0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM8AL3148TCX

STM8AL3148TCX

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP48_7X7MM

  • 描述:

    IC MCU 8BIT 16KB FLASH 48LQFP

  • 数据手册
  • 价格&库存
STM8AL3148TCX 数据手册
STM8AL313x/4x/6x STM8AL3L4x/6x Automotive 8-bit ultra-low-power MCU, up to 32-Kbyte Flash, RTC, data EEPROM, LCD, timers, USART, I2C, SPI, ADC, DAC, COMPs Datasheet production data Features • AEC-Q100 qualified • Operating conditions – Operating power supply range 1.8 V to 3.6 V (down to 1.65 V at power down) – Temperature range: - 40 °C to 85 or 125 °C • Low power features – Five low-power modes: Wait, low-power run (5.1 μA), low-power wait (3 μA), activehalt with full RTC (1.3 μA), halt with PDR (400 nA) – Run from Flash: 195 μA/MHz + 440 μA – Run from RAM: 90 μA/MHz + 400 μA – Ultra-low leakage per I/0: 50 nA – Fast wakeup from Halt: 4.7 µs • Advanced STM8 core – Harvard architecture and 3-stage pipeline – Max freq. 16 MHz, 16 CISC MIPS peak – Up to 40 external interrupt sources • Reset and supply management – Low power, ultra safe BOR reset with 5 selectable thresholds – Ultra-low power POR/PDR – Programmable voltage detector (PVD) • Clock management – 1 to 16 MHz crystal oscillator – 32 kHz crystal oscillator – Internal 16 MHz factory-trimmed RC – Internal 38 kHz low consumption RC – Clock security system • Low power RTC – BCD calendar with alarm interrupt – Auto-wakeup from Halt (0.95 ppm resolution) w/ periodic interrupt • LCD: up to 4x28 segments w/ step-up converter LQFP48 7 x 7 mm LQFP32 7 x 7 mm VFQFPN32 5 x 5 mm • Memories – Program memory: up to 32 Kbyte Flash program; data retention 20 years at 55 °C – Data memory: up to 1 Kbyte true data EEPROM; endurance 300 kcycle – RAM: up to 2 Kbyte • DMA – Four channels; supported peripherals: ADC, DAC, SPI, I2C, USART, timers – One channel for memory-to-memory • 12-bit DAC with output buffer • 12-bit ADC up to 1 Mbps/25 channels – Temp sensor and internal reference voltage • Two ultra-low-power comparators – One with fixed threshold and one rail to rail – Wakeup capability • Timers – Two 16-bit timers with two channels (used as IC, OC, PWM), quadrature encoder – One 16-bit advanced control timer with three channels, supporting motor control – One 8-bit timer with 7-bit prescaler – Two watchdogs: one window, one independent – Beeper timer with 1-, 2- or 4 kHz frequencies • Communication interfaces – Synchronous serial interface (SPI) – Fast I2C 400 kHz SMBus and PMBus – USART (ISO 7816 interface, IrDA, LIN 1.3, LIN 2.0) • Up to 41 I/Os, all mappable on interrupt vectors April 2019 This is information on a product in full production. DS7106 Rev 9 1/123 www.st.com STM8AL313x/4x/6x STM8AL3L4x/6x • Development support – Fast on-chip programming and non intrusive debugging with SWIM – Bootloader using USART • 96-bit unique ID Table 1. Device summary 2/123 Reference Part number STM8AL313x/4x/6x (without LCD) STM8AL3136, STM8AL3138, STM8AL3146, STM8AL3148, STM8AL3166, STM8AL3168 STM8AL3L4x/6x (with LCD) STM8AL3L46, STM8AL3L48, STM8AL3L66, STM8AL3L68 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Contents Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 3 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 3.2.1 Advanced STM8 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.1 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.5 Low power real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.6 LCD (Liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.7 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.8 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.9 Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.10 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.11 Ultra-low-power comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.12 System configuration controller and routing interface . . . . . . . . . . . . . . . 20 3.13 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.14 3.13.1 TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.13.2 16-bit general purpose timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.13.3 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.14.1 Window watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.14.2 Independent watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.15 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.16 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 DS7106 Rev 9 3/123 5 Contents 4 STM8AL313x/4x/6x STM8AL3L4x/6x SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.16.2 I²C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.16.3 USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.17 Infrared (IR) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.18 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1 5 3.16.1 System configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.1 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.2 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6 Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 7 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 8 Unique ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 9 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 9.1 4/123 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 9.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 9.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 9.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 9.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 9.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 9.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 9.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 9.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 9.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 62 9.3.3 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 9.3.4 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 9.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 9.3.6 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 9.3.7 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 9.3.8 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 9.3.9 LCD controller (STM8AL3Lxx only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x 10 Contents 9.3.10 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 9.3.11 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 9.3.12 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 9.3.13 12-bit DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 9.3.14 12-bit ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 9.3.15 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 10.1 ECOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 10.2 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 10.3 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 10.4 VFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 10.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 11 Device ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 12 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 DS7106 Rev 9 5/123 5 List of tables STM8AL313x/4x/6x STM8AL3L4x/6x List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. 6/123 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x low-power device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Legend/abbreviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin description . . . . . . . . . . . . 28 Flash and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Factory conversion registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Option byte addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Unique ID registers (96 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Operating lifetime (OLF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 62 Total current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Total current consumption in Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Total current consumption and timing in low-power run mode at VDD = 1.65 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Total current consumption in low-power wait mode at VDD = 1.65 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Total current consumption and timing in active-halt mode at VDD = 1.65 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal . . 72 Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V . . . . . . . . . . . 72 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Current consumption under external reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 HSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 LSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Flash program memory/data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Flash program memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Data memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Output driving current (PA0 with high sink LED driver capability). . . . . . . . . . . . . . . . . . . . 85 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. List of tables NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 SPI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 LCD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Reference voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 DAC output on PB4-PB5-PB6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 ADC1 accuracy with VDDA = 2.5 V to 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 ADC1 accuracy with VDDA = 2.4 V to 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . 102 RAIN max for fADC = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . 109 LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . 112 VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 DS7106 Rev 9 7/123 7 List of figures STM8AL313x/4x/6x STM8AL3L4x/6x List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. 8/123 Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x device block diagram. . . . . . . 13 Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x clock tree diagram . . . . . . . . . 18 STM8AL31x8T 48-pin pinout (without LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 STM8AL3Lx8T 48-pin pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 STM8AL31x6T 32-pin pinout (without LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 STM8AL3Lx6T 32-pin pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 STM8AL31x6U 32-pin pinout (without LCD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 STM8AL3Lx6U 32-pin pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 POR/BOR thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Typ. IDD(RUN) vs. VDD, fCPU = 16 MHz(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 LSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Typical HSI frequency vs VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Typical LSI frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Typical VIL and VIH vs VDD (high sink I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Typical VIL and VIH vs VDD (true open drain I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Typical pull-up resistance RPU vs VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Typical pull-up current Ipu vs VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Typ. VOL @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Typ. VOL @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Typ. VOL @ VDD = 3.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Typ. VOL @ VDD = 1.8 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Typ. VDD - VOH @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Typ. VDD - VOH @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Typical NRST pull-up resistance RPU vs VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Typical NRST pull-up current Ipu vs VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Recommended NRST pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 SPI1 timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 SPI1 timing diagram - slave mode and CPHA=1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 SPI1 timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Typical application with I2C bus and timing diagram(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 ADC1 accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Maximum dynamic current consumption on VREF+ supply pin during ADC conversion . . 103 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 104 Power supply and reference decoupling (VREF+ connected to VDDA) . . . . . . . . . . . . . . 104 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 108 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . 110 LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 111 LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . 112 LQFP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Figure 48. Figure 49. Figure 50. List of figures VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 VFQFPN32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 DS7106 Rev 9 9/123 9 Introduction 1 STM8AL313x/4x/6x STM8AL3L4x/6x Introduction This document describes the features, pinout, mechanical data and ordering information of the medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x devices (microcontrollers with up to 32-Kbyte Flash memory density). These devices are referred to as mediumdensity devices in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU lines reference manual (RM0031) and in STM8L and STM8AL Flash programming manual (PM0054). For more details on the whole STMicroelectronics ultra-low-power family please refer to Section 3: Functional overview on page 13. For information on the debug module and SWIM (single wire interface module), refer to the STM8 SWIM communication protocol and debug module user manual (UM0470). For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044). Note: The medium-density devices provide the following benefits: • • • • Integrated system – Up to 32 Kbytes of medium-density embedded Flash program memory – 1 Kbytes of data EEPROM – Internal high speed and low-power low speed RC. – Embedded reset Ultra-low power consumption – 195 µA/MHZ + 440 µA (consumption) – 0.9 µA with LSI in Active-halt mode – Clock gated system and optimized power management – Capability to execute from RAM for Low power wait mode and Low power run mode Advanced features – Up to 16 MIPS at 16 MHz CPU clock frequency – Direct memory access (DMA) for memory-to-memory or peripheral-to-memory access. Short development cycles – Application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals. – Wide choice of development tools All devices offer 12-bit ADC, DAC, two comparators, Real-time clock three 16-bit timers, one 8-bit timer as well as standard communication interface such as SPI, I2C and USART. A 4x28-segment LCD is available on the medium-density STM8AL3Lxx line. Table 2: Mediumdensity STM8AL313x/4x/6x and STM8AL3L4x/6x low-power device features and peripheral counts and Section 3: Functional overview give an overview of the complete range of peripherals proposed in this family. Figure 1 shows the general block diagram of the device family. 10/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x 2 Description Description The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x devices are members of the STM8AL automotive ultra-low-power 8-bit family. The medium-density STM8AL3xxx family operates from 1.8 V to 3.6 V (down to 1.65 V at power down) and is available in the -40 to +85°C and -40 to +125°C temperature ranges. The medium-density STM8AL3xxx ultra-low-power family features the enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low power operations. The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive In-Application debugging and ultrafast Flash programming. All medium-density STM8AL3xxx microcontrollers feature embedded data EEPROM and low power low-voltage single-supply program Flash memory. They incorporate an extensive range of enhanced I/Os and peripherals. The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools. Two different packages are proposed which include 32 and 48 pins. Depending on the device chosen, different sets of peripherals are included. All STM8AL3xxx ultra-low-power products are based on the same architecture with the same memory mapping and a coherent pinout. DS7106 Rev 9 11/123 54 Description 2.1 STM8AL313x/4x/6x STM8AL3L4x/6x Device overview Table 2. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x low-power device features and peripheral counts Features Flash (Kbyte) STM8AL3xx6 8 16 32 Data EEPROM (Kbyte) 8 16 2 LCD 4x17 2 (1) 4x28 (1) Basic 1 (8-bit) 1 (8-bit) General purpose 2 (16-bit) 2 (16-bit) Advanced control 1 (16-bit) 1 (16-bit) 1 1 1 1 SPI Communication I2C interfaces USART GPIOs 12-bit synchronized ADC (number of channels) 12-Bit DAC (number of channels) Comparators COMP1/COMP2 Others 1 30 (2)(3) or 29 1 (1)(3) Operating temperature Packages 41(3) 1 (22 (2) or 21 (1)) 1 (25) 1 (1) 1 (1) 2 2 RTC, window watchdog, independent watchdog, 16-MHz and 38-kHz internal RC, 1- to 16-MHz and 32-kHz external oscillator CPU frequency Operating voltage 16 MHz 1.8 V to 3.6 V (down to 1.65 V at power down) -40 to +85 °C/-40 to +125 °C LQFP32 (7 x7 mm) VFQFPN32 (5 x 5 mm) LQFP48 (7x7) VFQFPN32 (5 x 5 mm) 1. STM8AL3Lxx versions only 2. STM8AL31xx versions only 3. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as general purpose output only (PA1). 