STM8L050J3
Value line, 8-bit ultra-low-power MCU, 8-Kbyte Flash, 256-byte data
EEPROM, RTC, timers, USART, I2C, SPI, ADC, comparators
Datasheet - production data
Features
• Operating conditions
– Operating power supply: 1.8 V to 3.6 V
Temperature range: −40 °C to 125 °C
• Low-power features
– 5 low-power modes: Wait, Low-power run
(5.1 µA), Low-power wait (3 µA), Activehalt with RTC (1.3 µA), Halt (350 nA)
– Ultra-low leakage per I/O: 50 nA
– Fast wakeup from Halt: 5 µs
• Advanced STM8 core
– Harvard architecture and 3-stage pipeline
– Max freq: 16 MHz, 16 CISC MIPS peak
– Up to 6 external interrupt sources
• Reset and supply management
– Low power, ultra-safe BOR reset with 5
selectable thresholds
– Ultra-low power POR/PDR
– Programmable voltage detector (PVD)
• Clock management
– 32 kHz and 1 to 16 MHz crystal oscillators
– Internal 16 MHz factory-trimmed RC
– Internal 38 kHz low consumption RC
– Clock security system
• Low-power RTC
– BCD calendar with alarm interrupt
– Digital calibration with +/- 0.5 ppm accuracy
– LSE security system
– Auto-wakeup from Halt w/ periodic interrupt
SO8N (4.9 x 6 mm or 150 mils width)
• DMA
– 4 channels supporting ADC, SPI, I2C,
USART, timers
– 1 channel for memory-to-memory
• 12-bit ADC up to 1 Msps/4 channels
– Internal reference voltage
• Timers
– Two 16-bit timers with 2 channels (used as
IC, OC, PWM), quadrature encoder
– One 8-bit timer with 7-bit prescaler
– 2 watchdogs: 1 Window, 1 Independent
– Beeper timer with 1, 2 or 4 kHz frequencies
• Communication interfaces
– Synchronous serial interface (SPI)
– Fast I2C 400 kHz SMBus and PMBus
– USART
• Up to 6 I/Os, all mappable on interrupt vectors
• Development support
– Fast on-chip programming and nonintrusive debugging with SWIM
– Bootloader using USART
• Two ultra-low-power comparators
– One with fixed threshold and another one
with rail to rail
• Wakeup capability
• Memories
– 8 Kbytes of Flash program memory and
256 bytes of data EEPROM with ECC
– Flexible write and read protection modes
– 1 Kbyte of RAM
January 2022
This is information on a product in full production.
DS12167 Rev 7
1/94
www.st.com
Contents
STM8L050J3
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3
2.1
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2
Ultra-low-power continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2
Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3
Advanced STM8 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2
Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4
Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5
Low power real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7
DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8
Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9
Ultra-low-power comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.10
System configuration controller and routing interface . . . . . . . . . . . . . . . 20
3.11
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12
2/94
3.2.1
3.11.1
16-bit general purpose timers (TIM2, TIM3) . . . . . . . . . . . . . . . . . . . . . 20
3.11.2
8-bit basic timer (TIM4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12.1
Window watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.12.2
Independent watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13
Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14.1
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14.2
I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14.3
USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
DS12167 Rev 7
STM8L050J3
4
3.15
Infrared (IR) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.16
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1
5
Contents
System configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6
Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7
Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8
Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.1
9
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.3.2
Embedded reset and power control block characteristics . . . . . . . . . . . 51
8.3.3
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.3.4
Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.3.5
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.3.6
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.3.7
I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.3.8
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.3.9
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.3.10
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.3.11
12-bit ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.3.12
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
DS12167 Rev 7
3/94
4
Contents
STM8L050J3
9.1
ECOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.2
SO8N package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.3
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
10
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
11
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4/94
DS12167 Rev 7
STM8L050J3
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
STM8050J3 features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Legend/abbreviation for Table 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
STM8L050J3 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Flash and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Option byte addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 51
Total current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Total current consumption in Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Total current consumption and timing in Low-power run mode
at VDD = 1.8 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Total current consumption in Low-power wait mode at VDD = 1.8 V to 3.6 V . . . . . . . . . . 58
Total current consumption and timing in Active-halt mode at VDD = 1.8 V to 3.6 V. . . . . . 59
Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal . . 59
Total current consumption and timing in Halt mode at VDD = 1.8 to 3.6 V . . . . . . . . . . . . 60
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Current consumption under external reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
HSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
LSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Flash program and data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Output driving current (PA0 with high sink LED driver capability). . . . . . . . . . . . . . . . . . . . 72
SPI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
I2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Reference voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
ADC1 accuracy with VDDA = 3.3 V to 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
ADC1 accuracy with VDDA = 2.4 V to 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
DS12167 Rev 7
5/94
6
List of tables
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
6/94
STM8L050J3
RAIN max for fADC = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
SO8N – 8-lead 4.9 x 6 mm, plastic small outline, 150 mils body width,
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
DS12167 Rev 7
STM8L050J3
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
STM8L050J3 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
STM8L050J3 clock tree diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
STM8L050J3 SO8N package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
STML050J3 memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
POR/BOR thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Typ. IDD(RUN) vs. VDD, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Typ. IDD(LPR) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Typ. IDD(LPW) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
LSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Typical LSI frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Typical VIL and VIH vs VDD (high sink I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Typical VIL and VIH vs VDD (true open drain I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Typical pull-up resistance RPU vs VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Typical pull-up current Ipu vs VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Typ. VOL @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Typ. VOL @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Typ. VOL @ VDD = 3.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Typ. VOL @ VDD = 1.8 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Typ. VDD - VOH @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Typ. VDD - VOH @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
SPI1 timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
SPI1 timing diagram - slave mode and CPHA=1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
SPI1 timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Typical application with I2C bus and timing diagram 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
ADC1 accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Maximum dynamic current consumption on VREF+ supply pin during ADC
conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Power supply and reference decoupling (VREF+ connected to VDDA) . . . . . . . . . . . . . . . 85
SO8N – 8-lead, 4.9 x 6 mm, plastic small outline, 150 mils body width, package outline . 88
SO8N – 8-lead 4.9 x 6 mm, plastic small outline, 150 mils body width,
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Example of SO8N marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Low density value line STM8L050J3 ordering information scheme . . . . . . . . . . . . . . . . . . 92
DS12167 Rev 7
7/94
7
Introduction
1
STM8L050J3
Introduction
This document describes the features, pinout, mechanical data and ordering information for
the STM8L050J3 microcontroller with 8-Kbyte Flash memory.
