B4 PB15 I/O FT_f 44 - VDD S - - - - - - VSS S - - - - 49(3) - VSS S - - - - 45 B2 VFBSMPS S - - - - 46 A2 VDDSMPS S - - - - 47 B1 VLXSMPS S - - - - 48 A1 VSSSMPS S - - - - Pin name (function after reset) Additional functions COMP1_INM, COMP2_INP, ADC_IN11 TIM1_CH3N, I2C2_SCL, SPI2_MOSI/I2S2_SD, CM4_EVENTOUT - 1. PC13, PC14, and PC15 are supplied through the power switch. As this switch only sinks a limited amount of current (3 mA), the use of these GPIOs in output mode is limited. The speed must not exceed 2 MHz with a maximum load of 30 pF. These GPIOs must not be used as current sources (for example to drive a LED). 2. After a backup domain power-up, PC13, PC14, and PC15 operate as GPIOs. Their function depends on the content of RTC registers that are not reset by the system reset. For details on how to manage these GPIOs, refer to the backup domain and RTC register descriptions in the product reference manual. 3. Pin 49 is an exposed pad that must be connected to VSS. 60/150 DS13293 Rev 5 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 SYS_ AF TIM1/ TIM2/ LPTIM1 TIM1/ TIM2 SPI2S2/ TIM1/ LPTIM3 I2C1/ I2C2/ I2C3 SPI1/ SPI2S2 RF USART1 / USART2 LPUART1 - - PA0 - TIM2_ CH1 - - I2C3_ SMBA I2S_ CKIN - USART2_ CTS - - PA1 - TIM2_ CH2 - LPTIM3_ OUT I2C1_ SMBA SPI1_ SCK - USART2_ RTS LPUART1_ RTS PA2 LSCO TIM2_ CH3 - - - - - USART2_ TX PA3 - TIM2_ CH4 - - - I2S2_ MCK - PA4 RTC_ OUT2 LPTIM1 _OUT - - - SPI1_ NSS PA5 - TIM2_ CH1 TIM2_ ETR SPI2_ MISO - PA6 - TIM1_ BKIN - - PA7 - TIM1_ CH1N - PA8 MCO TIM1_ CH1 PA9 - PA10 PA11 DS13293 Rev 5 Port A Port AF10 AF11 AF12 AF13 AF14 AF15 - COMP1/ COMP2/ TIM1 DEBUG TIM2/ TIM16/ TIM17/ LPTIM2 EVENOUT - - COMP1_ OUT - - - LPUART1_ TX - - USART2_ RX LPUART1_ RX - - USART2_ CK - SPI1_ SCK - - I2C2_ SMBA SPI1_ MISO - - I2C3_ SCL SPI1_ MOSI - - - TIM1_ CH2 - SPI2_ NSS/ I2S2_WS RTC_ REFIN TIM1_ CH3 - - TIM1_ CH4 TIM1_ BKIN2 DEBUG_PWR TIM2_ETR _REGLP1S CM4_ EVENTOUT - DEBUG_PWR _REGLP2S - CM4_ EVENTOUT - COMP2_ OUT DEBUG_PWR _LDORDY - CM4_ EVENTOUT - - - - - CM4_ EVENTOUT - - - - DEBUG_ SUBGHZSPI_ NSSOUT LPTIM2_ OUT CM4_ EVENTOUT - - - - - DEBUG_ SUBGHZSPI_ SCKOUT LPTIM2_ ETR CM4_ EVENTOUT - LPUART1_ CTS - - - TIM1_ BKIN DEBUG_ SUBGHZSPI_ MISOOUT TIM16_ CH1 CM4_ EVENTOUT - - - - - - COMP2_ OUT DEBUG_ SUBGHZSPI_ MOSIOUT TIM17_ CH1 CM4_ EVENTOUT SPI2_ SCK/ I2S2_CK - USART1_ CK - - - - - - LPTIM2_ OUT CM4_ EVENTOUT I2C1_ SCL SPI2_ SCK/ I2S2_CK - USART1_ TX - - - - - - - CM4_ EVENTOUT - I2C1_ SDA SPI2_ MOSI/ I2S2_SD - USART1_ RX - - - - - DEBUG_RF_ HSE32RDY TIM17_ BKIN CM4_ EVENTOUT LPTIM3_ ETR I2C2_ SDA SPI1_ MISO - USART1_ CTS - - - - TIM1_ BKIN2 DEBUG_RF_ NRESET - CM4_ EVENTOUT 61/150 Pinouts, pin description and alternate functions AF0 STM32WL55/54xx Table 21. Alternate functions AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 SYS_ AF TIM1/ TIM2/ LPTIM1 TIM1/ TIM2 SPI2S2/ TIM1/ LPTIM3 I2C1/ I2C2/ I2C3 PA12 - TIM1_ ETR - LPTIM3_ IN1 PA13 JTMSSWDIO - - PA14 JTCKSWCLK LPTIM1_ OUT PA15 JTDI PB0 Port A (continued) DS13293 Rev 5 Port B AF9 AF10 AF11 SPI1/ SPI2S2 RF USART1 / USART2 LPUART1 - - I2C2_ SCL SPI1_ MOSI RF_BUSY USART1_ RTS - - - I2C2_ SMBA - - - IR_OUT - - I2C1_ SMBA - - - TIM2_ CH1 TIM2_ ETR - I2C2_ SDA SPI1_ NSS - - - - - - - PB1 - - - - - PB2 - LPTIM1_ OUT - - PB3 JTDO/ TRACE SWO TIM2_ CH2 - PB4 NJTRST - PB5 - PB6 AF12 AF14 AF15 - COMP1/ COMP2/ TIM1 DEBUG TIM2/ TIM16/ TIM17/ LPTIM2 EVENOUT - - - - - CM4_ EVENTOUT - - - - - - CM4_ EVENTOUT - - - - - - - CM4_ EVENTOUT - - - - - - - - CM4_ EVENTOUT - - - - - - COMP1_ OUT - - CM4_ EVENTOUT - - - LPUART1_ RTS_DE - - - - - LPTIM2_ IN1 CM4_ EVENTOUT I2C3_ SMBA SPI1_ NSS - - - - - - - DEBUG_RF_ SMPSRDY - CM4_ EVENTOUT - - SPI1_ SCK RF_IRQ0 USART1_ RTS - - - - - DEBUG_RF_ DTB1 - CM4_ EVENTOUT - - I2C3_ SDA SPI1_ MISO - USART1_ CTS - - - - - DEBUG_RF_ LDORDY TIM17_ BKIN CM4_ EVENTOUT LPTIM1_ IN1 - - I2C1_ SMBA SPI1_ MOSI RF_IRQ1 USART1_ CK - - - - COMP2_ OUT - TIM16_ BKIN CM4_ EVENTOUT - LPTIM1_ ETR - - I2C1_ SCL - - USART1_ TX - - - - - - TIM16_ CH1N CM4_ EVENTOUT PB7 - LPTIM1_ IN2 - TIM1_ BKIN I2C1_ SDA - - USART1_ RX - - - - - - TIM17_ CH1N CM4_ EVENTOUT PB8 - TIM1_ CH2N - - I2C1_ SCL - RF_IRQ2 - - - - - - - TIM16_ CH1 CM4_ EVENTOUT PB9 - TIM1_ CH3N - - I2C1_ SDA SPI2_ NSS/ I2S2_WS - - IR_OUT - - - - - TIM17_ CH1 CM4_ EVENTOUT PB10 - TIM2_ CH3 - - I2C3_ SCL SPI2_ SCK/ I2S2_CK - - LPUART1_ RX - - - COMP1_ OUT - - CM4_ EVENTOUT STM32WL55/54xx AF13 Port AF8 Pinouts, pin description and alternate functions 62/150 Table 21. Alternate functions (continued) AF0 AF1 AF2 AF3 AF4 AF5 SYS_ AF TIM1/ TIM2/ LPTIM1 TIM1/ TIM2 SPI2S2/ TIM1/ LPTIM3 I2C1/ I2C2/ I2C3 PB11 - TIM2_ CH4 - - PB12 - TIM1_ BKIN - PB13 - TIM1_ CH1N PB14 - PB15 - Port B (continued) Port AF7 AF8 AF9 AF10 AF11 SPI1/ SPI2S2 RF USART1 / USART2 LPUART1 - - I2C3_ SDA - - - LPUART1_ TX - TIM1_ BKIN I2C3_ SMBA SPI2_ NSS/ I2S2_WS - - LPUART1_ RTS - - I2C3_ SCL SPI2_ SCK/ I2S2_CK - - TIM1_ CH2N - I2S2_MCK I2C3_ SDA SPI2_ MISO - TIM1_ CH3N - - I2C2_ SCL SPI2_ MOSI/ I2S2_SD - AF12 AF13 AF14 AF15 - COMP1/ COMP2/ TIM1 DEBUG TIM2/ TIM16/ TIM17/ LPTIM2 EVENOUT - - COMP2_ OUT - - CM4_ EVENTOUT - - - - - - CM4_ EVENTOUT LPUART1_ CTS - - - - - - CM4_ EVENTOUT - - - - - - - - CM4_ EVENTOUT - - - - - - - - CM4_ EVENTOUT 63/150 Pinouts, pin description and alternate functions DS13293 Rev 5 AF6 STM32WL55/54xx Table 21. Alternate functions (continued) AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 SYS_ AF TIM1/ TIM2/ LPTIM1 TIM1/ TIM2 SPI2S2/ TIM1/ LPTIM3 I2C1/ I2C2/ I2C3 SPI1/ SPI2S2 RF USART1 / USART2 LPUART1 - - PC0 - LPTIM1_ IN1 - - I2C3_ SCL - - - LPUART1_ RX - PC1 - LPTIM1_ OUT - SPI2_ MOSI/ I2S2_SD I2C3_ SDA - - - LPUART1_ TX PC2 - LPTIM1_ IN2 - - - SPI2_ MISO - - PC3 - LPTIM1_ ETR - - - SPI2_ MOSI/ I2S2_SD - PC4 - - - - - - PC5 - - - - - PC6 - - - - PC13 - - - PC14 - - PC15 - PH3 - Port H DS13293 Rev 5 Port C Port AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 - COMP1/ COMP2/ TIM1 DEBUG TIM2/ TIM16/ TIM17/ LPTIM2 EVENOUT - - - - LPTIM2_ IN1 CM4_ EVENTOUT - - - - - - CM4_ EVENTOUT - - - - - - - CM4_ EVENTOUT - - - - - - - LPTIM2_ ETR CM4_ EVENTOUT - - - - - - - - - CM4_ EVENTOUT - - - - - - - - - - CM4_ EVENTOUT - I2S2_ MCK - - - - - - - - - CM4_ EVENTOUT - - - - - - - - - - - - CM4_ EVENTOUT - - - - - - - - - - - - - CM4_ EVENTOUT - - - - - - - - - - - - - - CM4_ EVENTOUT - - - - - - - - - - - - - - CM4_ EVENTOUT Pinouts, pin description and alternate functions 64/150 Table 21. Alternate functions (continued) STM32WL55/54xx STM32WL55/54xx Electrical characteristics 5 Electrical characteristics 5.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS and, for parameter values based on characterization results, measurements are performed on the UFQFPN48 package. 5.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies, by tests in production on 100 % of the devices, with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3σ). 5.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = VBAT = 3 V. Typical values are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95 % of the devices have an error less than or equal to the value indicated (mean ± 2σ). 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 5.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 12. 5.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 13. Figure 12. Pin loading conditions Figure 13. Pin input voltage MCU pin MCU pin C = 50 pF VIN MSv68045V1 DS13293 Rev 5 MSv68046V1 65/150 139 Electrical characteristics 5.1.6 STM32WL55/54xx Power supply scheme Figure 14. Power supply scheme 1.55 to 3.6 V VBAT VBAT Backup circuitry (LSE, RTC and backup registers) Power switch VDD VCORE n x VDD OUT GPIOs n x 100 nF + 1 x 4.7 μF Level shifter LPR IN I/O logic Kernel logic (CPU, digital and memories n x VSS VDDA VDDA MR VREF VREF+ 10 nF + 1 μF 100 nF 1 μF VREF- ADC DAC COMPs VREFBUF VSS VDDRF VDD VDDSMPS VLXSMPS 4.7 μF SMPS LDO/SMPS Sub-GHz radio 15 μH VFBSMPS 470 nF VDDRF1V5 RFLDO VSSSMPS VDDPA (= VDDRF1V5 or VDDSMPS) REG PA Exposed pad To all modules (VSS/VSSRF) MSv64325V5 Caution: Each power supply pair (such as VDD/VSS or VDDA/VSS) must be decoupled with filtering ceramic capacitors as shown in the above figure. These capacitors must be placed as close as possible to (or below) the appropriate pins on the underside of the PCB to ensure the good functionality of the device. Note: For the UFQFPN48 package, VREF+ is internally connected to VDDA. 66/150 DS13293 Rev 5 STM32WL55/54xx 5.1.7 Electrical characteristics Current consumption measurement Figure 15. Current consumption measurement scheme IDDSMPS VDDSMPS VDDSMPS IDDRF VDDRF VDDRF IDDVBAT VBAT VBAT VDD VDD IDD IDDA VDDA VDDA MSv64326V2 5.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in the tables below, may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 Qualification Standard, extended mission profiles are available on demand. Table 22. Voltage characteristics(1) Symbol VDDX - VSS Ratings External main supply voltage (including VDD, VDDA, VDDRF, VDDSMPS, VBAT, VREF+) Min Max –0.3 3.9 min (VDD, VDDA, VDDRF, VDDSMPS) + 3.9(3)(4) Input voltage on FT_xx pins VIN(2) VSS - 0.3 Input voltage on TT pins Input voltage on any other pin V 3.9 3.9 |∆VDDx| Variations between different VDDX power pins of the same domain - |VSSx-VSS| Variations between all the different ground pins(5) - 50 Allowed voltage difference for VREF+ > VDDA - 0.4 VREF+ - VDDA Unit 50 mV V 1. All main power (VDD, VDDRF, VDDA, VBAT) and ground (VSS) pins must always be connected to the external power supply, in the permitted range. DS13293 Rev 5 67/150 139 Electrical characteristics STM32WL55/54xx 2. VIN maximum must always be respected. Refer to the next table for the maximum allowed injected current values. 3. This formula must be applied only on the power supplies related to the I/O structure described in Table 20: STM32WL55/54xx pin definition. 4. To sustain a voltage higher than 4 V, the internal pull-up/pull-down resistors must be disabled. 5. Include VREF- pin. Table 23. Current characteristics Symbol Ratings Max ∑IVDD Total current into sum of all VDD power lines (source)(1) 130 ∑IVSS (sink)(1) 130 IVDD(PIN) IVSS(PIN) IIO(PIN) ∑IIO(PIN) IINJ(PIN)(3) ∑|IINJ(PIN)| Total current out of sum of all VSS ground lines (1) 130 (sink)(1) 100 Maximum current into each VDD power pin (source) Maximum current out of each VSS ground pin Output current sunk by any I/O and control pin, except FT_f 20 Output current sunk by any FT_f pin 20 Output current sourced by any I/O and control pin 20 Total output current sunk by sum of all I/Os and control pins(2) 100 Total output current sourced by sum of all I/Os and control pins(2) 100 Unit mA –5 / +0(4) Injected current on FT_xx, TT and RST pins, except PB0 Injected current on PB0 -5/0 Total injected current (sum of all I/Os and control pins)(5) 25 1. All main power (VDD, VDDRF, VDDA, VBAT) and ground (VSS) pins must always be connected to the external power supplies, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. 3. Positive injection (when VIN > VDD) is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 4. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to the previous table for the maximum allowed input voltage values. 5. When several inputs are submitted to a current injection, the maximum ∑|IINJ(PIN)| is the absolute sum of the negative injected currents (instantaneous values). Table 24. Thermal characteristics Symbol TSTG TJ 68/150 Ratings Storage temperature range Maximum junction temperature DS13293 Rev 5 Value -65 to +150 125 Unit °C STM32WL55/54xx Electrical characteristics 5.3 Operating conditions 5.3.1 Main performances Table 25. Main performances at VDD = 3 V Parameter ICORE Test conditions Core current consumption Rx boosted Tx low power Tx high power 5.3.2 Typ VBAT (VBAT = 3V, VDD = 0 V) 0.005 Shutdown 0.031 Standby (32-Kbyte RAM retention) 0.360 Stop 2, RTC enabled 1 Sleep (16 MHz) 770 LPRun (2 MHz) 220 Run, SMPS ON (48 MHz) 3450 LoRa 125 kHz, SMPS ON 4.82 434 to 490 MHz, 14 dBm, 3.3 V 21 868 to 915 MHz, 14 dBm, 3.3 V 26 434 to 490 MHz, 22 dBm, 3.3 V 110.5 868 to 915 MHz, 22 dBm, 3.3 V 120 Unit µA mA General operating conditions Table 26. General operating conditions Symbol Parameter Conditions fHCLK Internal AHB clock frequency - fPCLK1 Internal APB1 clock frequency - fPCLK2 Internal APB2 clock frequency - Standard operating voltage - VDD VDDA Analog supply voltage VIN 0 48 MHz 1.8(1) 3.6 DAC used 1.71 VREFBUF used 2.4 Backup operating voltage 3.6 1.55 3.6 - 1.4 3.6 - 1.8 3.6 TT I/O –0.3 VDD + 0.3 All I/O except TT –0.3 min between min (VDD, VDDA) + 3.6 V and 5.5 V(2)(3) DS13293 Rev 5 V 0 - Minimum RF voltage I/O input voltage Unit 1.62 VFBSMPS SMPS feedback voltage VDDRF Max ADC or COMP used ADC, DAC, COMP and VREFBUF not used VBAT Min V 69/150 139 Electrical characteristics STM32WL55/54xx Table 26. General operating conditions (continued) Symbol Parameter PD Power dissipation at TA = 85 °C for suffix 6 version or TA = 105 °C for suffix 7(4) Ambient temperature for suffix 6 version TA Ambient temperature for the suffix 7 version TJ Junction temperature range Conditions UFBGA73 Maximum power dissipation Min Max Unit - 392.0 mW –40 85 Low-power dissipation(5) 105 Maximum power dissipation 105 Low-power –40 dissipation(5) Suffix 6 version Suffix 7 version 125 –40 105 125 1. When the reset is released, the functionality is guaranteed down to VBOR0 min. 2. This formula has to be applied only on the power supplies related to the I/O structure described in Table 20: STM32WL55/54xx pin definition. Maximum I/O input voltage is the smallest value between min (VDD, VDDA) + 3.6 V and 5.5 V. 3. For operation with voltage higher than min (VDD, VDDA) + 0.3 V, the internal pull-up and pull-down resistors must be disabled. 4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 102: Package thermal characteristics). 5. In low-power dissipation state, TA can be extended to this range, as long as TJ does not exceed TJ max (see Table 102: Package thermal characteristics). 