12/123 32 1 RAM-Kbyte Timers STM8AL3xx8 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x 3 Functional overview Functional overview Figure 1. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x device block diagram OSC_IN, OSC_OUT 16 MHz internal RC OSC32_IN, OSC32_OUT @VDD 1-16 MHz oscillator 32 kHz oscillator VDD18 Clock controller and CSS VOLT. REG. Clocks to core and peripherals 38 kHz internal RC RESET Interrupt controller Debug module (SWIM) 16-bit Timer 2 2 channels 16-bit Timer 3 3 channels 16-bit Timer 1 8-bit Timer 4 IR_TIM Infrared interface DMA1 (4 channels) SCL, SDA, SMB I²C1 SPI1_MOSI, SPI1_MISO, SPI1_SCK, SPI1_NSS SPI1 USART1_RX, USART1_TX, USART1_CK USART1 NRST BOR PVD A d d r es s , c o n t r ol an d d at a b u ses 2 channels VDD = 1.65 V to 3.6 V VSS POR/PDR STM8 Core SWIM Power PVD_IN 32 Kbyte program memory 1 Kbyte data EEPROM 2 Kbyte RAM Port A PA[7:0] Port B PB[7:0] Port C PC[7:0] Port D PD[7:0] Port E PE[7:0] Port F PF[7:0] PG[7:0] VDDA, VSSA ADC1_INx VREF+ VREF- @ VDDA, VSSA PH[7:0] 12-bit ADC1 PI[3:0] Temp sensor Beeper RTC VREFINT out Internal reference voltage BEEP ALARM, CALIB, TAMP1/2/3 IWDG (38 kHz clock) COMP1_INP COMP2_INP COMP2_INM DAC_OUT VREF+ V = 2.5 to 3.6 V LCD COMP 1 WWDG COMP 2 12-bitDAC1 DAC 12-bit LCD driver 4x28 SEGx, COMx LCD booster MS38389V1 1. Legend: ADC (Analog-to-digital converter), BOR (Brownout reset), DMA (Direct memory access), DAC (Digital-to-analog converter), I²C (Inter-integrated circuit multimaster interface), IWDG (Independent watchdog), LCD (Liquid crystal display), POR/PDR (Power on reset / power down reset), RTC (Real-time clock), SPI (Serial peripheral interface), SWIM (Single wire interface module), USART (Universal synchronous asynchronous receiver transmitter), WWDG (Window watchdog). DS7106 Rev 9 13/123 54 Functional overview 3.1 STM8AL313x/4x/6x STM8AL3L4x/6x Low-power modes The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x devices support five lowpower modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: 14/123 • Wait mode: CPU clock is stopped, but selected peripherals keep running. An internal or external interrupt, event or a Reset can be used to exit the microcontroller from Wait mode (WFE or WFI mode). Wait consumption: refer to Table 22. • Low power run mode: The CPU and the selected peripherals are running. Execution is done from RAM with a low speed oscillator (LSI or LSE). Flash and data EEPROM are stopped and the voltage regulator is configured in ultra-low-power mode. The microcontroller enters Low power run mode by software and can exit from this mode by software or by a reset. All interrupts must be masked. They cannot be used to exit the microcontroller from this mode. Low power run mode consumption: refer to Table 23. • Low power wait mode: This mode is entered when executing a Wait for event in Low power run mode. It is similar to Low power run mode except that the CPU clock is stopped. The wakeup from this mode is triggered by a Reset or by an internal or external event (peripheral event generated by the timers, serial interfaces, DMA controller (DMA1), comparators and I/O ports). When the wakeup is triggered by an event, the system goes back to Low power run mode. All interrupts must be masked. They cannot be used to exit the microcontroller from this mode. Low power wait mode consumption: refer to Table 24. • Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup can be triggered by RTC interrupts, external interrupts or reset. Active-halt consumption: refer to Table 25 and Table 26. • Halt mode: CPU and peripheral clocks are stopped, the device remains powered on. The RAM content is preserved. The wakeup is triggered by an external interrupt or reset. A few peripherals have also a wakeup from Halt capability. Switching off the internal reference voltage reduces power consumption. Through software configuration it is also possible to wake up the device without waiting for the internal reference voltage wakeup time to have a fast wakeup time of 5 µs. Halt consumption: refer to Table 27. DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Functional overview 3.2 Central processing unit STM8 3.2.1 Advanced STM8 core The 8-bit STM8 core is designed for code efficiency and performance with an Harvard architecture and a 3-stage pipeline. It contains six internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing, and 80 instructions. Architecture and registers • Harvard architecture • 3-stage pipeline • 32-bit wide program memory bus - single cycle fetching most instructions • X and Y 16-bit index registers - enabling indexed addressing modes with or without offset and read-modify-write type data manipulations • 8-bit accumulator • 24-bit program counter - 16 Mbyte linear memory space • 16-bit stack pointer - access to a 64 Kbyte level stack • 8-bit condition code register - 7 condition flags for the result of the last instruction Addressing • 20 addressing modes • Indexed indirect addressing mode for lookup tables located anywhere in the address space • Stack pointer relative addressing mode for local variables and parameter passing Instruction set 3.2.2 • 80 instructions with 2-byte average instruction size • Standard data movement and logic/arithmetic functions • 8-bit by 8-bit multiplication • 16-bit by 8-bit and 16-bit by 16-bit division • Bit manipulation • Data transfer between stack and accumulator (push/pop) with direct stack access • Data transfer using the X and Y registers or direct memory-to-memory transfers Interrupt controller The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x feature a nested vectored interrupt controller: • Nested interrupts with 3 software priority levels • 32 interrupt vectors with hardware priority • Up to 40 external interrupt sources on 11 vectors • Trap and reset interrupts DS7106 Rev 9 15/123 54 Functional overview STM8AL313x/4x/6x STM8AL3L4x/6x 3.3 Reset and supply management 3.3.1 Power supply scheme The STM8AL313x/4x/6x and STM8AL3L4x/6x require a 1.65 V to 3.6 V operating supply voltage (VDD). The external power supply pins must be connected as follows: 3.3.2 • VSS1; VDD1 = 1.8 to 3.6 V, down to 1.65 V at power down: external power supply for I/Os and for the internal regulator. Provided externally through VDD1 pins, the corresponding ground pin is VSS1. • VSSA; VDDA = 1.8 V to 3.6 V, down to 1.65 V at power down: external power supplies for analog peripherals (minimum voltage to be applied to VDDA is 1.8 V when the ADC1 is used). VDDA and VSSA must be connected to VDD1 and VSS1, respectively. • VSS2; VDD2 = 1.8 V to 3.6 V, down to 1.65 V at power down: external power supplies for I/Os. VDD2 and VSS2 must be connected to VDD1 and VSS1, respectively. • VREF+; VREF- (for ADC1): external reference voltage for ADC1. Must be provided externally through VREF+ and VREF- pin. • VREF+ (for DAC): external voltage reference for DAC must be provided externally through VREF+. Power supply supervisor The STM8AL313x/4x/6x and STM8AL3L4x/6x have an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR), coupled with a brownout reset (BOR) circuitry. At power-on, BOR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently (in which case, the VDD min value at power down is 1.65 V). Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Halt mode, it is possible to automatically switch off the internal reference voltage (and consequently the BOR) in Halt mode. The device remains under reset when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external reset circuit. The STM8AL313x/4x/6x and STM8AL3L4x/6x feature an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 16/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x 3.3.3 Functional overview Voltage regulator The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x embed an internal voltage regulator for generating the 1.8 V power supply for the core and peripherals. This regulator has two different modes: • Main voltage regulator mode (MVR) for Run, Wait for interrupt (WFI) and Wait for event (WFE) modes. • Low power voltage regulator mode (LPVR) for Halt, Active-halt, Low power run and Low power wait modes. When entering Halt or Active-halt modes, the system automatically switches from the MVR to the LPVR in order to reduce current consumption. 3.4 Clock management The clock controller distributes the system clock (SYSCLK) coming from different oscillators to the core and the peripherals. It also manages the clock gating for low-power modes and ensures clock robustness. Features • Clock prescaler: to get the best compromise between speed and current consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler. • Safe clock switching: the clock sources can be changed safely on the fly in run mode through a configuration register. • Clock management: to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. • System clock sources: four different clock sources can be used to drive the system clock: – 1-16 MHz High speed external crystal (HSE), – 16 MHz High speed internal RC oscillator (HSI), – 32.768 kHz Low speed external crystal (LSE), – 38 kHz Low speed internal RC (LSI). • RTC and LCD clock sources: the above four sources can be chosen to clock the RTC and the LCD, whatever the system clock. • Startup clock: After reset, the microcontroller restarts by default with an internal 2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. • Clock security system (CSS): This feature can be enabled by software. If a HSE clock failure occurs, the system clock is automatically switched to HSI. • Configurable main clock output (CCO): This outputs an external clock for use by the application. DS7106 Rev 9 17/123 54 Functional overview STM8AL313x/4x/6x STM8AL3L4x/6x Figure 2. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x clock tree diagram CSS OSC_IN HSE (1) HSE OSC 1 - 16 MHz OSC_OUT HSI HSI RC 16 MHz SYSCLK prescaler /1;2;4;8;16;32;64;128 LSI LSE (2) SYSCLK to core and memory Peripheral clock enable (15 bit) LSE (2) BEEPCLK CLKBEEPSEL[1:0] LSI LSI RC 38 kHz IWDGCLK RTCCLK RTCSEL[3:0] OSC32_IN RTC prescaler /1;2;4;8;16;32;64 LSE OSC 32.768 kHz OSC32_OUT PCLK to peripherals LCD peripheral clock enable (1 bit) RTCCLK/2 RTCCLK /2 to BEEP to IWDG to RTC to LCD Halt LCDCLK CCO configurable clock output CCO prescaler /1;2;4;8;16;32;64 HSI LSI HSE (1) LSE (2) SYSCLK to LCD LCD peripheral clock enable (1 bit) ai15366g 1. The HSE clock source can be either an external crystal/ceramic resonator or an external source (HSE bypass). Refer to Section HSE clock in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU lines reference manual (RM0031). 2. The LSE clock source can be either an external crystal/ceramic resonator or a external source (LSE bypass). Refer to Section LSE clock in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU lines reference manual (RM0031). 3.5 Low power real-time clock The real-time clock (RTC) is an independent binary coded decimal (BCD) timer/counter. Six byte locations contain the second, minute, hour (12/24 hour), week day, date, month, year, in BCD (binary coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day months are made automatically. It provides a programmable alarm and programmable periodic interrupts with wakeup from Halt capability. 18/123 • Periodic wakeup time using the 32.768 kHz LSE with the lowest resolution (of 61 µs) is from min. 122 µs to max. 3.9 s. With a different resolution, the wakeup time can reach 36 hours. • Periodic alarms based on the calendar can also be generated from every second to every year. DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x 3.6 Functional overview LCD (Liquid crystal display) The liquid crystal display drives up to four common terminals and up to 28 segment terminals to drive up to 112 pixels. • Internal step-up converter to guarantee contrast control whatever VDD. • Static 1/2, 1/3, 1/4 duty supported. • Static 1/2, 1/3 bias supported. • Phase inversion to reduce power consumption and EMI. • Up to 4 pixels which can programmed to blink. • The LCD controller can operate in Halt mode. Note: Unnecessary segments and common pins can be used as general I/O pins. 3.7 Memories The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x devices have the following main features: • Up to 2 Kbytes of RAM • The non-volatile memory is divided into three arrays: – Up to 32 Kbytes of medium-density embedded Flash program memory – 1 Kbytes of Data EEPROM – Option bytes. It supports the read-while-write (RWW): it is possible to execute the code from the program matrix while programming/erasing the data matrix. The option byte protects part of the Flash program memory from write and readout piracy. 3.8 DMA A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and peripherals-from/to-memory transfer capability. The 4 channels are shared between the following IPs with DMA capability: ADC1, DAC, I2C1, SPI1, USART1, the 4 Timers. 3.9 Note: Analog-to-digital converter • 12-bit analog-to-digital converter (ADC1) with 25 channels (including 1 fast channel), temperature sensor and internal reference voltage • Conversion time down to 1 µs with fSYSCLK= 16 MHz • Programmable resolution • Programmable sampling time • Single and continuous mode of conversion • Scan capability: automatic conversion performed on a selected group of analog inputs • Analog watchdog • Triggered by timer ADC1 can be served by DMA1. DS7106 Rev 9 19/123 54 Functional overview 3.10 STM8AL313x/4x/6x STM8AL3L4x/6x Digital-to-analog converter (DAC) • 12-bit DAC with output buffer • Synchronized update capability using TIM4 • DMA capability • External triggers for conversion • Input reference voltage VREF+ for better resolution Note: DAC can be served by DMA1. 3.11 Ultra-low-power comparators The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x embed two comparators (COMP1 and COMP2) that share the same current bias and voltage reference. The voltage reference can be internal or external (coming from an I/O). • One comparator with fixed threshold (COMP1). • One comparator rail to rail with fast or slow mode (COMP2). The threshold can be one of the following: – DAC output, – External I/O, – Internal reference voltage or internal reference voltage sub multiple (1/4, 1/2, 3/4). The two comparators can be used together to offer a window function. They can wake up from Halt mode. 3.12 System configuration controller and routing interface The system configuration controller provides the capability to remap some alternate functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped. The highly flexible routing interface allows application software to control the routing of different I/Os to the TIM1 timer input captures. It also controls the routing of internal analog signals to ADC1, COMP1, COMP2, DAC and the internal reference voltage VREFINT. It also provides a set of registers for efficiently managing the charge transfer acquisition sequence (see Section 3.13: Timers). 20/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x 3.13 Functional overview Timers The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x devices contain one advanced control timer (TIM1), two 16-bit general purpose timers (TIM2 and TIM3) and one 8-bit basic timer (TIM4). All the timers can be served by DMA1. Table 3 compares the features of the advanced control, general-purpose and basic timers. Table 3. Timer feature comparison Timer Counter Counter resolution type 16-bit up/down TIM3 TIM4 3.13.1 DMA1 request generation Capture/compare channels Complementary outputs 3+1 3 Any integer from 1 to 65536 TIM1 TIM2 Prescaler factor 8-bit up Any power of 2 from 1 to 128 Yes Any power of 2 from 1 to 32768 2 None 0 TIM1 - 16-bit advanced control timer This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver. 3.13.2 • 16-bit up, down and up/down auto reload counter with 16-bit prescaler • Three independent capture/compare channels (CAPCOM) configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output. • One additional capture/compare channel which is not connected to an external I/O • Synchronization module to control the timer with external signals • Break input to force timer outputs into a defined state • Three complementary outputs with adjustable dead time • Encoder mode • Interrupt capability on various events (capture, compare, overflow, break, trigger) 16-bit general purpose timers • 16-bit auto reload (AR) up/down-counter • 7-bit prescaler adjustable to fixed power of 2 ratios (1…128) • Two individually configurable capture/compare channels • PWM mode • Interrupt capability on various events (capture, compare, overflow, break, trigger) • Synchronization with other timers or external signals (external clock, reset, trigger and enable) DS7106 Rev 9 21/123 54 Functional overview 3.13.3 STM8AL313x/4x/6x STM8AL3L4x/6x 8-bit basic timer The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable prescaler. It can be used for timebase generation with interrupt generation on timer overflow or for DAC trigger generation. 3.14 Watchdog timers The watchdog system is based on two independent timers providing maximum security to the applications. 3.14.1 Window watchdog timer The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence. 3.14.2 Independent watchdog timer The independent watchdog peripheral (IWDG) can be used to resolve processor malfunctions due to hardware or software failures. It is clocked by the internal LSI RC clock source, and thus stays active even in case of a CPU clock failure. 