For further details on the STMicroelectronics low density family please refer to Section 2.2:
Ultra-low-power continuum.
For detailed information on device operation and registers, refer to the STM8L050J3,
STM8L051F3, STM8L052C6, STM8L052R8 MCUs and STM8L151/L152, STM8L162,
STM8AL31, STM8AL3L lines reference manual (RM0031).
For information on to the Flash program memory and data EEPROM, refer to the How to
program STM8L and STM8AL Flash program memory and data EEPROM programming
manual (PM0054).
For information on the debug module and SWIM (single wire interface module), refer to the
STM8 SWIM communication protocol and debug module user manual (UM0470).
For information on the STM8 core, refer to the STM8 CPU programming manual (PM0044).
The low density value line devices, like STM8L050J3, provide the following benefits:
•
•
•
•
Integrated system
–
8 Kbytes of low-density embedded Flash program memory
–
256 bytes of data EEPROM
–
1 Kbyte of RAM
–
Internal high-speed and low-power low speed RC
–
Embedded reset
Ultra-low-power consumption
–
1 µA in Active-halt mode
–
Clock gated system and optimized power management
–
Capability to execute from RAM for Low-power wait mode and Low-power run
mode
Advanced features
–
Up to 16 MIPS at 16 MHz CPU clock frequency
–
Direct memory access (DMA) for memory-to-memory or peripheral-to-memory
access
Short development cycles
–
Application scalability across a common family product architecture with
compatible pinout, memory map and modular peripherals
–
Wide choice of development tools
These features make STM8L050J3 suitable for a wide range of consumer and mass market
applications.
Refer to Table 1: STM8050J3 features and peripheral counts and Section 3: Functional
overview for an overview of the complete range of peripherals proposed in this family.
Figure 1 shows STM8L050J3 block diagram.
8/94
DS12167 Rev 7
STM8L050J3
2
Description
Description
STM8L050J3 is member of the STM8L ultra-low-power 8-bit family.
STM8L050J3 features an enhanced STM8 CPU core providing increased processing power
(up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with
improved code density, a 24-bit linear addressing space and an optimized architecture for
low-power operations.
The STM8L050J3 MCU includes an integrated debug module with a hardware interface
(SWIM) which allows non-intrusive In-Application debugging and ultra-fast Flash
programming. It features an embedded data EEPROM and low-power, low-voltage, singlesupply program Flash memory.
The device incorporates an extensive range of enhanced I/Os and peripherals, a 12-bit
ADC, two comparators, a real-time clock, two 16-bit timers, one 8-bit timer, as well as
standard communication interfaces such as an SPI, an I2C interface, and one USART.
The modular design of the peripheral set allows this device to have the same peripherals
that can be found in different ST microcontroller families including 32-bit families. This
makes any transition to a different family very easy, supported also by the use of a common
set of development tools.
STM8L050J3 as all the value line STM8L ultra-low-power products are based on the same
architecture with the same memory mapping and a coherent pinout.
DS12167 Rev 7
9/94
43
Description
2.1
STM8L050J3
Device overview
Table 1. STM8050J3 features and peripheral counts
Features
STM8L050J3
Flash (Kbytes)
8
Data EEPROM (Bytes)
256
RAM (Kbytes)
Timers
1
Basic
1
(8-bit)
General
purpose
2
(16-bit)
SPI
Communicati
I2C
on interfaces
USART
1
1
GPIOs
6
1
12-bit synchronized ADC
(number of channels)
1
(4)
Comparators
(COMP1/COMP2)
Others
2
RTC, window watchdog, independent watchdog,
16-MHz and 32-kHz internal RC,
1- to 16-MHz and 32-kHz external oscillator
CPU frequency
16 MHz
Operating voltage
1.8 to 3.6 V
− 40 to +125 °C
Operating temperature
Package
10/94
SO8N
DS12167 Rev 7
STM8L050J3
2.2
Description
Ultra-low-power continuum
STM8L050J3 is part of STM8’s ultra-low-power value line on which all the devices are
software and feature compatible. Besides the full compatibility within the STM8L family, the
devices are part of STMicroelectronics microcontrollers ultra-low-power strategy which also
includes the STM8L001xx, STM8L101xx and STM32L15xxx devices. The STM8L and
STM32L families allow a continuum of performance, peripherals, system architecture, and
features.
They are all based on STMicroelectronics 0.13 µm ultra-low leakage process.
Performance
All the STMicroelectronics ultra-low-power families incorporate highly energy-efficient cores
with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L
families and ARM® 32-bit Cortex®-M3 core for STM32L family. In addition specific care for
the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios.