70/150 DS13293 Rev 5 °C °C STM32WL55/54xx 5.3.3 Electrical characteristics Sub-GHz radio characteristics Electrical characteristics of the sub-GHz radio are given with the following conditions unless otherwise specified: • VDD = 3.3 V. The current consumption is measured as described in Figure 15. IDD includes current consumption of all supplies (VDDRF, VDDSMPS, VDD, VDDA, VBAT). All peripherals except Sub-GHz radio are disabled and the system is in Standby mode. • Temperature = 25 °C • HSE32 = 32 MHz • FRF = 434/868/915 MHz • All RF impedances matched using reference design • Reference design implementing a 32 MHz crystal oscillator • Transmit mode output power defined in 50 Ω load • FSK BER (bit error rate) = 0.1 %, 2-level FSK modulation without pre-filtering, BR = 4.8 Kbit/s, FDA = 5 kHz, BW_F = 20 kHz • LoRa PER (packet error rate) = 1 %, packet of 64 bytes, preamble of 8 bytes, error correction code CR = 4/5, CRC on payload enabled, no reduced encoding, no implicit header • Sensitivities given using highest LNA gain step • Power consumption measured with -140 dBm signal and AGC ON • Blocking immunity, ACR and co-channel rejection, given for a single tone interferer and referenced to sensitivity +6 dB, blocking tests performed with unmodulated signal • Bandwidth expressed on DSB (double-sided band) Table 27. Operating range of RF pads Pad Description RFI_P/RFI_N RF input power when in RX operation RFO_LP/RFO_HP/VR_PA Voltage standing wave ratio (VSWR) mode(1) Max Unit 0 dBm 10:1 - 1. When not in RX operation mode (typically on DirectTie implementations), up to 22 dBm is accepted. DS13293 Rev 5 71/150 139 Electrical characteristics STM32WL55/54xx Table 28. Sub-GHz radio power consumption Symbol Mode Min Typ Max All blocks off - 50 - Sleep mode (with warm start)(2)(3) Configuration retained - 140 - Configuration retained + RC64k - 810 - Sleep, LDO mode(4) LDO, band-gap, RC 13 MHz on HSE32 off - 414 - HSE32 on - 564 - Sleep, SMPS mode(4) Band-gap, RC 13 MHz on, SMPS 40 mA max HSE32 off - 700 - HSE32 on - 950 - Standby mode (RC 13 MHz on) RC 13 MHz on, HSE32 off - 0.7 - Standby mode (HSE32) SMPS mode - 1.05 - LDO mode - 0.99 - Synthesizer mode SMPS mode used with 40 mA drive capability - 2.66 - LDO mode - 4.05 - FSK 4.8 Kbit/s - 4.47 - LoRa 125 kHz - 4.82 - Rx boosted, FSK 4.8 Kbit/s - 5.12 - RX boosted, LoRa 125 kHz - 5.46 - - 8.18 - Deep-Sleep mode (Sleep with cold start)(1)(2) IDD Receive mode, SMPS mode used Conditions nA SMPS 40 mA max 40 mA max settings FSK 4.8 Kbit/s LoRa 125 kHz Receive mode, LDO mode used RX boosted 8.90 FSK 4.8 Kbit/s 9.52 LoRa 125 kHz 10.22 1. Cold start is equivalent to device at POR or when the device wakes up from Sleep mode with all blocks off. 2. Only Sub-GHz radio power consumption. 3. Warm start only happens when the device wakes up from Sleep mode with its configuration retained, 4. System in Stop 0 mode range 2. 72/150 Unit DS13293 Rev 5 µA mA mA STM32WL55/54xx Electrical characteristics Table 29. Sub-GHz radio power consumption in transmit mode Symbol Frequency band (MHz) PA match (conditions) Low power (optimized for 14 dBm) 868 to 915 Low power (optimal settings)(2) Low power (optimized for 14 dBm) 434 to 490 Low power (optimal settings) IDD 868 to 915 434 to 490 Low-power PA, SMPS OFF High power (optimized for 22 dBm) 868 to 915 High power (optimal settings) High power (optimized for 22 dBm) 434 to 490 High power (optimal settings) Power output(1) Typ +14 dBm, VDDRF = 3.3 V 23.5 +10 dBm, VDDRF = 3.3 V 17.5 +14 dBm, VDDRF = 1.8 V 41.5 +10 dBm, VDDRF = 1.8 V 28.5 +15 dBm, VDDRF = 3.3 V 25.5 +10 dBm, VDDRF = 3.3 V 15 +15 dBm, VDDRF = 1.8 V 51 +10 dBm, VDDRF = 1.8 V 25 +14 dBm, VDDRF = 3.3 V 22.5 +10 dBm, VDDRF = 3.3 V 13.5 +14 dBm, VDDRF = 1.8 39.5 +10 dBm, VDDRF = 1.8 V 22.5 +15 dBm, VDDRF = 3.3 V 24.5 +10 dBm, VDDRF = 3.3 V 13.5 +15 dBm, VDDRF = 1.8 V 43 +10 dBm, VDDRF = 1.8 V 21.5 +14 dBm, VDDRF = 3.3 V Unit mA 45.5 43.5 +22 dBm, VDDRF = 3.3 V 120 +20 dBm, VDDRF = 3.3 V 107.5 +17 dBm, VDDRF = 3.3 V 98 +14 dBm, VDDRF = 3.3 V 92 +20 dBm, VDDRF = 3.3 V 92.5 +17 dBm, VDDRF = 3.3 V 58 +14 dBm, VDDRF = 3.3 V 45.5 +22 dBm, VDDRF = 3.3 V 110.5 +20 dBm, VDDRF = 3.3 V 90 +17 dBm, VDDRF = 3.3 V 71 +14 dBm, VDDRF = 3.3 V 59 +20 dBm, VDDRF = 3.3 V 72 +17 dBm, VDDRF = 3.3 V 43.5 +14 dBm, VDDRF = 3.3 V 38 1. These power outputs correspond to the settings programmed in the device. Depending on the board, up to 2 dB less than the setting are expected. 2. Optimal settings can be used to optimize power consumption when the output power is NOT 22 dBm (high power) or 14 dBm (low power). In that case, a dedicated firmware configuration associated to a dedicated board matching network (see AN5457 for details) corresponding to the custom output power, can be used. DS13293 Rev 5 73/150 139 Electrical characteristics STM32WL55/54xx Table 30. Sub-GHz radio general specifications Symbol FR Description (2) TS_FS Min Typ Max Unit 150 - 960 MHz - 095 - Hz 100 kHz offset - –100 - 1 MHz offset - –120 - 10 MHz offset - –135 - From Standby, HSE32 mode - 40 - 10 MHz step - 40 - - 170 - Frequency synthesizer range Low-power PA FSTEP Frequency synthesizer step PHN(1) Conditions Synthesizer phase noise (868 to 915 MHz) Synthesizer wakeup time TS_HO Synthesizer hop time P TS_OS Crystal oscillator wakeup C time High-resolution mode HSE32 / 2 (2)(5) (3) normal mode from From Standby, RC HSE32 off dBc/Hz µs OSC_ TRM Crystal oscillator trimming range for crystal frequency error compensation(4) Min/max XTAL specifications ±15 ±30 - ppm BR_F Bitrate, FSK Programmable (min modulation index is 0.5) 0.6 - 300(5) Kbit/s FDA Frequency deviation, FSK Programmable (FDA + BR_F/2 ≤ 250 kHz) 0.6 - 200 kHz BR_L Bitrate, LoRa Min for SF12, BW_L = 7.8 kHz Max for SF5, BW_L = 500 kHz 0.018 - 62.5(6) Kbit/s BW_L Signal BW, LoRa Programmable 7.8 - 500(6) kHz 5 - 12 - SF Spreading factor for LoRa Programmable, chips/symbol = 2SF 1. Phase Noise specifications are given for the recommended PLL bandwidth to be used for the specific modulation/BR, optimized settings may be used for specific applications. 2. Phase Noise is not constant over frequency, due to the topology of the PLL. For two frequencies close to each other, the phase noise may change significantly 3. Wakeup time till crystal oscillator frequency is within ±10 ppm. 4. OSC_TRIM is the available trimming range to compensate for crystal initial frequency error and to allow crystal temperature compensation implementation. The total available trimming range is higher and allows the compensation for all device process variations 5. Maximum bit rate is assumed to scale with the RF frequency: for example 300 Kbit /s in the 869-to-915 MHz frequency band and only 50 Kbit/s at 150 MHz. 6. For RF frequencies below 400 MHz, there is a scaling between the frequency and supported bandwidth. Some bandwidths may not be available below 400 MHz. 74/150 DS13293 Rev 5 STM32WL55/54xx Electrical characteristics Table 31. Sub-GHz radio receive mode specifications Symbol Description Conditions Min Typ Max BR = 0.6 Kbit/s, FDA = 0.8 kHz, BW = 4 kHz - –125 - BR = 1.2 Kbit/s, FDA = 5 kHz, BW = 20 kHz - –123 - - –117 - - –108 - BR = 250 Kbit/s, FDA = 125 kHz, BW = 500 kHz - –103 - BW = 10.4 kHz, SF = 7 - –135 - BW = 10.4 kHz, SF = 12 - –148 - BW = 125 kHz, SF = 7 - –125 - - –138 - - –122 - - –135 - BW = 500 kHz, SF = 7 - –118 - BW = 500 kHz, SF = 12 - –130 - Sensitivity 2-FSK, RX boosted gain, BR = 4.8 Kbit/s, FDA = 5 kHz, RXS_2FB split RF paths for RX and Tx, BW = 20 kHz RF switch insertion loss excluded BR = 38.4 Kbit/s, FDA = 40 kHz, BW = 160 kHz RXS_LB Sensitivity LoRa, BW = 125 kHz, SF = 12 RX boosted gain, split RF paths for RX and Tx, BW = 250 kHz, SF = 7 RF switch insertion loss excluded BW = 250 kHz, SF = 12 RSX_2F Sensitivity 2-FSK, RX power saving gain with direct tie connection between RX and Tx BR = 4.8 Kbit/s, FDA = 5 kHz, BW = 20 kHz - –115 - RXS_L Sensitivity LoRa, RX power saving gain with direct tie connection between RX and Tx BW = 125 kHz, SF = 12 - –135 - CCR_F Co-channel rejection, FSK - - –9 - CCR_L Co-channel rejection, LoRa SF = 7 - 7 - SF = 12 - 19 - ACR_F Adjacent channel rejection, FSK Offset = ±50 kHz - 44 - Offset = ±1.5 x BW_L, BW = 125 kHz, SF = 7 - 60 - Offset = ±1.5 x BW_L, BW = 125 kHz, SF = 12 - 71 - Offset = ±1 MHz, BR = 4.8 Kbit/s, FDA = 5 kHz, BW = 20 kHz - 67 - Offset = ±2 MHz, BR = 4.8 Kbit/s, FDA = 5 kHz, BW = 20 kHz - 70 - Offset = ±10 MHz, BR = 4.8 Kbit/s, FDA = 5 kHz, BW = 20 kHz - 76 - ACR_L BI_F Adjacent channel rejection, LoRa Blocking immunity, FSK DS13293 Rev 5 Unit dBm dB 75/150 139 Electrical characteristics STM32WL55/54xx Table 31. Sub-GHz radio receive mode specifications (continued) Symbol BI_L IIP3 IMA Description Conditions Blocking immunity, LoRa Third order input intercept point Image attenuation Min Typ Max Unit Offset = ±1 MHz, BW = 125 kHz, SF = 12 - 87 - Offset = ±2 MHz, BW = 125 kHz, SF = 12 - 91 - Offset = ±10 MHz, BW = 125 kHz, SF = 12 - 96 - Unwanted tones are 1 MHz and 1.96 MHz above LO. 868 to 915 MHz band - –9 - Unwanted tones are 1 MHz and 1.96 MHz above LO. 433 MHz band - –15 - Without IQ calibration - 30 - With IQ calibration - 54 - 4.8 - 467 kHz dB dBm dB BW_F DSB channel filter BW, FSK Programmable, typical values TS_RX Receiver wakeup time FS to RX - 41 - µs Maximum tolerated frequency offset between transmitter and receiver, SF7 to SF12 All bandwidths, ±25 % of BW. The tighter limit between this line and the three lines below applies. - ±25 - BW SF12 –50 - 50 SF11 –100 - 100 SF10 –200 - 200 FERR_L Maximum tolerated frequency offset between transmitter and receiver, SF10 to SF12 ppm Table 32. Sub-GHz radio transmit mode specifications Symbol TXOP TXDRP Description Max RF output power RF output power drop versus supply voltage TXPRNG RF output power range TXACC 76/150 RF output power step accuracy Conditions Min Typ Max Highest power step setting for low-power PA (LP PA) - +15(1) - Highest power step setting for high-power PA (HP PA) - +22 - LP PA, under SMPS or LDO VDDop range from 1.8 to 3.7 V - 0.5 - HP PA, +22 dBm, VDD = 2.7 V - 2 - HP PA, +22 dBm, VDD = 2.4 V - 3 - HP PA, +22 dBm, VDD = 1.8 V - 6 - TXOP-31 - - ±2 Programmable in 31 steps, typical value - DS13293 Rev 5 Unit dBm dB TXOP dBm - dB STM32WL55/54xx Electrical characteristics Table 32. Sub-GHz radio transmit mode specifications (continued) Symbol Description Conditions TXRMP PA ramping time Programmable TS_TX TX wakeup time Frequency synthesizer enabled Min Typ Max 10 - 3400 - 36 + PA ramping - Unit µs 1. For low-power PA, +15 dBm maximum RF output power can be reached with optimal settings. Table 33. Sub-GHz radio power management specifications Symbol Description Frequency (MHz) Conditions Unit 470 490 868 50 100 - TRPOR Required POR reset pulse duration For VDD ≥ 1.8 V VEOLL End-of-life low-threshold voltage - 1.81 1.89 1.96 VEOLH End-of-life high-threshold voltage - 1.86 1.94 VEOLD End-of-life hysteresis voltage VEOLH - VEOLL VREG Main regulated supply LDO or SMPS over process, voltage and temperature range LDTRSMPS ILSMPS IDDSMPS EFFSMPS 50 53 2.1 56 1.47 1.55 1.62 Load transient for ILSMPS 100 µA to 100 mA in 10 µs LDO running High BW mode - 25 - Low BW mode - 47 - SMPS load current - - - 100 SMPS high power, VDD = 3.3 V - 538 - SMPS low power, VDD = 3.3 V - 460 - SMPS 100 mA max VDD = 3.3 V, ILSMPS = 6 mA - 71 - SMPS 100 mA max VDD = 3.3 V, ILSMPS = 50 mA - 89 - SMPS 100 mA max VDD = 1.8 V, ILSMPS = 6 mA - 88 - SMPS 100 mA max VDD = 2.0 V, ILSMPS = 50 mA - 91 - SMPS 100 mA max VDD = 3.3 V, ILSMPS = 100 mA - 86 - SMPS quiescent current SMPS converter average efficiency EFF = VREG x ILOAD / VDDSMPS x IDD µs V mV V mV mA µA % Cout Shared between LDO and SMPS ±20 % tolerance - 470 - nF Lout SMPS inductor - - 15 - µH Sleep and Sleep, SMPS startup time For ILIM = 50 mA - 70 - µs TSSMPS DS13293 Rev 5 77/150 139 Electrical characteristics STM32WL55/54xx Table 33. Sub-GHz radio power management specifications (continued) Symbol Description Frequency (MHz) Conditions Unit 470 490 868 VDD = 3.3 V, ILOAD = 0 to 100 mA, current limiter off - 95 - VDD = 3.3 V, ILOAD = 100 mA, current limiter on - 380 - VDD = 3.3 V, ILOAD = 50 mA, current limiter on - 280 - LDO load current - - 100 - mA LDTRLDO Load transient for ILDO 100 µA to 100 mA in 10 µs - - 25 - mV TSLDO Sleep and Sleep, LDO startup time For ILIM = 50 mA - 60 - µs Digital regulator target voltage - 1.14 1.2 1.26 V Current limiter max value - 25 50 200 mA IDDLDO ILDO VDIG ILM (1) LDO quiescent current µA 1. The default current limiter value is set to 50 mA. 5.3.4 Operating conditions at power-up/power-down Parameters given in the table below are derived from tests performed under the ambient temperature condition summarized in Table 26: General operating conditions. Table 34. Operating conditions at power-up/power-down Symbol tVDD tVDDA tVDDRF 78/150 Parameter Min Max VDD rise time rate - ∞ VDD fall time rate 10 ∞ VDDA rise time rate 0 ∞ VDDA fall time rate 10 ∞ VDDRF rise time rate - ∞ VDDRF fall time rate - ∞ DS13293 Rev 5 Unit µs/V STM32WL55/54xx 5.3.5 Electrical characteristics Embedded reset and power-control block characteristics Parameters given in the table below are derived from tests performed under the ambient temperature conditions summarized in Table 26: General operating conditions. Table 35. Embedded reset and power-control block characteristics Symbol tRSTTEMPO(2) Conditions(1) Parameter Brownout reset threshold 0 VBOR1 Brownout reset threshold 1 VBOR2 Brownout reset threshold 2 VBOR3 Brownout reset threshold 3 VBOR4 Brownout reset threshold 4 VPVD0 Programmable voltage detector threshold 0 VPVD1 PVD threshold 1 VPVD2 PVD threshold 2 VPVD3 PVD threshold 3 VPVD4 PVD threshold 4 VPVD5 PVD threshold 5 VPVD6 PVD threshold 6 Vhyst_BOR_PVD IDD (BOR_PVD)(2) Typ Max Unit - 250 400 μs Rising edge 1.72 1.76 1.80 Falling edge 1.70 1.74 1.78 Rising edge 2.06 2.10 2.14 Falling edge 1.96 2.00 2.04 Rising edge 2.26 2.31 2.35 Falling edge 2.16 2.20 2.24 Rising edge 2.56 2.61 2.66 Falling edge 2.47 2.52 2.57 Rising edge 2.85 2.90 2.95 Falling edge 2.76 2.81 2.86 Rising edge 1.88 1.95 2.02 Falling edge 1.83 1.90 1.97 Rising edge 2.26 2.31 2.36 Falling edge 2.15 2.20 2.25 Rising edge 2.41 2.46 2.51 Falling edge 2.31 2.36 2.41 Rising edge 2.56 2.61 2.66 Falling edge 2.47 2.52 2.57 Rising edge 2.69 2.74 2.79 Falling edge 2.59 2.64 2.69 Rising edge 2.85 2.91 2.96 Falling edge 2.75 2.81 2.86 Rising edge 2.92 2.98 3.04 Falling edge 2.84 2.90 2.96 Hysteresis in continuous mode - 20 - Hysteresis in other mode - 30 - Reset temporization after BOR0 is detected VDD rising VBOR0(2) Vhyst_BORH0 Min Hysteresis voltage of BORH0 Hysteresis voltage of BORH (except BORH0) and PVD - - 100 - BOR(3) (except BOR0) and PVD consumption from VDD - - 1.1 1.6 DS13293 Rev 5 V V mV µA 79/150 139 Electrical characteristics STM32WL55/54xx Table 35. Embedded reset and power-control block characteristics (continued) Symbol Conditions(1) Parameter VPVM3 VDDA peripheral voltage monitoring Vhyst_PVM3 IDD (PVM3) (2) Min Typ Max Rising edge 1.61 1.65 1.69 Falling edge 1.6 1.64 1.68 Unit V PVM3 hysteresis - - 10 - mV PVM3 consumption from VDD - - 2 - µA 1. Continuous mode means Run and Sleep modes, or temperature sensor enable in LPRun and LPSleep modes. 2. Guaranteed by design. 3. BOR0 is enabled in all modes (except Shutdown) and its consumption is therefore included in the supply current characteristics tables. 5.3.6 Embedded voltage reference Parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 26: General operating conditions. Table 36. Embedded internal voltage reference Symbol VREFINT Parameter Internal reference voltage Conditions Min Typ Max Unit –40 °C < TJ < +105 °C 1.182 1.212 1.232 V tS_vrefint (1) ADC sampling time when reading the internal reference voltage - 4(2) - - tstart_vrefint Start time of reference voltage buffer when ADC is enable - - 8 12(2) IDD(VREFINTBUF) VREFINT buffer consumption from VDD when converted by ADC - - 12.5 20(2) µA ∆VREFINT Internal reference voltage spread over the temperature range VDD = 3.3 V - 5 7.5(2) mV –40 °C < TJ < +105 °C - 30 50(2) ppm/°C ppm ppm/V TCoeff Temperature coefficient µs ACoeff Long term stability 1000 hours, T = 25 °C - 300 1000(2) VDDCoeff Voltage coefficient 3.0 V < VDD < 3.6 V - 250 1200(2) 24 25 26 49 50 51 74 75 76 VREFINT_DIV1 1/4 reference voltage VREFINT_DIV2 1/2 reference voltage VREFINT_DIV3 3/4 reference voltage - 1. The shortest sampling time can be determined in the application by multiple iterations. 