STM8AF526x/8x/Ax
STM8AF6269/8x/Ax
Automotive 8-bit MCU, with up to 128 Kbyte Flash, data EEPROM,
10-bit ADC, timers, LIN, CAN, USART, SPI, I2C, 3 to 5.5 V
Datasheet - production data
Features
• AEC-Q10x qualified
• Core
– Max fCPU: 24 MHz
– Advanced STM8A core with Harvard
architecture and 3-stage pipeline
– Average 1.6 cycles/instruction resulting in
10 MIPS at 16 MHz fCPU for industry
standard benchmark
• Memories
– Program memory: 32 to 128 Kbyte Flash
program; data retention 20 years at 55 °C
– Data memory: up to 2 Kbyte true data
EEPROM; endurance 300 kcycle
– RAM: 6 Kbyte
• Clock management
– Low-power crystal resonator oscillator with
external clock input
– Internal, user-trimmable 16 MHz RC and
low-power 128 kHz RC oscillators
– Clock security system with clock monitor
• Reset and supply management
– Wait/auto-wakeup/Halt low-power modes
with user definable clock gating
– Low consumption power-on and powerdown reset
• Interrupt management
– Nested interrupt controller with 32 vectors
– Up to 37 external interrupts on 5 vectors
• Timers
– 2 general purpose 16-bit timers with up to 3
CAPCOM channels each (IC, OC, PWM)
– Advanced control timer: 16-bit, 4 CAPCOM
channels, 3 complementary outputs, deadtime insertion and flexible synchronization
– 8-bit AR basic timer with 8-bit prescaler
– Auto-wakeup timer
– Window and independent watchdog timers
• I/Os
– Up to 68 user pins (11 high sink I/Os)
November 2016
This is information on a product in full production.
LQFP80 14x14 mm
LQFP64 10x10 mm
LQFP32 7x7 mm
LQFP48 7x7 mm
VFQFP32 5x5 mm
– Highly robust I/O design, immune against
current injection
• Communication interfaces
– High speed 1 Mbit/s CAN 2.0B interface
– USART with clock output for synchronous
operation - LIN master mode
– LINUART LIN 2.2 compliant, master/slave
modes with automatic resynchronization
– SPI interface up to 10 Mbit/s or fMASTER/2
– I2C interface up to 400 Kbit/s
• Analog to digital converter (ADC)
– 10-bit resolution, 2 LSB TUE, 1 LSB
linearity and up to 16 multiplexed channels
• Operating temperature up to 150 °C
• Qualification conforms to AEC-Q100 grade 0
Table 1. Device summary(1)
Reference
Part number
STM8AF5268, STM8AF5269,
STM8AF526x/8x/Ax STM8AF5286, STM8AF5288,
STM8AF5289, STM8AF528A,
(with CAN)
STM8AF52A6, STM8AF52A8,
STM8AF52A9, STM8AF52AA
STM8AF6269, STM8AF6286,
STM8AF6288, STM8AF6289,
STM8AF6269/8x/Ax STM8AF628A, STM8AF62A6,
STM8AF62A8, STM8AF62A9,
STM8AF62AA
1. In the order code, ‘F’ applies to devices with Flash
program memory and data EEPROM. ‘F’ is replaced
by ‘P’ for devices with FASTROM (see Table 2,
Table 3 and Figure 60).
DocID14395 Rev 15
1/125
www.st.com
Contents
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
Product line-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5
Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1
5.2
5.1.1
Architecture and registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.2
Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.3
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Single wire interface module (SWIM) and debug module (DM) . . . . . . . . 15
5.2.1
SWIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2.2
Debug module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3
Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4
Flash program and data EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.5
2/125
STM8A central processing unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4.1
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4.2
Write protection (WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4.3
Protection of user boot code (UBC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4.4
Read-out protection (ROP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Clock controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5.1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5.2
16 MHz high-speed internal RC oscillator (HSI) . . . . . . . . . . . . . . . . . . 17
5.5.3
128 kHz low-speed internal RC oscillator (LSI) . . . . . . . . . . . . . . . . . . . 18
5.5.4
24 MHz high-speed external crystal oscillator (HSE) . . . . . . . . . . . . . . . 18
5.5.5
External clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.5.6
Clock security system (CSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.6
Low-power operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.7
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.7.1
Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.7.2
Auto-wakeup counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.7.3
Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
7
5.7.4
Advanced control and general purpose timers . . . . . . . . . . . . . . . . . . . 20
5.7.5
Basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.8
Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.9
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.10
6
Contents
5.9.1
Universal synchronous/asynchronous receiver transmitter (USART) . . 22
5.9.2
Universal asynchronous receiver/transmitter with LIN support
(LINUART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.9.3
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.9.4
Inter integrated circuit (I2C) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.9.5
Controller area network interface (beCAN) . . . . . . . . . . . . . . . . . . . . . . 26
Input/output specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1
Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2
Alternate function remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.1
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.2
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8
Interrupt table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9
Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.3.1
VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.3.2
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.3.3
External clock sources and timing characteristics . . . . . . . . . . . . . . . . . 68
10.3.4
Internal clock sources and timing characteristics . . . . . . . . . . . . . . . . . 70
DocID14395 Rev 15
3/125
4
Contents
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
10.3.5
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
10.3.6
I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10.3.7
Reset pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.3.8
TIM 1, 2, 3, and 4 electrical specifications . . . . . . . . . . . . . . . . . . . . . . . 80
10.3.9
SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.3.10 I2C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.3.11 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.3.12 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
11
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
11.1
LQFP80 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
11.2
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
11.3
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.4
LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
11.5
VFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
11.6
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.6.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.6.2
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 110
12
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
13
STM8 development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
13.1
Emulation and in-circuit debugging tools . . . . . . . . . . . . . . . . . . . . . . . . .112
13.1.1
13.2
13.3
14
4/125
STice key features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
13.2.1
STM8 toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
13.2.2
C and assembly toolchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
STM8AF526x/8x/Ax product line-up with CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
STM8AF6269/8x/Ax product line-up without CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Peripheral clock gating bits (CLK_PCKENR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Peripheral clock gating bits (CLK_PCKENR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Advanced control and general purpose timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
TIM4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
ADC naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Communication peripheral naming correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Legend/abbreviation for the pin description table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin description . . . . . . . . . . . . . . . . . . . . . . 34
Memory model 128K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Temporary memory unprotection registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
STM8A interrupt table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Operating lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Total current consumption in Run, Wait and Slow mode. General conditions
for VDD apply, TA = -40 °C to 150 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Total current consumption in Halt and Active-halt modes. General conditions for VDD
applied. TA = -40 °C to 55 °C unless otherwise stated . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Oscillator current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Programming current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Typical peripheral current consumption VDD = 5.0 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
HSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Flash program memory/data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Flash program memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Data memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
TIM 1, 2, 3, and 4 electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
ADC accuracy for VDDA = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
DocID14395 Rev 15
5/125
6
List of tables
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
6/125
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
VFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch very thin profile fine pitch quad
flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
STM8AF526x/8x/Ax and STM8AF6269/8x/Ax block diagram . . . . . . . . . . . . . . . . . . . . . . 12
Flash memory organization of STM8A products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
LQFP 80-pin pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
LQFP 64-pin pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
LQFP 48-pin pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
STM8AF62xx LQFP/VFQFPN 32-pin pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
STM8AF52x6 VFQFPN32 32-pin pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Register and memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
fCPUmax versus VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Typ. IDD(RUN)HSE vs. VDD @fCPU = 16 MHz, peripherals = on . . . . . . . . . . . . . . . . . . . . . . 67
Typ. IDD(RUN)HSE vs. fCPU @ VDD = 5.0 V, peripherals = on . . . . . . . . . . . . . . . . . . . . . . . 67
Typ. IDD(RUN)HSI vs. VDD @ fCPU = 16 MHz, peripherals = off . . . . . . . . . . . . . . . . . . . . . . 67
Typ. IDD(WFI)HSE vs. VDD @ fCPU = 16 MHz, peripherals = on . . . . . . . . . . . . . . . . . . . . . . 67
Typ. IDD(WFI)HSE vs. fCPU @ VDD = 5.0 V, peripherals = on . . . . . . . . . . . . . . . . . . . . . . . . 67
Typ. IDD(WFI)HSI vs. VDD @ fCPU = 16 MHz, peripherals = off . . . . . . . . . . . . . . . . . . . . . . 67
HSE external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Typical HSI frequency vs VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Typical LSI frequency vs VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Typical VIL and VIH vs VDD @ four temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Typical pull-up resistance RPU vs VDD @ four temperatures . . . . . . . . . . . . . . . . . . . . . . . 75
Typical pull-up current Ipu vs VDD @ four temperatures(1) . . . . . . . . . . . . . . . . . . . . . . . . . 76
Typ. VOL @ VDD = 3.3 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Typ. VOL @ VDD = 5.0 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Typ. VOL @ VDD = 3.3 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Typ. VOL @ VDD = 5.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Typ. VOL @ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typ. VOL @ VDD = 5.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typ. VDD - VOH @ VDD = 3.3 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typ. VDD - VOH @ VDD = 5.0 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typ. VDD - VOH @ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typ. VDD - VOH @ VDD = 5.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typical NRST VIL and VIH vs VDD @ four temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Typical NRST pull-up resistance RPU vs VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Typical NRST pull-up current Ipu vs VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Recommended reset pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
SPI timing diagram in slave mode and with CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
SPI timing diagram in slave mode and with CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Typical application with ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . 90
LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
LQFP80 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
DocID14395 Rev 15
7/125
8
List of figures
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
8/125
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . 94
LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 97
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 101
LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
LQFP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad
flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
VFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch very thin profile fine pitch quad
flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
VFQFPN32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
STM8AF526x/8x/Ax and STM8AF6269/8x/Ax ordering information scheme1 . . . . . . . . . 111
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
1
Introduction
Introduction
This datasheet refers to the STM8AF526x/8x/Ax and STM8AF6269/8x/Ax products with 32
to 128 Kbyte of program memory.
In the order code, the letter ‘F’ refers to product versions with Flash and data EEPROM and
‘P’ to product versions with FASTROM. The identifiers ‘F’ and ‘P’ do not coexist in a given
order code.
The datasheet contains the description of family features, pinout, electrical characteristics,
mechanical data and ordering information.
•
For complete information on the STM8A microcontroller memory, registers and
peripherals, please refer to STM8S series and STM8AF series 8-bit microcontrollers
reference manual (RM0016).
•
For information on programming, erasing and protection of the internal Flash memory
please refer to the STM8S and STM8A Flash programming manual (PM0051).
•
For information on the debug and SWIM (single wire interface module) refer to the
STM8 SWIM communication protocol and debug module user manual (UM0470).
•
For information on the STM8 core, please refer to the STM8 CPU programming manual
(PM0044).
DocID14395 Rev 15
9/125
114
Description
2
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Description
The STM8AF526x/8x/Ax and STM8AF6269/8x/Ax automotive 8-bit microcontrollers
described in this datasheet offer from 32 Kbyte to 128 Kbyte of non volatile memory and
integrated true data EEPROM. They are referred to as high density STM8A devices in
STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016).
The STM8AF52 series features a CAN interface.
All devices of the STM8A product line provide the following benefits: reduced system cost,
performance and robustness, short development cycles, and product longevity.
The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k
write/erase cycles and a high system integration level with internal clock oscillators,
wtachdog, and brown-out reset.
Device performance is ensured by 20 MIPS at 24 MHz CPU clock frequency and enhanced
characteristics which include robust I/O, independent watchdogs (with a separate clock
source), and a clock security system.
Short development cycles are guaranteed due to application scalability across a common
family product architecture with compatible pinout, memory map, and modular peripherals.
Full documentation is offered with a wide choice of development tools.
Product longevity is ensured in the STM8A family thanks to their advanced core which is
made in a state-of-the art technology for automotive applications with 3.3 V to 5.5 V
operating supply.
All STM8A and ST7 microcontrollers are supported by the same tools including
STVD/STVP development environment, the STice emulator and a low-cost, third party incircuit debugging tool.
10/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
3
Product line-up
Product line-up
..
Table 2. STM8AF526x/8x/Ax product line-up with CAN
Order code
Package
STM8AF/P52AA
LQFP80
(14x14)
STM8AF/P528A
STM8AF/P52A9
STM8AF/P5289
LQFP64
(10x10)
STM8AF/P5268
2K
16
64 K
1K
6K
64 K
32 K
STM8AF/P5286
2K
Serial
interfaces
1x8-bit: TIM4
CAN,
3x16-bit: TIM1, LIN(UART),
TIM2, TIM3
SPI,
(9/9/9)
USART, I²C
10
I/0
wakeup
pins
52/36
38/35
1K
64 K
VFQFPN32
(5x5)
Timers
(IC/OC/PWM)
68/37
64 K
128 K
LQFP48
(7x7)
10-bit
A/D
chan.
128 K
32 K
STM8AF/P52A8
STM8AF/P52A6
Data
RAM
EEPROM
(bytes)
(bytes)
128 K
STM8AF/P5269
STM8AF/P5288
High
density
Flash
program
memory
(bytes)
2K
128 K
6
1x8-bit: TIM4
CAN,
3x16-bit: TIM1,
LIN(UART),
TIM2, TIM3
I²C
(8/8/8)
25/24
Table 3. STM8AF6269/8x/Ax product line-up without CAN
Order code
Package
STM8AF/P62AA
LQFP80
(14x14)
STM8AF/P628A
STM8AF/P62A9
STM8AF/P6289
10-bit
A/D
chan.
Timers
(IC/OC/PWM)
Serial
interfaces
128 K
64 K
16
2K
32 K
128 K
STM8AF/P6286
LQFP32
(7x7)
64 K
STM8AF/P62A6
VFQFPN32
(5x5)
I/0
wakeup
pins
68/37
2K
64 K
LQFP48
(7x7)
STM8AF/P6288
Data
RAM
EEPROM
(bytes)
(bytes)
128 K
LQFP64
(10x10)
STM8AF/P6269
STM8AF/P62A8
High
density
Flash
program
memory
(bytes)
1K
1x8-bit: TIM4
LIN(UART),
3x16-bit: TIM1,
SPI,
TIM2, TIM3
USART, I²C
(9/9/9)
52/36
6K
10
2K
7
128 K
38/35
1x8-bit: TIM4
3x16-bit: TIM1, LIN(UART),
TIM2, TIM3
SPI, I²C
(8/8/8)
25/23
.
DocID14395 Rev 15
11/125
114
Block diagram
4
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Block diagram
Figure 1. STM8AF526x/8x/Ax and STM8AF6269/8x/Ax block diagram
5HVHWEORFN
;7$/0+]
&ORFNFRQWUROOHU
5HVHW
5HVHW
5&LQW0+]
'HWHFWRU
325
%25
5&LQWN+]
&ORFNWRSHULSKHUDOVDQGFRUH
:LQGRZ:'*
670$FRUH
,QGHSHQGHQW:'*
0DVWHUVODYH
DXWRPDWLF
UHV\QFKURQL]DWLRQ
86$57
.ELWV
,&
0ELWV
63,
/,1PDVWHU
63,HPXO
0ELWV
8SWR.E\WH
KLJKGHQVLW\
SURJUDP)ODVK
'HEXJ6:,0
$GGUHVVDQGGDWDEXV
6LQJOHZLUH
GHEXJLQWHUIDFH
8SWR.E\WH
GDWD((3520
8SWR.E\WH5$0
%RRW520
ELWDGYDQFHGFRQWURO
WLPHU7,0
/,18$57
ELWJHQHUDOSXUSRVH
WLPHUV7,07,0
EH&$1
8SWR
&$3&20
FKDQQHOV
ELW$5WLPHU
7,0
8SWRFKDQQHOV
ELW$'&
$:8WLPHU
069
12/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Block diagram
1. Legend:
ADC: Analog-to-digital converter
beCAN: Controller area network
BOR: Brownout reset
I²C: Inter-integrated circuit multimaster interface
IWDG: Independent window watchdog
LINUART: Local interconnect network universal asynchronous receiver transmitter
POR: Power on reset
SPI: Serial peripheral interface
SWIM: Single wire interface module
USART: Universal synchronous asynchronous receiver transmitter
Window WDG: Window watchdog
DocID14395 Rev 15
13/125
114
Product overview
5
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Product overview
This section is intended to describe the family features that are actually implemented in the
products covered by this datasheet.
For more detailed information on each feature please refer to STM8S series and STM8AF
series 8-bit microcontrollers reference manual (RM0016).
5.1
STM8A central processing unit (CPU)
The 8-bit STM8A core is a modern CISC core and has been designed for code efficiency
and performance. It contains 21 internal registers (six directly addressable in each
execution context), 20 addressing modes including indexed indirect and relative addressing
and 80 instructions.
5.1.1
5.1.2
5.1.3
14/125
Architecture and registers
•
Harvard architecture
•
3-stage pipeline
•
32-bit wide program memory bus with single cycle fetching for most instructions
•
X and Y 16-bit index registers, enabling indexed addressing modes with or without
offset and read-modify-write type data manipulations
•
8-bit accumulator
•
24-bit program counter with 16-Mbyte linear memory space
•
16-bit stack pointer with access to a 64 Kbyte stack
•
8-bit condition code register with seven condition flags for the result of the last
instruction.
Addressing
•
20 addressing modes
•
Indexed indirect addressing mode for look-up tables located anywhere in the address
space
•
Stack pointer relative addressing mode for efficient implementation of local variables
and parameter passing
Instruction set
•
80 instructions with 2-byte average instruction size
•
Standard data movement and logic/arithmetic functions
•
8-bit by 8-bit multiplication
•
16-bit by 8-bit and 16-bit by 16-bit division
•
Bit manipulation
•
Data transfer between stack and accumulator (push/pop) with direct stack access
•
Data transfer using the X and Y registers or direct memory-to-memory transfers
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Product overview
5.2
Single wire interface module (SWIM) and debug module (DM)
5.2.1
SWIM
The single wire interface module, SWIM, together with an integrated debug module, permits
non-intrusive, real-time in-circuit debugging and fast memory programming. The interface
can be activated in all device operation modes and can be connected to a running device
(hot plugging).The maximum data transmission speed is 145 bytes/ms.
5.2.2
Debug module
The non-intrusive debugging module features a performance close to a full-flavored
emulator. Besides memory and peripheral operation, CPU operation can also be monitored
in real-time by means of shadow registers.
5.3
5.4
•
R/W of RAM and peripheral registers in real-time
•
R/W for all resources when the application is stopped
•
Breakpoints on all program-memory instructions (software breakpoints), except the
interrupt vector table
•
Two advanced breakpoints and 23 predefined breakpoint configurations
Interrupt controller
•
Nested interrupts with three software priority levels
•
24 interrupt vectors with hardware priority
•
Five vectors for external interrupts (up to 37 depending on the package)
•
Trap and reset interrupts
Flash program and data EEPROM
•
32 Kbytes to 128 Kbytes of high density single voltage Flash program memory
•
Up to 2 Kbytes true (not emulated) data EEPROM
•
Read while write: writing in the data memory is possible while executing code in the
Flash program memory.
The whole Flash program memory and data EEPROM are factory programmed with 0x00.
5.4.1
Architecture
•
The memory is organized in blocks of 128 bytes each
•
Read granularity: 1 word = 4 bytes
•
Write/erase granularity: 1 word (4 bytes) or 1 block (128 bytes) in parallel
•
Writing, erasing, word and block management is handled automatically by the memory
interface.
DocID14395 Rev 15
15/125
114
Product overview
5.4.2
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Write protection (WP)
Write protection in application mode is intended to avoid unintentional overwriting of the
memory. The write protection can be removed temporarily by executing a specific sequence
in the user software.
5.4.3
Protection of user boot code (UBC)
If the user chooses to update the Flash program memory using a specific boot code to
perform in application programming (IAP), this boot code needs to be protected against
unwanted modification.
In the STM8A a memory area of up to 128 Kbytes can be protected from overwriting at user
option level. Other than the standard write protection, the UBC protection can exclusively be
modified via the debug interface, the user software cannot modify the UBC protection
status.
The UBC memory area contains the reset and interrupt vectors and its size can be adjusted
in increments of 512 bytes by programming the UBC and NUBC option bytes
(see Section 9: Option bytes on page 54).
Figure 2. Flash memory organization of STM8A products
'DWDPHPRU\DUHD
'DWD
((3520
PHPRU\
2SWLRQE\WHV
8%&DUHD
5HPDLQVZULWHSURWHFWHGGXULQJ,$3
3URJUDPPDEOH
DUHDIURP.E\WH
ILUVWWZRSDJHVXSWR
SURJUDPPHPRU\HQG
PD[LPXP.E\WH
)ODVKSURJUDP
PHPRU\
)ODVKSURJUDPPHPRU\DUHD
:ULWHDFFHVVSRVVLEOHIRU,$3
069
5.4.4
Read-out protection (ROP)
The STM8A provides a read-out protection of the code and data memory which can be
activated by an option byte setting (see the ROP option byte in section 10).
The read-out protection prevents reading and writing Flash program memory, data memory
and option bytes via the debug module and SWIM interface. This protection is active in all
device operation modes. Any attempt to remove the protection by overwriting the ROP
option byte triggers a global erase of the program and data memory.
16/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Product overview
The ROP circuit may provide a temporary access for debugging or failure analysis. The
temporary read access is protected by a user defined, 8-byte keyword stored in the option
byte area. This keyword must be entered via the SWIM interface to temporarily unlock the
device.
If desired, the temporary unlock mechanism can be permanently disabled by the user
through OPT6/NOPT6 option bytes.
5.5
Clock controller
The clock controller distributes the system clock coming from different oscillators to the core
and the peripherals. It also manages clock gating for low-power modes and ensures clock
robustness.
5.5.1
Features
•
5.5.2
Clock sources
–
16 MHz high-speed internal RC oscillator (HSI)
–
128 kHz low-speed internal RC (LSI)
–
1-24 MHz high-speed external crystal (HSE)
–
Up to 24 MHz high-speed user-external clock (HSE user-ext)
•
Reset: After reset the microcontroller restarts by default with an internal 2-MHz clock
(16 MHz/8). The clock source and speed can be changed by the application program
as soon as the code execution starts.
