STM8AL313x/4x/6x
STM8AL3L4x/6x
Automotive 8-bit ultra-low-power MCU, up to 32-Kbyte Flash, RTC,
data EEPROM, LCD, timers, USART, I2C, SPI, ADC, DAC, COMPs
Datasheet production data
Features
• AEC-Q100 qualified
• Operating conditions
– Operating power supply range 1.8 V to
3.6 V (down to 1.65 V at power down)
– Temperature range: - 40 °C to 85 or 125 °C
• Low power features
– Five low-power modes: Wait, low-power
run (5.1 μA), low-power wait (3 μA), activehalt with full RTC (1.3 μA), halt with PDR
(400 nA)
– Run from Flash: 195 μA/MHz + 440 μA
– Run from RAM: 90 μA/MHz + 400 μA
– Ultra-low leakage per I/0: 50 nA
– Fast wakeup from Halt: 4.7 µs
• Advanced STM8 core
– Harvard architecture and 3-stage pipeline
– Max freq. 16 MHz, 16 CISC MIPS peak
– Up to 40 external interrupt sources
• Reset and supply management
– Low power, ultra safe BOR reset with 5
selectable thresholds
– Ultra-low power POR/PDR
– Programmable voltage detector (PVD)
• Clock management
– 1 to 16 MHz crystal oscillator
– 32 kHz crystal oscillator
– Internal 16 MHz factory-trimmed RC
– Internal 38 kHz low consumption RC
– Clock security system
• Low power RTC
– BCD calendar with alarm interrupt
– Auto-wakeup from Halt (0.95 ppm
resolution) w/ periodic interrupt
• LCD: up to 4x28 segments w/ step-up converter
LQFP48
7 x 7 mm
LQFP32
7 x 7 mm
VFQFPN32
5 x 5 mm
• Memories
– Program memory: up to 32 Kbyte Flash
program; data retention 20 years at 55 °C
– Data memory: up to 1 Kbyte true data
EEPROM; endurance 300 kcycle
– RAM: up to 2 Kbyte
• DMA
– Four channels; supported peripherals:
ADC, DAC, SPI, I2C, USART, timers
– One channel for memory-to-memory
• 12-bit DAC with output buffer
• 12-bit ADC up to 1 Mbps/25 channels
– Temp sensor and internal reference voltage
• Two ultra-low-power comparators
– One with fixed threshold and one rail to rail
– Wakeup capability
• Timers
– Two 16-bit timers with two channels (used
as IC, OC, PWM), quadrature encoder
– One 16-bit advanced control timer with
three channels, supporting motor control
– One 8-bit timer with 7-bit prescaler
– Two watchdogs: one window, one
independent
– Beeper timer with 1-, 2- or 4 kHz
frequencies
• Communication interfaces
– Synchronous serial interface (SPI)
– Fast I2C 400 kHz SMBus and PMBus
– USART (ISO 7816 interface, IrDA, LIN 1.3,
LIN 2.0)
• Up to 41 I/Os, all mappable on interrupt vectors
April 2019
This is information on a product in full production.
DS7106 Rev 9
1/123
www.st.com
STM8AL313x/4x/6x STM8AL3L4x/6x
• Development support
– Fast on-chip programming and non
intrusive debugging with SWIM
– Bootloader using USART
• 96-bit unique ID
Table 1. Device summary
2/123
Reference
Part number
STM8AL313x/4x/6x
(without LCD)
STM8AL3136, STM8AL3138, STM8AL3146, STM8AL3148, STM8AL3166,
STM8AL3168
STM8AL3L4x/6x
(with LCD)
STM8AL3L46, STM8AL3L48, STM8AL3L66, STM8AL3L68
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Contents
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1
3
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2
Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3
3.2.1
Advanced STM8 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2
Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4
Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5
Low power real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6
LCD (Liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8
DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9
Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.10
Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11
Ultra-low-power comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12
System configuration controller and routing interface . . . . . . . . . . . . . . . 20
3.13
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14
3.13.1
TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13.2
16-bit general purpose timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13.3
8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14.1
Window watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14.2
Independent watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.15
Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.16
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
DS7106 Rev 9
3/123
5
Contents
4
STM8AL313x/4x/6x STM8AL3L4x/6x
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.16.2
I²C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.16.3
USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.17
Infrared (IR) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.18
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1
5
3.16.1
System configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6
Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7
Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8
Unique ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9
Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.1
4/123
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.3.2
Embedded reset and power control block characteristics . . . . . . . . . . . 62
9.3.3
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.3.4
Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.3.5
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.3.6
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.3.7
I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.3.8
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.3.9
LCD controller (STM8AL3Lxx only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
10
Contents
9.3.10
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.3.11
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
9.3.12
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.3.13
12-bit DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.3.14
12-bit ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.3.15
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.1
ECOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.2
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.3
LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.4
VFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
10.5
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
11
Device ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
12
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
DS7106 Rev 9
5/123
5
List of tables
STM8AL313x/4x/6x STM8AL3L4x/6x
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
6/123
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x low-power device
features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Legend/abbreviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin description . . . . . . . . . . . . 28
Flash and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Factory conversion registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Option byte addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Unique ID registers (96 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Operating lifetime (OLF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 62
Total current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Total current consumption in Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Total current consumption and timing in low-power run mode
at VDD = 1.65 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Total current consumption in low-power wait mode
at VDD = 1.65 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Total current consumption and timing in active-halt mode
at VDD = 1.65 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal . . 72
Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V . . . . . . . . . . . 72
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Current consumption under external reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
HSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
LSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Flash program memory/data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Flash program memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Data memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Output driving current (PA0 with high sink LED driver capability). . . . . . . . . . . . . . . . . . . . 85
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
List of tables
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
SPI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
LCD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Reference voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
DAC output on PB4-PB5-PB6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
ADC1 accuracy with VDDA = 2.5 V to 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
ADC1 accuracy with VDDA = 2.4 V to 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . 102
RAIN max for fADC = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . 109
LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . 112
VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad
flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
DS7106 Rev 9
7/123
7
List of figures
STM8AL313x/4x/6x STM8AL3L4x/6x
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
8/123
Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x device block diagram. . . . . . . 13
Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x clock tree diagram . . . . . . . . . 18
STM8AL31x8T 48-pin pinout (without LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
STM8AL3Lx8T 48-pin pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
STM8AL31x6T 32-pin pinout (without LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
STM8AL3Lx6T 32-pin pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
STM8AL31x6U 32-pin pinout (without LCD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
STM8AL3Lx6U 32-pin pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
POR/BOR thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Typ. IDD(RUN) vs. VDD, fCPU = 16 MHz(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
LSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typical HSI frequency vs VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Typical LSI frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Typical VIL and VIH vs VDD (high sink I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Typical VIL and VIH vs VDD (true open drain I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Typical pull-up resistance RPU vs VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Typical pull-up current Ipu vs VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Typ. VOL @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Typ. VOL @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Typ. VOL @ VDD = 3.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Typ. VOL @ VDD = 1.8 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Typ. VDD - VOH @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Typ. VDD - VOH @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Typical NRST pull-up resistance RPU vs VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Typical NRST pull-up current Ipu vs VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Recommended NRST pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
SPI1 timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
SPI1 timing diagram - slave mode and CPHA=1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
SPI1 timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Typical application with I2C bus and timing diagram(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
ADC1 accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Maximum dynamic current consumption on VREF+ supply pin during ADC conversion . . 103
Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 104
Power supply and reference decoupling (VREF+ connected to VDDA) . . . . . . . . . . . . . . 104
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 108
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . 110
LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 111
LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . 112
LQFP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad
flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Figure 48.
Figure 49.
Figure 50.
List of figures
VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad
flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
VFQFPN32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x
ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
DS7106 Rev 9
9/123
9
Introduction
1
STM8AL313x/4x/6x STM8AL3L4x/6x
Introduction
This document describes the features, pinout, mechanical data and ordering information of
the medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x devices (microcontrollers
with up to 32-Kbyte Flash memory density). These devices are referred to as mediumdensity devices in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31,
STM8AL3L MCU lines reference manual (RM0031) and in STM8L and STM8AL Flash
programming manual (PM0054).
For more details on the whole STMicroelectronics ultra-low-power family please refer to
Section 3: Functional overview on page 13.
For information on the debug module and SWIM (single wire interface module), refer to the
STM8 SWIM communication protocol and debug module user manual (UM0470).
For information on the STM8 core, please refer to the STM8 CPU programming manual
(PM0044).
Note:
The medium-density devices provide the following benefits:
•
•
•
•
Integrated system
–
Up to 32 Kbytes of medium-density embedded Flash program memory
–
1 Kbytes of data EEPROM
–
Internal high speed and low-power low speed RC.
–
Embedded reset
Ultra-low power consumption
–
195 µA/MHZ + 440 µA (consumption)
–
0.9 µA with LSI in Active-halt mode
–
Clock gated system and optimized power management
–
Capability to execute from RAM for Low power wait mode and Low power run
mode
Advanced features
–
Up to 16 MIPS at 16 MHz CPU clock frequency
–
Direct memory access (DMA) for memory-to-memory or peripheral-to-memory
access.
Short development cycles
–
Application scalability across a common family product architecture with
compatible pinout, memory map and modular peripherals.
–
Wide choice of development tools
All devices offer 12-bit ADC, DAC, two comparators, Real-time clock three 16-bit timers, one
8-bit timer as well as standard communication interface such as SPI, I2C and USART. A
4x28-segment LCD is available on the medium-density STM8AL3Lxx line. Table 2: Mediumdensity STM8AL313x/4x/6x and STM8AL3L4x/6x low-power device features and peripheral
counts and Section 3: Functional overview give an overview of the complete range of
peripherals proposed in this family.
Figure 1 shows the general block diagram of the device family.
10/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
2
Description
Description
The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x devices are members of the
STM8AL automotive ultra-low-power 8-bit family. The medium-density STM8AL3xxx family
operates from 1.8 V to 3.6 V (down to 1.65 V at power down) and is available in the -40 to
+85°C and -40 to +125°C temperature ranges.
The medium-density STM8AL3xxx ultra-low-power family features the enhanced STM8
CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while
maintaining the advantages of a CISC architecture with improved code density, a 24-bit
linear addressing space and an optimized architecture for low power operations.
The family includes an integrated debug module with a hardware interface (SWIM) which
allows non-intrusive In-Application debugging and ultrafast Flash programming.
All medium-density STM8AL3xxx microcontrollers feature embedded data EEPROM and
low power low-voltage single-supply program Flash memory.
They incorporate an extensive range of enhanced I/Os and peripherals.
The modular design of the peripheral set allows the same peripherals to be found in
different ST microcontroller families including 32-bit families. This makes any transition to a
different family very easy, and simplified even more by the use of a common set of
development tools.
Two different packages are proposed which include 32 and 48 pins. Depending on the
device chosen, different sets of peripherals are included.
All STM8AL3xxx ultra-low-power products are based on the same architecture with the
same memory mapping and a coherent pinout.
DS7106 Rev 9
11/123
54
Description
2.1
STM8AL313x/4x/6x STM8AL3L4x/6x
Device overview
Table 2. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x low-power device
features and peripheral counts
Features
Flash (Kbyte)
STM8AL3xx6
8
16
32
Data EEPROM (Kbyte)
8
16
2
LCD
4x17
2
(1)
4x28 (1)
Basic
1
(8-bit)
1
(8-bit)
General purpose
2
(16-bit)
2
(16-bit)
Advanced control
1
(16-bit)
1
(16-bit)
1
1
1
1
SPI
Communication
I2C
interfaces
USART
GPIOs
12-bit synchronized ADC
(number of channels)
12-Bit DAC
(number of channels)
Comparators COMP1/COMP2
Others
1
30
(2)(3)
or 29
1
(1)(3)
Operating temperature
Packages
41(3)
1
(22 (2) or 21 (1))
1
(25)
1
(1)
1
(1)
2
2
RTC, window watchdog, independent watchdog,
16-MHz and 38-kHz internal RC, 1- to 16-MHz and 32-kHz external oscillator
CPU frequency
Operating voltage
16 MHz
1.8 V to 3.6 V (down to 1.65 V at power down)
-40 to +85 °C/-40 to +125 °C
LQFP32 (7 x7 mm)
VFQFPN32 (5 x 5 mm)
LQFP48 (7x7)
VFQFPN32 (5 x 5 mm)
1. STM8AL3Lxx versions only
2. STM8AL31xx versions only
3. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as
general purpose output only (PA1).
12/123
32
1
RAM-Kbyte
Timers
STM8AL3xx8
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
3
Functional overview
Functional overview
Figure 1. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x device block diagram
OSC_IN,
OSC_OUT
16 MHz internal RC
OSC32_IN,
OSC32_OUT
@VDD
1-16 MHz oscillator
32 kHz oscillator
VDD18
Clock
controller
and CSS
VOLT. REG.
Clocks
to core and
peripherals
38 kHz internal RC
RESET
Interrupt controller
Debug module
(SWIM)
16-bit Timer 2
2 channels
16-bit Timer 3
3 channels
16-bit Timer 1
8-bit Timer 4
IR_TIM
Infrared interface
DMA1 (4 channels)
SCL, SDA,
SMB
I²C1
SPI1_MOSI, SPI1_MISO,
SPI1_SCK, SPI1_NSS
SPI1
USART1_RX, USART1_TX,
USART1_CK
USART1
NRST
BOR
PVD
A d d r es s , c o n t r ol an d d at a b u ses
2 channels
VDD = 1.65 V
to 3.6 V
VSS
POR/PDR
STM8 Core
SWIM
Power
PVD_IN
32 Kbyte
program memory
1 Kbyte
data EEPROM
2 Kbyte RAM
Port A
PA[7:0]
Port B
PB[7:0]
Port C
PC[7:0]
Port D
PD[7:0]
Port E
PE[7:0]
Port F
PF[7:0]
PG[7:0]
VDDA, VSSA
ADC1_INx
VREF+
VREF-
@ VDDA, VSSA
PH[7:0]
12-bit ADC1
PI[3:0]
Temp sensor
Beeper
RTC
VREFINT out
Internal reference
voltage
BEEP
ALARM, CALIB,
TAMP1/2/3
IWDG
(38 kHz clock)
COMP1_INP
COMP2_INP
COMP2_INM
DAC_OUT
VREF+
V
= 2.5 to 3.6 V
LCD
COMP 1
WWDG
COMP 2
12-bitDAC1
DAC
12-bit
LCD driver
4x28
SEGx, COMx
LCD booster
MS38389V1
1. Legend: ADC (Analog-to-digital converter), BOR (Brownout reset), DMA (Direct memory access), DAC (Digital-to-analog
converter), I²C (Inter-integrated circuit multimaster interface), IWDG (Independent watchdog), LCD (Liquid crystal display),
POR/PDR (Power on reset / power down reset), RTC (Real-time clock), SPI (Serial peripheral interface), SWIM (Single
wire interface module), USART (Universal synchronous asynchronous receiver transmitter), WWDG (Window watchdog).
DS7106 Rev 9
13/123
54
Functional overview
3.1
STM8AL313x/4x/6x STM8AL3L4x/6x
Low-power modes
The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x devices support five lowpower modes to achieve the best compromise between low power consumption, short
startup time and available wakeup sources:
14/123
•
Wait mode: CPU clock is stopped, but selected peripherals keep running. An internal
or external interrupt, event or a Reset can be used to exit the microcontroller from Wait
mode (WFE or WFI mode). Wait consumption: refer to Table 22.
•
Low power run mode: The CPU and the selected peripherals are running. Execution
is done from RAM with a low speed oscillator (LSI or LSE). Flash and data EEPROM
are stopped and the voltage regulator is configured in ultra-low-power mode. The
microcontroller enters Low power run mode by software and can exit from this mode by
software or by a reset.
All interrupts must be masked. They cannot be used to exit the microcontroller from this
mode. Low power run mode consumption: refer to Table 23.
•
Low power wait mode: This mode is entered when executing a Wait for event in Low
power run mode. It is similar to Low power run mode except that the CPU clock is
stopped. The wakeup from this mode is triggered by a Reset or by an internal or
external event (peripheral event generated by the timers, serial interfaces, DMA
controller (DMA1), comparators and I/O ports). When the wakeup is triggered by an
event, the system goes back to Low power run mode.
All interrupts must be masked. They cannot be used to exit the microcontroller from this
mode. Low power wait mode consumption: refer to Table 24.
•
Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup
can be triggered by RTC interrupts, external interrupts or reset. Active-halt
consumption: refer to Table 25 and Table 26.
•
Halt mode: CPU and peripheral clocks are stopped, the device remains powered on.
The RAM content is preserved. The wakeup is triggered by an external interrupt or
reset. A few peripherals have also a wakeup from Halt capability. Switching off the
internal reference voltage reduces power consumption. Through software configuration
it is also possible to wake up the device without waiting for the internal reference
voltage wakeup time to have a fast wakeup time of 5 µs. Halt consumption: refer to
Table 27.
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Functional overview
3.2
Central processing unit STM8
3.2.1
Advanced STM8 core
The 8-bit STM8 core is designed for code efficiency and performance with an Harvard
architecture and a 3-stage pipeline.
It contains six internal registers which are directly addressable in each execution context, 20
addressing modes including indexed indirect and relative addressing, and 80 instructions.
Architecture and registers
•
Harvard architecture
•
3-stage pipeline
•
32-bit wide program memory bus - single cycle fetching most instructions
•
X and Y 16-bit index registers - enabling indexed addressing modes with or without
offset and read-modify-write type data manipulations
•
8-bit accumulator
•
24-bit program counter - 16 Mbyte linear memory space
•
16-bit stack pointer - access to a 64 Kbyte level stack
•
8-bit condition code register - 7 condition flags for the result of the last instruction
Addressing
•
20 addressing modes
•
Indexed indirect addressing mode for lookup tables located anywhere in the address
space
•
Stack pointer relative addressing mode for local variables and parameter passing
Instruction set
3.2.2
•
80 instructions with 2-byte average instruction size
•
Standard data movement and logic/arithmetic functions
•
8-bit by 8-bit multiplication
•
16-bit by 8-bit and 16-bit by 16-bit division
•
Bit manipulation
•
Data transfer between stack and accumulator (push/pop) with direct stack access
•
Data transfer using the X and Y registers or direct memory-to-memory transfers
Interrupt controller
The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x feature a nested vectored
interrupt controller:
•
Nested interrupts with 3 software priority levels
•
32 interrupt vectors with hardware priority
•
Up to 40 external interrupt sources on 11 vectors
•
Trap and reset interrupts
DS7106 Rev 9
15/123
54
Functional overview
STM8AL313x/4x/6x STM8AL3L4x/6x
3.3
Reset and supply management
3.3.1
Power supply scheme
The STM8AL313x/4x/6x and STM8AL3L4x/6x require a 1.65 V to 3.6 V operating supply
voltage (VDD). The external power supply pins must be connected as follows:
3.3.2
•
VSS1; VDD1 = 1.8 to 3.6 V, down to 1.65 V at power down: external power supply for
I/Os and for the internal regulator. Provided externally through VDD1 pins, the
corresponding ground pin is VSS1.
•
VSSA; VDDA = 1.8 V to 3.6 V, down to 1.65 V at power down: external power supplies for
analog peripherals (minimum voltage to be applied to VDDA is 1.8 V when the ADC1 is
used). VDDA and VSSA must be connected to VDD1 and VSS1, respectively.
•
VSS2; VDD2 = 1.8 V to 3.6 V, down to 1.65 V at power down: external power supplies for
I/Os. VDD2 and VSS2 must be connected to VDD1 and VSS1, respectively.
•
VREF+; VREF- (for ADC1): external reference voltage for ADC1. Must be provided
externally through VREF+ and VREF- pin.
•
VREF+ (for DAC): external voltage reference for DAC must be provided externally
through VREF+.
Power supply supervisor
The STM8AL313x/4x/6x and STM8AL3L4x/6x have an integrated ZEROPOWER power-on
reset (POR)/power-down reset (PDR), coupled with a brownout reset (BOR) circuitry. At
power-on, BOR is always active, and ensures proper operation starting from 1.8 V. After the
1.8 V BOR threshold is reached, the option byte loading process starts, either to confirm or
modify default thresholds, or to disable BOR permanently (in which case, the VDD min value
at power down is 1.65 V).
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To
reduce the power consumption in Halt mode, it is possible to automatically switch off the
internal reference voltage (and consequently the BOR) in Halt mode. The device remains
under reset when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need
for any external reset circuit.
The STM8AL313x/4x/6x and STM8AL3L4x/6x feature an embedded programmable voltage
detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD
threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by
software, with a step around 200 mV. An interrupt can be generated when VDD/VDDA drops
below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The
interrupt service routine can then generate a warning message and/or put the MCU into a
safe state. The PVD is enabled by software.