2. Guaranteed by design. 80/150 DS13293 Rev 5 % VREFINT STM32WL55/54xx Electrical characteristics Figure 16. VREFINT versus temperature V 1.235 1.23 1.225 1.22 1.215 1.21 1.205 1.2 1.195 1.19 1.185 -40 -20 0 20 40 Mean 5.3.7 60 Min 80 100 Max 120 °C MSv66005V3 Supply current characteristics The current consumption is a function of several parameters and factors such as operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 15. Typical and maximum current consumption The device is put under the following conditions: • All I/O pins are in analog input mode. • All peripherals are disabled, except when explicitly mentioned. • The flash memory access time is adjusted with the minimum wait-states number, depending on the fHCLK frequency. Refer to the table ‘Number of wait states according to flash clock (HCLK3) frequency’ in the reference manual (RM0461). • fPCLK = fHCLK when the peripherals are enabled. • fPCLK = fHCLK = fHCLKS for the flash memory and shared peripherals. Parameters given in the tables below (Table 37 to Table 56) are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 26: General operating conditions. DS13293 Rev 5 81/150 139 Conditions Symbol Parameter - Voltage scaling Range 2 IDD (Run) DS13293 Rev 5 f =f Supply current HCLK MSI All peripherals in Run mode disabled SMPS Range 2 Range 1 SMPS Range 1 IDD (LPRun) Supply current fHCLK = fMSI in LPRun mode All peripherals disabled Max(1) Typ Unit fHCLK (MHz) 25 °C 55 °C 85 °C 105 °C 25 °C 85 °C 105 °C 16 1.85 1.90 1.95 2.10 2.20 2.40 2.80 8 1.10 1.15 1.20 1.30 1.40 1.60 1.90 2 0.585 0.610 0.670 0.760 - - - 16 1.50 1.45 1.65 1.70 - - - 8 1.00 1.05 1.05 1.10 - - - 2 0.730 0.750 0.780 0.830 - - - 48 5.55 5.65 5.80 5.95 7.40 11.0 14.0 32 3.85 3.95 4.05 4.20 5.60 8.40 13.0 16 2.15 2.20 2.30 2.45 3.70 6.60 11.0 48 3.40 3.45 3.55 3.60 - - - 32 2.50 2.55 2.60 2.65 - - - 16 1.60 1.60 1.65 1.70 - - - 2 0.220 0.235 0.290 0.380 0.270 0.490 0.880 1 0.120 0.135 0.185 0.275 0.150 0.390 0.780 0.4 0.058 0.0715 0.120 0.210 0.084 0.330 0.710 Electrical characteristics 82/150 Table 37. Current consumption in Run and LPRun modes on CPU1, CoreMark code with data running from flash memory, ART enable (cache ON, prefetch OFF) mA 1. Guaranteed by characterization results, unless otherwise specified. STM32WL55/54xx Conditions Symbol Parameter - IDD (Run) DS13293 Rev 5 IDD (LPRun) Supply current in Run mode Supply current in LPRun mode fHCLK = fMSI All peripherals disabled fHCLK = fMSI All peripherals disabled Typ Unit Voltage scaling fHCLK (MHz) 25 °C 55 °C 85 °C 105 °C Range 2 16 2.5 2.55 2.65 2.75 48 8.00 8.15 8.35 8.55 32 5.80 5.90 6.05 6.25 48 4.75 4.85 4.95 5.00 32 3.50 3.60 3.65 3.75 16 2.20 2.25 2.30 2.40 2 0.350 - - - 1 0.185 - - - 0.4 0.0805 - - - Range 1 SMPS Range 1 STM32WL55/54xx Table 38. Current consumption in Run and LPRun modes on CPU1 and CPU2, CoreMark code with data running from SRAM1 mA Electrical characteristics 83/150 Conditions Symbol Parameter - Voltage scaling Range 2 IDD (Run) Supply current in Run mode fHCLK = fMSI All peripherals disabled SMPS Range 2 DS13293 Rev 5 Range 1 SMPS Range 1 IDD (LPRun) Supply current fHCLK = fMSI in LPRun mode All peripherals disabled Max(1) Typ Unit fHCLK (MHz) 25 °C 55 °C 85 °C 105 °C 25 °C 85 °C 105 °C 16 1.90 1.90 2.00 2.10 2.20 2.40 2.80 8 1.10 1.15 1.20 1.30 1.40 1.60 2.00 2 - - - - - - - 16 1.40 1.45 1.50 1.55 - - - 8 1.00 1.05 1.05 1.10 - - - 2 0.730 0.750 0.780 0.825 - - - 48 5.65 5.75 5.90 6.05 6.50 6.70 7.10 32 3.90 4.00 4.10 4.25 4.60 4.80 5.20 16 2.20 2.25 2.30 2.45 2.50 2.80 3.20 48 3.45 3.50 3.60 3.65 - - - 32 2.50 2.55 2.60 2.70 - - - 16 1.60 1.60 1.65 1.70 - - - 2 0.220 0.230 0.285 0.375 0.240 0.480 0.860 1 0.120 0.130 0.180 0.270 0.140 0.380 0.770 0.4 0.052 0.064 0.115 0.205 0.077 0.320 0.710 Electrical characteristics 84/150 Table 39. Current consumption in Run and LPRun modes on CPU1, CoreMark code with data running from SRAM1 mA 1. Guaranteed by characterization results, unless otherwise specified. STM32WL55/54xx Conditions Symbol Typ Parameter - Voltage scaling Code 1.90 118.75 1.85 115.63 Dhrystone 2.1 1.85 115.63 Fibonacci 1.80 112.50 While(1) 1.60 100.00 1.45 90.63 1.40 87.50 Dhrystone 2.1 1.40 87.50 Fibonacci 1.40 87.50 While(1) 1.30 Reduced code 5.70 CoreMark(1) 5.55 115.63 Dhrystone 2.1 5.50 114.58 Fibonacci 5.40 112.50 While(1) 4.65 96.88 Reduced code 3.50 72.92 CoreMark(1) 3.40 70.83 Dhrystone 2.1 3.40 70.83 Fibonacci 3.30 68.75 While(1) 2.90 60.42 (1) Reduced code DS13293 Rev 5 SMPS Range 2 fHCLK = 16 MHz Supply current in fHCLK = fMSI Run mode All peripherals disabled Range 1 fHCLK = 48 MHz SMPS Range 1 fHCLK = 48 MHz CoreMark (1) mA 81.25 118.75 µA/MHz 85/150 Electrical characteristics 25 °C CoreMark Range 2 fHCLK = 16 MHz Unit 25 °C Reduced code IDD(Run) Typ Unit STM32WL55/54xx Table 40. Typical current consumption in Run and LPRun modes on CPU1, with different codes running from flash memory, ART enable (cache ON, prefetch OFF) Conditions Symbol Typ Unit - IDD(LPRun) Typ Parameter Voltage scaling Supply current in fHCLK = fMSI = 2 MHz LPRun mode All peripherals disabled Code Unit 25 °C 25 °C Reduced code 0.225 112.50 CoreMark(1) 0.220 110.00 Dhrystone 2.1 0.220 Fibonacci 0.240 120.00 While(1) 0.175 87.50 mA 110.00 µA/MHz Electrical characteristics 86/150 Table 40. Typical current consumption in Run and LPRun modes on CPU1, with different codes running from flash memory, ART enable (cache ON, prefetch OFF) (continued) 1. CoreMark used for characterization results provided in Table 37 and Table 40. DS13293 Rev 5 STM32WL55/54xx Conditions Symbol Typ Parameter - Voltage scaling Code 1.95 121.88 CoreMark 1.90 118.75 Dhrystone 2.1 1.90 118.75 Fibonacci 1.90 118.75 While(1) 1.75 109.38 1.45 90.63 CoreMark 1.45 90.63 Dhrystone 2.1 1.45 90.63 Fibonacci 1.45 90.63 While(1) 1.35 Reduced code 5.90 CoreMark(1) 5.65 117.71 Dhrystone 2.1 5.70 118.75 Fibonacci 5.65 117.71 While(1) 5.10 106.25 Reduced code 3.60 75.00 CoreMark(1) 3.45 71.88 Dhrystone 2.1 3.50 72.92 Fibonacci 3.45 71.88 While(1) 3.15 65.63 Reduced code DS13293 Rev 5 Range 2 SMPS ON fHCLK = 16 MHz Supply current in Run mode fHCLK = fMSI All peripherals disabled Range 1 fHCLK = 48 MHz Range 1 SMPS ON fHCLK = 48 MHz (1) mA 84.38 122.92 µA/MHz 87/150 Electrical characteristics 25 °C (1) Range 2 fHCLK = 16 MHz Unit 25 °C Reduced code IDD(Run) Typ Unit STM32WL55/54xx Table 41. Typical current consumption in Run and LPRun modes on CPU1, with different codes running from SRAM1 Conditions Symbol Typ Parameter - (2) IDD(LPRun) Typ Unit Voltage scaling Supply current fHCLK = fMSI = 2 MHz in LPRun mode All peripherals disabled Code Unit 25 °C 25 °C Reduced code 0.225 112.50 CoreMark(1) 0.220 110.00 Dhrystone 2.1 0.225 Fibonacci 0.225 112.50 While(1) 0.195 97.50 mA 112.50 µA/MHz Electrical characteristics 88/150 Table 41. Typical current consumption in Run and LPRun modes on CPU1, with different codes running from SRAM1 (continued) 1. CoreMark used for characterization results provided in Table 37 and Table 40. 2. Flash memory in power-down mode. DS13293 Rev 5 STM32WL55/54xx Conditions Symbol Parameter - Voltage scaling Range 2 IDD(Sleep) Supply current fHCLK = fMSI in Sleep mode All peripherals disabled Range 1 DS13293 Rev 5 SMPS Range 1 Supply current fHCLK = fMSI in LPSleep IDD(LPSleep) All peripherals disabled mode Max(1) Typ Unit fHCLK (MHz) 25 °C 55 °C 85 °C 105 °C 25 °C 85 °C 105 °C 16 0.770 0.800 0.860 0.955 1.00 1.30 1.60 8 0.570 0.600 0.655 0.745 0.780 0.990 1.40 2 0.445 0.470 0.525 0.615 0.650 0.860 1.30 48 1.70 1.70 1.80 1.90 2.10 2.30 2.70 32 1.25 1.30 1.40 1.50 1.60 1.90 2.30 16 0.845 0.875 0.945 1.05 1.10 1.40 1.80 48 1.35 1.40 1.45 1.50 - - - 32 1.15 1.15 1.20 1.25 - - - 16 0.895 0.915 0.950 1.00 - - - 2 0.068 0.0805 0.130 0.220 0.095 0.330 0.720 1 0.044 0.0565 0.105 0.195 0.069 0.310 0.700 0.4 0.0225 0.040 0.0885 0.180 0.052 0.290 0.680 0.1 0.018 0.032 0.081 0.170 0.045 0.280 0.670 STM32WL55/54xx Table 42. Current consumption in Sleep and LPSleep modes on CPU1, flash memory ON mA 1. Guaranteed by characterization results, unless otherwise specified. Electrical characteristics 89/150 Conditions Symbol Typ Parameter Unit - Voltage scaling fHCLK (MHz) 25 °C 16 0.790 8 0.585 2 0.450 48 1.75 32 1.30 16 0.870 48 1.40 32 1.15 16 0.905 0.1 0.0165 Range 2 Supply current in Sleep mode IDD(Sleep) fHCLK = fMSI All peripherals disabled Range 1 DS13293 Rev 5 SMPS Range 1 Supply current in LPSleep mode IDD(LPSleep) fHCLK = fMSI All peripherals disabled Electrical characteristics 90/150 Table 43. Current consumption in Sleep and LPSleep modes on CPU1 and CPU2, flash memory ON mA Table 44. Current consumption in LPSleep mode on CPU1, flash memory in power-down Conditions Symbol Unit - IDD (LPSleep) Max(1) Typ Parameter =f f Supply current in HCLK MS All peripherals LPSleep mode disabled 25 °C 55 °C 85 °C 105 °C 25 °C 85 °C 105 °C 2 58.0 74.5 125 215 86.0 330 710 1 35.5 50.5 99.0 190 60.0 300 690 0.4 18.5 33.5 81.5 170 41.0 280 670 0.1 11.0 26.5 74.5 165 36.0 280 660 1. Guaranteed by characterization results, unless otherwise specified. µA STM32WL55/54xx fHCLK (MHz) Conditions Symbol Typ Parameter Unit - IDD(LPSleep) Supply current in LPSleep mode STM32WL55/54xx Table 45. Current consumption in LPSleep mode on CPU1 and CPU2, flash memory in power-down fHCLK = fMS All peripherals disabled fHCLK (MHz) 25 °C 2 59.5 1 36.0 0.4 21.5 0.1 12.5 µA Table 46. Current consumption in Stop 2 mode Symbol DS13293 Rev 5 IDD (Stop 2) IDD (Stop 2 with RTC) Parameter Supply current in Stop 2 mode RTC disabled Supply current in Stop 2 mode RTC enabled, clocked by LSI(2) Conditions Max(1) Typ VDD (V) 0 °C 25 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C 1.8 0.545 0.830 2.45 8.45 13.5 1.20 2.20 24.0 66.0 2.4 0.525 0.850 2.60 8.80 14.0 - - - - 3.0 0.605 0.885 2.80 9.25 14.5 1.10 2.60 26.0 69.0 3.6 0.630 0.935 3.10 9.75 15.5 1.40 2.80 26.0 71.0 1.8 0.650 0.880 2.55 8.25 13.5 1.30 2.30 24.0 66.0 2.4 0.630 0.945 2.70 8.85 14.0 - - - - 3.0 0.715 1.00 2.90 9.70 15.0 1.40 2.80 26.0 69.0 3.6 0.750 1.10 3.15 10.5 15.5 1.50 3.00 26.0 71.0 Unit µA 1. Guaranteed based on test during characterization, unless otherwise specified. 91/150 Electrical characteristics 2. LSI using LSIPRE = 1 configuration. Typ at 25 °C Conditions VDD = 1.8 V VDD = 2.4 V VDD = 3.0 V VDD = 3.6 V Wakeup clock: MSI 4 MHz, voltage range 2 2.93 3.22 3.45 4.79 Wakeup clock: MSI 2 MHz, voltage range 2 4.44 5.03 5.82 7.36 Wakeup clock: MSI 4 MHz, voltage range 1 3.03 3.14 3.51 4.66 Wakeup clock: MSI 16 MHz, voltage range 1 1.75 1.95 2.00 3.06 Wakeup clock: MSI 48 MHz, voltage range 1 1.75 1.82 1.89 2.80 Unit nAs Electrical characteristics 92/150 Table 47. Current consumption during wakeup from Stop 2 mode Table 48. Current consumption in Stop 1 mode Symbol DS13293 Rev 5 IDD (Stop 1) IDD (Stop 1with RTC) Parameter Supply current in Stop 1 mode RTC disabled Supply current in Stop 1 mode RTC enabled, clocked by LSI(2) Conditions Max(1) Typ VDD (V) 0 °C 25 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C 1.8 2.05 4.00 14.0 47.0 74.5 6.10 20.0 200 480 2.4 2.15 3.95 14.0 47.0 75.0 - - - - 3.0 2.15 4.15 14.0 47.5 75.5 5.90 20.0 200 490 3.6 2.25 4.20 14.0 48.0 76.5 6.20 20.0 200 490 1.8 2.15 4.10 14.0 47.0 75.0 6.30 20.0 200 480 2.4 2.15 4.10 14.0 47.5 75.5 - - - - 3.0 2.25 4.20 14.0 47.5 76.0 6.40 21.0 200 490 3.6 2.30 4.15 14.5 48.5 77.0 6.70 21.0 200 490 Unit µA 1. Guaranteed based on test during characterization, unless otherwise specified. 2. LSI using LSIPRE = 1 configuration. STM32WL55/54xx Typ at 25 °C Conditions Wakeup clock: MSI 4 MHz, voltage range 2 VDD = 1.8 V VDD = 2.4 V VDD = 3.0 V VDD = 3.6 V 1.05 1.15 1.09 1.18 Wakeup clock: MSI 2 MHz, voltage range 2 1.81 1.81 2.12 2.40 Wakeup clock: MSI 4 MHz, voltage range 1 0.766 1.23 1.34 1.49 Wakeup clock: MSI 16 MHz, voltage range 1 0.310 0.71 0.935 0.836 Wakeup clock: MSI 48 MHz, voltage range 1 0.0707 0.461 0.533 0.565 Unit nAs STM32WL55/54xx Table 49. Current consumption during wakeup from Stop 1 mode Table 50. Current consumption in Stop 0 mode Conditions Symbol DS13293 Rev 5 IDD (Stop 0) Parameter - Supply current in Stop 0 mode RTC disabled Max(1) Typ VDD (V) 0 °C 25 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C 1.8 335 345 365 415 455 480 500 740 1200 2.4 360 370 395 445 485 - - - - 3.0 390 400 425 475 515 540 570 800 1200 3.6 425 435 460 515 550 580 600 840 1300 Unit µA 1. Guaranteed based on test during characterization, unless otherwise specified. Table 51. Current consumption during wakeup from Stop 0 mode Conditions Typ at 25 °C VDD = 2.4 V VDD = 3.0 V VDD = 3.6 V Wakeup clock: MSI 4 MHz, voltage range 2 3.45 3.76 3.45 4.04 Wakeup clock: MSI 2 MHz, voltage range 2 3.05 3.20 3.74 3.35 Wakeup clock: MSI 4 MHz, voltage range 1 3.20 3.25 3.30 4.11 Wakeup clock: MSI 16 MHz, voltage range 1 1.07 1.25 1.71 1.80 Wakeup clock: MSI 48 MHz, voltage range 1 0.867 1.13 1.39 0.949 Unit nAs 93/150 Electrical characteristics VDD = 1.8 V Conditions Symbol Parameter Supply current in Standby mode IDD RTC disabled (Standby) Backup registers retained - No retention SRAM2 retained DS13293 Rev 5 RTC clocked by LSI Supply current in (PREDIV = 1) Standby mode IDD (backup registers (Standby and SRAM2 with RTC) retained) RTC clocked by LSE RTC enabled quartz(2) in low drive mode Max(1) Typ VDD (V) 0 °C 25 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C 1.8 0.009 0.027 0.245 1.00 2.40 - - - - 2.4 0.022 0.051 0.340 1.35 2.85 - - - - 3.0 0.046 0.071 0.470 1.75 3.40 - - - - 3.6 0.075 0.125 0.650 2.30 4.05 - - - - 1.8 0.130 0.205 0.820 2.90 5.55 0.200 0.550 8.20 24.0 2.4 0.140 0.225 0.915 3.25 6.05 - - - - 3.0 0.165 0.255 1.05 3.70 6.60 0.280 0.710 9.40 27.0 3.6 0.190 0.300 1.20 4.25 7.25 0.330 0.770 10.0 28.0 1.8 0.215 0.295 0.895 3.10 5.30 - - - - 2.4 0.230 0.325 0.990 3.45 5.95 - - - - 3.0 0.260 0.360 1.15 3.95 6.85 - - - - 3.6 0.305 0.425 1.30 4.55 7.85 - - - - 1.8 0.270 0.350 0.975 3.15 5.80 - - - - 2.4 0.295 0.390 1.10 3.50 6.25 - - - - 3.0 0.345 0.445 1.25 4.00 6.85 - - - - 3.6 0.415 0.535 1.45 4.60 7.55 - - - - Unit Electrical characteristics 94/150 Table 52. Current consumption in Standby mode µA 1. Guaranteed by characterization results, unless otherwise specified. 2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors. Table 53. Current consumption during wakeup from Standby mode Symbol Typ at 25 °C VDD = 1.8 V VDD = 2.4 V VDD = 3.0 V VDD = 3.6 V Wakeup clock: MSI 4 MHz 23.5 81.3 111 114 Wakeup clock: MSI 8 MHz 15.2 15.7 17.3 19.6 Unit nAs STM32WL55/54xx IDD (wakeup from Standby) Conditions Conditions Symbol Parameter - Supply current in Shutdown mode IDD RTC disabled (Shutdown) Backup registers retained DS13293 Rev 5 IDD (Shutdown with RTC) Supply current in Shutdown mode (backup registers retained) RTC enabled RTC clocked by an external clock RTC clocked by LSE quartz (2) in low drive mode Max(1) Typ VDD (V) 0 °C 25 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C 1.8 0.001 0.008 0.105 0.380 0.995 0.001 0.043 1.70 6.40 2.4 0.008 0.018 0.135 0.445 1.20 - - - - 3.0 0.018 0.031 0.180 0.545 1.45 0.078 0.150 2.40 8.50 3.6 0.041 0.062 0.260 0.690 1.80 0.110 0.190 2.90 9.90 1.8 0.054 0.065 0.145 0.545 1.35 - - - - 2.4 0.090 0.105 0.200 0.665 1.60 - - - - 3.0 0.160 0.175 0.295 0.860 1.95 - - - - 3.6 0.250 0.280 0.440 1.15 2.45 - - - - 1.8 0.140 0.155 0.270 0.605 1.20 - - - - 2.4 0.165 0.185 0.315 0.705 1.40 - - - - 3.0 0.205 0.225 0.380 0.855 1.70 - - - - 3.6 0.265 0.295 0.500 1.10 2.10 - - - - Unit STM32WL55/54xx Table 54. Current consumption in Shutdown mode µA 1. Guaranteed by characterization results, unless otherwise specified. 