•
Safe clock switching: Clock sources can be changed safely on the fly in Run mode
through a configuration register. The clock signal is not switched until the new clock
source is ready. The design guarantees glitch-free switching.
•
Clock management: To reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
•
Wakeup: In case the device wakes up from low-power modes, the internal RC
oscillator (16 MHz/8) is used for quick startup. After a stabilization time, the device
switches to the clock source that was selected before Halt mode was entered.
•
Clock security system (CSS): The CSS permits monitoring of external clock sources
and automatic switching to the internal RC (16 MHz/8) in case of a clock failure.
•
Configurable main clock output (CCO): This feature permits to output a clock signal
for use by the application.
16 MHz high-speed internal RC oscillator (HSI)
•
Default clock after reset 2 MHz (16 MHz/8)
•
Fast wakeup time
User trimming
The register CLK_HSITRIMR with two trimming bits plus one additional bit for the sign
permits frequency tuning by the application program. The adjustment range covers all
possible frequency variations versus supply voltage and temperature. This trimming does
not change the initial production setting.
DocID14395 Rev 15
17/125
114
Product overview
5.5.3
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
128 kHz low-speed internal RC oscillator (LSI)
The frequency of this clock is 128 kHz and it is independent from the main clock. It drives
the independent watchdog or the AWU wakeup timer.
In systems which do not need independent clock sources for the watchdog counters, the
128 kHz signal can be used as the system clock. This configuration has to be enabled by
setting an option byte (OPT3/OPT3N, bit LSI_EN).
5.5.4
24 MHz high-speed external crystal oscillator (HSE)
The external high-speed crystal oscillator can be selected to deliver the main clock in
normal Run mode. It operates with quartz crystals and ceramic resonators.
5.5.5
•
Frequency range: 1 MHz to 24 MHz
•
Crystal oscillation mode: preferred fundamental
•
I/Os: standard I/O pins multiplexed with OSCIN, OSCOUT
External clock input
An external clock signal can be applied to the OSCIN input pin of the crystal oscillator. The
frequency range is 0 to 24 MHz.
5.5.6
Clock security system (CSS)
The clock security system protects against a system stall in case of an external crystal clock
failure.
In case of a clock failure an interrupt is generated and the high-speed internal clock (HSI) is
automatically selected with a frequency of 2 MHz (16 MHz/8).
Table 4. Peripheral clock gating bits (CLK_PCKENR1)
18/125
Control bit
Peripheral
PCKEN17
TIM1
PCKEN16
TIM3
PCKEN15
TIM2
PCKEN14
TIM4
PCKEN13
LINUART
PCKEN12
USART
PCKEN11
SPI
PCKEN10
I 2C
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Product overview
Table 5. Peripheral clock gating bits (CLK_PCKENR2)
5.6
Control bit
Peripheral
PCKEN27
CAN
PCKEN26
Reserved
PCKEN25
Reserved
PCKEN24
Reserved
PCKEN23
ADC
PCKEN22
AWU
PCKEN21
Reserved
PCKEN20
Reserved
Low-power operating modes
For efficient power management, the application can be put in one of four different lowpower modes. Users can configure each mode to obtain the best compromise between
lowest power consumption, fastest start-up time and available wakeup sources.
•
Wait mode
In this mode, the CPU is stopped but peripherals are kept running. The wakeup is
performed by an internal or external interrupt or reset.
•
Active-halt mode with regulator on
In this mode, the CPU and peripheral clocks are stopped. An internal wakeup is
generated at programmable intervals by the auto wake up unit (AWU). The main
voltage regulator is kept powered on, so current consumption is higher than in Activehalt mode with regulator off, but the wakeup time is faster. Wakeup is triggered by the
internal AWU interrupt, external interrupt or reset.
•
Active-halt mode with regulator off
This mode is the same as Active-halt with regulator on, except that the main voltage
regulator is powered off, so the wake up time is slower.
•
Halt mode
CPU and peripheral clocks are stopped, the main voltage regulator is powered off.
Wakeup is triggered by external event or reset.
In all modes the CPU and peripherals remain permanently powered on, the system clock is
applied only to selected modules. The RAM content is preserved and the brown-out reset
circuit remains activated.
DocID14395 Rev 15
19/125
114
Product overview
5.7
Timers
5.7.1
Watchdog timers
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
The watchdog system is based on two independent timers providing maximum security to
the applications. The watchdog timer activity is controlled by the application program or
option bytes. Once the watchdog is activated, it cannot be disabled by the user program
without going through reset.
Window watchdog timer
The window watchdog is used to detect the occurrence of a software fault, usually
generated by external interferences or by unexpected logical conditions, which cause the
application program to abandon its normal sequence.
The window function can be used to trim the watchdog behavior to match the application
timing perfectly. The application software must refresh the counter before time-out and
during a limited time window. If the counter is refreshed outside this time window, a reset is
issued.
Independent watchdog timer
The independent watchdog peripheral can be used to resolve malfunctions due to hardware
or software failures.
It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case
of a CPU clock failure. If the hardware watchdog feature is enabled through the device
option bits, the watchdog is automatically enabled at power-on, and generates a reset
unless the key register is written by software before the counter reaches the end of count.
5.7.2
Auto-wakeup counter
This counter is used to cyclically wakeup the device in Active-halt mode. It can be clocked
by the internal 128 kHz internal low-frequency RC oscillator or external clock.
LSI clock can be internally connected to TIM3 input capture channel 1 for calibration.
5.7.3
Beeper
This function generates a rectangular signal in the range of 1, 2 or 4 kHz which can be
output on a pin. This is useful when audible sounds without interference need to be
generated for use in the application.
5.7.4
Advanced control and general purpose timers
STM8A devices described in this datasheet, contain up to three 16-bit advanced control and
general purpose timers providing nine CAPCOM channels in total. A CAPCOM channel can
be used either as input compare, output compare or PWM channel. These timers are
named TIM1, TIM2 and TIM3.
20/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Product overview
Table 6. Advanced control and general purpose timers
Timer
Counter
width
TIM1
16-bit
Counter
type
Prescaler
Channels
factor
Up/down 1 to 65536
TIM2
16-bit
Up
TIM3
16-bit
Up
2n
n = 0 to 15
2n
n = 0 to 15
Inverted Repetition
outputs
counter
trigger
unit
External
trigger
Break
input
4
3
Yes
Yes
Yes
Yes
3
None
No
No
No
No
2
None
No
No
No
No
TIM1 - advanced control timer
This is a high-end timer designed for a wide range of control applications. With its
complementary outputs, dead-time control and center-aligned PWM capability, the field of
applications is extended to motor control, lighting and bridge driver.
•
16-bit up, down and up/down AR (auto-reload) counter with 16-bit fractional prescaler.
•
Four independent CAPCOM channels configurable as input capture, output compare,
PWM generation (edge and center aligned mode) and single pulse mode output
•
Trigger module which allows the interaction of TIM1 with other on-chip peripherals. In
the present implementation it is possible to trigger the ADC upon a timer event.
•
External trigger to change the timer behavior depending on external signals
•
Break input to force the timer outputs into a defined state
•
Three complementary outputs with adjustable dead time
•
Interrupt sources: 4 x input capture/output compare, 1 x overflow/update, 1 x break
TIM2, TIM3 - 16-bit general purpose timers
5.7.5
•
16-bit auto-reload up-counter
•
15-bit prescaler adjustable to fixed power of two ratios 1…32768
•
Timers with three or two individually configurable CAPCOM channels
•
Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update
Basic timer
The typical usage of this timer (TIM4) is the generation of a clock tick.
Table 7. TIM4
Timer
Counter
width
Counter
type
TIM4
8-bit
Up
Prescaler
Channels
factor
2n
n = 0 to 7
Inverted Repetition
outputs
counter
0
None
No
trigger
unit
External
trigger
Break
input
No
No
No
•
8-bit auto-reload, adjustable prescaler ratio to any power of two from 1 to 128
•
Clock source: master clock
•
Interrupt source: 1 x overflow/update
DocID14395 Rev 15
21/125
114
Product overview
5.8
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Analog to digital converter (ADC)
The STM8A products described in this datasheet contain a 10-bit successive approximation
ADC with up to 16 multiplexed input channels, depending on the package.
The ADC name differs between the datasheet and the STM8A/S reference manual (see
Table 8).
Table 8. ADC naming
Peripheral name in datasheet
Peripheral name in reference manual
(RM0016)
ADC
ADC2
ADC features
5.9
•
10-bit resolution
•
Single and continuous conversion modes
•
Programmable prescaler: fMASTER divided by 2 to 18
•
Conversion trigger on timer events, and external events
•
Interrupt generation at end of conversion
•
Selectable alignment of 10-bit data in 2 x 8 bit result registers
•
Shadow registers for data consistency
•
ADC input range: VSSA ≤VIN ≤VDDA
•
Schmitt-trigger on analog inputs can be disabled to reduce power consumption
Communication interfaces
The following sections give a brief overview of the communication peripheral. Some
peripheral names differ between the datasheet and STM8S series and STM8AF series 8-bit
microcontrollers reference manual (see Table 9).
Table 9. Communication peripheral naming correspondence
5.9.1
Peripheral name in datasheet
Peripheral name in reference manual
(RM0016)
USART
UART1
LINUART
UART3
Universal synchronous/asynchronous receiver transmitter (USART)
The devices covered by this datasheet contain one USART interface. The USART can
operate in standard SCI mode (serial communication interface, asynchronous) or in SPI
emulation mode. It is equipped with a 16 bit fractional prescaler. It features LIN master
support.
22/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Product overview
Detailed feature list:
•
Full duplex, asynchronous communications
•
NRZ standard format (mark/space)
•
High-precision baud rate generator system
–
Common programmable transmit and receive baud rates up to fMASTER/16
•
Programmable data word length (8 or 9 bits)
•
Configurable stop bits: Support for 1 or 2 stop bits
•
LIN master mode:
–
LIN break and delimiter generation
–
LIN break and delimiter detection with separate flag and interrupt source for
readback checking.
•
Transmitter clock output for synchronous communication
•
Separate enable bits for transmitter and receiver
•
Transfer detection flags:
•
•
•
•
–
Receive buffer full
–
Transmit buffer empty
–
End of transmission flags
Parity control:
–
Transmits parity bit
–
Checks parity of received data byte
Four error detection flags:
–
Overrun error
–
Noise error
–
Frame error
–
Parity error
Six interrupt sources with flags:
–
Transmit data register empty
–
Transmission complete
–
Receive data register full
–
Idle line received
–
Parity error
–
LIN break and delimiter detection
Two interrupt vectors:
–
Transmitter interrupt
–
Receiver interrupt
•
Reduced power consumption mode
•
Wakeup from mute mode (by idle line detection or address mark detection)
•
Two receiver wakeup modes:
–
Address bit (MSB)
–
Idle line
DocID14395 Rev 15
23/125
114
Product overview
5.9.2
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Universal asynchronous receiver/transmitter with LIN support
(LINUART)
The devices covered by this datasheet contain one LINUART interface. The interface is
available on all the supported packages. The LINUART is an asynchronous serial
communication interface which supports extensive LIN functions tailored for LIN slave
applications. In LIN mode it is compliant to the LIN standards rev 1.2 to rev 2.2.
Detailed feature list:
LIN mode
Master mode
•
LIN break and delimiter generation
•
LIN break and delimiter detection with separate flag and interrupt source for read back
checking.
Slave mode
•
Autonomous header handling – one single interrupt per valid header
•
Mute mode to filter responses
•
Identifier parity error checking
•
LIN automatic resynchronization, allowing operation with internal RC oscillator (HSI)
clock source
•
Break detection at any time, even during a byte reception
•
Header errors detection:
–
Delimiter too short
–
Synch field error
–
Deviation error (if automatic resynchronization is enabled)
–
Framing error in synch field or identifier field
–
Header time-out
UART mode
•
Full duplex, asynchronous communications - NRZ standard format (mark/space)
•
High-precision baud rate generator
–
24/125
A common programmable transmit and receive baud rates up to fMASTER/16
•
Programmable data word length (8 or 9 bits) – 1 or 2 stop bits – parity control
•
Separate enable bits for transmitter and receiver
•
Error detection flags
•
Reduced power consumption mode
•
Multi-processor communication - enter mute mode if address match does not occur
•
Wakeup from mute mode (by idle line detection or address mark detection)
•
Two receiver wakeup modes:
–
Address bit (MSB)
–
Idle line
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
5.9.3
Product overview
Serial peripheral interface (SPI)
The devices covered by this datasheet contain one SPI. The SPI is available on all the
supported packages.
5.9.4
•
Maximum speed: 10 Mbit/s or fMASTER/2 for master, 8 Mbit/s or fMASTER /2 for slave
•
Full duplex synchronous transfers
•
Simplex synchronous transfers on two lines with a possible bidirectional data line
•
Master or slave operation - selectable by hardware or software
•
CRC calculation
•
1 byte Tx and Rx buffer
•
Slave mode/master mode management by hardware or software for both master and
slave
•
Programmable clock polarity and phase
•
Programmable data order with MSB-first or LSB-first shifting
•
Dedicated transmission and reception flags with interrupt capability
•
SPI bus busy status flag
•
Hardware CRC feature for reliable communication:
–
CRC value can be transmitted as last byte in Tx mode
–
CRC error checking for last received byte
Inter integrated circuit (I2C) interface
The devices covered by this datasheet contain one I2C interface. The interface is available
on all the supported packages.
•
•
I2C master features:
–
Clock generation
–
Start and stop generation
2
I C slave features:
–
Programmable I2C address detection
–
Stop bit detection
•
Generation and detection of 7-bit/10-bit addressing and general call
•
Supports different communication speeds:
•
•
–
Standard speed (up to 100 kHz),
–
Fast speed (up to 400 kHz)
Status flags:
–
Transmitter/receiver mode flag
–
End-of-byte transmission flag
–
I2C busy flag
Error flags:
–
Arbitration lost condition for master mode
–
Acknowledgement failure after address/data transmission
–
Detection of misplaced start or stop condition
–
Overrun/underrun if clock stretching is disabled
DocID14395 Rev 15
25/125
114
Product overview
•
•
5.9.5
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Interrupt:
–
Successful address/data communication
–
Error condition
–
Wakeup from Halt
Wakeup from Halt on address detection in slave mode
Controller area network interface (beCAN)
The beCAN controller (basic enhanced CAN), interfaces the CAN network and supports the
CAN protocol version 2.0A and B. It is equipped with a receive FIFO and a very versatile
filter bank. Together with a filter match index, this allows a very efficient message handling in
today’s car network architectures. The CPU is significantly unloaded. The maximum
transmission speed is 1 Mbit/s.
Transmission
•
Three transmit mailboxes
•
Configurable transmit priority by identifier or order request
Reception
•
11- and 29-bit ID
•
1 receive FIFO (3 messages deep)
•
Software-efficient mailbox mapping at a unique address space
•
FMI (filter match index) stored with message for quick message association
•
Configurable FIFO overrun
•
Time stamp on SOF reception
•
6 filter banks, 2 x 32 bytes (scalable to 4 x 16-bit) each, enabling various masking
configurations, such as 12 filters for 29-bit ID or 48 filters for 11-bit ID.
•
Filtering modes (mixable):
–
Mask mode permitting ID range filtering
–
ID list mode
Interrupt management
26/125
•
Maskable interrupt
•
Software-efficient mailbox mapping at a unique address space
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
5.10
Product overview
Input/output specifications
The product features four I/O types:
•
Standard I/O 2 MHz
•
Fast I/O up to 10 MHz
•
High sink 8 mA, 2 MHz
•
True open drain (I2C interface)
To decrease EMI (electromagnetic interference), high sink I/Os have a limited maximum
slew rate. The rise and fall times are similar to those of standard I/Os.
The analog inputs are equipped with a low leakage analog switch. Additionally, the schmitttrigger input stage on the analog I/Os can be disabled in order to reduce the device standby
consumption.
STM8A I/Os are designed to withstand current injection. For a negative injection current of
4 mA, the resulting leakage current in the adjacent input does not exceed 1 µA. Thanks to
this feature, external protection diodes against current injection are no longer required.
Caution:
In STM8AF5286UC device, the following I/O ports are not automatically configured by
hardware: PA3, PA4, PA5, PA6, PF4, PB6, PB7, PE0, PE1, PE2, PE3, PE6, PE7.
As a consequence, they must be put into one of the following configurations by software:
- configured as input with internal pull-up/down resistor,
- configured as output push-pull low.
DocID14395 Rev 15
27/125
114
Pinouts and pin description
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
6
Pinouts and pin description
6.1
Package pinouts
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
PD7/TLI
PD6/LINUART_RX
PD5/LINUART_TX
PD4 (HS)/TIM2_CH1/BEEP
PD3 (HS)/TIM2_CH2
PD2 (HS)/TIM3_CH1
PD1 (HS)/SWIM
PD0 (HS)/TIM3_CH2
PI7
PI6
PE0/CLK_CCO
PE1/I2C_SCL
PE2/I 2C_SDA
PE3/TIM1_BKIN
PE4
PG7
PG6
PG5
PI5
PI4
Figure 3. LQFP 80-pin pinout
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
AIN11/PF3
VREF+
VDDA
VSSA
VREFAIN10/PF0
AIN7/PB7
AIN6/PB6
AIN5/PB5
AIN4/PB4
AIN3/PB3
AIN2/PB2
AIN1/PB1
AIN0/PB0
TIM1_ETR/PH4
TIM1_CH3N/PH5
TIM1_CH2N/PH6
TIM1_CH1N/PH7
AIN8/PE7
AIN9/PE6
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
NRST
OSCIN/PA1
OSCOUT/PA2
VSSIO_1
VSS
VCAP
VDD
VDDIO_1
TIM2_CH3/PA3
USART_RX/PA4
USART_TX/PA5
USART_CK/PA6
(HS) PH0
(HS) PH1
PH2
PH3
AIN15/PF7
AIN14/PF6
AIN13/PF5
AIN12/PF4
1. The CAN interface is only available on STM8AF52xx product lines.
2. (HS) stands for high sink capability.
28/125
DocID14395 Rev 15
PI3
PI2
PI1
PI0
PG4
PG3
PG2
PG1/CAN_RX(1)
PG0/CAN_TX(1)
PC7/SPI_MISO
PC6/SPI_MOSI
VDDIO_2
VSSIO_2
PC5/SPI_SCK
PC4 (HS)/TIM1_CH4
PC3 (HS)/TIM1_CH3
PC2 (HS)/TIM1_CH2
PC1 (HS)/TIM1_CH1
PC0/ADC_ETR
PE5/SPI_NSS
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Pinouts and pin description
PD7/TLI
PD6/LINUART_RX
PD5/LINUART_TX
PD4 (HS)/TIM2_CH1/ BEEP
PD3 (HS)/TIM2_CH2/ADC_ETR
PD2 (HS)/TIM3_CH1
PD1 (HS)/SWIM
PD0 (HS)/TIM3_CH2
PE0/CLK_CCO
PE1/I2C_SCL
PE2/I2C_SDA
PE3/TIM1_BKIN
PE4
PG7
PG6
PG5
Figure 4. LQFP 64-pin pinout
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
1
47
2
46
3
45
4
44
5
43
6
42
7
41
8
40
9
39
10
38
11
37
12
36
13
35
14
34
15
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
PI0
PG4
PG3
PG2
PG1/CAN_RX(1)
PG0/CAN_TX(1)
PC7/SPI_MISO
PC6/SPI_MOSI
VDDIO_2
VSSIO_2
PC5/SPI_SCK
PC4 (HS)/TIM1_CH4
PC3 (HS)/TIM1_CH3
PC2 (HS)/TIM1_CH2
PC1 (HS)/TIM1_CH1
PE5/SPI_NSS
AIN11/PF3
VREF+
VDDA
VSSA
VREFAIN10/PF0
AIN7/PB7
AIN6/PB6
AIN5/PB5
AIN4/PB4
TIM1_ETR/AIN3/PB3
TIM1_CH3N/AIN2/PB2
TIM1_CH2N/AIN1/PB1
TIM1_CH1N/AIN0/PB0
AIN8/PE7
AIN9/PE6
NRST
OSCIN/PA1
OSCOUT/PA2
VSSIO_1
VSS
VCAP
VDD
VDDIO_1
TIM2_CH3/PA3
USART_RX/PA4
USART_TX/PA5
USART_CK/PA6
AIN15/PF7
AIN14/PF6
AIN13/PF5
AIN12/PF4
1. The CAN interface is only available on STM8AF52xx product lines.
2. HS stands for high sink capability.
DocID14395 Rev 15
29/125
114
Pinouts and pin description
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
PD7/TLI
PD6/LINUART_RX
PD5/LINUART_TX
PD4 (HS)/TIM2_CH1/BEEP
PD3 (HS)/TIM2_CH2/ADC_ETR
PD2 (HS)/TIM3_CH1
PD1 (HS)/SWIM
PD0 (HS)/TIM3_CH2
PE0/CLK_CCO
PE1/I2C_SCL
PE2/I2C_SDA
PE3/TIM1_BKIN
Figure 5. LQFP 48-pin pinout
48 47 46 45 44 43 42 41 40 39 38 37
36
1
2
35
3
34
33
4
32
5
31
6
30
7
29
8
28
9
27
10
26
11
25
12
13 14 15 16 17 18 19 20 21 2223 24
VDDA
VSSA
AIN7/PB7
AIN6/PB6
AIN5/PB5
AIN4/PB4
TIM1_ETR/AIN3/PB3
TIM1_CH3N/AIN2/PB2
TIM1_CH2N/AIN1/PB1
TIM1_CH1N/AIN0/PB0
AIN8/PE7
AIN9/PE6
NRST
OSCIN/PA1
OSCOUT/PA2
VSSIO_1
VSS
VCAP
VDD
VDDIO_1
TIM2_CH3/PA3
USART_RX/PA4
USART_TX/PA5
USART_CK/PA6
1. The CAN interface is only available on STM8AF52xx product lines.
2. HS stands for high sink capability.
30/125
DocID14395 Rev 15
PG1/CAN_RX
PG0/CAN_TX
PC7/SPI_MISO
PC6/SPI_MOSI
VDDIO_2
VSSIO_2
PC5/SPI_SCK
PC4 (HS)/TIM1_CH4
PC3 (HS)/TIM1_CH3
PC2 (HS)/TIM1_CH2
PC1 (HS)/TIM1_CH1
PE5/SPI_NSS
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Pinouts and pin description
PD7/TLI
PD6/LINUART_RX
PD5/LINUART_TX
PD4 (HS)/TIM2_CH1/BEEP
PD3 (HS)/TIM2_CH2/ADC_ETR
PD2 (HS)/TIM3_CH1/TIM2_CH3
PD1 (HS)/SWIM
PD0 (HS)/TIM3_CH2/CLK_CCO/TIM1_BRK
Figure 6. STM8AF62xx LQFP/VFQFPN 32-pin pinout
1
2
3
4
5
6
7
8
32 31 30 29 28 27 26 25
24
23
22
21
20
19
18
17
9 10 11 12 13 14 1516
PC7/SPI_MISO
PC6/SPI_MOSI
PC5/SPI_SCK
PC4 (HS)/TIM1_CH4
PC3 (HS)/TIM1_CH3
PC2 (HS)/TIM1_CH2
PC1 (HS)/TIM1_CH1
PE5/SPI_NSS
VDDA
VSSA
I2C_SDA/AIN5/PB5
I2C_SCL/AIN4/PB4
TIM1_ETR/AIN3/PB3
TIM1_CH3N/AIN2/PB2
TIM1_CH2N/AIN1/PB1
TIM1_CH1N/AIN0/PB0
NRST
OSCIN/PA1
OSCOUT/PA2
VSS
VCAP
VDD
VDDIO
AIN12/PF4
1. HS stands for high sink capability.
DocID14395 Rev 15
31/125
114
Pinouts and pin description
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
3'+67,0B&+%((3
3'+67,0B&+$'&B(75
3'+67,0B&+7,0B&+
3'+66:,0
3'+67,0B&+&/.B&&27,0B%5.