16/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
3.3.3
Functional overview
Voltage regulator
The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x embed an internal voltage
regulator for generating the 1.8 V power supply for the core and peripherals.
This regulator has two different modes:
•
Main voltage regulator mode (MVR) for Run, Wait for interrupt (WFI) and Wait for event
(WFE) modes.
•
Low power voltage regulator mode (LPVR) for Halt, Active-halt, Low power run and
Low power wait modes.
When entering Halt or Active-halt modes, the system automatically switches from the MVR
to the LPVR in order to reduce current consumption.
3.4
Clock management
The clock controller distributes the system clock (SYSCLK) coming from different oscillators
to the core and the peripherals. It also manages the clock gating for low-power modes and
ensures clock robustness.
Features
•
Clock prescaler: to get the best compromise between speed and current consumption
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler.
•
Safe clock switching: the clock sources can be changed safely on the fly in run mode
through a configuration register.
•
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
•
System clock sources: four different clock sources can be used to drive the system
clock:
–
1-16 MHz High speed external crystal (HSE),
–
16 MHz High speed internal RC oscillator (HSI),
–
32.768 kHz Low speed external crystal (LSE),
–
38 kHz Low speed internal RC (LSI).
•
RTC and LCD clock sources: the above four sources can be chosen to clock the RTC
and the LCD, whatever the system clock.
•
Startup clock: After reset, the microcontroller restarts by default with an internal
2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the
application program as soon as the code execution starts.
•
Clock security system (CSS): This feature can be enabled by software. If a HSE
clock failure occurs, the system clock is automatically switched to HSI.
•
Configurable main clock output (CCO): This outputs an external clock for use by the
application.
DS7106 Rev 9
17/123
54
Functional overview
STM8AL313x/4x/6x STM8AL3L4x/6x
Figure 2. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x clock tree diagram
CSS
OSC_IN
HSE (1)
HSE OSC
1 - 16 MHz
OSC_OUT
HSI
HSI RC
16 MHz
SYSCLK
prescaler
/1;2;4;8;16;32;64;128
LSI
LSE (2)
SYSCLK to core and memory
Peripheral
clock enable (15 bit)
LSE
(2)
BEEPCLK
CLKBEEPSEL[1:0]
LSI
LSI RC
38 kHz
IWDGCLK
RTCCLK
RTCSEL[3:0]
OSC32_IN
RTC
prescaler
/1;2;4;8;16;32;64
LSE OSC
32.768 kHz
OSC32_OUT
PCLK
to peripherals
LCD peripheral
clock enable (1 bit)
RTCCLK/2
RTCCLK
/2
to BEEP
to IWDG
to RTC
to LCD
Halt
LCDCLK
CCO
configurable
clock output
CCO
prescaler
/1;2;4;8;16;32;64
HSI
LSI
HSE (1)
LSE (2)
SYSCLK
to LCD
LCD peripheral
clock enable (1 bit)
ai15366g
1. The HSE clock source can be either an external crystal/ceramic resonator or an external source (HSE bypass). Refer to
Section HSE clock in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU lines
reference manual (RM0031).
2. The LSE clock source can be either an external crystal/ceramic resonator or a external source (LSE bypass). Refer to
Section LSE clock in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU lines
reference manual (RM0031).
3.5
Low power real-time clock
The real-time clock (RTC) is an independent binary coded decimal (BCD) timer/counter.
Six byte locations contain the second, minute, hour (12/24 hour), week day, date, month,
year, in BCD (binary coded decimal) format. Correction for 28, 29 (leap year), 30, and 31
day months are made automatically.
It provides a programmable alarm and programmable periodic interrupts with wakeup from
Halt capability.
18/123
•
Periodic wakeup time using the 32.768 kHz LSE with the lowest resolution (of 61 µs) is
from min. 122 µs to max. 3.9 s. With a different resolution, the wakeup time can reach
36 hours.
•
Periodic alarms based on the calendar can also be generated from every second to
every year.
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
3.6
Functional overview
LCD (Liquid crystal display)
The liquid crystal display drives up to four common terminals and up to 28 segment
terminals to drive up to 112 pixels.
•
Internal step-up converter to guarantee contrast control whatever VDD.
•
Static 1/2, 1/3, 1/4 duty supported.
•
Static 1/2, 1/3 bias supported.
•
Phase inversion to reduce power consumption and EMI.
•
Up to 4 pixels which can programmed to blink.
•
The LCD controller can operate in Halt mode.
Note:
Unnecessary segments and common pins can be used as general I/O pins.
3.7
Memories
The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x devices have the following
main features:
•
Up to 2 Kbytes of RAM
•
The non-volatile memory is divided into three arrays:
–
Up to 32 Kbytes of medium-density embedded Flash program memory
–
1 Kbytes of Data EEPROM
–
Option bytes.
It supports the read-while-write (RWW): it is possible to execute the code from the program
matrix while programming/erasing the data matrix.
The option byte protects part of the Flash program memory from write and readout piracy.
3.8
DMA
A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and
peripherals-from/to-memory transfer capability. The 4 channels are shared between the
following IPs with DMA capability: ADC1, DAC, I2C1, SPI1, USART1, the 4 Timers.
3.9
Note:
Analog-to-digital converter
•
12-bit analog-to-digital converter (ADC1) with 25 channels (including 1 fast channel),
temperature sensor and internal reference voltage
•
Conversion time down to 1 µs with fSYSCLK= 16 MHz
•
Programmable resolution
•
Programmable sampling time
•
Single and continuous mode of conversion
•
Scan capability: automatic conversion performed on a selected group of analog inputs
•
Analog watchdog
•
Triggered by timer
ADC1 can be served by DMA1.
DS7106 Rev 9
19/123
54
Functional overview
3.10
STM8AL313x/4x/6x STM8AL3L4x/6x
Digital-to-analog converter (DAC)
•
12-bit DAC with output buffer
•
Synchronized update capability using TIM4
•
DMA capability
•
External triggers for conversion
•
Input reference voltage VREF+ for better resolution
Note:
DAC can be served by DMA1.
3.11
Ultra-low-power comparators
The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x embed two comparators
(COMP1 and COMP2) that share the same current bias and voltage reference. The voltage
reference can be internal or external (coming from an I/O).
•
One comparator with fixed threshold (COMP1).
•
One comparator rail to rail with fast or slow mode (COMP2). The threshold can be one
of the following:
–
DAC output,
–
External I/O,
–
Internal reference voltage or internal reference voltage sub multiple (1/4, 1/2, 3/4).
The two comparators can be used together to offer a window function. They can wake up
from Halt mode.
3.12
System configuration controller and routing interface
The system configuration controller provides the capability to remap some alternate
functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped.
The highly flexible routing interface allows application software to control the routing of
different I/Os to the TIM1 timer input captures. It also controls the routing of internal analog
signals to ADC1, COMP1, COMP2, DAC and the internal reference voltage VREFINT. It also
provides a set of registers for efficiently managing the charge transfer acquisition sequence
(see Section 3.13: Timers).
20/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
3.13
Functional overview
Timers
The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x devices contain one
advanced control timer (TIM1), two 16-bit general purpose timers (TIM2 and TIM3) and one
8-bit basic timer (TIM4).
All the timers can be served by DMA1.
Table 3 compares the features of the advanced control, general-purpose and basic timers.
Table 3. Timer feature comparison
Timer
Counter Counter
resolution
type
16-bit
up/down
TIM3
TIM4
3.13.1
DMA1
request
generation
Capture/compare
channels
Complementary
outputs
3+1
3
Any integer
from 1 to 65536
TIM1
TIM2
Prescaler factor
8-bit
up
Any power of 2
from 1 to 128
Yes
Any power of 2
from 1 to 32768
2
None
0
TIM1 - 16-bit advanced control timer
This is a high-end timer designed for a wide range of control applications. With its
complementary outputs, dead-time control and center-aligned PWM capability, the field of
applications is extended to motor control, lighting and half-bridge driver.
3.13.2
•
16-bit up, down and up/down auto reload counter with 16-bit prescaler
•
Three independent capture/compare channels (CAPCOM) configurable as input
capture, output compare, PWM generation (edge and center aligned mode) and single
pulse mode output.
•
One additional capture/compare channel which is not connected to an external I/O
•
Synchronization module to control the timer with external signals
•
Break input to force timer outputs into a defined state
•
Three complementary outputs with adjustable dead time
•
Encoder mode
•
Interrupt capability on various events (capture, compare, overflow, break, trigger)
16-bit general purpose timers
•
16-bit auto reload (AR) up/down-counter
•
7-bit prescaler adjustable to fixed power of 2 ratios (1…128)
•
Two individually configurable capture/compare channels
•
PWM mode
•
Interrupt capability on various events (capture, compare, overflow, break, trigger)
•
Synchronization with other timers or external signals (external clock, reset, trigger and
enable)
DS7106 Rev 9
21/123
54
Functional overview
3.13.3
STM8AL313x/4x/6x STM8AL3L4x/6x
8-bit basic timer
The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable
prescaler. It can be used for timebase generation with interrupt generation on timer overflow
or for DAC trigger generation.
3.14
Watchdog timers
The watchdog system is based on two independent timers providing maximum security to
the applications.
3.14.1
Window watchdog timer
The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually
generated by external interferences or by unexpected logical conditions, which cause the
application program to abandon its normal sequence.
3.14.2
Independent watchdog timer
The independent watchdog peripheral (IWDG) can be used to resolve processor
malfunctions due to hardware or software failures.
It is clocked by the internal LSI RC clock source, and thus stays active even in case of a
CPU clock failure.
3.15
Beeper
The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in
the range of 1, 2 or 4 kHz.
3.16
Communication interfaces
3.16.1
SPI
The serial peripheral interface (SPI1) provides half/ full duplex synchronous serial
communication with external devices.
Note:
22/123
•
Maximum speed: 8 Mbit/s (fSYSCLK/2) both for master and slave
•
Full duplex synchronous transfers
•
Simplex synchronous transfers on 2 lines with a possible bidirectional data line
•
Master or slave operation - selectable by hardware or software
•
Hardware CRC calculation
•
Slave/master selection input pin
SPI1 can be served by the DMA1 Controller.
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
3.16.2
Functional overview
I²C
The I2C bus interface (I2C1) provides multi-master capability, and controls all I²C busspecific sequencing, protocol, arbitration and timing.
•
Master, slave and multi-master capability
•
Standard mode up to 100 kHz and fast speed modes up to 400 kHz
•
7-bit and 10-bit addressing modes
•
SMBus 2.0 and PMBus support
•
Hardware CRC calculation
Note:
I2C1 can be served by the DMA1 Controller.
3.16.3
USART
The USART interface (USART1) allows full duplex, asynchronous communications with
external devices requiring an industry standard NRZ asynchronous serial data format. It
offers a very wide range of baud rates.
Note:
•
1 Mbit/s full duplex SCI
•
SPI1 emulation
•
High precision baud rate generator
•
SmartCard emulation
•
IrDA SIR encoder decoder
•
Single wire half duplex mode
USART1 can be served by the DMA1 Controller.
USART1 can be used to implement LIN slave communication, with LIN Break detection on
the framing error flag (FE in USART_SR register) with a value of 0 in the USART data
register (USART_DR).
3.17
Infrared (IR) interface
The medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x devices contain an infrared
interface which can be used with an IR LED for remote control functions. Two timer output
compare channels are used to generate the infrared remote control signals.
3.18
Development support
Development tools
Development tools for the STM8 microcontrollers include:
•
The STice emulation system offering tracing and code profiling
•
The STVD high-level language debugger including C compiler, assembler and
integrated development environment.
•
The STVP Flash programming software
The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit
debugging/programming tools.
DS7106 Rev 9
23/123
54
Functional overview
STM8AL313x/4x/6x STM8AL3L4x/6x
Single wire data interface (SWIM) and debug module
The debug module with its single wire data interface (SWIM) permits non-intrusive real-time
in-circuit debugging and fast memory programming.
The Single wire interface is used for direct access to the debugging module and memory
programming. The interface can be activated in all device operation modes.
The non-intrusive debugging module features a performance close to a full-featured
emulator. Beside memory and peripherals, CPU operation can also be monitored in realtime by means of shadow registers.
Bootloader
A bootloader is available to reprogram the Flash memory using the USART1 interface. The
reference document for the bootloader is UM0560: STM8 bootloader user manual.
24/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Pin description
PE7
PE6
PC7
PC6
PC5
PC4
PC3
PC2
VSS2
VDD2
PC1
PC0
Figure 3. STM8AL31x8T 48-pin pinout (without LCD)
48 47 46 45 4443 42 41 40 3938 37
1
36
35
2
3
34
33
4
32
5
31
6
7
30
8
29
28
9
10
27
11
26
25
12
13 14 15 16 1718 19 20 21 22 23 24
PD7
PD6
PD5
PD4
PF0
PB7
PB6
PB5
PB4
PB3
PB2
PB1
Res. (1)
PE0
PE1
PE2
PE3
PE4
PE5
PD0
PD1
PD2
PD3
PB0
PA0
NRST/PA1
PA2
PA3
PA4
PA5
PA6
PA7
VSS1/VSSA/VREFVDD1
VDDA
VREF+
MS31499V1
1. Reserved. Must be tied to VDD.
PE7
PE6
PC7
PC6
PC5
PC4
PC3
PC2
VSS2
VDD2
PC1
PC0
Figure 4. STM8AL3Lx8T 48-pin pinout (with LCD)
PA0
NRST/PA1
PA2
PA3
PA4
PA5
PA6
PA7
VSS1/VSSA/VREFVDD1
VDDA
VREF+
48 47 46 45 4443 42 4140 39 38 37
1
36
2
35
3
34
4
33
5
32
6
31
7
30
8
29
9
28
10
27
11
26
12
25
13 14 15 16 1718 19 20 21 22 23 24
PD7
PD6
PD5
PD4
PF0
PB7
PB6
PB5
PB4
PB3
PB2
PB1
VLCD
PE0
PE1
PE2
PE3
PE4
PE5
PD0
PD1
PD2
PD3
PB0
4
Pin description
MS31498V1
DS7106 Rev 9
25/123
54
Pin description
STM8AL313x/4x/6x STM8AL3L4x/6x
PA0
PC6
PC5
PC4
PC3
PC2
PC1
PC0
Figure 5. STM8AL31x6T 32-pin pinout (without LCD)
1
2
3
4
5
6
7
8
32 31 30 29 28 27 26 25
24
23
22
21
20
19
18
17
9 10 11 12 13 14 15 16
PD7
PD6
PD5
PD4
PB7
PB6
PB5
PB4
PD0
PD1
PD2
PD3
PB0
PB1
PB2
PB3
NRST/PA1
PA2
PA3
PA4
PA5
PA6
VSS1
VDD1
ai18794V2
PA0
PC6
PC5
PC4
PC3
PC2
PC1
PC0
Figure 6. STM8AL3Lx6T 32-pin pinout (with LCD)
1
2
3
4
5
6
7
8
32 31 30 29 28 27 26 25
24
23
22
21
20
19
18
17
9 10 11 12 13 14 15 16
PD7
PD6
PD5
PD4
PB7
PB6
PB5
PB4
VLCD
PD1
PD2
PD3
PB0
PB1
PB2
PB3
NRST/PA1
PA2
PA3
PA4
PA5
PA6
VSS1
VDD1
ai18795V2
26/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Pin description
32
31
30
29
28
27
26
PC0
PC2
PC1
PC6
PC5
PC4
PC3
PA0
Figure 7. STM8AL31x6U 32-pin pinout (without LCD)
25
NRST/PA1
1
24
PA2
PA3
2
23
3
22
PA4
4
21
PA5
PA6
VSS1
VDD1
5
20
6
19
7
18
8
12
13
14
15
16
17
PB6
PB5
PB4
PB0
PB1
PB2
PB3
11
PD2
PD3
10
PD0
PD1
9
PD7
PD6
PD5
PD4
PB7
MSv39044V1
32
31
30
29
28
27
26
PC0
PC2
PC1
PC6
PC5
PC4
PC3
PA0
Figure 8. STM8AL3Lx6U 32-pin pinout (with LCD)
25
NRST/PA1
1
24
PA2
PA3
2
23
3
22
PA4
4
21
PA5
PA6
VSS1
VDD1
5
20
6
19
7
18
8
12
13
14
15
16
17
PB6
PB5
PB4
PB0
PB1
PB2
PB3
11
PD2
PD3
10
VLCD
PD1
9
PD7
PD6
PD5
PD4
PB7
MSv39045V1
DS7106 Rev 9
27/123
54
Pin description
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 4. Legend/abbreviation
Type
I= input, O = output, S = power supply
I/O level
TT
3.6 V tolerant
FT
Five-volt tolerant
Input
– floating
– wpu = weak pull-up
– Ext. interrupt = external interrupt
Output
– HS = high sink/source
– OD = open drain (where T defines a true open drain)
– PP = push pull
Port and control
configuration
Reset state
Underlined X (pin state after reset release).
Unless otherwise specified, the pin state is the same during the reset phase (i.e.
“under reset”) and after internal reset release (i.e. at reset state).