This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs.
Shared peripherals
The STM8L05xxx, STM8L15xxx and STM32L15xxx devices share identical peripherals
which ensure a very easy migration from one family to another:
•
Analog peripheral: ADC1 and comparators COMP1/COMP2
•
Digital peripherals: RTC and some communication interfaces
Common system strategy
To offer flexibility and optimize performance, the STM8L and STM32L devices use a
common architecture:
•
Same power supply range from 1.8 to 3.6 V
•
Architecture optimized to reach ultra-low consumption both in low-power modes and
Run mode
•
Fast startup strategy from low-power modes
•
Flexible system clock
•
Ultra-safe reset: same reset strategy for both STM8L and STM32L including power-on
reset, power-down reset, brownout reset and programmable voltage detector.
Features
ST ultra-low-power continuum also lies in feature compatibility:
•
More than 11 packages with pin count from 8 to 100 pins and size down to 3 x 3 mm
•
Memory density ranging from 2 to 128 Kbytes
DS12167 Rev 7
11/94
43
Functional overview
3
STM8L050J3
Functional overview
Figure 1 presents the basic block diagram which includes all the functional blocks for
STM8L050J3.
Figure 1. STM8L050J3 block diagram
OSC_IN,
OSC_OUT
16 MHz internal RC
OSC32_IN,
OSC32_OUT
@V DD
1-16 MHz oscillator
32 kHz oscillator
VDD18
Clock
controller
and CSS
Power
VOLT. REG.
Clocks
to core and
peripherals
38 kHz internal RC
V DD=1.8 V
to 3.6 V
V SS
RESET
Interrupt controller
POR/PDR
STM8 Core
SWIM
BOR
Debug module
(SWIM)
PVD
16-bit Timer 2(2)
1 channel
16-bit Timer 3(2)
8-bit Timer 4(2)
IR_TIM
Infrared interface
DMA1 (4 channels)
SCL, SDA
SPI1_MOSI, SPI1_MISO,
SPI1_SCK
USART1_RX, USART1_TX,
USART1_CK
I²C1
SPI1
USART1
8-Kbyte
Program memory
A d d res s , c o n trol an d d ata b u s es
2 channels
256-byte
Data EEPROM
1-Kbyte RAM
Port A
PA
Port B
PB
Port C
PC
Port D
PD
Beeper
BEEP
@V
/V
DDA SSA
ADC1_INx
12-bit ADC1
RTC
ALARM
IWDG
(38 kHz clock)
Internal reference
voltage
WWDG
MSv47735V1
1. Legend:ADC: Analog-to-digital converter
BOR: Brownout reset
DMA: Direct memory access
I²C: Inter-integrated circuit multimaster interface
IWDG: Independent watchdog
POR/PDR: Power-on reset / power-down reset
RTC: Real-time clock
SPI: Serial peripheral interface
SWIM: Single wire interface module
USART: Universal synchronous asynchronous receiver transmitter
WWDG: Window watchdog
12/94
DS12167 Rev 7
STM8L050J3
3.1
Functional overview
Low-power modes
STM8L050J3 as well as all the low density value line STM8L05xxx devices support five lowpower modes to achieve the best compromise between low power consumption, short
startup time and available wakeup sources:
•
Wait mode: The CPU clock is stopped, but selected peripherals keep running. An
internal or external interrupt or a Reset can be used to exit the microcontroller from
Wait mode (WFE or WFI mode).
•
Low-power run mode: The CPU and the selected peripherals are running. Execution
is done from RAM with a low speed oscillator (LSI or LSE). Flash memory and data
EEPROM are stopped and the voltage regulator is configured in ultra-low-power mode.
The microcontroller enters Low-power run mode by software and can exit from this
mode by software or by a reset.
All interrupts must be masked. They cannot be used to exit the microcontroller from this
mode.
•
Low-power wait mode: This mode is entered when executing a Wait for event in Lowpower run mode. It is similar to Low-power run mode except that the CPU clock is
stopped. The wakeup from this mode is triggered by a Reset or by an internal or
external event (peripheral event generated by the timers, serial interfaces, DMA
controller (DMA1), comparators and I/O ports). When the wakeup is triggered by an
event, the system goes back to Low-power run mode.
All interrupts must be masked. They cannot be used to exit the microcontroller from this
mode.
•
Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup
can be triggered by RTC interrupts, external interrupts or reset.
•
Halt mode: CPU and peripheral clocks are stopped, the device remains powered on.
The RAM content is preserved. The wakeup is triggered by an external interrupt or
reset. A few peripherals have also a wakeup from Halt capability. Switching off the
internal reference voltage reduces power consumption. Through software configuration
it is also possible to wake up the device without waiting for the internal reference
voltage wakeup time to have a fast wakeup time of 5 µs.
DS12167 Rev 7
13/94
43
Functional overview
3.2
STM8L050J3
Central processing unit STM8
The central processing unit represents the core of the microcontroller; it executes code and
controls the peripherals.
3.2.1
Advanced STM8 Core
The 8-bit STM8 core is designed for code efficiency and performance with an Harvard
architecture and a 3-stage pipeline.
It contains 6 internal registers which are directly addressable in each execution context, 20
addressing modes including indexed indirect and relative addressing, and 80 instructions.