'/,18$57B7;
1%-*/6"35@39
1567
3'7/,
Figure 7. STM8AF52x6 VFQFPN32 32-pin pinout
3*&$1B5;
26&,13$
3*&$1B7;
26&2873$
3&
3&+67,0B&+
966
3&+67,0B&+
3$
3(
7,0B&+1$,13%
7,0B&+1$,13%
7,0B&+1$,13%
3&+67,0B&+
7,0B(75$,13%
,&B6&/$,13%
9'',2
,&B6'$$,13%
3&+67,0B&+
9 66$
9''$
9''
9&$3
069
1. The following I/O ports are not automatically configured by hardware: PA3, PA4, PA5, PA6, PF4, PB6,
PB7, PE0, PE1, PE2, PE3, PE6, PE7. As a consequence, they must be put into one of the following
configurations by software:
- configured as input with internal pull-up/down resistor,
- configured as output push-pull low.
2. HS stands for high sink capability.
32/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Pinouts and pin description
Table 10. Legend/abbreviation for the pin description table
Type
Level
Output speed
Port and control
configuration
Reset state
I= input, O = output, S = power supply
Input
CM = CMOS (standard for all I/Os)
Output
HS = high sink (8 mA)
O1 = Standard (up to 2 MHz)
O2 = Fast (up to 10 MHz)
O3 = Fast/slow programmability with slow as default state after reset
O4 = Fast/slow programmability with fast as default state after reset
Input
float = floating, wpu = weak pull-up
Output
T = true open drain, OD = open drain, PP = push pull
Bold X (pin state after reset release).
Unless otherwise specified, the pin state is the same during the reset phase (i.e.
“under reset”) and after internal reset release (i.e. at reset state).
DocID14395 Rev 15
33/125
114
Pinouts and pin description
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 11. STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin description
2
2
2
2
2
3
3
3
3
4
4
4
5
5
5
6
6
6
7
7
8
9
PP
NRST
OD
1
Speed
1
Ext. interrupt
High sink
STM8AF52x6 VFQFPN32
1
Alternate
function
after remap
[option bit]
Wpu
STM8AF62xx
LQFP32/VFQFPN32
1
Main
function
(after
reset)
Floating
LQFP48
1
Output
Type
LQFP64
Input
LQFP80
Pin number
I/O
-
X
-
-
-
-
-
PA1/OSCIN(1)
I/O X
X
-
-
O1
X
X
Port A1
Resonator/
crystal in
-
3
PA2/OSCOUT
I/O X
X X
-
O1
X
X
Port A2
Resonator/
crystal out
-
-
-
VSSIO_1
S
-
-
-
-
-
-
-
I/O ground
-
4
4
VSS
S
-
-
-
-
-
-
-
Digital ground
-
5
5
VCAP
S
-
-
-
-
-
-
-
1.8 V regulator
capacitor
-
7
6
6
VDD
S
-
-
-
-
-
-
-
Digital power supply
-
8
8
7
7
VDDIO_1
S
-
-
-
-
-
-
-
I/O power supply
-
9
9
-
-
PA3/TIM2_CH3
I/O X
X X
-
O1
X
X
Port A3
Timer 2 channel 3
TIM3_CH1
[AFR1]
10 10 10
-
-
PA4/USART_RX I/O X
X X
-
O3
X
X
Port A4
USART
receive
-
11 11 11
-
-
PA5/USART_TX I/O X
X X
-
O3
X
X
Port A5
USART
transmit
-
12 12 12
-
8
(2)
I/O X
X X
-
O3
X
X
Port A6
USART
synchro
nous clock
-
13
-
-
PH0
I/O X
X
- HS O3
X
X
Port H0
-
-
-
-
Pin name
PA6/USART_CK
Default
alternate
function
Reset
-
14
-
-
-
-
PH1
I/O X
X
- HS O3
X
X
Port H1
-
-
15
-
-
-
-
PH2
I/O X
X
-
-
O1
X
X
Port H2
-
-
16
-
-
-
-
PH3
I/O X
X
-
-
O1
X
X
Port H3
-
-
17 13
-
-
-
PF7/AIN15
I/O X
X
-
-
O1
X
X
Port F7
Analog
input 15
-
18 14
-
-
-
PF6/AIN14
I/O X
X
-
-
O1
X
X
Port F6
Analog
input 14
-
19 15
-
-
-
PF5/AIN13
I/O X
X
-
-
O1
X
X
Port F5
Analog
input 13
-
20 16
-
8
-
PF4/AIN12
I/O X
X
-
-
O1
X
X
Port F4
Analog
input 12
-
21 17
-
-
-
PF3/AIN11
I/O X
X
-
-
O1
X
X
Port F3
Analog
input 11
-
34/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Pinouts and pin description
Table 11. STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin description (continued)
Floating
Wpu
Speed
OD
PP
-
VREF+
S
-
-
-
-
-
-
-
ADC positive
reference
voltage
-
23 19 13
9
9
VDDA
S
-
-
-
-
-
-
-
Analog power supply
-
24 20 14
10
10
VSSA
S
-
-
-
-
-
-
-
Analog ground
-
S
-
-
-
-
-
-
-
ADC negative
reference voltage
-
22 18
Pin name
Ext. interrupt
High sink
Type
-
LQFP64
-
LQFP80
STM8AF52x6 VFQFPN32
Output
STM8AF62xx
LQFP32/VFQFPN32
Input
LQFP48
Pin number
Main
function
(after
reset)
Default
alternate
function
Alternate
function
after remap
[option bit]
25 21
-
-
-
VREF-
26 22
-
-
-
PF0/AIN10
I/O X
X
-
-
O1
X
X
Port F0
Analog
input 10
-
27 23 15
-
-
PB7/AIN7
I/O X
X X
-
O1
X
X
Port B7
Analog
input 7
-
28 24 16
-
-
PB6/AIN6
I/O X
X X
-
O1
X
X
Port B6
Analog
input 6
-
29 25 17
11
11
PB5/AIN5
I/O X
X X
-
O1
X
X
Port B5
Analog
input 5
I2C_SDA
[AFR6]
30 26 18
12
12
PB4/AIN4
I/O X
X X
-
O1
X
X
Port B4
Analog
input 4
I2C_SCL
[AFR6]
31 27 19
13
13
PB3/AIN3
I/O X
X X
-
O1
X
X
Port B3
Analog
input 3
TIM1_ETR
[AFR5]
32 28 20
14
14
PB2/AIN2
I/O X
X X
-
O1
X
X
Port B2
Analog
input
TIM1_CH3N
[AFR5]
33 29 21
15
15
PB1/AIN1
I/O X
X X
-
O1
X
X
Port B1
Analog
input 1
TIM1_CH2N
[AFR5]
34 30 22
16
16
PB0/AIN0
I/O X
X X
-
O1
X
X
Port B0
Analog
input 0
TIM1_CH1N
[AFR5]
X
-
-
O1
X
X
Port H4
Timer 1 trigger
input
-
35
-
-
-
-
PH4/TIM1_ETR I/O X
36
-
-
-
-
PH5/
TIM1_CH3N
I/O X
X
-
-
O1
X
X
Port H5
Timer 1 inverted
channel 3
-
37
-
-
-
-
PH6/
TIM1_CH2N
I/O X
X
-
-
O1
X
X
Port H6
Timer 1 inverted
channel 2
-
DocID14395 Rev 15
35/125
114
Pinouts and pin description
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 11. STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin description (continued)
39 31 23
Main
function
(after
reset)
PH7/
TIM1_CH1N
I/O X
X
-
-
O1
X
X
Port H7
Timer 1 inverted
channel 2
-
-
-
PE7/AIN8
I/O X
X
-
-
O1
X
X
Port E7
Analog
input 8
-
PE6/AIN9
I/O X
X X
-
O1
X
X
Port E6
Analog
input 9
-
-
40 32 24
41 33 25
42
-
Pin name
Default
alternate
function
Alternate
function
after remap
[option bit]
(2)
I/O X
X X
-
O1
X
X
Port E5
SPI
master/
slave
select
PC0/ADC_ETR
I/O X
X X
-
O1
X
X
Port C0
ADC
trigger
input
-
17 PE5/SPI_NSS
-
-
43 34 26
18
18
PC1/TIM1_CH1 I/O X
X X HS O3
X
X
Port C1
Timer 1 channel 1
-
44 35 27
19
19
PC2/TIM1_CH2 I/O X
X X HS O3
X
X
Port C2
Timer 1channel 2
-
45 36 28
20
20
PC3/TIM1_CH3 I/O X
X X HS O3
X
X
Port C3
Timer 1 channel 3
-
46 37 29
21
21
PC4/TIM1_CH4 I/O X
X X HS O3
X
X
Port C4
Timer 1 channel 4
-
47 38 30
22
22 PC5/SPI_SCK(2) I/O X
X X
-
O3
X
X
Port C5
SPI clock
-
48 39 31
-
-
VSSIO_2
S
-
-
-
-
-
-
-
I/O ground
-
49 40 32
-
-
VDDIO_2
S
-
-
-
-
-
-
-
I/O power supply
-
50 41 33
23
-
I/O X
X X
-
O3
X
X
Port C6
SPI master
out/
slave in
-
51 42 34
24
-
(2)
I/O X
X X
-
O3
X
X
Port C7
SPI master
in/ slave
out
-
52 43 35
-
23
PG0/CAN_TX
I/O X
X
-
-
O1
X
X
Port G0
CAN
transmit
-
53 44 36
-
24
PG1/CAN_RX
I/O X
X
-
-
O1
X
X
Port G1
CAN
receive
-
54 45
-
-
PG2
I/O X
X
-
-
O1
X
X
Port G2
-
-
36/125
-
17
Type
PP
-
OD
-
Speed
STM8AF52x6 VFQFPN32
-
Ext. interrupt
High sink
STM8AF62xx
LQFP32/VFQFPN32
-
Wpu
LQFP48
38
Output
Floating
LQFP64
Input
LQFP80
Pin number
-
PC6/SPI_MOSI
(2)
PC7/SPI_MISO
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Pinouts and pin description
Table 11. STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin description (continued)
Floating
Wpu
Ext. interrupt
High sink
Speed
OD
PP
-
-
-
PG3
I/O X
X
-
-
O1
X
X
Port G3
-
-
56 47
-
-
-
PG4
I/O X
X
-
-
O1
X
X
Port G4
-
-
57 48
-
-
-
PI0
I/O X
X
-
-
O1
X
X
Port I0
-
-
58
-
-
-
-
PI1
I/O X
X
-
-
O1
X
X
Port I1
-
-
59
-
-
-
-
PI2
I/O X
X
-
-
O1
X
X
Port I2
-
-
60
-
-
-
-
PI3
I/O X
X
-
-
O1
X
X
Port I3
-
-
61
-
-
-
-
PI4
I/O X
X
-
-
O1
X
X
Port I4
-
-
62
-
Pin name
Type
55 46
LQFP64
Main
function
(after
reset)
LQFP80
STM8AF52x6 VFQFPN32
Output
STM8AF62xx
LQFP32/VFQFPN32
Input
LQFP48
Pin number
Default
alternate
function
Alternate
function
after remap
[option bit]
-
-
-
PI5
I/O X
X
-
-
O1
X
X
Port I5
-
-
63 49
-
-
-
PG5
I/O X
X
-
-
O1
X
X
Port G5
-
-
64 50
-
-
-
PG6
I/O X
X
-
-
O1
X
X
Port G6
-
-
65 51
-
-
-
PG7
I/O X
X
-
-
O1
X
X
Port G7
-
-
66 52
-
-
-
PE4
I/O X
X X
-
O1
X
X
Port E4
-
-
67 53 37
-
-
68 54 38
-
-
PE2/I2C_SDA
2C_SCL
69 55 39
-
-
70 56 40
-
-
X X
-
O1
X
Port E3
Timer 1 break input
I/O X
-
X
-
O1 T(3) -
Port E2
I2C data
-
I/O X
-
X
-
O1 T(3) -
Port E1
I2C clock
-
I/O X
X X
-
O3
X
X
Port E0
Configurab
le clock
output
-
PE3/TIM1_BKIN I/O X
PE1/I
PE0/CLK_CCO
X
71
-
-
-
-
PI6
I/O X
X
-
-
O1
X
X
Port I6
-
-
72
-
-
-
-
PI7
I/O X
X
-
-
O1
X
X
Port I7
-
TIM1_BKIN
[AFR3]/
CLK_CCO
[AFR2]
X X HS O3
X
X
Port D0
Timer 3 channel 2
I/O X
X X HS O4
X
X
Port D1
SWIM data
interface
-
27
PD2/TIM3_CH1 I/O X
X X HS O3
X
X
Port D2
Timer 3 channel 1
TIM2_CH3
[AFR1]
28
28
PD3/TIM2_CH2 I/O X
X X HS O3
X
X
Port D3
Timer 2 channel 2
ADC_ETR
[AFR0]
29
29
PD4/TIM2_CH1/
I/O X
BEEP
X X HS O3
X
X
Port D4
Timer 2 channel 1
BEEP output
[AFR7]
73 57 41
25
25
74 58 42
26
26
75 59 43
27
76 60 44
77 61 45
PD0/TIM3_CH2 I/O X
PD1/SWIM(4)
DocID14395 Rev 15
37/125
114
Pinouts and pin description
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 11. STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin description (continued)
OD
PP
X X
-
O1
X
X
Port D5
LINUART
data
transmit
-
79 63 47
31
31
PD6/
LINUART_RX
I/O X
X X
-
O1
X
X
Port D6
LINUART
data
receive
-
80 64 48
32
32
PD7/TLI(5)
I/O X
X X
-
O1
X
X
Port D7
Top level
interrupt
-
Ext. interrupt
High sink
I/O X
Wpu
PD5/
LINUART_TX
Floating
30
Pin name
Type
30
LQFP48
78 62 46
LQFP64
Main
function
(after
reset)
LQFP80
Speed
Output
STM8AF52x6 VFQFPN32
Input
STM8AF62xx
LQFP32/VFQFPN32
Pin number
Default
alternate
function
Alternate
function
after remap
[option bit]
1. In Halt/Active-halt mode, this pin behaves as follows:
- The input/output path is disabled.
- If the HSE clock is used for wakeup, the internal weak pull-up is disabled.
- If the HSE clock is off, the internal weak pull-up setting is used. It is configured through Px_CR1[7:0] bits of the
corresponding port control register. Px_CR1[7:0] bits must be set correctly to ensure that the pin is not left floating in
Halt/Active-halt mode.
2. SPI and USTART are not available in STM8AF5286UC, refer to Figure 7: STM8AF52x6 VFQFPN32 32-pin pinout for the
pin names.
3. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, week pull-up and protection diode to VDD are
not implemented)
4. The PD1 pin is in input pull-up during the reset phase and after reset release.
5. If this pin is configured as interrupt pin, it will trigger the TLI.
38/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
6.2
Pinouts and pin description
Alternate function remapping
As shown in the rightmost column of Table 11, some alternate functions can be remapped at
different I/O ports by programming one of eight AFR (alternate function remap) option bits.
Refer to Section 9: Option bytes on page 54. When the remapping option is active, the
default alternate function is no longer available.
To use an alternate function, the corresponding peripheral must be enabled in the peripheral
registers.
Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the
GPIO section of STM8S series and STM8AF series 8-bit microcontrollers reference manual,
RM0016).
DocID14395 Rev 15
39/125
114
Memory and register map
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
7
Memory and register map
7.1
Memory map
Figure 8. Register and memory map
[
.E\WH5$0
[
[))
VWDFN
5HVHUYHG
[
[
XSWR.E\WHGDWD((3520
2SWLRQE\WHV
[
5HVHUYHG
[
+DUGZDUHUHJLVWHUV
[
5HVHUYHG
[
.E\WHRI%RRW520
[
5HVHUYHG
[)
&386:,0GHEXJ,7&
UHJLVWHUV
[
,QWHUUXSWYHFWRUV
[
8SWR.E\WHRI)ODVK
SURJUDPPHPRU\
)ODVKSURJUDPPHPRU\HQGDGGUHVV
069
40/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Memory and register map
Table 12. Memory model 128K
7.2
Flash program
memory size
Flash program
memory end
address
128 K
0x00 27FFF
64 K
0x00 17FFF
32 K
0x00 0FFFF
RAM size
RAM end
address
Stack roll-over
address
6K
0x00 17FF
0x00 1400
Register map
In this section the memory and register map of the devices covered by this datasheet is
described. For a detailed description of the functionality of the registers, refer to STM8S
series and STM8AF series 8-bit microcontrollers reference manual, RM0016.