Table 5. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin description
3
4
5
-
6
2
3
-
4
-
28/123
OD
PP
-
X
-
HS
-
X Reset
NRST/PA1(1)
2
PA2/OSC_IN/
[USART1_TX](4)/
[SPI1_MISO] (4)
3
PA3/OSC_OUT/[USART1
I/O
_RX](4)/[SPI1_MOSI](4)
-
PA4/TIM2_BKIN/
LCD_COM0(2)/ADC1_IN2 I/O TT(3) X
/COMP1_INP
4
PA4/TIM2_BKIN/
[TIM2_ETR](4)/
LCD_COM0(2)/
ADC1_IN2/COMP1_INP
-
PA5/TIM3_BKIN/
LCD_COM1(2)/ADC1_IN1 I/O TT(3) X
/COMP1_INP
I/O
-
-
Main function
(after reset)
High sink/source
-
Ext. interrupt
I/O
wpu
1
Output
floating
LQFP32
1
Pin name
I/O level
VFQFPN32
2
Input
Type
LQFP48
Pin number
X
X
I/O TT(3) X
X
X
X
X
X
X
X
X
X
X
DS7106 Rev 9
HS
HS
HS
HS
HS
X
X
X
X
X
Default alternate
function
PA1
X Port A2
HSE oscillator input /
[USART1 transmit] /
[SPI1 master in- slave
out]
X Port A3
HSE oscillator output
/ [USART1 receive]/
[SPI1 master
out/slave in]
X Port A4
Timer 2 - break input /
LCD COM 0 / ADC1
input 2 / Comparator
1 positive input
X Port A4
Timer 2 - break input /
[Timer 2 - trigger] /
LCD_COM 0 / ADC1
input 2 /
Comparator 1 positive
input
X Port A5
Timer 3 - break input /
LCD_COM 1 / ADC1
input 1/
Comparator 1 positive
input
STM8AL313x/4x/6x STM8AL3L4x/6x
Pin description
Table 5. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin description (continued)
-
5
5
PA5/TIM3_BKIN/
[TIM3_ETR](4)/
I/O TT(3) X
LCD_COM1(2)/ADC1_IN1
/COMP1_INP
X
X
HS
X
X
HS
7
6
6
PA6/[ADC1_TRIG](4)/
LCD_COM2(2)/ADC1_IN0 I/O TT(3) X
/COMP1_INP
8
-
-
PA7/LCD_SEG0(2)(5)
I/O FT
X
X
X
24 13
PB0(6)/TIM2_CH1/
13 LCD_SEG10(2)/
I/O TT(3) X(6) X(6) X
ADC1_IN18/COMP1_INP
25 14
PB1/TIM3_CH1/
14 LCD_SEG11(2)/
I/O TT(3) X
ADC1_IN17/COMP1_INP
26 15
PB2/ TIM2_CH2/
I/O TT(3) X
15 LCD_SEG12(2)/
ADC1_IN16/COMP1_INP
27
-
-
PB3/TIM2_ETR/
LCD_SEG13(2)/
I/O TT(3) X
ADC1_IN15/COMP1_INP
X
X
X
X
X
X
HS
HS
HS
HS
HS
Main function
(after reset)
PP
OD
High sink/source
Output
Ext. interrupt
wpu
floating
Pin name
I/O level
Input
Type
LQFP32
VFQFPN32
LQFP48
Pin number
X Port A5
Timer 3 - break input /
[Timer 3 - trigger] /
LCD_COM 1 /
ADC1 input 1 /
Comparator 1 positive
input
X
X Port A6
[ADC1 - trigger] /
LCD_COM2 /
ADC1 input 0 /
Comparator 1 positive
input
X
X Port A7
LCD segment 0
X Port B0
Timer 2 - channel 1 /
LCD segment 10 /
ADC1_IN18 /
Comparator 1 positive
input
X Port B1
Timer 3 - channel 1 /
LCD segment 11 /
ADC1_IN17 /
Comparator 1 positive
input
X Port B2
Timer 2 - channel 2 /
LCD segment 12 /
ADC1_IN16/
Comparator 1 positive
input
X Port B3
Timer 2 - trigger /
LCD segment 13
/ADC1_IN15 /
Comparator 1 positive
input
X Port B3
[Timer 2 - trigger] /
Timer 1 inverted
channel 2 / LCD
segment 13 /
ADC1_IN15 /
Comparator 1 positive
input
X
X
X
X
X
(4)/
-
16
PB3/[TIM2_ETR]
TIM1_CH2N/LCD_SEG13
16 (2)
I/O TT(3) X
/ADC1_IN15/
COMP1_INP
X
X
DS7106 Rev 9
HS
Default alternate
function
X
29/123
54
Pin description
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 5. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin description (continued)
28
-
29
-
-
17
-
18
-
I/O TT(3) X(6) X(6) X
PB5/[SPI1_SCK](4)/
LCD_SEG15(2)/
I/O TT(3) X
ADC1_IN13/COMP1_INP
PB5/[SPI1_SCK](4)/
LCD_SEG15(2)/
18
ADC1_IN13/DAC_OUT/
COMP1_INP
I/O TT(3) X
X
X
X
X
HS
HS
HS
HS
X
X
X
X
Main function
(after reset)
PP
OD
High sink/source
Ext. interrupt
wpu
Output
PB4(6)/[SPI1_NSS](4)/
LCD_SEG14(2)/
I/O TT(3) X(6) X(6) X
ADC1_IN14/COMP1_INP
PB4(6)/[SPI1_NSS](4)/
LCD_SEG14(2)/
17
ADC1_IN14/
COMP1_INP/DAC_OUT
-
floating
Pin name
I/O level
Input
Type
LQFP32
VFQFPN32
LQFP48
Pin number
X Port B4
[SPI1 master/slave
select] / LCD segment
14 / ADC1_IN14 /
Comparator 1 positive
input
X Port B4
[SPI1 master/slave
select] / LCD segment
14 / ADC1_IN14 /
DAC output /
Comparator 1 positive
input
X Port B5
[SPI1 clock] / LCD
segment 15 /
ADC1_IN13 /
Comparator 1 positive
input
X Port B5
[SPI1 clock] / LCD
segment 15 /
ADC1_IN13 / DAC
output/
Comparator 1 positive
input
X Port B6
[SPI1 master
out/slave in]/
LCD segment 16 /
ADC1_IN12 /
Comparator 1 positive
input
X Port B6
[SPI1 master out]/
slave in / LCD
segment 16 /
ADC1_IN12 / DAC
output / Comparator 1
positive input
X Port B7
[SPI1 master in- slave
out] /
LCD segment 17 /
ADC1_IN11 /
Comparator 1 positive
input
(4)/
30
-
-
19
-
PB6/[SPI1_MOSI]
I/O TT(3) X
LCD_SEG16(2)/
ADC1_IN12/COMP1_INP
PB6/[SPI1_MOSI](4)/
LCD_SEG16(2)/
I/O TT(3) X
19
ADC1_IN12/COMP1_INP
/DAC_OUT
X
X
X
X
HS
HS
X
X
(4)/
31 20
PB7/[SPI1_MISO]
I/O TT(3) X
20 LCD_SEG17(2)/
ADC1_IN11/COMP1_INP
X
X
37 25
25 PC0(5)/I2C1_SDA
-
X
30/123
I/O FT
X
DS7106 Rev 9
HS
X
T(7)
Default alternate
function
Port C0
I2C1 data
STM8AL313x/4x/6x STM8AL3L4x/6x
Pin description
Table 5. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin description (continued)
41 27
42 28
PC2/USART1_RX/
27 LCD_SEG22/ADC1_IN6/
COMP1_INP/VREFINT
PC3/USART1_TX/
LCD_SEG23(2)/
28
ADC1_IN5/COMP1_INP/
COMP2_INM
OD
-
X
-
T(7)
I/O TT(3) X
I/O TT(3) X
X
X
X
X
HS
HS
X
X
Main function
(after reset)
High sink/source
X
PP
Ext. interrupt
I/O FT
Output
wpu
26 PC1(5)/I2C1_SCL
I/O level
Pin name
Type
Input
floating
38 26
LQFP32
VFQFPN32
LQFP48
Pin number
Port C1
Default alternate
function
I2C1 clock
X Port C2
USART1 receive /
LCD segment 22 /
ADC1_IN6 /
Comparator 1 positive
input / Internal voltage
reference output
X Port C3
USART1 transmit /
LCD segment 23 /
ADC1_IN5 /
Comparator 1 positive
input /
Comparator 2
negative input
X Port C4
USART1
synchronous clock /
I2C1_SMB /
Configurable clock
output / LCD segment
24 / ADC1_IN4 /
Comparator 2
negative input /
Comparator 1 positive
input
43 29
PC4/USART1_CK/
I2C1_SMB/CCO/
29 LCD_SEG24(2)/
I/O TT(3) X
ADC1_IN4/COMP2_INM/
COMP1_INP
44 30
PC5/OSC32_IN
30 /[SPI1_NSS](4)/
[USART1_TX](4)
I/O
-
X
X
X
HS
X
X Port C5
LSE oscillator input /
[SPI1 master/slave
select] / [USART1
transmit]
45 31
PC6/OSC32_OUT/
31 [SPI1_SCK](4)/
[USART1_RX](4)
I/O
-
X
X
X
HS
X
X Port C6
LSE oscillator output /
[SPI1 clock] /
[USART1 receive]
X Port C7
LCD segment 25
/ADC1_IN3/
Comparator negative
input / Comparator 1
positive input
46
-
-
PC7/LCD_SEG25(2)/
ADC1_IN3/COMP2_INM/ I/O TT(3) X
COMP1_INP
X
X
X
X
DS7106 Rev 9
HS
HS
X
X
31/123
54
Pin description
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 5. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin description (continued)
20
-
21
-
9
-
-
PD0/TIM3_CH2/
[ADC1_TRIG](4)/
LCD_SEG7(2)/ADC1_IN2 I/O TT(3) X
2/COMP2_INP/
COMP1_INP
9
PD0/TIM3_CH2/
[ADC1_TRIG](4)/
ADC1_IN22/COMP2_INP I/O TT(3) X
/
COMP1_INP
-
PD1/TIM3_ETR/
LCD_COM3(2)/
ADC1_IN21/COMP2_INP I/O TT(3) X
/
COMP1_INP
10
PD1/TIM1_CH3N/
[TIM3_ETR](4)/
LCD_COM3(2)/
I/O TT(3) X
10
ADC1_IN21/COMP2_INP
/
COMP1_INP
11
PD2/TIM1_CH1
I/O TT(3) X
11 /LCD_SEG8(2)/
ADC1_IN20/COMP1_INP
23 12
PD3/ TIM1_ETR/
12 LCD_SEG9(2)/ADC1_IN1 I/O TT(3) X
9/COMP1_INP
33 21
PD4/TIM1_CH2
21 /LCD_SEG18(2)/
I/O TT(3) X
ADC1_IN10/COMP1_INP
-
22
32/123
X
X
X
X
X
X
X
X
X
X
X
X
X
X
DS7106 Rev 9
HS
HS
HS
HS
HS
HS
HS
X
X
X
X
X
X
X
Main function
(after reset)
PP
OD
High sink/source
Output
Ext. interrupt
wpu
floating
Pin name
I/O level
Input
Type
LQFP32
VFQFPN32
LQFP48
Pin number
Default alternate
function
X Port D0
Timer 3 - channel 2 /
[ADC1_Trigger] / LCD
segment 7 /
ADC1_IN22 /
Comparator 2 positive
input / Comparator 1
positive input
Port
D0(8)
Timer 3 - channel 2 /
[ADC1_Trigger] /
ADC1_IN22 /
Comparator 2 positive
input / Comparator 1
positive input
X Port D1
Timer 3 - trigger /
LCD_COM3 /
ADC1_IN21 /
Comparator 2 positive
input / Comparator 1
positive input
X Port D1
[Timer 3 - trigger]/
TIM1 inverted
channel 3 /
LCD_COM3/
ADC1_IN21 /
Comparator 2 positive
input / Comparator 1
positive input
X Port D2
Timer 1 - channel 1 /
LCD segment 8 /
ADC1_IN20 /
Comparator 1 positive
input
X Port D3
Timer 1 - trigger /
LCD segment 9 /
ADC1_IN19 /
Comparator 1 positive
input
X Port D4
Timer 1 - channel 2 /
LCD segment 18 /
ADC1_IN10/
Comparator 1 positive
input
X
STM8AL313x/4x/6x STM8AL3L4x/6x
Pin description
Table 5. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin description (continued)
34 22
PD5/TIM1_CH3
22 /LCD_SEG19(2)/
ADC1_IN9/COMP1_INP
35 23
PD6/TIM1_BKIN
/LCD_SEG20(2)/
23 ADC1_IN8/RTC_CALIB/
/VREFINT/
COMP1_INP
36 24
I/O TT(3) X
I/O TT(3) X
PD7/TIM1_CH1N
/LCD_SEG21(2)/
24 ADC1_IN7/RTC_ALARM/ I/O TT(3) X
VREFINT/
COMP1_INP
X
X
X
X
HS
HS
X
X
Main function
(after reset)
PP
OD
High sink/source
Output
Ext. interrupt
wpu
floating
Pin name
I/O level
Input
Type
LQFP32
VFQFPN32
LQFP48
Pin number
Default alternate
function
X Port D5
Timer 1 - channel 3 /
LCD segment 19 /
ADC1_IN9/
Comparator 1 positive
input
X Port D6
Timer 1 - break input /
LCD segment 20 /
ADC1_IN8 / RTC
calibration / Internal
voltage reference
output / Comparator 1
positive input
X
X
HS
X
X Port D7
Timer 1 - inverted
channel 1/ LCD
segment 21 /
ADC1_IN7 / RTC
alarm / Internal
voltage reference
output /Comparator 1
positive input
14
-
-
PE0(5)/LCD_SEG1(2)
I/O FT
X
X
X
HS
X
X Port E0
LCD segment 1
15
-
-
PE1/TIM1_CH2N
/LCD_SEG2(2)
I/O TT(3) X
X
X
HS
X
X Port E1
Timer 1 - inverted
channel 2 / LCD
segment 2
16
-
-
PE2/TIM1_CH3N
/LCD_SEG3(2)
I/O TT(3) X
X
X
HS
X
X Port E2
Timer 1 - inverted
channel 3 / LCD
segment 3
17
-
-
PE3/LCD_SEG4(2)
I/O TT(3) X
X
X
HS
X
X Port E3
LCD segment 4
-
(2)
PE4/LCD_SEG5
X
X
HS
X
X Port E4
LCD segment 5
X
X
HS
X
X Port E5
LCD segment 6 /
ADC1_IN23
/ Comparator 2
positive input /
Comparator 1 positive
input
18
-
(3)
I/O TT
X
19
-
-
PE5/LCD_SEG6(2)/
ADC1_IN23/COMP2_INP
I/O TT(3) X
/
COMP1_INP
47
-
-
PE6/LCD_SEG26(2)/
PVD_IN
I/O TT(3) X
X
X
HS
X
X Port E6
LCD segment
26/PVD_IN
48
-
-
PE7/LCD_SEG27(2)
I/O TT(3) X
X
X
HS
X
X Port E7
LCD segment 27
32
-
-
PF0/ADC1_IN24/
DAC_OUT
I/O TT(3) X
X
X
HS
X
X Port F0
ADC1_IN24 /
DAC_OUT
DS7106 Rev 9
33/123
54
Pin description
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 5. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin description (continued)
OD
PP
Main function
(after reset)
High sink/source
(8)
Ext. interrupt
VLCD(2)
wpu
9
floating
LQFP32
9
Pin name
Output
I/O level
VFQFPN32
13
Input
Type
LQFP48
Pin number
S
-
-
-
-
-
-
-
LCD booster external capacitor
-
-
-
-
-
-
-
-
Reserved. Must be tied to VDD
Default alternate
function
13
-
-
Reserved
10
-
-
VDD
S
-
-
-
-
-
-
- Digital power supply
11
-
-
VDDA
S
-
-
-
-
-
-
- Analog supply voltage
12
-
-
VREF+
S
-
-
-
-
-
-
-
-
8
8
VDD1/VDDA/VREF+
S
-
-
-
-
-
-
Digital power supply / Analog
- supply voltage / ADC1 positive
voltage reference
9
7
7
VSS1/VSSA/VREF-
S
-
-
-
-
-
-
I/O ground / Analog ground
- voltage / ADC1 negative voltage
reference
39
-
-
VDD2
S
-
-
-
-
-
-
- IOs supply voltage
40
-
-
VSS2
S
-
-
-
-
-
-
- IOs ground voltage
1
32
32
PA0(9)/[USART1_CK](4)/
SWIM/BEEP/IR_TIM (10)
I/O
-
X X(9) X
HS(10) X
ADC1 and DAC positive voltage
reference
X Port A0
[USART1 synchronous clock](4) / SWIM
input and output /
Beep output / Infrared
Timer output
1. At power-up, the PA1/NRST pin is a reset input pin with pull-up. It is used as a general purpose pin (PA1) and can be
configured only as output push-pull, not as output open drain or as a general purpose input. Refer to Section Configuring
NRST/PA1 pin as general purpose output in STM8L051/L052 Value Line, STM8L151/L152, STM8L162, STM8AL31,
STM8AL3L MCU lines reference manual (RM0031).
2. Available on STM8AL3Lxx devices only.
3. In the 3.6 V tolerant I/Os, protection diode to VDD is not implemented.
4. [ ] Alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a
duplication of the function).
5. In the 5 V tolerant I/Os, protection diode to VDD is not implemented.
6. A pull-up is applied to PB0 and PB4 during the reset phase. These two pins are input floating after reset release.
7. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to VDD are
not implemented).
8. Available on STM8AL31xx devices only.
9. The PA0 pin is in input pull-up during the reset phase and after reset release.
10. High sink LED driver capability available on PA0.
Note:
34/123
The slope control of all GPIO pins, except true open drain pins, can be programmed. By
default, the slope control is limited to 2 MHz.
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
4.1
Pin description
System configuration options
As shown in Table 5: Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x pin
description, some alternate functions can be remapped on different I/O ports by
programming one of the two remapping registers described in the “Routing interface (RI)
and system configuration controller” section in STM8L051/L052 Value Line,
STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU lines reference manual
(RM0031).
DS7106 Rev 9
35/123
54
Memory and register map
STM8AL313x/4x/6x STM8AL3L4x/6x
5
Memory and register map
5.1
Memory mapping
The memory map is shown in Figure 9.
Figure 9. Memory map
0x00 0000
0x00 07FF
0x00 0800
0x00 0FFF
0x00 1000
0x00 13FF
0x00 1400
0x00 47FF
0x00 4800
RAM (2 Kbytes)(1)
including
Stack (513 bytes)(1)
Reserved
0x00 5000
0x00 5050
Data EEPROM
(1 Kbyte)
0x00 5070
0x00 509E
Reserved
0x00 50A0
0x00 50A6
0x00 50B0
Option bytes
0x00 50B2
0x00 48FF
0x00 4900
0x00 50C0
0x00 50D3
Reserved
0x00 4909
0x00 4910
0x00 4911
0x00 4912
0x00 4925
0x00 4926
0x00 4931
0x00 4932
0x00 4FFF
0x00 5000
0x00 50E0
0x00 50F3
VREFINT_Factory_CONV(2)
TS_Factory_CONV_V125(3)
0x00 5140
Reserved
0x00 5200
Unique ID
0x00 5210
Reserved
0x00 5230
0x00 5250
GPIO and peripheral registers
0x00 5280
Reserved
0x00 52B0
0x00 52E0
Boot ROM
(2 Kbytes)
0x00 52FF
0x00 5340
0x00 57FF
0x00 5800
0x00 5FFF
0x00 6000
0x00 67FF
0x00 6800
0x00 5380
0x00 5400
Reserved
0x00 7EFF
0x00 7F00
0x00 7FFF
0x00 8000
0x00 807F
0x00 8080
0x00 5430
0x00 5440
CPU/SWIM/Debug/ITC
registers
GPIO ports
Flash
DMA1
SYSCFG
ITC-EXTI
WFE
RST
PWR
CLK
WWDG
IWDG
BEEP
RTC
SPI1
I2C1
USART1
TIM2
TIM3
TIM1
TIM4
IRTIM
ADC1
DAC
LCD
RI
COMP
Reset and interrupt vectors
Medium-density
Flash program memory
(up to 32 Kbytes)
0x00 FFFF
MS32602V1
1. Table 6 lists the boundary addresses for each memory size. The top of the stack is at the RAM end address.
2. The VREFINT_Factory_CONV byte represents the LSB of the VREFINT 12-bit ADC conversion result. The MSB have a
fixed value: 0x6.
3. The TS_Factory_CONV_V125 byte represents the LSB of the V125 12-bit ADC conversion result. The MSB have a fixed
value: 0x3. The V125 measurement is performed at 125°C.
4. Refer to Table 9 for an overview of hardware register mapping, to Table 8 for details on I/O port hardware registers, and to
Table 10 for information on CPU/SWIM/debug module controller registers.
36/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Memory and register map
Table 6. Flash and RAM boundary addresses
Memory area
Size
Start address
End address
RAM
2 Kbyte
0x00 0000
0x00 07FF
8 Kbyte
Flash program memory
0x00 9FFF
16 Kbyte
0x00 8000
32 Kbyte
5.2
0x00 BFFF
Register map
Table 7. Factory conversion registers
Address
Block
Register label
Register name
Reset
status
0x00 4910
-
VREFINT_Factory_
CONV(1)
Internal reference voltage factory
conversion
0xXX
0x00 4911
-
TS_Factory_CONV_
V125(2)
Temperature sensor output voltage
0xXX
1. The VREFINT_Factory_CONV byte represents the 8 LSB of the result of the VREFINT 12-bit ADC conversion performed in
factory. The MSB have a fixed value: 0x6.
2. The TS_Factory_CONV_V125 byte represents the 8 LSB of the result of the V125 12-bit ADC conversion performed in
factory. The 2 MSB have a fixed value: 0x3.