Architecture and registers
•
Harvard architecture
•
3-stage pipeline
•
32-bit wide program memory bus - single cycle fetching most instructions
•
X and Y 16-bit index registers - enabling indexed addressing modes with or without
offset and read-modify-write type data manipulations
•
8-bit accumulator
•
24-bit program counter - 16-Mbyte linear memory space
•
16-bit stack pointer - access to a 64-Kbyte level stack
•
8-bit condition code register - 7 condition flags for the result of the last instruction
Addressing
•
20 addressing modes
•
Indexed indirect addressing mode for lookup tables located anywhere in the address
space
•
Stack pointer relative addressing mode for local variables and parameter passing
Instruction set
3.2.2
•
80 instructions with 2-byte average instruction size
•
Standard data movement and logic/arithmetic functions
•
8-bit by 8-bit multiplication
•
16-bit by 8-bit and 16-bit by 16-bit division
•
Bit manipulation
•
Data transfer between stack and accumulator (push/pop) with direct stack access
•
Data transfer using the X and Y registers or direct memory-to-memory transfers
Interrupt controller
STM8L050J3 and all the low density value line STM8L05xxx feature a nested vectored
interrupt controller:
14/94
•
Nested interrupts with 3 software priority levels
•
32 interrupt vectors with hardware priority
•
Up to 6 external interrupt sources on 6 vectors
•
Trap and reset interrupts
DS12167 Rev 7
STM8L050J3
3.3
Functional overview
Reset and supply management
The power supplies requirements must be defined in order to have a correct microcontroller
operation. The reset and supply management controls the microcontroller operation under
defined conditions.
3.3.1
Power supply scheme
The device requires a 1.8 V to 3.6 V operating supply voltage (VDD). The external power
supply pins must be connected as follows:
3.3.2
•
VSS1; VDD1 = 1.8 to 3.6 V: external power supply for I/Os and for the internal regulator.
Provided externally through VDD1 pins, the corresponding ground pin is VSS1.
•
VSSA; VDDA = 1.8 to 3.6 V: external power supplies for analog peripherals. VDDA and
VSSA is internally bonded to VDD1 and VSS1, respectively.
•
VREF+, VREF- (for ADC1): external reference voltage for ADC1 internally bonded to
VSS1 / VDD1 and externally through VREF+ and VREF- pin.
Power supply supervisor
The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset
(PDR), coupled with a brownout reset (BOR) circuitry. When the microcontroller operates
between 1.8 and 3.6 V, BOR is always active and ensures proper operation starting from
1.8 V. After the 1.8 V BOR threshold is reached, the option byte loading process starts,
either to confirm or modify default thresholds, or to disable BOR permanently.
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To
reduce the power consumption in Halt mode, it is possible to automatically switch off the
internal reference voltage (and consequently the BOR) in Halt mode. The device remains in
reset state when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for
any external reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different
levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An
interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when
VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
3.3.3
Voltage regulator
STM8L050J3 as all the low density value line STM8L05xxx embeds an internal voltage
regulator for generating the 1.8 V power supply for the core and peripherals.
This regulator has two different modes:
•
Main voltage regulator mode (MVR) for Run, Wait for interrupt (WFI) and Wait for event
(WFE) modes.
•
Low-power voltage regulator mode (LPVR) for Halt, Active-halt, Low-power run and
Low-power wait modes.
When entering Halt or Active-halt modes, the system automatically switches from the MVR
to the LPVR in order to reduce current consumption.
DS12167 Rev 7
15/94
43
Functional overview
3.4
STM8L050J3
Clock management
The clock controller distributes the system clock (SYSCLK) coming from different oscillators
to the core and the peripherals. It also manages clock gating for low-power modes and
ensures clock robustness.
Features
16/94
•
Clock prescaler: to get the best compromise between speed and current consumption
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler.
•
Safe clock switching: Clock sources can be changed safely on the fly in run mode
through a configuration register.
•
Clock management: To reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
•
System clock sources: four different clock sources can be used to drive the system
clock:
–
1-16 MHz High speed external crystal (HSE)
–
16 MHz High speed internal RC oscillator (HSI)
–
32.768 Low speed external crystal (LSE)
–
38 kHz Low speed internal RC (LSI)
•
RTC clock sources: the above four sources can be chosen to clock the RTC whatever
the system clock.
•
Startup clock: After reset, the microcontroller restarts by default with an internal
2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the
application program as soon as the code execution starts.
•
Clock security system (CSS): This feature can be enabled by software. If a HSE
clock failure occurs, it is automatically switched to HSI.
•
Configurable main clock output (CCO): This outputs an external clock for use by the
application.
DS12167 Rev 7
STM8L050J3
Functional overview
Figure 2. STM8L050J3 clock tree diagram
SWIM[3:0]
OSC_OUT
OSC_IN
HSE OSC
1-16 MHz
HSE
HSI
HSI RC
1-16 MHz
LSI
SYSCLK
prescaler
/1;2;4;8;16;32;64
LSE
SYSCLK to core and
memory
PCLK to
peripherals
Peripheral
Clock
enable (13 bits)
LSE
BEEPCLK
CLKBEEPSEL[1:0]
LSI
LSI RC
38 kHz
IWDGCLK
to
BEEP
to
IWDG
RTCSEL[3:0]
OSC32_OUT
OSC32_IN
CCO
RTC
prescaler
/1;2;4;8;16;32;64
LSE OSC
32.768 kHz
Configurable
clock output
to
RTC
RTCCLK
HSI
LSI
HSE
LSE
CCO
prescaler
/1;2;4;8;16;32;64
CCOSEL[3:0]
MS18281V2
1. The HSE clock source can be either an external crystal/ceramic resonator or an external source (HSE
bypass). Refer to Section HSE clock in the STM8L050J3, STM8L051F3, STM8L052C6, STM8L052R8
MCUs and STM8L151/L152, STM8L162, STM8AL31, STM8AL3L lines reference manual (RM0031).