2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors. Electrical characteristics 95/150 Conditions Symbol Parameter Typ - RTC disabled IDD(VBAT) Backup domain supply current RTC enabled and clocked by LSE quartz(1) Max VBAT (V) 0 °C 25 °C 55 °C 85 °C 105 °C 105 °C 1.8 1.00 3.00 19.0 95.0 180 1.00 2.4 1.00 3.00 22.0 110 200 1.00 3.0 1.00 5.00 31.0 150 270 1.00 3.6 3.00 11.0 50.0 220 380 3.00 1.8 140 150 180 275 390 140 2.4 155 170 200 310 435 155 3.0 185 200 235 375 545 185 3.6 230 245 295 485 710 230 Unit nA Electrical characteristics 96/150 Table 55. Current consumption in VBAT mode 1. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors. DS13293 Rev 5 Table 56. Current under Reset condition Symbol IDD(RST) Conditions Typ VDD (V) 25 °C 1.8 V 600 2.4 V 650 3.0 V 700 3.6 V 780 Unit µA STM32WL55/54xx STM32WL55/54xx Electrical characteristics I/O system current consumption The current consumption of the I/O system has two components: a static and a dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 76: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, these pins must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the internal peripheral current consumption measured previously (see Table 57: Peripheral current consumption, the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: I SW = V DD × f SW × C where • ISW is the current sunk by a switching I/O to charge/discharge the capacitive load. • VDD is the I/O supply voltage. • fSW is the I/O switching frequency. • C is the total capacitance seen by the I/O pin: C = CIo+ CEXT . • CEXT is the PCB board capacitance plus any connected external device pin capacitance. The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. DS13293 Rev 5 97/150 139 Electrical characteristics STM32WL55/54xx On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in the table below. The device is placed under the following conditions: • All I/O pins are in analog mode. • The given value is calculated by measuring the difference of the current consumptions: – when the peripheral is clocked on – when the peripheral is clocked off • Ambient operating temperature and supply voltage conditions summarized in Table 22: Voltage characteristics. • The power consumption of the digital part of the on-chip peripherals is given in the table below. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet. Table 57. Peripheral current consumption Peripheral AHB1 AHB2 AHB3 Range 1 Range 2 LPRun and LPSleep CRC1 0.42 0.38 1.00 DMA1 2.29 1.88 1.45 DMA2 2.50 1.94 1.50 DMAMUX1 3.96 3.38 2.50 All AHB1 peripherals 9.17 7.50 9.30 GPIOA 0.01 0.12 0.20 GPIOB 0.01 0.12 0.15 GPIOC 0.01 0.12 0.15 GPIOH 0.01 0.06 0.10 All AHB2 peripherals 0.62 0.56 0.40 AES1 2.50 2.13 1.80 FLASH 7.92 6.56 11.3 PKA 3.33 2.75 2.15 RNG1 1.04 N/A N/A RNG1 independent clock domain 0.62 N/A N/A SRAM1 0.62 0.38 0.55 0.42 0.37 0.50 16.0 13.4 16.0 DAC 0.83 0.69 0.50 I2C1 1.67 1.37 1.05 I2C1 independent clock domain 2.29 1.94 1.40 I2C2 1.67 1.37 1.05 I2C2 independent clock domain 2.50 2.00 1.60 I2C3 1.67 1.37 0.90 SRAM2 All AHB3 peripherals APB1 98/150 (1) DS13293 Rev 5 Unit µA/MHz µA/MHz µA/MHz µA/MHz STM32WL55/54xx Electrical characteristics Table 57. Peripheral current consumption (continued) Peripheral APB1 Range 1 Range 2 LPRun and LPSleep I2C3 independent clock domain 2.29 1.87 1.30 LPTIM1 1.67 1.44 1.50 LPTIM1 independent clock domain 2.50 2.19 1.45 LPTIM2 1.67 1.37 0.90 LPTIM2 independent clock domain 2.50 2.12 1.55 LPTIM3 0.83 0.69 0.65 LPTIM3 independent clock domain 2.29 1.94 0.65 LPUART1 2.08 1.81 3.55 LPUART1 independent clock domain 2.50 2.06 1.35 RTCAPB 2.08 1.81 1.50 SPI2 1.46 1.19 0.90 TIM2 4.58 3.81 2.95 USART2 1.88 1.56 1.35 USART2 independent clock domain 4.58 3.75 3.05 WWDG1 0.42 0.31 0.05 19.6 16.1 20.2 ADC 1.25 1.00 0.70 ADC independent clock domain 0.21 0.13 0.30 SPI1 1.25 1.06 0.90 TIM1 6.25 5.19 8.30 TIM16 2.29 1.94 1.35 TIM17 2.29 1.87 1.25 USART1 1.67 1.38 1.00 4.17 3.38 2.90 15.8 13.0 15.8 SUBGHZSPI 1.46 1.25 1.10 All APB3 peripherals 1.46 1.25 1.10 62.9 52.3 59.7 All APB1 peripherals APB2 (1) USART1 independent clock domain All APB2 peripherals APB3 All peripherals(1) (1) Unit µA/MHz µA/MHz µA/MHz 1. Without independent clocks. 5.3.8 Wakeup time from low-power modes and voltage scaling transition times The wakeup times given in the table below, are the latency between the event and the execution of the first user instruction. The device goes in low-power mode after the WFE (wait for event) instruction. DS13293 Rev 5 99/150 139 Electrical characteristics STM32WL55/54xx Table 58. Low-power mode wakeup timings(1) Symbol tWUSLEEP Parameter Wakeup time from Sleep to Run mode Wakeup time from tWULPSLEEP LPSleep to LPRun mode tWUSTOP0 Conditions Wakeup time from Stop 0 mode in flash memory(2) Wakeup in flash with memory in power-down during LPSleep mode (FPDS = 1 in PWR_CR1) and with clock MSI = 2 MHz To Run mode (Range 1) To LPRun mode tWUSTOP1 Wakeup time from Stop 1 mode in flash memory(2) To Run mode (Range 1) To LPRun mode tWUSTOP2 tWUSTBY tWUSHUTD Wakeup time from Stop 2 mode in flash memory(2) Wakeup time from Standby to Run mode To Run mode (Range 1) Range 1 Wakeup time from Range 1 Shutdown to Run mode Typ Max Unit 0.188 0.222 µs 3.81 4.38 Wakeup clock MSI = 48 MHz 2.14 2.90 Wakeup clock MSI = 16 MHz 2.78 3.58 Wakeup clock HSI16 = 16 MHz 1.99 - Wakeup clock HSI16 = 16 MHz with HSIKERON enabled 1.01 1.13 Wakeup clock MSI = 4 MHz 6.79 8.21 Wakeup clock MSI = 2 MHz 10.4 12.2 Wakeup clock MSI = 2 MHz 10.5 12.3 Wakeup clock MSI = 48 MHz 5.15 6.55 Wakeup clock MSI = 16 MHz 5.73 7.14 Wakeup clock HSI16 = 16 MHz 5.71 7.10 Wakeup clock HSI16 = 16 MHz with HSIKERON enabled 4.57 6.52 Wakeup clock MSI = 4 MHz 8.43 9.93 Wakeup clock MSI = 2 MHz 11.9 13.7 Wakeup clock MSI = 2 MHz 10.6 13.9 Wakeup clock MSI = 48 MHz 5.56 6.85 Wakeup clock MSI = 16 MHz 6.32 7.59 Wakeup clock HSI16 = 16 MHz 6.28 7.51 Wakeup clock HSI16 = 16 MHz with HSIKERON enabled 6.26 7.53 Wakeup clock MSI = 4 MHz 9.69 10.9 Wakeup clock MSI = 2 MHz 14.0 15.4 Wakeup clock MSI = 4 MHz 34.3 39.2 Wakeup clock MSI = 8 MHz 22.4 25.6 Wakeup clock MSI = 4 MHz 264 316 µs µs µs µs 1. Guaranteed by characterization results (VDD = 3 V, T = 25 °C). 2. Wakeup time is equivalent when code is executed from SRAM1 compared to flash memory. It is also equivalent when going to Range 2 rather than Range 1. 100/150 DS13293 Rev 5 STM32WL55/54xx Electrical characteristics Table 59. Regulator modes transition times(1) Symbol tWULPRUN tVOST Parameter Conditions Transition time from LPRun to Run mode(2) Code run with MSI = 2 MHz Regulator transition time from Range 2 to Range 1(3) Regulator transition time from Range 1 to Range 2(3) Typ Max 19.6 - 21.9 32.2 23.1 33.9 Unit µs Code run with HSI16 1. Guaranteed by characterization results (VDD = 3 V, T = 25 °C). 2. Time until REGLPF flag is cleared in PWR_SR2. 3. Time until VOSF flag is cleared in PWR_SR2. 5.3.9 External clock source characteristics High-speed external user clock generated from an external source The high-speed external (HSE32) clock can be supplied with a 32 MHz crystal oscillator or by a TCXO (temperature controlled crystal oscillator). Crystal oscillator The devices include internal programmable capacitances that can be used to tune the crystal frequency in order to compensate the PCB parasitic one. Characteristics in the tables below, are measured over recommended operating conditions, unless otherwise specified. Typical values are referred to TA = 25 °C and VDD = 3 V. Table 60. HSE32 crystal requirements(1) Symbol fnom fTOL Parameter Oscillator frequency Frequency accuracy(2) Conditions Min Typ Max Unit - MHz - 32 - Initial(3) - - ±10 Over temperature(4) - - ±30 Aging over 10 years - - ±10 ppm CLoad Load capacitance(5) - 9.5 10 10.5 CShunt Crystal shunt capacitance - 0.3 0.6 2 Cmotion Crystal motional capacitance - 1.3 1.89 2.5 fF Crystal equivalent series resistance - - 30 60 Ω PD Drive level - - - 100 µW Gm Oscillator transconductance 11.3 - - mA/V ESR Startup pF 1. 32 MHz XTAL is specified for two specific references: NX2016SA and NX1612SA. 2. Crystal frequency accuracy can also be further restricted by the protocols support by the application. 3. Initial accuracy can be compensated by initial calibration. See the application note AN5646. 4. Frequency over temperature can be partially compensated by firmware. DS13293 Rev 5 101/150 139 Electrical characteristics 5. STM32WL55/54xx Load capacitance can be managed by internal programmable capacitances at calibration phase. No need to add external foot capacitances. The values indicated take into account the combination of the two foot capacitances. Table 61. HSE32 oscillator characteristics Symbol Parameter Conditions Min Typ Max 1000 - tSUA(HSE) Startup time for 80% amplitude stabilization VDDRF stabilized, SUBGHZ_HSEINTRIMR = 0x12, -40 to +105 °C temperature range - tSUR(HSE) Startup time for HSEREADY signal VDDRF stabilized, SUBGHZ_HSEINTRIMR = 0x12, -40 to +105 °C temperature range - 180 - HSEGMC = 000, SUBGHZ_HSEINTRIMR = 0x12 - 50 - IDDRF(HSE) HSE32 current consumption Unit µs µA XOTg(HSE) SUBGHZ_HSEINTRIMR granularity - 1 5 XOTfp(HSE) SUBGHZ_HSEINTRIMR frequency pulling ±15 ±30 - XOTnb(HSE) SUBGHZ_HSEINTRIMR number of tuning bits - 6 - bit XOTst(HSE) SUBGHZ_HSEINTRIMR setting time - - 0.1 ms ppm Capacitor bank For more information about the trimming methodology of the oscillator, refer to the application note HSE trimming for STM32 wireless MCUs (AN5042). For more information about the crystal selection, refer to the application note Oscillator design guide for STM8AF/AL/S, STM32 MCUs and MPUs (AN2867). TCXO regulator Table 62. HSE32 TCXO regulator characteristics Symbol Parameter Conditions Min Typ Max Unit 1.6 1.7 3.3 V - 1.5 4 mA From enable to regulated voltage within 25 mV from target - - 50 µs Quiescent current - - 70 µA Relative to load current - 1.6 2 % 0.4 0.6 1.2(2) Vpk-pk VTCXO Regulated voltage range for TCXO voltage supply ILTCXO Load current for TCXO regulator - TSVTCXO Startup time for TCXO regulator IDDTCXO Current consumption for TCXO regulator ATCXO Amplitude voltage for external TCXO applied to OSC_IN pin VDDOP > VTCXO + 200 mV Provided through a 220 Ω resistor in series with a capacitance (voltage divider)(1) 1. In order to minimize spurious injection, the capacitance value must be calculated such that an amplitude of 0.4 to 0.5 Vpk-pk on OSC_IN is obtained. For TCXO output voltage of 0.8 Vpk-pk, 10 pF can be used. 2. Clipped-sine output TCXO is required, with the output amplitude not exceeding 1.2 V peak-to-peak. 102/150 DS13293 Rev 5 STM32WL55/54xx Electrical characteristics Low-speed external user clock generated from an external source The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. The information provided in this section is based on design simulation results obtained with typical external components specified in the table below. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 63. Low-speed external user clock characteristics(1) Symbol IDD(LSE) Gmcritmax tSU(LSE) (2) Parameter LSE current consumption Maximum critical crystal gm Startup time Conditions Min Typ Max LSEDRV[1:0] = 00 - Low drive capability - 250 - LSEDRV[1:0] = 01 - Medium-low drive capability - 315 - LSEDRV[1:0] = 10 - Medium-high drive capability - 500 - LSEDRV[1:0] = 11 - High drive capability - 630 - LSEDRV[1:0] = 00 - Low drive capability - - 0.50 LSEDRV[1:0] = 01 - Medium-low drive capability - - 0.75 LSEDRV[1:0] = 10 - Medium-high drive capability - - 1.70 LSEDRV[1:0] = 11 - High drive capability - - 2.70 VDD stabilized - 2 - Unit nA µA/V s 1. Guaranteed by design. 2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) until a stable 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer. For more information on the crystal selection, refer to application note Oscillator design guide for STM8AF/AL/S, STM32 MCUs and MPUs (AN2867). Figure 17. Typical application with a 32.768 kHz crystal Resonator with integrated capacitors CL1 OSC32_IN fLSE Drive programmable amplifier 32.768 kHz resonator OSC32_OUT CL2 MS30253V2 Note: No external resistors are required between OSC32_IN and OSC32_OUT, and it is forbidden to add one. In bypass mode, the LSE oscillator is switched off and the input pin is a standard GPIO. DS13293 Rev 5 103/150 139 Electrical characteristics STM32WL55/54xx The external clock signal has to respect the I/O characteristics detailed in Section 5.3.16: I/O port characteristics.The recommend clock input waveform is shown in the figure below. Figure 18. Low-speed external clock source AC timing diagram tw(LSEH) VLSEH 90% 10% VLSEL tr(LSE) t tf(LSE) tw(LSEL) TLSE MS19215V2 Table 64. Low-speed external user clock characteristics(1) – Bypass mode Symbol Parameter Conditions Min Typ Max Unit kHz fLSE_ext User external clock source frequency - 21.2 32.768 44.4 VLSEH OSC32_IN input pin highlevel voltage - 0.7 x VDDx - VDDx VLSEL OSC32_IN input pin lowlevel voltage - VSS - 0.3 x VDDx OSC32_IN high or low time - 250 - - ns –500 - +500 ppm tw(LSEH) tw(LSEL) ftolLSE Frequency tolerance Includes initial accuracy, stability over temperature, aging and frequency pulling V 1. Guaranteed by design. 5.3.10 Internal clock source characteristics Parameters given in the table below are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 26: General operating conditions. The provided curves are characterization results, not tested in production. High-speed internal (HSI16) RC oscillator Table 65. HSI16 oscillator characteristics(1) Symbol fHSI16 104/150 Parameter HSI16 frequency Conditions Min VDD = 3.0 V, TA = 30 °C 15.88 DS13293 Rev 5 Typ Max Unit - 16.08 MHz STM32WL55/54xx Electrical characteristics Table 65. HSI16 oscillator characteristics(1) (continued) Symbol Parameter TRIM HSI16 user trimming step DuCy(HSI16) Conditions Min Typ Max Trimming code is not a multiple of 48 0.2 0.3 0.4 Trimming code is a multiple of 48 –4 –6 –8 45 - 55 Tj = 0 to 85 °C –1 - 1 Tj = -40 to 125 °C –2 - 1.5 –0.1 - 0.05 Duty cycle (2) - ∆Temp(HSI16) HSI16 oscillator frequency drift ∆VDD(HSI16) HSI16 oscillator frequency drift over VDD VDD = 1.8 V to 3.6 V (HSI16)(2) HSI16 oscillator start-up time - - 0.8 1.2 tstab(HSI16)(2) HSI16 oscillator stabilization time - - 3 5 IDD(HSI16)(2) HSI16 oscillator power consumption - - 155 190 tsu Unit % μs μA 1. Guaranteed by characterization results. 