Table 8. I/O port hardware register map
Register label
Register name
Reset
status
0x00 5000
PA_ODR
Port A data output latch register
0x00
0x00 5001
PA_IDR
Port A input pin value register
0xXX
PA_DDR
Port A data direction register
0x00
0x00 5003
PA_CR1
Port A control register 1
0x01
0x00 5004
PA_CR2
Port A control register 2
0x00
0x00 5005
PB_ODR
Port B data output latch register
0x00
0x00 5006
PB_IDR
Port B input pin value register
0xXX
PB_DDR
Port B data direction register
0x00
0x00 5008
PB_CR1
Port B control register 1
0x00
0x00 5009
PB_CR2
Port B control register 2
0x00
0x00 500A
PC_ODR
Port C data output latch register
0x00
0x00 500B
PB_IDR
Port C input pin value register
0xXX
PC_DDR
Port C data direction register
0x00
0x00 500D
PC_CR1
Port C control register 1
0x00
0x00 500E
PC_CR2
Port C control register 2
0x00
Address
0x00 5002
0x00 5007
0x00 500C
Block
Port A
Port B
Port C
DS7106 Rev 9
37/123
54
Memory and register map
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 8. I/O port hardware register map (continued)
Register label
Register name
Reset
status
0x00 500F
PD_ODR
Port D data output latch register
0x00
0x00 5010
PD_IDR
Port D input pin value register
0xXX
PD_DDR
Port D data direction register
0x00
0x00 5012
PD_CR1
Port D control register 1
0x00
0x00 5013
PD_CR2
Port D control register 2
0x00
0x00 5014
PE_ODR
Port E data output latch register
0x00
0x00 5015
PE_IDR
Port E input pin value register
0xXX
PE_DDR
Port E data direction register
0x00
0x00 5017
PE_CR1
Port E control register 1
0x00
0x00 5018
PE_CR2
Port E control register 2
0x00
0x00 5019
PF_ODR
Port F data output latch register
0x00
0x00 501A
PF_IDR
Port F input pin value register
0xXX
PF_DDR
Port F data direction register
0x00
0x00 501C
PF_CR1
Port F control register 1
0x00
0x00 501D
PF_CR2
Port F control register 2
0x00
Address
0x00 5011
0x00 5016
0x00 501B
Block
Port D
Port E
Port F
Table 9. General hardware register map
Address
Block
Register label
0x00 501E
to
0x00 5049
Register name
Reset
status
Reserved area (44 bytes)
0x00 5050
FLASH_CR1
Flash control register 1
0x00
0x00 5051
FLASH_CR2
Flash control register 2
0x00
FLASH _PUKR
Flash program memory unprotection key
register
0x00
0x00 5053
FLASH _DUKR
Data EEPROM unprotection key register
0x00
0x00 5054
FLASH _IAPSR
Flash in-application programming status
register
0x00
0x00 5052
38/123
Flash
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Memory and register map
Table 9. General hardware register map (continued)
Address
Block
Register label
0x00 5055
to
0x00 506F
Register name
Reset
status
Reserved area (27 bytes)
0x00 5070
DMA1_GCSR
DMA1 global configuration & status
register
0xFC
0x00 5071
DMA1_GIR1
DMA1 global interrupt register 1
0x00
0x00 5072 to
0x00 5074
Reserved area (3 bytes)
0x00 5075
DMA1_C0CR
DMA1 channel 0 configuration register
0x00
0x00 5076
DMA1_C0SPR
DMA1 channel 0 status & priority register
0x00
0x00 5077
DMA1_C0NDTR
DMA1 number of data to transfer register
(channel 0)
0x00
0x00 5078
DMA1_C0PARH
DMA1 peripheral address high register
(channel 0)
0x52
0x00 5079
DMA1_C0PARL
DMA1 peripheral address low register
(channel 0)
0x00
DMA1
0x00 507A
Reserved area (1 byte)
0x00 507B
DMA1_C0M0ARH
DMA1 memory 0 address high register
(channel 0)
0x00
0x00 507C
DMA1_C0M0ARL
DMA1 memory 0 address low register
(channel 0)
0x00
0x00 507D to
0x00 507E
Reserved area (2 bytes)
DS7106 Rev 9
39/123
54
Memory and register map
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 9. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 507F
DMA1_C1CR
DMA1 channel 1 configuration register
0x00
0x00 5080
DMA1_C1SPR
DMA1 channel 1 status & priority register
0x00
0x00 5081
DMA1_C1NDTR
DMA1 number of data to transfer register
(channel 1)
0x00
0x00 5082
DMA1_C1PARH
DMA1 peripheral address high register
(channel 1)
0x52
0x00 5083
DMA1_C1PARL
DMA1 peripheral address low register
(channel 1)
0x00
Address
Block
0x00 5084
0x00 5085
0x00 5086
Reserved area (1 byte)
DMA1
DMA1_C1M0ARH
DMA1 memory 0 address high register
(channel 1)
0x00
DMA1_C1M0ARL
DMA1 memory 0 address low register
(channel 1)
0x00
0x00 5087
0x00 5088
Reserved area (2 bytes)
0x00 5089
DMA1_C2CR
DMA1 channel 2 configuration register
0x00
0x00 508A
DMA1_C2SPR
DMA1 channel 2 status & priority register
0x00
0x00 508B
DMA1_C2NDTR
DMA1 number of data to transfer register
(channel 2)
0x00
40/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Memory and register map
Table 9. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 508C
DMA1_C2PARH
DMA1 peripheral address high register
(channel 2)
0x52
0x00 508D
DMA1_C2PARL
DMA1 peripheral address low register
(channel 2)
0x00
Address
Block
0x00 508E
Reserved area (1 byte)
0x00 508F
DMA1_C2M0ARH
DMA1 memory 0 address high register
(channel 2)
0x00
0x00 5090
DMA1_C2M0ARL
DMA1 memory 0 address low register
(channel 2)
0x00
0x00 5091
0x00 5092
Reserved area (2 bytes)
0x00 5093
DMA1_C3CR
DMA1 channel 3 configuration register
0x00
DMA1_C3SPR
DMA1 channel 3 status & priority register
0x00
0x00 5095
DMA1_C3NDTR
DMA1 number of data to transfer register
(channel 3)
0x00
0x00 5096
DMA1_C3PARH_
C3M1ARH
DMA1 peripheral address high register
(channel 3)
0x40
0x00 5097
DMA1_C3PARL_
C3M1ARL
DMA1 peripheral address low register
(channel 3)
0x00
0x00 5094
DMA1
0x00 5098
Reserved area (1 byte)
0x00 5099
DMA1_C3M0ARH
DMA1 memory 0 address high register
(channel 3)
0x00
0x00 509A
DMA1_C3M0ARL
DMA1 memory 0 address low register
(channel 3)
0x00
0x00 509B to
0x00 509D
0x00 509E
Reserved area (3 bytes)
SYSCFG_RMPCR1
Remapping register 1
0x00
SYSCFG_RMPCR2
Remapping register 2
0x00
0x00 50A0
EXTI_CR1
External interrupt control register 1
0x00
0x00 50A1
EXTI_CR2
External interrupt control register 2
0x00
EXTI_CR3
External interrupt control register 3
0x00
EXTI_SR1
External interrupt status register 1
0x00
0x00 50A4
EXTI_SR2
External interrupt status register 2
0x00
0x00 50A5
EXTI_CONF1
External interrupt port select register 1
0x00
0x00 50A6
WFE_CR1
WFE control register 1
0x00
WFE_CR2
WFE control register 2
0x00
WFE_CR3
WFE control register 3
0x00
0x00 509F
0x00 50A2
0x00 50A3
0x00 50A7
0x00 50A8
SYSCFG
ITC - EXTI
WFE
DS7106 Rev 9
41/123
54
Memory and register map
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 9. General hardware register map (continued)
Address
Block
Register label
0x00 50A9
to
0x00 50AF
0x00 50B0
0x00 50B1
0x00 50B2
0x00 50B3
Register name
Reset
status
Reserved area (7 bytes)
RST
PWR
RST_CR
Reset control register
0x00
RST_SR
Reset status register
0x01
PWR_CSR1
Power control and status register 1
0x00
PWR_CSR2
Power control and status register 2
0x00
0x00 50B4
to
0x00 50BF
Reserved area (12 bytes)
0x00 50C0
CLK_DIVR
Clock master divider register
0x03
0x00 50C1
CLK_CRTCR
Clock RTC register
0x00
0x00 50C2
CLK_ICKR
Internal clock control register
0x11
0x00 50C3
CLK_PCKENR1
Peripheral clock gating register 1
0x00
0x00 50C4
CLK_PCKENR2
Peripheral clock gating register 2
0x80
0x00 50C5
CLK_CCOR
Configurable clock control register
0x00
0x00 50C6
CLK_ECKR
External clock control register
0x00
CLK_SCSR
System clock status register
0x01
CLK_SWR
System clock switch register
0x01
0x00 50C9
CLK_SWCR
Clock switch control register
0bxxxx0000
0x00 50CA
CLK_CSSR
Clock security system register
0x00
0x00 50CB
CLK_CBEEPR
Clock BEEP register
0x00
0x00 50CC
CLK_HSICALR
HSI calibration register
0xxx
0x00 50CD
CLK_HSITRIMR
HSI clock calibration trimming register
0x00
0x00 50CE
CLK_HSIUNLCKR
HSI unlock register
0x00
0x00 50CF
CLK_REGCSR
Main regulator control status register
0bxx11100x
0x00 50C7
0x00 50C8
CLK
0x00 50D0
to
0x00 50D2
0x00 50D3
0x00 50D4
Reserved area (3 bytes)
WWDG
WWDG_CR
WWDG control register
0x7F
WWDG_WR
WWDR window register
0x7F
0x00 50D5
to
00 50DF
Reserved area (11 bytes)
0x00 50E0
0x00 50E1
0x00 50E2
42/123
IWDG
IWDG_KR
IWDG key register
0xXX
IWDG_PR
IWDG prescaler register
0x00
IWDG_RLR
IWDG reload register
0xFF
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Memory and register map
Table 9. General hardware register map (continued)
Address
Block
Register label
0x00 50E3
to
0x00 50EF
Reset
status
Reserved area (13 bytes)
0x00 50F0
0x00 50F1
0x00 50F2
Register name
BEEP_CSR1
BEEP
0x00 50F3
BEEP control/status register 1
0x00
Reserved area (2 bytes)
BEEP_CSR2
0x00 50F4
to
0x00 513F
BEEP control/status register 2
0x1F
Reserved area (76 bytes)
0x00 5140
RTC_TR1
Time register 1
0x00
0x00 5141
RTC_TR2
Time register 2
0x00
0x00 5142
RTC_TR3
Time register 3
0x00
0x00 5143
Reserved area (1 byte)
0x00 5144
RTC_DR1
Date register 1
0x01
0x00 5145
RTC_DR2
Date register 2
0x21
0x00 5146
RTC_DR3
Date register 3
0x00
0x00 5147
Reserved area (1 byte)
0x00 5148
RTC_CR1
Control register 1
0x00
0x00 5149
RTC_CR2
Control register 2
0x00
0x00 514A
RTC_CR3
Control register 3
0x00
0x00 514B
0x00 514C
0x00 514D
Reserved area (1 byte)
RTC
RTC_ISR1
Initialization and status register 1
0x00
RTC_ISR2
Initialization and Status register 2
0x00
0x00 514E
0x00 514F
Reserved area (2 bytes)
0x00 5150
RTC_SPRERH(1)
Synchronous prescaler register high
0x00(1)
0x00 5151
RTC_SPRERL(1)
Synchronous prescaler register low
0xFF(1)
0x00 5152
RTC_APRER(1)
Asynchronous prescaler register
0x7F(1)
0x00 5153
Reserved area (1 byte)
0x00 5154
RTC_WUTRH(1)
Wakeup timer register high
0xFF(1)
0x00 5155
RTC_WUTRL(1)
Wakeup timer register low
0xFF(1)
0x00 5156 to
0x00 5158
0x00 5159
0x00 515A
0x00 515B
Reserved area (3 bytes)
RTC_WPR
Write protection register
0x00
Reserved area (2 bytes)
DS7106 Rev 9
43/123
54
Memory and register map
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 9. General hardware register map (continued)
Address
Block
0x00 515C
0x00 515D
0x00 515E
RTC
0x00 515F
Register label
Register name
Reset
status
RTC_ALRMAR1
Alarm A register 1
0x00
RTC_ALRMAR2
Alarm A register 2
0x00
RTC_ALRMAR3
Alarm A register 3
0x00
RTC_ALRMAR4
Alarm A register 4
0x00
0x00 5160 to
0x00 51FF
Reserved area (160 bytes)
0x00 5200
SPI1_CR1
SPI1 control register 1
0x00
0x00 5201
SPI1_CR2
SPI1 control register 2
0x00
0x00 5202
SPI1_ICR
SPI1 interrupt control register
0x00
SPI1_SR
SPI1 status register
0x02
SPI1_DR
SPI1 data register
0x00
0x00 5205
SPI1_CRCPR
SPI1 CRC polynomial register
0x07
0x00 5206
SPI1_RXCRCR
SPI1 Rx CRC register
0x00
0x00 5207
SPI1_TXCRCR
SPI1 Tx CRC register
0x00
0x00 5203
0x00 5204
SPI1
0x00 5208
to
0x00 520F
Reserved area (8 bytes)
0x00 5210
I2C1_CR1
I2C1 control register 1
0x00
0x00 5211
I2C1_CR2
I2C1 control register 2
0x00
0x00 5212
I2C1_FREQR
I2C1 frequency register
0x00
0x00 5213
I2C1_OARL
I2C1 own address register low
0x00
0x00 5214
I2C1_OARH
I2C1 own address register high
0x00
0x00 5215
Reserved (1 byte)
0x00 5216
I2C1_DR
I2C1 data register
0x00
I2C1_SR1
I2C1 status register 1
0x00
0x00 5218
I2C1_SR2
I2C1 status register 2
0x00
0x00 5219
I2C1_SR3
I2C1 status register 3
0x0x
0x00 521A
I2C1_ITR
I2C1 interrupt control register
0x00
0x00 521B
I2C1_CCRL
I2C1 clock control register low
0x00
0x00 521C
I2C1_CCRH
I2C1 clock control register high
0x00
0x00 521D
I2C1_TRISER
I2C1 TRISE register
0x02
0x00 521E
I2C1_PECR
I2C1 packet error checking register
0x00
0x00 5217
0x00 521F
to
0x00 522F
44/123
I2C1
Reserved area (17 bytes)
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Memory and register map
Table 9. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5230
USART1_SR
USART1 status register
0xC0
0x00 5231
USART1_DR
USART1 data register
undefined
0x00 5232
USART1_BRR1
USART1 baud rate register 1
0x00
0x00 5233
USART1_BRR2
USART1 baud rate register 2
0x00
0x00 5234
USART1_CR1
USART1 control register 1
0x00
USART1_CR2
USART1 control register 2
0x00
0x00 5236
USART1_CR3
USART1 control register 3
0x00
0x00 5237
USART1_CR4
USART1 control register 4
0x00
0x00 5238
USART1_CR5
USART1 control register 5
0x00
0x00 5239
USART1_GTR
USART1 guard time register
0x00
0x00 523A
USART1_PSCR
USART1 prescaler register
0x00
Address
0x00 5235
Block
USART1
0x00 523B
to
0x00 524F
Reserved area (21 bytes)
0x00 5250
TIM2_CR1
TIM2 control register 1
0x00
0x00 5251
TIM2_CR2
TIM2 control register 2
0x00
0x00 5252
TIM2_SMCR
TIM2 slave mode control register
0x00
0x00 5253
TIM2_ETR
TIM2 external trigger register
0x00
0x00 5254
TIM2_DER
TIM2 DMA1 request enable register
0x00
0x00 5255
TIM2_IER
TIM2 interrupt enable register
0x00
0x00 5256
TIM2_SR1
TIM2 status register 1
0x00
0x00 5257
TIM2_SR2
TIM2 status register 2
0x00
0x00 5258
TIM2_EGR
TIM2 event generation register
0x00
0x00 5259
TIM2_CCMR1
TIM2 capture/compare mode register 1
0x00
TIM2_CCMR2
TIM2 capture/compare mode register 2
0x00
0x00 525B
TIM2_CCER1
TIM2 capture/compare enable register 1
0x00
0x00 525C
TIM2_CNTRH
TIM2 counter high
0x00
0x00 525D
TIM2_CNTRL
TIM2 counter low
0x00
0x00 525E
TIM2_PSCR
TIM2 prescaler register
0x00
0x00 525F
TIM2_ARRH
TIM2 auto-reload register high
0xFF
0x00 5260
TIM2_ARRL
TIM2 auto-reload register low
0xFF
0x00 5261
TIM2_CCR1H
TIM2 capture/compare register 1 high
0x00
0x00 5262
TIM2_CCR1L
TIM2 capture/compare register 1 low
0x00
0x00 5263
TIM2_CCR2H
TIM2 capture/compare register 2 high
0x00
0x00 5264
TIM2_CCR2L
TIM2 capture/compare register 2 low
0x00
0x00 525A
TIM2
DS7106 Rev 9
45/123
54
Memory and register map
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 9. General hardware register map (continued)
Address
0x00 5265
0x00 5266
Block
TIM2
Register label
Register name
Reset
status
TIM2_BKR
TIM2 break register
0x00
TIM2_OISR
TIM2 output idle state register
0x00
0x00 5267 to
0x00 527F
Reserved area (25 bytes)
0x00 5280
TIM3_CR1
TIM3 control register 1
0x00
0x00 5281
TIM3_CR2
TIM3 control register 2
0x00
0x00 5282
TIM3_SMCR
TIM3 Slave mode control register
0x00
0x00 5283
TIM3_ETR
TIM3 external trigger register
0x00
0x00 5284
TIM3_DER
TIM3 DMA1 request enable register
0x00
0x00 5285
TIM3_IER
TIM3 interrupt enable register
0x00
0x00 5286
TIM3_SR1
TIM3 status register 1
0x00
0x00 5287
TIM3_SR2
TIM3 status register 2
0x00
0x00 5288
TIM3_EGR
TIM3 event generation register
0x00
0x00 5289
TIM3_CCMR1
TIM3 capture/compare mode register 1
0x00
0x00 528A
TIM3_CCMR2
TIM3 capture/compare mode register 2
0x00
TIM3_CCER1
TIM3 capture/compare enable register 1
0x00
0x00 528C
TIM3_CNTRH
TIM3 counter high
0x00
0x00 528D
TIM3_CNTRL
TIM3 counter low
0x00
0x00 528E
TIM3_PSCR
TIM3 prescaler register
0x00
0x00 528F
TIM3_ARRH
TIM3 Auto-reload register high
0xFF
0x00 5290
TIM3_ARRL
TIM3 Auto-reload register low
0xFF
0x00 5291
TIM3_CCR1H
TIM3 capture/compare register 1 high
0x00
0x00 5292
TIM3_CCR1L
TIM3 capture/compare register 1 low
0x00
0x00 5293
TIM3_CCR2H
TIM3 capture/compare register 2 high
0x00
0x00 5294
TIM3_CCR2L
TIM3 capture/compare register 2 low
0x00
0x00 5295
TIM3_BKR
TIM3 break register
0x00
0x00 5296
TIM3_OISR
TIM3 output idle state register
0x00
0x00 528B
TIM3
0x00 5297 to
0x00 52AF
Reserved area (25 bytes)
0x00 52B0
TIM1_CR1
TIM1 control register 1
0x00
0x00 52B1
TIM1_CR2
TIM1 control register 2
0x00
TIM1_SMCR
TIM1 Slave mode control register
0x00
TIM1_ETR
TIM1 external trigger register
0x00
0x00 52B4
TIM1_DER
TIM1 DMA1 request enable register
0x00
0x00 52B5
TIM1_IER
TIM1 Interrupt enable register
0x00
0x00 52B2
0x00 52B3
46/123
TIM1
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Memory and register map
Table 9. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 52B6
TIM1_SR1
TIM1 status register 1
0x00
0x00 52B7
TIM1_SR2
TIM1 status register 2
0x00
0x00 52B8
TIM1_EGR
TIM1 event generation register
0x00
0x00 52B9
TIM1_CCMR1
TIM1 Capture/Compare mode register 1
0x00
0x00 52BA
TIM1_CCMR2
TIM1 Capture/Compare mode register 2
0x00
0x00 52BB
TIM1_CCMR3
TIM1 Capture/Compare mode register 3
0x00
0x00 52BC
TIM1_CCMR4
TIM1 Capture/Compare mode register 4
0x00
0x00 52BD
TIM1_CCER1
TIM1 Capture/Compare enable register 1
0x00
0x00 52BE
TIM1_CCER2
TIM1 Capture/Compare enable register 2
0x00
0x00 52BF
TIM1_CNTRH
TIM1 counter high
0x00
0x00 52C0
TIM1_CNTRL
TIM1 counter low
0x00
0x00 52C1
TIM1_PSCRH
TIM1 prescaler register high
0x00
0x00 52C2
TIM1_PSCRL
TIM1 prescaler register low
0x00
0x00 52C3
TIM1_ARRH
TIM1 Auto-reload register high
0xFF
TIM1_ARRL
TIM1 Auto-reload register low
0xFF
TIM1_RCR
TIM1 Repetition counter register
0x00
0x00 52C6
TIM1_CCR1H
TIM1 Capture/Compare register 1 high
0x00
0x00 52C7
TIM1_CCR1L
TIM1 Capture/Compare register 1 low
0x00
0x00 52C8
TIM1_CCR2H
TIM1 Capture/Compare register 2 high
0x00
0x00 52C9
TIM1_CCR2L
TIM1 Capture/Compare register 2 low
0x00
0x00 52CA
TIM1_CCR3H
TIM1 Capture/Compare register 3 high
0x00
0x00 52CB
TIM1_CCR3L
TIM1 Capture/Compare register 3 low
0x00
0x00 52CC
TIM1_CCR4H