Table 13. I/O port hardware register map
Register label
Register name
Reset
status
0x00 5000
PA_ODR
Port A data output latch register
0x00
0x00 5001
PA_IDR
Port A input pin value register
0xXX(1)
PA_DDR
Port A data direction register
0x00
0x00 5003
PA_CR1
Port A control register 1
0x00
0x00 5004
PA_CR2
Port A control register 2
0x00
0x00 5005
PB_ODR
Port B data output latch register
0x00
0x00 5006
PB_IDR
Port B input pin value register
0xXX(1)
PB_DDR
Port B data direction register
0x00
0x00 5008
PB_CR1
Port B control register 1
0x00
0x00 5009
PB_CR2
Port B control register 2
0x00
0x00 500A
PC_ODR
Port C data output latch register
0x00
0x00 500B
PB_IDR
Port C input pin value register
0xXX(1)
PC_DDR
Port C data direction register
0x00
0x00 500D
PC_CR1
Port C control register 1
0x00
0x00 500E
PC_CR2
Port C control register 2
0x00
0x00 500F
PD_ODR
Port D data output latch register
0x00
0x00 5010
PD_IDR
Port D input pin value register
0xXX(1)
PD_DDR
Port D data direction register
0x00
0x00 5012
PD_CR1
Port D control register 1
0x02
0x00 5013
PD_CR2
Port D control register 2
0x00
Address
0x00 5002
0x00 5007
0x00 500C
0x00 5011
Block
Port A
Port B
Port C
Port D
DocID14395 Rev 15
41/125
114
Memory and register map
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 13. I/O port hardware register map (continued)
Register label
Register name
Reset
status
0x00 5014
PE_ODR
Port E data output latch register
0x00
0x00 5015
PE_IDR
Port E input pin value register
0xXX(1)
PE_DDR
Port E data direction register
0x00
0x00 5017
PE_CR1
Port E control register 1
0x00
0x00 5018
PE_CR2
Port E control register 2
0x00
0x00 5019
PF_ODR
Port F data output latch register
0x00
0x00 501A
PF_IDR
Port F input pin value register
0xXX(1)
PF_DDR
Port F data direction register
0x00
0x00 501C
PF_CR1
Port F control register 1
0x00
0x00 501D
PF_CR2
Port F control register 2
0x00
0x00 501E
PG_ODR
Port G data output latch register
0x00
0x00 501F
PG_IDR
Port G input pin value register
0xXX(1)
PG_DDR
Port G data direction register
0x00
0x00 5021
PG_CR1
Port G control register 1
0x00
0x00 5022
PG_CR2
Port G control register 2
0x00
0x00 5023
PH_ODR
Port H data output latch register
0x00
0x00 5024
PH_IDR
Port H input pin value register
0xXX(1)
PH_DDR
Port H data direction register
0x00
0x00 5026
PH_CR1
Port H control register 1
0x00
0x00 5027
PH_CR2
Port H control register 2
0x00
0x00 5028
PI_ODR
Port I data output latch register
0x00
0x00 5029
PI_IDR
Port I input pin value register
0xXX(1)
PI_DDR
Port I data direction register
0x00
0x00 502B
PI_CR1
Port I control register 1
0x00
0x00 502C
PI_CR2
Port I control register 2
0x00
Address
0x00 5016
0x00 501B
0x00 5020
0x00 5025
0x00 502A
Block
Port E
Port F
Port G
Port H
Port I
1. Depends on the external circuitry.
42/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Memory and register map
Table 14. General hardware register map
Register label
Register name
Reset
status
0x00 505A
FLASH_CR1
Flash control register 1
0x00
0x00 505B
FLASH_CR2
Flash control register 2
0x00
0x00 505C
FLASH_NCR2
Flash complementary control register 2
0xFF
FLASH_FPR
Flash protection register
0x00
0x00 505E
FLASH_NFPR
Flash complementary protection register
0xFF
0x00 505F
FLASH_IAPSR
Flash in-application programming status
register
0x40
Address
0x00 505D
Block
Flash
0x00 5060 to
0x005061
0x00 5062
Reserved area (2 bytes)
Flash
FLASH_PUKR
0x00 5063
0x00 5064
0x00 50A1
Flash
FLASH_DUKR
ITC
0x00 50C1
0x00 50C2
0x00
EXTI_CR1
External interrupt control register 1
0x00
EXTI_CR2
External interrupt control register 2
0x00
Reserved area (17 bytes)
RST
RST_SR
0x00 50B4 to
0x00 50BF
0x00 50C0
Data EEPROM unprotection register
Reserved area (59 bytes)
0x00 50A2 to
0x00 50B2
0x00 50B3
0x00
Reserved area (1 byte)
0x00 5065 to
0x00 509F
0x00 50A0
Flash Program memory unprotection
register
Reset status register
0xXX(1)
Reserved area (12 bytes)
CLK
CLK_ICKR
Internal clock control register
0x01
CLK_ECKR
External clock control register
0x00
Reserved area (1 byte)
DocID14395 Rev 15
43/125
114
Memory and register map
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 14. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 50C3
CLK_CMSR
Clock master status register
0xE1
0x00 50C4
CLK_SWR
Clock master switch register
0xE1
0x00 50C5
CLK_SWCR
Clock switch control register
0xXX
0x00 50C6
CLK_CKDIVR
Clock divider register
0x18
0x00 50C7
CLK_PCKENR1
Peripheral clock gating register 1
0xFF
CLK_CSSR
Clock security system register
0x00
0x00 50C9
CLK_CCOR
Configurable clock control register
0x00
0x00 50CA
CLK_PCKENR2
Peripheral clock gating register 2
0xFF
Address
0x00 50C8
Block
CLK
0x00 50CB
Reserved area (1 byte)
0x00 50CC
CLK_HSITRIMR
HSI clock calibration trimming register
0x00
0x00 50CD
CLK_SWIMCCR
SWIM clock control register
0bXXXX
XXX0
0x00 50CE
to 0x00 50D0
0x00 50D1
0x00 50D2
Reserved area (3 bytes)
WWDG
WWDG_CR
WWDG control register
0x7F
WWDG_WR
WWDR window register
0x7F
0x00 50D3 to
0x00 50DF
Reserved area (13 bytes)
0x00 50E0
0x00 50E1
IWDG
0x00 50E2
IWDG_KR
IWDG key register
0xXX(2)
IWDG_PR
IWDG prescaler register
0x00
IWDG_RLR
IWDG reload register
0xFF
0x00 50E3 to
0x00 50EF
Reserved area (13 bytes)
0x00 50F0
0x00 50F1
AWU
0x00 50F2
0x00 50F3
0x00 50F4 to
0x00 50FF
44/125
BEEP
AWU_CSR1
AWU control/status register 1
0x00
AWU_APR
AWU asynchronous prescaler buffer
register
0x3F
AWU_TBR
AWU timebase selection register
0x00
BEEP_CSR
BEEP control/status register
0x1F
Reserved area (12 bytes)
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Memory and register map
Table 14. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5200
SPI_CR1
SPI control register 1
0x00
0x00 5201
SPI_CR2
SPI control register 2
0x00
0x00 5202
SPI_ICR
SPI interrupt control register
0x00
SPI_SR
SPI status register
0x02
SPI_DR
SPI data register
0x00
0x00 5205
SPI_CRCPR
SPI CRC polynomial register
0x07
0x00 5206
SPI_RXCRCR
SPI Rx CRC register
0xFF
0x00 5207
SPI_TXCRCR
SPI Tx CRC register
0xFF
Address
0x00 5203
0x00 5204
Block
SPI
0x00 5208 to
0x00 520F
Reserved area (8 bytes)
0x00 5210
I2C_CR1
I2C control register 1
0x00
0x00 5211
I2C_CR2
I2C control register 2
0x00
0x00 5212
I2C_FREQR
I2C frequency register
0x00
0x00 5213
I2C_OARL
I2C own address register low
0x00
0x00 5214
I2C_OARH
I2C own address register high
0x00
I2C_DR
I2C data register
0x00
I2C_SR1
I2C status register 1
0x00
0x00 5218
I2C_SR2
I2C status register 2
0x00
0x00 5219
I2C_SR3
I2C status register 3
0x00
0x00 521A
I2C_ITR
I2C interrupt control register
0x00
0x00 521B
I2C_CCRL
I2C clock control register low
0x00
0x00 521C
I2C_CCRH
I2C clock control register high
0x00
0x00 521D
I2C_TRISER
I2C TRISE register
0x02
0x00 5215
0x00 5216
0x00 5217
0x00 521E to
0x00 522F
I2C
Reserved area (18 bytes)
DocID14395 Rev 15
45/125
114
Memory and register map
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 14. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5230
UART1_SR
USART status register
0xC0
0x00 5231
UART1_DR
USART data register
0xXX
0x00 5232
UART1_BRR1
USART baud rate register 1
0x00
0x00 5233
UART1_BRR2
USART baud rate register 2
0x00
0x00 5234
UART1_CR1
USART control register 1
0x00
UART1_CR2
USART control register 2
0x00
0x00 5236
UART1_CR3
USART control register 3
0x00
0x00 5237
UART1_CR4
USART control register 4
0x00
0x00 5238
UART1_CR5
USART control register 5
0x00
0x00 5239
UART1_GTR
USART guard time register
0x00
0x00 523A
UART1_PSCR
USART prescaler register
0x00
Address
0x00 5235
Block
USART
0x00 523B to
0x00 523F
Reserved area (5 bytes)
0x00 5240
UART3_SR
LINUART status register
0xC0
0x00 5241
UART3_DR
LINUART data register
0xXX
0x00 5242
UART3_BRR1
LINUART baud rate register 1
0x00
0x00 5243
UART3_BRR2
LINUART baud rate register 2
0x00
UART3_CR1
LINUART control register 1
0x00
UART3_CR2
LINUART control register 2
0x00
0x00 5246
UART3_CR3
LINUART control register 3
0x00
0x00 5247
UART3_CR4
LINUART control register 4
0x00
0x00 5244
0x00 5245
LINUART
0x00 5248
0x00 5249
0x00 524A to
0x00 524F
46/125
Reserved
UART3_CR6
LINUART control register 6
Reserved area (6 bytes)
DocID14395 Rev 15
0x00
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Memory and register map
Table 14. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5250
TIM1_CR1
TIM1 control register 1
0x00
0x00 5251
TIM1_CR2
TIM1 control register 2
0x00
0x00 5252
TIM1_SMCR
TIM1 slave mode control register
0x00
0x00 5253
TIM1_ETR
TIM1 external trigger register
0x00
0x00 5254
TIM1_IER
TIM1 Interrupt enable register
0x00
0x00 5255
TIM1_SR1
TIM1 status register 1
0x00
0x00 5256
TIM1_SR2
TIM1 status register 2
0x00
0x00 5257
TIM1_EGR
TIM1 event generation register
0x00
0x00 5258
TIM1_CCMR1
TIM1 capture/compare mode register 1
0x00
0x00 5259
TIM1_CCMR2
TIM1 capture/compare mode register 2
0x00
0x00 525A
TIM1_CCMR3
TIM1 capture/compare mode register 3
0x00
0x00 525B
TIM1_CCMR4
TIM1 capture/compare mode register 4
0x00
0x00 525C
TIM1_CCER1
TIM1 capture/compare enable register 1
0x00
0x00 525D
TIM1_CCER2
TIM1 capture/compare enable register 2
0x00
0x00 525E
TIM1_CNTRH
TIM1 counter high
0x00
TIM1_CNTRL
TIM1 counter low
0x00
TIM1_PSCRH
TIM1 prescaler register high
0x00
0x00 5261
TIM1_PSCRL
TIM1 prescaler register low
0x00
0x00 5262
TIM1_ARRH
TIM1 auto-reload register high
0xFF
0x00 5263
TIM1_ARRL
TIM1 auto-reload register low
0xFF
0x00 5264
TIM1_RCR
TIM1 repetition counter register
0x00
0x00 5265
TIM1_CCR1H
TIM1 capture/compare register 1 high
0x00
0x00 5266
TIM1_CCR1L
TIM1 capture/compare register 1 low
0x00
0x00 5267
TIM1_CCR2H
TIM1 capture/compare register 2 high
0x00
0x00 5268
TIM1_CCR2L
TIM1 capture/compare register 2 low
0x00
0x00 5269
TIM1_CCR3H
TIM1 capture/compare register 3 high
0x00
0x00 526A
TIM1_CCR3L
TIM1 capture/compare register 3 low
0x00
0x00 526B
TIM1_CCR4H
TIM1 capture/compare register 4 high
0x00
0x00 526C
TIM1_CCR4L
TIM1 capture/compare register 4 low
0x00
0x00 526D
TIM1_BKR
TIM1 break register
0x00
0x00 526E
TIM1_DTR
TIM1 dead-time register
0x00
0x00 526F
TIM1_OISR
TIM1 output idle state register
0x00
Address
0x00 525F
0x00 5260
0x00 5270 to
0x00 52FF
Block
TIM1
Reserved area (147 bytes)
DocID14395 Rev 15
47/125
114
Memory and register map
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 14. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5300
TIM2_CR1
TIM2 control register 1
0x00
0x00 5301
TIM2_IER
TIM2 interrupt enable register
0x00
0x00 5302
TIM2_SR1
TIM2 status register 1
0x00
0x00 5303
TIM2_SR2
TIM2 status register 2
0x00
0x00 5304
TIM2_EGR
TIM2 event generation register
0x00
0x00 5305
TIM2_CCMR1
TIM2 capture/compare mode register 1
0x00
0x00 5306
TIM2_CCMR2
TIM2 capture/compare mode register 2
0x00
0x00 5307
TIM2_CCMR3
TIM2 capture/compare mode register 3
0x00
0x00 5308
TIM2_CCER1
TIM2 capture/compare enable register 1
0x00
0x00 5309
TIM2_CCER2
TIM2 capture/compare enable register 2
0x00
TIM2_CNTRH
TIM2 counter high
0x00
0x00 530B
TIM2_CNTRL
TIM2 counter low
0x00
00 530C0x
TIM2_PSCR
TIM2 prescaler register
0x00
0x00 530D
TIM2_ARRH
TIM2 auto-reload register high
0xFF
0x00 530E
TIM2_ARRL
TIM2 auto-reload register low
0xFF
0x00 530F
TIM2_CCR1H
TIM2 capture/compare register 1 high
0x00
0x00 5310
TIM2_CCR1L
TIM2 capture/compare register 1 low
0x00
0x00 5311
TIM2_CCR2H
TIM2 capture/compare reg. 2 high
0x00
0x00 5312
TIM2_CCR2L
TIM2 capture/compare register 2 low
0x00
0x00 5313
TIM2_CCR3H
TIM2 capture/compare register 3 high
0x00
0x00 5314
TIM2_CCR3L
TIM2 capture/compare register 3 low
0x00
Address
0x00 530A
0x00 5315 to
0x00 531F
48/125
Block
TIM2
Reserved area (11 bytes)
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Memory and register map
Table 14. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5320
TIM3_CR1
TIM3 control register 1
0x00
0x00 5321
TIM3_IER
TIM3 interrupt enable register
0x00
0x00 5322
TIM3_SR1
TIM3 status register 1
0x00
0x00 5323
TIM3_SR2
TIM3 status register 2
0x00
0x00 5324
TIM3_EGR
TIM3 event generation register
0x00
0x00 5325
TIM3_CCMR1
TIM3 capture/compare mode register 1
0x00
0x00 5326
TIM3_CCMR2
TIM3 capture/compare mode register 2
0x00
0x00 5327
TIM3_CCER1
TIM3 capture/compare enable register 1
0x00
TIM3_CNTRH
TIM3 counter high
0x00
0x00 5329
TIM3_CNTRL
TIM3 counter low
0x00
0x00 532A
TIM3_PSCR
TIM3 prescaler register
0x00
0x00 532B
TIM3_ARRH
TIM3 auto-reload register high
0xFF
0x00 532C
TIM3_ARRL
TIM3 auto-reload register low
0xFF
0x00 532D
TIM3_CCR1H
TIM3 capture/compare register 1 high
0x00
0x00 532E
TIM3_CCR1L
TIM3 capture/compare register 1 low
0x00
0x00 532F
TIM3_CCR2H
TIM3 capture/compare register 2 high
0x00
0x00 5330
TIM3_CCR2L
TIM3 capture/compare register 2 low
0x00
Address
0x00 5328
Block
TIM3
0x00 5331 to
0x00 533F
Reserved area (15 bytes)
0x00 5340
TIM4_CR1
TIM4 control register 1
0x00
0x00 5341
TIM4_IER
TIM4 interrupt enable register
0x00
0x00 5342
TIM4_SR
TIM4 status register
0x00
TIM4_EGR
TIM4 event generation register
0x00
0x00 5344
TIM4_CNTR
TIM4 counter
0x00
0x00 5345
TIM4_PSCR
TIM4 prescaler register
0x00
0x00 5346
TIM4_ARR
TIM4 auto-reload register
0xFF
0x00 5343
0x00 5347 to
0x00 53FF
TIM4
Reserved area (185 bytes)
DocID14395 Rev 15
49/125
114
Memory and register map
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 14. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5400
ADC _CSR
ADC control/status register
0x00
0x00 5401
ADC_CR1
ADC configuration register 1
0x00
0x00 5402
ADC_CR2
ADC configuration register 2
0x00
ADC_CR3
ADC configuration register 3
0x00
ADC_DRH
ADC data register high
0xXX
0x00 5405
ADC_DRL
ADC data register low
0xXX
0x00 5406
ADC_TDRH
ADC Schmitt trigger disable register high
0x00
0x00 5407
ADC_TDRL
ADC Schmitt trigger disable register low
0x00
Address
0x00 5403
0x00 5404
Block
ADC
0x00 5408 to
0x00 541F
0x00 5420
CAN_MCR
CAN master control register
0x02
0x00 5421
CAN_MSR
CAN master status register
0x02
0x00 5422
CAN_TSR
CAN transmit status register
0x00
0x00 5423
CAN_TPR
CAN transmit priority register
0x0C
0x00 5424
CAN_RFR
CAN receive FIFO register
0x00
0x00 5425
CAN_IER
CAN interrupt enable register
0x00
0x00 5426
CAN_DGR
CAN diagnosis register
0x0C
0x00 5427
CAN_FPSR
CAN page selection register
0x00
0x00 5428
CAN_P0
CAN paged register 0
0xXX(3)
0x00 5429
CAN_P1
CAN paged register 1
0xXX(3)
0x00 542A
CAN_P2
CAN paged register 2
0xXX(3)
CAN_P3
CAN paged register 3
0xXX(3)
0x00 542C
CAN_P4
CAN paged register 4
0xXX(3)
0x00 542D
CAN_P5
CAN paged register 5
0xXX(3)
0x00 542E
CAN_P6
CAN paged register 6
0xXX(3)
0x00 542F
CAN_P7
CAN paged register 7
0xXX(3)
0x00 5430
CAN_P8
CAN paged register 8
0xXX(3)
0x00 5431
CAN_P9
CAN paged register 9
0xXX(3)
0x00 5432
CAN_PA
CAN paged register A
0xXX(3)
0x00 5433
CAN_PB
CAN paged register B
0xXX(3)
0x00 5434
CAN_PC
CAN paged register C
0xXX(3)
0x00 5435
CAN_PD
CAN paged register D
0xXX(3)
0x00 5436
CAN_PE
CAN paged register E
0xXX(3)
0x00 542B
50/125
Reserved area (24 bytes)
beCAN
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Memory and register map
Table 14. General hardware register map (continued)
Address
Block
Register label
Register name
Reset
status
0x00 5437
beCAN
CAN_PF
CAN paged register F
0xXX(3)
0x00 5438 to
0x00 57FF
Reserved area (968 bytes)
1. Depends on the previous reset source.
2. Write only register.
3. If the bootloader is enabled, it is initialized to 0x00.
Table 15. CPU/SWIM/debug module/interrupt controller registers
Register label
Register name
Reset
status
0x00 7F00
A
Accumulator
0x00
0x00 7F01
PCE
Program counter extended
0x00
0x00 7F02
PCH
Program counter high
0x80
0x00 7F03
PCL
Program counter low
0x00
XH
X index register high
0x00
XL
X index register low
0x00
0x00 7F06
YH
Y index register high
0x00
0x00 7F07
YL
Y index register low
0x00
0x00 7F08
SPH
Stack pointer high
0x17(2)
0x00 7F09
SPL
Stack pointer low
0xFF
0x00 7F0A
CC
Condition code register
0x28
Address
Block
0x00 7F04
0x00 7F05
CPU(1)
0x00 7F0B
to 0x00
7F5F
0x00 7F60
Reserved area (85 bytes)
CFG_GCR
Global configuration register
0x00
0x00 7F70
ITC_SPR1
Interrupt software priority register 1
0xFF
0x00 7F71
ITC_SPR2
Interrupt software priority register 2
0xFF
0x00 7F72
ITC_SPR3
Interrupt software priority register 3
0xFF
ITC_SPR4
Interrupt software priority register 4
0xFF
ITC_SPR5
Interrupt software priority register 5
0xFF
0x00 7F75
ITC_SPR6
Interrupt software priority register 6
0xFF
0x00 7F76
ITC_SPR7
Interrupt software priority register 7
0xFF
0x00 7F77
ITC_SPR8
Interrupt software priority register 8
0xFF
0x00 7F73
0x00 7F74
CPU
ITC
0x00 7F78
to
0x00 7F79
0x00 7F80
Reserved area (2 bytes)
SWIM
SWIM_CSR
SWIM control status register
DocID14395 Rev 15
0x00
51/125
114
Memory and register map
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 15. CPU/SWIM/debug module/interrupt controller registers (continued)
Address
Block
Register label
0x00 7F81
to
0x00 7F8F
Register name
Reset
status
Reserved area (15 bytes)
0x00 7F90
DM_BK1RE
DM breakpoint 1 register extended byte
0xFF
0x00 7F91
DM_BK1RH
DM breakpoint 1 register high byte
0xFF
0x00 7F92
DM_BK1RL
DM breakpoint 1 register low byte
0xFF
0x00 7F93
DM_BK2RE
DM breakpoint 2 register extended byte
0xFF
0x00 7F94
DM_BK2RH
DM breakpoint 2 register high byte
0xFF
DM_BK2RL
DM breakpoint 2 register low byte
0xFF
0x00 7F96
DM_CR1
DM debug module control register 1
0x00
0x00 7F97
DM_CR2
DM debug module control register 2
0x00
0x00 7F98
DM_CSR1
DM debug module control/status register 1
0x10
0x00 7F99
DM_CSR2
DM debug module control/status register 2
0x00
0x00 7F9A
DM_ENFCTR
DM enable function register
0xFF
0x00 7F95
DM
0x00 7F9B
to 0x00
7F9F
Reserved area (5 bytes)
1. Accessible by debug module only
2. Product dependent value, see Figure 8: Register and memory map.
Table 16. Temporary memory unprotection registers
Register label
Register name
Reset
status
0x00 5800
TMU_K1
Temporary memory unprotection key register 1
0x00
0x00 5801
TMU_K2
Temporary memory unprotection key register 2
0x00
0x00 5802
TMU_K3
Temporary memory unprotection key register 3
0x00
0x00 5803
TMU_K4
Temporary memory unprotection key register 4
0x00
TMU_K5
Temporary memory unprotection key register 5
0x00
0x00 5805
TMU_K6
Temporary memory unprotection key register 6
0x00
0x00 5806
TMU_K7
Temporary memory unprotection key register 7
0x00
0x00 5807
TMU_K8
Temporary memory unprotection key register 8
0x00
0x00 5808
TMU_CSR
Temporary memory unprotection control and status
register
0x00
Address
0x00 5804
52/125
Block
TMU
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
8
Interrupt table
Interrupt table
Table 17. STM8A interrupt table(1)
Priority Source block
Description
Interrupt vector
address
Wakeup
from Halt
Comments
-
Reset
Reset
0x00 8000
Yes
-
-
TRAP
SW interrupt
0x00 8004
-
-
0
TLI
External top level interrupt
0x00 8008
-
-
1
AWU
Auto-wakeup from Halt
0x00 800C
Yes
-
2
Clock
controller
Main clock controller
0x00 8010
-
-
3
MISC
External interrupt E0
0x00 8014
Yes
Port A interrupts
4
MISC
External interrupt E1
0x00 8018
Yes
Port B interrupts
5
MISC
External interrupt E2
0x00 801C
Yes
Port C interrupts
6
MISC
External interrupt E3
0x00 8020
Yes
Port D interrupts
7
MISC
External interrupt E4
0x00 8024
Yes
Port E interrupts
8
CAN
CAN interrupt Rx
0x00 8028
Yes
-
9
CAN
CAN interrupt TX/ER/SC
0x00 802C
-
-
10
SPI
End of transfer
0x00 8030
Yes
-
11
Timer 1
Update/overflow/
trigger/break
0x00 8034
-
-
12
Timer 1
Capture/compare
0x00 8038
-
-
13
Timer 2
Update/overflow
0x00 803C
-
-
14
Timer 2
Capture/compare
0x00 8040
-
-
15
Timer 3
Update/overflow
0x00 8044
-
-
16
Timer 3
Capture/compare
0x00 8048
-
-
17
USART
Tx complete
0x00 804C
-
-
18
USART
Receive data full reg.