3.15 Beeper The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz. 3.16 Communication interfaces 3.16.1 SPI The serial peripheral interface (SPI1) provides half/ full duplex synchronous serial communication with external devices. Note: 22/123 • Maximum speed: 8 Mbit/s (fSYSCLK/2) both for master and slave • Full duplex synchronous transfers • Simplex synchronous transfers on 2 lines with a possible bidirectional data line • Master or slave operation - selectable by hardware or software • Hardware CRC calculation • Slave/master selection input pin SPI1 can be served by the DMA1 Controller. DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x 3.16.2 Functional overview I²C The I2C bus interface (I2C1) provides multi-master capability, and controls all I²C busspecific sequencing, protocol, arbitration and timing. • Master, slave and multi-master capability • Standard mode up to 100 kHz and fast speed modes up to 400 kHz • 7-bit and 10-bit addressing modes • SMBus 2.0 and PMBus support • Hardware CRC calculation Note: I2C1 can be served by the DMA1 Controller. 3.16.3 USART The USART interface (USART1) allows full duplex, asynchronous communications with external devices requiring an industry standard NRZ asynchronous serial data format. It offers a very wide range of baud rates. Note: • 1 Mbit/s full duplex SCI • SPI1 emulation • High precision baud rate generator • SmartCard emulation • IrDA SIR encoder decoder • Single wire half duplex mode USART1 can be served by the DMA1 Controller. USART1 can be used to implement LIN slave communication, with LIN Break detection on the framing error flag (FE in USART_SR register) with a value of 0 in the USART data register (USART_DR). 3.17 Infrared (IR) interface The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x devices contain an infrared interface which can be used with an IR LED for remote control functions. Two timer output compare channels are used to generate the infrared remote control signals. 3.18 Development support Development tools Development tools for the STM8 microcontrollers include: • The STice emulation system offering tracing and code profiling • The STVD high-level language debugger including C compiler, assembler and integrated development environment. • The STVP Flash programming software The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit debugging/programming tools. DS7106 Rev 9 23/123 54 Functional overview STM8AL313x/4x/6x STM8AL3L4x/6x Single wire data interface (SWIM) and debug module The debug module with its single wire data interface (SWIM) permits non-intrusive real-time in-circuit debugging and fast memory programming. The Single wire interface is used for direct access to the debugging module and memory programming. The interface can be activated in all device operation modes. The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, CPU operation can also be monitored in realtime by means of shadow registers. Bootloader A bootloader is available to reprogram the Flash memory using the USART1 interface. The reference document for the bootloader is UM0560: STM8 bootloader user manual. 24/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Pin description PE7 PE6 PC7 PC6 PC5 PC4 PC3 PC2 VSS2 VDD2 PC1 PC0 Figure 3. STM8AL31x8T 48-pin pinout (without LCD) 48 47 46 45 4443 42 41 40 3938 37 1 36 35 2 3 34 33 4 32 5 31 6 7 30 8 29 28 9 10 27 11 26 25 12 13 14 15 16 1718 19 20 21 22 23 24 PD7 PD6 PD5 PD4 PF0 PB7 PB6 PB5 PB4 PB3 PB2 PB1 Res. (1) PE0 PE1 PE2 PE3 PE4 PE5 PD0 PD1 PD2 PD3 PB0 PA0 NRST/PA1 PA2 PA3 PA4 PA5 PA6 PA7 VSS1/VSSA/VREFVDD1 VDDA VREF+ MS31499V1 1. Reserved. Must be tied to VDD. PE7 PE6 PC7 PC6 PC5 PC4 PC3 PC2 VSS2 VDD2 PC1 PC0 Figure 4. STM8AL3Lx8T 48-pin pinout (with LCD) PA0 NRST/PA1 PA2 PA3 PA4 PA5 PA6 PA7 VSS1/VSSA/VREFVDD1 VDDA VREF+ 48 47 46 45 4443 42 4140 39 38 37 1 36 2 35 3 34 4 33 5 32 6 31 7 30 8 29 9 28 10 27 11 26 12 25 13 14 15 16 1718 19 20 21 22 23 24 PD7 PD6 PD5 PD4 PF0 PB7 PB6 PB5 PB4 PB3 PB2 PB1 VLCD PE0 PE1 PE2 PE3 PE4 PE5 PD0 PD1 PD2 PD3 PB0 4 Pin description MS31498V1 DS7106 Rev 9 25/123 54 Pin description STM8AL313x/4x/6x STM8AL3L4x/6x PA0 PC6 PC5 PC4 PC3 PC2 PC1 PC0 Figure 5. STM8AL31x6T 32-pin pinout (without LCD) 1 2 3 4 5 6 7 8 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 9 10 11 12 13 14 15 16 PD7 PD6 PD5 PD4 PB7 PB6 PB5 PB4 PD0 PD1 PD2 PD3 PB0 PB1 PB2 PB3 NRST/PA1 PA2 PA3 PA4 PA5 PA6 VSS1 VDD1 ai18794V2 PA0 PC6 PC5 PC4 PC3 PC2 PC1 PC0 Figure 6. STM8AL3Lx6T 32-pin pinout (with LCD) 1 2 3 4 5 6 7 8 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 9 10 11 12 13 14 15 16 PD7 PD6 PD5 PD4 PB7 PB6 PB5 PB4 VLCD PD1 PD2 PD3 PB0 PB1 PB2 PB3 NRST/PA1 PA2 PA3 PA4 PA5 PA6 VSS1 VDD1 ai18795V2 26/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Pin description 32 31 30 29 28 27 26 PC0 PC2 PC1 PC6 PC5 PC4 PC3 PA0 Figure 7. STM8AL31x6U 32-pin pinout (without LCD) 25 NRST/PA1 1 24 PA2 PA3 2 23 3 22 PA4 4 21 PA5 PA6 VSS1 VDD1 5 20 6 19 7 18 8 12 13 14 15 16 17 PB6 PB5 PB4 PB0 PB1 PB2 PB3 11 PD2 PD3 10 PD0 PD1 9 PD7 PD6 PD5 PD4 PB7 MSv39044V1 32 31 30 29 28 27 26 PC0 PC2 PC1 PC6 PC5 PC4 PC3 PA0 Figure 8. STM8AL3Lx6U 32-pin pinout (with LCD) 25 NRST/PA1 1 24 PA2 PA3 2 23 3 22 PA4 4 21 PA5 PA6 VSS1 VDD1 5 20 6 19 7 18 8 12 13 14 15 16 17 PB6 PB5 PB4 PB0 PB1 PB2 PB3 11 PD2 PD3 10 VLCD PD1 9 PD7 PD6 PD5 PD4 PB7 MSv39045V1 DS7106 Rev 9 27/123 54 Pin description STM8AL313x/4x/6x STM8AL3L4x/6x Table 4. Legend/abbreviation Type I= input, O = output, S = power supply I/O level TT 3.6 V tolerant FT Five-volt tolerant Input – floating – wpu = weak pull-up – Ext. interrupt = external interrupt Output – HS = high sink/source – OD = open drain (where T defines a true open drain) – PP = push pull Port and control configuration Reset state Underlined X (pin state after reset release). Unless otherwise specified, the pin state is the same during the reset phase (i.e. “under reset”) and after internal reset release (i.e. at reset state). Table 5. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin description 3 4 5 - 6 2 3 - 4 - 28/123 OD PP - X - HS - X Reset NRST/PA1(1) 2 PA2/OSC_IN/ [USART1_TX](4)/ [SPI1_MISO] (4) 3 PA3/OSC_OUT/[USART1 I/O _RX](4)/[SPI1_MOSI](4) - PA4/TIM2_BKIN/ LCD_COM0(2)/ADC1_IN2 I/O TT(3) X /COMP1_INP 4 PA4/TIM2_BKIN/ [TIM2_ETR](4)/ LCD_COM0(2)/ ADC1_IN2/COMP1_INP - PA5/TIM3_BKIN/ LCD_COM1(2)/ADC1_IN1 I/O TT(3) X /COMP1_INP I/O - - Main function (after reset) High sink/source - Ext. interrupt I/O wpu 1 Output floating LQFP32 1 Pin name I/O level VFQFPN32 2 Input Type LQFP48 Pin number X X I/O TT(3) X X X X X X X X X X X DS7106 Rev 9 HS HS HS HS HS X X X X X Default alternate function PA1 X Port A2 HSE oscillator input / [USART1 transmit] / [SPI1 master in- slave out] X Port A3 HSE oscillator output / [USART1 receive]/ [SPI1 master out/slave in] X Port A4 Timer 2 - break input / LCD COM 0 / ADC1 input 2 / Comparator 1 positive input X Port A4 Timer 2 - break input / [Timer 2 - trigger] / LCD_COM 0 / ADC1 input 2 / Comparator 1 positive input X Port A5 Timer 3 - break input / LCD_COM 1 / ADC1 input 1/ Comparator 1 positive input STM8AL313x/4x/6x STM8AL3L4x/6x Pin description Table 5. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin description (continued) - 5 5 PA5/TIM3_BKIN/ [TIM3_ETR](4)/ I/O TT(3) X LCD_COM1(2)/ADC1_IN1 /COMP1_INP X X HS X X HS 7 6 6 PA6/[ADC1_TRIG](4)/ LCD_COM2(2)/ADC1_IN0 I/O TT(3) X /COMP1_INP 8 - - PA7/LCD_SEG0(2)(5) I/O FT X X X 24 13 PB0(6)/TIM2_CH1/ 13 LCD_SEG10(2)/ I/O TT(3) X(6) X(6) X ADC1_IN18/COMP1_INP 25 14 PB1/TIM3_CH1/ 14 LCD_SEG11(2)/ I/O TT(3) X ADC1_IN17/COMP1_INP 26 15 PB2/ TIM2_CH2/ I/O TT(3) X 15 LCD_SEG12(2)/ ADC1_IN16/COMP1_INP 27 - - PB3/TIM2_ETR/ LCD_SEG13(2)/ I/O TT(3) X ADC1_IN15/COMP1_INP X X X X X X HS HS HS HS HS Main function (after reset) PP OD High sink/source Output Ext. interrupt wpu floating Pin name I/O level Input Type LQFP32 VFQFPN32 LQFP48 Pin number X Port A5 Timer 3 - break input / [Timer 3 - trigger] / LCD_COM 1 / ADC1 input 1 / Comparator 1 positive input X X Port A6 [ADC1 - trigger] / LCD_COM2 / ADC1 input 0 / Comparator 1 positive input X X Port A7 LCD segment 0 X Port B0 Timer 2 - channel 1 / LCD segment 10 / ADC1_IN18 / Comparator 1 positive input X Port B1 Timer 3 - channel 1 / LCD segment 11 / ADC1_IN17 / Comparator 1 positive input X Port B2 Timer 2 - channel 2 / LCD segment 12 / ADC1_IN16/ Comparator 1 positive input X Port B3 Timer 2 - trigger / LCD segment 13 /ADC1_IN15 / Comparator 1 positive input X Port B3 [Timer 2 - trigger] / Timer 1 inverted channel 2 / LCD segment 13 / ADC1_IN15 / Comparator 1 positive input X X X X X (4)/ - 16 PB3/[TIM2_ETR] TIM1_CH2N/LCD_SEG13 16 (2) I/O TT(3) X /ADC1_IN15/ COMP1_INP X X DS7106 Rev 9 HS Default alternate function X 29/123 54 Pin description STM8AL313x/4x/6x STM8AL3L4x/6x Table 5. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin description (continued) 28 - 29 - - 17 - 18 - I/O TT(3) X(6) X(6) X PB5/[SPI1_SCK](4)/ LCD_SEG15(2)/ I/O TT(3) X ADC1_IN13/COMP1_INP PB5/[SPI1_SCK](4)/ LCD_SEG15(2)/ 18 ADC1_IN13/DAC_OUT/ COMP1_INP I/O TT(3) X X X X X HS HS HS HS X X X X Main function (after reset) PP OD High sink/source Ext. interrupt wpu Output PB4(6)/[SPI1_NSS](4)/ LCD_SEG14(2)/ I/O TT(3) X(6) X(6) X ADC1_IN14/COMP1_INP PB4(6)/[SPI1_NSS](4)/ LCD_SEG14(2)/ 17 ADC1_IN14/ COMP1_INP/DAC_OUT - floating Pin name I/O level Input Type LQFP32 VFQFPN32 LQFP48 Pin number X Port B4 [SPI1 master/slave select] / LCD segment 14 / ADC1_IN14 / Comparator 1 positive input X Port B4 [SPI1 master/slave select] / LCD segment 14 / ADC1_IN14 / DAC output / Comparator 1 positive input X Port B5 [SPI1 clock] / LCD segment 15 / ADC1_IN13 / Comparator 1 positive input X Port B5 [SPI1 clock] / LCD segment 15 / ADC1_IN13 / DAC output/ Comparator 1 positive input X Port B6 [SPI1 master out/slave in]/ LCD segment 16 / ADC1_IN12 / Comparator 1 positive input X Port B6 [SPI1 master out]/ slave in / LCD segment 16 / ADC1_IN12 / DAC output / Comparator 1 positive input X Port B7 [SPI1 master in- slave out] / LCD segment 17 / ADC1_IN11 / Comparator 1 positive input (4)/ 30 - - 19 - PB6/[SPI1_MOSI] I/O TT(3) X LCD_SEG16(2)/ ADC1_IN12/COMP1_INP PB6/[SPI1_MOSI](4)/ LCD_SEG16(2)/ I/O TT(3) X 19 ADC1_IN12/COMP1_INP /DAC_OUT X X X X HS HS X X (4)/ 31 20 PB7/[SPI1_MISO] I/O TT(3) X 20 LCD_SEG17(2)/ ADC1_IN11/COMP1_INP X X 37 25 25 PC0(5)/I2C1_SDA - X 30/123 I/O FT X DS7106 Rev 9 HS X T(7) Default alternate function Port C0 I2C1 data STM8AL313x/4x/6x STM8AL3L4x/6x Pin description Table 5. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin description (continued) 41 27 42 28 PC2/USART1_RX/ 27 LCD_SEG22/ADC1_IN6/ COMP1_INP/VREFINT PC3/USART1_TX/ LCD_SEG23(2)/ 28 ADC1_IN5/COMP1_INP/ COMP2_INM OD - X - T(7) I/O TT(3) X I/O TT(3) X X X X X HS HS X X Main function (after reset) High sink/source X PP Ext. interrupt I/O FT Output wpu 26 PC1(5)/I2C1_SCL I/O level Pin name Type Input floating 38 26 LQFP32 VFQFPN32 LQFP48 Pin number Port C1 Default alternate function I2C1 clock X Port C2 USART1 receive / LCD segment 22 / ADC1_IN6 / Comparator 1 positive input / Internal voltage reference output X Port C3 USART1 transmit / LCD segment 23 / ADC1_IN5 / Comparator 1 positive input / Comparator 2 negative input X Port C4 USART1 synchronous clock / I2C1_SMB / Configurable clock output / LCD segment 24 / ADC1_IN4 / Comparator 2 negative input / Comparator 1 positive input 43 29 PC4/USART1_CK/ I2C1_SMB/CCO/ 29 LCD_SEG24(2)/ I/O TT(3) X ADC1_IN4/COMP2_INM/ COMP1_INP 44 30 PC5/OSC32_IN 30 /[SPI1_NSS](4)/ [USART1_TX](4) I/O - X X X HS X X Port C5 LSE oscillator input / [SPI1 master/slave select] / [USART1 transmit] 45 31 PC6/OSC32_OUT/ 31 [SPI1_SCK](4)/ [USART1_RX](4) I/O - X X X HS X X Port C6 LSE oscillator output / [SPI1 clock] / [USART1 receive] X Port C7 LCD segment 25 /ADC1_IN3/ Comparator negative input / Comparator 1 positive input 46 - - PC7/LCD_SEG25(2)/ ADC1_IN3/COMP2_INM/ I/O TT(3) X COMP1_INP X X X X DS7106 Rev 9 HS HS X X 31/123 54 Pin description STM8AL313x/4x/6x STM8AL3L4x/6x Table 5. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin description (continued) 20 - 21 - 9 - - PD0/TIM3_CH2/ [ADC1_TRIG](4)/ LCD_SEG7(2)/ADC1_IN2 I/O TT(3) X 2/COMP2_INP/ COMP1_INP 9 PD0/TIM3_CH2/ [ADC1_TRIG](4)/ ADC1_IN22/COMP2_INP I/O TT(3) X / COMP1_INP - PD1/TIM3_ETR/ LCD_COM3(2)/ ADC1_IN21/COMP2_INP I/O TT(3) X / COMP1_INP 10 PD1/TIM1_CH3N/ [TIM3_ETR](4)/ LCD_COM3(2)/ I/O TT(3) X 10 ADC1_IN21/COMP2_INP / COMP1_INP 11 PD2/TIM1_CH1 I/O TT(3) X 11 /LCD_SEG8(2)/ ADC1_IN20/COMP1_INP 23 12 PD3/ TIM1_ETR/ 12 LCD_SEG9(2)/ADC1_IN1 I/O TT(3) X 9/COMP1_INP 33 21 PD4/TIM1_CH2 21 /LCD_SEG18(2)/ I/O TT(3) X ADC1_IN10/COMP1_INP - 22 32/123 X X X X X X X X X X X X X X DS7106 Rev 9 HS HS HS HS HS HS HS X X X X X X X Main function (after reset) PP OD High sink/source Output Ext. interrupt wpu floating Pin name I/O level Input Type LQFP32 VFQFPN32 LQFP48 Pin number Default alternate function X Port D0 Timer 3 - channel 2 / [ADC1_Trigger] / LCD segment 7 / ADC1_IN22 / Comparator 2 positive input / Comparator 1 positive input Port D0(8) Timer 3 - channel 2 / [ADC1_Trigger] / ADC1_IN22 / Comparator 2 positive input / Comparator 1 positive input X Port D1 Timer 3 - trigger / LCD_COM3 / ADC1_IN21 / Comparator 2 positive input / Comparator 1 positive input X Port D1 [Timer 3 - trigger]/ TIM1 inverted channel 3 / LCD_COM3/ ADC1_IN21 / Comparator 2 positive input / Comparator 1 positive input X Port D2 Timer 1 - channel 1 / LCD segment 8 / ADC1_IN20 / Comparator 1 positive input X Port D3 Timer 1 - trigger / LCD segment 9 / ADC1_IN19 / Comparator 1 positive input X Port D4 Timer 1 - channel 2 / LCD segment 18 / ADC1_IN10/ Comparator 1 positive input X STM8AL313x/4x/6x STM8AL3L4x/6x Pin description Table 5. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin description (continued) 34 22 PD5/TIM1_CH3 22 /LCD_SEG19(2)/ ADC1_IN9/COMP1_INP 35 23 PD6/TIM1_BKIN /LCD_SEG20(2)/ 23 ADC1_IN8/RTC_CALIB/ /VREFINT/ COMP1_INP 36 24 I/O TT(3) X I/O TT(3) X PD7/TIM1_CH1N /LCD_SEG21(2)/ 24 ADC1_IN7/RTC_ALARM/ I/O TT(3) X VREFINT/ COMP1_INP X X X X HS HS X X Main function (after reset) PP OD High sink/source Output Ext. interrupt wpu floating Pin name I/O level Input Type LQFP32 VFQFPN32 LQFP48 Pin number Default alternate function X Port D5 Timer 1 - channel 3 / LCD segment 19 / ADC1_IN9/ Comparator 1 positive input X Port D6 Timer 1 - break input / LCD segment 20 / ADC1_IN8 / RTC calibration / Internal voltage reference output / Comparator 1 positive input X X HS X X Port D7 Timer 1 - inverted channel 1/ LCD segment 21 / ADC1_IN7 / RTC alarm / Internal voltage reference output /Comparator 1 positive input 14 - - PE0(5)/LCD_SEG1(2) I/O FT X X X HS X X Port E0 LCD segment 1 15 - - PE1/TIM1_CH2N /LCD_SEG2(2) I/O TT(3) X X X HS X X Port E1 Timer 1 - inverted channel 2 / LCD segment 2 16 - - PE2/TIM1_CH3N /LCD_SEG3(2) I/O TT(3) X X X HS X X Port E2 Timer 1 - inverted channel 3 / LCD segment 3 17 - - PE3/LCD_SEG4(2) I/O TT(3) X X X HS X X Port E3 LCD segment 4 - (2) PE4/LCD_SEG5 X X HS X X Port E4 LCD segment 5 X X HS X X Port E5 LCD segment 6 / ADC1_IN23 / Comparator 2 positive input / Comparator 1 positive input 18 - (3) I/O TT X 19 - - PE5/LCD_SEG6(2)/ ADC1_IN23/COMP2_INP I/O TT(3) X / COMP1_INP 47 - - PE6/LCD_SEG26(2)/ PVD_IN I/O TT(3) X X X HS X X Port E6 LCD segment 26/PVD_IN 48 - - PE7/LCD_SEG27(2) I/O TT(3) X X X HS X X Port E7 LCD segment 27 32 - - PF0/ADC1_IN24/ DAC_OUT I/O TT(3) X X X HS X X Port F0 ADC1_IN24 / DAC_OUT DS7106 Rev 9 33/123 54 Pin description STM8AL313x/4x/6x STM8AL3L4x/6x Table 5. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin description (continued) OD PP Main function (after reset) High sink/source (8) Ext. interrupt VLCD(2) wpu 9 floating LQFP32 9 Pin name Output I/O level VFQFPN32 13 Input Type LQFP48 Pin number S - - - - - - - LCD booster external capacitor - - - - - - - - Reserved. Must be tied to VDD Default alternate function 13 - - Reserved 10 - - VDD S - - - - - - - Digital power supply 11 - - VDDA S - - - - - - - Analog supply voltage 12 - - VREF+ S - - - - - - - - 8 8 VDD1/VDDA/VREF+ S - - - - - - Digital power supply / Analog - supply voltage / ADC1 positive voltage reference 9 7 7 VSS1/VSSA/VREF- S - - - - - - I/O ground / Analog ground - voltage / ADC1 negative voltage reference 39 - - VDD2 S - - - - - - - IOs supply voltage 40 - - VSS2 S - - - - - - - IOs ground voltage 1 32 32 PA0(9)/[USART1_CK](4)/ SWIM/BEEP/IR_TIM (10) I/O - X X(9) X HS(10) X ADC1 and DAC positive voltage reference X Port A0 [USART1 synchronous clock](4) / SWIM input and output / Beep output / Infrared Timer output 1. At power-up, the PA1/NRST pin is a reset input pin with pull-up. It is used as a general purpose pin (PA1) and can be configured only as output push-pull, not as output open drain or as a general purpose input. Refer to Section Configuring NRST/PA1 pin as general purpose output in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU lines reference manual (RM0031). 2. Available on STM8AL3Lxx devices only. 3. In the 3.6 V tolerant I/Os, protection diode to VDD is not implemented. 4. [ ] Alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function). 5. In the 5 V tolerant I/Os, protection diode to VDD is not implemented. 