TIM1 Capture/Compare register 4 high
0x00
0x00 52CD
TIM1_CCR4L
TIM1 Capture/Compare register 4 low
0x00
0x00 52CE
TIM1_BKR
TIM1 break register
0x00
0x00 52CF
TIM1_DTR
TIM1 dead-time register
0x00
0x00 52D0
TIM1_OISR
TIM1 output idle state register
0x00
0x00 52D1
TIM1_DCR1
DMA1 control register 1
0x00
0x00 52D2
TIM1_DCR2
TIM1 DMA1 control register 2
0x00
0x00 52D3
TIM1_DMA1R
TIM1 DMA1 address for burst mode
0x00
Address
0x00 52C4
0x00 52C5
0x00 52D4
to
0x00 52DF
Block
TIM1
Reserved area (12 bytes)
DS7106 Rev 9
47/123
54
Memory and register map
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 9. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 52E0
TIM4_CR1
TIM4 control register 1
0x00
0x00 52E1
TIM4_CR2
TIM4 control register 2
0x00
0x00 52E2
TIM4_SMCR
TIM4 slave mode control register
0x00
0x00 52E3
TIM4_DER
TIM4 DMA1 request enable register
0x00
TIM4_IER
TIM4 interrupt enable register
0x00
TIM4_SR1
TIM4 status register 1
0x00
0x00 52E6
TIM4_EGR
TIM4 event generation register
0x00
0x00 52E7
TIM4_CNTR
TIM4 counter
0x00
0x00 52E8
TIM4_PSCR
TIM4 prescaler register
0x00
0x00 52E9
TIM4_ARR
TIM4 auto-reload register
0x00
Address
0x00 52E4
0x00 52E5
Block
TIM4
0x00 52EA
to
0x00 52FE
0x00 52FF
Reserved area (21 bytes)
IRTIM
IR_CR
Infrared control register
0x00 5300
to
0x00 533F
0x00
Reserved area (64 bytes)
0x00 5340
ADC1_CR1
ADC1 configuration register 1
0x00
0x00 5341
ADC1_CR2
ADC1 configuration register 2
0x00
0x00 5342
ADC1_CR3
ADC1 configuration register 3
0x1F
0x00 5343
ADC1_SR
ADC1 status register
0x00
0x00 5344
ADC1_DRH
ADC1 data register high
0x00
0x00 5345
ADC1_DRL
ADC1 data register low
0x00
0x00 5346
ADC1_HTRH
ADC1 high threshold register high
0x0F
0x00 5347
ADC1_HTRL
ADC1 high threshold register low
0xFF
ADC1_LTRH
ADC1 low threshold register high
0x00
ADC1_LTRL
ADC1 low threshold register low
0x00
0x00 534A
ADC1_SQR1
ADC1 channel sequence 1 register
0x00
0x00 534B
ADC1_SQR2
ADC1 channel sequence 2 register
0x00
0x00 534C
ADC1_SQR3
ADC1 channel sequence 3 register
0x00
0x00 534D
ADC1_SQR4
ADC1 channel sequence 4 register
0x00
0x00 534E
ADC1_TRIGR1
ADC1 trigger disable 1
0x00
0x00 534F
ADC1_TRIGR2
ADC1 trigger disable 2
0x00
0x00 5350
ADC1_TRIGR3
ADC1 trigger disable 3
0x00
0x00 5351
ADC1_TRIGR4
ADC1 trigger disable 4
0x00
0x00 5348
0x00 5349
48/123
ADC1
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Memory and register map
Table 9. General hardware register map (continued)
Address
Block
Register label
0x00 5352 to
0x00 537F
Register name
Reset
status
Reserved area (46 bytes)
0x00 5380
DAC_CR1
DAC control register 1
0x00
0x00 5381
DAC_CR2
DAC control register 2
0x00
0x00 5382
to 0x00 5383
Reserved area (2 bytes)
0x00 5384
DAC_SWTRIGR
DAC software trigger register
0x00
0x00 5385
DAC_SR
DAC status register
0x00
0x00 5386 to
0x00 5387
Reserved area (2 bytes)
0x00 5388
0x00 5389
0x00 538A to
0x00 538B
DAC
DAC_RDHRH
DAC right aligned data holding register
high
0x00
DAC_RDHRL
DAC right aligned data holding register low
0x00
Reserved area (2 bytes)
0x00 538C
DAC_LDHRH
DAC left aligned data holding register high
0x00
0x00 538D
DAC_LDHRL
DAC left aligned data holding register low
0x00
0x00 538E
to 0x00 538F
Reserved area (2 bytes)
0x00 5390
DAC_DHR8
0x00 5391 to
0x00 53AB
DAC 8-bit data holding register
0x00
Reserved area (27 bytes)
0x00 53AC
DAC_DORH
DAC data output register high
0x00
0x00 53AD
DAC_DORL
DAC data output register low
0x00
0x00 53AE to
0x00 53FF
Reserved area (82 bytes)
0x00 5400
LCD_CR1
LCD control register 1
0x00
0x00 5401
LCD_CR2
LCD control register 2
0x00
0x00 5402
LCD_CR3
LCD control register 3
0x00
LCD_FRQ
LCD frequency selection register
0x00
LCD_PM0
LCD Port mask register 0
0x00
0x00 5405
LCD_PM1
LCD Port mask register 1
0x00
0x00 5406
LCD_PM2
LCD Port mask register 2
0x00
0x00 5407
LCD_PM3
LCD Port mask register 3
0x00
0x00 5403
0x00 5404
0x00 5408 to
0x00 540B
LCD
Reserved area (4 bytes)
DS7106 Rev 9
49/123
54
Memory and register map
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 9. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 540C
LCD_RAM0
LCD display memory 0
0x00
0x00 540D
LCD_RAM1
LCD display memory 1
0x00
0x00 540E
LCD_RAM2
LCD display memory 2
0x00
0x00 540F
LCD_RAM3
LCD display memory 3
0x00
0x00 5410
LCD_RAM4
LCD display memory 4
0x00
0x00 5411
LCD_RAM5
LCD display memory 5
0x00
LCD_RAM6
LCD display memory 6
0x00
LCD_RAM7
LCD display memory 7
0x00
0x00 5414
LCD_RAM8
LCD display memory 8
0x00
0x00 5415
LCD_RAM9
LCD display memory 9
0x00
0x00 5416
LCD_RAM10
LCD display memory 10
0x00
0x00 5417
LCD_RAM11
LCD display memory 11
0x00
0x00 5418
LCD_RAM12
LCD display memory 12
0x00
0x00 5419
LCD_RAM13
LCD display memory 13
0x00
Address
0x00 5412
0x00 5413
Block
LCD
0x00 541A to
0x00 542F
Reserved area (22 bytes)
0x00 5430
Reserved area (1 byte)
0x00
0x00 5431
RI_ICR1
Timer input capture routing register 1
0x00
0x00 5432
RI_ICR2
Timer input capture routing register 2
0x00
0x00 5433
RI_IOIR1
I/O input register 1
undefined
0x00 5434
RI_IOIR2
I/O input register 2
undefined
0x00 5435
RI_IOIR3
I/O input register 3
undefined
0x00 5436
RI_IOCMR1
I/O control mode register 1
0x00
RI_IOCMR2
I/O control mode register 2
0x00
RI_IOCMR3
I/O control mode register 3
0x00
0x00 5439
RI_IOSR1
I/O switch register 1
0x00
0x00 543A
RI_IOSR2
I/O switch register 2
0x00
0x00 543B
RI_IOSR3
I/O switch register 3
0x00
0x00 543C
RI_IOGCR
I/O group control register
0x3F
0x00 543D
RI_ASCR1
Analog switch register 1
0x00
0x00 543E
RI_ASCR2
Analog switch register 2
0x00
0x00 543F
RI_RCR
Resistor control register 1
0x00
0x00 5437
0x00 5438
50/123
RI
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Memory and register map
Table 9. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5440
COMP_CSR1
Comparator control and status register 1
0x00
0x00 5441
COMP_CSR2
Comparator control and status register 2
0x00
COMP_CSR3
Comparator control and status register 3
0x00
0x00 5443
COMP_CSR4
Comparator control and status register 4
0x00
0x00 5444
COMP_CSR5
Comparator control and status register 5
0x00
Address
Block
COMP
0x00 5442
1. These registers are not impacted by a system reset. They are reset at power-on.
Table 10. CPU/SWIM/debug module/interrupt controller registers
Register Label
Register Name
Reset
Status
0x00 7F00
A
Accumulator
0x00
0x00 7F01
PCE
Program counter extended
0x00
0x00 7F02
PCH
Program counter high
0x00
0x00 7F03
PCL
Program counter low
0x00
XH
X index register high
0x00
XL
X index register low
0x00
0x00 7F06
YH
Y index register high
0x00
0x00 7F07
YL
Y index register low
0x00
0x00 7F08
SPH
Stack pointer high
0x03
0x00 7F09
SPL
Stack pointer low
0xFF
0x00 7F0A
CCR
Condition code register
0x28
Address
Block
0x00 7F04
0x00 7F05
CPU(1)
0x00 7F0B to
0x00 7F5F
0x00 7F60
Reserved area (85 bytes)
CFG_GCR
Global configuration register
0x00
0x00 7F70
ITC_SPR1
Interrupt Software priority register 1
0xFF
0x00 7F71
ITC_SPR2
Interrupt Software priority register 2
0xFF
0x00 7F72
ITC_SPR3
Interrupt Software priority register 3
0xFF
ITC_SPR4
Interrupt Software priority register 4
0xFF
ITC_SPR5
Interrupt Software priority register 5
0xFF
0x00 7F75
ITC_SPR6
Interrupt Software priority register 6
0xFF
0x00 7F76
ITC_SPR7
Interrupt Software priority register 7
0xFF
0x00 7F77
ITC_SPR8
Interrupt Software priority register 8
0xFF
0x00 7F73
0x00 7F74
0x00 7F78
to
0x00 7F79
CPU
ITC-SPR
Reserved area (2 bytes)
DS7106 Rev 9
51/123
54
Memory and register map
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 10. CPU/SWIM/debug module/interrupt controller registers (continued)
Address
Block
Register Label
Register Name
Reset
Status
0x00 7F80
SWIM
SWIM_CSR
SWIM control status register
0x00
0x00 7F81
to
0x00 7F8F
Reserved area (15 bytes)
0x00 7F90
DM_BK1RE
DM breakpoint 1 register extended byte
0xFF
0x00 7F91
DM_BK1RH
DM breakpoint 1 register high byte
0xFF
0x00 7F92
DM_BK1RL
DM breakpoint 1 register low byte
0xFF
0x00 7F93
DM_BK2RE
DM breakpoint 2 register extended byte
0xFF
0x00 7F94
DM_BK2RH
DM breakpoint 2 register high byte
0xFF
DM_BK2RL
DM breakpoint 2 register low byte
0xFF
0x00 7F96
DM_CR1
DM Debug module control register 1
0x00
0x00 7F97
DM_CR2
DM Debug module control register 2
0x00
0x00 7F98
DM_CSR1
DM Debug module control/status register 1
0x10
0x00 7F99
DM_CSR2
DM Debug module control/status register 2
0x00
0x00 7F9A
DM_ENFCTR
DM enable function register
0xFF
0x00 7F95
DM
0x00 7F9B
to
0x00 7F9F
Reserved area (5 bytes)
1. Accessible by debug module only
52/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
6
Interrupt vector mapping
Interrupt vector mapping
Table 11. Interrupt mapping
IRQ
No.
Source
block
-
RESET
-
TRAP
Description
Reset
Software interrupt
0
Wakeup
from Halt
mode
Wakeup
from
Active-halt
mode
Wakeup
from Wait
(WFI
mode)
Wakeup
from Wait
(WFE
mode)(1)
Yes
Yes
Yes
Yes
0x00 8000
-
-
-
-
0x00 8004
Reserved
Vector
address
0x00 8008
Flash end of
programming/write
attempted to protected
page interrupt
-
-
Yes
Yes
0x00 800C
1
FLASH
2
DMA1 0/1
DMA1 channels 0/1 half
transaction/transaction
complete interrupt
-
-
Yes
Yes
0x00 8010
3
DMA1 2/3
DMA1 channels 2/3 half
transaction/transaction
complete interrupt
-
-
Yes
Yes
0x00 8014
4
RTC
RTC alarm A/
wakeup/tamper 1/
tamper 2/tamper 3
Yes
Yes
Yes
Yes
0x00 8018
5
EXTI E/F/
PVD(2)
External interrupt port E/F
PVD interrupt
Yes
Yes
Yes
Yes
0x00 801C
6
EXTIB/G
External interrupt port B/G
Yes
Yes
Yes
Yes
0x00 8020
7
EXTID/H
External interrupt port D/H
Yes
Yes
Yes
Yes
0x00 8024
8
EXTI0
External interrupt 0
Yes
Yes
Yes
Yes
0x00 8028
9
EXTI1
External interrupt 1
Yes
Yes
Yes
Yes
0x00 802C
10
EXTI2
External interrupt 2
Yes
Yes
Yes
Yes
0x00 8030
11
EXTI3
External interrupt 3
Yes
Yes
Yes
Yes
0x00 8034
12
EXTI4
External interrupt 4
Yes
Yes
Yes
Yes
0x00 8038
13
EXTI5
External interrupt 5
Yes
Yes
Yes
Yes
0x00 803C
14
EXTI6
External interrupt 6
Yes
Yes
Yes
Yes
0x00 8040
15
EXTI7
External interrupt 7
Yes
Yes
Yes
Yes
0x00 8044
16
LCD
-
-
Yes
Yes
0x00 8048
17
CLK/TIM1/
DAC
-
-
Yes
Yes
0x00 804C
LCD interrupt
CLK system clock switch/
CSS interrupt/
TIM1 Break/DAC
DS7106 Rev 9
53/123
54
Interrupt vector mapping
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 11. Interrupt mapping (continued)
Wakeup
from Halt
mode
Wakeup
from
Active-halt
mode
Wakeup
from Wait
(WFI
mode)
Wakeup
from Wait
(WFE
mode)(1)
Yes
Yes
Yes
Yes
0x00 8050
TIM2 update/overflow/
trigger/break interrupt
-
-
Yes
Yes
0x00 8054
TIM2
TIM2 capture/compare
interrupt
-
-
Yes
Yes
0x00 8058
21
TIM3
TIM3 update /overflow/
trigger/break interrupt
-
-
Yes
Yes
0x00 805C
22
TIM3
TIM3 capture/compare
interrupt
-
-
Yes
Yes
0x00 8060
23
TIM1
TIM1 update /overflow/
trigger/COM
-
-
-
Yes
0x00 8064
24
TIM1
TIM1 capture/compare
interrupt
-
-
-
Yes
0x00 8068
25
TIM4
TIM4 update /overflow/
trigger interrupt
-
-
Yes
Yes
0x00 806C
SPI1
SPI TX buffer empty/RX
buffer not
empty/error/wakeup
interrupt
Yes
Yes
Yes
Yes
0x00 8070
USART1
USART1 transmit data
register empty/
transmission complete
interrupt
-
-
Yes
Yes
0x00 8074
28
USART 1
USART1 received data
ready/overrun error/
idle line detected/parity
error/global error interrupt
-
-
Yes
Yes
0x00 8078
29
I2C1
Yes
Yes
Yes
Yes
0x00 807C
IRQ
No.
Source
block
18
COMP1/
COMP2/
ADC1
19
TIM2
20
26
27
Description
COMP1 interrupt/
COMP2 interrupt
ADC1 end of conversion/
analog watchdog/
overrun interrupt
I2C1 interrupt(3)
Vector
address
1. The Low power wait mode is entered when executing a WFE instruction in Low power run mode. In WFE mode, the
interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes back to WFE mode.
When the interrupt is configured as a wakeup event, the CPU wakes up and resumes processing.
2. The interrupt from PVD is logically OR-ed with Port E and F interrupts. Register EXTI_CONF allows to select between
Port E and Port F interrupt (see External interrupt port select register (EXTI_CONF) in STM8L051/L052 Value Line,
STM8L151/L152, STM8L162, STM8AL31, STM8AL3L MCU lines reference manual (RM0031).
3. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.
54/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
7
Option bytes
Option bytes
Option bytes contain configurations for device hardware features as well as the memory
protection of the device. They are stored in a dedicated memory block.
All option bytes can be modified in ICP mode (with SWIM) by accessing the EEPROM
address. See Table 12 for details on option byte addresses.
The option bytes can also be modified ‘on the fly’ by the application in IAP mode, except for
the ROP, and UBC values which can only be taken into account when they are modified in
ICP mode (with the SWIM).
Refer to the STM8L15x/STM8L16x Flash programming manual (PM0054) and STM8 SWIM
and Debug Manual (UM0320) for information on SWIM programming procedures.
Table 12. Option byte addresses
Address
Option name
Option
byte
No.
Option bits
7
6
5
4
3
2
1
0
Factory
default
setting
0x00 4800
Read-out
protection
(ROP)
OPT0
ROP[7:0]
0xAA
0x00 4802
UBC (User
Boot code size)
OPT1
UBC[7:0]
0x00
0x00 4807
Reserved
0x00 4808
Independent
watchdog
option
OPT3
[3:0]
Reserved
0x00 4809
Number of
stabilization
clock cycles for
HSE and LSE
oscillators
OPT4
Reserved
0x00 480A
Brownout reset
(BOR)
OPT5
[3:0]
Reserved
Bootloader
option bytes
(OPTBL)
OPTBL
[15:0]
0x00 480B
0x00 480C
0x00
WWDG WWDG IWDG
_HALT _HW _HALT
LSECNT[1:0]
BOR_TH
IWDG
_HW
0x00
HSECNT[1:0]
0x00
BOR
_ON
0x01
0x00
OPTBL[15:0]
DS7106 Rev 9
0x00
55/123
57
Option bytes
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 13. Option byte description
Option
byte no.
Option description
OPT0
ROP[7:0] Memory readout protection (ROP)
0xAA: Disable readout protection (write access via SWIM protocol)
Refer to Readout protection section in STM8L05xx, STM8L15xx, STM8L162x,
STM8AL31xx, STM8AL3Lxx, STM8AL31Exx and STM8AL3LExx MCU families
reference manual (RM0031).
OPT1
UBC[7:0] Size of the user boot code area
0x00: No UBC
0x01: the UBC contains only the interrupt vectors.
0x02: Page 0 and 1 reserved for the UBC and read/write protected. Page 0 contains
only the interrupt vectors.
0x03: Page 0 to 2 reserved for UBC, memory write-protected.
0xFF: Page 0 to 254 reserved for the UBC, memory write-protected.
Refer to User boot code section in STM8L05xx, STM8L15xx, STM8L162x,
STM8AL31xx, STM8AL3Lxx, STM8AL31Exx and STM8AL3LExx MCU families
reference manual (RM0031).
OPT2
Reserved
IWDG_HW: Independent watchdog
0: Independent watchdog activated by software
1: Independent watchdog activated by hardware
OPT3
IWDG_HALT: Independent watchdog off in Halt/Active-halt
0: Independent watchdog continues running in Halt/Active-halt mode
1: Independent watchdog stopped in Halt/Active-halt mode
WWDG_HW: Window watchdog
0: Window watchdog activated by software
1: Window watchdog activated by hardware
WWDG_HALT: Window window watchdog reset on Halt/Active-halt
0: Window watchdog stopped in Halt mode
1: Window watchdog generates a reset when MCU enters Halt mode
HSECNT: Number of HSE oscillator stabilization clock cycles
0x00 - 1 clock cycle
0x01 - 16 clock cycles
0x10 - 512 clock cycles
0x11 - 4096 clock cycles
OPT4
56/123
LSECNT: Number of LSE oscillator stabilization clock cycles
0x00 - 1 clock cycle
0x01 - 16 clock cycles
0x10 - 512 clock cycles
0x11 - 4096 clock cycles
Refer to Table 33: LSE oscillator characteristics
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Option bytes
Table 13. Option byte description (continued)
Option
byte no.
OPT5
Option description
BOR_ON:
0: Brownout reset off
1: Brownout reset on
BOR_TH[3:1]: Brownout reset thresholds. Refer to Table 20 for details on the thresholds
according to the value of BOR_TH bits.
OPTBL
OPTBL[15:0]:
This option is checked by the boot ROM code after reset. Depending on the content of
addresses Ox00 480B, Ox00 480C and 0x8000 (reset vector) the CPU jumps to the
bootloader or to the reset vector. Refer to the UM0560 bootloader user manual for more
details.
DS7106 Rev 9
57/123
57
Unique ID
8
STM8AL313x/4x/6x STM8AL3L4x/6x
Unique ID
The devices feature a 96-bit unique device identifier which provides a reference number that
is unique for any device and in any context. The 96 bits of the identifier can never be altered
by the user.
The unique device identifier can be read in single bytes and may then be concatenated
using a custom algorithm.
The unique device identifier is ideally suited:
•
For use as serial numbers
•
For use as security keys to increase the code security in the program memory while
using and combining this unique ID with software cryptographic primitives and
protocols before programming the internal memory.