2. The LSE clock source can be either an external crystal/ceramic resonator or a external source (LSE
bypass). Refer to Section LSE clock in the STM8L050J3, STM8L051F3, STM8L052C6, STM8L052R8
MCUs and STM8L151/L152, STM8L162, STM8AL31, STM8AL3L lines reference manual (RM0031).
DS12167 Rev 7
17/94
43
Functional overview
3.5
STM8L050J3
Low power real-time clock
The real-time clock (RTC) is an independent binary coded decimal (BCD) timer/counter.
Six byte locations contain the second, minute, hour (12/24 hour), week day, date, month,
year, in BCD (binary coded decimal) format. Correction for 28, 29 (leap year), 30, and 31
day months are made automatically.
It provides a programmable alarm and programmable periodic interrupts with wakeup from
Halt capability.
3.6
•
Periodic wakeup time using the 32.768 kHz LSE with the lowest resolution (of 61 µs) is
from min. 122 µs to max. 3.9 s. With a different resolution, the wakeup time can reach
36 hours
•
Periodic alarms based on the calendar can also be generated from every second to
every year
Memories
STM8L050J3 as all the low density value line STM8L05xxx devices have the following main
features:
•
Up to 1 Kbyte of RAM
•
The non-volatile memory is divided into three arrays:
–
8 Kbytes of low-density embedded Flash program memory
–
256 bytes of Data EEPROM
–
Option bytes
The EEPROM embeds the error correction code (ECC) feature.
The option byte protects part of the Flash program memory from write and readout piracy.
Recommendation for the device's programming
The device's 8 Kbytes program memory is not empty on virgin devices; there is code loop
implemented on the reset vector. It is recommended to keep valid code loop in the device to
avoid the program execution from an invalid memory address (which would be any memory
address out of 8 Kbytes program memory space).
If the device's program memory is empty (0x00 content), it displays the behavior described
below:
•
After the power on, the “empty” code is executed (0x0000 opcodes = instructions: NEG
(0x00, SP)) until the device reaches the end of the 8 Kbytes program memory (the end
address = 0x9FFF).
It takes around 4 milliseconds to reach the end of the 8 Kbytes memory space @2 MHz
HSI clock.
•
Once the device reaches the end of the 8 Kbytes program memory, the program
continues and code from a non-existing memory is fetched and executed.
The reading of non-existing memory is a random content which can lead to the execution of
invalid instructions.
The execution of invalid instructions generates a software reset and the program starts
again. A reset can be generated every 4 milliseconds or more.
18/94
DS12167 Rev 7
STM8L050J3
Functional overview
Only the “connect on-the-fly” method can be used to program the device through the SWIM
interface. The “connect under-reset” method cannot be used because the NRST pin is not
available on this device.
The “connect on-the-fly” mode can be used while the device is executing code, but if there is
a device reset (by software reset) during the SWIM connection, this connection is aborted
and it must be performed again from the debug tool. Note that the software reset occurrence
can be of every 4 milliseconds, making it difficult to successfully connect to the device's
debug tool (there is practically only one successful connection trial for every 10 attempts).
Once that a successful connection is reached, the device can be programmed with a valid
firmware without problems; therefore it is recommended that device is never erased and
that it always contains a valid code loop.
3.7
DMA
A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and
peripherals-from/to-memory transfer capability. The 4 channels are shared between the
following IPs with DMA capability: ADC1, I2C1, SPI1, USART1, and the three timers.
3.8
Analog-to-digital converter
•
12-bit analog-to-digital converter (ADC1) with 4 channels (no fast channel) and internal
reference voltage
•
Conversion time down to 1 µs with fSYSCLK= 16 MHz
•
Programmable resolution
•
Programmable sampling time
•
Single and continuous mode of conversion
•
Scan capability: automatic conversion performed on a selected group of analog inputs
•
Analog watchdog
•
Triggered by timer
Note:
ADC1 can be served by DMA1.
3.9
Ultra-low-power comparators
The low-density STM8L050J3xx embed two comparators (COMP1 and COMP2) sharing
the same current bias and voltage reference. The voltage reference can be internal or
external (coming from an I/O). Each comparator has a different threshold type:
•
One comparator with fixed threshold (COMP1)
•
One comparator rail to rail with fast or slow mode (COMP2). The threshold can be of
the following:
–
External I/O
–
Internal reference voltage or internal reference voltage sub multiple (1/4, 1/2, 3/4)
The two comparators can be used together to offer a window function. They can wake up
from Halt mode.
DS12167 Rev 7
19/94
43
Functional overview
3.10
STM8L050J3
System configuration controller and routing interface
The system configuration controller provides the capability to remap some alternate
functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped.
The highly flexible routing interface controls the routing of internal analog signals to ADC1
and the internal reference voltage VREFINT.
3.11
Timers
STM8L050J3 contains two 16-bit general purpose timers (TIM2 and TIM3) and one 8-bit
basic timer (TIM4).
All the timers can be served by DMA1.
Table 2 compares the features of the advanced control, general-purpose and basic timers.
Table 2. Timer feature comparison
Timer
TIM2
TIM3
TIM4
3.11.1
3.11.2
Counter Counter
resolution
type
16-bit
8-bit
up/down
up
Prescaler factor
DMA1
request
generation
Any power of 2
from 1 to 128
Capture/compare
channels
Complementary
outputs
2
Yes
Any power of 2
from 1 to 32768
1
None
0
16-bit general purpose timers (TIM2, TIM3)
•
16-bit autoreload (AR) up/down-counter
•
7-bit prescaler adjustable to fixed power of 2 ratios (1…128)
•
Individually configurable capture/compare channels
•
PWM mode
•
Interrupt capability on various events (capture, compare, overflow, break, trigger)
•
Synchronization with other timers or external signals (external clock, reset, trigger and
enable)
8-bit basic timer (TIM4)
The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable
prescaler. It can be used for timebase generation with interrupt generation on timer
overflow.