6. A pull-up is applied to PB0 and PB4 during the reset phase. These two pins are input floating after reset release. 7. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to VDD are not implemented). 8. Available on STM8AL31xx devices only. 9. The PA0 pin is in input pull-up during the reset phase and after reset release. 10. High sink LED driver capability available on PA0. Note: 34/123 The slope control of all GPIO pins, except true open drain pins, can be programmed. By default, the slope control is limited to 2 MHz. DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x 4.1 Pin description System configuration options As shown in Table 5: Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin description, some alternate functions can be remapped on different I/O ports by programming one of the two remapping registers described in the “Routing interface (RI) and system configuration controller” section in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU lines reference manual (RM0031). DS7106 Rev 9 35/123 54 Memory and register map STM8AL313x/4x/6x STM8AL3L4x/6x 5 Memory and register map 5.1 Memory mapping The memory map is shown in Figure 9. Figure 9. Memory map 0x00 0000 0x00 07FF 0x00 0800 0x00 0FFF 0x00 1000 0x00 13FF 0x00 1400 0x00 47FF 0x00 4800 RAM (2 Kbytes)(1) including Stack (513 bytes)(1) Reserved 0x00 5000 0x00 5050 Data EEPROM (1 Kbyte) 0x00 5070 0x00 509E Reserved 0x00 50A0 0x00 50A6 0x00 50B0 Option bytes 0x00 50B2 0x00 48FF 0x00 4900 0x00 50C0 0x00 50D3 Reserved 0x00 4909 0x00 4910 0x00 4911 0x00 4912 0x00 4925 0x00 4926 0x00 4931 0x00 4932 0x00 4FFF 0x00 5000 0x00 50E0 0x00 50F3 VREFINT_Factory_CONV(2) TS_Factory_CONV_V125(3) 0x00 5140 Reserved 0x00 5200 Unique ID 0x00 5210 Reserved 0x00 5230 0x00 5250 GPIO and peripheral registers 0x00 5280 Reserved 0x00 52B0 0x00 52E0 Boot ROM (2 Kbytes) 0x00 52FF 0x00 5340 0x00 57FF 0x00 5800 0x00 5FFF 0x00 6000 0x00 67FF 0x00 6800 0x00 5380 0x00 5400 Reserved 0x00 7EFF 0x00 7F00 0x00 7FFF 0x00 8000 0x00 807F 0x00 8080 0x00 5430 0x00 5440 CPU/SWIM/Debug/ITC registers GPIO ports Flash DMA1 SYSCFG ITC-EXTI WFE RST PWR CLK WWDG IWDG BEEP RTC SPI1 I2C1 USART1 TIM2 TIM3 TIM1 TIM4 IRTIM ADC1 DAC LCD RI COMP Reset and interrupt vectors Medium-density Flash program memory (up to 32 Kbytes) 0x00 FFFF MS32602V1 1. Table 6 lists the boundary addresses for each memory size. The top of the stack is at the RAM end address. 2. The VREFINT_Factory_CONV byte represents the LSB of the VREFINT 12-bit ADC conversion result. The MSB have a fixed value: 0x6. 3. The TS_Factory_CONV_V125 byte represents the LSB of the V125 12-bit ADC conversion result. The MSB have a fixed value: 0x3. The V125 measurement is performed at 125°C. 4. Refer to Table 9 for an overview of hardware register mapping, to Table 8 for details on I/O port hardware registers, and to Table 10 for information on CPU/SWIM/debug module controller registers. 36/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Memory and register map Table 6. Flash and RAM boundary addresses Memory area Size Start address End address RAM 2 Kbyte 0x00 0000 0x00 07FF 8 Kbyte Flash program memory 0x00 9FFF 16 Kbyte 0x00 8000 32 Kbyte 5.2 0x00 BFFF Register map Table 7. Factory conversion registers Address Block Register label Register name Reset status 0x00 4910 - VREFINT_Factory_ CONV(1) Internal reference voltage factory conversion 0xXX 0x00 4911 - TS_Factory_CONV_ V125(2) Temperature sensor output voltage 0xXX 1. The VREFINT_Factory_CONV byte represents the 8 LSB of the result of the VREFINT 12-bit ADC conversion performed in factory. The MSB have a fixed value: 0x6. 2. The TS_Factory_CONV_V125 byte represents the 8 LSB of the result of the V125 12-bit ADC conversion performed in factory. The 2 MSB have a fixed value: 0x3. Table 8. I/O port hardware register map Register label Register name Reset status 0x00 5000 PA_ODR Port A data output latch register 0x00 0x00 5001 PA_IDR Port A input pin value register 0xXX PA_DDR Port A data direction register 0x00 0x00 5003 PA_CR1 Port A control register 1 0x01 0x00 5004 PA_CR2 Port A control register 2 0x00 0x00 5005 PB_ODR Port B data output latch register 0x00 0x00 5006 PB_IDR Port B input pin value register 0xXX PB_DDR Port B data direction register 0x00 0x00 5008 PB_CR1 Port B control register 1 0x00 0x00 5009 PB_CR2 Port B control register 2 0x00 0x00 500A PC_ODR Port C data output latch register 0x00 0x00 500B PB_IDR Port C input pin value register 0xXX PC_DDR Port C data direction register 0x00 0x00 500D PC_CR1 Port C control register 1 0x00 0x00 500E PC_CR2 Port C control register 2 0x00 Address 0x00 5002 0x00 5007 0x00 500C Block Port A Port B Port C DS7106 Rev 9 37/123 54 Memory and register map STM8AL313x/4x/6x STM8AL3L4x/6x Table 8. I/O port hardware register map (continued) Register label Register name Reset status 0x00 500F PD_ODR Port D data output latch register 0x00 0x00 5010 PD_IDR Port D input pin value register 0xXX PD_DDR Port D data direction register 0x00 0x00 5012 PD_CR1 Port D control register 1 0x00 0x00 5013 PD_CR2 Port D control register 2 0x00 0x00 5014 PE_ODR Port E data output latch register 0x00 0x00 5015 PE_IDR Port E input pin value register 0xXX PE_DDR Port E data direction register 0x00 0x00 5017 PE_CR1 Port E control register 1 0x00 0x00 5018 PE_CR2 Port E control register 2 0x00 0x00 5019 PF_ODR Port F data output latch register 0x00 0x00 501A PF_IDR Port F input pin value register 0xXX PF_DDR Port F data direction register 0x00 0x00 501C PF_CR1 Port F control register 1 0x00 0x00 501D PF_CR2 Port F control register 2 0x00 Address 0x00 5011 0x00 5016 0x00 501B Block Port D Port E Port F Table 9. General hardware register map Address Block Register label 0x00 501E to 0x00 5049 Register name Reset status Reserved area (44 bytes) 0x00 5050 FLASH_CR1 Flash control register 1 0x00 0x00 5051 FLASH_CR2 Flash control register 2 0x00 FLASH _PUKR Flash program memory unprotection key register 0x00 0x00 5053 FLASH _DUKR Data EEPROM unprotection key register 0x00 0x00 5054 FLASH _IAPSR Flash in-application programming status register 0x00 0x00 5052 38/123 Flash DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Memory and register map Table 9. General hardware register map (continued) Address Block Register label 0x00 5055 to 0x00 506F Register name Reset status Reserved area (27 bytes) 0x00 5070 DMA1_GCSR DMA1 global configuration & status register 0xFC 0x00 5071 DMA1_GIR1 DMA1 global interrupt register 1 0x00 0x00 5072 to 0x00 5074 Reserved area (3 bytes) 0x00 5075 DMA1_C0CR DMA1 channel 0 configuration register 0x00 0x00 5076 DMA1_C0SPR DMA1 channel 0 status & priority register 0x00 0x00 5077 DMA1_C0NDTR DMA1 number of data to transfer register (channel 0) 0x00 0x00 5078 DMA1_C0PARH DMA1 peripheral address high register (channel 0) 0x52 0x00 5079 DMA1_C0PARL DMA1 peripheral address low register (channel 0) 0x00 DMA1 0x00 507A Reserved area (1 byte) 0x00 507B DMA1_C0M0ARH DMA1 memory 0 address high register (channel 0) 0x00 0x00 507C DMA1_C0M0ARL DMA1 memory 0 address low register (channel 0) 0x00 0x00 507D to 0x00 507E Reserved area (2 bytes) DS7106 Rev 9 39/123 54 Memory and register map STM8AL313x/4x/6x STM8AL3L4x/6x Table 9. General hardware register map (continued) Register label Register name Reset status 0x00 507F DMA1_C1CR DMA1 channel 1 configuration register 0x00 0x00 5080 DMA1_C1SPR DMA1 channel 1 status & priority register 0x00 0x00 5081 DMA1_C1NDTR DMA1 number of data to transfer register (channel 1) 0x00 0x00 5082 DMA1_C1PARH DMA1 peripheral address high register (channel 1) 0x52 0x00 5083 DMA1_C1PARL DMA1 peripheral address low register (channel 1) 0x00 Address Block 0x00 5084 0x00 5085 0x00 5086 Reserved area (1 byte) DMA1 DMA1_C1M0ARH DMA1 memory 0 address high register (channel 1) 0x00 DMA1_C1M0ARL DMA1 memory 0 address low register (channel 1) 0x00 0x00 5087 0x00 5088 Reserved area (2 bytes) 0x00 5089 DMA1_C2CR DMA1 channel 2 configuration register 0x00 0x00 508A DMA1_C2SPR DMA1 channel 2 status & priority register 0x00 0x00 508B DMA1_C2NDTR DMA1 number of data to transfer register (channel 2) 0x00 40/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Memory and register map Table 9. General hardware register map (continued) Register label Register name Reset status 0x00 508C DMA1_C2PARH DMA1 peripheral address high register (channel 2) 0x52 0x00 508D DMA1_C2PARL DMA1 peripheral address low register (channel 2) 0x00 Address Block 0x00 508E Reserved area (1 byte) 0x00 508F DMA1_C2M0ARH DMA1 memory 0 address high register (channel 2) 0x00 0x00 5090 DMA1_C2M0ARL DMA1 memory 0 address low register (channel 2) 0x00 0x00 5091 0x00 5092 Reserved area (2 bytes) 0x00 5093 DMA1_C3CR DMA1 channel 3 configuration register 0x00 DMA1_C3SPR DMA1 channel 3 status & priority register 0x00 0x00 5095 DMA1_C3NDTR DMA1 number of data to transfer register (channel 3) 0x00 0x00 5096 DMA1_C3PARH_ C3M1ARH DMA1 peripheral address high register (channel 3) 0x40 0x00 5097 DMA1_C3PARL_ C3M1ARL DMA1 peripheral address low register (channel 3) 0x00 0x00 5094 DMA1 0x00 5098 Reserved area (1 byte) 0x00 5099 DMA1_C3M0ARH DMA1 memory 0 address high register (channel 3) 0x00 0x00 509A DMA1_C3M0ARL DMA1 memory 0 address low register (channel 3) 0x00 0x00 509B to 0x00 509D 0x00 509E Reserved area (3 bytes) SYSCFG_RMPCR1 Remapping register 1 0x00 SYSCFG_RMPCR2 Remapping register 2 0x00 0x00 50A0 EXTI_CR1 External interrupt control register 1 0x00 0x00 50A1 EXTI_CR2 External interrupt control register 2 0x00 EXTI_CR3 External interrupt control register 3 0x00 EXTI_SR1 External interrupt status register 1 0x00 0x00 50A4 EXTI_SR2 External interrupt status register 2 0x00 0x00 50A5 EXTI_CONF1 External interrupt port select register 1 0x00 0x00 50A6 WFE_CR1 WFE control register 1 0x00 WFE_CR2 WFE control register 2 0x00 WFE_CR3 WFE control register 3 0x00 0x00 509F 0x00 50A2 0x00 50A3 0x00 50A7 0x00 50A8 SYSCFG ITC - EXTI WFE DS7106 Rev 9 41/123 54 Memory and register map STM8AL313x/4x/6x STM8AL3L4x/6x Table 9. General hardware register map (continued) Address Block Register label 0x00 50A9 to 0x00 50AF 0x00 50B0 0x00 50B1 0x00 50B2 0x00 50B3 Register name Reset status Reserved area (7 bytes) RST PWR RST_CR Reset control register 0x00 RST_SR Reset status register 0x01 PWR_CSR1 Power control and status register 1 0x00 PWR_CSR2 Power control and status register 2 0x00 0x00 50B4 to 0x00 50BF Reserved area (12 bytes) 0x00 50C0 CLK_DIVR Clock master divider register 0x03 0x00 50C1 CLK_CRTCR Clock RTC register 0x00 0x00 50C2 CLK_ICKR Internal clock control register 0x11 0x00 50C3 CLK_PCKENR1 Peripheral clock gating register 1 0x00 0x00 50C4 CLK_PCKENR2 Peripheral clock gating register 2 0x80 0x00 50C5 CLK_CCOR Configurable clock control register 0x00 0x00 50C6 CLK_ECKR External clock control register 0x00 CLK_SCSR System clock status register 0x01 CLK_SWR System clock switch register 0x01 0x00 50C9 CLK_SWCR Clock switch control register 0bxxxx0000 0x00 50CA CLK_CSSR Clock security system register 0x00 0x00 50CB CLK_CBEEPR Clock BEEP register 0x00 0x00 50CC CLK_HSICALR HSI calibration register 0xxx 0x00 50CD CLK_HSITRIMR HSI clock calibration trimming register 0x00 0x00 50CE CLK_HSIUNLCKR HSI unlock register 0x00 0x00 50CF CLK_REGCSR Main regulator control status register 0bxx11100x 0x00 50C7 0x00 50C8 CLK 0x00 50D0 to 0x00 50D2 0x00 50D3 0x00 50D4 Reserved area (3 bytes) WWDG WWDG_CR WWDG control register 0x7F WWDG_WR WWDR window register 0x7F 0x00 50D5 to 00 50DF Reserved area (11 bytes) 0x00 50E0 0x00 50E1 0x00 50E2 42/123 IWDG IWDG_KR IWDG key register 0xXX IWDG_PR IWDG prescaler register 0x00 IWDG_RLR IWDG reload register 0xFF DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Memory and register map Table 9. General hardware register map (continued) Address Block Register label 0x00 50E3 to 0x00 50EF Reset status Reserved area (13 bytes) 0x00 50F0 0x00 50F1 0x00 50F2 Register name BEEP_CSR1 BEEP 0x00 50F3 BEEP control/status register 1 0x00 Reserved area (2 bytes) BEEP_CSR2 0x00 50F4 to 0x00 513F BEEP control/status register 2 0x1F Reserved area (76 bytes) 0x00 5140 RTC_TR1 Time register 1 0x00 0x00 5141 RTC_TR2 Time register 2 0x00 0x00 5142 RTC_TR3 Time register 3 0x00 0x00 5143 Reserved area (1 byte) 0x00 5144 RTC_DR1 Date register 1 0x01 0x00 5145 RTC_DR2 Date register 2 0x21 0x00 5146 RTC_DR3 Date register 3 0x00 0x00 5147 Reserved area (1 byte) 0x00 5148 RTC_CR1 Control register 1 0x00 0x00 5149 RTC_CR2 Control register 2 0x00 0x00 514A RTC_CR3 Control register 3 0x00 0x00 514B 0x00 514C 0x00 514D Reserved area (1 byte) RTC RTC_ISR1 Initialization and status register 1 0x00 RTC_ISR2 Initialization and Status register 2 0x00 0x00 514E 0x00 514F Reserved area (2 bytes) 0x00 5150 RTC_SPRERH(1) Synchronous prescaler register high 0x00(1) 0x00 5151 RTC_SPRERL(1) Synchronous prescaler register low 0xFF(1) 0x00 5152 RTC_APRER(1) Asynchronous prescaler register 0x7F(1) 0x00 5153 Reserved area (1 byte) 0x00 5154 RTC_WUTRH(1) Wakeup timer register high 0xFF(1) 0x00 5155 RTC_WUTRL(1) Wakeup timer register low 0xFF(1) 0x00 5156 to 0x00 5158 0x00 5159 0x00 515A 0x00 515B Reserved area (3 bytes) RTC_WPR Write protection register 0x00 Reserved area (2 bytes) DS7106 Rev 9 43/123 54 Memory and register map STM8AL313x/4x/6x STM8AL3L4x/6x Table 9. General hardware register map (continued) Address Block 0x00 515C 0x00 515D 0x00 515E RTC 0x00 515F Register label Register name Reset status RTC_ALRMAR1 Alarm A register 1 0x00 RTC_ALRMAR2 Alarm A register 2 0x00 RTC_ALRMAR3 Alarm A register 3 0x00 RTC_ALRMAR4 Alarm A register 4 0x00 0x00 5160 to 0x00 51FF Reserved area (160 bytes) 0x00 5200 SPI1_CR1 SPI1 control register 1 0x00 0x00 5201 SPI1_CR2 SPI1 control register 2 0x00 0x00 5202 SPI1_ICR SPI1 interrupt control register 0x00 SPI1_SR SPI1 status register 0x02 SPI1_DR SPI1 data register 0x00 0x00 5205 SPI1_CRCPR SPI1 CRC polynomial register 0x07 0x00 5206 SPI1_RXCRCR SPI1 Rx CRC register 0x00 0x00 5207 SPI1_TXCRCR SPI1 Tx CRC register 0x00 0x00 5203 0x00 5204 SPI1 0x00 5208 to 0x00 520F Reserved area (8 bytes) 0x00 5210 I2C1_CR1 I2C1 control register 1 0x00 0x00 5211 I2C1_CR2 I2C1 control register 2 0x00 0x00 5212 I2C1_FREQR I2C1 frequency register 0x00 0x00 5213 I2C1_OARL I2C1 own address register low 0x00 0x00 5214 I2C1_OARH I2C1 own address register high 0x00 0x00 5215 Reserved (1 byte) 0x00 5216 I2C1_DR I2C1 data register 0x00 I2C1_SR1 I2C1 status register 1 0x00 0x00 5218 I2C1_SR2 I2C1 status register 2 0x00 0x00 5219 I2C1_SR3 I2C1 status register 3 0x0x 0x00 521A I2C1_ITR I2C1 interrupt control register 0x00 0x00 521B I2C1_CCRL I2C1 clock control register low 0x00 0x00 521C I2C1_CCRH I2C1 clock control register high 0x00 0x00 521D I2C1_TRISER I2C1 TRISE register 0x02 0x00 521E I2C1_PECR I2C1 packet error checking register 0x00 0x00 5217 0x00 521F to 0x00 522F 44/123 I2C1 Reserved area (17 bytes) DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Memory and register map Table 9. General hardware register map (continued) Register label Register name Reset status 0x00 5230 USART1_SR USART1 status register 0xC0 0x00 5231 USART1_DR USART1 data register undefined 0x00 5232 USART1_BRR1 USART1 baud rate register 1 0x00 0x00 5233 USART1_BRR2 USART1 baud rate register 2 0x00 0x00 5234 USART1_CR1 USART1 control register 1 0x00 USART1_CR2 USART1 control register 2 0x00 0x00 5236 USART1_CR3 USART1 control register 3 0x00 0x00 5237 USART1_CR4 USART1 control register 4 0x00 0x00 5238 USART1_CR5 USART1 control register 5 0x00 0x00 5239 USART1_GTR USART1 guard time register 0x00 0x00 523A USART1_PSCR USART1 prescaler register 0x00 Address 0x00 5235 Block USART1 0x00 523B to 0x00 524F Reserved area (21 bytes) 0x00 5250 TIM2_CR1 TIM2 control register 1 0x00 0x00 5251 TIM2_CR2 TIM2 control register 2 0x00 0x00 5252 TIM2_SMCR TIM2 slave mode control register 0x00 0x00 5253 TIM2_ETR TIM2 external trigger register 0x00 0x00 5254 TIM2_DER TIM2 DMA1 request enable register 0x00 0x00 5255 TIM2_IER TIM2 interrupt enable register 0x00 0x00 5256 TIM2_SR1 TIM2 status register 1 0x00 0x00 5257 TIM2_SR2 TIM2 status register 2 0x00 0x00 5258 TIM2_EGR TIM2 event generation register 0x00 0x00 5259 TIM2_CCMR1 TIM2 capture/compare mode register 1 0x00 TIM2_CCMR2 TIM2 capture/compare mode register 2 0x00 0x00 525B TIM2_CCER1 TIM2 capture/compare enable register 1 0x00 0x00 525C TIM2_CNTRH TIM2 counter high 0x00 0x00 525D TIM2_CNTRL TIM2 counter low 0x00 0x00 525E TIM2_PSCR TIM2 prescaler register 0x00 0x00 525F TIM2_ARRH TIM2 auto-reload register high 0xFF 0x00 5260 TIM2_ARRL TIM2 auto-reload register low 0xFF 0x00 5261 TIM2_CCR1H TIM2 capture/compare register 1 high 0x00 0x00 5262 TIM2_CCR1L TIM2 capture/compare register 1 low 0x00 0x00 5263 TIM2_CCR2H TIM2 capture/compare register 2 high 0x00 0x00 5264 TIM2_CCR2L TIM2 capture/compare register 2 low 0x00 0x00 525A TIM2 DS7106 Rev 9 45/123 54 Memory and register map STM8AL313x/4x/6x STM8AL3L4x/6x Table 9. General hardware register map (continued) Address 0x00 5265 0x00 5266 Block TIM2 Register label Register name Reset status TIM2_BKR TIM2 break register 0x00 TIM2_OISR TIM2 output idle state register 0x00 0x00 5267 to 0x00 527F Reserved area (25 bytes) 0x00 5280 TIM3_CR1 TIM3 control register 1 0x00 0x00 5281 TIM3_CR2 TIM3 control register 2 0x00 0x00 5282 TIM3_SMCR TIM3 Slave mode control