•
To activate secure boot processes
Table 14. Unique ID registers (96 bits)
Address
0x4926
0x4927
0x4928
Unique ID bits
7
6
5
4
3
U_ID[7:0]
X co-ordinate on
the wafer
U_ID[15:8]
U_ID[23:16]
0x4929
Y co-ordinate on
the wafer
0x492A
Wafer number
U_ID[39:32]
U_ID[31:24]
0x492B
U_ID[47:40]
0x492C
U_ID[55:48]
0x492D
U_ID[63:56]
0x492E
58/123
Content
description
Lot number
U_ID[71:64]
0x492F
U_ID[79:72]
0x4930
U_ID[87:80]
0x4931
U_ID[95:88]
DS7106 Rev 9
2
1
0
STM8AL313x/4x/6x STM8AL3L4x/6x
Electrical parameters
9
Electrical parameters
9.1
Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
9.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = -40 °C, TA = 25 °C,
and TA = TAmax (given by the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production.
9.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3 V. They are given
only as design guidelines and are not tested.
Typical ADC and DAC accuracy values are determined by characterization of a batch of
samples from a standard diffusion lot over the full temperature range.
9.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
9.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 10.
Figure 10. Pin loading conditions
STM8AL PIN
50 pF
DS7106 Rev 9
59/123
107
Electrical parameters
9.1.5
STM8AL313x/4x/6x STM8AL3L4x/6x
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 11.
Figure 11. Pin input voltage
STM8AL PIN
VIN
9.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 15: Voltage characteristics,
Table 16: Current characteristics and Table 17: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and a functional operation
of the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect the device’s reliability.
The device’s mission profile (application conditions) is compliant with the JEDEC JESD47
qualification standard, extended mission profiles are available on demand.
Table 15. Voltage characteristics
Symbol
Ratings
Min
Max
VDD- VSS
External supply voltage (including VDDA
and VDD2)(1)
- 0.3
4.0
Input voltage on true open-drain pins
(PC0 and PC1)
VIN(2)
Input voltage on five-volt tolerant (FT)
pins (PA7 and PE0)
Input voltage on 3.6 V tolerant (TT) pins
Input voltage on any other pin
VESD
Electrostatic discharge voltage
VDD + 4.0
Unit
V
VSS - 0.3
4.0
see Absolute maximum
ratings (electrical sensitivity)
on page 106
V
1. All power (VDD1, VDD2, VDDA) and ground (VSS1, VSS2, VSSA) pins must always be connected to the
external power supply.
2. VIN maximum must always be respected. Refer to Table 16 for maximum allowed injected current values.
60/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Electrical parameters
Table 16. Current characteristics
Symbol
Ratings
Max.
IVDD
Total current into VDD power line (source)
80
IVSS
Total current out of VSS ground line (sink)
80
Output current sunk by IR_TIM pin (with high sink LED driver
capability)
80
Output current sunk by any other I/O and control pin
25
IIO
Output current sourced by any I/Os and control pin
IINJ(PIN)
ΣIINJ(PIN)
- 25
Injected current on true open-drain pins (PC0 and PC1)(1)
- 5/+0
Injected current on five-volt tolerant (FT) pins (PA7 and PE0)(1)
- 5/+0
Injected current on 3.6 V tolerant (TT) pins(1)
- 5/+0
Injected current on any other pin(2)
- 5/+5
Total injected current (sum of all I/O and control pins)(3)
Unit
mA
± 25
1. Positive injection is not possible on these I/Os. A negative injection is induced by VINVDD while a negative injection is induced by VIN> gmcrit
LSE crystal/ceramic resonator oscillator
The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All
the information given in this paragraph is based on characterization results with specified
typical external components. In the application, the resonator and the load capacitors have
to be placed as close as possible to the oscillator pins in order to minimize output distortion
and startup stabilization time. Refer to the crystal resonator manufacturer for more details
(frequency, package, accuracy...).
Table 33. LSE oscillator characteristics
Symbol
Parameter
fLSE
Low speed external oscillator
frequency
RF
Feedback resistor
C(1)
Recommended load capacitance (2)
IDD(LSE)
Min
Typ
Max
Unit
-
-
32.768
-
kHz
∆V = 200 mV
-
1.2
-
MΩ
-
-
8
-
pF
-
-
-
1.4(3)
µA
VDD = 1.8 V
-
450
-
VDD = 3 V
-
600
-
VDD = 3.6 V
-
750
-
-
3(3)
-
-
µA/V
VDD is stabilized
-
1
-
s
Oscillator transconductance
gm
tSU(LSE)
LSE oscillator power consumption
Conditions
(4)
Startup time
nA
1. C=CL1=CL2 is approximately equivalent to 2 x crystal CLOAD.
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small Rm value.
Refer to crystal manufacturer for more details.
3. Guaranteed by design.
4.
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation.
This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
76/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Electrical parameters
Figure 16. LSE oscillator circuit diagram
fLSE
Rm
Lm
RF
CO
CL1
OSC_IN
Cm
gm
Resonator
Consumption
control
Resonator
STM8
OSC_OUT
CL2
MS32600V1
Internal clock sources
Subject to general operating conditions for VDD, and TA.
High speed internal RC oscillator (HSI)
In the following table, data are based on characterization results and are not tested in
production, unless otherwise specified.
Table 34. HSI oscillator characteristics
Symbol
fHSI
ACCHSI
Conditions(1)
Parameter
Min
Typ
Max
Unit
MHz
Frequency
VDD = 3.0 V
-
16
-
HSI oscillator
user trimming
accuracy
Trimmed by the application for any VDD
and TA conditions
-1
-
1
-5
-
5
Trimming code ≠ multiple of 16
-
0.4
0.7(2)
Trimming code = multiple of 16
-
HSI oscillator
VDD ≤ 1.8 V ≤ VDD ≤ 3.6 V,
accuracy (factory
-40 °C ≤ TA ≤ 125 °C
calibrated)
%
TRIM
HSI user
trimming step(2)
tsu(HSI)
HSI oscillator
setup time
(wakeup time)
-
-
3.7
6(3)
µs
IDD(HSI)
HSI oscillator
power
consumption
-
-
100
140(3)
µA
±
1.5(2)
1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified.
2. The trimming step differs depending on the trimming code. It is usually negative on the codes which are
multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0). Refer to the AN3101 “STM8L05xxx/15xxx, STM8L162xx
and STM8AL31xx/3Lxx internal RC oscillator calibration” application note for more details.
3. Guaranteed by design.
DS7106 Rev 9
77/123
107
Electrical parameters
STM8AL313x/4x/6x STM8AL3L4x/6x
Figure 17. Typical HSI frequency vs VDD
18.0
17.5
HSI frequency [MHz]
17.0
16.5
16.0
15.5
15.0
-40°C
14.5
25°C
14.0
85°C
13.5
13.0
1.8 1.95
2.1
2.25
2.4
2.55
2.7
2.85
3
3.15
3.3 3.45
3.6
VDD [V]
ai18218c
Low speed internal RC oscillator (LSI)
In the following table, data are based on characterization results, not tested in production.
Table 35. LSI oscillator characteristics
Parameter (1)
Conditions(1)
Min
Typ
Max
Unit
Frequency
-
26
38
56
kHz
tsu(LSI)
LSI oscillator wakeup time
-
-
-
200(2)
µs
IDD(LSI)
LSI oscillator frequency
drift(3)
-12
-
11
%
Symbol
fLSI
0 °C ≤ TA ≤ 85 °C
1. VDD = 1.65 V to 3.6 V, TA = -40 to 125 °C unless otherwise specified.
2. Guaranteed by design.
3. This is a deviation for an individual part, once the initial frequency has been measured.
78/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Electrical parameters
Figure 18. Typical LSI frequency vs. VDD
45
43
LSI frequency [kHz]
41
39
37
35
33
-40°C
31
25°C
85°C
29
27
25
1.8
2.1
2.6
3.1
3.6
VDD [V]
ai18219b
9.3.5
Memory characteristics
TA = -40 to 125 °C unless otherwise specified.
Table 36. RAM and hardware registers
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VRM
Data retention mode (1)
Halt mode (or Reset)
1.65
-
-
V
1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware registers (only in
Halt mode). Guaranteed by characterization results.
Flash memory
Table 37. Flash program memory/data EEPROM memory
Symbol
VDD
tprog
Iprog
Parameter
Conditions
Min
Typ
Max
Unit
fSYSCLK = 16 MHz
1.65
-
3.6
V
Programming time for 1 or 128 bytes (block)
erase/write cycles (on programmed byte)
-
-
6
-
Programming time for 1 to 128 bytes (block)
write cycles (on erased byte)
-
-
3
-
TA = +25 °C, VDD = 3.0 V
-
TA = +25 °C, VDD = 1.8 V
-
Operating voltage
(all modes, read/write/erase)
Programming/ erasing consumption
ms
DS7106 Rev 9
0.7
-
mA
79/123
107
Electrical parameters
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 38. Flash program memory
Symbol
Parameter
Conditions
Min
Max
Unit
TWE
Temperature for writing and erasing
-
-40
125
°C
NWE
Flash program memory endurance
(erase/write cycles)(1)
TA = 25 °C
1000
-
cycles
tRET
Data retention time
TA = 25 °C
40
-
TA = 55 °C
20
-
years
1. The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a write/erase
operation addresses a single byte.
Data memory
Table 39. Data memory
Symbol
Parameter
TWE
Temperature for writing and erasing
NWE
Data memory endurance
(erase/write cycles)(1)
tRET
Data retention time
Conditions
Min
Max
Unit
-
-40
125
°C
TA = 25 °C
300 k
-
k(2)
-
TA = 25 °C
40(2)(3)
-
TA = 55 °C
20(2)(3)
-
TA = -40 to 125 °C
100
cycles
years
1. The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a
write/erase operation addresses a single byte.
2. More information on the relationship between data retention time and number of write/erase cycles is
available in a separate technical document.
3. Retention time for 256B of data memory after up to 1000 cycles at 125 °C.
9.3.6
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard pins) should be avoided during normal product operation. However,
in order to give an indication of the robustness of the microcontroller in cases when
abnormal injection accidentally happens, susceptibility tests are performed on a sample
basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error, out of spec current
injection on adjacent pins or other functional failure (for example reset, oscillator frequency
deviation, LCD levels, etc.).
The test results are given in the following table.
80/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Electrical parameters
Table 40. I/O current injection susceptibility
Functional susceptibility
Symbol
IINJ
9.3.7
Description
Negative
injection
Positive
injection
Injected current on true open-drain pins
(PC0 and PC1)
-5
+0
Injected current on all five-volt tolerant (FT) pins
-5
+0
Injected current on all 3.6 V tolerant (TT) pins
-5
+0
Injected current on any other pin
-5
+5
Unit
mA
I/O port pin characteristics
General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All
unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or
an external pull-up or pull-down resistor.
Table 41. I/O static characteristics
Symbol
Parameter
VIL
Input low level voltage
Conditions(1)
Min
Typ
Max
VSS-0.3
-
0.3 x VDD
-
5.2(2)
-
5.5(2)
-
5.2(2)
-
5.5(2)
-
3.6(2)
0.70 x VDD
-
VDD+0.3(2
I/Os
-
200
-
True open drain I/Os
-
200
-
VSS ≤ VIN ≤ VDD
High sink I/Os
-
-
50
VSS ≤ VIN ≤ VDD
True open drain I/Os
-
-
200
VSS ≤ VIN ≤ VDD
PA0 with high sink LED driver
capability
-
-
200
Input voltage on all pins
Input voltage on true open-drain pins
(PC0 and PC1) with VDD < 2 V
Input voltage on true open-drain pins
(PC0 and PC1) with VDD ≥ 2 V
VIH
Input high level voltage
0.70 x VDD
Input voltage on five-volt tolerant (FT)
pins (PA7 and PE0) with VDD < 2 V
Input voltage on five-volt tolerant (FT)
pins (PA7 and PE0) with VDD ≥ 2 V
0.70 x VDD
Input voltage on 3.6 V tolerant (TT)
pins
Input voltage on any other pin
Vhys
Ilkg
Schmitt trigger voltage
hysteresis (3)
Input leakage current
(4)
DS7106 Rev 9
Unit
V
)
mV
nA
81/123
107
Electrical parameters
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 41. I/O static characteristics (continued)
Symbol
Conditions(1)
Parameter
RPU
Weak pull-up
equivalent resistor(5)
CIO
I/O pin capacitance
VIN = VSS
-
Min
Typ
Max
Unit
30(6)
45
60(6)
kΩ
-
5
-
pF
1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified.
2. If VIH maximum cannot be respected, the injection current must be limited externally to IINJ(PIN) maximum.
3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.
4. The max. value may be exceeded if negative current is injected on adjacent pins.
5. RPU pull-up equivalent resistor based on a resistive transistor (corresponding IPU current characteristics described in
Figure 22).
6. Data not tested in production.
Figure 19. Typical VIL and VIH vs VDD (high sink I/Os)
3
-40°C
25°C
2.5
VIL and VIH [V]
85°C
2
1.5
1
0.5
0
1.8
2.1
2.6
3.1
3.6
VDD [V]
ai18220c
82/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Electrical parameters
Figure 20. Typical VIL and VIH vs VDD (true open drain I/Os)
3
-40°C
25°C
2.5
VIL and VIH [V]
85°C
2
1.5
1
0.5
0
1.8
2.1
2.6
VDD [V]
3.1
3.6
ai18221b
Figure 21. Typical pull-up resistance RPU vs VDD with VIN=VSS
60
-40°C
55
25°C
Pull-up resistance [kΩ]
85°C
50
45
40
35
30
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VDD [V]
ai18222b
DS7106 Rev 9
83/123
107
Electrical parameters
STM8AL313x/4x/6x STM8AL3L4x/6x
Figure 22. Typical pull-up current Ipu vs VDD with VIN=VSS
120
-40°C
25°C
100
Pull-up current [μA]
85°C
80
60
40
20
0
1.8
1.95 2.1
2.25 2.4
2.55 2.7
2.85
3
3.15 3.3
3.45 3.6
VDD [V]
ai18223b
84/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Electrical parameters
Output driving current
Subject to general operating conditions for VDD and TA unless otherwise specified.
Table 42. Output driving current (high sink ports)
I/O
Symbol
Type
Output low level voltage for an I/O pin
High sink
VOL (1)
Parameter
VOH (2) Output high level voltage for an I/O pin
Conditions
Min
Max
IIO = +2 mA,
VDD = 3.0 V
-
0.45
IIO = +2 mA,
VDD = 1.8 V
-
0.45
IIO = +10 mA,
VDD = 3.0 V
-
0.7
IIO = -2 mA,
VDD = 3.0 V
VDD-0.45
-
IIO = -1 mA,
VDD = 1.8 V
VDD-0.45
-
IIO = -10 mA,
VDD = 3.0 V
VDD-0.7
-
Unit
V
V
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
2. The IIO current sourced must always respect the absolute maximum rating specified in Table 16 and the
sum of IIO (I/O ports and control pins) must not exceed IVDD.
Table 43. Output driving current (true open drain ports)
Open drain
I/O
Symbol
Type
VOL (1)
Parameter
Output low level voltage for an I/O pin
Conditions
Min
Max
IIO = +3 mA,
VDD = 3.0 V
-
0.45
IIO = +1 mA,
VDD = 1.8 V
-
Unit
V
0.45
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
Table 44. Output driving current (PA0 with high sink LED driver capability)
I/O
Symbol
Type
IR
VOL (1)
Parameter
Output low level voltage for an I/O pin
Conditions
Min
Max
Unit
IIO = +20 mA,
VDD = 2.0 V
-
0.45
V
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
DS7106 Rev 9
85/123
107
Electrical parameters
STM8AL313x/4x/6x STM8AL3L4x/6x
Figure 23. Typ. VOL @ VDD = 3.0 V (high sink
ports)
Figure 24. Typ. VOL @ VDD = 1.8 V (high sink
ports)
1
0.7
0.5
-40°C
25°C
90°C
130°C
0.5
VOL [V]
VOL [V]
0.6
-40°C
25°C
90°C
130°C
0.75
0.4
0.3
0.2
0.25
0.1
0
0
2
4
6
8
10
12
14
16
18
0
20
0
IOL [mA]
1
2
3
4
5
6
7
8
IOL [mA]
ai18227
ai18226
Figure 25. Typ. VOL @ VDD = 3.0 V (true open
drain ports)
Figure 26. Typ. VOL @ VDD = 1.8 V (true open
drain ports)
0.5
0.5
-40°C
25°C
90°C
130°C
VOL [V]
0.3
0.4
-40°C
25°C
90°C
130°C
0.3
VOL [V]
0.4
0.2
0.2
0.1
0.1
0
0
0
1
2
3
4
5
6
7
0
1
2
3
IOL [mA]
4
5
6
7
IOL [mA]
ai18229
ai18228
Figure 27. Typ. VDD - VOH @ VDD = 3.0 V (high
sink ports)
Figure 28. Typ. VDD - VOH @ VDD = 1.8 V (high
sink ports)
2
0.5
1.75
-40°C
25°C
90°C
130°C
1.25
-40°C
25°C
90°C
130°C
0.4
VDD - VOH [V]
VDD - VOH [V]
1.5
1
0.75
0.3
0.2
0.5
0.25
0.1
0
0
2
4
6
8
10
12
14
16
18
20
0
IOH [mA]
0
1
2
3
4
5
6
7
I OH [mA]
ai12830
86/123
ai18231
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Electrical parameters
NRST pin
Subject to general operating conditions for VDD and TA unless otherwise specified.
Table 45. NRST pin characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
VIL(NRST)
NRST input low level
voltage
-
VSS(1)
-
0.8(1)
VIH(NRST)
NRST input high level
voltage
-
1.4(1)
-
VDD(1)
IOL = 2 mA
for 2.7 V ≤ VDD ≤ 3.6 V
-
-
IOL = 1.5 mA
for VDD < 2.7 V
-
-
VOL(NRST)
NRST output low level
voltage
Unit
V
0.4(1)
NRST input hysteresis
-
10%VDD(2)(3)
-
-
mV
RPU(NRST)
NRST pull-up equivalent
resistor
-
30(1)
45
60(1)
kΩ
VF(NRST)
NRST input filtered pulse
-
-
-
50(3)
VNF(NRST)
NRST input not filtered
pulse
-
300(3)
-
-
VHYST
ns
1. Guaranteed by characterization results.
2. 200 mV min.
3. Guaranteed by design.
Figure 29. Typical NRST pull-up resistance RPU vs VDD
60
-40°C
Pull-up resistance [kΩ]
55
25°C
85°C
50
45
40
35
30
1.8
2
2.2
2.4
2.6
2.8
VDD [V]
3
3.2
3.4
3.6
ai18224b
DS7106 Rev 9
87/123
107
Electrical parameters
STM8AL313x/4x/6x STM8AL3L4x/6x
Figure 30. Typical NRST pull-up current Ipu vs VDD
120
-40°C
100
25°C
Pull-up current [μA]
85°C
80
60
40
20
0
1.8
1.95 2.1
2.25 2.4
2.55 2.7
2.85
3
3.15 3.3
3.45 3.6
VDD [V]
ai18225b
The reset network shown in Figure 31 protects the device against parasitic resets. The user
must ensure that the level on the NRST pin can go below the VIL max. level specified in
Table 45. Otherwise the reset is not taken into account internally.
For power consumption sensitive applications, the external reset capacitor value can be
reduced to limit the charge/discharge current. If the NRST signal is used to reset the
external circuitry, attention must be paid to the charge/discharge time of the external
capacitor to fulfill the external devices reset timing conditions. The minimum recommended
capacity is 10 nF.
Figure 31. Recommended NRST pin configuration
VDD
RPU
External
reset
circuit
N RST
Filter
Internal reset
STM8
(Optional)
0.1 uF
MS34928V1
88/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
9.3.8
Electrical parameters
Communication interfaces
SPI1 - Serial peripheral interface
Unless otherwise specified, the parameters given in Table 46 are derived from tests
performed under ambient temperature, fSYSCLK frequency and VDD supply voltage
conditions summarized in Section 9.3.1. Refer to I/O port characteristics for more details on
the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 46. SPI1 characteristics
Symbol
fSCK
1/tc(SCK)
tr(SCK)
tf(SCK)
tsu(NSS)(2)
th(NSS)
(2)
(2)
tw(SCKH)
tw(SCKL)(2)
Parameter
Conditions(1)
Min
Max
Master mode
0
8
Slave mode
0
8
SPI1 clock rise and fall
time
Capacitive load: C = 30 pF
-
30
NSS setup time
Slave mode
4 x 1/fSYSCLK
-
NSS hold time
Slave mode
80
-
SCK high and low time
Master mode,
fMASTER = 8 MHz, fSCK= 4 MHz
105
145
Master mode
30
-
Slave mode
3
-
Master mode
15
-
Slave mode
0
-
SPI1 clock frequency
tsu(MI) (2)
tsu(SI)(2)
Data input setup time
th(MI) (2)
th(SI)(2)
Data input hold time
ta(SO)(2)(3)
Data output access time
Slave mode
-
3x 1/fSYSCLK
tdis(SO)(2)(4)
30
-
Data output disable time
Slave mode
(2)
Data output valid time
Slave mode (after enable edge)
-
60
tv(MO)(2)
Data output valid time
Master mode
(after enable edge)
-
20
Slave mode
(after enable edge)
15
-
Master mode
(after enable edge)
1
-
tv(SO)
th(SO)(2)
Data output hold time
th(MO)(2)
Unit
MHz
ns
1. Parameters are given by selecting 10 MHz I/O output frequency.
2. Values based on design simulation and/or characterization results, and not tested in production.
3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.