3.12
Watchdog timers
The watchdog system is based on two independent timers providing maximum security to
the applications.
20/94
DS12167 Rev 7
STM8L050J3
3.12.1
Functional overview
Window watchdog timer
The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually
generated by external interferences or by unexpected logical conditions, which cause the
application program to abandon its normal sequence.
3.12.2
Independent watchdog timer
The independent watchdog peripheral (IWDG) can be used to resolve processor
malfunctions due to hardware or software failures.
It is clocked by the internal LSI RC clock source, and thus stays active even in case of a
CPU clock failure.
3.13
Beeper
The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in
the range of 1, 2 or 4 kHz.
3.14
Communication interfaces
This section describes the three communication interfaces of STM8L050J3: SPI, I2C and
USART.
3.14.1
SPI
The serial peripheral interfaces (SPI1) provide half/ full duplex synchronous serial
communication with external devices.
Note:
•
Maximum speed: 8 Mbit/s (fSYSCLK/2) both for master and slave
•
Full duplex synchronous transfers
•
Simplex synchronous transfers on 2 lines with a possible bidirectional data line
•
Master or slave operation - selectable by hardware or software
•
Hardware CRC calculation
SPI1 can be served by the DMA1 Controller.
Slave selection pin (NSS) is supported only in a slave receive-only mode.
3.14.2
I2C
The I2C bus interface (I2C1) provides multi-master capability, and controls all I2C busspecific sequencing, protocol, arbitration and timing.
Note:
•
Master, slave and multi-master capability
•
Standard mode up to 100 kHz and fast speed modes up to 400 kHz
•
7-bit and 10-bit addressing modes
•
SMBus 2.0 and PMBus support
•
Hardware CRC calculation
I2C1 can be served by the DMA1 Controller.
DS12167 Rev 7
21/94
43
Functional overview
3.14.3
STM8L050J3
USART
The USART interface (USART1) allows full duplex, asynchronous communications with
external devices requiring an industry standard NRZ asynchronous serial data format. It
offers a very wide range of baud rates.
•
1 Mbit/s full duplex SCI
•
SPI emulation
•
High precision baud rate generator
•
Smartcard emulation
•
IrDA SIR encoder decoder
•
Single wire half duplex mode
Note:
USART1 can be served by the DMA1 Controller.
3.15
Infrared (IR) interface
The low density STM8L05xxx devices contain an infrared interface which can be used with
an IR LED for remote control functions. Two timer output compare channels are used to
generate the infrared remote control signals.
3.16
Development support
Development tools
Development tools for the STM8 microcontrollers include:
•
The STice emulation system offering tracing and code profiling
•
The STVD high-level language debugger including C compiler, assembler and
integrated development environment
•
The STVP Flash programming software
The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit
debugging/programming tools.
Single wire data interface (SWIM) and debug module
The debug module with its single wire data interface (SWIM) permits non-intrusive real-time
in-circuit debugging and fast memory programming.
The Single wire interface is used for direct access to the debugging module and memory
programming. The interface can be activated in all device operation modes.
The non-intrusive debugging module features a performance close to a full-featured
emulator. Beside memory and peripherals, CPU operation can also be monitored in realtime by means of shadow registers.
22/94
DS12167 Rev 7
STM8L050J3
Functional overview
Recommendations for SWIM pin (pin#1) sharing
If the SWIM pin should be used with the I/O pin functionality, it is recommended to add a ~5
seconds delay in the firmware before changing the functionality on the pin with SWIM
functions. This action allows the user to set the device into SWIM mode after the device
power on and to be able to reprogram the device. If the pin with SWIM functionality is set to
I/O mode immediately after the device reset, the device is unable to connect through the
SWIM interface and it is locked forever (if the NRST pin is not available on the package).
This initial delay can be removed in the final (locked) code.
If the initial delay is not acceptable for the application there is the option that the firmware
reenables the SWIM pin functionality under specific conditions such as during firmware
startup or during application run. Once that this procedure is done, the SWIM interface can
be used for device debug/programming.
Bootloader
STM8L050J3 features a built-in bootloader(which supports USART interface on pins 8 and
1: PC5 = TxD, PC6 RxD). See STM8 bootloader user manual (UM0560).
The bootloader is used to download application software into the device memories,
including RAM, program and data memory, using standard serial interfaces. It is a
complementary solution to programming via the SWIM debugging interface.
DS12167 Rev 7
23/94
43
Pin description
4
STM8L050J3
Pin description
This section describes the device’s pin functions (see Table 4) and package’s pinout (see
Figure 3).