2. Guaranteed by design. Figure 19. HSI16 frequency versus temperature MHz 16.4 +2 % 16.3 +1.5 % 16.2 +1 % 16.1 16 15.9 -1 % 15.8 -1.5 % 15.7 -2 % 15.6 -40 -20 0 20 Mean 40 60 Min DS13293 Rev 5 80 100 Max 120 °C MSv66006V3 105/150 139 Electrical characteristics STM32WL55/54xx Multi-speed internal (MSI) RC oscillator Table 66. MSI oscillator characteristics(1) Symbol Parameter Conditions MSI mode fMSI ∆TEMP(MSI)(2) 106/150 MSI frequency after factory calibration, done at VDD= 3 V and TA= 30 °C MSI oscillator frequency drift over temperature Min Typ Max Range 0 98.7 100 101.3 Range 1 197.4 200 202.6 Range 2 394.8 400 405.2 Range 3 789.6 800 810.4 Range 4 0.987 1 1.013 Range 5 1.974 2 2.026 Range 6 3.948 4 4.052 Range 7 7.896 8 8.104 Range 8 15.79 16 16.21 Range 9 23.69 24 24.31 Range 10 31.58 32 32.42 Range 11 47.38 48 48.62 Range 0 - 98.304 - Range 1 - 196.608 - Range 2 - 393.216 - Range 3 - 786.432 - Range 4 - 1.016 - PLL mode Range 5 XTAL= 32.768 kHz Range 6 - 1.999 - - 3.998 - Range 7 - 7.995 - Range 8 - 15.991 - Range 9 - 23.986 - Range 10 - 32.014 - Range 11 - 48.005 - –3.5 - 3 –8 - 6 MSI mode Tj = 0 to 85 °C Tj = -40 to 125 °C DS13293 Rev 5 Unit kHz MHz kHz MHz % STM32WL55/54xx Electrical characteristics Table 66. MSI oscillator characteristics(1) (continued) Symbol Parameter Conditions Min Typ VDD = 1.8 to 3.6 V –1.2 - VDD = 2.4 to 3.6 V –0.5 - VDD = 1.8 to 3.6 V –2.5 - VDD = 2.4 to 3.6 V –0.8 - VDD = 1.8 to 3.6 V –5 - VDD = 2.4 to 3.6 V –1.6 - Tj = -40 to 85 °C - 1 2 Tj = -40 to 125 °C - 2 4 Range 0 to 3 ∆VDD(MSI)(2) MSI oscillator frequency drift MSI mode over VDD (reference is 3 V) Range 4 to 7 Range 8 to 11 ∆FSAMPLING (MSI)(2)(4) CC jitter(MSI)(4) P jitter(MSI)(4) tSU(MSI)(4) tSTAB(MSI)(4) Frequency MSI mode variation in sampling mode(3) Max 0.5 0.7 % 1 RMS cycle-tocycle jitter PLL mode Range 11 - - 60 - RMS period jitter PLL mode Range 11 - - 50 - Range 0 - - 10 20 Range 1 - - 5 10 Range 2 - - 4 8 Range 3 - - 3 7 Range 4 to 7 - - 3 6 Range 8 to 11 - - 2.5 6 10 % of final frequency - - 0.25 0.5 5 % of final frequency - - 0.5 1.25 1 % of final frequency - - - 2.5 MSI oscillator start-up time MSI oscillator stabilization time PLL mode Range 11 DS13293 Rev 5 Unit ps μs ms 107/150 139 Electrical characteristics STM32WL55/54xx Table 66. MSI oscillator characteristics(1) (continued) Symbol IDD(MSI)(4) Parameter MSI oscillator power consumption Conditions MSI and PLL mode Typ Max Range 0 - - 0.6 1 Range 1 - - 0.8 1.2 Range 2 - - 1.2 1.7 Range 3 - - 1.9 2.5 Range 4 - - 4.7 6 Range 5 - - 6.5 9 Range 6 - - 11 15 Range 7 - - 18.5 25 Range 8 - - 62 80 Range 9 - - 85 110 Range 10 - - 110 130 Range 11 - - 155 190 1. Guaranteed by characterization results. 2. This is a deviation for an individual part once the initial frequency has been measured. 3. Sampling mode means LPRun and LPSleep modes with temperature sensor disabled. 4. Guaranteed by design. 108/150 Min DS13293 Rev 5 Unit µA STM32WL55/54xx Electrical characteristics Figure 20. Typical current consumption vs. MSI frequency Low-speed internal (LSI) RC oscillator Table 67. LSI oscillator characteristics(1) Symbol fLSI Parameter LSI frequency tSU(LSI)(2) (2) tSTAB(LSI) IDD(LSI)(2) Conditions Min Typ Max VDD = 3 V, TA = 30 °C 31.04 - 32.96 VDD = 1.8 to 3.6 V, Tj = -40 to 125 °C 29.5 - 34 - 80 130 - 125 180 - 110 180 LSI oscillator startup time LSI oscillator stabilization time 5 % of final frequency LSI oscillator power consumption - Unit kHz μs nA 1. Guaranteed by characterization results. 2. Guaranteed by design. DS13293 Rev 5 109/150 139 Electrical characteristics 5.3.11 STM32WL55/54xx PLL characteristics Parameters given in the table below are derived from tests performed under temperature and VDD supply voltage conditions summarized in Table 26: General operating conditions. Table 68. PLL characteristics(1) Symbol fPLL_IN Parameter Conditions Min Typ Max Unit PLL input clock(2) - 2.66 - 16 MHz PLL input clock duty cycle - 45 - 55 % Voltage scaling Range 1 3 - 48 Voltage scaling Range 2 3 - 16 Voltage scaling Range 1 12 - 48 Voltage scaling Range 2 12 - 16 Voltage scaling Range 1 12 - 48 Voltage scaling Range 2 12 - 16 Voltage scaling Range 1 96 - 344 Voltage scaling Range 2 96 - 128 - 15 40 - 40 - - 30 - VCO freq = 96 MHz - 200 260 VCO freq = 192 MHz - 300 380 VCO freq = 344 MHz - 520 650 fPLL_P_OUT PLL multiplier output clock P fPLL_Q_OUT PLL multiplier output clock Q fPLL_R_OUT PLL multiplier output clock R fVCO_OUT tLOCK Jitter IDD(PLL) PLL VCO output PLL lock time - RMS cycle-to-cycle jitter RMS period jitter PLL power consumption on VDD(1) System clock 48 MHz MHz μs ps μA 1. Guaranteed by design. 2. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between the two PLLs. 5.3.12 Flash memory characteristics Table 69. Flash memory characteristics(1) Symbol tprog tprog_row tprog_page tERASE tME 110/150 Parameter Conditions Typ Max Unit - 81.7 90.8 µs 5.2 5.5 Fast programming 3.8 4.0 Normal programming 41.8 43.0 Fast programming 30.4 31.0 64-bit programming time Normal One row (64 double-words) programming time programming One 2-Kbyte page programming time 2-Kbyte page erase time - 22.0 24.5 Mass erase time - 22.1 25.0 DS13293 Rev 5 ms STM32WL55/54xx Electrical characteristics Table 69. Flash memory characteristics(1) (continued) Symbol Parameter Conditions Average consumption from VDD IDD Maximum current (peak) Typ Max Write mode 3.4 - Erase mode 3.4 - Write mode 7 (for 6 µs) - Erase mode 7 (for 67 µs) - Unit mA 1. Guaranteed by design. Table 70. Flash memory endurance and data retention Symbol NEND Min(1) Unit TA = -40 to +105 °C 10 kcycles 1 kcycle(2) at TA = 85 °C 30 Parameter Endurance Conditions (2) at TA = 105 °C 1 kcycle tRET Data retention 10 15 kcycles(2) at TA = 55 °C 30 (2) at TA = 85 °C 15 10 kcycles 10 kcycles(2) at TA = 105 °C Years 10 1. Guaranteed by characterization results. 2. Cycling performed over the whole temperature range. 5.3.13 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling two LEDs through I/O ports). the device is stressed by the following electromagnetic events until a failure occurs (failure indicated by the LEDs): • ESD (electrostatic discharge, positive and negative) applied to all device pins until a functional disturbance occurs (test compliant with IEC 61000-4-2 standard) • FTB (burst of fast transient voltage, positive and negative) applied to VDD and VSS pins, through a 100 pF capacitor, until a functional disturbance occurs (test compliant with IEC 61000-4-4 standard) A device reset allows normal operations to be resumed. The test results given in the table below, are based on the EMS levels and classes defined in application note EMC design guide for STM8, STM32 and Legacy MCUs (AN1709). DS13293 Rev 5 111/150 139 Electrical characteristics STM32WL55/54xx Table 71. EMS characteristics Symbol Parameter Conditions Level/Class VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VDD = 3.3 V, TA = +25 °C, fHCLK = 48 MHz, conforming to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, TA = +25 °C, fHCLK = 48 MHz, conforming to IEC 61000-4-4 5A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. Note: Good EMC performance is highly dependent on the user application and the software in particular.It is then recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for the application. Software recommendations The software flow must include the management of runaway conditions such as: • corrupted program counter • unexpected reset • critical data corruption (control registers) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 s. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring. For more details, refer to the application note Software techniques for improving microcontrollers EMC performance (AN1015). Electromagnetic interference (EMI) The electromagnetic field emitted by the device is monitored while a simple application is executed (toggling two LEDs through the I/O ports). This emission test is compliant with the IEC 61967-2 standard, that specifies the test board and the pin loading. 112/150 DS13293 Rev 5 STM32WL55/54xx Electrical characteristics Table 72. EMI characteristics Symbol Parameter Monitored frequency band Conditions Peripheral ON SMPS OFF fHSE = /fCPUM4, fCPUM0] Unit fHSE = 32 MHz fCPU1 = fCPU2 = 48 MHz SEMI 5.3.14 Peak level VDD = 3.6 V, TA = 25 °C, UFBGA73 package compliant with IEC 61967-2 0.1 MHz to 30 MHz 1 30 MHz to 130 MHz 4 130 MHz to 1 GHz 0 1 GHz to 2 GHz 7 EMI level 2 dBµV - Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 s) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/JEDEC standard. Table 73. ESD absolute maximum ratings Symbol Ratings VESD(HBM) Electrostatic discharge voltage (human body model) Electrostatic discharge voltage VESD(CDM) (charge device model) Class Maximum value(1) TA = +25 °C, conforming to ANSI/ESDA/JEDEC JS-001 2 2000 TA = +25 °C, conforming to ANSI/ESD STM5.3.1 JS-002 C2a Conditions Unit V 500 1. Guaranteed by characterization results. Static latch-up The following complementary static tests are required on three parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin. • A current injection is applied to each input, output and configurable I/O pin. These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 74. Electrical sensitivities Symbol LU Parameter Static latch-up class Conditions TA = +105 °C conforming to JESD78A DS13293 Rev 5 Class Level A 113/150 139 Electrical characteristics 5.3.15 STM32WL55/54xx I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3V-capable I/O pins), must be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in case abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating-input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out-of-range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 µA/0 µA range) or other functional failure (for example reset occurrence or oscillator frequency deviation). The characterization results are given in the table below. Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection. Table 75. I/O current injection susceptibility(1) Functional susceptibility Symbol IINJ Description Negative injection Positive injection Injected current on all pins except PB0 –5 N/A(2) Injected current on PB0 pin –5 0 Unit mA 1. Guaranteed by characterization results. 2. Injection not possible. 5.3.16 I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in the table below are derived from tests performed under the conditions summarized in Table 26: General operating conditions. All I/Os are designed as CMOS- and TTL-compliant. Note: 114/150 For information on GPIO configuration, refer to the application note STM32 GPIO configuration for hardware settings and low-power consumption (AN4899). DS13293 Rev 5 STM32WL55/54xx Electrical characteristics Table 76. I/O static characteristics Symbol Parameter Conditions I/O input low-level voltage(1) VIL Vhys Typ Max - - 0.3 x VDD 0.7 x VDD - - 0.49 x VDD + 0.26 - - - 200 - 0 ≤ VIN ≤ Max(VDDXXX)(3)(4) - - ±100 Max(VDDXXX) ≤ VIN ≤ Max(VDDXXX) +1 V(2)(3)(4) - - 650 Max(VDDXXX) +1 V < VIN ≤ 5.5 V(2)(3)(4)(5)(6) - - 200(7) VIN ≤ Max(VDDXXX)(3) - - ±150 - - 2000 1.8 V < VDD < 3.6 V I/O input high-level voltage(2) TT, FT_xx and NRST I/O input hysteresis FT_xx input leakage current Ilkg TT input leakage current Unit 0.39 x VDD - 0.06 I/O input low-level voltage(2) I/O input high-level voltage(1) VIH Min Max(VDDXXX) ≤ VIN < 3.6 V(3) RPU Weak pull-up equivalent resistor(1) VIN = VSS 25 40 55 RPD Weak pull-down equivalent resistor(1) VIN = VDD 25 40 55 CIO I/O pin capacitance - 5 - V mV nA kΩ - pF 1. Tested in production. 2. Guaranteed by design, not tested in production. 3. Represents the pad leakage of the I/O itself. The total product pad leakage is given by ITotal_Ileak_max = 10 μA + number of I/Os where VIN is applied on the pad x Ilkg(Max). 4. Max(VDDXXX) is the maximum value among all the I/O supplies. 5. VIN must be lower than [Max(VDDXXX) + 3.6 V]. 6. Refer to the figure below. 7. To sustain a voltage higher than [Min(VDD, VDDA) + 0.3 V], the internal pull-up and pull-down resistors must be disabled on all FT_xx I/O. DS13293 Rev 5 115/150 139 Electrical characteristics STM32WL55/54xx All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters, as shown in the figure below. Figure 21. I/O input characteristics - VIL and VIH on all I/Os VIH spec 70 % VIL spec 30 % VIH rule VIL rule VIH spec TTL VIL spec TTL MSv64346V1 Output driving current The GPIOs can sink or source up to ±8 mA, and sink or source up to ± 20 mA (with a relaxed VOL/VOH). In the user application, the number of I/O pins that can drive current must be limited to respect the absolute maximum rating specified in Section 5.2: Absolute maximum ratings. The sum of the currents sourced by all the I/Os on VDD, plus the maximum consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating ΣIVDD (see Table 22: Voltage characteristics). The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of the MCU sunk on VSS, cannot exceed the absolute maximum rating ΣIVSS (see Table 22: Voltage characteristics). Output voltage levels Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 26: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT or TT unless otherwise specified). 116/150 DS13293 Rev 5 STM32WL55/54xx Electrical characteristics Table 77. Output voltage characteristics(1) Symbol Parameter Conditions VOL(2) Output low-level voltage for an I/O pin Min Max - 0.4 VDD - 0.4 - - 0.4 2.4 - - 1.3 VDD - 1.3 - - 0.4 VDD - 0.45 - |IIO| = 20 mA, VDD ≥ 2.7 V - 0.4 |IIO| = 10 mA, VDD ≥ 1.8 V - 0.4 VOH(2) CMOS port(3) |I Output high-level voltage for an I/O pin IO| = 8 mA, VDD ≥ 2.7 V VOL(2) Output low-level voltage for an I/O pin VOH(2) TTL port(3) Output high-level voltage for an I/O pin |IIO| = 8 mA, VDD ≥ 2.7 V VOL(2) Output low-level voltage for an I/O pin VOH(2) Output high-level voltage for an I/O pin VOL(2) Output low-level voltage for an I/O pin VOH(2) Output high-level voltage for an I/O pin Output low-level voltage for an FT I/O VOLFM+(2) pin in FM+ mode (FT I/O with “f” option) |IIO| = 20 mA, VDD ≥ 2.7 V |IIO| = 4 mA, VDD ≥ 1.8 V Unit V 1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 22: Voltage characteristics. The sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings Σ IIO. 2. Guaranteed by design. 3. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. Input/output AC characteristics Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 26: General operating conditions. Table 78. I/O AC characteristics(1)(2) OSPEEDx[1:0](3) Symbol Fmax Parameter Maximum frequency 0b00 Tr/Tf Output rise and fall time Conditions Min Max C = 50 pF, 2.7 V ≤ VDD ≤ 3.6 V - 5 C = 50 pF, 1.8 V ≤ VDD ≤ 2.7 V - 1 C = 10 pF, 2.7 V ≤ VDD ≤ 3.6 V - 10 C = 10 pF, 1.8 V ≤ VDD ≤ 2.7 V - 1.5 C = 50 pF, 2.7 V ≤ VDD ≤ 3.6 V - 25 C = 50 pF, 1.8 V ≤ VDD ≤ 2.7 V - 52 C = 10 pF, 2.7 V ≤ VDD ≤ 3.6 V - 17 C = 10 pF, 1.8 V ≤ VDD ≤ 2.7 V - 37 DS13293 Rev 5 Unit MHz ns 117/150 139 Electrical characteristics STM32WL55/54xx Table 78. I/O AC characteristics(1)(2) (continued) OSPEEDx[1:0](3) Symbol Fmax Parameter Conditions Maximum frequency 0b01 Tr/Tf Fmax Output rise and fall time Maximum frequency 0b10 Tr/Tf Fmax Output rise and fall time Maximum frequency 0b11 Tr/Tf Output rise and fall time Min Max C = 50 pF, 2.7 V ≤ VDD ≤ 3.6 V - 25 C = 50 pF, 1.8 V ≤ VDD ≤ 2.7 V - 10 C = 10 pF, 2.7 V ≤ VDD ≤ 3.6 V - 50 C = 10 pF, 1.8 V ≤ VDD ≤ 2.7 V - 15 C = 50 pF, 2.7 V ≤ VDD ≤ 3.6 V - 9 C = 50 pF, 1.8 V ≤ VDD ≤ 2.7 V - 16 C = 10 pF, 2.7 V ≤ VDD ≤ 3.6 V - 4.5 C = 10 pF, 1.8 V ≤ VDD ≤ 2.7 V - 9 C = 50 pF, 2.7 V ≤ VDD ≤ 3.6 V - 50 C = 50 pF, 1.8 V ≤ VDD ≤ 2.7 V - 25 C = 10 pF, 2.7 V ≤ VDD ≤ 3.6 V - 100(4) C = 10 pF, 1.8 V ≤ VDD ≤ 2.7 V - 37.5 C = 50 pF, 2.7 V ≤ VDD ≤ 3.6 V - 5.8 C = 50 pF, 1.8 V ≤ VDD ≤ 2.7 V - 11 C = 10 pF, 2.7 V ≤ VDD ≤ 3.6 V - 2.5 C = 10 pF, 1.8 V ≤ VDD ≤ 2.7 V - 5 C = 30 pF, 2.7 V ≤ VDD ≤ 3.6 V - 120(4) C = 30 pF, 1.8 V ≤ VDD ≤ 2.7 V - 50 C = 10 pF, 2.7 V ≤ VDD ≤ 3.6 V - 180(4) C = 10 pF, 1.8 V ≤ VDD ≤ 2.7 V - 75(4) C = 30 pF, 2.7 V ≤ VDD ≤ 3.6 V - 3.3 C = 30 pF, 1.8 V ≤ VDD ≤ 2.7 V - 6 C = 10 pF, 2.7 V ≤ VDD ≤ 3.6 V - 1.7 C = 10 pF, 1.8 V ≤ VDD ≤ 2.7 V - 3.3 Unit MHz ns MHz ns MHz ns 1. The maximum frequency is defined with (Tr+ Tf) ≤ 2/3 T, and duty cycle comprised between 45 and 55 %. 