4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z.
DS7106 Rev 9
89/123
107
Electrical parameters
STM8AL313x/4x/6x STM8AL3L4x/6x
Figure 32. SPI1 timing diagram - slave mode and CPHA=0
Figure 33. SPI1 timing diagram - slave mode and CPHA=1(1)
NSS input
SCK input
tSU(NSS)
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tw(SCKH)
tw(SCKL)
th(SO)
tv(SO)
ta(SO)
MISO
OUTPUT
MSB OUT
BIT6 OUT
tr(SCK)
tf(SCK)
tdis(SO)
LSB OUT
th(SI)
tsu(SI)
MOSI
INPUT
th(NSS)
tc(SCK)
MSB IN
BIT 1 IN
LSB IN
ai14135b
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
90/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Electrical parameters
Figure 34. SPI1 timing diagram - master mode(1)
High
NSS input
SCK Output
CPHA= 0
CPOL=0
SCK Output
tc(SCK)
CPHA=1
CPOL=0
CPHA= 0
CPOL=1
CPHA=1
CPOL=1
tsu(MI)
MISO
INP UT
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
BIT6 IN
MSB IN
LSB IN
th(MI)
MOSI
OUTPUT
B I T1 OUT
MSB OUT
tv(MO)
LSB OUT
th(MO)
ai14136c
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
I2C - Inter IC control interface
Subject to general operating conditions for VDD, fSYSCLK, and TA unless otherwise specified.
The STM8AL I2C interface (I2C1) meets the requirements of the Standard I2C
communication protocol described in the following table with the restriction mentioned
below:
Refer to I/O port characteristics for more details on the input/output alternate function
characteristics (SDA and SCL).
Table 47. I2C characteristics
Symbol
Parameter
Standard mode
I2C
Fast mode I2C(1)
Min(2)
Max (2)
Min (2)
Max (2)
Unit
tw(SCLL)
SCL clock low time
4.7
-
1.3
-
tw(SCLH)
SCL clock high time
4.0
-
0.6
-
DS7106 Rev 9
μs
91/123
107
Electrical parameters
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 47. I2C characteristics (continued)
Symbol
Parameter
Standard mode
I2C
Fast mode I2C(1)
Min(2)
Max (2)
Min (2)
Max (2)
250
-
100
-
Unit
tsu(SDA)
SDA setup time
th(SDA)
SDA data hold time
0
-
0
900
tr(SDA)
tr(SCL)
SDA and SCL rise time
-
1000
-
300
tf(SDA)
tf(SCL)
SDA and SCL fall time
-
300
-
300
th(STA)
START condition hold time
4.0
0.6
-
tsu(STA)
Repeated START condition setup
time
4.7
-
0.6
-
tsu(STO)
STOP condition setup time
4.0
-
0.6
-
STOP to START condition time (bus
free)
4.7
-
1.3
-
-
400
-
400
tw(STO:STA)
Cb
Capacitive load for each bus line
ns
μs
pF
1. fSYSCLK must be at least equal to 8 MHz to achieve max fast I2C speed (400 kHz).
2. Data based on standard I2C protocol requirements, not tested in production.
Note:
For speeds around 200 kHz, the achieved speed can have a ± 5% tolerance
For other speed ranges, the achieved speed can have a ± 2% tolerance
The above variations depend on the accuracy of the external components used.
Figure 35. Typical application with I2C bus and timing diagram(1)
VDD
4.7 kΩ
VDD
4.7 kΩ
I2C bus
STM8
100 Ω
SDA
100 Ω
SCL
Repeated
start
START
tsu(STA)
tw(STO:STA)
SDA
tf(SDA)
tr(SDA)
tsu(SDA)
th(SDA)
START
STOP
SCL
th(STA)
tw(SCLH)
tw(SCLL)
tr(SCL)
tf(SCL)
tsu(STO)
MSv36492V1
1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD
92/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
9.3.9
Electrical parameters
LCD controller (STM8AL3Lxx only)
In the following table, data are guaranteed by design and are not tested in production.
Table 48. LCD characteristics
Symbol
Parameter
Min
Typ
Max.
VLCD
LCD external voltage
-
-
3.6
VLCD0
LCD internal reference voltage 0
-
2.6
-
VLCD1
LCD internal reference voltage 1
-
2.7
-
VLCD2
LCD internal reference voltage 2
-
2.8
-
VLCD3
LCD internal reference voltage 3
-
2.9
-
VLCD4
LCD internal reference voltage 4
-
3.0
-
VLCD5
LCD internal reference voltage 5
-
3.1
-
VLCD6
LCD internal reference voltage 6
-
3.2
-
VLCD7
LCD internal reference voltage 7
-
3.3
-
CEXT
VLCD external capacitance
0.1
-
2
-
3
-
-
3
-
IDD
Supply
current(1)
at VDD = 1.8 V
(1)
Supply current
at VDD = 3 V
Unit
V
µF
µA
RHN (2)
High value resistive network (low drive)
-
6.6
-
MΩ
(3)
Low value resistive network (high drive)
-
360
-
kΩ
V33
Segment/Common higher level voltage
-
-
VLCDx
V23
Segment/Common 2/3 level voltage
-
2/3VLCDx
-
V12
Segment/Common 1/2 level voltage
-
1/2VLCDx
-
V13
Segment/Common 1/3 level voltage
-
1/3VLCDx
-
V0
Segment/Common lowest level voltage
0
-
-
RLN
V
1. LCD enabled with 3 V internal booster (LCD_CR1 = 0x08), 1/4 duty, 1/3 bias, division ratio= 64, all pixels
active, no LCD connected.
2. RHN is the total high value resistive network.
3. RLN is the total low value resistive network.
VLCD external capacitor (STM8AL3Lxx only)
The application can achieve a stabilized LCD reference voltage by connecting an external
capacitor CEXT to the VLCD pin. CEXT is specified in Table 48.
9.3.10
Embedded reference voltage
In the following table, data are based on characterization results, not tested in production,
unless otherwise specified.
DS7106 Rev 9
93/123
107
Electrical parameters
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 49. Reference voltage characteristics
Symbol
Parameter
Conditions
Min
Typ
Max.
Unit
IREFINT
Internal reference voltage
consumption
-
-
1.4
-
µA
TS_VREFINT(1)(2)
ADC sampling time when reading
the internal reference voltage
-
-
5
10
µs
IBUF(2)
Internal reference voltage buffer
consumption (used for ADC)
-
-
13.5
25
µA
VREFINT out
Reference voltage output
-
ILPBUF(2)
Internal reference voltage low power
buffer consumption (used for
comparators or output)
IREFOUT(2)
1.202
(3)
1.224
-
-
Buffer output current(4)
-
CREFOUT
Reference voltage output load
tVREFINT
1.242
(3)
V
730
1200
nA
-
-
1
µA
-
-
-
50
pF
Internal reference voltage startup
time
-
-
2
3
ms
tBUFEN(2)
Internal reference voltage buffer
startup time once enabled (1)
-
-
-
10
µs
ACCVREFINT
Accuracy of VREFINT stored in the
VREFINT_Factory_CONV byte(5)
-
-
-
±5
mV
Stability of VREFINT over temperature
-40 °C ≤ TA ≤ 125 °C
-
20
50
Stability of VREFINT over temperature
0 °C ≤ TA ≤ 50 °C
-
-
20
-
-
-
1000
STABVREFINT(2)
STABVREFINT(2) Stability of VREFINT after 1000 hours
ppm/°C
ppm
1. Defined when ADC output reaches its final value ±1/2LSB
2. Guaranteed by design.
3. Tested in production at VDD = 3 V ±10 mV.
4. To guaranty less than 1% VREFOUT deviation.
5. Measured at VDD = 3 V ±10 mV. This value takes into account VDD accuracy and ADC conversion accuracy.
9.3.11
Temperature sensor
In the following table, data are based on characterization results, not tested in production,
unless otherwise specified.
Table 50. TS characteristics
Symbol
V125(1)
TL
94/123
Parameter
Sensor reference voltage at
125 °C ±5 °C
VSENSOR linearity with temperature
Min
Typ
Max.
Unit
0.640
0.660
0.680
V
-
±1
±2
°C
Avg_slope
Average slope
1.59(2)
1.62
1.65(2)
mV/°C
IDD(TEMP)
Consumption
-
3.4
6(2)
µA
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Electrical parameters
Table 50. TS characteristics (continued)
Symbol
Parameter
Min
Typ
Max.
TSTART(3)
Temperature sensor startup time
-
-
10
TS_TEMP
ADC sampling time when reading the
temperature sensor
-
5
10(2)
Unit
(2)
µs
1. Tested in production at VDD = 3 V ±10 mV. The 8 LSB of the V125 ADC conversion result are stored in the
TS_Factory_CONV_V125 byte.
2. Guaranteed by design.
3. Defined for ADC output reaching its final value ±1/2LSB.
9.3.12
Comparator characteristics
In the following table, data are guaranteed by design, not tested in production, unless
otherwise specified.
Table 51. Comparator 1 characteristics
Symbol
VDDA
Parameter
Analog supply voltage
Min
Typ
Max
Unit
1.65
-
3.6(1)
V
°C
Temperature range
-40
-
125(1)
R400K
R400K value
300
400
500(1)
R10K
R10K value
7.5
10
12.5(1)
Comparator input voltage range
0.6
-
VDDA(1)
TA
VIN
kΩ
V
VREFINT
Internal reference voltage
1.202
1.224
1.242
tSTART
Startup time after enable
-
7
10(1)
Propagation delay(2)
-
3
10(1)
Voffset
Comparator offset error
-
±3
±10(1)
mV
ICMP1
Consumption(3)
160
260(1)
nA
td
-
µs
1. Guaranteed by characterization results.
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference.
3. Comparator consumption only. Internal reference voltage not included.
DS7106 Rev 9
95/123
107
Electrical parameters
STM8AL313x/4x/6x STM8AL3L4x/6x
In the following table, data are guaranteed by design, not tested in production unless
otherwise specified.
Table 52. Comparator 2 characteristics
Conditions
Min
Typ
Max(1)
Unit
Analog supply voltage
-
1.65
-
3.6
V
TA
Temperature range
-
-40
-
125
°C
VIN
Comparator 2 input
voltage range
-
0
-
VDDA
V
Fast mode
-
15
20
Slow mode
-
20
25
1.8
3.5
2.5
6
0.8
2
1.2
4
±4
±20
3.5
5
0.5
2
Symbol
VDDA
Parameter
tSTART
Comparator startup time
td slow
Propagation delay in
slow mode(2)
1.65 V ≤ VDDA ≤ 2.7 V
td fast
Propagation delay in fast
mode(2)
1.65 V ≤ VDDA ≤ 2.7 V
Voffset
Comparator offset error
-
ICOMP2
Current consumption(3)
2.7 V ≤ VDDA ≤ 3.6 V
2.7 V ≤ VDDA ≤ 3.6 V
-
-
Fast mode
-
Slow mode
µs
mV
µA
1. Guaranteed by characterization results.
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference.
3. Comparator consumption only. Internal reference voltage not included.
9.3.13
12-bit DAC characteristics
In the following table, data are guaranteed by design, not tested in production.
Table 53. DAC characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
VDDA
Analog supply voltage
-
1.8
-
3.6
VREF+
Reference supply voltage
-
1.8
-
VDDA
96/123
DS7106 Rev 9
Unit
V
STM8AL313x/4x/6x STM8AL3L4x/6x
Electrical parameters
Table 53. DAC characteristics (continued)
Symbol
IVREF
IVDDA
Parameter
Current consumption on VREF+
supply
Current consumption on VDDA
supply
Conditions
Min
Typ
Max
VREF+ = 3.3 V, no
load, middle code
(0x800)
-
130
220
VREF+ = 3.3 V, no
load, worst code
(0x000)
-
220
350
VDDA = 3.3 V, no
load, middle code
(0x800)
-
210
320
VDDA = 3.3 V, no
load, worst code
(0x000)
-
320
520
Unit
µA
TA
Temperature range
-
-40
-
125
RL
Resistive
load(1) (2)
DACOUT buffer ON
5
-
-
RO
Output impedance
DACOUT buffer OFF
-
8
10
CL
Capacitive load(3)
-
-
-
50
DACOUT buffer ON
0.2
-
VDDA-0.2
DACOUT buffer OFF
0
-
VREF+ -1 LSB
Settling time (full scale: for a 12bit input code transition between
the lowest and the highest input
codes when DAC_OUT reaches
the final value ±1LSB)
RL ≥ 5 kΩ,
CL ≤ 50 pF
-
7
12
µs
Max frequency for a correct
DAC_OUT (@95%) change
Update rate
when small variation of the input
code (from code i to i+1LSB).
RL ≥ 5 kΩ,
CL ≤ 50 pF
-
-
1
Msps
DAC_OUT DAC_OUT voltage(4)
tsettling
°C
kΩ
pF
V
tWAKEUP
Wakeup time from OFF state.
Input code between lowest and
highest possible codes.
RL ≥ 5 kΩ,
CL ≤ 50 pF
-
9
15
µs
PSRR+
Power supply rejection ratio (to
VDDA) (static DC measurement)
RL ≥ 5 kΩ,
CL ≤ 50 pF
-
-60
-35
dB
1. Resistive load between DACOUT and GNDA.
2. Output on PF0 (48-pin package only).
3. Capacitive load at DACOUT pin.
4. It gives the output excursion of the DAC.
DS7106 Rev 9
97/123
107
Electrical parameters
STM8AL313x/4x/6x STM8AL3L4x/6x
In the following table, data based on characterization results, not tested in production.
Table 54. DAC accuracy
Symbol
DNL
INL
Offset
Offset1
Gain error
Typ.
Max(1)
1.5
3
1.5
3
2
4
2
4
±10
±25
No load, DACOUT buffer OFF
±5
±8
DACOUT buffer OFF
±1.5
±5
+0.1/-0.2
+0.2/-0.5
+0/-0.2
+0/-0.4
12
30
8
12
Parameter
Conditions
Differential non
linearity(2)
RL
Integral non
linearity(4)
RL
Offset error(5)
≥ 5 kΩ, CL ≤ 50 pF, DACOUT buffer ON(3)
No load, DACOUT buffer OFF
≥ 5 kΩ, CL ≤ 50 pF,DACOUT buffer ON(3)
No load, DACOUT buffer OFF
RL
≥ 5 kΩ, CL ≤ 50 pF, DACOUT buffer ON(3)
Offset error at
Code 1 (6)
Gain error(7)
RL
≥ 5 kΩ, CL ≤ 50 pF,DACOUT buffer ON(3)
No load, DACOUT buffer OFF
TUE
Total unadjusted
error
RL
≥ 5 kΩ, CL ≤ 50 pF, DACOUT buffer ON(3)
No load, DACOUT buffer OFF
Unit
12-bit
LSB
%
12-bit
LSB
1. Not tested in production.
2. Difference between two consecutive codes - 1 LSB.
3. For 48-pin packages only. For 28-pin and 32-pin packages, DAC output buffer must be kept off and no load must be
applied.
4. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code
1023.
5. Difference between the value measured at Code (0x800) and the ideal value = VREF+/2.
6. Difference between the value measured at Code (0x001) and the ideal value.
7. Difference between the ideal slope of the transfer function and the measured slope computed from Code 0x000 and 0xFFF
when buffer is ON, and from Code giving 0.2 V and (VDDA -0.2) V when buffer is OFF.
In the following table, data are guaranteed by design, not tested in production.
Table 55. DAC output on PB4-PB5-PB6(1)
Symbol
Rint
Parameter
Conditions
Max
2.7 V < VDD < 3.6 V
1.4
Internal resistance between
2.4 V < VDD < 3.6 V
DAC output and PB4-PB5-PB6
2.0 V < VDD < 3.6 V
output
1.6
1.8 V < VDD < 3.6 V
8.2
3.2
Unit
kΩ
1. 32 or 28-pin packages only. The DAC channel can be routed either on PB4, PB5 or PB6 using the routing interface I/O
switch registers.
9.3.14
12-bit ADC1 characteristics
In the following table, data are guaranteed by design, not tested in production.
98/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Electrical parameters
Table 56. ADC1 characteristics
Symbol
Parameter
VDDA
Analog supply voltage
VREF+
Reference supply
voltage
VREFIVDDA
IVREF+
Conditions
Min
Typ
Max
-
1.8
-
3.6
2.4 V ≤ VDDA ≤ 3.6 V
2.4
-
VDDA
1.8 V ≤ VDDA ≤ 2.4 V
VDDA
Lower reference voltage
-
VSSA
Current on the VDDA
input pin
-
-
-
-
Current on the VREF+
input pin
1000
400
-
-
Unit
V
1450
700
(peak)(1)
µA
450
(average)(1)
VAIN
Conversion voltage
range
-
0(2)
-
VREF+
-
TA
Temperature range
-
-40
-
125
°C
on PF0 fast channel
-
-
on all other channels
-
-
50(3)
kΩ
on PF0 fast channel
-
on all other channels
-
2.4 V ≤ VDDA ≤ 3.6 V
without zooming
0.320
-
16
1.8 V ≤ VDDA ≤ 2.4 V
with zooming
0.320
-
8
VAIN on PF0 fast
channel
-
-
1(4)(5)
VAIN on all other
channels
-
-
760(4)(5)
kHz
RAIN
External resistance on
VAIN
CADC
Internal sample and hold
capacitor
fADC
fCONV
ADC sampling clock
frequency
12-bit conversion rate
16
-
pF
MHz
fTRIG
External trigger
frequency
-
-
-
tconv
1/fADC
tLAT
External trigger latency
-
-
-
3.5
1/fSYS
DS7106 Rev 9
CLK
99/123
107
Electrical parameters
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 56. ADC1 characteristics (continued)
Symbol
tS
tconv
Parameter
Sampling time
12-bit conversion time
Conditions
Min
Typ
Max
VAIN on PF0 fast
channel
VDDA < 2.4 V
0.43(4)(5)
-
-
VAIN on PF0 fast
channel
2.4 V ≤ VDDA ≤ 3.6 V
0.22(4)(5)
-
-
VAIN on slow channels
VDDA < 2.4 V
0.86(4)(5)
-
-
VAIN on slow channels
2.4 V ≤ VDDA ≤ 3.6 V
0.41(4)(5)
-
-
-
Unit
µs
(Sampling_cycles + SAR_internal_cycles)
/ fADC
(6)
16 MHz
1(4)
-
-
tWKUP
Wakeup time from OFF
state
-
-
-
3
tIDLE(7)
Time before a new
conversion
-
-
-
∞
s
tVREFINT
Internal reference
voltage startup time
-
-
-
refer to
Table 49
ms
1. The current consumption through VREF is composed of two parameters:
- one constant (max 300 µA)
- one variable (max 400 µA), only during sampling time + 2 first conversion pulses.
So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 µA at
1Msps
2. VREF- or VDDA must be tied to ground.
3. Guaranteed by design.
4. Minimum sampling and conversion time is reached for maximum Rext = 0.5 kΩ.
5. Value obtained for continuous conversion on fast channel.
6. SAR_internal_cycles=12 and Sampling_cycles=4;9;16;24;48;96;192 or 384 depending on SMP1[2:0].
7. In STM8L05xx, STM8L15xx, STM8L162x, STM8AL31xx, STM8AL3Lxx, STM8AL31Exx and STM8AL3LExx MCU families
reference manual (RM0031), tIDLE defines the time between 2 conversions, or between ADC ON and the first conversion.
tIDLE is not relevant for this device.
100/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Electrical parameters
In the following three tables, data are guaranteed by characterization result, not tested in
production.
Table 57. ADC1 accuracy with VDDA = 2.5 V to 3.3 V
Symbol
Typ.