register 0x00 0x00 5283 TIM3_ETR TIM3 external trigger register 0x00 0x00 5284 TIM3_DER TIM3 DMA1 request enable register 0x00 0x00 5285 TIM3_IER TIM3 interrupt enable register 0x00 0x00 5286 TIM3_SR1 TIM3 status register 1 0x00 0x00 5287 TIM3_SR2 TIM3 status register 2 0x00 0x00 5288 TIM3_EGR TIM3 event generation register 0x00 0x00 5289 TIM3_CCMR1 TIM3 capture/compare mode register 1 0x00 0x00 528A TIM3_CCMR2 TIM3 capture/compare mode register 2 0x00 TIM3_CCER1 TIM3 capture/compare enable register 1 0x00 0x00 528C TIM3_CNTRH TIM3 counter high 0x00 0x00 528D TIM3_CNTRL TIM3 counter low 0x00 0x00 528E TIM3_PSCR TIM3 prescaler register 0x00 0x00 528F TIM3_ARRH TIM3 Auto-reload register high 0xFF 0x00 5290 TIM3_ARRL TIM3 Auto-reload register low 0xFF 0x00 5291 TIM3_CCR1H TIM3 capture/compare register 1 high 0x00 0x00 5292 TIM3_CCR1L TIM3 capture/compare register 1 low 0x00 0x00 5293 TIM3_CCR2H TIM3 capture/compare register 2 high 0x00 0x00 5294 TIM3_CCR2L TIM3 capture/compare register 2 low 0x00 0x00 5295 TIM3_BKR TIM3 break register 0x00 0x00 5296 TIM3_OISR TIM3 output idle state register 0x00 0x00 528B TIM3 0x00 5297 to 0x00 52AF Reserved area (25 bytes) 0x00 52B0 TIM1_CR1 TIM1 control register 1 0x00 0x00 52B1 TIM1_CR2 TIM1 control register 2 0x00 TIM1_SMCR TIM1 Slave mode control register 0x00 TIM1_ETR TIM1 external trigger register 0x00 0x00 52B4 TIM1_DER TIM1 DMA1 request enable register 0x00 0x00 52B5 TIM1_IER TIM1 Interrupt enable register 0x00 0x00 52B2 0x00 52B3 46/123 TIM1 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Memory and register map Table 9. General hardware register map (continued) Register label Register name Reset status 0x00 52B6 TIM1_SR1 TIM1 status register 1 0x00 0x00 52B7 TIM1_SR2 TIM1 status register 2 0x00 0x00 52B8 TIM1_EGR TIM1 event generation register 0x00 0x00 52B9 TIM1_CCMR1 TIM1 Capture/Compare mode register 1 0x00 0x00 52BA TIM1_CCMR2 TIM1 Capture/Compare mode register 2 0x00 0x00 52BB TIM1_CCMR3 TIM1 Capture/Compare mode register 3 0x00 0x00 52BC TIM1_CCMR4 TIM1 Capture/Compare mode register 4 0x00 0x00 52BD TIM1_CCER1 TIM1 Capture/Compare enable register 1 0x00 0x00 52BE TIM1_CCER2 TIM1 Capture/Compare enable register 2 0x00 0x00 52BF TIM1_CNTRH TIM1 counter high 0x00 0x00 52C0 TIM1_CNTRL TIM1 counter low 0x00 0x00 52C1 TIM1_PSCRH TIM1 prescaler register high 0x00 0x00 52C2 TIM1_PSCRL TIM1 prescaler register low 0x00 0x00 52C3 TIM1_ARRH TIM1 Auto-reload register high 0xFF TIM1_ARRL TIM1 Auto-reload register low 0xFF TIM1_RCR TIM1 Repetition counter register 0x00 0x00 52C6 TIM1_CCR1H TIM1 Capture/Compare register 1 high 0x00 0x00 52C7 TIM1_CCR1L TIM1 Capture/Compare register 1 low 0x00 0x00 52C8 TIM1_CCR2H TIM1 Capture/Compare register 2 high 0x00 0x00 52C9 TIM1_CCR2L TIM1 Capture/Compare register 2 low 0x00 0x00 52CA TIM1_CCR3H TIM1 Capture/Compare register 3 high 0x00 0x00 52CB TIM1_CCR3L TIM1 Capture/Compare register 3 low 0x00 0x00 52CC TIM1_CCR4H TIM1 Capture/Compare register 4 high 0x00 0x00 52CD TIM1_CCR4L TIM1 Capture/Compare register 4 low 0x00 0x00 52CE TIM1_BKR TIM1 break register 0x00 0x00 52CF TIM1_DTR TIM1 dead-time register 0x00 0x00 52D0 TIM1_OISR TIM1 output idle state register 0x00 0x00 52D1 TIM1_DCR1 DMA1 control register 1 0x00 0x00 52D2 TIM1_DCR2 TIM1 DMA1 control register 2 0x00 0x00 52D3 TIM1_DMA1R TIM1 DMA1 address for burst mode 0x00 Address 0x00 52C4 0x00 52C5 0x00 52D4 to 0x00 52DF Block TIM1 Reserved area (12 bytes) DS7106 Rev 9 47/123 54 Memory and register map STM8AL313x/4x/6x STM8AL3L4x/6x Table 9. General hardware register map (continued) Register label Register name Reset status 0x00 52E0 TIM4_CR1 TIM4 control register 1 0x00 0x00 52E1 TIM4_CR2 TIM4 control register 2 0x00 0x00 52E2 TIM4_SMCR TIM4 slave mode control register 0x00 0x00 52E3 TIM4_DER TIM4 DMA1 request enable register 0x00 TIM4_IER TIM4 interrupt enable register 0x00 TIM4_SR1 TIM4 status register 1 0x00 0x00 52E6 TIM4_EGR TIM4 event generation register 0x00 0x00 52E7 TIM4_CNTR TIM4 counter 0x00 0x00 52E8 TIM4_PSCR TIM4 prescaler register 0x00 0x00 52E9 TIM4_ARR TIM4 auto-reload register 0x00 Address 0x00 52E4 0x00 52E5 Block TIM4 0x00 52EA to 0x00 52FE 0x00 52FF Reserved area (21 bytes) IRTIM IR_CR Infrared control register 0x00 5300 to 0x00 533F 0x00 Reserved area (64 bytes) 0x00 5340 ADC1_CR1 ADC1 configuration register 1 0x00 0x00 5341 ADC1_CR2 ADC1 configuration register 2 0x00 0x00 5342 ADC1_CR3 ADC1 configuration register 3 0x1F 0x00 5343 ADC1_SR ADC1 status register 0x00 0x00 5344 ADC1_DRH ADC1 data register high 0x00 0x00 5345 ADC1_DRL ADC1 data register low 0x00 0x00 5346 ADC1_HTRH ADC1 high threshold register high 0x0F 0x00 5347 ADC1_HTRL ADC1 high threshold register low 0xFF ADC1_LTRH ADC1 low threshold register high 0x00 ADC1_LTRL ADC1 low threshold register low 0x00 0x00 534A ADC1_SQR1 ADC1 channel sequence 1 register 0x00 0x00 534B ADC1_SQR2 ADC1 channel sequence 2 register 0x00 0x00 534C ADC1_SQR3 ADC1 channel sequence 3 register 0x00 0x00 534D ADC1_SQR4 ADC1 channel sequence 4 register 0x00 0x00 534E ADC1_TRIGR1 ADC1 trigger disable 1 0x00 0x00 534F ADC1_TRIGR2 ADC1 trigger disable 2 0x00 0x00 5350 ADC1_TRIGR3 ADC1 trigger disable 3 0x00 0x00 5351 ADC1_TRIGR4 ADC1 trigger disable 4 0x00 0x00 5348 0x00 5349 48/123 ADC1 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Memory and register map Table 9. General hardware register map (continued) Address Block Register label 0x00 5352 to 0x00 537F Register name Reset status Reserved area (46 bytes) 0x00 5380 DAC_CR1 DAC control register 1 0x00 0x00 5381 DAC_CR2 DAC control register 2 0x00 0x00 5382 to 0x00 5383 Reserved area (2 bytes) 0x00 5384 DAC_SWTRIGR DAC software trigger register 0x00 0x00 5385 DAC_SR DAC status register 0x00 0x00 5386 to 0x00 5387 Reserved area (2 bytes) 0x00 5388 0x00 5389 0x00 538A to 0x00 538B DAC DAC_RDHRH DAC right aligned data holding register high 0x00 DAC_RDHRL DAC right aligned data holding register low 0x00 Reserved area (2 bytes) 0x00 538C DAC_LDHRH DAC left aligned data holding register high 0x00 0x00 538D DAC_LDHRL DAC left aligned data holding register low 0x00 0x00 538E to 0x00 538F Reserved area (2 bytes) 0x00 5390 DAC_DHR8 0x00 5391 to 0x00 53AB DAC 8-bit data holding register 0x00 Reserved area (27 bytes) 0x00 53AC DAC_DORH DAC data output register high 0x00 0x00 53AD DAC_DORL DAC data output register low 0x00 0x00 53AE to 0x00 53FF Reserved area (82 bytes) 0x00 5400 LCD_CR1 LCD control register 1 0x00 0x00 5401 LCD_CR2 LCD control register 2 0x00 0x00 5402 LCD_CR3 LCD control register 3 0x00 LCD_FRQ LCD frequency selection register 0x00 LCD_PM0 LCD Port mask register 0 0x00 0x00 5405 LCD_PM1 LCD Port mask register 1 0x00 0x00 5406 LCD_PM2 LCD Port mask register 2 0x00 0x00 5407 LCD_PM3 LCD Port mask register 3 0x00 0x00 5403 0x00 5404 0x00 5408 to 0x00 540B LCD Reserved area (4 bytes) DS7106 Rev 9 49/123 54 Memory and register map STM8AL313x/4x/6x STM8AL3L4x/6x Table 9. General hardware register map (continued) Register label Register name Reset status 0x00 540C LCD_RAM0 LCD display memory 0 0x00 0x00 540D LCD_RAM1 LCD display memory 1 0x00 0x00 540E LCD_RAM2 LCD display memory 2 0x00 0x00 540F LCD_RAM3 LCD display memory 3 0x00 0x00 5410 LCD_RAM4 LCD display memory 4 0x00 0x00 5411 LCD_RAM5 LCD display memory 5 0x00 LCD_RAM6 LCD display memory 6 0x00 LCD_RAM7 LCD display memory 7 0x00 0x00 5414 LCD_RAM8 LCD display memory 8 0x00 0x00 5415 LCD_RAM9 LCD display memory 9 0x00 0x00 5416 LCD_RAM10 LCD display memory 10 0x00 0x00 5417 LCD_RAM11 LCD display memory 11 0x00 0x00 5418 LCD_RAM12 LCD display memory 12 0x00 0x00 5419 LCD_RAM13 LCD display memory 13 0x00 Address 0x00 5412 0x00 5413 Block LCD 0x00 541A to 0x00 542F Reserved area (22 bytes) 0x00 5430 Reserved area (1 byte) 0x00 0x00 5431 RI_ICR1 Timer input capture routing register 1 0x00 0x00 5432 RI_ICR2 Timer input capture routing register 2 0x00 0x00 5433 RI_IOIR1 I/O input register 1 undefined 0x00 5434 RI_IOIR2 I/O input register 2 undefined 0x00 5435 RI_IOIR3 I/O input register 3 undefined 0x00 5436 RI_IOCMR1 I/O control mode register 1 0x00 RI_IOCMR2 I/O control mode register 2 0x00 RI_IOCMR3 I/O control mode register 3 0x00 0x00 5439 RI_IOSR1 I/O switch register 1 0x00 0x00 543A RI_IOSR2 I/O switch register 2 0x00 0x00 543B RI_IOSR3 I/O switch register 3 0x00 0x00 543C RI_IOGCR I/O group control register 0x3F 0x00 543D RI_ASCR1 Analog switch register 1 0x00 0x00 543E RI_ASCR2 Analog switch register 2 0x00 0x00 543F RI_RCR Resistor control register 1 0x00 0x00 5437 0x00 5438 50/123 RI DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Memory and register map Table 9. General hardware register map (continued) Register label Register name Reset status 0x00 5440 COMP_CSR1 Comparator control and status register 1 0x00 0x00 5441 COMP_CSR2 Comparator control and status register 2 0x00 COMP_CSR3 Comparator control and status register 3 0x00 0x00 5443 COMP_CSR4 Comparator control and status register 4 0x00 0x00 5444 COMP_CSR5 Comparator control and status register 5 0x00 Address Block COMP 0x00 5442 1. These registers are not impacted by a system reset. They are reset at power-on. Table 10. CPU/SWIM/debug module/interrupt controller registers Register Label Register Name Reset Status 0x00 7F00 A Accumulator 0x00 0x00 7F01 PCE Program counter extended 0x00 0x00 7F02 PCH Program counter high 0x00 0x00 7F03 PCL Program counter low 0x00 XH X index register high 0x00 XL X index register low 0x00 0x00 7F06 YH Y index register high 0x00 0x00 7F07 YL Y index register low 0x00 0x00 7F08 SPH Stack pointer high 0x03 0x00 7F09 SPL Stack pointer low 0xFF 0x00 7F0A CCR Condition code register 0x28 Address Block 0x00 7F04 0x00 7F05 CPU(1) 0x00 7F0B to 0x00 7F5F 0x00 7F60 Reserved area (85 bytes) CFG_GCR Global configuration register 0x00 0x00 7F70 ITC_SPR1 Interrupt Software priority register 1 0xFF 0x00 7F71 ITC_SPR2 Interrupt Software priority register 2 0xFF 0x00 7F72 ITC_SPR3 Interrupt Software priority register 3 0xFF ITC_SPR4 Interrupt Software priority register 4 0xFF ITC_SPR5 Interrupt Software priority register 5 0xFF 0x00 7F75 ITC_SPR6 Interrupt Software priority register 6 0xFF 0x00 7F76 ITC_SPR7 Interrupt Software priority register 7 0xFF 0x00 7F77 ITC_SPR8 Interrupt Software priority register 8 0xFF 0x00 7F73 0x00 7F74 0x00 7F78 to 0x00 7F79 CPU ITC-SPR Reserved area (2 bytes) DS7106 Rev 9 51/123 54 Memory and register map STM8AL313x/4x/6x STM8AL3L4x/6x Table 10. CPU/SWIM/debug module/interrupt controller registers (continued) Address Block Register Label Register Name Reset Status 0x00 7F80 SWIM SWIM_CSR SWIM control status register 0x00 0x00 7F81 to 0x00 7F8F Reserved area (15 bytes) 0x00 7F90 DM_BK1RE DM breakpoint 1 register extended byte 0xFF 0x00 7F91 DM_BK1RH DM breakpoint 1 register high byte 0xFF 0x00 7F92 DM_BK1RL DM breakpoint 1 register low byte 0xFF 0x00 7F93 DM_BK2RE DM breakpoint 2 register extended byte 0xFF 0x00 7F94 DM_BK2RH DM breakpoint 2 register high byte 0xFF DM_BK2RL DM breakpoint 2 register low byte 0xFF 0x00 7F96 DM_CR1 DM Debug module control register 1 0x00 0x00 7F97 DM_CR2 DM Debug module control register 2 0x00 0x00 7F98 DM_CSR1 DM Debug module control/status register 1 0x10 0x00 7F99 DM_CSR2 DM Debug module control/status register 2 0x00 0x00 7F9A DM_ENFCTR DM enable function register 0xFF 0x00 7F95 DM 0x00 7F9B to 0x00 7F9F Reserved area (5 bytes) 1. Accessible by debug module only 52/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x 6 Interrupt vector mapping Interrupt vector mapping Table 11. Interrupt mapping IRQ No. Source block - RESET - TRAP Description Reset Software interrupt 0 Wakeup from Halt mode Wakeup from Active-halt mode Wakeup from Wait (WFI mode) Wakeup from Wait (WFE mode)(1) Yes Yes Yes Yes 0x00 8000 - - - - 0x00 8004 Reserved Vector address 0x00 8008 Flash end of programming/write attempted to protected page interrupt - - Yes Yes 0x00 800C 1 FLASH 2 DMA1 0/1 DMA1 channels 0/1 half transaction/transaction complete interrupt - - Yes Yes 0x00 8010 3 DMA1 2/3 DMA1 channels 2/3 half transaction/transaction complete interrupt - - Yes Yes 0x00 8014 4 RTC RTC alarm A/ wakeup/tamper 1/ tamper 2/tamper 3 Yes Yes Yes Yes 0x00 8018 5 EXTI E/F/ PVD(2) External interrupt port E/F PVD interrupt Yes Yes Yes Yes 0x00 801C 6 EXTIB/G External interrupt port B/G Yes Yes Yes Yes 0x00 8020 7 EXTID/H External interrupt port D/H Yes Yes Yes Yes 0x00 8024 8 EXTI0 External interrupt 0 Yes Yes Yes Yes 0x00 8028 9 EXTI1 External interrupt 1 Yes Yes Yes Yes 0x00 802C 10 EXTI2 External interrupt 2 Yes Yes Yes Yes 0x00 8030 11 EXTI3 External interrupt 3 Yes Yes Yes Yes 0x00 8034 12 EXTI4 External interrupt 4 Yes Yes Yes Yes 0x00 8038 13 EXTI5 External interrupt 5 Yes Yes Yes Yes 0x00 803C 14 EXTI6 External interrupt 6 Yes Yes Yes Yes 0x00 8040 15 EXTI7 External interrupt 7 Yes Yes Yes Yes 0x00 8044 16 LCD - - Yes Yes 0x00 8048 17 CLK/TIM1/ DAC - - Yes Yes 0x00 804C LCD interrupt CLK system clock switch/ CSS interrupt/ TIM1 Break/DAC DS7106 Rev 9 53/123 54 Interrupt vector mapping STM8AL313x/4x/6x STM8AL3L4x/6x Table 11. Interrupt mapping (continued) Wakeup from Halt mode Wakeup from Active-halt mode Wakeup from Wait (WFI mode) Wakeup from Wait (WFE mode)(1) Yes Yes Yes Yes 0x00 8050 TIM2 update/overflow/ trigger/break interrupt - - Yes Yes 0x00 8054 TIM2 TIM2 capture/compare interrupt - - Yes Yes 0x00 8058 21 TIM3 TIM3 update /overflow/ trigger/break interrupt - - Yes Yes 0x00 805C 22 TIM3 TIM3 capture/compare interrupt - - Yes Yes 0x00 8060 23 TIM1 TIM1 update /overflow/ trigger/COM - - - Yes 0x00 8064 24 TIM1 TIM1 capture/compare interrupt - - - Yes 0x00 8068 25 TIM4 TIM4 update /overflow/ trigger interrupt - - Yes Yes 0x00 806C SPI1 SPI TX buffer empty/RX buffer not empty/error/wakeup interrupt Yes Yes Yes Yes 0x00 8070 USART1 USART1 transmit data register empty/ transmission complete interrupt - - Yes Yes 0x00 8074 28 USART 1 USART1 received data ready/overrun error/ idle line detected/parity error/global error interrupt - - Yes Yes 0x00 8078 29 I2C1 Yes Yes Yes Yes 0x00 807C IRQ No. Source block 18 COMP1/ COMP2/ ADC1 19 TIM2 20 26 27 Description COMP1 interrupt/ COMP2 interrupt ADC1 end of conversion/ analog watchdog/ overrun interrupt I2C1 interrupt(3) Vector address 1. The Low power wait mode is entered when executing a WFE instruction in Low power run mode. In WFE mode, the interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes back to WFE mode. When the interrupt is configured as a wakeup event, the CPU wakes up and resumes processing. 2. The interrupt from PVD is logically OR-ed with Port E and F interrupts. Register EXTI_CONF allows to select between Port E and Port F interrupt (see External interrupt port select register (EXTI_CONF) in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU lines reference manual (RM0031). 3. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address. 54/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x 7 Option bytes Option bytes Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated memory block. All option bytes can be modified in ICP mode (with SWIM) by accessing the EEPROM address. See Table 12 for details on option byte addresses. The option bytes can also be modified ‘on the fly’ by the application in IAP mode, except for the ROP, and UBC values which can only be taken into account when they are modified in ICP mode (with the SWIM). Refer to the STM8L15x/STM8L16x Flash programming manual (PM0054) and STM8 SWIM and Debug Manual (UM0320) for information on SWIM programming procedures. Table 12. Option byte addresses Address Option name Option byte No. Option bits 7 6 5 4 3 2 1 0 Factory default setting 0x00 4800 Read-out protection (ROP) OPT0 ROP[7:0] 0xAA 0x00 4802 UBC (User Boot code size) OPT1 UBC[7:0] 0x00 0x00 4807 Reserved 0x00 4808 Independent watchdog option OPT3 [3:0] Reserved 0x00 4809 Number of stabilization clock cycles for HSE and LSE oscillators OPT4 Reserved 0x00 480A Brownout reset (BOR) OPT5 [3:0] Reserved Bootloader option bytes (OPTBL) OPTBL [15:0] 0x00 480B 0x00 480C 0x00 WWDG WWDG IWDG _HALT _HW _HALT LSECNT[1:0] BOR_TH IWDG _HW 0x00 HSECNT[1:0] 0x00 BOR _ON 0x01 0x00 OPTBL[15:0] DS7106 Rev 9 0x00 55/123 57 Option bytes STM8AL313x/4x/6x STM8AL3L4x/6x Table 13. Option byte description Option byte no. Option description OPT0 ROP[7:0] Memory readout protection (ROP) 0xAA: Disable readout protection (write access via SWIM protocol) Refer to Readout protection section in STM8L05xx, STM8L15xx, STM8L162x, STM8AL31xx, STM8AL3Lxx, STM8AL31Exx and STM8AL3LExx MCU families reference manual (RM0031). OPT1 UBC[7:0] Size of the user boot code area 0x00: No UBC 0x01: the UBC contains only the interrupt vectors. 0x02: Page 0 and 1 reserved for the UBC and read/write protected. Page 0 contains only the interrupt vectors. 0x03: Page 0 to 2 reserved for UBC, memory write-protected. 