2. The fall and rise time are defined, respectively, between 90 and 10 %, and between 10 and 90 % of the output waveform. 3. OSPEED0[1:0] in GPIOA_OSPEEDR, GPIOB_OSPEEDR and GPIOC_OSPEEDR. OSPEED3[1:0] in GPIOH_OSPEEDR 4. This value represents the I/O capability but the maximum system frequency is limited to 48 MHz. 5.3.17 NRST pin characteristics The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor, RPU. Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 26: General operating conditions. 118/150 DS13293 Rev 5 STM32WL55/54xx Electrical characteristics Table 79. NRST pin characteristics(1) Symbol Conditions Min Typ Max VIL(NRST) NRST input low level voltage - - - 0.3 x VDD VIH(NRST) NRST input high level voltage - 0.7 x VDD - - Vhys(NRST) NRST Schmitt trigger voltage hysteresis - - 200 - mV VIN = VSS 25 40 55 kΩ - - - 70 1.8 V ≤ VDD ≤ 3.6 V 350 - - RPU VF(NRST) Parameter Weak pull-up equivalent resistor(2) NRST input, filtered pulse VNF(NRST) NRST input, not filtered pulse 1. Unit V ns Guaranteed by design. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10 %). Figure 22. Recommended NRST pin protection External reset circuit(1) VDD RPU NRST(2) Internal reset Filter 0.1 μF MS19878V3 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in the above table. Otherwise the reset is not be taken into account by the device. 3. The external capacitor on NRST must be placed as close as possible to the device. 5.3.18 Analog switches booster Table 80. Analog switches booster characteristics(1) Symbol Min Typ Max Unit 1.8 - 3.6 V - - 240 µs Booster consumption for 1.8 V ≤ VDD ≤ 2.0 V - - 250 IDD(BOOST) Booster consumption for 2.0 V ≤ VDD ≤ 2.7 V - - 500 Booster consumption for 2.7 V ≤ VDD ≤ 3.6 V - - 900 VDD Parameter Supply voltage tSU(BOOST) Booster startup time µA 1. Guaranteed by design. DS13293 Rev 5 119/150 139 Electrical characteristics 5.3.19 STM32WL55/54xx Analog-to-digital converter characteristics Unless otherwise specified, the parameters given in the table below are preliminary values derived from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage conditions summarized in Table 26: General operating conditions. Note: It is recommended to perform a calibration after each power-up. Table 81. ADC characteristics(1) Symbol Parameter Conditions(2) Min Typ Max VDDA Analog supply voltage - 1.62 - 3.6 VREF+ Positive reference voltage 2 - VDDA fADC fs fTRIG ADC clock frequency Sampling rate External trigger frequency VDDA ≥ 2 V VDDA < 2 V Unit V VDDA Range 1 0.14 - 35 Range 2 0.14 - 16 12 bits, VDDA > 2 V - - 2.50 10 bits, VDDA > 2 V - - 2.92 8 bits, VDDA > 2 V - - 3.50 6 bits, VDDA > 2 V - - 4.38 12 bits, VDDA ≤ 2 V - - 2.18 10 bits, VDDA ≤ 2 V - - 2.50 8 bits, VDDA ≤ 2 V - - 2.92 6 bits, VDDA ≤ 2 V - - 3.50 fADC = 35 MHz, 12 bits, VDDA > 2 V - - 2.35 fADC = 35 MHz, 12 bits, VDDA ≤ 2 V - - 2.18 12 bits, VDDA > 2 V - - fADC/15 12 bits, VDDA ≤ 2 V - - fADC/17 MHz Msps MHz VAIN Conversion voltage range - VSS - VREF+ V RAIN External input impedance - - - 50 kΩ CADC Internal sample and hold capacitor - - 5 - pF tSTAB ADC power-up time - tCAL Calibration time 120/150 fADC = 35 MHz - DS13293 Rev 5 2 Conversion cycle 2.35 µs 82 1/fADC STM32WL55/54xx Electrical characteristics Table 81. ADC characteristics(1) (continued) Symbol Parameter Conditions(2) Min Typ Max Unit 2 - 3 1/fADC CKMODE = 00 tLATR ts Trigger conversion latency CKMODE = 01 6.5 CKMODE = 10 12.5 CKMODE = 11 3.5 fADC = 35 MHz Sampling time ADC voltage regulator tADCVREG_STUP start-up time tCONV tIDLE IDDA(ADC) IDDV(ADC) Total conversion time (including sampling time) ADC consumption from VDDA ADC consumption from VREF+ single ended mode 0.043 - 4.59 µs - 1.5 - 160.5 1/fADC - - - 20 µs 0.40 - 4.95 µs fADC = 35 MHz Resolution = 12 bits Resolution = 12 bits Laps of time allowed between two conversions without rearm 1/fPCLK ts + 12.5 cycles for successive approximation = 14 to 173 - - - 100 fs = 2.5 Msps - 410 - fs = 1 Msps - 164 - fs = 10 ksps - 17 - fs = 2.5 Msps - 65 - fs = 1 Msps - 26 - fs = 10 ksps - 0.26 - 1/fADC µs µA µA 1. Guaranteed by design 2. I/O analog switch voltage booster must be enabled (BOOSTEN = 1 in the SYSCFG_CFGR1) when VDDA < 2.4 V and disabled when VDDA ≥ 2.4 V. Table 82. Maximum ADC RAIN values Resolution 12 bits Sampling cycle at 35 MHz (ns) Sampling time at 35 MHz (ns) Max. RAIN(1)(2)(Ω) 1.5(3) 43 50 3.5 100 680 7.5 214 2200 12.5 357 4700 19.5 557 8200 39.5 1129 15000 79.5 2271 33000 160.5 4586 50000 DS13293 Rev 5 121/150 139 Electrical characteristics STM32WL55/54xx Table 82. Maximum ADC RAIN values (continued) Resolution Sampling cycle at 35 MHz (ns) Sampling time at 35 MHz (ns) Max. RAIN(1)(2)(Ω) 1.5(3) 43 68 3.5 100 820 7.5 214 3300 12.5 357 5600 19.5 557 10000 39.5 1129 22000 79.5 2271 39000 160.5 4586 50000 43 82 3.5 100 1500 7.5 214 3900 12.5 357 6800 19.5 557 12000 39.5 1129 27000 79.5 2271 50000 160.5 4586 50000 43 390 3.5 100 2200 7.5 214 5600 12.5 357 10000 19.5 557 15000 39.5 1129 33000 79.5 2271 50000 160.5 4586 50000 10 bits (3) 1.5 8 bits (3) 1.5 6 bits 1. Guaranteed by design. 2. I/O analog switch voltage booster must be enabled (BOOSTEN = 1 in the SYSCFG_CFGR1) when VDDA < 2.4 V and disabled when VDDA ≥ 2.4 V. 3. Only allowed with VDDA > 2 V Table 83. ADC accuracy(1)(2)(3) Symbol ET 122/150 Parameter Total unadjusted error Conditions(4) Min Typ VDDA = VREF+ = 3 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = 25 °C - 3 4 2 V < VDDA, VREF+ < 3.6 V, fADC = 35 MHz; fs ≤ 2.5 Msps, TA = entire range - 3 6.5 1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range Range 1: fADC = 35 MHz, fs ≤ 2.2 Msps Range 2: fADC = 16 MHz, fs ≤ 1.1 Msps - DS13293 Rev 5 Max Unit LSB 3 7.5 STM32WL55/54xx Electrical characteristics Table 83. ADC accuracy(1)(2)(3) (continued) Symbol EO EG ED Parameter Offset error Gain error Conditions(4) Min Typ VDDA = VREF+ = 3 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = 25 °C - 1.5 2 2 V < VDDA, VREF+ < 3.6 V, fADC = 35 MHz; fs ≤ 2.5 Msps, TA = entire range - 1.5 4.5 1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range Range 1: fADC = 35 MHz, fs ≤ 2.2 Msps Range 2: fADC = 16 MHz, fs ≤ 1.1 Msps - 1.5 5.5 VDDA = VREF+ = 3 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = 25 °C - 3 3.5 2 V < VDDA, VREF+ < 3.6 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = entire range - 3 5 1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range Range 1: fADC = 35 MHz, fs ≤ 2.2 Msps Range 2: fADC = 16 MHz, fs ≤ 1.1 Msps - 3 6.5 VDDA = VREF+ = 3 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = 25 °C - 1.2 1.5 - 1.2 1.5 2 V < VDDA, VREF+ < 3.6 V, Differential fADC = 35 MHz, fs ≤ 2.5 Msps, TA = entire range linearity error 1.62 V < VDDA = VREF+ < 3.6 V,TA = entire range Range 1: fADC = 35 MHz, fs ≤ 2.2 Msps Range 2: fADC = 16 MHz, fs ≤ 1.1 Msps VDDA = VREF+ = 3 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = 25 °C EL ENOB SINAD SNR 2 V < VDDA, VREF+ < 3.6 V, Integral fADC = 35 MHz, fs ≤ 2.5 Msps, TA = entire range linearity error 1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range Range 1: fADC = 35 MHz, fs ≤ 2.2 Msps Range 2: fADC = 16 MHz, fs ≤ 1.1 Msps Effective number of bits Signal-tonoise and distortion ratio Signal-tonoise ratio Max Unit LSB LSB LSB - 1.2 1.5 - 2.5 3 - 2.5 3 LSB - 2.5 3.5 VDDA = VREF+ = 3 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = 25 °C 10.1 10.2 - 2 V < VDDA, VREF+ < 3.6 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = entire range 9.6 - 1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range Range 1: fADC = 35 MHz, fs ≤ 2.2 Msps Range 2: fADC = 16 MHz, fs ≤ 1.1 Msps 9.5 10.2 - VDDA = VREF+ = 3 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = 25 °C 62.5 63 - 2 V < VDDA, VREF+ < 3.6 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = entire range 59.5 63 - 10.2 bit dB 1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range Range 1: fADC = 35 MHz, fs ≤ 2.2 Msps Range 2: fADC = 16 MHz, fs ≤ 1.1 Msps 59 63 - VDDA = VREF+ = 3 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = 25 °C 63 64 - 2 V < VDDA, VREF+ < 3.6 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = entire range 60 64 - 1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range Range 1: fADC = 35 MHz, fs ≤ 2.2 Msps Range 2: fADC = 16 MHz, fs ≤ 1.1 Msps 60 DS13293 Rev 5 dB 64 - 123/150 139 Electrical characteristics STM32WL55/54xx Table 83. ADC accuracy(1)(2)(3) (continued) Symbol THD Conditions(4) Min Typ Max Unit VDDA = VREF+ = 3 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = 25 °C - -74 -73 2 V < VDDA, VREF+ < 3.6 V, fADC = 35 MHz, fs ≤ 2.5 Msps, TA = entire range - -74 -70 1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range Range 1: fADC = 35 MHz, fs ≤ 2.2 Msps Range 2: fADC = 16 MHz, fs ≤ 1.1 Msps - Parameter Total harmonic distortion dB -74 -70 1. Based on characterization results, not tested in production. 2. ADC DC accuracy values are measured after internal calibration. 3. Injecting negative current on any analog input pin significantly reduces the accuracy of A-to-D conversion of signal on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins susceptible to receive negative current. 4. I/O analog switch voltage booster enabled (BOOSTEN = 1 in the SYSCFG_CFGR1) when VDDA < 2.4 V and disabled when VDDA ≥ 2.4 V. Figure 23. ADC accuracy characteristics VREF+ [1LSB = 2n Output code VDDA (or )] 2n EG (1) Example of an actual transfer curve (2) Ideal transfer curve (3) End-point correlation line 2n-1 2n-2 2n-3 (2) (3) ET EL EO ED (2n/2n)*VREF+ (2n-1/2n)*VREF+ (2n-2/2n)*VREF+ (2n-3/2n)*VREF+ (7/2n)*VREF+ (6/2n)*VREF+ (5/2n)*VREF+ (4/2n)*VREF+ (3/2n)*VREF+ 1 LSB ideal (2/2n)*VREF+ 0 VSSA (1) (1/2n)*VREF+ 7 6 5 4 3 2 1 n = ADC resolution ET = total unadjusted error: maximum deviation between the actual and ideal transfer curves EO = offset error: maximum deviation between the first actual transition and the first ideal one EG = gain error: deviation between the last ideal transition and the last actual one ED = differential linearity error: maximum deviation between actual steps and the ideal one EL = integral linearity error: maximum deviation between any actual transition and the end point correlation line VREF+ (VDDA) MSv19880V6 124/150 DS13293 Rev 5 STM32WL55/54xx Electrical characteristics Figure 24. Typical connection diagram when using the ADC with FT/TT pins featuring analog switch function VREF+(4) VDDA(4) Sample-and-hold ADC converter I/O analog switch RAIN(1) RADC Converter Cparasitic(2) VAIN Ilkg(3) VSS CADC Sampling switch with multiplexing VSS VSSA MSv67871V3 1. Refer to Table 83: ADC accuracy for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (refer to Table 76: I/O static characteristics for the value of the pad capacitance). A high Cparasitic value downgrades the conversion accuracy. To remedy this, fADC must be reduced. 3. Refer to Table 76: I/O static characteristics for the values of Ilkg. 4. Refer to Section 3.10.1: Power supply schemes. General PCB design guidelines Power supply decoupling must be performed as shown in Figure 14: Power supply scheme. The 100 nF capacitor must be ceramic (good quality) and must be placed as close as possible to the chip. 5.3.20 Temperature sensor characteristics Table 84. TS characteristics Symbol TL(1) Avg_Slope(2) Parameter VTS linearity with temperature Typ Max Unit - ±1 ±2 °C 2.3 2.5 2.7 mV/°C °C)(3) 0.742 0.76 0.785 V tSTART (TS_BUF)(1) Sensor buffer startup time in continuous mode(4) - 8 15 µs tSTART(1) Startup time when entering in continuous mode(4) - 70 120 µs tS_temp(1) ADC sampling time when reading the temperature 5 - - µs IDD(TS)(1) Temperature sensor consumption from VDD, when selected by the ADC - 4.7 7 µA V30 Average slope Min Voltage at 30 °C (±5 1. Guaranteed by design. 2. Guaranteed by characterization results. 3. Measured at VDDA = 3.3 V ±10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 13: Temperature sensor calibration values. 4. Continuous mode means Run and Sleep modes, or temperature sensor enable in LPRun and LPSleep modes. DS13293 Rev 5 125/150 139 Electrical characteristics 5.3.21 STM32WL55/54xx VBAT monitoring characteristics Table 85. VBAT monitoring characteristics(1) Symbol Parameter Min Typ Max Unit R Resistor bridge for VBAT(2) - 3 * 39 - kΩ Q Ratio on VBAT measurement - 3 - - Error on Q -10 - 10 % ADC sampling time when reading VBAT 12 - - µs Er (3) (3) tS_vbat 1. 1.55 V < VBAT < 3.6 V. 2. VDD on STM32WL55/4UxYx devices. 3. Guaranteed by design. Table 86. VBAT charging characteristics Symbol RBC 5.3.22 Parameter Conditions Battery charging resistor Min Typ Max VBRS = 0 - 5 - VBRS = 1 - 1.5 - Unit kΩ Voltage reference buffer characteristics Table 87. VREFBUF characteristics(1) Symbol Parameter Conditions Min Typ Max VRS = 0 2.4 - 3.6 VRS = 1 2.8 - 3.6 VRS = 0 1.62 - 2.4 VRS = 1 1.62 - 2.8 VRS = 0 2.044 2.048 2.052 VRS = 1 2.495 2.5 2.505 VRS = 0 Normal mode Voltage reference output ILOAD=100 μA, -40 °C < TJ < 125 °C VRS = 1 2.030 2.048 2.057 2.478 2.500 2.509 VRS = 0 VDDA - 250 mV - VDDA VRS = 1 VDDA - 250 mV - VDDA Normal mode VDDA Analog supply voltage Degraded mode(2) Normal mode ILOAD=100 μA, TJ = 30 °C VREFBUF_ OUT Degraded mode(2) Unit V Trim step resolution - - - ±0.05 ±0.1 % CL Load capacitor - - 0.5 1 1.5 µF esr Equivalent series resistor of Cload - - - - 2 Ω Iload Static load current - - - - 4 mA TRIM 126/150 DS13293 Rev 5 STM32WL55/54xx Electrical characteristics Table 87. VREFBUF characteristics(1) (continued) Symbol Parameter Conditions Min Typ Max Unit Iline_reg Line regulation 2.8 V ≤ VDDA ≤ 3.6 V Normal mode - - 2000 ppm /V Iload_reg Load regulation 500 μA ≤ Iload ≤ 4 mA Normal mode - 50 500 ppm /mA -40 °C < TJ < +105 °C - - 0 °C < TJ < +50 °C - - DC 40 55 - 100 kHz 25 40 - CL = 0.5 µF(3) - 300 350 (3) - 500 650 µF(3) - 650 800 - 8 - Iload = 0 µA - 16 25 Iload = 500 µA - 18 30 Iload = 4 mA - 35 50 Tcoeff PSRR tSTART Temperature coefficient Power supply rejection Startup time CL = 1.1 µF CL = 1.5 IINRUSH Control of maximum DC current drive on VREFBUF_OUT during start-up phase (4) VREFBUF IDDA consumption (VREFBUF) from VDDA - - ±[Tcoeff _ vrefint + 50] ppm /°C ±[T coeff_vrefint + 50] dB µs mA µA 1. Guaranteed by design or characterization. Not tested in production. 2. In degraded mode, VREFBUF cannot maintain accurately the output voltage that follows (VDDA - drop voltage). 3. The capacitive load must include a 100 nF capacitor in order to cut-off the high-frequency noise. 