Max(1)
1
1.6
Differential non linearity fADC = 8 MHz
1
1.6
fADC = 4 MHz
1
1.5
fADC = 16 MHz
1.2
2
fADC = 8 MHz
1.2
1.8
fADC = 4 MHz
1.2
1.7
fADC = 16 MHz
2.2
3.0
fADC = 8 MHz
1.8
2.5
fADC = 4 MHz
1.8
2.3
fADC = 16 MHz
1.5
2
fADC = 8 MHz
1
1.5
fADC = 4 MHz
0.7
1.2
1
1.5
Parameter
Conditions
fADC = 16 MHz
DNL
INL
Integral non linearity
TUE
Total unadjusted error
Offset
Offset error
fADC = 16 MHz
Gain
Gain error
fADC = 8 MHz
Unit
LSB
LSB
fADC = 4 MHz
1. Not tested in production.
Table 58. ADC1 accuracy with VDDA = 2.4 V to 3.6 V
Symbol
Parameter
Typ.
Max(1)
1
2
1.7
3
DNL
Differential non linearity
INL
Integral non linearity
TUE
Total unadjusted error
2
4
Offset
Offset error
1
2
Gain
Gain error
1.5
3
Unit
LSB
1. Not tested in production.
DS7106 Rev 9
101/123
107
Electrical parameters
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 59. ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V
Symbol
Parameter
Typ.
Max(1)
DNL
Differential non linearity
1
2
INL
Integral non linearity
2
3
TUE
Total unadjusted error
3
5
Offset
Offset error
2
3
Gain
Gain error
2
3
Unit
LSB
1. Not tested in production.
Figure 36. ADC1 accuracy characteristics
Figure 37. Typical connection diagram using the ADC
STM8AL3xxx
VDD
Sample and hold ADC
converter
VT
0.6V
RAIN (1)
RADC
AINx
VAIN
Cparasitic (2)
VT
0.6V
12-bit
converter
CADC (1)
IL ± 50 nA
MS37721V1
1. Refer to Table 56 for the values of RAIN and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
102/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Electrical parameters
Figure 38. Maximum dynamic current consumption on VREF+ supply pin during ADC
conversion
Sampling (n cycles)
Conversion (12 cycles)
ADC clock
IREF+
700 μA
300 μA
MS38388V1
Table 60. RAIN max for fADC = 16 MHz(1)
RAIN max (kohm)
Ts
(cycles)
Ts
(µs)
Slow channels
Fast channels
2.4 V < VDDA < 3.6 V 1.8 V < VDDA < 2.4 V 2.4 V < VDDA < 3.3 V
1.8 V < VDDA < 2.4 V
4
0.25
Not allowed
Not allowed
0.7
Not allowed
9
0.5625
0.8
Not allowed
2.0
1.0
16
1
2.0
0.8
4.0
3.0
24
1.5
3.0
1.8
6.0
4.5
48
3
6.8
4.0
15.0
10.0
96
6
15.0
10.0
30.0
20.0
192
12
32.0
25.0
50.0
40.0
384
24
50.0
50.0
50.0
50.0
1. Guaranteed by design.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 39 or Figure 40,
depending on whether VREF+ is connected to VDDA or not. Good quality ceramic 10 nF
capacitors should be used. They should be placed as close as possible to the chip.
DS7106 Rev 9
103/123
107
Electrical parameters
STM8AL313x/4x/6x STM8AL3L4x/6x
Figure 39. Power supply and reference decoupling (VREF+ not connected to VDDA)
STM8AL
VREF+
External
reference
1 μF // 10 nF
VDDA
Supply
1 μF // 10 nF
VSSA/VREF-
MS37722V1
Figure 40. Power supply and reference decoupling (VREF+ connected to VDDA)
STM8AL
VREF+/VDDA
Supply
1 μF // 10 nF
VREF+/VDDA
MS37723V1
104/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
9.3.15
Electrical parameters
EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),
the product is stressed by two electromagnetic events until a failure occurs (indicated by the
LEDs).
•
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device
until a functional disturbance occurs. This test conforms to the ANSI/ESDA/JEDEC JS001, JESD22-A115 and ANSI/ESD S5.3.1.
•
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms
with the IEC 61000 standard.
A device reset allows normal operations to be resumed. The test results are given in the
table below based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Prequalification trials:
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Table 61. EMS data
Symbol
Parameter
Conditions
VFESD
Voltage limits to be applied on
any I/O pin to induce a functional
disturbance
VEFTB
Fast transient voltage burst limits
Using HSI
to be applied through 100 pF on VDD = 3.3 V, TA = +25 °C, fCPU = 16 MHz,
VDD and VSS pins to induce a
conforms to IEC 61000
Using HSE
functional disturbance
VDD = 3.3 V, TA = +25 °C, fCPU = 16 MHz,
conforms to IEC 61000
DS7106 Rev 9
Level/
Class
3B
4A
2B
105/123
107
Electrical parameters
STM8AL313x/4x/6x STM8AL3L4x/6x
Electromagnetic interference (EMI)
Based on a simple application running on the product (toggling two LEDs through the I/O
ports), the product is monitored in terms of emission. This emission test is in line with the
norm IEC61967-2 which specifies the board and the loading of each pin.
Table 62. EMI data (1)
Symbol
SEMI
Parameter
VDD = 3.6 V,
TA = +25 °C,
LQFP32
conforming to
IEC61967-2
Peak level
Max vs.
Monitored
frequency band
Conditions
Unit
16 MHz
0.1 MHz to 30 MHz
-3
30 MHz to 130 MHz
9
130 MHz to 1 GHz
4
EMI Level
2
dBμV
-
1. Not tested in production.
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the
product is stressed in order to determine its performance in terms of electrical sensitivity.
For more details, refer to the application note AN1181.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models
can be simulated: human body model and charge device model. This test conforms to the
ANSI/ESDA/JEDEC JS-001, JESD22-A115 and ANSI/ESD S5.3.1.
Table 63. ESD absolute maximum ratings
Ratings
Conditions
Class
VESD(HBM)
Electrostatic discharge voltage
(human body model)
TA = +25 °C, conforming
to ANSI/ESDA/
JEDEC JS-001
2
2000
VESD(CDM)
Electrostatic discharge voltage
(charge device model)
TA = +25 °C, conforming
to ANSI/ESD S5.3.1
C4B
500
VESD(MM)
Electrostatic discharge voltage
(Machine model)
TA = +25 °C, conforming
to JESD22-A115
M2
200
1. Guaranteed by characterization results.
106/123
Maximum
Unit
value (1)
Symbol
DS7106 Rev 9
V
STM8AL313x/4x/6x STM8AL3L4x/6x
Electrical parameters
Static latch-up
•
LU: three complementary static tests are required on 6 parts to assess the latch-up
performance. A supply overvoltage (applied to each power supply pin) and a current
injection (applied to each input, output and configurable I/O pin) are performed on each
sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details,
refer to the application note AN1181.
Table 64. Electrical sensitivities
Symbol
LU
Parameter
Conditions
Class(1)
Static latch-up class
TA = 125 °C
A
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the
JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B
class strictly covers all the JEDEC criteria (international standard).
DS7106 Rev 9
107/123
107
Package information
STM8AL313x/4x/6x STM8AL3L4x/6x
10
Package information
10.1
ECOPACK
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
10.2
LQFP48 package information
Figure 41. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline
c
A1
A
A2
SEATING
PLANE
C
0.25 mm
GAUGE PLANE
ccc C
K
A1
D
L
D1
L1
D3
36
25
37
24
48
PIN 1
IDENTIFICATION
E
13
1
12
e
1. Drawing is not to scale.
108/123
E1
E3
b
DS7106 Rev 9
5B_ME_V2
STM8AL313x/4x/6x STM8AL3L4x/6x
Package information
Table 65. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.500
-
-
0.2165
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.500
-
-
0.2165
-
e
-
0.500
-
-
0.0197
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.080
-
-
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DS7106 Rev 9
109/123
122
Package information
STM8AL313x/4x/6x STM8AL3L4x/6x
Figure 42. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint
0.50
1.20
36
9.70
0.30
25
37
24
0.20
7.30
5.80
7.30
48
13
12
1
1.20
5.80
9.70
ai14911d
1. Dimensions are expressed in millimeters.
Device marking for LQFP48
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.The printed markings may differ depending on the supply chain.Other optional
marking or inset/upset marks, which identify the parts throughout supply chain operations,
are not indicated below.
Figure 43. LQFP48 marking example (package top view)
Product
(1)
identification
STM8AL
3168TC
Date code
Y WW
Standard ST logo
Revision code
Pin 1 identifier
R
MS37481V1
1. Parts marked as “ES” or “E” are not yet qualified and therefore not approved for use in production. ST is not
responsible for any consequences resulting from such use. In no event will ST be liable for the customer
using any of these engineering samples in production. ST's Quality department must be contacted prior to
any decision to use these engineering samples to run a qualification activity.
110/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
LQFP32 package information
Figure 44. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline
c
A2
A1
A
SEATING
PLANE
C
0.25 mm
ccc
GAUGE PLANE
C
K
D
A1
L
D1
L1
D3
24
17
25
16
32
9
PIN 1
IDENTIFICATION
1
E
E1
E3
b
10.3
Package information
8
e
5V_ME_V2
1. Drawing is not to scale.
DS7106 Rev 9
111/123
122
Package information
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 66. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
-
-
1.600
-
-
0.0630
A1
0.050
-
0.150
0.0020
-
0.0059
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.300
0.370
0.450
0.0118
0.0146
0.0177
c
0.090
-
0.200
0.0035
-
0.0079
D
8.800
9.000
9.200
0.3465
0.3543
0.3622
D1
6.800
7.000
7.200
0.2677
0.2756
0.2835
D3
-
5.600
-
-
0.2205
-
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
-
5.600
-
-
0.2205
-
e
-
0.800
-
-
0.0315
-
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
-
1.000
-
-
0.0394
-
k
0°
3.5°
7°
0°
3.5°
7°
ccc
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 45. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint
0.80
1.20
24
17
25
16
0.50
0.30
7.30
6.10
9.70
7.30
32
9
8
1
1.20
6.10
9.70
1. Dimensions are expressed in millimeters.
112/123
DS7106 Rev 9
5V_FP_V2
STM8AL313x/4x/6x STM8AL3L4x/6x
Package information
Device marking for LQFP32
The following figure gives an example of topside marking orientation versus pin 1 identifier
location. The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 46. LQFP32 marking example (package top view)
Product
(1)
identification
STM8AL
3136TA
Date code
Y WW
Standard ST logo
Revision code
Pin 1 identifier
R
MS37480V1
1. Parts marked as “ES” or “E” are not yet qualified and therefore not approved for use in production. ST is not
responsible for any consequences resulting from such use. In no event will ST be liable for the customer
using any of these engineering samples in production. ST's Quality department must be contacted prior to
any decision to use these engineering samples to run a qualification activity.
DS7106 Rev 9
113/123
122
Package information
10.4
STM8AL313x/4x/6x STM8AL3L4x/6x
VFQFPN32 package information
Figure 47. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad
flat package outline
Seating plane
C
ddd
C
A
A1
A3
D
e
16
9
17
8
E2
E
b
24
1
L
32
Pin # 1 ID
R = 0.20
D2
Bottom view
L
42_ME_AMKOR_V1
1. Drawing is not to scale.
2. There is an exposed die pad on the underside of the VQFPN package. It is recommended to connect and
solder this backside pad to the PCB ground.
114/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Package information
Table 67. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad
flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.800
0.900
1.000
0.0315
0.0354
0.0394
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
A3
-
0.200
-
-
0.0079
-
b
0.180
0.250
0.300
0.0071
0.0098
0.0118
D
4.850
5.000
5.150
0.1909
0.1969
0.2028
D2
3.500
3.600
3.700
0.1378
0.1417
0.1457
E
4.850
5.000
5.150
0.1909
0.1969
0.2028
E2
3.500
3.600
3.700
0.1378
0.1417
0.1457
e
-
0.500
-
-
0.0197
-
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
ddd
-
-
0.050
-
-
0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DS7106 Rev 9
115/123
122
Package information
STM8AL313x/4x/6x STM8AL3L4x/6x
Figure 48. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad
flat package recommended footprint
5.30
3.80
0.60
3.60
3.80
5.30
3.60
0.50
0.30
0.75
3.80
MSv45245V1
1. Dimensions are expressed in millimeters.
116/123
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Package information
Device marking for VFQFPN32
The following figure gives an example of topside marking orientation versus pin 1 identifier
location. The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 49. VFQFPN32 marking example (package top view)
Product
(1)
Identification
STM8AL
Date code
Y WW
Revision code
R
Pin 1 identifier
MSv44104V1
1. Parts marked as “ES” or “E” are not yet qualified and therefore not approved for use in production. ST is not
responsible for any consequences resulting from such use. In no event will ST be liable for the customer
using any of these engineering samples in production. ST's Quality department must be contacted prior to
any decision to use these engineering samples to run a qualification activity.
DS7106 Rev 9
117/123
122
Package information
10.5
STM8AL313x/4x/6x STM8AL3L4x/6x
Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 19: General operating conditions.
The maximum chip-junction temperature, TJmax, in degree Celsius, may be calculated using
the following equation:
TJmax = TAmax + (PDmax x ΘJA)
Where:
•
TAmax is the maximum ambient temperature in °C
•
ΘJA is the package junction-to-ambient thermal resistance in °C/W
•
PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax)
•
PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
•
PI/Omax represents the maximum power dissipation on output pins
Where:
PI/Omax = Σ(VOL*IOL) + Σ((VDD-VOH)*I OH),
taking into account the actual VOL/IOL and VOH/IOH of the I/Os at low and high level in
the application.
Table 68. Thermal characteristics(1)
Symbol
ΘJA
Parameter
Value
Thermal resistance junction-ambient
LQFP48- 7 x 7 mm
65
Thermal resistance junction-ambient
LQFP32 - 7 x 7 mm
59
Thermal resistance junction-ambient
VFQFPN32 - 5 x 5 mm
62
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection
environment.
118/123
DS7106 Rev 9
Unit
°C/W
STM8AL313x/4x/6x STM8AL3L4x/6x
11
Device ordering information
Device ordering information
Figure 50. Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x
ordering information scheme
Example:
STM8
AL
31
6
8
T
C
Y
Product class
STM8 microcontroller
Family type
AL = Automotive Low power
Sub-family type
31 = Standard
3L = with LCD
Memory size
3 = 8 Kbyte
4 = 16 Kbyte
6 = 32 Kbyte
Pin count
8 = 48 pins
6 = 32 pins
Package
T = LQFP
U = VFQFPN
Temperature range
C = - 40 °C to 125 °C
A = - 40 °C to 85 °C
Packing
Y = Tray
X = Tape and reel compliant with EIA 481-C
1. For a list of available options (e.g. memory size, package) and order-able part numbers or for
further information on any aspect of this device, please contact the nearest ST sales office.
DS7106 Rev 9
119/123
122
Revision history
12
STM8AL313x/4x/6x STM8AL3L4x/6x
Revision history
Table 69. Document revision history
Date
Revision
04-Jan-2012
1
Initial release
2
Added consumption values when run from Flash or from RAM.
Added 8k Flash devices STM8AL3138 and STM8AL3136 to Table 1:
Device summary, Table 2: Medium-density STM8AL313x/4x/6x and
STM8AL3L4x/6x low-power device features and peripheral counts. and
Figure 50: Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x
ordering information scheme.
Added footnotes stating that power consumption has not been tested to
Table 21 and Table 22 for HSE, and to Table 23 and Table 24 for LSE.
Updated max LSI amperage values in Table 23 and Table 24.
Replaced Table 38: Flash program memory and Table 39: Data
memory.
Added a production test footnote to Table 50: TS characteristics.
Updated voltage values in Table 50: TS characteristics, and current
values in Table 51: Comparator 1 characteristics and Table 52:
Comparator 2 characteristics.
Removed Figure 13: Typ. IDD(LPR) vs. VDD (LSI clock source) and
Figure 14: Typ. IDD(LPW) vs. VDD (LSI clock source).
20-Dec-2012
Changes
Updated ‘Qualification conforms’ bullet on cover page.
Updated ‘TS_Factory_CONV’ in Figure 9: Memory map
Removed ‘rev G’ in Table 18: Operating lifetime (OLF) Ratings
Replaced 0.40 by 0.38 in Table 22: Total current consumption in Wait
mode ‘code executed from Flash’ fcpu = 125 kHz
Updated footnote (3) in Table 23: Total current consumption and timing
in low-power run mode at VDD = 1.65 V to 3.6 V, Table 24: Total current
consumption in low-power wait mode at VDD = 1.65 V to 3.6 V and
Table 27: Total current consumption and timing in Halt mode at VDD =
1.65 to 3.6 V
03-Jun-2013
3
Updated footnote (2) in Table 26: Typical current consumption in Activehalt mode, RTC clocked by LSE external crystal
Updated max lLEAK_HSE in Table 30: HSE external clock
characteristics and Table 31: LSE external clock characteristics
Updated ACCHSI in Table 34: HSI oscillator characteristics
Updated tprog max Table 38: Flash program memory
Updated STABVREFINT in Table 49: Reference voltage characteristics
Updated ‘TS_Factory_CONV’ in Table 50: TS characteristics footnote.
Updated ‘tconv’ and ‘title’ in Table 56: ADC1 characteristics
Updated title in Table 57: ADC1 accuracy with VDDA = 2.5 V to 3.3 V
Updated Table 64: Electrical sensitivities
14-Jun-2013
120/123
4
Updated max LSI measures in Table 23: Total current consumption and
timing in low-power run mode at VDD = 1.65 V to 3.6 V and Table 24:
Total current consumption in low-power wait mode at VDD = 1.65 V to
3.6 V
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
Revision history
Table 69. Document revision history (continued)
Date
03-Mar-2014
13-May-2015
Revision
Changes
5
Changed the document status to Datasheet - Production data to reflect
the device maturity.
Corrected the data memory size in the Features.
Updated the package assignment in Table 2: Medium-density
STM8AL313x/4x/6x and STM8AL3L4x/6x low-power device features
and peripheral counts
6
Updated:
– the product names in the document headers and on the cover page,
– Section 1: Introduction,
– the captions of Figure 3: STM8AL31x8T 48-pin pinout (without LCD),
Figure 4: STM8AL3Lx8T 48-pin pinout (with LCD), Figure 5:
STM8AL31x6T 32-pin pinout (without LCD), Figure 6: STM8AL3Lx6T
32-pin pinout (with LCD),
– Table 6: Flash and RAM boundary addresses,
– ILEAK_HSE maximum value in Table 32: HSE oscillator
characteristics,ILEAK_LSE maximum value in Table 33: LSE oscillator
characteristics,
– Table 54, Table 57, Table 58, Table 59 with a footnote for Max values
not tested in production,
– Section 9.3.15: EMC characteristics,
– Section 10.2: LQFP48 package information,
– Section 10.3: LQFP32 package information,
– Figure 50: Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x
ordering information scheme.
Added:
– Figure 43: LQFP48 marking example (package top view),
– Figure 46: LQFP32 marking example (package top view).
Moved Section 10.5: Thermal characteristics to Section 10: Package
information.
DS7106 Rev 9
121/123
122
Revision history
STM8AL313x/4x/6x STM8AL3L4x/6x
Table 69. Document revision history (continued)
Date
18-Oct-2016
28-Mar-2017
19-Apr-2019
122/123
Revision
Changes
7
Added:
– Section 10.4: VFQFPN32 package information
– Figure 7: STM8AL31x6U 32-pin pinout (without LCD)
– Figure 8: STM8AL3Lx6U 32-pin pinout (with LCD)
Updated:
– Section 9.2: Absolute maximum ratings
– Section : Device marking for LQFP48 on page 110, Section : Device
marking for LQFP32 on page 113 and Section : Device marking for
VFQFPN32 on page 117
– Table 2: Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x
low-power device features and peripheral counts
– Table 5: Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x
pin description
– Table 19: General operating conditions
– Table 68: Thermal characteristics
– Figure 33: SPI1 timing diagram - slave mode and CPHA=1(1)
– Figure 34: SPI1 timing diagram - master mode(1)
– Figure 50: Medium-density STM8AL313x/4x/6x and STM8AL3L4x/6x
ordering information scheme
– Footnotes on Figure 43: LQFP48 marking example (package top
view) and Figure 46: LQFP32 marking example (package top view)
8
Updated:
– Table 67: VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile
fine pitch quad flat package mechanical data
– Figure 48: VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin
profile fine pitch quad flat package recommended footprint
9
Updated:
– tconv parameter in Table 56: ADC1 characteristics
– Section : Device marking for LQFP48
– Section : Device marking for LQFP32
– Section : Device marking for VFQFPN32
DS7106 Rev 9
STM8AL313x/4x/6x STM8AL3L4x/6x
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2019 STMicroelectronics – All rights reserved
DS7106 Rev 9
123/123
123