0x00 8050
-
-
I C interrupts
0x00 8054
Yes
-
2
2
19
I C
20
LINUART
Tx complete/error
0x00 8058
-
-
21
LINUART
Receive data full reg.
0x00 805C
-
-
22
ADC
End of conversion
0x00 8060
-
-
23
Timer 4
Update/overflow
0x00 8064
-
-
24
EEPROM
End of programming/
write in not allowed area
0x00 8068
-
-
1. All unused interrupts must be initialized with ‘IRET’ for robust programming.
DocID14395 Rev 15
53/125
114
Option bytes
9
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Option bytes
Option bytes contain configurations for device hardware features as well as the memory
protection of the device. They are stored in a dedicated block of the memory. Each option
byte has to be stored twice, for redundancy, in a regular form (OPTx) and a complemented
one (NOPTx), except for the ROP (read-out protection) option byte and option bytes 8 to 16.
Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address
shown in Table 18: Option bytes below.
Option bytes can also be modified ‘on the fly’ by the application in IAP mode, except the
ROP and UBC options that can only be changed in ICP mode (via SWIM).
Refer to the STM8 Flash programming manual (PM0047) and STM8 SWIM communication
protocol and debug module user manual (UM0470) for information on SWIM programming
procedures.
Table 18. Option bytes
Addr.
0x00
4800
0x00
4801
0x00
4802
0x00
4803
0x00
4804
0x00
4805
0x00
4806
0x00
4807
0x00
4808
0x00
4809
0x00
480A
54/125
Option
name
Option
byte
no.
Read-out
protection
(ROP)
OPT0
ROP[7:0]
0x00
OPT1
UBC[7:0]
0x00
NOPT1
NUBC[7:0]
0xFF
User boot
code
(UBC)
Option bits
7
6
5
4
3
2
Alternate
OPT2
AFR7 AFR6 AFR5 AFR4 AFR3
AFR2
function
remapping
NOPT2 NAFR7 NAFR6 NAFR5 NAFR4 NAFR3 NAFR2
(AFR)
Watchdog
option
Clock
option
HSE clock
startup
1
0
Factory
default
setting
AFR1
AFR0
0x00
NAFR1
NAFR0
0xFF
OPT3
Reserved
LSI_
EN
IWDG
_HW
WWD
G _HW
WWDG
_HALT
0x00
NOPT3
Reserved
NLSI_
EN
NIWD
G_HW
NWWD
G_HW
NWWG
_HALT
0xFF
OPT4
Reserved
EXT
CLK
CKAW
USEL
PRSC1
PRSC0
0x00
NOPT4
Reserved
NEXT
CLK
NCKAW
NPRSC
NPRSC1
USEL
0
0xFF
OPT5
HSECNT[7:0]
0x00
NOPT5
NHSECNT[7:0]
0xFF
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Option bytes
Table 18. Option bytes (continued)
Addr.
0x00
480B
0x00
480C
0x00
480D
0x00
480E
Option
name
Option
byte
no.
Option bits
7
6
5
4
3
2
1
0
Factory
default
setting
OPT6
TMU[3:0]
0x00
NOPT6
NTMU[3:0]
0xFF
TMU
Flash wait
states
OPT7
Reserved
WAIT
STATE
0x00
NOPT7
Reserved
NWAIT
STATE
0xFF
0x00
480F
Reserved
0x00
4810
OPT8
TMU_KEY 1 [7:0]
0x00
0x00
4811
OPT9
TMU_KEY 2 [7:0]
0x00
0x00
4812
OPT10
TMU_KEY 3 [7:0]
0x00
0x00
4813
OPT11
TMU_KEY 4 [7:0]
0x00
OPT12
TMU_KEY 5 [7:0]
0x00
0x00
4815
OPT13
TMU_KEY 6 [7:0]
0x00
0x00
4816
OPT14
TMU_KEY 7 [7:0]
0x00
0x00
4817
OPT15
TMU_KEY 8 [7:0]
0x00
0x00
4818
OPT16
TMU_MAXATT [7:0]
0xC7
0x00
4814
TMU
0x00
4819
to
487D
0x00
487E
0x00
487F
Reserved
Bootloader(1)
OPT17
BL [7:0]
0x00
NOPT
17
NBL [7:0]
0xFF
1. This option consists of two bytes that must have a complementary value in order to be valid. If the option is invalid, it has no
effect on EMC reset.
DocID14395 Rev 15
55/125
114
Option bytes
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 19. Option byte description
56/125
Option byte no.
Description
OPT0
ROP[7:0]: Memory readout protection (ROP)
0xAA: Enable readout protection (write access via SWIM protocol)
Note: Refer to STM8S series and STM8AF series 8-bit microcontrollers
reference manual (RM0016) section on Flash/EEPROM memory
readout protection for details.
OPT1
UBC[7:0]: User boot code area
0x00: No UBC, no write-protection
0x01: Page 0 to 1 defined as UBC, memory write-protected
0x02: Page 0 to 3 defined as UBC, memory write-protected
0x03 to 0xFF: Pages 4 to 255 defined as UBC, memory write-protected
Note: Refer to STM8S series and STM8AF series 8-bit microcontrollers
reference manual (RM0016) section on Flash/EEPROM write protection
for more details.
OPT2
AFR7: Alternate function remapping option 7
0: Port D4 alternate function = TIM2_CH1
1: Port D4 alternate function = BEEP
AFR6: Alternate function remapping option 6
0: Port B5 alternate function = AIN5, port B4 alternate function = AIN4
1: Port B5 alternate function = I2C_SDA, port B4 alternate function =
I2C_SCL.
AFR5: Alternate function remapping option 5
0: Port B3 alternate function = AIN3, port B2 alternate function = AIN2,
port B1 alternate function = AIN1, port B0 alternate function = AIN0.
1: Port B3 alternate function = TIM1_ETR, port B2 alternate function =
TIM1_CH3N, port B1 alternate function = TIM1_CH2N, port B0 alternate
function = TIM1_CH1N.
AFR4: Alternate function remapping option 4
0: Port D7 alternate function = TLI
1: Reserved
AFR3: Alternate function remapping option 3
0: Port D0 alternate function = TIM3_CH2
1: Port D0 alternate function = TIM1_BKIN
AFR2: Alternate function remapping option 2
0: Port D0 alternate function = TIM3_CH2
1: Port D0 alternate function = CLK_CCO
Note: AFR2 option has priority over AFR3 if both are activated
AFR1: Alternate function remapping option 1
0: Port A3 alternate function = TIM2_CH3, port D2 alternate function
TIM3_CH1.
1: Port A3 alternate function = TIM3_CH1, port D2 alternate function
TIM2_CH3.
AFR0: Alternate function remapping option 0
0: Port D3 alternate function = TIM2_CH2
1: Port D3 alternate function = ADC_ETR
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Option bytes
Table 19. Option byte description (continued)
Option byte no.
Description
LSI_EN: Low speed internal clock enable
0: LSI clock is not available as CPU clock source
1: LSI clock is available as CPU clock source
OPT3
IWDG_HW: Independent watchdog
0: IWDG Independent watchdog activated by software
1: IWDG Independent watchdog activated by hardware
WWDG_HW: Window watchdog activation
0: WWDG window watchdog activated by software
1: WWDG window watchdog activated by hardware
WWDG_HALT: Window watchdog reset on Halt
0: No reset generated on Halt if WWDG active
1: Reset generated on Halt if WWDG active
EXTCLK: External clock selection
0: External crystal connected to OSCIN/OSCOUT
1: External clock signal on OSCIN
OPT4
CKAWUSEL: Auto-wakeup unit/clock
0: LSI clock source selected for AWU
1: HSE clock with prescaler selected as clock source for AWU
PRSC[1:0]: AWU clock prescaler
00: 24 MHz to 128 kHz prescaler
01: 16 MHz to 128 kHz prescaler
10: 8 MHz to 128 kHz prescaler
11: 4 MHz to 128 kHz prescaler
OPT5
HSECNT[7:0]: HSE crystal oscillator stabilization time
This configures the stabilization time to 0.5, 8, 128, and 2048 HSE cycles
with corresponding option byte values of 0xE1, 0xD2, 0xB4, and 0x00.
OPT6
TMU[3:0]: Enable temporary memory unprotection
0101: TMU disabled (permanent ROP).
Any other value: TMU enabled.
OPT7
WAIT STATE: Wait state configuration
This option configures the number of wait states inserted when reading
from the Flash/data EEPROM memory.
0: No wait state
1: One wait state
OPT8
TMU_KEY 1 [7:0]: Temporary unprotection key 0
Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT9
TMU_KEY 2 [7:0]: Temporary unprotection key 1
Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT10
TMU_KEY 3 [7:0]: Temporary unprotection key 2
Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT11
TMU_KEY 4 [7:0]: Temporary unprotection key 3
Temporary unprotection key: Must be different from 0x00 or 0xFF
DocID14395 Rev 15
57/125
114
Option bytes
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 19. Option byte description (continued)
Option byte no.
58/125
Description
OPT12
TMU_KEY 5 [7:0]: Temporary unprotection key 4
Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT13
TMU_KEY 6 [7:0]: Temporary unprotection key 5
Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT14
TMU_KEY 7 [7:0]: Temporary unprotection key 6
Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT15
TMU_KEY 8 [7:0]: Temporary unprotection key 7
Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT16
TMU_MAXATT [7:0]: TMU access failure counter
TMU_MAXATT can be initialized with the desired value only if TMU is
disabled (TMU[3:0]=0101 in OPT6 option byte).
When TMU is enabled, any attempt to temporary remove the readout
protection by using wrong key values increments the counter.
When the option byte value reaches 0x08, the Flash memory and data
EEPROM are erased.
OPT17
BL[7:0]: Bootloader enable
If this option byte is set to 0x55 (complementary value 0xAA) the
bootloader program is activated also in case of a programmed code
memory (for more details, see the bootloader user manual, UM0560).
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Electrical characteristics
10
Electrical characteristics
10.1
Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
10.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = -40 °C, TA = 25 °C, and
TA = TAmax (given by the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production.
10.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 5.0 V. They are
given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range.
10.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
10.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 9.
Figure 9. Pin loading conditions
670$3,1
S)
06Y9
DocID14395 Rev 15
59/125
114
Electrical characteristics
10.1.5
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 10.
Figure 10. Pin input voltage
670$3,1
9,1
06Y9
10.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 20: Voltage characteristics,
Table 21: Current characteristics and Table 22: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only, and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect the device’s reliability. The device’s mission profile (application
conditions) is compliant with the JEDEC JESD47 qualification standard, extended mission
profiles are available on demand.
Table 20. Voltage characteristics
Symbol
Min
Max
-0.3
6.5
VSS - 0.3
6.5
VSS - 0.3
VDD + 0.3
|VDDx - VDD| Variations between different power pins
-
50
|VSSx - VSS| Variations between all the different ground pins
-
50
VDDx - VSS
VIN
VESD
Ratings
Supply voltage (including VDDA and VDDIO)(1)
Input voltage on true open drain pins (PE1,
PE2)(2)
(2)
Input voltage on any other pin
Electrostatic discharge voltage
Unit
V
mV
see Absolute maximum ratings
(electrical sensitivity) on
page 88
1. All power (VDD, VDDIO, VDDA) and ground (VSS, VSSIO, VSSA) pins must always be connected to the
external power supply
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive
injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. For true open-drain
pads, there is no positive injection current, and the corresponding VIN maximum must always be respected
60/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Electrical characteristics
Table 21. Current characteristics
Symbol
Ratings
Max.
IVDDIO
Total current into VDDIO power lines (source)(1)(2)(3)
100
IVSSIO
(1)(2)(3)
100
IIO
IINJ(PIN)(4)
IINJ(TOT)
Total current out of VSS IO ground lines (sink)
Output current sunk by any I/O and control pin
20
Output current source by any I/Os and control pin
-20
Injected current on any pin
±10
Sum of injected currents
50
Unit
mA
1. All power (VDD, VDDIO, VDDA) and ground (VSS, VSSIO, VSSA) pins must always be connected to the
external supply.
2. The total limit applies to the sum of operation and injected currents.
3. VDDIO includes the sum of the positive injection currents. VSSIO includes the sum of the negative injection
currents.
4. This condition is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the
injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN >
VDD while a negative injection is induced by VIN < VSS. For true open-drain pads, there is no positive
injection current allowed and the corresponding VIN maximum must always be respected.
Table 22. Thermal characteristics
Symbol
TSTG
TJ
Ratings
Storage temperature range
Value
-65 to 150
Maximum junction temperature
160
Unit
°C
Table 23. Operating lifetime(1)
Symbol
OLF
Ratings
Conforming to AEC-Q100 rev G
Value
Unit
−40 to 125 °C
Grade 1
−40 to 150 °C
Grade 0
1. For detailed mission profile analysis, please contact the nearest ST Sales Office.
DocID14395 Rev 15
61/125
114
Electrical characteristics
10.3
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Operating conditions
Table 24. General operating conditions
Symbol
Parameter
fCPU
Min
Max
1 wait state
TA = -40 °C to 150 °C
16
24
0 wait state
TA = -40 °C to 150 °C
0
16
Standard operating voltage
-
3.0
5.5
V
CEXT: capacitance of external
capacitor
-
470
3300
nF
-
0.3
Ω
-
15
nH
Internal CPU clock frequency
VDD/VDDIO
VCAP(1)
Conditions
ESR of external capacitor
at 1 MHz(2)
ESL of external capacitor
MHz
Suffix A
TA
TJ
Ambient temperature
85
- 40
Suffix C
Junction temperature range
Unit
125
Suffix D
150
Suffix A
90
Suffix C
- 40
Suffix D
°C
130
155
1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter
dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum
value must be respected for the full application range.
2. This frequency of 1 MHz as a condition for VCAP parameters is given by design of internal regulator.
Figure 11. fCPUmax versus VDD
I&38>0+]@
)XQFWLRQDOLW\JXDUDQWHHG
#7$WR&DWZDLWVWDWH
)XQFWLRQDOLW\
QRWJXDUDQWHHG
LQWKLVDUHD
)XQFWLRQDOLW\JXDUDQWHHG
#7$WR&DWZDLWVWDWH
6XSSO\YROWDJH>9@
06Y9
62/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Electrical characteristics
Table 25. Operating conditions at power-up/power-down
tTEMP
Conditions
Min
Typ
Max
-
2(1)
-
-
(1)
-
8
tVDD
Parameter
8
Symbol
VDD rise time rate
VDD fall time rate
2
Unit
µs/V
Reset release delay
VDD rising
-
1
1.7
ms
Reset generation delay
VDD falling
-
3
-
µs
VIT+
Power-on reset
threshold(2) (3)
-
2.65
2.8
2.95
VIT-
Brown-out reset
threshold
-
2.58
2.73
2.88
VHYS(BOR)
Brown-out reset
hysteresis
-
-
70(1)
-
V
mV
1. Guaranteed by design, not tested in production.
2. If VDD is below 3 V, the code execution is guaranteed above the VIT- and VIT+ thresholds. RAM content is
kept. The EEPROM programming sequence must not be initiated.
3. There is inrush current into VDD present after device power on to charge CEXT capacitor. This inrush
energy depends from CEXT capacitor value. For example, a CEXT of 1 μF requires Q=1 μF x 1.8 V =
1.8 μC.
10.3.1
VCAP external capacitor
Stabilization for the main regulator is achieved connecting an external capacitor CEXT to the
VCAP pin. CEXT is specified in Table 24. Care should be taken to limit the series inductance
to less than 15 nH.
Figure 12. External capacitor CEXT
&
(6/
(65
5/HDN
06Y9
1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.
10.3.2
Supply current characteristics
The current consumption is measured as described in Figure 9 on page 59 and Figure 10
on page 60.
If not explicitly stated, general conditions of temperature and voltage apply.
DocID14395 Rev 15
63/125
114
Electrical characteristics
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 26. Total current consumption in Run, Wait and Slow mode. General conditions
for VDD apply, TA = −40 °C to 150 °C
Symbol
IDD(RUN)
IDD(RUN)
IDD(WFI)
(1)
(1)
(1)
IDD(SLOW)(1)
Parameter
Supply current in
Run mode
Supply current in
Run mode
Supply current in
Wait mode
Supply current in
Slow mode
Conditions
All peripherals
clocked, code
executed from Flash
program memory,
HSE external clock
(without resonator)
All peripherals
clocked, code
executed from RAM,
HSE external clock
(without resonator)
CPU stopped, all
peripherals off, HSE
external clock
fCPU scaled down,
all peripherals off,
code executed from
RAM
Max
8.7
16.8
fCPU = 16 MHz
7.4
14
fCPU = 8 MHz
4.0
7.4(2)
fCPU = 4 MHz
2.4
4.1(2)
fCPU = 2 MHz
1.5
2.5
fCPU = 24 MHz
4.4
6.0(2)
fCPU = 16 MHz
3.7
5.0
fCPU = 8 MHz
2.2
3.0(2)
fCPU = 4 MHz
1.4
2.0(2)
fCPU = 2 MHz
1.0
1.5
fCPU = 24 MHz
2.4
3.1(2)
fCPU = 16 MHz
1.65
2.5
fCPU = 8 MHz
1.15
1.9(2)
fCPU = 4 MHz
0.90
1.6(2)
fCPU = 2 MHz
0.80
1.5
External clock 16 MHz
fCPU = 125 kHz
1.50
1.95
LSI internal RC
fCPU = 128 kHz
1.50
1.80(2)
2. Guaranteed by design, not tested in production.
DocID14395 Rev 15
Unit
(2)
fCPU = 24 MHz 1 ws
1. The current due to I/O utilization is not taken into account in these values.
64/125
Typ
mA
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Electrical characteristics
Table 27. Total current consumption in Halt and Active-halt modes. General conditions for VDD
applied. TA = −40 °C to 55 °C unless otherwise stated
Conditions
Symbol
IDD(H)
IDD(AH)
tWU(AH)
Main
voltage
regulator
(MVR)(1)
Flash
mode(2)
Supply current in
Halt mode
Off
Powerdown
Supply current in
Active-halt mode
with regulator on
On
Powerdown
Parameter
Supply current in
Active-halt mode
with regulator off
Off
Wakeup time from
Active-halt mode
with regulator on
On
Wakeup time from
Active-halt mode
with regulator off
Off
Typ
Max
Clocks stopped
5
35(3)
Clocks stopped,
TA = 25 °C
5
25
External clock 16 MHz
fMASTER = 125 kHz
770
900(3)
LSI clock 128 kHz
150
230(3)
LSI clock 128 kHz
25
42(3)
LSI clock 128 kHz,
TA = 25 °C
25
30
10
30(3)
Clock source and
temperature condition
Powerdown
Operating
mode
TA =−40 to 150 °C
Unit
µA
µs
50
80(3)
1. Configured by the REGAH bit in the CLK_ICKR register.
2. Configured by the AHALT bit in the FLASH_CR1 register.
3. Guaranteed by characterization results, not tested in production.
Current consumption for on-chip peripherals
Table 28. Oscillator current consumption
Symbol
IDD(OSC)
IDD(OSC)
Parameter
HSE oscillator current
consumption(2)
HSE oscillator current
consumption(2)
Typ
Max(1)
fOSC = 24 MHz
1
2.0(3)
fOSC = 16 MHz
0.6
-
fOSC = 8 MHz
0.57
-
fOSC = 24 MHz
0.5
1.0(3)
fOSC = 16 MHz
0.25
-
fOSC = 8 MHz
0.18
-
Conditions
Quartz or
ceramic
resonator,
CL = 33 pF
VDD = 5 V
Quartz or
ceramic
resonator,
CL = 33 pF
VDD = 3.3 V
Unit
mA
1. During startup, the oscillator current consumption may reach 6 mA.
2. The supply current of the oscillator can be further optimized by selecting a high quality resonator with small Rm value. Refer
to crystal manufacturer for more details
3. Informative data.
DocID14395 Rev 15
65/125
114
Electrical characteristics
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 29. Programming current consumption
Symbol
IDD(PROG)
Parameter
Programming current
Conditions
Typ
Max
Unit
VDD = 5 V, -40 °C to 150 °C, erasing
and programming data or Flash
program memory
1.0
1.7
mA
Table 30. Typical peripheral current consumption VDD = 5.0 V(1)
Symbol
IDD(TIM1)
Parameter
TIM1 supply current(2)
Typ.
Typ.
0.03
0.23
0.34
0.02
0.12
0.19
IDD(TIM3)
TIM3 supply
current(2)
0.01
0.1
0.16
IDD(TIM4)
TIM4 supply current(2)
0.004
0.03
0.05
0.03
0.09
0.15
IDD(TIM2)
IDD(USART)
IDD(LINUART)
TIM2 supply current
(2)
Typ.
fmaster = 2 MHz fmaster = 16 MHz fmaster =24 MHz
USART supply
current(2)
0.03
0.11
0.18
IDD(SPI)
SPI supply
current(2)
0.01
0.04
0.07
IDD(I2C)
I2C supply current(2)
IDD(CAN)
IDD(AWU)
IDD(TOT_DIG)
IDD(ADC)
LINUART supply
current(2)
0.02
0.06
0.91
CAN supply
current(3)
0.06
0.30
0.40
AWU supply
current(2)
0.003
0.02
0.05
All digital peripherals on
0.22
1
2.4
ADC supply current when
converting(4)
0.93
0.95
0.96
Unit
1. Typical values not tested in production. Since the peripherals are powered by an internally regulated, constant digital
supply voltage, the values are similar in the full supply voltage range.
2. Data based on a differential IDD measurement between no peripheral clocked and a single active peripheral. This
measurement does not include the pad toggling consumption.
3. Data based on a differential IDD measurement between reset configuration (CAN disabled) and a permanent CAN data
transmit sequence in loopback mode at 1 MHz. This measurement does not include the pad toggling consumption.
4. Data based on a differential IDD measurement between reset configuration and continuous A/D conversions.
66/125
DocID14395 Rev 15
mA
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Electrical characteristics
Current consumption curves
Figure 13 to Figure 18 show typical current consumption measured with code executing in
RAM.