0xFF: Page 0 to 254 reserved for the UBC, memory write-protected. Refer to User boot code section in STM8L05xx, STM8L15xx, STM8L162x, STM8AL31xx, STM8AL3Lxx, STM8AL31Exx and STM8AL3LExx MCU families reference manual (RM0031). OPT2 Reserved IWDG_HW: Independent watchdog 0: Independent watchdog activated by software 1: Independent watchdog activated by hardware OPT3 IWDG_HALT: Independent watchdog off in Halt/Active-halt 0: Independent watchdog continues running in Halt/Active-halt mode 1: Independent watchdog stopped in Halt/Active-halt mode WWDG_HW: Window watchdog 0: Window watchdog activated by software 1: Window watchdog activated by hardware WWDG_HALT: Window window watchdog reset on Halt/Active-halt 0: Window watchdog stopped in Halt mode 1: Window watchdog generates a reset when MCU enters Halt mode HSECNT: Number of HSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles OPT4 56/123 LSECNT: Number of LSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles Refer to Table 33: LSE oscillator characteristics DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Option bytes Table 13. Option byte description (continued) Option byte no. OPT5 Option description BOR_ON: 0: Brownout reset off 1: Brownout reset on BOR_TH[3:1]: Brownout reset thresholds. Refer to Table 20 for details on the thresholds according to the value of BOR_TH bits. OPTBL OPTBL[15:0]: This option is checked by the boot ROM code after reset. Depending on the content of addresses Ox00 480B, Ox00 480C and 0x8000 (reset vector) the CPU jumps to the bootloader or to the reset vector. Refer to the UM0560 bootloader user manual for more details. DS7106 Rev 9 57/123 57 Unique ID 8 STM8AL313x/4x/6x STM8AL3L4x/6x Unique ID The devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user. The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm. The unique device identifier is ideally suited: • For use as serial numbers • For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory. • To activate secure boot processes Table 14. Unique ID registers (96 bits) Address 0x4926 0x4927 0x4928 Unique ID bits 7 6 5 4 3 U_ID[7:0] X co-ordinate on the wafer U_ID[15:8] U_ID[23:16] 0x4929 Y co-ordinate on the wafer 0x492A Wafer number U_ID[39:32] U_ID[31:24] 0x492B U_ID[47:40] 0x492C U_ID[55:48] 0x492D U_ID[63:56] 0x492E 58/123 Content description Lot number U_ID[71:64] 0x492F U_ID[79:72] 0x4930 U_ID[87:80] 0x4931 U_ID[95:88] DS7106 Rev 9 2 1 0 STM8AL313x/4x/6x STM8AL3L4x/6x Electrical parameters 9 Electrical parameters 9.1 Parameter conditions Unless otherwise specified, all voltages are referred to VSS. 9.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = -40 °C, TA = 25 °C, and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. 9.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3 V. They are given only as design guidelines and are not tested. Typical ADC and DAC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range. 9.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 9.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 10. Figure 10. Pin loading conditions STM8AL PIN 50 pF DS7106 Rev 9 59/123 107 Electrical parameters 9.1.5 STM8AL313x/4x/6x STM8AL3L4x/6x Pin input voltage The input voltage measurement on a pin of the device is described in Figure 11. Figure 11. Pin input voltage STM8AL PIN VIN 9.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 15: Voltage characteristics, Table 16: Current characteristics and Table 17: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and a functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect the device’s reliability. The device’s mission profile (application conditions) is compliant with the JEDEC JESD47 qualification standard, extended mission profiles are available on demand. Table 15. Voltage characteristics Symbol Ratings Min Max VDD- VSS External supply voltage (including VDDA and VDD2)(1) - 0.3 4.0 Input voltage on true open-drain pins (PC0 and PC1) VIN(2) Input voltage on five-volt tolerant (FT) pins (PA7 and PE0) Input voltage on 3.6 V tolerant (TT) pins Input voltage on any other pin VESD Electrostatic discharge voltage VDD + 4.0 Unit V VSS - 0.3 4.0 see Absolute maximum ratings (electrical sensitivity) on page 106 V 1. All power (VDD1, VDD2, VDDA) and ground (VSS1, VSS2, VSSA) pins must always be connected to the external power supply. 2. VIN maximum must always be respected. Refer to Table 16 for maximum allowed injected current values. 60/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Electrical parameters Table 16. Current characteristics Symbol Ratings Max. IVDD Total current into VDD power line (source) 80 IVSS Total current out of VSS ground line (sink) 80 Output current sunk by IR_TIM pin (with high sink LED driver capability) 80 Output current sunk by any other I/O and control pin 25 IIO Output current sourced by any I/Os and control pin IINJ(PIN) ΣIINJ(PIN) - 25 Injected current on true open-drain pins (PC0 and PC1)(1) - 5/+0 Injected current on five-volt tolerant (FT) pins (PA7 and PE0)(1) - 5/+0 Injected current on 3.6 V tolerant (TT) pins(1) - 5/+0 Injected current on any other pin(2) - 5/+5 Total injected current (sum of all I/O and control pins)(3) Unit mA ± 25 1. Positive injection is not possible on these I/Os. A negative injection is induced by VINVDD while a negative injection is induced by VIN> gmcrit LSE crystal/ceramic resonator oscillator The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...). Table 33. LSE oscillator characteristics Symbol Parameter fLSE Low speed external oscillator frequency RF Feedback resistor C(1) Recommended load capacitance (2) IDD(LSE) Min Typ Max Unit - - 32.768 - kHz ∆V = 200 mV - 1.2 - MΩ - - 8 - pF - - - 1.4(3) µA VDD = 1.8 V - 450 - VDD = 3 V - 600 - VDD = 3.6 V - 750 - - 3(3) - - µA/V VDD is stabilized - 1 - s Oscillator transconductance gm tSU(LSE) LSE oscillator power consumption Conditions (4) Startup time nA 1. C=CL1=CL2 is approximately equivalent to 2 x crystal CLOAD. 2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small Rm value. Refer to crystal manufacturer for more details. 3. Guaranteed by design. 4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. 76/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Electrical parameters Figure 16. LSE oscillator circuit diagram fLSE Rm Lm RF CO CL1 OSC_IN Cm gm Resonator Consumption control Resonator STM8 OSC_OUT CL2 MS32600V1 Internal clock sources Subject to general operating conditions for VDD, and TA. High speed internal RC oscillator (HSI) In the following table, data are based on characterization results and are not tested in production, unless otherwise specified. Table 34. HSI oscillator characteristics Symbol fHSI ACCHSI Conditions(1) Parameter Min Typ Max Unit MHz Frequency VDD = 3.0 V - 16 - HSI oscillator user trimming accuracy Trimmed by the application for any VDD and TA conditions -1 - 1 -5 - 5 Trimming code ≠ multiple of 16 - 0.4 0.7(2) Trimming code = multiple of 16 - HSI oscillator VDD ≤ 1.8 V ≤ VDD ≤ 3.6 V, accuracy (factory -40 °C ≤ TA ≤ 125 °C calibrated) % TRIM HSI user trimming step(2) tsu(HSI) HSI oscillator setup time (wakeup time) - - 3.7 6(3) µs IDD(HSI) HSI oscillator power consumption - - 100 140(3) µA ± 1.5(2) 1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified. 2. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0). Refer to the AN3101 “STM8L05xxx/15xxx, STM8L162xx and STM8AL31xx/3Lxx internal RC oscillator calibration” application note for more details. 3. Guaranteed by design. DS7106 Rev 9 77/123 107 Electrical parameters STM8AL313x/4x/6x STM8AL3L4x/6x Figure 17. Typical HSI frequency vs VDD 18.0 17.5 HSI frequency [MHz] 17.0 16.5 16.0 15.5 15.0 -40°C 14.5 25°C 14.0 85°C 13.5 13.0 1.8 1.95 2.1 2.25 2.4 2.55 2.7 2.85 3 3.15 3.3 3.45 3.6 VDD [V] ai18218c Low speed internal RC oscillator (LSI) In the following table, data are based on characterization results, not tested in production. Table 35. LSI oscillator characteristics Parameter (1) Conditions(1) Min Typ Max Unit Frequency - 26 38 56 kHz tsu(LSI) LSI oscillator wakeup time - - - 200(2) µs IDD(LSI) LSI oscillator frequency drift(3) -12 - 11 % Symbol fLSI 0 °C ≤ TA ≤ 85 °C 1. VDD = 1.65 V to 3.6 V, TA = -40 to 125 °C unless otherwise specified. 2. Guaranteed by design. 3. This is a deviation for an individual part, once the initial frequency has been measured. 78/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Electrical parameters Figure 18. Typical LSI frequency vs. VDD 45 43 LSI frequency [kHz] 41 39 37 35 33 -40°C 31 25°C 85°C 29 27 25 1.8 2.1 2.6 3.1 3.6 VDD [V] ai18219b 9.3.5 Memory characteristics TA = -40 to 125 °C unless otherwise specified. Table 36. RAM and hardware registers Symbol Parameter Conditions Min Typ Max Unit VRM Data retention mode (1) Halt mode (or Reset) 1.65 - - V 1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware registers (only in Halt mode). Guaranteed by characterization results. Flash memory Table 37. Flash program memory/data EEPROM memory Symbol VDD tprog Iprog Parameter Conditions Min Typ Max Unit fSYSCLK = 16 MHz 1.65 - 3.6 V Programming time for 1 or 128 bytes (block) erase/write cycles (on programmed byte) - - 6 - Programming time for 1 to 128 bytes (block) write cycles (on erased byte) - - 3 - TA = +25 °C, VDD = 3.0 V - TA = +25 °C, VDD = 1.8 V - Operating voltage (all modes, read/write/erase) Programming/ erasing consumption ms DS7106 Rev 9 0.7 - mA 79/123 107 Electrical parameters STM8AL313x/4x/6x STM8AL3L4x/6x Table 38. Flash program memory Symbol Parameter Conditions Min Max Unit TWE Temperature for writing and erasing - -40 125 °C NWE Flash program memory endurance (erase/write cycles)(1) TA = 25 °C 1000 - cycles tRET Data retention time TA = 25 °C 40 - TA = 55 °C 20 - years 1. The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a write/erase operation addresses a single byte. Data memory Table 39. Data memory Symbol Parameter TWE Temperature for writing and erasing NWE Data memory endurance (erase/write cycles)(1) tRET Data retention time Conditions Min Max Unit - -40 125 °C TA = 25 °C 300 k - k(2) - TA = 25 °C 40(2)(3) - TA = 55 °C 20(2)(3) - TA = -40 to 125 °C 100 cycles years 1. The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a write/erase operation addresses a single byte. 2. More information on the relationship between data retention time and number of write/erase cycles is available in a separate technical document. 3. Retention time for 256B of data memory after up to 1000 cycles at 125 °C. 9.3.6 I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error, out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation, LCD levels, etc.). The test results are given in the following table. 80/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Electrical parameters Table 40. I/O current injection susceptibility Functional susceptibility Symbol IINJ 9.3.7 Description Negative injection Positive injection Injected current on true open-drain pins (PC0 and PC1) -5 +0 Injected current on all five-volt tolerant (FT) pins -5 +0 Injected current on all 3.6 V tolerant (TT) pins -5 +0 Injected current on any other pin -5 +5 Unit mA I/O port pin characteristics General characteristics Subject to general operating conditions for VDD and TA unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor. Table 41. I/O static characteristics Symbol Parameter VIL Input low level voltage Conditions(1) Min Typ Max VSS-0.3 - 0.3 x VDD - 5.2(2) - 5.5(2) - 5.2(2) - 5.5(2) - 3.6(2) 0.70 x VDD - VDD+0.3(2 I/Os - 200 - True open drain I/Os - 200 - VSS ≤ VIN ≤ VDD High sink I/Os - - 50 VSS ≤ VIN ≤ VDD True open drain I/Os - - 200 VSS ≤ VIN ≤ VDD PA0 with high sink LED driver capability - - 200 Input voltage on all pins Input voltage on true open-drain pins (PC0 and PC1) with VDD < 2 V Input voltage on true open-drain pins (PC0 and PC1) with VDD ≥ 2 V VIH Input high level voltage 0.70 x VDD Input voltage on five-volt tolerant (FT) pins (PA7 and PE0) with VDD < 2 V Input voltage on five-volt tolerant (FT) pins (PA7 and PE0) with VDD ≥ 2 V 0.70 x VDD Input voltage on 3.6 V tolerant (TT) pins Input voltage on any other pin Vhys Ilkg Schmitt trigger voltage hysteresis (3) Input leakage current (4) DS7106 Rev 9 Unit V ) mV nA 81/123 107 Electrical parameters STM8AL313x/4x/6x STM8AL3L4x/6x Table 41. I/O static characteristics (continued) Symbol Conditions(1) Parameter RPU Weak pull-up equivalent resistor(5) CIO I/O pin capacitance VIN = VSS - Min Typ Max Unit 30(6) 45 60(6) kΩ - 5 - pF 1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified. 2. If VIH maximum cannot be respected, the injection current must be limited externally to IINJ(PIN) maximum. 3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested. 4. The max. value may be exceeded if negative current is injected on adjacent pins. 5. RPU pull-up equivalent resistor based on a resistive transistor (corresponding IPU current characteristics described in Figure 22). 6. Data not tested in production. Figure 19. Typical VIL and VIH vs VDD (high sink I/Os) 3 -40°C 25°C 2.5 VIL and VIH [V] 85°C 2 1.5 1 0.5 0 1.8 2.1 2.6 3.1 3.6 VDD [V] ai18220c 82/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Electrical parameters Figure 20. Typical VIL and VIH vs VDD (true open drain I/Os) 3 -40°C 25°C 2.5 VIL and VIH [V] 85°C 2 1.5 1 0.5 0 1.8 2.1 2.6 VDD [V] 3.1 3.6 ai18221b Figure 21. Typical pull-up resistance RPU vs VDD with VIN=VSS 60 -40°C 55 25°C Pull-up resistance [kΩ] 85°C 50 45 40 35 30 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VDD [V] ai18222b DS7106 Rev 9 83/123 107 Electrical parameters STM8AL313x/4x/6x STM8AL3L4x/6x Figure 22. Typical pull-up current Ipu vs VDD with VIN=VSS 120 -40°C 25°C 100 Pull-up current [μA] 85°C 80 60 40 20 0 1.8 1.95 2.1 2.25 2.4 2.55 2.7 2.85 3 3.15 3.3 3.45 3.6 VDD [V] ai18223b 84/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Electrical parameters Output driving current Subject to general operating conditions for VDD and TA unless otherwise specified. Table 42. Output driving current (high sink ports) I/O Symbol Type Output low level voltage for an I/O pin High sink VOL (1) Parameter VOH (2) Output high level voltage for an I/O pin Conditions Min Max IIO = +2 mA, VDD = 3.0 V - 0.45 IIO = +2 mA, VDD = 1.8 V - 0.45 IIO = +10 mA, VDD = 3.0 V - 0.7 IIO = -2 mA, VDD = 3.0 V VDD-0.45 - IIO = -1 mA, VDD = 1.8 V VDD-0.45 - IIO = -10 mA, VDD = 3.0 V VDD-0.7 - Unit V V 1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. The IIO current sourced must always respect the absolute maximum rating specified in Table 16 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. Table 43. Output driving current (true open drain ports) Open drain I/O Symbol Type VOL (1) Parameter Output low level voltage for an I/O pin Conditions Min Max IIO = +3 mA, VDD = 3.0 V - 0.45 IIO = +1 mA, VDD = 1.8 V - Unit V 0.45 1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. Table 44. Output driving current (PA0 with high sink LED driver capability) I/O Symbol Type IR VOL (1) Parameter Output low level voltage for an I/O pin Conditions Min Max Unit IIO = +20 mA, VDD = 2.0 V - 0.45 V 1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. DS7106 Rev 9 85/123 107 Electrical parameters STM8AL313x/4x/6x STM8AL3L4x/6x Figure 23. Typ. VOL @ VDD = 3.0 V (high sink ports) Figure 24. Typ. VOL @ VDD = 1.8 V (high sink ports) 1 0.7 0.5 -40°C 25°C 90°C 130°C 0.5 VOL [V] VOL [V] 0.6 -40°C 25°C 90°C 130°C 0.75 0.4 0.3 0.2 0.25 0.1 0 0 2 4 6 8 10 12 14 16 18 0 20 0 IOL [mA] 1 2 3 4 5 6 7 8 IOL [mA] ai18227 ai18226 Figure 25. Typ. VOL @ VDD = 3.0 V (true open drain ports) Figure 26. Typ. VOL @ VDD = 1.8 V (true open drain ports) 0.5 0.5 -40°C 25°C 90°C 130°C VOL [V] 0.3 0.4 -40°C 25°C 90°C 130°C 0.3 VOL [V] 0.4 0.2 0.2 0.1 0.1 0 0 0 1 2 3 4 5 6 7 0 1 2 3 IOL [mA] 4 5 6 7 IOL [mA] ai18229 ai18228 Figure 27. Typ. VDD - VOH @ VDD = 3.0 V (high sink ports) Figure 28. Typ. VDD - VOH @ VDD = 1.8 V (high sink ports) 2 0.5 1.75 -40°C 25°C 90°C 130°C 1.25 -40°C 25°C 90°C 130°C 0.4 VDD - VOH [V] VDD - VOH [V] 1.5 1 0.75 0.3 0.2 0.5 0.25 0.1 0 0 2 4 6 8 10 12 14 16 18 20 0 IOH [mA] 0 1 2 3 4 5 6 7 I OH [mA] ai12830 86/123 ai18231 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Electrical parameters NRST pin Subject to general operating conditions for VDD and TA unless otherwise specified. Table 45. NRST pin characteristics Symbol Parameter Conditions Min Typ Max VIL(NRST) NRST input low level voltage - VSS(1) - 0.8(1) VIH(NRST) NRST input high level voltage - 1.4(1) - VDD(1) IOL = 2 mA for 2.7 V ≤ VDD ≤ 3.6 V - - IOL = 1.5 mA for VDD < 2.7 V - - VOL(NRST) NRST output low level voltage Unit V 0.4(1) NRST input hysteresis - 10%VDD(2)(3) - - mV RPU(NRST) NRST pull-up equivalent resistor - 30(1) 45 60(1) kΩ VF(NRST) NRST input filtered pulse - - - 50(3) VNF(NRST) NRST input not filtered pulse - 300(3) - - VHYST ns 1. Guaranteed by characterization results. 2. 200 mV min. 3. Guaranteed by design. Figure 29. Typical NRST pull-up resistance RPU vs VDD 60 -40°C Pull-up resistance [kΩ] 55 25°C 85°C 50 45 40 35 30 1.8 2 2.2 2.4 2.6 2.8 VDD [V] 3 3.2 3.4 3.6 ai18224b DS7106 Rev 9 87/123 107 Electrical parameters STM8AL313x/4x/6x STM8AL3L4x/6x Figure 30. Typical NRST pull-up current Ipu vs VDD 120 -40°C 100 25°C Pull-up current [μA] 85°C 80 60 40 20 0 1.8 1.95 2.1 2.25 2.4 2.55 2.7 2.85 3 3.15 3.3 3.45 3.6 VDD [V] ai18225b The reset network shown in Figure 31 protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the VIL max. level specified in Table 45. Otherwise the reset is not taken into account internally. For power consumption sensitive applications, the external reset capacitor value can be reduced to limit the charge/discharge current. If the NRST signal is used to reset the external circuitry, attention must be paid to the charge/discharge time of the external capacitor to fulfill the external devices reset timing conditions. The minimum recommended capacity is 10 nF. Figure 31. Recommended NRST pin configuration VDD RPU External reset circuit N RST Filter Internal reset STM8 (Optional) 0.1 uF MS34928V1 88/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x 9.3.8 Electrical parameters Communication interfaces SPI1 - Serial peripheral interface Unless otherwise specified, the parameters given in Table 46 are derived from tests performed under ambient temperature, fSYSCLK frequency and VDD supply voltage conditions summarized in Section 9.3.1. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 46. SPI1 characteristics Symbol fSCK 1/tc(SCK) tr(SCK) tf(SCK) tsu(NSS)(2) th(NSS) (2) (2) tw(SCKH) tw(SCKL)(2) Parameter Conditions(1) Min Max Master mode 0 8 Slave mode 0 8 SPI1 clock rise and fall time Capacitive load: C = 30 pF - 30 NSS setup time Slave mode 4 x 1/fSYSCLK - NSS hold time Slave mode 80 - SCK high and low time Master mode, fMASTER = 8 MHz, fSCK= 4 MHz 105 145 Master mode 30 - Slave mode 3 - Master mode 15 - Slave mode 0 - SPI1 clock frequency tsu(MI) (2) tsu(SI)(2) Data input setup time th(MI) (2) th(SI)(2) Data input hold time ta(SO)(2)(3) Data output access time Slave mode - 3x 1/fSYSCLK tdis(SO)(2)(4) 30 - Data output disable time Slave mode (2) Data output valid time Slave mode (after enable edge) - 60 tv(MO)(2) Data output valid time Master mode (after enable edge) - 20 Slave mode (after enable edge) 15 - Master mode (after enable edge) 1 - tv(SO) th(SO)(2) Data output hold time th(MO)(2) Unit MHz ns 1. Parameters are given by selecting 10 MHz I/O output frequency. 2. Values based on design simulation and/or characterization results, and not tested in production. 3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data. 4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z. DS7106 Rev 9 89/123 107 Electrical parameters STM8AL313x/4x/6x STM8AL3L4x/6x Figure 32. SPI1 timing diagram - slave mode and CPHA=0 Figure 33. SPI1 timing diagram - slave mode and CPHA=1(1) NSS input SCK input tSU(NSS) CPHA=1 CPOL=0 CPHA=1 CPOL=1 tw(SCKH) tw(SCKL) th(SO) tv(SO) ta(SO) MISO OUTPUT MSB OUT BIT6 OUT tr(SCK) tf(SCK) tdis(SO) LSB OUT th(SI) tsu(SI) MOSI INPUT th(NSS) tc(SCK) MSB IN BIT 1 IN LSB IN ai14135b 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. 90/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Electrical parameters Figure 34. SPI1 timing diagram - master mode(1) High NSS input SCK Output CPHA= 0 CPOL=0 SCK Output tc(SCK) CPHA=1 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=1 tsu(MI) MISO INP UT tw(SCKH) tw(SCKL) tr(SCK) tf(SCK) BIT6 IN MSB IN LSB IN th(MI) MOSI OUTPUT B I T1 OUT MSB OUT tv(MO) LSB OUT th(MO) ai14136c 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. I2C - Inter IC control interface Subject to general operating conditions for VDD, fSYSCLK, and TA unless otherwise specified. The STM8AL I2C interface (I2C1) meets the requirements of the Standard I2C communication protocol described in the following table with the restriction mentioned below: Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 47. I2C characteristics Symbol Parameter Standard mode I2C Fast mode I2C(1) Min(2) Max (2) Min (2) Max (2) Unit tw(SCLL) SCL clock low time 4.7 - 1.3 - tw(SCLH) SCL clock high time 4.0 - 0.6 - DS7106 Rev 9 μs 91/123 107 Electrical parameters STM8AL313x/4x/6x STM8AL3L4x/6x Table 47. I2C characteristics (continued) Symbol Parameter Standard mode I2C Fast mode I2C(1) Min(2) Max (2) Min (2) Max (2) 250 - 100 - Unit tsu(SDA) SDA setup time th(SDA) SDA data hold time 0 - 0 900 tr(SDA) tr(SCL) SDA and SCL rise time - 1000 - 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 th(STA) START condition hold time 4.0 0.6 - tsu(STA) Repeated START condition setup time 4.7 - 0.6 - tsu(STO) STOP condition setup time 4.0 - 0.6 - STOP to START condition time (bus free) 4.7 - 1.3 - - 400 - 400 tw(STO:STA) Cb Capacitive load for each bus line ns μs pF 1. fSYSCLK must be at least equal to 8 MHz to achieve max fast I2C speed (400 kHz). 2. Data based on standard I2C protocol requirements, not tested in production. Note: For speeds around 200 kHz, the achieved speed can have a ± 5% tolerance For other speed ranges, the achieved speed can have a ± 2% tolerance The above variations depend on the accuracy of the external components used. Figure 35. Typical application with I2C bus and timing diagram(1) VDD 4.7 kΩ VDD 4.7 kΩ I2C bus STM8 100 Ω SDA 100 Ω SCL Repeated start START tsu(STA) tw(STO:STA) SDA tf(SDA) tr(SDA) tsu(SDA) th(SDA) START STOP SCL th(STA) tw(SCLH) tw(SCLL) tr(SCL) tf(SCL) tsu(STO) MSv36492V1 1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD 92/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x 9.3.9 Electrical parameters LCD controller (STM8AL3Lxx only) In the following table, data are guaranteed by design and are not tested in production. Table 48. LCD characteristics Symbol Parameter Min Typ Max. VLCD LCD external voltage - - 3.6 VLCD0 LCD internal reference voltage 0 - 2.6 - VLCD1 LCD internal reference voltage 1 - 2.7 - VLCD2 LCD internal reference voltage 2 - 2.8 - VLCD3 LCD internal reference voltage 3 - 2.9 - VLCD4 LCD internal reference voltage 4 - 3.0 - VLCD5 LCD internal reference voltage 5 - 3.1 - VLCD6 LCD internal reference voltage 6 - 3.2 - VLCD7 LCD internal reference voltage 7 - 3.3 - CEXT VLCD external capacitance 0.1 - 2 - 3 - - 3 - IDD Supply current(1) at VDD = 1.8 V (1) Supply current at VDD = 3 V Unit V µF µA RHN (2) High value resistive network (low drive) - 6.6 - MΩ (3) Low value resistive network (high drive) - 360 - kΩ V33 Segment/Common higher level voltage - - VLCDx V23 Segment/Common 2/3 level voltage - 2/3VLCDx - V12 Segment/Common 1/2 level voltage - 1/2VLCDx - V13 Segment/Common 1/3 level voltage - 1/3VLCDx - V0 Segment/Common lowest level voltage 0 - - RLN V 1. LCD enabled with 3 V internal booster (LCD_CR1 = 0x08), 1/4 duty, 1/3 bias, division ratio= 64, all pixels active, no LCD connected. 2. RHN is the total high value resistive network. 3. RLN is the total low value resistive network. VLCD external capacitor (STM8AL3Lxx only) The application can achieve a stabilized LCD reference voltage by connecting an external capacitor CEXT to the VLCD pin. CEXT is specified in Table 48. 9.3.10 Embedded reference voltage In the following table, data are based on characterization results, not tested in production, unless otherwise specified. DS7106 Rev 9 93/123 107 Electrical parameters STM8AL313x/4x/6x STM8AL3L4x/6x Table 49. Reference voltage characteristics Symbol Parameter Conditions Min Typ Max. Unit IREFINT Internal reference voltage consumption - - 1.4 - µA TS_VREFINT(1)(2) ADC sampling time when reading the internal reference voltage - - 5 10 µs IBUF(2) Internal reference voltage buffer consumption (used for ADC) - - 13.5 25 µA VREFINT out Reference voltage output - ILPBUF(2) Internal reference voltage low power buffer consumption (used for comparators or output) IREFOUT(2) 1.202 (3) 1.224 - - Buffer output current(4) - CREFOUT Reference voltage output load tVREFINT 1.242 (3) V 730 1200 nA - - 1 µA - - - 50 pF Internal reference voltage startup time - - 2 3 ms tBUFEN(2) Internal reference voltage buffer startup time once enabled (1) - - - 10 µs ACCVREFINT Accuracy of VREFINT stored in the VREFINT_Factory_CONV byte(5) - - - ±5 mV Stability of VREFINT over temperature -40 °C ≤ TA ≤ 125 °C - 20 50 Stability of VREFINT over temperature 0 °C ≤ TA ≤ 50 °C - - 20 - - - 1000 STABVREFINT(2) STABVREFINT(2) Stability of VREFINT after 1000 hours ppm/°C ppm 1. Defined when ADC output reaches its final value ±1/2LSB 2. Guaranteed by design. 3. Tested in production at VDD = 3 V ±10 mV. 4. To guaranty less than 1% VREFOUT deviation. 5. Measured at VDD = 3 V ±10 mV. This value takes into account VDD accuracy and ADC conversion accuracy. 9.3.11 Temperature sensor In the following table, data are based on characterization results, not tested in production, unless otherwise specified. Table 50. TS characteristics Symbol V125(1) TL 94/123 Parameter Sensor reference voltage at 125 °C ±5 °C VSENSOR linearity with temperature Min Typ Max. Unit 0.640 0.660 0.680 V - ±1 ±2 °C Avg_slope Average slope 1.59(2) 1.62 1.65(2) mV/°C IDD(TEMP) Consumption - 3.4 6(2) µA DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Electrical parameters Table 50. TS characteristics (continued) Symbol Parameter Min Typ Max. TSTART(3) Temperature sensor startup time - - 10 TS_TEMP ADC sampling time when reading the temperature sensor - 5 10(2) Unit (2) µs 1. Tested in production at VDD = 3 V ±10 mV. The 8 LSB of the V125 ADC conversion result are stored in the TS_Factory_CONV_V125 byte. 2. Guaranteed by design. 3. Defined for ADC output reaching its final value ±1/2LSB. 9.3.12 Comparator characteristics In the following table, data are guaranteed by design, not tested in production, unless otherwise specified. Table 51. Comparator 1 characteristics Symbol VDDA Parameter Analog supply voltage Min Typ Max Unit 1.65 - 3.6(1) V °C Temperature range -40 - 125(1) R400K R400K value 300 400 500(1) R10K R10K value 7.5 10 12.5(1) Comparator input voltage range 0.6 - VDDA(1) TA VIN kΩ V VREFINT Internal reference voltage 1.202 1.224 1.242 tSTART Startup time after enable - 7 10(1) Propagation delay(2) - 3 10(1) Voffset Comparator offset error - ±3 ±10(1) mV ICMP1 Consumption(3) 160 260(1) nA td - µs 1. Guaranteed by characterization results. 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference. 3. Comparator consumption only. Internal reference voltage not included. DS7106 Rev 9 95/123 107 Electrical parameters STM8AL313x/4x/6x STM8AL3L4x/6x In the following table, data are guaranteed by design, not tested in production unless otherwise specified. Table 52. Comparator 2 characteristics Conditions Min Typ Max(1) Unit Analog supply voltage - 1.65 - 3.6 V TA Temperature range - -40 - 125 °C VIN Comparator 2 input voltage range - 0 - VDDA V Fast mode - 15 20 Slow mode - 20 25 1.8 3.5 2.5 6 0.8 2 1.2 4 ±4 ±20 3.5 5 0.5 2 Symbol VDDA Parameter tSTART Comparator startup time td slow Propagation delay in slow mode(2) 1.65 V ≤ VDDA ≤ 2.7 V td fast Propagation delay in fast mode(2) 1.65 V ≤ VDDA ≤ 2.7 V Voffset Comparator offset error - ICOMP2 Current consumption(3) 2.7 V ≤ VDDA ≤ 3.6 V 2.7 V ≤ VDDA ≤ 3.6 V - - Fast mode - Slow mode µs mV µA 1. Guaranteed by characterization results. 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference. 3. Comparator consumption only. Internal reference voltage not included. 9.3.13 12-bit DAC characteristics In the following table, data are guaranteed by design, not tested in production. Table 53. DAC characteristics Symbol Parameter Conditions Min Typ Max VDDA Analog supply voltage - 1.8 - 3.6 VREF+ Reference supply voltage - 1.8 - VDDA 96/123 DS7106 Rev 9 Unit V STM8AL313x/4x/6x STM8AL3L4x/6x Electrical parameters Table 53. DAC characteristics (continued) Symbol IVREF IVDDA Parameter Current consumption on VREF+ supply Current consumption on VDDA supply Conditions Min Typ Max VREF+ = 3.3 V, no load, middle code (0x800) - 130 220 VREF+ = 3.3 V, no load, worst code (0x000) - 220 350 VDDA = 3.3 V, no load, middle code (0x800) - 210 320 VDDA = 3.3 V, no load, worst code (0x000) - 320 520 Unit µA TA Temperature range - -40 - 125 RL Resistive load(1) (2) DACOUT buffer ON 5 - - RO Output impedance DACOUT buffer OFF - 8 10 CL Capacitive load(3) - - - 50 DACOUT buffer ON 0.2 - VDDA-0.2 DACOUT buffer OFF 0 - VREF+ -1 LSB Settling time (full scale: for a 12bit input code transition between the lowest and the highest input codes when DAC_OUT reaches the final value ±1LSB) RL ≥ 5 kΩ, CL ≤ 50 pF - 7 12 µs Max frequency for a correct DAC_OUT (@95%) change Update rate when small variation of the input code (from code i to i+1LSB). RL ≥ 5 kΩ, CL ≤ 50 pF - - 1 Msps DAC_OUT DAC_OUT voltage(4) tsettling °C kΩ pF V tWAKEUP Wakeup time from OFF state. Input code between lowest and highest possible codes. RL ≥ 5 kΩ, CL ≤ 50 pF - 9 15 µs PSRR+ Power supply rejection ratio (to VDDA) (static DC measurement) RL ≥ 5 kΩ, CL ≤ 50 pF - -60 -35 dB 1. Resistive load between DACOUT and GNDA. 2. Output on PF0 (48-pin package only). 3. Capacitive load at DACOUT pin. 4. It gives the output excursion of the DAC. DS7106 Rev 9 97/123 107 Electrical parameters STM8AL313x/4x/6x STM8AL3L4x/6x In the following table, data based on characterization results, not tested in production. Table 54. DAC accuracy Symbol DNL INL Offset Offset1 Gain error Typ. Max(1) 1.5 3 1.5 3 2 4 2 4 ±10 ±25 No load, DACOUT buffer OFF ±5 ±8 DACOUT buffer OFF ±1.5 ±5 +0.1/-0.2 +0.2/-0.5 +0/-0.2 +0/-0.4 12 30 8 12 Parameter Conditions Differential non linearity(2) RL Integral non linearity(4) RL Offset error(5) ≥ 5 kΩ, CL ≤ 50 pF, DACOUT buffer ON(3) No load, DACOUT buffer OFF ≥ 5 kΩ, CL ≤ 50 pF,DACOUT buffer ON(3) No load, DACOUT buffer OFF RL ≥ 5 kΩ, CL ≤ 50 pF, DACOUT buffer ON(3) Offset error at Code 1 (6) Gain error(7) RL ≥ 5 kΩ, CL ≤ 50 pF,DACOUT buffer ON(3) No load, DACOUT buffer OFF TUE Total unadjusted error RL ≥ 5 kΩ, CL ≤ 50 pF, DACOUT buffer ON(3) No load, DACOUT buffer OFF Unit 12-bit LSB % 12-bit LSB 1. Not tested in production. 2. Difference between two consecutive codes - 1 LSB. 3. For 48-pin packages only. For 28-pin and 32-pin packages, DAC output buffer must be kept off and no load must be applied. 4. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023. 5. Difference between the value measured at Code (0x800) and the ideal value = VREF+/2. 6. Difference between the value measured at Code (0x001) and the ideal value. 7. Difference between the ideal slope of the transfer function and the measured slope computed from Code 0x000 and 0xFFF when buffer is ON, and from Code giving 0.2 V and (VDDA -0.2) V when buffer is OFF. In the following table, data are guaranteed by design, not tested in production. Table 55. DAC output on PB4-PB5-PB6(1) Symbol Rint Parameter Conditions Max 2.7 V < VDD < 3.6 V 1.4 Internal resistance between 2.4 V < VDD < 3.6 V DAC output and PB4-PB5-PB6 2.0 V < VDD < 3.6 V output 1.6 1.8 V < VDD < 3.6 V 8.2 3.2 Unit kΩ 1. 32 or 28-pin packages only. The DAC channel can be routed either on PB4, PB5 or PB6 using the routing interface I/O switch registers. 9.3.14 12-bit ADC1 characteristics In the following table, data are guaranteed by design, not tested in production. 98/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Electrical parameters Table 56. ADC1 characteristics Symbol Parameter VDDA Analog supply voltage VREF+ Reference supply voltage VREFIVDDA IVREF+ Conditions Min Typ Max - 1.8 - 3.6 2.4 V ≤ VDDA ≤ 3.6 V 2.4 - VDDA 1.8 V ≤ VDDA ≤ 2.4 V VDDA Lower reference voltage - VSSA Current on the VDDA input pin - - - - Current on the VREF+ input pin 1000 400 - - Unit V 1450 700 (peak)(1) µA 450 (average)(1) VAIN Conversion voltage range - 0(2) - VREF+ - TA Temperature range - -40 - 125 °C on PF0 fast channel - - on all other channels - - 50(3) kΩ on PF0 fast channel - on all other channels - 2.4 V ≤ VDDA ≤ 3.6 V without zooming 0.320 - 16 1.8 V ≤ VDDA ≤ 2.4 V with zooming 0.320 - 8 VAIN on PF0 fast channel - - 1(4)(5) VAIN on all other channels - - 760(4)(5) kHz RAIN External resistance on VAIN CADC Internal sample and hold capacitor fADC fCONV ADC sampling clock frequency 12-bit conversion rate 16 - pF MHz fTRIG External trigger frequency - - - tconv 1/fADC tLAT External trigger latency - - - 3.5 1/fSYS DS7106 Rev 9 CLK 99/123 107 Electrical parameters STM8AL313x/4x/6x STM8AL3L4x/6x Table 56. ADC1 characteristics (continued) Symbol tS tconv Parameter Sampling time 12-bit conversion time Conditions Min Typ Max VAIN on PF0 fast channel VDDA < 2.4 V 0.43(4)(5) - - VAIN on PF0 fast channel 2.4 V ≤ VDDA ≤ 3.6 V 0.22(4)(5) - - VAIN on slow channels VDDA < 2.4 V 0.86(4)(5) - - VAIN on slow channels 2.4 V ≤ VDDA ≤ 3.6 V 0.41(4)(5) - - - Unit µs (Sampling_cycles + SAR_internal_cycles) / fADC (6) 16 MHz 1(4) - - tWKUP Wakeup time from OFF state - - - 3 tIDLE(7) Time before a new conversion - - - ∞ s tVREFINT Internal reference voltage startup time - - - refer to Table 49 ms 1. The current consumption through VREF is composed of two parameters: - one constant (max 300 µA) - one variable (max 400 µA), only during sampling time + 2 first conversion pulses. So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 µA at 1Msps 2. VREF- or VDDA must be tied to ground. 3. Guaranteed by design. 4. Minimum sampling and conversion time is reached for maximum Rext = 0.5 kΩ. 5. Value obtained for continuous conversion on fast channel. 6. SAR_internal_cycles=12 and Sampling_cycles=4;9;16;24;48;96;192 or 384 depending on SMP1[2:0]. 7. In STM8L05xx, STM8L15xx, STM8L162x, STM8AL31xx, STM8AL3Lxx, STM8AL31Exx and STM8AL3LExx MCU families reference manual (RM0031), tIDLE defines the time between 2 conversions, or between ADC ON and the first conversion. tIDLE is not relevant for this device. 