4. To correctly control the VREFBUF in-rush current during start-up phase and scaling change, the VDDA voltage must be in the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for VRS = 0 and VRS = 1. Figure 25. VREFOUT_TEMP when VRS = 0 V 2.06 Max 2.055 2.05 2.045 Mean 2.04 2.035 Min 2.03 2.025 -40 -20 0 20 40 60 80 100 120 °C MSv62522V2 DS13293 Rev 5 127/150 139 Electrical characteristics STM32WL55/54xx Figure 26. VREFOUT_TEMP when VRS = 1 V 2.51 Max 2.505 2.5 2.495 Mean 2.49 2.485 2.48 Min 2.475 -40 5.3.23 -20 0 20 40 60 80 120 °C 100 MSv62523V2 Digital-to-analog converter characteristics Table 88. DAC characteristics(1) Symbol VDDA VREF+ Parameter Analog supply voltage for DAC ON Positive reference voltage Conditions Min Typ Max Unit DAC output buffer OFF, DAC_OUT pin not connected (internal connection only) 1.71 3.6 V Other modes 1.80 - DAC output buffer OFF, DAC_OUT pin not connected (internal connection only) 1.71 VDDA V Other modes 1.80 - Connected to VSS 5 - - Connected to VDDA 25 - - 9.6 11.7 13.8 RL Resistive load DAC output buffer ON RO Output impedance DAC output buffer OFF Output impedance sampleand-hold mode, output buffer ON VDD = 2.7 V - - 2 RBON VDD = 2.0 V - - 3.5 Output impedance sample and hold mode, output buffer OFF VDD = 2.7 V - - 16.5 RBOFF VDD = 2.0 V - - 18.0 DAC output buffer ON - - 50 pF Sample-and-hold mode - 0.1 1 µF DAC output buffer ON 0.2 - VREF+ - 0.2 V DAC output buffer OFF 0 - VREF+ CL CSH VDAC_OUT 128/150 Capacitive load Voltage on DAC_OUT output DS13293 Rev 5 kΩ STM32WL55/54xx Electrical characteristics Table 88. DAC characteristics(1) (continued) Symbol Parameter Conditions ±0.5 LSB Normal mode Settling time (full scale: for ±1 LSB DAC output a 12-bit code transition ±2 LSB between the lowest and the buffer ON tSETTLING highest input codes, when CL ≤ 50 pF ±4 LSB RL ≥ 5 kΩ DAC_OUT reaches final ±8 LSB value ±0.5 LSB, ±1 LSB, ±2 LSB, ±4 LSB, ±8 LSB) Normal mode DAC output buffer OFF, ±1LSB, CL = 10 pF Min Typ Max - 1.7 3 - 1.6 2.9 - 1.55 2.85 - 1.48 2.8 - 1.4 2.75 - 2 2.5 4.2 7.5 Wakeup time from off state (setting the ENx bit in the DAC control register) until final value ±1 LSB Normal mode DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ - Normal mode DAC output buffer OFF, CL ≤ 10 pF - 2 5 PSRR VDDA supply rejection ratio Normal mode DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ, DC - -80 -28 DAC_MCR:MODEx[2:0] = 000 or 001 CL ≤ 50 pF, RL ≥ 5 kΩ 1 - - TW_to_W Minimum time between two consecutive writes into the DAC_DORx register to guarantee a correct DAC_OUT for a small variation of the input code (1 LSB) DAC_MCR:MODEx[2:0] = 010 or 011 CL ≤ 10 pF 1.4 - - - 0.7 3.5 tWAKEUP (2) tSAMP Sampling time in sample and hold mode (code transition between the lowest input code and the highest input code when DACOUT reaches final value ±1LSB) DAC output buffer DAC_OUT pin ON, CSH = 100 nF connected DAC output buffer Unit µs µs dB µs ms - 10.5 18 DAC_OUT pin not connected DAC output buffer (internal OFF connection only) - 2 3.5 µs Sample and hold mode, DAC_OUT pin connected - - -(3) nA 5.2 7 8.8 pF 50 - - µs - 1500 - - 750 - OFF, CSH = 100 nF Ileak Output leakage current CIint Internal sample and hold capacitor tTRIM Middle code offset trim time DAC output buffer ON Voffset Middle code offset for 1 trim VREF+ = 3.6 V code step VREF+ = 1.8 V - DS13293 Rev 5 µV 129/150 139 Electrical characteristics STM32WL55/54xx Table 88. DAC characteristics(1) (continued) Symbol Parameter Conditions DAC output buffer ON DAC consumption from IDDA(DAC) VDDA DAC output buffer OFF Min Typ Max No load, middle code (0x800) - 315 500 No load, worst code (0xF1C) - 450 670 No load, middle code (0x800) - - 0.2 Sample and hold mode, CSH = 100 nF DAC output buffer ON DAC consumption from IDDV(DAC) VREF+ DAC output buffer OFF - No load, middle code (0x800) - 185 240 No load, worst code (0xF1C) - 340 400 No load, middle code (0x800) - 155 205 µA Sample and hold mode, buffer ON, CSH = 100 nF, worst case - 400 x 185 x Ton/(Ton Ton/(Ton +Toff)(4) +Toff)(4) Sample and hold mode, buffer OFF, CSH = 100 nF, worst case - 205 x 155 x Ton/(Ton Ton/(Ton +Toff)(4) +Toff)(4) 2. In buffered mode, the output can overshoot above the final value for low input code (starting from min value). 3. Refer to Table 76: I/O static characteristics. 4. Ton is the Refresh phase duration. Toff is the Hold phase duration. Refer to the reference manual for more details. Figure 27. 12-bit buffered/non-buffered DAC Buffered/non-buffered DAC Buffer(1) RLOAD DAC_OUTx CLOAD (1) The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. 130/150 DS13293 Rev 5 µA 315 x 670 x Ton/(Ton Ton/(Ton +Toff)(4) +Toff)(4) 1. Guaranteed by design. 12-bit digital-to-analog converter Unit MSv47959V2 STM32WL55/54xx Electrical characteristics Table 89. DAC accuracy(1) . Symbol DNL - INL Offset Offset1 Parameter Conditions - - ±2 DAC output buffer OFF - - ±2 Monotonicity 10 bits Integral non linearity Offset error at code 0x800(3) Offset error at code 0x001(4) TUE Total unadjusted error SINAD Total unadjusted error after calibration Signal-to-noise ratio Total harmonic distortion Signal-to-noise and distortion ratio Unit Guaranteed DAC output buffer ON, CL ≤ 50 pF, RL ≥ 5 kΩ - - ±4 DAC output buffer OFF, CL ≤ 50 pF, no RL - - ±4 VREF+ = 3.6 V - - ±12 VREF+ = 1.8 V - - ±25 DAC output buffer OFF, CL ≤ 50 pF, no RL - - ±8 DAC output buffer OFF, CL ≤ 50 pF, no RL - - ±5 VREF+ = 3.6 V - - ±5 VREF+ = 1.8 V - - ±7 DAC output buffer ON, CL ≤ 50 pF, RL ≥ 5 kΩ - - ±0.5 DAC output buffer OFF, CL ≤ 50 pF, no RL - - ±0.5 DAC output buffer ON, CL ≤ 50 pF, RL ≥ 5 kΩ - - ±30 DAC output buffer OFF, CL ≤ 50 pF no RL - - ±12 DAC output buffer ON, CL ≤ 50 pF, RL ≥ 5 kΩ - - ±23 DAC output buffer ON, CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz, BW 500 kHz - 71.2 - DAC output buffer OFF, CL ≤ 50 pF, no RL, 1 kHz, BW 500 kHz - 71.6 - DAC output buffer ON, CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz - -78 - DAC output buffer OFF, CL ≤ 50 pF, no RL, 1 kHz - -79 - DAC output buffer ON, CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz - 70.4 - DAC output buffer OFF, CL ≤ 50 pF, no RL, 1 kHz - (3) Gain error(5) THD Max DAC output buffer ON Gain SNR Typ Differential non linearity (2) DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ Offset Error at code DAC output buffer ON OffsetCal 0x800 after calibration CL ≤ 50 pF, RL ≥ 5 kΩ TUECal Min DS13293 Rev 5 LSB % LSB LSB dB dB dB 71 - 131/150 139 Electrical characteristics STM32WL55/54xx Table 89. DAC accuracy(1) (continued) Symbol ENOB Parameter Effective number of bits Conditions Min Typ Max DAC output buffer ON, CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz - 11.4 - DAC output buffer OFF, CL ≤ 50 pF, no RL, 1 kHz - Unit bits 11.5 - 1. Guaranteed by design. 2. Difference between two consecutive codes - 1 LSB. 3. Difference between measured value at code i and the value at code i on a line drawn between code 0 and last code 4095. 4. Difference between the value measured at code (0x001) and the ideal value. 5. Difference between the ideal slope of the transfer function and the measured slope computed from code 0x000 and 0xFFF when buffer is OFF, and from code giving 0.2 V and (VREF+ – 0.2) V when buffer is ON. 5.3.24 Comparator characteristics Table 90. COMP characteristics(1) Symbol Conditions Min Typ Max Analog supply voltage - 1.62 - 3.6 VIN Comparator input voltage range - 0 - VDDA V VBG(2) Scaler input voltage - VSC Scaler offset voltage - VDDA IDDA(SCALER) Parameter ±5 ±10 mV - 200 300 nA - 0.8 1 µA - 100 200 µs VDDA ≥ 2.7 V - - 5 VDDA < 2.7 V - - 7 VDDA ≥ 2.7 V - - 15 VDDA < 2.7 V - - 25 - - 40 VDDA ≥ 2.7 V - 55 80 VDDA < 2.7 V - 55 100 Medium mode - 0.55 0.9 Ultra-low-power mode - 4 7 Full common mode range - ±5 ±20 No hysteresis - 0 - Low hysteresis - 8 - Medium hysteresis - 15 - High hysteresis - 27 - tSTART_SCALER Scaler startup time tSTART High-speed mode Medium mode Ultra-low-power mode tD (3) Voffset Vhys 132/150 Propagation delay with 100 mV overdrive Comparator offset error Comparator hysteresis VREFINT - Scaler static consumption BRG_EN = 0 (bridge disabled) from VDDA BRG_EN = 1 (bridge enabled) Comparator startup time to reach propagation delay specification Unit High-speed mode DS13293 Rev 5 µs ns µs mV mV STM32WL55/54xx Electrical characteristics Table 90. COMP characteristics(1) (continued) Symbol Parameter Conditions Ultra-lowpower mode IDDA(COMP) Comparator consumption from VDDA Medium mode High-speed mode Min Typ Max Static - 400 600 With 50 kHz ±100 mV overdrive square signal - 1200 - Static - 5 7 With 50 kHz ±100 mV overdrive square signal - 6 - Static - 70 100 With 50 kHz ±100 mV overdrive square signal - 75 - Unit nA µA 1. Guaranteed by design, unless otherwise specified. 2. Refer to Table 36: Embedded internal voltage reference. 3. Guaranteed by characterization results. 5.3.25 Timers characteristics Parameters given in the following tables are guaranteed by design. Refer to Section 5.3.16: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 91. TIMx(1) characteristics Symbol Parameter tres(TIM) Timer resolution time fEXT ResTIM tCOUNTER tMAX_COUNT Conditions Min Max Unit - 1 - tTIMxCLK 15.625 - ns 0 fTIMxCLK/2 0 40 TIM1, TIM16, TIM17 - 16 TIM2 - 32 1 65536 tTIMxCLK 0.015625 1024 µs - 65536 × 65536 tTIMxCLK - 67.10 s fTIMxCLK = 48 MHz Timer external clock frequency on CH1 to CH4 fTIMxCLK = 48 MHz Timer resolution 16-bit counter clock period Maximum possible count with 32-bit counter fTIMxCLK = 48 MHz fTIMxCLK = 48 MHz MHz bit 1. TIMx, is used as a general term where x stands for 1, 2, 16 or 17. DS13293 Rev 5 133/150 139 Electrical characteristics STM32WL55/54xx Table 92. IWDG min/max timeout period at 32 kHz (LSI)(1) Prescaler divider PR[2:0] bits Min timeout (RL[11:0] = 0x000) Max timeout (RL[11:0] = 0xFFF) /4 0x0 0.125 512 /8 0x1 0.250 1024 /16 0x2 0.500 2048 /32 0x3 1.0 4096 /64 0x4 2.0 8192 /128 0x5 4.0 16384 /256 0x6 or 0x7 8.0 32768 Unit ms 1. The exact timings still depend on the phasing of the APB interface clock versus the LSI clock, hence there is always a full RC period of uncertainty. 5.3.26 Communication interfaces characteristics I2C interface characteristics The I2C interface meets the timings requirements of the I2C-bus specification and user manual rev. 03 for: • Standard-mode (Sm): bitrate up to 100 Kbit/s • Fast-mode (Fm): bitrate up to 400 Kbit/s • Fast-mode Plus (Fm+): bitrate up to 1 Mbit/s The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to the reference manual) and when the II2CCLK frequency is greater than the minimum shown in the table below. Table 93. Minimum I2CCLK frequency in all I2C modes Symbol Parameter Conditions Standard-mode f(I2CCLK) I2CCLK frequency Fast-mode Fast-mode Plus Min - 2 Analog filter ON, DNF = 0 8 Analog filter OFF, DNF = 1 9 Analog filter ON, DNF = 0 18 Analog filter OFF, DNF = 1 16 Unit MHz The SDA and SCL I/O requirements are met with the following restrictions: • The SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. • The 20 mA output drive requirement in Fast-mode Plus is partially supported. This limits the maximum load Cload supported in Fast-mode Plus, given by these formulas: – tr(SDA/SCL) = 0.8473 x Rp x Cload – Rp(min) = [VDD - VOL(max)] / IOL(max) where Rp is the I2C lines pull-up. Refer to Section 5.3.16: I/O port characteristics for more details. 134/150 DS13293 Rev 5 STM32WL55/54xx Electrical characteristics All I2C SDA and SCL I/Os embed an analog filter (refer to the table below for its characteristics). Table 94. I2C analog filter characteristics(1) Symbol tAF Parameter Min (2) Maximum pulse width of spikes that are suppressed by the analog filter 50 Max 100 (3) Unit ns 1. Guaranteed by characterization. 2. Spikes with widths below tAF(min) filtered. 3. Spikes with widths above tAF(max) not filtered. USART characteristics Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature, fPCLKx frequency and supply voltage conditions summarized in Table 26: General operating conditions, with the following configuration: • OSPEEDRy[1:0] set to 10 (output speed) • capacitive load C = 30 pF • measurement points at CMOS levels: 0.5 x VDD Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, CK, TX, and RX for USART). Table 95. USART characteristics Symbol fCK Parameter USART clock frequency Conditions Min Typ Max Master mode - - 6 Slave mode - - 16 tsu(NSS) NSS setup time Slave mode tker + 5 - - th(NSS) NSS hold time Slave mode 2 - - tw(CKH) CK high time tw(CKL) CK low time Master mode 1 / fCK / 2 - 1 1 / fCK / 2 1 / fCK / 2 + 1 tsu(RX) Data input setup time Master mode 22 - - Slave mode 3 - - Master mode 0 - - Slave mode 1 - - Master mode - 13 22 Slave mode - 0.5 1 Master mode 10 - - Slave mode 0 - - th(RX) Data input hold time tv(TX) Data output valid time th(TX) Data output hold time DS13293 Rev 5 Unit MHz ns 135/150 139 Electrical characteristics STM32WL55/54xx SPI characteristics Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature, fPCLKx frequency and supply voltage conditions summarized in Table 26: General operating conditions, with the following configuration: • output speed set to OSPEEDRy[1:0] = 11 • capacitive load C = 30 pF • measurements done at CMOS levels: 0.5 x VDD Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI). Table 96. SPI characteristics(1) Symbol Parameter fSCK SPI clock frequency 1/tc(SCK) Conditions Min Typ Max Master mode 1.8 < VDD < 3.6 V, Range 1 24 Master transmitter mode 1.8 < VDD < 3.6 V, Range 1 24 Slave receiver mode 1.8 < VDD < 3.6 V, Range 1 - - 24 Slave mode transmitter/full duplex 2.7 < VDD < 3.6 V, Range 1 24(2) Slave mode transmitter/full duplex 1.8 < VDD < 3.6 V, Range 1 24(2) tsu(NSS) NSS setup time Slave mode, SPI prescaler = 2 3 x TPCLK - - th(NSS) Slave mode, SPI prescaler = 2 2 x TPCLK - - Master mode TPCLK - 1 TPCLK TPCLK + 1 Master mode 1 - - Slave mode 1 - - Master mode 6 - - Slave mode 2 - - 9 12 34 9 10 16 NSS hold time tw(SCKH) SCK high and low time tw(SCKL) tsu(MI) tsu(SI) th(MI) th(SI) Data input setup time Data input hold time ta(SO) Data output access time tdis(SO) Data output disable time 136/150 Slave mode DS13293 Rev 5 Unit MHz - ns STM32WL55/54xx Electrical characteristics Table 96. SPI characteristics(1) (continued) Symbol tv(SO) Parameter Data output valid time tv(MO) th(SO) th(MO) Data output hold time Conditions Min Typ Max Slave mode, 2.7 < VDD < 3.6 V Range 1 - 10 13.5 Slave mode, 2.7 < VDD < 3.6 V Range 2 - 17 18 Slave mode, 1.8 < VDD < 3.6 V Range 1 - 10 20 Slave mode, 1.8 < VDD < 3.6 V Range 2 - 17 24 Master mode (after enable edge) - 1 1.5 Slave mode (after enable edge) 8 - - Master mode (after enable edge) 0 - - Unit ns 1. Guaranteed by characterization results. 