Figure 13. Typ. IDD(RUN)HSE vs. VDD
@fCPU = 16 MHz, peripherals = on
10
9
25°C
8
85°C
7
125°C
25°C
9
IDD(RUN)HSE [mA]
IDD(RUN)HSE [mA]
10
Figure 14. Typ. IDD(RUN)HSE vs. fCPU
@ VDD = 5.0 V, peripherals = on
6
5
4
3
2
1
8
85°C
7
125°C
6
5
4
3
2
1
0
0
2.5
3
3.5
4
4.5
5
5.5
0
6
5
10
VDD [V]
30
3
2
25°C
85°C
125°C
1
0
4.5
5.5
6
5
4
3
2
25°C
85°C
125°C
1
0
2.5
6.5
3.5
4.5
5.5
6.5
VDD [V]
VDD [V]
Figure 17. Typ. IDD(WFI)HSE vs. fCPU
@ VDD = 5.0 V, peripherals = on
Figure 18. Typ. IDD(WFI)HSI vs. VDD
@ fCPU = 16 MHz, peripherals = off
6
2.5
5
IDD(WFI)HSI [mA]
IDD(WFI)HSE [mA]
25
Figure 16. Typ. IDD(WFI)HSE vs. VDD
@ fCPU = 16 MHz, peripherals = on
IDD(WFI)HSE [mA]
IDD(RUN)HSI [mA]
4
3.5
20
fcpu [MHz]
Figure 15. Typ. IDD(RUN)HSI vs. VDD
@ fCPU = 16 MHz, peripherals = off
2.5
15
4
3
25°C
2
85°C
1
2
1.5
1
25°C
85°C
0.5
125°C
125°C
0
0
0
5
10
15
20
25
30
fcpu [MHz]
2.5
3
3.5
4
4.5
5
5.5
6
VDD [V]
DocID14395 Rev 15
67/125
114
Electrical characteristics
10.3.3
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
External clock sources and timing characteristics
HSE external clock
An HSE clock can be generated by feeding an external clock signal of up to 24 MHz to the
OSCIN pin.
Clock characteristics are subject to general operating conditions for VDD and TA.
Table 31. HSE external clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
TA = -40 °C to 150 °C
0(1)
-
24
MHz
fHSE_ext
User external clock source
frequency
VHSEdHL
Comparator hysteresis
-
0.1 x VDD
-
-
VHSEH
OSCIN high-level input pin
voltage
-
0.7 x VDD
-
VDD
VHSEL
OSCIN low-level input pin
voltage
-
VSS
-
0.3 x VDD
VSS < VIN < VDD
-1
-
+1
ILEAK_HSE
OSCIN input leakage current
V
µA
1. If CSS is used, the external clock must have a frequency above 500 kHz.
Figure 19. HSE external clock source
9
+6(+
9 +6(/
([WHUQDOFORFN
VRXUFH
I+6(
26&,1
670
069
HSE crystal/ceramic resonator oscillator
The HSE clock can be supplied using a crystal/ceramic resonator oscillator of up to 24 MHz.
All the information given in this paragraph is based on characterization results with specified
typical external components. In the application, the resonator and the load capacitors have
to be placed as close as possible to the oscillator pins in order to minimize output distortion
and startup stabilization time. Refer to the crystal resonator manufacturer for more details
(frequency, package, accuracy...).
68/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Electrical characteristics
Table 32. HSE oscillator characteristics
Symbol
RF
CL1/CL2
(1)
gm
tSU(HSE)(2)
Parameter
Conditions
Min
Typ
Max
Unit
Feedback resistor
-
-
220
-
kΩ
Recommended load capacitance
-
-
-
20
pF
Oscillator trans conductance
-
5
-
-
mA/V
VDD is
stabilized
-
2.8
-
ms
Startup time
1. The oscillator needs two load capacitors, CL1 and CL2, to act as load for the crystal. The total load capacitance (CLoad) is
(CL1 * CL2)/(CL1 + CL2). If CL1 = CL2, Cload = CL1/2. Some oscillators have built-in load capacitors, CL1 and CL2.
2. This value is the startup time, measured from the moment it is enabled (by software) until a stabilized 24 MHz oscillation is
reached. It can vary with the crystal type that is used.
Figure 20. HSE oscillator circuit diagram
5P
/P
I+6(WRFRUH
&2
&P
5)
&/
26&,1
JP
5HVRQDWRU
&XUUHQWFRQWURO
5HVRQDWRU
26&287
&/
670
06Y9
HSE oscillator critical gm formula
The crystal characteristics have to be checked with the following formula:
Equation 1
g m » g mcrit
where gmcrit can be calculated with the crystal parameters as follows:
Equation 2
f
2
g mcrit = ( 2 × Π × HSE ) × R m ( 2Co + C )
2
Rm: Notional resistance (see crystal specification)
Lm: Notional inductance (see crystal specification)
Cm: Notional capacitance (see crystal specification)
Co: Shunt capacitance (see crystal specification)
CL1 = CL2 = C: Grounded external capacitance
DocID14395 Rev 15
69/125
114
Electrical characteristics
10.3.4
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Internal clock sources and timing characteristics
Subject to general operating conditions for VDD and TA.
High-speed internal RC oscillator (HSI)
Table 33. HSI oscillator characteristics
Symbol
fHSI
ACCHS
tsu(HSI)
Parameter
Conditions
Min
Typ
Max
Unit
-
-
16
-
MHz
HSI oscillator user
trimming accuracy
Trimmed by the application
for any VDD and TA
conditions
-1
-
1
HSI oscillator accuracy
(factory calibrated)
VDD = 3.0 V ≤ VDD ≤ 5.5 V,
-40 °C ≤ TA ≤ 150 °C
-5
-
5
-
-
-
2(1)
Frequency
HSI oscillator wakeup time
%
1. Guaranteed by characterization results, not tested in production.
Figure 21. Typical HSI frequency vs VDD
3%
HSI frequency variation [%]
-40°C
2%
25°C
85°C
1%
125°C
0%
-1%
-2%
-3%
2.5
3
3.5
4
4.5
VDD [V]
70/125
DocID14395 Rev 15
5
5.5
6
µs
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Electrical characteristics
Low-speed internal RC oscillator (LSI)
Subject to general operating conditions for VDD and TA.
Table 34. LSI oscillator characteristics
Symbol
fLSI
tsu(LSI)
Parameter
Conditions
Min
Typ
Max
Unit
Frequency
-
112
128
144
kHz
LSI oscillator wakeup time
-
-
-
7(1)
µs
1. Guaranteed by characterization results, not tested in production.
Figure 22. Typical LSI frequency vs VDD
LSI frequency variation [%]
3%
2%
1%
25°C
0%
-1%
-2%
-3%
2.5
3
3.5
4
VDD [V]
DocID14395 Rev 15
4.5
5
5.5
6
71/125
114
Electrical characteristics
10.3.5
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Memory characteristics
Flash program memory/data EEPROM memory
General conditions: TA = -40 °C to 150 °C.
Table 35. Flash program memory/data EEPROM memory
Symbol
VDD
VDD
tprog
terase
Parameter
Conditions
Min(1) Typ
Max
Operating voltage
(all modes, execution/write/erase)
fCPU is 16 to 24 MHz
with 1 ws
fCPU is 0 to 16 MHz
with 0 ws
3.0
Operating voltage (code execution)
fCPU is 16 to 24 MHz
with 1 ws
fCPU is 0 to 16 MHz
with 0 ws
2.6
-
5.5
Standard programming time (including
erase) for byte/word/block
(1 byte/4 bytes/128 bytes)
-
-
6
6.6
Fast programming time for 1 block
(128 bytes)
-
-
3
3.3
Erase time for 1 block (128 bytes)
-
-
3
3.3
-
Unit
5.5
V
ms
1. Guaranteed by characterization results, not tested in production.
Table 36. Flash program memory
Symbol
Parameter
Condition
Min
Max
Unit
TWE
Temperature for writing and erasing
-
-40
150
°C
NWE
Flash program memory endurance
(erase/write cycles)(1)
TA = 25 °C
1000
-
cycles
tRET
Data retention time
TA = 25 °C
40
-
TA = 55 °C
20
-
years
1. The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a
write/erase operation addresses a single byte.
72/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Electrical characteristics
Table 37. Data memory
Symbol
Parameter
Condition
Min
Max
Unit
TWE
Temperature for writing and erasing
-
-40
150
°C
NWE
Data memory endurance(1)
(erase/write cycles)
TA = 25 °C
300 k
tRET
Data retention time
-
(2)
100 k
-
TA = 25 °C
40(2)(3)
-
TA = 55 °C
(2)(3)
-
TA = -40°C to 125 °C
20
cycles
years
1. The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a
write/erase operation addresses a single byte.
2. More information on the relationship between data retention time and number of write/erase cycles is
available in a separate technical document.
3. Retention time for 256B of data memory after up to 1000 cycles at 125 °C.
DocID14395 Rev 15
73/125
114
Electrical characteristics
10.3.6
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
I/O port pin characteristics
General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All
unused pins must be kept at a fixed voltage, using the output mode of the I/O for example or
an external pull-up or pull-down resistor.
Table 38. I/O static characteristics
Symbol
Parameter
VIL
Low-level input voltage
VIH
High-level input voltage
Vhys
Hysteresis(1)
VOH
VOL
Rpu
tR, tF
High-level output voltage
Low-level output voltage
Pull-up resistor
Rise and fall time
(10% - 90%)
Ilkg
Digital input pad leakage
current
Ilkg ana
Analog input pad leakage
current
Ilkg(inj)
Leakage current in
adjacent I/O(3)
IDDIO
Total current on either
VDDIO or VSSIO
Conditions
-
Min
Typ
Max
-0.3 V
0.3 x VDD
0.7 x VDD
VDD + 0.3 V
-
0.1 x
VDD
V
Standard I/0, VDD = 5 V,
I = 3 mA
VDD - 0.5 V
-
-
Standard I/0, VDD = 3 V,
I = 1.5 mA
VDD - 0.4 V
-
-
High sink and true open
drain I/0, VDD = 5 V
I = 8 mA
-
-
0.5
Standard I/0, VDD = 5 V
I = 3 mA
-
-
0.6
Standard I/0, VDD = 3 V
I = 1.5 mA
-
-
0.4
VDD = 5 V, VIN = VSS
35
50
65
Fast I/Os
Load = 50 pF
-
-
35(2)
Standard and high sink I/Os
Load = 50 pF
-
-
125(2)
Fast I/Os
Load = 20 pF
-
-
20(2)
Standard and high sink I/Os
Load = 20 pF
-
-
50(2)
VSS ≤ VIN ≤ VDD
-
-
±1
VSS ≤ VIN ≤ VDD
-40 °C < TA < 125 °C
-
-
±250
VSS ≤ VIN ≤ VDD
-40 °C < TA < 150 °C
-
-
±500
Injection current ±4 mA
-
-
±1(3)
µA
Including injection currents
-
-
60
mA
DocID14395 Rev 15
V
kΩ
ns
µA
nA
1. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results, not tested in
production.
74/125
Unit
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Electrical characteristics
2. Guaranteed by design.
3. Guaranteed by characterization results, not tested in production.
Figure 23. Typical VIL and VIH vs VDD @ four temperatures
6
-40°C
25°C
5
85°C
VIL / V IH [V]
4
125°C
3
2
1
0
2.5
3
3.5
4
4.5
5
5.5
6
VDD [V]
Figure 24. Typical pull-up resistance RPU vs VDD @ four temperatures
60
Pull-Up resistance [k ohm]
55
50
45
-40°C
40
25°C
85°C
35
125°C
30
2.5
3
3.5
4
4.5
5
5.5
6
VDD [V]
DocID14395 Rev 15
75/125
114
Electrical characteristics
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Figure 25. Typical pull-up current Ipu vs VDD @ four temperatures(1)
140
Pull-Up current [µA]
120
100
80
-40°C
60
25°C
40
85°C
125°C
20
0
0
1
2
3
4
5
6
VDD [V]
1. The pull-up is a pure resistor (slope goes through 0).
Typical output level curves
Figure 26 to Figure 35 show typical output level curves measured with output on a single
pin.
Figure 26. Typ. VOL @ VDD = 3.3 V (standard
ports)
Figure 27. Typ. VOL @ VDD = 5.0 V (standard
ports)
-40°C
1.5
-40°C
1.5
25°C
25°C
85°C
1.25
85°C
1.25
125°C
125°C
1
VOL [V]
VOL [V]
1
0.75
0.75
0.5
0.5
0.25
0.25
0
0
0
1
2
3
4
5
6
7
0
2
4
6
IOL [mA]
Figure 28. Typ. VOL @ VDD = 3.3 V (true open
drain ports)
25°C
1.75
85°C
125°C
1.5
125°C
1.25
VOL [V]
VOL [V]
85°C
1.5
1.25
1
0.75
1
0.75
0.5
0.5
0.25
0.25
0
0
0
2
4
6
8
10
12
14
IOL [mA]
76/125
12
-40°C
2
25°C
1.75
10
Figure 29. Typ. VOL @ VDD = 5.0 V (true open
drain ports)
-40°C
2
8
IOL [mA]
0
5
10
15
IOL [mA]
DocID14395 Rev 15
20
25
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Electrical characteristics
Figure 30. Typ. VOL @ VDD = 3.3 V (high sink
ports)
Figure 31. Typ. VOL @ VDD = 5.0 V (high sink
ports)
-40°C
1.5
25°C
85°C
1.25
-40°C
1.5
25°C
85°C
1.25
125°C
125°C
1
VOL [V]
VOL [V]
1
0.75
0.75
0.5
0.5
0.25
0.25
0
0
0
2
4
6
8
10
12
14
0
5
10
IOL [mA]
Figure 32. Typ. VDD - VOH @ VDD = 3.3 V
(standard ports)
125°C
85°C
125°C
1.5
1.25
VDD - V OH [V]
VDD - V OH [V]
25°C
1.75
85°C
1.5
1
0.75
1.25
1
0.75
0.5
0.5
0.25
0.25
0
0
0
1
2
3
4
5
6
7
0
2
4
6
IOH [mA]
25°C
1.75
85°C
125°C
1.5
12
-40°C
2
25°C
1.75
10
Figure 35. Typ. VDD - VOH @ VDD = 5.0 V (high
sink ports)
-40°C
2
8
IOH [mA]
Figure 34. Typ. VDD - VOH @ VDD = 3.3 V (high
sink ports)
85°C
125°C
1.5
1.25
VDD - V OH [V]
VDD - V OH [V]
25
-40°C
2
25°C
1.75
20
Figure 33. Typ. VDD - VOH @ VDD = 5.0 V
(standard ports)
-40°C
2
15
IOL [mA]
1
0.75
1.25
1
0.75
0.5
0.5
0.25
0.25
0
0
0
2
4
6
8
10
12
14
IOH [mA]
0
5
10
15
20
25
IOH [mA]
DocID14395 Rev 15
77/125
114
Electrical characteristics
10.3.7
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Reset pin characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified.
Table 39. NRST pin characteristics
Symbol
VIL(NRST)
VIH(NRST)
Parameter
Conditions
Min
Typ
Max
NRST low-level input voltage(1)
-
VSS
-
0.3 x VDD
(1)
-
0.7 x VDD
-
VDD
(1)
IOL = 3 mA
-
-
0.6
NRST high-level input voltage
VOL(NRST)
NRST low-level output voltage
RPU(NRST)
NRST pull-up resistor
-
30
40
60
NRST input filtered pulse(1)
-
85
-
315
NRST Input not filtered pulse
duration(2)
-
500
-
-
tIFP
tINFP(NRST)
1. Guaranteed by characterization results, not tested in production.
2. Guaranteed by design, not tested in production.
Figure 36. Typical NRST VIL and VIH vs VDD @ four temperatures
-40°C
6
25°C
85°C
5
125°C
VIL / V IH [V]
4
3
2
1
0
2.5
3
3.5
4
4.5
VDD [V]
78/125
DocID14395 Rev 15
5
5.5
6
Unit
V
kΩ
ns
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Electrical characteristics
Figure 37. Typical NRST pull-up resistance RPU vs VDD
-40°C
60
NRST Pull-Up resistance [k ohm]
25°C
55
85°C
125°C
50
45
40
35
30
2.5
3
3.5
4
4.5
5
5.5
6
VDD [V]
Figure 38. Typical NRST pull-up current Ipu vs VDD
140
NRST Pull-Up current [µA]
120
100
80
60
-40°C
25°C
40
85°C
20
125°C
0
0
1
2
3
VDD [V]
4
5
6
The reset network shown in Figure 39 protects the device against parasitic resets. The user
must ensure that the level on the NRST pin can go below VIL(NRST) max (see Table 39:
NRST pin characteristics), otherwise the reset is not taken into account internally.
For power consumption sensitive applications, the external reset capacitor value can be
reduced to limit the charge/discharge current. If NRST signal is used to reset external
circuitry, attention must be taken to the charge/discharge time of the external capacitor to
fulfill the external devices reset timing conditions. Minimum recommended capacity is 10 nF.
DocID14395 Rev 15
79/125
114
Electrical characteristics
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Figure 39. Recommended reset pin protection
670$
9''
538
([WHUQDO
UHVHW
FLUFXLW
1567
)LOWHU
,QWHUQDOUHVHW
ȝ)
2SWLRQDO
06Y9
10.3.8
TIM 1, 2, 3, and 4 electrical specifications
Subject to general operating conditions for VDD, fMASTER and TA.
Table 40. TIM 1, 2, 3, and 4 electrical specifications
Symbol
fEXT
Parameter
Conditions
Min
Typ
Max
Unit
-
-
-
24
MHz
Timer external clock frequency(1)
1. Not tested in production.
80/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Electrical characteristics
SPI interface
10.3.9
Unless otherwise specified, the parameters given in Table 41 are derived from tests
performed under ambient temperature, fMASTER frequency, and VDD supply voltage
conditions. tMASTER = 1/fMASTER.
Refer to I/O port characteristics for more details on the input/output alternate function
characteristics (NSS, SCK, MOSI, MISO).
Table 41. SPI characteristics
Symbol
Parameter
Conditions
Master mode
fSCK
1/tc(SCK)
tr(SCK)
tf(SCK)
tsu(NSS)(3)
SPI clock frequency
Slave mode
VDD < 4.5 V
VDD = 4.5 V to 5.5 V
SPI clock rise and fall time Capacitive load: C = 30 pF
Min
Max
0
10
0
6(1)
0
8(1)
-
25(2)
NSS setup time
Slave mode
4 * tMASTER
-
NSS hold time
Slave mode
70
-
tSCK/2 + 15
tw(SCKH)(3)
tw(SCKL)(3)
Master mode
5
-
Slave mode
5
-
Master mode
7
-
Slave mode
10
-
ta(SO)(3)(4) Data output access time
Slave mode
-
3* tMASTER
tdis(SO)(3)(5)
Data output disable time
Slave mode
25
tv(SO)(3)
Data output valid time
VDD < 4.5 V
Slave mode
(after enable edge) V = 4.5 V to 5.5 V
DD
-
75
-
53
tv(MO)(3)
Data output valid time
Master mode (after enable edge)
-
30
Slave mode (after enable edge)
31
-
Master mode (after enable edge)
12
-
th(NSS)
(3)
tw(SCKH)(3)
SCK high and low time
tw(SCKL)(3)
tsu(MI)(3)
tsu(SI)(3)
Data input setup time
th(MI)(3)
th(SI)(3)
Data input hold time
th(SO)(3)
th(MO)(3)
Data output hold time
Master mode
tSCK/2 - 15
Unit
MHz
ns
1. fSCK < fMASTER/2.
2. The pad has to be configured accordingly (fast mode).
3. Guaranteed by design or by characterization results, not tested in production.
4. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
5. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.
DocID14395 Rev 15
81/125
114
Electrical characteristics
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Figure 40. SPI timing diagram in slave mode and with CPHA = 0
166LQSXW
6&.,QSXW
W68166
&3+$
&32/
WK166
WF6&.
WZ6&.+
WZ6&./
&3+$
&32/
W962
WD62
0,62
287387
WU6&.
WI6&.
WK62
06%287
%,7287
06%,1
%,7,1
WGLV62
/6%287
WVX6,
026,
,1387
/6%,1
WK6,
DLF
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD.
Figure 41. SPI timing diagram in slave mode and with CPHA = 1
166LQSXW
6&.LQSXW
W68166
&3+$
&32/
&3+$
&32/
WZ6&.+
WZ6&./
WK62
WY62
WD62
0,62
287387
06%287
%,7287
WU6&.
WI6&.
WGLV62
/6%287
WK6,
WVX6,
026,
,1387
WK166
WF6&.
06%,1
%,7,1
/6%,1
DLE
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD.
82/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Electrical characteristics
Figure 42. SPI timing diagram - master mode
+LJK
166LQSXW
6&.2XWSXW
&3+$
&32/
6&.2XWSXW
WF6&.
&3+$
&32/
&3+$
&32/
&3+$
&32/
WVX0,
0,62
,13 87
WZ6&.+
WZ6&./
WU6&.
WI6&.
%,7,1
06%,1
/6%,1
WK0,
026,
287387
% , 7287
06%287
WY02
/6%287
WK02
DLF
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD.