100/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Electrical parameters In the following three tables, data are guaranteed by characterization result, not tested in production. Table 57. ADC1 accuracy with VDDA = 2.5 V to 3.3 V Symbol Typ. Max(1) 1 1.6 Differential non linearity fADC = 8 MHz 1 1.6 fADC = 4 MHz 1 1.5 fADC = 16 MHz 1.2 2 fADC = 8 MHz 1.2 1.8 fADC = 4 MHz 1.2 1.7 fADC = 16 MHz 2.2 3.0 fADC = 8 MHz 1.8 2.5 fADC = 4 MHz 1.8 2.3 fADC = 16 MHz 1.5 2 fADC = 8 MHz 1 1.5 fADC = 4 MHz 0.7 1.2 1 1.5 Parameter Conditions fADC = 16 MHz DNL INL Integral non linearity TUE Total unadjusted error Offset Offset error fADC = 16 MHz Gain Gain error fADC = 8 MHz Unit LSB LSB fADC = 4 MHz 1. Not tested in production. Table 58. ADC1 accuracy with VDDA = 2.4 V to 3.6 V Symbol Parameter Typ. Max(1) 1 2 1.7 3 DNL Differential non linearity INL Integral non linearity TUE Total unadjusted error 2 4 Offset Offset error 1 2 Gain Gain error 1.5 3 Unit LSB 1. Not tested in production. DS7106 Rev 9 101/123 107 Electrical parameters STM8AL313x/4x/6x STM8AL3L4x/6x Table 59. ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V Symbol Parameter Typ. Max(1) DNL Differential non linearity 1 2 INL Integral non linearity 2 3 TUE Total unadjusted error 3 5 Offset Offset error 2 3 Gain Gain error 2 3 Unit LSB 1. Not tested in production. Figure 36. ADC1 accuracy characteristics Figure 37. Typical connection diagram using the ADC STM8AL3xxx VDD Sample and hold ADC converter VT 0.6V RAIN (1) RADC AINx VAIN Cparasitic (2) VT 0.6V 12-bit converter CADC (1) IL ± 50 nA MS37721V1 1. Refer to Table 56 for the values of RAIN and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. 102/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Electrical parameters Figure 38. Maximum dynamic current consumption on VREF+ supply pin during ADC conversion Sampling (n cycles) Conversion (12 cycles) ADC clock IREF+ 700 μA 300 μA MS38388V1 Table 60. RAIN max for fADC = 16 MHz(1) RAIN max (kohm) Ts (cycles) Ts (µs) Slow channels Fast channels 2.4 V < VDDA < 3.6 V 1.8 V < VDDA < 2.4 V 2.4 V < VDDA < 3.3 V 1.8 V < VDDA < 2.4 V 4 0.25 Not allowed Not allowed 0.7 Not allowed 9 0.5625 0.8 Not allowed 2.0 1.0 16 1 2.0 0.8 4.0 3.0 24 1.5 3.0 1.8 6.0 4.5 48 3 6.8 4.0 15.0 10.0 96 6 15.0 10.0 30.0 20.0 192 12 32.0 25.0 50.0 40.0 384 24 50.0 50.0 50.0 50.0 1. Guaranteed by design. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 39 or Figure 40, depending on whether VREF+ is connected to VDDA or not. Good quality ceramic 10 nF capacitors should be used. They should be placed as close as possible to the chip. DS7106 Rev 9 103/123 107 Electrical parameters STM8AL313x/4x/6x STM8AL3L4x/6x Figure 39. Power supply and reference decoupling (VREF+ not connected to VDDA) STM8AL VREF+ External reference 1 μF // 10 nF VDDA Supply 1 μF // 10 nF VSSA/VREF- MS37722V1 Figure 40. Power supply and reference decoupling (VREF+ connected to VDDA) STM8AL VREF+/VDDA Supply 1 μF // 10 nF VREF+/VDDA MS37723V1 104/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x 9.3.15 Electrical parameters EMC characteristics Susceptibility tests are performed on a sample basis during product characterization. Functional EMS (electromagnetic susceptibility) Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs). • ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms to the ANSI/ESDA/JEDEC JS001, JESD22-A115 and ANSI/ESD S5.3.1. • FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000 standard. A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709. Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Prequalification trials: Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Table 61. EMS data Symbol Parameter Conditions VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VEFTB Fast transient voltage burst limits Using HSI to be applied through 100 pF on VDD = 3.3 V, TA = +25 °C, fCPU = 16 MHz, VDD and VSS pins to induce a conforms to IEC 61000 Using HSE functional disturbance VDD = 3.3 V, TA = +25 °C, fCPU = 16 MHz, conforms to IEC 61000 DS7106 Rev 9 Level/ Class 3B 4A 2B 105/123 107 Electrical parameters STM8AL313x/4x/6x STM8AL3L4x/6x Electromagnetic interference (EMI) Based on a simple application running on the product (toggling two LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC61967-2 which specifies the board and the loading of each pin. Table 62. EMI data (1) Symbol SEMI Parameter VDD = 3.6 V, TA = +25 °C, LQFP32 conforming to IEC61967-2 Peak level Max vs. Monitored frequency band Conditions Unit 16 MHz 0.1 MHz to 30 MHz -3 30 MHz to 130 MHz 9 130 MHz to 1 GHz 4 EMI Level 2 dBμV - 1. Not tested in production. Absolute maximum ratings (electrical sensitivity) Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: human body model and charge device model. This test conforms to the ANSI/ESDA/JEDEC JS-001, JESD22-A115 and ANSI/ESD S5.3.1. Table 63. ESD absolute maximum ratings Ratings Conditions Class VESD(HBM) Electrostatic discharge voltage (human body model) TA = +25 °C, conforming to ANSI/ESDA/ JEDEC JS-001 2 2000 VESD(CDM) Electrostatic discharge voltage (charge device model) TA = +25 °C, conforming to ANSI/ESD S5.3.1 C4B 500 VESD(MM) Electrostatic discharge voltage (Machine model) TA = +25 °C, conforming to JESD22-A115 M2 200 1. Guaranteed by characterization results. 106/123 Maximum Unit value (1) Symbol DS7106 Rev 9 V STM8AL313x/4x/6x STM8AL3L4x/6x Electrical parameters Static latch-up • LU: three complementary static tests are required on 6 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181. Table 64. Electrical sensitivities Symbol LU Parameter Conditions Class(1) Static latch-up class TA = 125 °C A 1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard). DS7106 Rev 9 107/123 107 Package information STM8AL313x/4x/6x STM8AL3L4x/6x 10 Package information 10.1 ECOPACK In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 10.2 LQFP48 package information Figure 41. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline c A1 A A2 SEATING PLANE C 0.25 mm GAUGE PLANE ccc C K A1 D L D1 L1 D3 36 25 37 24 48 PIN 1 IDENTIFICATION E 13 1 12 e 1. Drawing is not to scale. 108/123 E1 E3 b DS7106 Rev 9 5B_ME_V2 STM8AL313x/4x/6x STM8AL3L4x/6x Package information Table 65. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. DS7106 Rev 9 109/123 122 Package information STM8AL313x/4x/6x STM8AL3L4x/6x Figure 42. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint 0.50 1.20 36 9.70 0.30 25 37 24 0.20 7.30 5.80 7.30 48 13 12 1 1.20 5.80 9.70 ai14911d 1. Dimensions are expressed in millimeters. Device marking for LQFP48 The following figure gives an example of topside marking orientation versus pin 1 identifier location.The printed markings may differ depending on the supply chain.Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 43. LQFP48 marking example (package top view) Product (1) identification STM8AL 3168TC Date code Y WW Standard ST logo Revision code Pin 1 identifier R MS37481V1 1. Parts marked as “ES” or “E” are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 110/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x LQFP32 package information Figure 44. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline c A2 A1 A SEATING PLANE C 0.25 mm ccc GAUGE PLANE C K D A1 L D1 L1 D3 24 17 25 16 32 9 PIN 1 IDENTIFICATION 1 E E1 E3 b 10.3 Package information 8 e 5V_ME_V2 1. Drawing is not to scale. DS7106 Rev 9 111/123 122 Package information STM8AL313x/4x/6x STM8AL3L4x/6x Table 66. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.300 0.370 0.450 0.0118 0.0146 0.0177 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.600 - - 0.2205 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.600 - - 0.2205 - e - 0.800 - - 0.0315 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.100 - - 0.0039 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 45. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint 0.80 1.20 24 17 25 16 0.50 0.30 7.30 6.10 9.70 7.30 32 9 8 1 1.20 6.10 9.70 1. Dimensions are expressed in millimeters. 112/123 DS7106 Rev 9 5V_FP_V2 STM8AL313x/4x/6x STM8AL3L4x/6x Package information Device marking for LQFP32 The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 46. LQFP32 marking example (package top view) Product (1) identification STM8AL 3136TA Date code Y WW Standard ST logo Revision code Pin 1 identifier R MS37480V1 1. Parts marked as “ES” or “E” are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DS7106 Rev 9 113/123 122 Package information 10.4 STM8AL313x/4x/6x STM8AL3L4x/6x VFQFPN32 package information Figure 47. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package outline Seating plane C ddd C A A1 A3 D e 16 9 17 8 E2 E b 24 1 L 32 Pin # 1 ID R = 0.20 D2 Bottom view L 42_ME_AMKOR_V1 1. Drawing is not to scale. 2. There is an exposed die pad on the underside of the VQFPN package. It is recommended to connect and solder this backside pad to the PCB ground. 114/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Package information Table 67. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.800 0.900 1.000 0.0315 0.0354 0.0394 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 A3 - 0.200 - - 0.0079 - b 0.180 0.250 0.300 0.0071 0.0098 0.0118 D 4.850 5.000 5.150 0.1909 0.1969 0.2028 D2 3.500 3.600 3.700 0.1378 0.1417 0.1457 E 4.850 5.000 5.150 0.1909 0.1969 0.2028 E2 3.500 3.600 3.700 0.1378 0.1417 0.1457 e - 0.500 - - 0.0197 - L 0.300 0.400 0.500 0.0118 0.0157 0.0197 ddd - - 0.050 - - 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. DS7106 Rev 9 115/123 122 Package information STM8AL313x/4x/6x STM8AL3L4x/6x Figure 48. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package recommended footprint 5.30 3.80 0.60 3.60 3.80 5.30 3.60 0.50 0.30 0.75 3.80 MSv45245V1 1. Dimensions are expressed in millimeters. 116/123 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Package information Device marking for VFQFPN32 The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 49. VFQFPN32 marking example (package top view) Product (1) Identification STM8AL Date code Y WW Revision code R Pin 1 identifier MSv44104V1 1. Parts marked as “ES” or “E” are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DS7106 Rev 9 117/123 122 Package information 10.5 STM8AL313x/4x/6x STM8AL3L4x/6x Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 19: General operating conditions. The maximum chip-junction temperature, TJmax, in degree Celsius, may be calculated using the following equation: TJmax = TAmax + (PDmax x ΘJA) Where: • TAmax is the maximum ambient temperature in °C • ΘJA is the package junction-to-ambient thermal resistance in °C/W • PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax) • PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. • PI/Omax represents the maximum power dissipation on output pins Where: PI/Omax = Σ(VOL*IOL) + Σ((VDD-VOH)*I OH), taking into account the actual VOL/IOL and VOH/IOH of the I/Os at low and high level in the application. Table 68. Thermal characteristics(1) Symbol ΘJA Parameter Value Thermal resistance junction-ambient LQFP48- 7 x 7 mm 65 Thermal resistance junction-ambient LQFP32 - 7 x 7 mm 59 Thermal resistance junction-ambient VFQFPN32 - 5 x 5 mm 62 1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment. 118/123 DS7106 Rev 9 Unit °C/W STM8AL313x/4x/6x STM8AL3L4x/6x 11 Device ordering information Device ordering information Figure 50. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x ordering information scheme Example: STM8 AL 31 6 8 T C Y Product class STM8 microcontroller Family type AL = Automotive Low power Sub-family type 31 = Standard 3L = with LCD Memory size 3 = 8 Kbyte 4 = 16 Kbyte 6 = 32 Kbyte Pin count 8 = 48 pins 6 = 32 pins Package T = LQFP U = VFQFPN Temperature range C = - 40 °C to 125 °C A = - 40 °C to 85 °C Packing Y = Tray X = Tape and reel compliant with EIA 481-C 1. For a list of available options (e.g. memory size, package) and order-able part numbers or for further information on any aspect of this device, please contact the nearest ST sales office. DS7106 Rev 9 119/123 122 Revision history 12 STM8AL313x/4x/6x STM8AL3L4x/6x Revision history Table 69. Document revision history Date Revision 04-Jan-2012 1 Initial release 2 Added consumption values when run from Flash or from RAM. Added 8k Flash devices STM8AL3138 and STM8AL3136 to Table 1: Device summary, Table 2: Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x low-power device features and peripheral counts. and Figure 50: Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x ordering information scheme. Added footnotes stating that power consumption has not been tested to Table 21 and Table 22 for HSE, and to Table 23 and Table 24 for LSE. Updated max LSI amperage values in Table 23 and Table 24. Replaced Table 38: Flash program memory and Table 39: Data memory. Added a production test footnote to Table 50: TS characteristics. Updated voltage values in Table 50: TS characteristics, and current values in Table 51: Comparator 1 characteristics and Table 52: Comparator 2 characteristics. Removed Figure 13: Typ. IDD(LPR) vs. VDD (LSI clock source) and Figure 14: Typ. IDD(LPW) vs. VDD (LSI clock source). 20-Dec-2012 Changes Updated ‘Qualification conforms’ bullet on cover page. Updated ‘TS_Factory_CONV’ in Figure 9: Memory map Removed ‘rev G’ in Table 18: Operating lifetime (OLF) Ratings Replaced 0.40 by 0.38 in Table 22: Total current consumption in Wait mode ‘code executed from Flash’ fcpu = 125 kHz Updated footnote (3) in Table 23: Total current consumption and timing in low-power run mode at VDD = 1.65 V to 3.6 V, Table 24: Total current consumption in low-power wait mode at VDD = 1.65 V to 3.6 V and Table 27: Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V 03-Jun-2013 3 Updated footnote (2) in Table 26: Typical current consumption in Activehalt mode, RTC clocked by LSE external crystal Updated max lLEAK_HSE in Table 30: HSE external clock characteristics and Table 31: LSE external clock characteristics Updated ACCHSI in Table 34: HSI oscillator characteristics Updated tprog max Table 38: Flash program memory Updated STABVREFINT in Table 49: Reference voltage characteristics Updated ‘TS_Factory_CONV’ in Table 50: TS characteristics footnote. Updated ‘tconv’ and ‘title’ in Table 56: ADC1 characteristics Updated title in Table 57: ADC1 accuracy with VDDA = 2.5 V to 3.3 V Updated Table 64: Electrical sensitivities 14-Jun-2013 120/123 4 Updated max LSI measures in Table 23: Total current consumption and timing in low-power run mode at VDD = 1.65 V to 3.6 V and Table 24: Total current consumption in low-power wait mode at VDD = 1.65 V to 3.6 V DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x Revision history Table 69. Document revision history (continued) Date 03-Mar-2014 13-May-2015 Revision Changes 5 Changed the document status to Datasheet - Production data to reflect the device maturity. Corrected the data memory size in the Features. Updated the package assignment in Table 2: Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x low-power device features and peripheral counts 6 Updated: – the product names in the document headers and on the cover page, – Section 1: Introduction, – the captions of Figure 3: STM8AL31x8T 48-pin pinout (without LCD), Figure 4: STM8AL3Lx8T 48-pin pinout (with LCD), Figure 5: STM8AL31x6T 32-pin pinout (without LCD), Figure 6: STM8AL3Lx6T 32-pin pinout (with LCD), – Table 6: Flash and RAM boundary addresses, – ILEAK_HSE maximum value in Table 32: HSE oscillator characteristics,ILEAK_LSE maximum value in Table 33: LSE oscillator characteristics, – Table 54, Table 57, Table 58, Table 59 with a footnote for Max values not tested in production, – Section 9.3.15: EMC characteristics, – Section 10.2: LQFP48 package information, – Section 10.3: LQFP32 package information, – Figure 50: Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x ordering information scheme. Added: – Figure 43: LQFP48 marking example (package top view), – Figure 46: LQFP32 marking example (package top view). Moved Section 10.5: Thermal characteristics to Section 10: Package information. DS7106 Rev 9 121/123 122 Revision history STM8AL313x/4x/6x STM8AL3L4x/6x Table 69. Document revision history (continued) Date 18-Oct-2016 28-Mar-2017 19-Apr-2019 122/123 Revision Changes 7 Added: – Section 10.4: VFQFPN32 package information – Figure 7: STM8AL31x6U 32-pin pinout (without LCD) – Figure 8: STM8AL3Lx6U 32-pin pinout (with LCD) Updated: – Section 9.2: Absolute maximum ratings – Section : Device marking for LQFP48 on page 110, Section : Device marking for LQFP32 on page 113 and Section : Device marking for VFQFPN32 on page 117 – Table 2: Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x low-power device features and peripheral counts – Table 5: Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin description – Table 19: General operating conditions – Table 68: Thermal characteristics – Figure 33: SPI1 timing diagram - slave mode and CPHA=1(1) – Figure 34: SPI1 timing diagram - master mode(1) – Figure 50: Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x ordering information scheme – Footnotes on Figure 43: LQFP48 marking example (package top view) and Figure 46: LQFP32 marking example (package top view) 8 Updated: – Table 67: VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package mechanical data – Figure 48: VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package recommended footprint 9 Updated: – tconv parameter in Table 56: ADC1 characteristics – Section : Device marking for LQFP48 – Section : Device marking for LQFP32 – Section : Device marking for VFQFPN32 DS7106 Rev 9 STM8AL313x/4x/6x STM8AL3L4x/6x IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2019 STMicroelectronics – All rights reserved DS7106 Rev 9 123/123 123
STM8AL3148TCX 价格&库存

很抱歉,暂时无法提供与“STM8AL3148TCX”相匹配的价格&库存,您可以联系我们找货

免费人工找货