2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI), that has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50 %. Figure 28. SPI timing diagram - Slave mode and CPHA = 0 SCK input NSS input MISO OUTPUT MSB OUT BIT6 OUT MSB IN BIT1 IN LSB OUT (SI) MOSI INPUT LSB IN (SI) DS13293 Rev 5 137/150 139 Electrical characteristics STM32WL55/54xx Figure 29. SPI timing diagram - Slave mode and CPHA = 1 NSS input SCK input tSU(NSS) CPHA=1 CPOL=0 CPHA=1 CPOL=1 th(NSS) tc(SCK) tw(SCKH) tw(SCKL) th(SO) tv(SO) ta(SO) MISO OUTPUT MSB OUT tdis(SO) LSB OUT th(SI) tsu(SI) MOSI INPUT BIT6 OUT tr(SCK) tf(SCK) MSB IN BIT 1 IN LSB IN ai14135b 1. Measurement points are set at CMOS levels: 0.3 VDD and 0.7 VDD. Figure 30. SPI timing diagram - Master mode High NSS input SCK Output SCK Output tc(SCK) CPHA=0 CPOL=0 CPHA=0 CPOL=1 CPHA=1 CPOL=0 CPHA=1 CPOL=1 tsu(MI) MISO INPUT tw(SCKH) tw(SCKL) MSB IN tr(SCK) tf(SCK) BIT6 IN LSB IN th(MI) MOSI OUTPUT MSB OUT BIT1 OUT LSB OUT th(MO) tv(MO) ai14136c 1. Measurement points are set at CMOS levels: 0.3 VDD and 0.7 VDD. 138/150 DS13293 Rev 5 STM32WL55/54xx Electrical characteristics JTAG/SWD characteristics Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature, fPCLKx frequency and supply voltage conditions summarized in Table 26: General operating conditions, with the following configuration: • capacitive load C = 30 pF • measurement done at CMOS levels: 0.5 x VDD. Refer to Section 5.3.16: I/O port characteristics for more details. Table 97. Dynamic JTAG characteristics Symbol fPP 1/tc(TCK) Parameter Conditions TCK clock frequency Min Typ Max 2.7 V < VDD < 3.6 V - - 33 1.8 V < VDD < 3.6 V - - 25 tisu(TMS) TMS input setup time - 0.5 - - tih(TMS) TMS input hold time - 1 - - tisu(TDI) TDI input setup time - 1 - - tih(TDI) TDI input hold time - 2.5 - - 2.7 V < VDD < 3.6 V - 12 15 1.8 V< VDD < 3.6 V - 12 20 10 - - Min Typ Max 2.7 V < VDD < 3.6 V - - 58 1.8 < VDD < 3.6 V - - 41 tisu(SWDIO) SWDIO input setup time - 1 - - tih(SWDIO) - 2 - - 2.7 V < VDD < 3.6 V - 15 17 1.8 V < VDD < 3.6 V - 15 24 - 9 - - tov(TDO) TDO output valid time toh(TDO) TDO output hold time - Unit MHz ns Table 98. Dynamic SWD characteristics Symbol fPP 1/tc(SWCLK) Parameter SWCLK clock frequency SWDIO input hold time tov(SWDIO) SWDIO output valid time toh(SWDIO) SWDIO output hold time Conditions DS13293 Rev 5 Unit MHz ns 139/150 139 Package information 6 STM32WL55/54xx Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at www.st.com. ECOPACK is an ST trademark. 6.1 UFQFPN48 package information This UFQFPN is a 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package. Figure 31. UFQFPN48 - Outline Pin 1 identifier laser marking area D A E E T ddd A1 Seating plane b e Detail Y D Exposed pad area Y D2 1 L 48 C 0.500x45° pin1 corner E2 R 0.125 typ. Detail Z 1 Z 48 A0B9_ME_V3 1. Drawing is not to scale. 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life. 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground. 140/150 DS13293 Rev 5 STM32WL55/54xx Package information Table 99. UFQFPN48 - Mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 D 6.900 7.000 7.100 0.2717 0.2756 0.2795 E 6.900 7.000 7.100 0.2717 0.2756 0.2795 D2 5.500 5.600 5.700 0.2165 0.2205 0.2244 E2 5.500 5.600 5.700 0.2165 0.2205 0.2244 L 0.300 0.400 0.500 0.0118 0.0157 0.0197 T - 0.152 - - 0.0060 - b 0.200 0.250 0.300 0.0079 0.0098 0.0118 e - 0.500 - - 0.0197 - ddd - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 32. UFQFPN48 - Recommended footprint 7.30 6.20 48 37 1 36 5.60 0.20 7.30 5.80 6.20 5.60 0.30 12 25 13 24 0.50 0.55 5.80 0.75 A0B9_FP_V2 1. Dimensions are expressed in millimeters. DS13293 Rev 5 141/150 146 Package information STM32WL55/54xx Device marking for UFQFPN48 The following figure gives an example of topside marking versus pin 1 position identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below. Figure 33. UFQFPN48 marking example (package top view) STM32WL55 Product identification(1) CCU6 Y WW R Pin 1 identifier Date code Revision code MSv66088V1 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 142/150 DS13293 Rev 5 STM32WL55/54xx 6.2 Package information UFBGA73 package information This UFBGA is a 73 balls, 5 × 5 mm, ultra thin fine pitch ball grid array package. Figure 34. UFBGA73 - Outline C SEATING PLANE C ddd A4 A2 A1 SIDE VIEW A E B E1 A F e F J H G F E D D1 D C B e A 1 2 3 4 5 6 7 8 9 A1 INDEX CORNER AREA b (73 BALLS) eee M C A B BOTTOM VIEW fff M C B08E_UFBGA73_ME_V1 1. Drawing is not to scale. 2. - The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metalized markings, or other feature of package body or integral heat slug. - A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1 corner. Exact shape of each corner is optional. Table 100. UFBGA73 - Mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A(2) - - 0.60 - - 0.236 A1 - - 0.11 - - 0.0043 A2 - 0.13 - - 0.0051 - A4 - 0.32 - - 0.0126 - b(3) 0.24 0.29 0.34 0.0094 0.0114 0.0134 DS13293 Rev 5 143/150 146 Package information STM32WL55/54xx Table 100. UFBGA73 - Mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max D 4.85 5.00 5.15 0.1909 0.1969 0.2028 D1 - 4.00 - - 0.1575 - E 4.85 5.00 5.15 0.1909 0.1969 0.2028 E1 - 4.00 - - 0.1575 - e - 0.50 - - 0.0197 - F - 0.50 - - 0.0197 - - - 0.08 - - 0.0031 - - 0.15 - - 0.0059 - - 0.05 - - 0.0020 ddd eee (4) fff(5) 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. - UFBGA stands for Ultra-Thin Profile Fine Pitch Ball Grid Array. - Ultra Thin profile: 0.50 < A ≤ 0.65mm / Fine pitch: e < 1.00mm pitch. - The total profile height (Dim A) is measured from the seating plane to the top of the component - The maximum total package height is calculated by the following methodology: A Max = A1 Typ + A2 Typ + A4 Typ + √ (A1²+A2²+A4² tolerance values) 3. The typical balls diameters before mounting is 0.20 mm. 4. The tolerance of position that controls the location of the pattern of balls with respect to datum A and B. For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true position with respect to datum A and B as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. 5. The tolerance of position that controls the location of the balls within the matrix with respect to each other. For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each tolerance zone fff in the array is contained entirely in the respective zone eee above. The axis of each ball must lie simultaneously in both tolerance zones. Figure 35. UFBGA73 - Recommended footprint Dpad Dsm MSv62396V1 144/150 DS13293 Rev 5 STM32WL55/54xx Package information Table 101. UFBGA recommended PCB design rules (0.5 mm pitch BGA) Dimension Recommended values Pitch 0.5 mm Dpad 0.230 mm Dsm 0.330 mm typ. (depends on the soldermask registration tolerance) Stencil opening 0.280 mm Stencil thickness Between 0.100 mm and 0.125 mm Pad trace width 0.100 mm Ball diameter 0.280 mm Device marking for UFBGA73 The following figure gives an example of topside marking versus pin 1 position identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below. Figure 36. UFBGA73 marking example (package top view) Product identification(1) WL55JCI6 Date code Y WW R Revision code Pin 1 identifier MSv66089V1 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DS13293 Rev 5 145/150 146 Package information 6.3 STM32WL55/54xx Package thermal characteristics The maximum chip junction temperature (TJ max) must never exceed the values given in Table 26: General operating conditions. The maximum chip-junction temperature, TJ max (in °C), can be calculated using the equation: TJ max = TA max + (PD max x ΘJA) where: • TA max is the maximum ambient temperature in °C. • ΘJA is the package junction-to-ambient thermal resistance, in °C/W. • PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/O max). • PINT max is the product of IDD and VDD, expressed in Watt. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins: PI/O max = Σ (VOL × IOL) + Σ ((VDD – VOH) × IOH) taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. When the SMPS is used, a portion of the power consumption is dissipated into the external inductor, therefore reducing the device power dissipation. This portion depends mainly on the inductor ESR characteristics. As the radiated RF power is quite low (< 4 mW), it is not necessary to remove it from the device power consumption. RF characteristics (such as sensitivity, Tx power consumption) are provided up to 85 °C. Table 102. Package thermal characteristics Symbol 146/150 Parameter Value ΘJA Thermal resistance junction-ambient UFBGA73 - 5 x 5 mm UFQFPN48 - 7 x 7 mm 43.4 27.4 ΘJB Thermal resistance junction-board UFBGA73 - 5 x 5 mm UFQFPN48 - 7 x 7 mm 27.2 11.7 ΘJC Thermal resistance junction-top case UFBGA73 - 5 x 5 mm UFQFPN48 - 7 x 7 mm 11 8.5 DS13293 Rev 5 Unit °C/W STM32WL55/54xx 7 Ordering information Ordering information Example: STM32 WL 55 J C I 6 TR Device family STM32 = Arm based 32-bit microcontroller Product type WL = wireless long range Device subfamily 55 = Cortex-M4, Cortex-M0+, full set of modulations 54 = Cortex-M4, Cortex-M0+, full set of modulations except LoRa Pin/ball count C = 48 J = 73 Flash memory size C = 256 Kbytes Package I = UFBGA U= UFQFPN Temperature range 6 = -40 to 85 °C (105 °C junction) 7 = -40 to 105 °C (125 °C junction) Packing TR = tape and reel xxx = programmed parts For a list of available options (such as speed or package) or for further information on any aspect of this device, contact the nearest ST sales office. DS13293 Rev 5 147/150 147 Important security notice 8 STM32WL55/54xx Important security notice The STMicroelectronics group of companies (ST) places a high value on product security, which is why the ST product(s) identified in this documentation may be certified by various security certification bodies and/or may implement our own security measures as set forth herein. However, no level of security certification and/or built-in security measures can guarantee that ST products are resistant to all forms of attacks. As such, it is the responsibility of each of ST's customers to determine if the level of security provided in an ST product meets the customer needs both in relation to the ST product alone, as well as when combined with other components and/or software for the customer end product or application. In particular, take note that: 148/150 • ST products may have been certified by one or more security certification bodies, such as Platform Security Architecture (www.psacertified.org) and/or Security Evaluation standard for IoT Platforms (www.trustcb.com). For details concerning whether the ST product(s) referenced herein have received security certification along with the level and current status of such certification, either visit the relevant certification standards website or go to the relevant product page on www.st.com for the most up to date information. As the status and/or level of security certification for an ST product can change from time to time, customers should re-check security certification status/level as needed. If an ST product is not shown to be certified under a particular security standard, customers should not assume it is certified. • Certification bodies have the right to evaluate, grant and revoke security certification in relation to ST products. These certification bodies are therefore independently responsible for granting or revoking security certification for an ST product, and ST does not take any responsibility for mistakes, evaluations, assessments, testing, or other activity carried out by the certification body with respect to any ST product. • Industry-based cryptographic algorithms (such as AES, DES, or MD5) and other open standard technologies which may be used in conjunction with an ST product are based on standards which were not developed by ST. ST does not take responsibility for any flaws in such cryptographic algorithms or open technologies or for any methods which have been or may be developed to bypass, decrypt or crack such algorithms or technologies. • While robust security testing may be done, no level of certification can absolutely guarantee protections against all attacks, including, for example, against advanced attacks which have not been tested for, against new or unidentified forms of attack, or against any form of attack when using an ST product outside of its specification or intended use, or in conjunction with other components or software which are used by customer to create their end product or application. ST is not responsible for resistance against such attacks. As such, regardless of the incorporated security features and/or any information or support that may be provided by ST, each customer is solely responsible for determining if the level of attacks tested for meets their needs, both in relation to the ST product alone and when incorporated into a customer end product or application. • All security features of ST products (inclusive of any hardware, software, documentation, and the like), including but not limited to any enhanced security features added by ST, are provided on an "AS IS" BASIS. AS SUCH, TO THE EXTENT PERMITTED BY APPLICABLE LAW, ST DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, unless the applicable written and signed contract terms specifically provide otherwise. DS13293 Rev 5 STM32WL55/54xx 9 Revision history Revision history Table 103. Document revision history Date Revision 9-Nov-2020 1 Initial release. 2 Updated: – One sentence at the beginning of Features – Table 26: Operating range of RF pads – One sentence at the end of Section 3.9.3: Transmitter and Section 3.9.4: Receiver – Section 3.9.1: Sub-GHz radio introduction – Tx HP values in Table 24: Main performances at VDD = 3 V – IDD (868-915MHz, +22 dBm) in Table 28: Sub-GHz radio power consumption in transmit mode – 48 MHz, 2.4 V in Table 46: Current consumption during wakeup from Stop 2 mode – 16 MHz, 2.4 V in Table 48: Current consumption during wakeup from Stop 1 mode – 4 MHz, range 1, 2.4 V in Table 50: Current consumption during wakeup from Stop 0 mode – Table 59: HSE32 crystal requirements – Reference added after Table 60: HSE32 oscillator characteristics – ATCXO in Table 61: HSE32 TCXO regulator characteristics – Figure 22: ADC accuracy characteristics and Figure 23: Typical connection diagram when using the ADC with FT/TT pins featuring analog switch function – Table 101: Package thermal characteristics 3 Updated: – Table 2: Main features and peripheral count – Section 3.9.1: Sub-GHz radio introduction – Table 26: Operating range of RF pads – WLCSP59 information removed from the whole document 4 Updated: – Features and Table 1: Device summary – Section 2: Description – Section 3.5.2: Embedded SRAM – new Section 3.9.7: IPDs for STM32WL and reference designs – Table 29: Sub-GHz radio power consumption in transmit mode – Section 7: Ordering information – new Section 8: Important security notice 5 Updated: – One note removed Figure 9: Clock tree – New notes on Table 20: STM32WL55/54xx pin definition 1-Jul-2021 21-Mar-2022 5-Oct-2022 19-Dec-2022 Changes DS13293 Rev 5 149/150 149 STM32WL55/54xx IMPORTANT NOTICE – READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2022 STMicroelectronics – All rights reserved 150/150 DS13293 Rev 5
STM32WL55CCU6 价格&库存

很抱歉,暂时无法提供与“STM32WL55CCU6”相匹配的价格&库存,您可以联系我们找货

免费人工找货
STM32WL55CCU6
    •  国内价格 香港价格
    • 1560+46.484841560+5.59313

    库存:17940

    STM32WL55CCU6
      •  国内价格
      • 1+83.09324
      • 10+64.72313
      • 25+60.12620
      • 80+55.75770
      • 260+52.57195
      • 520+51.13607
      • 1040+50.45252

      库存:9912

      STM32WL55CCU6
        •  国内价格
        • 1+58.12320

        库存:1190