DocID14395 Rev 15
83/125
114
Electrical characteristics
10.3.10
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
I2C interface characteristics
Table 42. I2C characteristics
Standard mode I2C
Symbol
Parameter
Fast mode I2C(1)
Min(2)
Max(2)
Min(2)
Max(2)
Unit
tw(SCLL)
SCL clock low time
4.7
-
1.3
-
tw(SCLH)
SCL clock high time
4.0
-
0.6
-
tsu(SDA)
SDA setup time
250
-
100
-
th(SDA)
SDA data hold time
0(3)
-
0(4)
900(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time
(VDD 3 V to 5.5 V)
-
1000
-
300
tf(SDA)
tf(SCL)
SDA and SCL fall time
(VDD 3 V to 5.5 V)
-
300
-
300
th(STA)
START condition hold time
4.0
-
0.6
-
tsu(STA)
Repeated START condition setup time
4.7
-
0.6
-
tsu(STO)
STOP condition setup time
4.0
-
0.6
-
µs
STOP to START condition time
(bus free)
4.7
-
1.3
-
µs
-
400
-
400
pF
tw(STO:STA)
Cb
Capacitive load for each bus line
1. fMASTER, must be at least 8 MHz to achieve max fast
I 2C
µs
ns
µs
speed (400 kHz)
2. Data based on standard I2C protocol requirement, not tested in production
3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low time
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region
of the falling edge of SCL
84/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
10.3.11
Electrical characteristics
10-bit ADC characteristics
Subject to general operating conditions for VDDA, fMASTER and TA unless otherwise
specified.
Table 43. ADC characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
kHz/MHz
fADC
ADC clock frequency
-
111 kHz
-
4 MHz
VDDA
Analog supply
-
3
-
5.5
VREF+
Positive reference voltage
-
2.75
-
VDDA
VREF-
Negative reference voltage
-
VSSA
-
0.5
-
VSSA
-
VDDA
Devices with
external VREF+/
VREF- pins
VREF-
-
VREF+
-
-
-
3
fADC = 2 MHz
-
1.5
-
fADC = 4 MHz
-
0.75
-
fADC = 2 MHz
-
7
-
fADC = 4 MHz
-
3.5
-
fADC = 2 MHz
-
7
-
fADC = 4 MHz
-
3.5
-
-
-
-
30
Conversion voltage range(1)
VAIN
Csamp
Internal sample and hold capacitor
tS(1)
Sampling time
(3 x 1/fADC)
tSTAB
Wakeup time from standby
tCONV
Total conversion time including
sampling time
(14 x 1/fADC)
Rswitch
Equivalent switch resistance
V
pF
µs
kΩ
1. During the sample time, the sampling capacitance, Csamp (3 pF typ), can be charged/discharged by the
external source. The internal resistance of the analog source must allow the capacitance to reach its final
voltage level within tS. After the end of the sample time tS, changes of the analog input voltage have no
effect on the conversion result.
Figure 43. Typical application with ADC
s
9$,1
5$,1
/Edž
^dDϴ
97
9
5VZLWFK
7V
&$,1
97
9
,/
ELW$'
FRQYHUVLRQ
&VDPS
06Y9
1. Legend: RAIN = external resistance, CAIN = capacitors, Csamp = internal sample and hold capacitor.
DocID14395 Rev 15
85/125
114
Electrical characteristics
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 44. ADC accuracy for VDDA = 5 V
Symbol
Parameter
Conditions
Typ
Max(1)
|ET|
Total unadjusted error(2)
1.4
3(3)
|EO|
Offset error(2)
0.8
3
0.1
2
0.9
1
0.7
1.5
(2)
|EG|
Gain error
|ED|
Differential linearity error(2)
|EL|
fADC = 2 MHz
Integral linearity error
(2)
(2)
(4)
1.9
4(4)
1.3(4)
4(4)
0.6(4)
3(4)
|ET|
Total unadjusted error
|EO|
Offset error(2)
|EG|
Gain error(2)
|ED|
Differential linearity error(2)
1.5(4)
2(4)
|EL|
Integral linearity error(2)
1.2(4)
1.5(4)
fADC = 4 MHz
Unit
LSB
1. Guaranteed by characterization results, not tested in production.
2. ADC accuracy vs. injection current: Any positive or negative injection current within the limits specified for
IINJ(PIN) and ΣIINJ(PIN) in Section 10.3.6 does not affect the ADC accuracy.
3. TUE 2LSB can be reached on specific sales types on the whole temperature range.
4. Target values.
Figure 44. ADC accuracy characteristics
1023
1022
1021
EG
V
–V
DDA
SSA
1LSB
= ----------------------------------------IDEAL
1024
(2)
ET
7
(3)
(1)
6
5
4
EO
EL
3
ED
2
1 LSBIDEAL
1
0
1
VSSA
2
3
4
5
6
7
1021102210231024
VDDA
1. Example of an actual transfer curve
2. The ideal transfer curve
3. End point correlation line
ET = Total unadjusted error: Maximum deviation between the actual and the ideal transfer curves.
EO = Offset error: Deviation between the first actual transition and the first ideal one.
EG = Gain error: Deviation between the last ideal transition and the last actual one.
ED = Differential linearity error: Maximum deviation between actual steps and the ideal one.
EL = Integral linearity error: Maximum deviation between any actual transition and the end point correlation
line.
86/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
10.3.12
Electrical characteristics
EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)
While executing a simple application (toggling 2 LEDs through I/O ports), the product is
stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).
•
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device
until a functional disturbance occurs. This test conforms with the IEC 1000-4-2
standard.
•
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms
with the IEC 1000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in the
table below based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
•
Corrupted program counter
•
Unexpected reset
•
Critical data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Table 45. EMS data
Symbol
Parameter
Conditions
Level/class
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 3.3 V, TA= 25 °C,
fMASTER = 16 MHz (HSI clock),
Conforms to IEC 1000-4-2
3/B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD= 3.3 V, TA= 25 °C,
fMASTER = 16 MHz (HSI clock),
Conforms to IEC 1000-4-4
4/A
DocID14395 Rev 15
87/125
114
Electrical characteristics
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Electromagnetic interference (EMI)
Emission tests conform to the IEC 61967-2 standard for test software, board layout and pin
loading.
Table 46. EMI data
Conditions
Symbol
SEMI
Parameter
Peak level
EMI level
General
conditions
VDD = 5 V,
TA = 25 °C,
LQFP80 package
conforming to IEC
61967-2
Monitored
frequency band
Max fCPU(1)
Unit
8
MHz
16
MHz
24
MHz
0.1 MHz to 30 MHz
15
17
22
30 MHz to 130 MHz
18
22
16
130 MHz to 1 GHz
-1
3
5
-
2
2.5
2.5
dBµV
1. Guaranteed by characterization results, not tested in production.
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the
product is stressed to determine its performance in terms of electrical sensitivity. For more
details, refer to the application note AN1181.
Electrostatic discharge (ESD)
Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test
conforms to the JESD22-A114A/A115A standard. For more details, refer to the application
note AN1181.
Table 47. ESD absolute maximum ratings
Symbol
Ratings
Conditions
Class
Maximum
value(1)
VESD(HBM)
Electrostatic discharge voltage
(human body model)
TA = 25 °C, conforming
to JESD22-A114
3A
4000
VESD(CDM)
Electrostatic discharge voltage
(charge device model)
TA = 25 °C, conforming
to JESD22-C101
3
500
VESD(MM)
Electrostatic discharge voltage
(charge device model)
TA = 25 °C, conforming
to JESD22-A115
B
200
1. Guaranteed by characterization results, not tested in production
88/125
DocID14395 Rev 15
Unit
V
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Electrical characteristics
Static latch-up
Two complementary static tests are required on 10 parts to assess the latch-up
performance.
•
A supply overvoltage (applied to each power supply pin) and
•
A current injection (applied to each input, output and configurable I/O pin) are
performed on each sample.
This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the
application note AN1181.
Table 48. Electrical sensitivities
Symbol
Parameter
Conditions
Class(1)
TA = 25 °C
LU
TA = 85 °C
Static latch-up class
TA = 125 °C
A
TA = 150 °C
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the
JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B
class strictly covers all the JEDEC criteria (international standard).
DocID14395 Rev 15
89/125
114
Package information
11
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
11.1
LQFP80 package information
Figure 45. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline
C
!
!
!
3%!4).'
0,!.%
#
MM
'!5'%0,!.%
#
!
CCC
,
$
K
,
$
$
0).
)$%.4)&)#!4)/.
%
%
%
B
E
3?-%
1. Drawing is not to scale.
90/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Package information
Table 49. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package
mechanical data(1)
millimeters
inches
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.220
0.320
0.380
0.0087
0.0126
0.0150
c
0.090
-
0.200
0.0035
-
0.0079
D
15.800
16.000
16.200
0.6220
0.6299
0.6378
D1
13.800
14.000
14.200
0.5433
0.5512
0.5591
D3
-
12.350
-
-
0.4862
-
E
15.800
16.000
16.200
0.6220
0.6299
0.6378
E1
13.800
14.000
14.200
0.5433
0.5512
0.5591
E3
-
12.350
-
-
0.4862
-
e
-
0.650
-
-
0.0256
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID14395 Rev 15
91/125
114
Package information
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Figure 46. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package
recommended footprint
4@'1
1. Dimensions are expressed in millimeters.
92/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Package information
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 47. LQFP80 marking example (package top view)
3URGXFW
LGHQWLILFDWLRQ
999999
9999
'DWHFRGH
6WDQGDUG67ORJR
:
88
5HYLVLRQFRGH
3LQLGHQWLILHU
069
1. Parts marked as "ES","E” or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's quality department must be contacted to run a qualification activity prior to any decision to
use these engineering samples.
DocID14395 Rev 15
93/125
114
Package information
11.2
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
LQFP64 package information
Figure 48. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline
PP
*$8*(3/$1(
F
$
$
$
6($7,1*3/$1(
&
$
FFF &
'
'
'
.
/
/
3,1
,'(17,),&$7,21
(
(
(
E
H
:B0(B9
1. Drawing is not to scale.
Table 50. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data
inches(1)
millimeters
Symbol
94/125
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
-
12.000
-
-
0.4724
-
D1
-
10.000
-
-
0.3937
-
D3
-
7.500
-
-
0.2953
-
E
-
12.000
-
-
0.4724
-
E1
-
10.000
-
-
0.3937
-
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Package information
Table 50. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
E3
-
7.500
-
-
0.2953
-
e
-
0.500
-
-
0.0197
-
K
0°
3.5°
7°
0°
3.5°
7°
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 49. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package
recommended footprint
AIC
1. Dimensions are expressed in millimeters.
DocID14395 Rev 15
95/125
114
Package information
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 50. LQFP64 marking example (package top view)
3URGXFW
LGHQWLILFDWLRQ
999999
9999
'DWHFRGH
: 88
6WDQGDUG67ORJR
5HYLVLRQFRGH
3LQLGHQWLILHU
069
1. Parts marked as "ES","E” or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's quality department must be contacted to run a qualification activity prior to any decision to
use these engineering samples.
96/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
LQFP48 package information
Figure 51. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline
3%!4).'
0,!.%
#
C
!
!
!
MM
'!5'%0,!.%
CCC #
$
+
!
$
,
,
$
0).
)$%.4)&)#!4)/.
%
%
B
%
11.3
Package information
E
"?-%?6
1. Drawing is not to scale.
DocID14395 Rev 15
97/125
114
Package information
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 51. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.500
-
-
0.2165
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.500
-
-
0.2165
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
98/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Package information
Figure 52. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
recommended footprint
AID
1. Dimensions are expressed in millimeters.
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
DocID14395 Rev 15
99/125
114
Package information
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Figure 53. LQFP48 marking example (package top view)
3URGXFW
LGHQWLILFDWLRQ
999999
9999
'DWHFRGH
6WDQGDUG67ORJR
: 88
5HYLVLRQFRGH
3LQLGHQWLILHU
069
1. Parts marked as "ES","E” or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's quality department must be contacted to run a qualification activity prior to any decision to
use these engineering samples.
100/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
LQFP32 package information
Figure 54. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline
C
!
!
!
3%!4).'
0,!.%
#
MM
CCC
'!5'%0,!.%
#
+
$
!
,
$
,
$
0).
)$%.4)&)#!4)/.
%
%
%
B
11.4
Package information
E
7@.&@7
1. Drawing is not to scale.
DocID14395 Rev 15
101/125
114
Package information
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 52. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.300
0.370
0.450
0.0118
0.0146
0.0177
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.600
-
-
0.2205
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.600
-
-
0.2205
-
e
-
0.800
-
-
0.0315
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits.
102/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Package information
Figure 55. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
recommended footprint
6?&0?6
1. Dimensions are expressed in millimeters.
DocID14395 Rev 15
103/125
114
Package information
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 56. LQFP32 marking example (package top view)
3URGXFW
LGHQWLILFDWLRQ
999999
9999
'DWHFRGH
6WDQGDUG67ORJR
: 88
5HYLVLRQFRGH
3LQLGHQWLILHU
069
1. Parts marked as "ES","E” or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's quality department must be contacted to run a qualification activity prior to any decision to
use these engineering samples.
104/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
11.5
Package information
VFQFPN32 package information
Figure 57. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad
flat package outline
6HDWLQJSODQH
&
GGG
&
$
$
$
'
H
(
(
E
3LQ,'
5
/
'
%RWWRPYLHZ
/
?-%?!-+/2?6
1. Drawing is not to scale.
DocID14395 Rev 15
105/125
114
Package information
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 53. VFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch very thin profile fine pitch quad
flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.800
0.900
1.000
0.0315
0.0354
0.0394
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
A3
-
0.200
-
-
0.0079
-
b
0.180
0.250
0.300
0.0071
0.0098
0.0118
D
4.850
5.000
5.150
0.1909
0.1969
0.2028
D2
3.500
3.600
3.700
0.1378
0.1417
0.1457
E
4.850
5.000
5.150
0.1909
0.1969
0.2028
E2
3.500
3.600
3.700
0.1378
0.1417
0.1457
e
-
0.500
-
-
0.0197
-
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
ddd
-
-
0.050
-
-
0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
106/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Package information
Figure 58. VFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch very thin profile fine pitch quad
flat package recommended footprint
9DU$
9DU%
9DU$
9DU%
?&0?!-+/2?6
1. Dimensions are expressed in millimeters.
DocID14395 Rev 15
107/125
114
Package information
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 59. VFQFPN32 marking example (package top view)
3URGXFW
LGHQWLILFDWLRQ
999999
'DWHFRGH
:
88
6WDQGDUG67ORJR
5HYLVLRQFRGH
3LQLGHQWLILHU
069
1. Parts marked as "ES","E” or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's quality department must be contacted to run a qualification activity prior to any decision to
use these engineering samples.
108/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
11.6
Package information
Thermal characteristics
In case the maximum chip junction temperature (TJmax) specified in Table 24: General
operating conditions is exceeded, the functionality of the device cannot be guaranteed.
TJmax, in degrees Celsius, may be calculated using the following equation:
TJmax = TAmax + (PDmax x ΘJA)
where:
TAmax is the maximum ambient temperature in ° C
ΘJA is the package junction-to-ambient thermal resistance in ° C/W
PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax)
PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/Omax represents the maximum power dissipation on output pins
where:
PI/Omax = Σ (VOL * IOL) + Σ((VDD - VOH) * IOH)
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low- and high-level in the
application.
Table 54. Thermal characteristics(1)
Symbol
ΘJA
Parameter
Value
Thermal resistance junction-ambient
LQFP 80 - 14 x 14 mm
38
Thermal resistance junction-ambient
LQFP 64 - 10 x 10 mm
46
Thermal resistance junction-ambient
LQFP 48 - 7 x 7 mm
57
Thermal resistance junction-ambient
LQFP 32 - 7 x 7 mm
59
Thermal resistance junction-ambient
VFQFPN 32 - 5 x 5 mm
25
Unit
°C/W
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection
environment.
11.6.1
Reference document
JESD51-2 integrated circuits thermal test method environment conditions - natural
convection (still air). Available from www.jedec.org.
DocID14395 Rev 15
109/125
114
Package information
11.6.2
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the order code (see
Figure 60: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax ordering information scheme1 on
page 111).
The following example shows how to calculate the temperature range needed for a given
application.
Assuming the following application conditions:
–
Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2)
–
IDDmax = 8 mA
–
VDD = 5 V
–
maximum 20 I/Os used at the same time in output at low-level with IOL = 8 mA
–
VOL = 0.4 V
PINTmax = 8 mA x 5 V = 400 mW
PIOmax = 20 x 8 mA x 0.4 V = 64 mW
This gives:
PINTmax = 400 mW and PIOmax 64 mW
PDmax = 400 mW + 64 mW
Thus:
PDmax = 464 mW.
Using the values obtained in Table 54: Thermal characteristics TJmax is calculated as
follows:
For LQFP64 46 °C/W
Tjmax = 82 °C + (46 °C/W x 464 mW) = 82 °C + 21 °C = 103 ° C
This is within the range of the suffix C version parts (-40 °C < Tj < 125 ° C).
Parts must be ordered at least with the temperature range suffix C.
110/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
12
Ordering information
Ordering information
Figure 60. STM8AF526x/8x/Ax and STM8AF6269/8x/Ax ordering information scheme1
STM8A2
Example:
F
62
A
A
T
D
XXX3
Y
Product class
8-bit automotive microcontroller
Program memory type
F = Flash + EEPROM
P = FASTROM
Device family
52 = Silicon rev U and rev T, CAN/LIN
62 = Silicon rev U and rev T, LIN only
Program memory size
6 = 32 Kbyte
8 = 64 Kbyte
A= 128 Kbyte
Pin count
6 = 32 pins
8 = 48 pins
9 = 64 pins
A = 80 pins
Package type
T = LQFP
U = VFQFPN
Temperature range
A = -40 to 85 °C
C = -40 to 125 °C
D = -40 to 150 °C
Packing
Y = Tray
U = Tube
X = Tape and reel compliant with EIA 481-C
1. For a list of available options (e.g. memory size, package) and orderable part numbers or for further
information on any aspect of this device, please go to www.st.com or contact the nearest ST Sales Office.
2. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening
according to AEC Q001 and Q002 or equivalent.
3. Customer specific FASTROM code or custom device configuration. This field shows ‘SSS’ if the device
contains a super set silicon, usually equipped with bigger memory and more I/Os. This silicon is supposed
to be replaced later by the target silicon.
DocID14395 Rev 15
111/125
114
STM8 development tools
13
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
STM8 development tools
Development tools for the STM8A microcontrollers include the
•
STice emulation system offering tracing and code profiling
•
STVD high-level language debugger including assembler and visual development
environment - seamless integration of third party C compilers
•
STVP Flash programming software
In addition, the STM8A comes with starter kits, evaluation boards and low-cost in-circuit
debugging/programming tools.
13.1
Emulation and in-circuit debugging tools
The STM8 tool line includes the STice emulation system offering a complete range of
emulation and in-circuit debugging features on a platform that is designed for versatility and
cost-effectiveness. In addition, STM8A application development is supported by a low-cost
in-circuit debugger/programmer.
The STice is the fourth generation of full-featured emulators from STMicroelectronics. It
offers new advanced debugging capabilities including tracing, profiling and code coverage
analysis to help detect execution bottlenecks and dead code.
In addition, STice offers in-circuit debugging and programming of STM8A microcontrollers
via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of
an application while it runs on the target microcontroller.
For improved cost effectiveness, STice is based on a modular design that allows users to
order exactly what they need to meet their development requirements and to adapt their
emulation system to support existing and future ST microcontrollers.
13.1.1
112/125
STice key features
•
Program and data trace recording up to 128 K records
•
Advanced breakpoints with up to 4 levels of conditions
•
Data breakpoints
•
Real-time read/write of all device resources during emulation
•
Occurrence and time profiling and code coverage analysis (new features)
•
In-circuit debugging/programming via SWIM protocol
•
8-bit probe analyzer
•
1 input and 2 output triggers
•
USB 2.0 high-speed interface to host PC
•
Power supply follower managing application voltages between 1.62 to 5.5 V
•
Modularity that allows users to specify the components they need to meet their
development requirements and adapt to future requirements
•
Supported by free software tools that include integrated development environment
(IDE), programming software interface and assembler for STM8.
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
13.2
STM8 development tools
Software tools
STM8 development tools are supported by a complete, free software package from STMicroelectronics that includes ST visual develop (STVD) IDE and the ST visual programmer
(STVP) software interface. STVD provides seamless integration of the Cosmic and Raisonance C compilers for STM8.
13.2.1
STM8 toolset
The STM8 toolset with STVD integrated development environment and STVP programming
software is available for free download at www.st.com. This package includes:
ST visual develop
Full-featured integrated development environment from STMicroelectronics, featuring:
•
Seamless integration of C and ASM toolsets
•
Full-featured debugger
•
Project management
•
Syntax highlighting editor
•
Integrated programming interface
•
Support of advanced emulation features for STice such as code profiling and coverage
ST visual programmer (STVP)
Easy-to-use, unlimited graphical interface allowing read, write and verification of the STM8A
microcontroller’s Flash memory. STVP also offers project mode for saving programming
configurations and automating programming sequences.
13.2.2
C and assembly toolchains
Control of C and assembly toolchains is seamlessly integrated into the STVD integrated
development environment, making it possible to configure and control the building of the
application directly from an easy-to-use graphical interface. Available toolchains include:
C compiler for STM8
All compilers are available in free version with a limited code size depending on the
compiler. For more information, refer to www.cosmic-software.com, www.raisonance.com,
and www.iar.com.
STM8 assembler linker
Free assembly toolchain included in the STM8 toolset, which allows users to assemble and
link their application source code.
DocID14395 Rev 15
113/125
114
STM8 development tools
13.3
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Programming tools
During the development cycle, STice provides in-circuit programming of the STM8A Flash
microcontroller on the application board via the SWIM protocol. Additional tools are to
include a low-cost in-circuit programmer as well as ST socket boards, which provide
dedicated programming platforms with sockets for programming the STM8A.
For production environments, programmers will include a complete range of gang and
automated programming solutions from third-party tool developers already supplying
programmers for the STM8 family.
114/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
14
Revision history
Revision history
Table 55. Document revision history
Date
Revision
31-Jan-2008
1
Initial release
2
Added ‘H’ products to the datasheet (Flash no EEPROM).
Section : Features on cover page: Updated Memories, Reset and
supply management, Communication interfaces and I/Os; reduced
wakeup pins by 1.
Table 1: Device summary: Removed STM8AF6168, STM8AF6148,
STM8AF6166, STM8AF6146, STM8AF5168, STM8AF5186,
STM8AF5176, and STM8AF5166.
Section 1: Introduction, Section 5: Product overview, Section 9:
Option bytes, Section 6.2: Alternate function remapping, Table 21:
Current characteristics: Updated reference documentation: RM0009,
PM0047, and UM0470.
Section 2: Description: added information about peak performance.
Section 3: Product line-up: Removed STM8A common features
table.
Table 4: Peripheral clock gating bits (CLK_PCKENR1): Removed
STM8AF5186T, STM8AF5176T, STM8AF5168T, and
STM8AF5166T.
Table 5: Peripheral clock gating bits (CLK_PCKENR2): Removed
STM8AF6168T, STM8AF6166T, STM8AF6148T, and
STM8AF6146T.
Section 5: Product overview: Made minor content changes and
improved readability and layout.
Section 5.5.3: 128 kHz low-speed internal RC oscillator (LSI): Major
modification, TMU included.
Section 5.5.2: 16 MHz high-speed internal RC oscillator (HSI): User
trimming updated.
Section 5.5.3: 128 kHz low-speed internal RC oscillator (LSI): LSI as
CPU clock added.
Section 5.5.4: 24 MHz high-speed external crystal oscillator (HSE),
Section 5.5.5: External clock input: Maximum frequency conditional
32 Kbyte/128 Kbyte.
Section 5.8: Analog to digital converter (ADC): Scan for 128 Kbyte
removed.
Section 5.9: Communication interfaces, Section 5.9.3: Serial
peripheral interface (SPI): SPI 10 Mb/s.
Figure 3: LQFP 80-pin pinout, Figure 4: LQFP 64-pin pinout,
Figure 6: STM8AF62xx LQFP/VFQFPN 32-pin pinout: Amended
footnote 1.
Table 12: Memory model 128K: HS output changed from 20 mA to 8
mA.
Section 7: Memory and register map: Corrected Table 8: Register
and memory map; removed address list; added Table 14: General
hardware register map.
Section 10.3.2: Supply current characteristics Note on typical/WC
values added.
22-Aug-2008
Changes
DocID14395 Rev 15
115/125
124
Revision history
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 55. Document revision history (continued)
Date
22-Aug-2008
116/125
Revision
Changes
Table 18: Typ. IDD(WFI)HSI vs. VDD @ fCPU = 16 MHz, peripherals
= off: Replaced the source blocks ‘simple USART’, ‘very low-end
timer (timer 4)’, and ‘EEPROM’ with ‘LINUART’, ‘timer4’ and
‘reserved’ respectively, added TMU registers.
Table 20: HSE oscillator circuit diagram: Updated OPT6 and NOPT6,
added OPT7 to 17 (TMU, BL)
Table 21: Typical HSI frequency vs VDD: Updated OPT1 UBC[7:0],
OPT4 CKAWUSEL, OPT4 PRSC [1:0], and OPT6, added OPT7 to
16 (TMU).
Table 23: Operating lifetime: Amended footnotes.
Table 26: Total current consumption in Run, Wait and Slow mode.
General conditions for VDD apply, TA = -40 °C to 150 °C: Added
parameter ‘voltage and current operating conditions’.
Table 27: Total current consumption in Halt and Active-halt modes.
General conditions for VDD applied. TA = -40 °C to 55 °C unless
otherwise stated: Amended footnotes.
Table 28: Oscillator current consumption: Replaced.
Table 29: Programming current consumption: Amended maximum
data and footnotes.
Table 21: Current characteristics: Replaced.
Table 22: Thermal characteristics: Added and amended IDD(RUN)
data; amended IDD(WFI) data; amended footnotes.
Table 32: HSE oscillator characteristics: Filled in, amended
maximum data and footnotes.
2
(continued) Figure 13 to Figure 18: info on peripheral activity added.
Table 33: HSI oscillator characteristics: Modified fHSE_ext data and
added VHSEdhl data.
Table 35: Flash program memory/data EEPROM memory: Removed
ACCHSI parameters and replaced with ACCHS parameters; amended
data and footnotes.
Amended data of ‘RAM and hardware registers’ table.
Table 37: Data memory: Updated names and data of NRW and tRET
parameters.
Table 40: TIM 1, 2, 3, and 4 electrical specifications: Added VOH and
VOL parameters; Updated Ilkg ana parameter.
Removed: Output driving current (standard ports), Output driving
current (true open drain ports), and Output driving current (high sink
ports).
Table 46: EMI data: Updated fADC, tS, and tCONV data.
Table: ADC accuracy for VDDA = 3.3 V: removed the 4-MHz
condition from all parameters.
Table 47: ESD absolute maximum ratings: Removed the 4-MHz
condition from all parameters; updated footnote 1 and removed
footnote 2.
Table 51: LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data: Added data for TA = 145 °C.
Figure 53: Updated memory size, pin count and package type
information.
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Revision history
Table 55. Document revision history (continued)
Date
16-Sep-2008
01-Jul-2009
Revision
Changes
3
Replaced the salestype ‘STM8H61xx’ with ‘STM8AH61xx on the first
page.
Added ‘part numbers’ to heading rows of Table 1: Device summary.
Updated the 80-pin package silhouette on cover page in line with
POA 0062342-revD.
Table 18: Renamed ‘TMU key registers 0-7 [7:0]’ as ‘TMU key
registers 1-8 [7:0]’
Section 9: Updated introductory text concerning option bytes which
do not need to be saved in a complementary form.
Table 18: Renamed the option bits ‘TMU[0:3]’, ‘NTMU[0:3]’, and
‘TMU_KEY 0-7 [7:0]’ as ‘TMU[3:0]’, ‘NTMU[3:0]’, and ‘TMU_KEY 1-8
[7:0]’ respectively.
Table 21: Updated values of option byte 5 (HSECNT[7:0]); inverted
the description of option byte 6 (TMU[3:0]); renamed option bytes 8
to 15 ‘TMU_KEY 0-7 [7:0]’, as ‘TMU_KEY 1-8 [7:0]’.
Updated 80-pin package information in line with POA 0062342-revD
in Figure 45 and Table 53.
4
Added ‘STM8AH61xx’ and ‘STM8AH51xx to document header.
Updated : Features on page 1 (memories, timers, operating
temperature, ADC and I/Os).
Updated Table 1: Device summary
Updated Kbyte value of program memory in Section: Introduction
Changed the first two lines from the top in Section: Description.
Updated Figure 1: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax
block diagram
Updated Section 5: Product overview
In Figure 5: LQFP 48-pin pinout, added USART function to pins 10,
11, and 12; added CAN Tx and CAN Rx functions to pins 35 and 36
respectively.
Section 6: Pinouts and pin description: deleted the text below the
Table 10: Legend/abbreviation for the pin description table
Table 11: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin
description: 68th, 69th pin (LQFP80): replaced X with a dash for PP
output and Added a table footnote.
Updated Figure 8: Register and memory map.
Table 12: Memory model 128K: updated footnote
Deleted the Table: Stack and RAM partitioning
Table 17: STM8A interrupt table: Updated priorities 13, 15, 17, 20
and 24 and changed table footnote
Updated Section 7: Memory and register map
Updated Table: Data memory, Table: I/O static characteristics, and
Table 39: NRST pin characteristics.
Section 10.1.1: Minimum and maximum values: added ambient
temperature TA = -40 °C
Updated Table 20: Voltage characteristics.
Updated Table 21: Current characteristics.
Updated Table 22: Thermal characteristics.
Updated Table 24: General operating conditions.
DocID14395 Rev 15
117/125
124
Revision history
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 55. Document revision history (continued)
Date
01-Jul-2009
22-Oct-2009
118/125
Revision
Changes
Removed table: Total current consumption and timing in halt, fast
active halt and slow active halt modes at VDD = 3.3 V.
Added Table 28: Oscillator current consumption.
Added Table 29: Programming current consumption.
Updated Table 30: Typical peripheral current consumption VDD = 5.0
V
Updated Table 31: HSE external clock characteristics.
Updated Table 32: HSE oscillator characteristics.
Table 20: HSE oscillator circuit diagram: changed ‘consumption
control’ to ‘current control’
Section : HSE oscillator critical gm formula: clarified formula
Updated Table 33: HSI oscillator characteristics.
Removed ‘RAM and hardware registers’
Removed Table: RAM and hardware registers.
Updated Table 35: Flash program memory/data EEPROM memory
Added Table 36: Flash program memory.
Added Table 37: Data memory.
Updated Table 38: I/O static characteristics.
Updated Table 39: NRST pin characteristics.
4
(continued) Updated Table 40: TIM 1, 2, 3, and 4 electrical specifications
Section 10.3.9: SPI interface: changed title from “SPI serial
peripheral interface“.
Updated Table 41: SPI characteristics.
Figure 40: SPI timing diagram in slave mode and with CPHA = 0:
Changed title and added footnote.
Figure 41: SPI timing diagram in slave mode and with CPHA = 1:
changed the title.
Updated Table 43: ADC characteristics.
Updated Figure 43: Typical application with ADC.
Removed Table: ADC accuracy for VDDA = 3.3 V.
Updated Table 44: ADC accuracy for VDDA = 5 V.
Updated Table 46: EMI data.
Updated Table 48: Electrical sensitivities.
Added text about Ecopack in the Section 11: Package information.
Figure 48: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package outline: deleted footnote.
Updated Figure 60: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax
ordering information scheme1.
Added Section 13: STM8 development tools.
5
Updated Table 1: Device summary: added STM8AF5178,
STM8AF519A and STM8AF619A.
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Revision history
Table 55. Document revision history (continued)
Date
13-Apr-2010
08-Jul-2010
Revision
Changes
6
Updated title on cover page.
Modified cover page header to clarify the part numbers covered by
the datasheets. Updated footnote on Table 1: Device summary to
add ‘P’ order codes.
Changed definition of ‘P’ order codes.
‘Q’ order codes (FASTROM and EEPROM) removed.
Reorganized the content of Section 5: Product overview.
Table 11: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin
description updated PD7/TLI alternate function, removed caution
note for PD6/ LINUART_RX, and added note to PA1/OSCIN.
Renamed Section 7: Memory and register map, and merged content
with Section: Register map. Updated Figure 8: Register and memory
map.
Renamed BL_EN and NBL_EN, BL and NBL, respectively, in
Table 18: Option bytes.
Updated AFR4 definition in Table 19: Option byte description.
Added CEXT in Table 24: General operating conditions, and
Section 10.3.1: VCAP external capacitor.
Updated tVDD in Table 25: Operating conditions at power-up/powerdown.
Moved Table 30: Typical peripheral current consumption VDD = 5.0
V to Section : Current consumption for on-chip peripherals.
Removed VESD(MM) from Table 47: ESD absolute maximum ratings.
Updated Section 12: Ordering information to the devices supported
by the datasheet.
Updated Section 13: STM8 development tools.
7
Added STM8AF5168 and STM8AF518A part number in Figure 4,
and STM8AF618A in Figure 5. Added STM8AF52xx, STM8AF6269,
STM8AF628x, and STM8AF62Ax.
Updated D temperature range to -40 to 150°C.
Updated number of I/Os on cover page.
Added Table 23: Operating lifetime.
Restored VESD(MM) from Table 47: ESD absolute maximum ratings.
Table 24: General operating conditions: updated VCAP information.
ESL parameter, and range D maximum junction temperature (TJ).
Added STM8AF52xx and STM8AF62xx, and footnote in Section 12:
Ordering information.
Updated Section 13: STM8 development tools: added Table: Product
evolution summary, and split the beCAN time triggered
communication mode limitation in two sections.
DocID14395 Rev 15
119/125
124
Revision history
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 55. Document revision history (continued)
Date
Revision
Changes
Modified references to reference manual, and Flash programming
manual in the whole document.
Added reference to AEC Q100 standard on cover page.
Renamed timer types as follows:
– Auto-reload timer to general purpose timer
– Multipurpose timer to advanced control timer
– System timer to basic timer
Introduced concept of high density Flash program memory.
Updated the number of I/Os for devices in 80-, 64-, and 48-pin
packages in Table: STM8AF52xx product line-up with CAN, Table:
STM8AF62xx product line-up without CAN, Table: STM8AF/H/P51xx
product line-up with CAN, and Table: STM8AF/H/P61xx product lineup without CAN.
Added TMU brief description in Section 5.4: Flash program and data
EEPROM, updated TMU_MAXATT description in Table 19: Option
byte description, and TMU_MAWATT reset value in Table 18: Option
bytes.
30-Jan-2011
8
Updated clock sources in Section 5.5.1: Features.
Added Table 4: Peripheral clock gating bits (CLK_PCKENR1).
Added calibration using TIM3 in Section 5.7.2: Auto-wakeup counter.
Added Table 8: ADC naming and Table 9: Communication peripheral
naming correspondence.
Updated SPI data rate to fMASTER/2 in Section 5.9.3: Serial
peripheral interface (SPI).
Added reset state in Table 10: Legend/abbreviation for the pin
description table.
Table: STM8A microcontroller family pin description: modified
footnotes related to PD1/SWIM, corrected wpu input for PE1 and
PE2, and renamed TIMn_CCx and TIMn_NCCx to TIMn_CHx and
TIMn_CHxN, respectively.
Section: Register map: Removed CAN register CLK_CANCCR.
Removed I2C_PECR register.
Added footnote for Px_IDR registers in Table 13: I/O port hardware
register map. Updated register reset values for Px_IDR and PD_CR1
registers.
Replaced tables describing register maps and reset values for nonvolatile memory, global configuration, reset status, TMU, clock
controller, interrupt controller, timers, communication interfaces, and
ADC, by TTable 14: General hardware register map. Added debug
module register map
Renamed Fast Active Halt mode to Active-halt mode with regulator
on, and Slow Active Halt mode to Active-halt mode with regulator off,
updated Section 5.6: Low-power operating modes, and Table 27:
Total current consumption in Halt and Active-halt modes. General
conditions for VDD applied. TA = -40 °C to 55 °C unless otherwise
stated. IDD(FAH) and IDD(SAH) renamed IDD(AH); tWU(FAH) and tWU(SAH)
renamed tWU(AH).
120/125
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Revision history
Table 55. Document revision history (continued)
Date
Revision
Changes
30-Jan-2011
Removed note 1 in Table 24: General operating conditions and note
1 below Figure 11: fCPUmax versus VDD.
Removed note 3 in Table 26: Total current consumption in Run, Wait
and Slow mode. General conditions for VDD apply, TA = -40 °C to
150 °C.
Removed note 2 in Table 31: HSE external clock characteristics and
Table 35: Flash program memory/data EEPROM memory
Removed note 1 in Table 37: Data memory. Modified TWE maximum
value in Table 36: Flash program memory and Table 37: Data
memory.
Added tIFP(NRST) and renamed VF(NRST) tIFP in Table 39: NRST pin
characteristics.
8
Added recommendation concerning NRST pin level, and power
(continued)
consumption sensitive applications, above Figure 39:
Recommended reset pin protection, and updated external capacitor
value.
Updated Note 1 in Table 40: TIM 1, 2, 3, and 4 electrical
specifications.
Updated Note 1 in Table 41: SPI characteristics.
Moved know limitations to separate errata sheet.
Added “not recommended for new design” note to device family 51,
memory size 7 and 9, and temperature range B, in Figure 60:
STM8AF526x/8x/Ax and STM8AF6269/8x/Ax ordering information
scheme1.
Added Raisonance compiler in Section 13.2: Software tools.
18-Jul-2012
Updated wildcards of document part numbers.
Added VFQFPN package.
Added STM8AF62A6 part number.
Table 1: Device summary updated footnote 1 and added footnote 2.
Table: STM8AF52xx product line-up with CAN and Table:
STM8AF62xx product line-up without CAN: added “P” version for all
order codes; updated size of data EEPROM for 64K devices to 2K
instead of 1.5K; updated RAM.
Figure 1: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax block
diagram: updated POR, BOR and WDG; removed PDR; added
legend.
Section 5.4: Flash program and data EEPROM: removed non
relevant bullet points and added a sentence about the factory
program.
Added Table 4: Peripheral clock gating bits (CLK_PCKENR1) and
updated Table 5: Peripheral clock gating bits (CLK_PCKENR2)
Section : ADC features: updated ADC input range.
Table 12: Memory model 128K: updated RAM size, RAM end
addresses, and stack roll-over addresses; updated footnote 1
Table 18: Option bytes: updated factory default setting for NOPT17;
updated footnotes.
Table 20: Voltage characteristics: updated VDDX - VDD to VDDX - VSS.
Table 24: General operating conditions: updated VCAP.
9
DocID14395 Rev 15
121/125
124
Revision history
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 55. Document revision history (continued)
Date
122/125
Revision
Changes
18-Jul-2012
Table 26: Total current consumption in Run, Wait and Slow mode.
General conditions for VDD apply, TA = -40 °C to 150 °C: updated
conditions for IDD(RUN).
Table 38: I/O static characteristics: added new condition and new
max values for rise and fall time; updated footnote 2.
Section 10.3.7: Reset pin characteristics: updated text below
Figure 38: Typical NRST pull-up current Ipu vs VDD
Figure 39: Recommended reset pin protection: updated unit of
capacitor.
Table 41: SPI characteristics: updated SCK high and low time
conditions and values.
Figure 42: SPI timing diagram - master mode: replaced ‘SCK input’
signals with ‘SCK output’ signals.
Updated Table 49: LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat
package mechanical data, Table 50: LQFP64 - 64-pin, 10 x 10 mm
low-profile quad flat package mechanical data, Table 51: LQFP48 9
48-pin, 7 x 7 mm low-profile quad flat package mechanical data,
(continued) Table 52: LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
mechanical data, Table 53: VFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm
pitch very thin profile fine pitch quad flat package mechanical data
Replaced Figure 48: LQFP64 - 64-pin, 10 x 10 mm low-profile quad
flat package outline, Figure 51: LQFP48 - 48-pin, 7 x 7 mm lowprofile quad flat package outline and Figure 54: LQFP32 - 32-pin, 7 x
7 mm low-profile quad flat package outline
Added Figure 49: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package recommended footprint, Figure 52: LQFP48 - 48-pin, 7 x
7 mm low-profile quad flat package recommended footprint and
Figure 55: LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
recommended footprint
Updated Figure 57: VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very
thin profile fine pitch quad flat package outline
Updated Figure 60: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax
ordering information scheme1
Section 13.2.2: C and assembly toolchains: added www.iar.com.
31-Mar-2014
Updated:
– Table 1: Device summary,
– Table: STM8AF52xx product line-up with CAN,
– Table: STM8AF/H/P51xx product line-up with CAN,
– Table: STM8AF/H/P61xx product line-up without CAN,
– Table 11: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin
description,
– The maximum speed in Section 5.9.3: Serial peripheral interface
(SPI),
– tTEMP Reset release delay /VDD rising typical and max values in
Table 25: Operating conditions at power-up/power-down,
– The symbol tIFP(NRST) with tINFP(NRST) in Table 39: NRST pin
characteristics,
– The address and comment for Reset in Table 17: STM8A interrupt
table.
10
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Revision history
Table 55. Document revision history (continued)
Date
31-Mar-2014
13-Jun-2014
Revision
Changes
Added:
– Figure 7: STM8AF52x6 VFQFPN32 32-pin pinout;
– the caution in Section 5.10: Input/output specifications,
– The table footnote “Not recommended for new designs” to Table:
10
STM8AF/H/P51xx product line-up with CAN and Table:
(continued)
STM8AF/H/P61xx product line-up without CAN.
– The figure footnotes to Figure 7: STM8AF52x6 VFQFPN32 32-pin
pinout and Figure: VFQFPN 32-lead very thin fine pitch quad flat
no-lead package (5 x 5)
11
Added STM8AF52A6 part number.
09-Jun-2015
12
Added:
– the third table footnote to Table 25: Operating conditions at powerup/power-down,
– Figure 47: LQFP80 marking example (package top view),
– Figure 50: LQFP64 marking example (package top view),
– Figure 53: LQFP48 marking example (package top view),
– Figure 56: LQFP32 marking example (package top view),
– Figure 59: VFQFPN32 marking example (package top view),
– the footnote about the device marking to Figure 60:
STM8AF526x/8x/Ax and STM8AF6269/8x/Ax ordering information
scheme1.
Removed STM8AF51xx and STM8AF61xx obsolete root part
numbers, and consequently “H” products:
– Table 1: Device summary,
– Section 1: Introduction,
– Section 2: Description,
– Section 3: Product line-up,
– Table 12: Memory model 128K,
– Section 10.3: Operating conditions,
– Figure 60: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax ordering
information scheme1.
Moved Section 11.6: Thermal characteristics to Section 11: Package
information.
Updated:
– the product naming in the document headers and captions,
– the standard reference for EMI characteristics in Table 46: EMI
data.
13-Jun-2016
13
Updated Table 53: VFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch very
thin profile fine pitch quad flat package mechanical data
DocID14395 Rev 15
123/125
124
Revision history
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
Table 55. Document revision history (continued)
Date
124/125
Revision
Changes
13-Oct-2016
14
Updated:
– Title of Figure 7: STM8AF52x6 VFQFPN32 32-pin pinout,
(previously STM8AF5286UC VFQFPN32 32-pin pinout)
– Footnotes of Figure 60: STM8AF526x/8x/Ax and
STM8AF6269/8x/Ax ordering information scheme1
– Table 11: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin
description replaced “STM8AF5286UC VQFPN32” with
“STM8AF52x6 VQFPN32” at header row
– Section 10.2: Absolute maximum ratings
– Section : Device marking on page 93
– Section : Device marking on page 96
– Section : Device marking on page 99
– Section : Device marking on page 104
– Section : Device marking on page 108
Added:
– Footnote on Figure 47: LQFP80 marking example (package top
view), Figure 50: LQFP64 marking example (package top view),
Figure 56: LQFP32 marking example (package top view),
Figure 59: VFQFPN32 marking example (package top view).
10-Nov-2016
15
Updated header row and PA6/USART_CK pin row on Table 11:
STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin description.
DocID14395 Rev 15
STM8AF526x/8x/Ax STM8AF6269/8x/Ax
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics – All rights reserved
DocID14395 Rev 15
125/125
125