Figure 3. STM8L050J3 SO8N package pinout
PA0/[USART_CK]/SWIM/BEEP/IR_TIM/
PA2/OSC_IN/[USART_TX]/[SPI_MISO]/
PC6/OSC32_OUT/SPI_SCK/USART_RX/TIM2_CH2
1
PA3/OSC_OUT/[USART_RX]/[SPI_MOSI]
2
8
7
PC1/I2C_SCL/
PC4/USART_CK/I2C_SMB/CCO/ADC1_IN4/COMP1_INP/
COMP2_INM/
PC5/OSC32_IN/[SPI1_NSS]/USART_TX/TIM2_CH1
PB7/SPI_MISO/ADC1_IN11/COMP1_INP/
PC0/I2C_SDA
STM8L
VSS/VSSA/VREF-
VDD/VDDA/VREF+
3
4
6
PB6/SPI_MOSI/ADC1IN12/COMP1_INP
5
PB3/TIM2_ETR/ADC1_IN15/RTC_ALARM/COMP1_INP/
PB5/SPI_SCK/ADC1_IN13/COMP1_NP/
PD0/TIM3_CH2/[ADC1_TRIG]/ADC1_IN22/COMP1_INP/
COMP2_INP/
MSv46319V1
1. [ ] Alternative function option. If the same alternate function is shown twice, it indicates an exclusive choice
and not a duplication of the function.
Table 3. Legend/abbreviation for Table 4
Type
Level
Port and control
configuration
Reset state
24/94
I= input, O = output, S = power supply
Output
HS = high sink/source (20 mA)
Input
FT - five volt tolerant
Input
float = floating, wpu = weak pull-up
Output
T = true open drain, OD = open drain, PP = push pull
Bold X (pin state after reset release).
Unless otherwise specified, the pin state is the same during the reset phase
(i.e. “under reset”) and after internal reset release (i.e. at reset state).
DS12167 Rev 7
STM8L050J3
Pin description
Table 4. STM8L050J3 pin description
PA0(1)/[USART_CK](2)/
SWIM/BEEP/IR_TIM(3)
I/O -
HS
X
X (1) X (3) X
PA2/OSC_IN/[USART_TX](2)/
[SPI_MISO] (2) (4)
I/O -
(1)
PC6/OSC32_OUT/[SPI_SCK](2)
I/O /[USART_RX]/TIM2_CH2
2
Main function
(after reset)
Default alternate function
X
Port
A0
[USART1 synchronous clock](2) /
SWIM input and output /
Beep output / Infrared Timer output
X
X HS X
X
Port
A2
HSE oscillator input / [USART
transmit] / [SPI master in- slave out]
(1)
X
X HS X
X
Port
C6
LSE oscillator output / [SPI clock] /
[USART receive]/
Timer 2 -channel 2
PA3/OSC_OUT/[USART_RX](2)
I/O /[SPI_MOSI](2)
X
X
X HS X
X
Port
A3
HSE oscillator output / [USART
receive]/ [SPI master out/slave in]
3
VSS / VREF- / VSSA
-
-
-
-
-
-
-
-
Ground voltage / ADC1 negative voltage
reference / Analog ground voltage
4
VDD / VDDA / VREF+
S
-
-
-
-
-
-
-
Digital supply voltage /Analog supply voltage
ADC1 positive voltage reference
PB3/TIM2_ETR/
ADC1_IN15/RTC_ALARM/COM I/O P1_INP
X
X
X HS X
X
Port
B3
Timer 2 - external trigger /
ADC1_IN15 / RTC_ALARM/
Comparator1 positive input
PB5/SPI_SCK/ADC1_IN13/CO
I/O MP1_INP
X
X
X HS X
X
Port
B5
[SPI clock] / ADC1_IN13/
Comparator1 positive input
1
5
X
PP
High sink/source
Output
Ext. interrupt
wpu
I/O level
floating
SO8N
Pin name
Type
Input
OD
pin
n°
X
PD0/TIM3_CH2/[ADC1_TRIG](2
I/O -
X
X
X HS X
I/O -
X
X
X HS X
X
Port
B6
SPI master out/
slave in / ADC1_IN12/ Comparator1
positive input
PB7/SPI_MISO/ADC1_IN11/CO
I/O MP1_INP
X
X
X HS X
X
Port
B7
SPI1 master in- slave out/
ADC1_IN11/ Comparator1 positive
input
PC0/I2C_SDA
X
-
X
- T(5) -
Port
C0
I2C data
MP2_INP
6
7
Timer 3 - channel 2 /
[ADC1_Trigger] / ADC1_IN22/
Comparator1 positive input/
Comparator2 positive input
Port
X
D0
)/ADC1_IN22/COMP1_INP/CO
PB6/SPI_MOSI/
ADC1_IN12/COMP1_INP
I/O -
DS12167 Rev 7
25/94
43
Pin description
STM8L050J3
Table 4. STM8L050J3 pin description (continued)
8
-
X
- T(5) -
PP
High sink/source
X
OD
Ext. interrupt
I/O level
I/O -
wpu
PC1/I2C_SCL
Output
floating
SO8N
Pin name
Type
Input
Main function
(after reset)
pin
n°
Default alternate function
Port
C1
I2C clock
PC4/USART_CK]/
I2C_SMB/CCO/ADC1_IN4/CO
MP1_INP/COMP2_INM
I/O -
X
X
X HS X
X
Port
C4
USART synchronous clock /
I2C1_SMB / Configurable clock
output / ADC1_IN4/ Comparator1
positive input/ Comparator2
negative input
PC5/OSC32_IN /[SPI_NSS](2)/
[USART_TX]/TIM2_CH1
I/O -
X
X
X HS X
X
Port
C5
LSE oscillator input / [SPI
master/slave select] / [USART
transmit]/Timer 2 -channel 1
1. The PA0 pin is in input pull-up during the reset phase and after reset release. The default PA0 influences all the GPIOs
connected in parallel on pin number 1 (PA2, PC6).
2. [ ] Alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a
duplication of the function).
3. High Sink LED driver capability available on PA0.
4. The SPI_MISO signal on PA2 (pin1) cannot be used in application because it is shared with the SPI_SCK signal on the
same pin.
5. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer and protection diode to VDD are not
implemented). Although PC0/PC1 itself is a true open drain GPIO with its respective circuitry and characteristics, the
maximum VIN of the pin number 7 and pin number 8 is limited by the standard GPIO (PB7 or PC4/PC5) which is also
bonded to the same pin number.
Note:
26/94
1
The slope control of all GPIO pins, except true open drain pins, can be programmed. By
default, the slope control is limited to 2 MHz.
2
The PA1, PB0, PB1, PB2 and PB4 should be configured after device reset by user software
into the output push-pull mode with output low-state to reduce the device’s consumption and
to improve its EMC immunity. The GPIOs mentioned above are not connected to pins, and
they are in input-floating mode after a device reset. To configure PA1 pin in output push-pull
mode refer to Section “Configuring NRST/PA1 pin as general purpose output” in the
STM8L050J3, STM8L051F3, STM8L052C6, STM8L052R8 MCUs and STM8L151/L152,
STM8L162, STM8AL31, STM8AL3L lines reference manual (RM0031).
3
As several pins provide a connection to multiple GPIOs, the mode selection for any of those
GPIOs impacts all the other GPIOs connected to the same pin. The user is responsible for
the proper setting of the GPIO modes in order to avoid conflicts between GPIOs bonded to
the same pin (including their alternate functions). For example, pull-up enabled on PA0 is
also seen on PA2 and PC6. Push-pull configuration of PB3 is also seen on PB5 and PD0,
etc.
DS12167 Rev 7
STM8L050J3
4.1
Pin description
System configuration options
As shown in Table 4: STM8L050J3 pin description, some functions can be remapped on
different I/O ports by programming one of the two remapping registers described in the
“Routing interface (RI) and system configuration controller” section in the STM8L050J3,
STM8L051F3, STM8L052C6, STM8L052R8 MCUs and STM8L151/L152, STM8L162,
STM8AL31, STM8AL3L lines reference manual (RM0031).
DS12167 Rev 7
27/94
43
Memory and register map
5
STM8L050J3
Memory and register map
The following sections describe the mapping of the device’s memory and peripherals.
5.1
Memory mapping
The memory map is shown in Figure 4.
Figure 4. STML050J3 memory map
0x00 5000
GPIO ports
0x00 501E
Reserved
0x00 5050
Flash
0x00 5055
Reserved
0x00 0000
0x00 03FF
0x00 0400
0x00 1FFF
0x00 1000
0x00 10FF
0x00 1100
RAM ( Up to 1 Kbyte)
including
Stack (512 bytes)
0x00 50A9
RST
0x00 50B2
PWR
0x00 50B4
Reserved
0x00 50C0
CLK
0x00 50D1
Reserved
0x00 50D3
WWDG
Option bytes
0x00 50D5
Reserved
0x00 50E0
0x00 50E3
Reserved
IWDG
Reserved
0x00 50F0
0x00 50F4
BEEP
Reserved
0x00 5040
0x00 5191
0x00 5200
Reserved
RTC
Reserved
SPI1
0x00 5208
Reserved
0x00 5210
I2C1
Boot ROM
(2 Kbytes)
0x00 521F
Reserved
0x00 5230
0x00 523B
Reserved
0x00 5250
0x00 7EFF
0x00 7F00
0x00 9FFF
Reserved
0x00 50B0
Data EEPROM
(256 Bytes)
0x00 5457
0x00 5458
0x00 7FFF
0x00 8000
0x00 80FF
0x00 8100
ITC-EXT1
0x00 50A6
WFE
GPIO and peripheral registers
0x00 67FF
0x00 6800
0x00 50A0
ITC-EXT1
0x00 47FF
0x00 4800
0x00 5FFF
0x00 6000
DMA1
SYSCFG
0x00 50AA
Reserved
Reserved
0x00 487F
0x00 4880
0x00 4FFF
0x00 5000
0x00 5070
0x00 509D
0x00 5267
USART1
Reserved
TIM2
Reserved
CPU/SWIM/Debug/ITC
Registers
0x00 5280
Reset and interrupt vectors
0x00 52EA
TIM3
0x00 5297
Reserved
0x00 52E0
0x00 52FF
TIM4
Reserved
IRTIM
0x00 5317
Low density
Flash program memory
(8 Kbytes)
Reserved
0x00 5340
0x00 53C8
0x00 5430
ADC1
Reserved
RI
0x00 5440
0x00 5450
0x00 5457
Reserved
RI
MS18274V3
1. Table 5 lists the boundary addresses for each memory size. The top of the stack is at the RAM end
address.
2. Refer to Table 7 for an overview of hardware register mapping, to Table 6 for details on I/O port hardware
registers, and to Table 8 for information on CPU/SWIM/debug module controller registers.
28/94
DS12167 Rev 7
STM8L050J3
Memory and register map
Table 5. Flash and RAM boundary addresses
Memory area
Size
Start address
End address
RAM
1 Kbyte
0x00 0000
0x00 03FF
Flash program memory
8 Kbytes
0x00 8000
0x00 9FFF
5.2
Register map
Table 6. I/O port hardware register map
Register label
Register name
Reset
status
0x00 5000
PA_ODR
Port A data output latch register
0x00
0x00 5001
PA_IDR
Port A input pin value register
0xXX
PA_DDR
Port A data direction register
0x00
0x00 5003
PA_CR1
Port A control register 1
0x01
0x00 5004
PA_CR2
Port A control register 2
0x00
0x00 5005
PB_ODR
Port B data output latch register
0x00
0x00 5006
PB_IDR
Port B input pin value register
0xXX
PB_DDR
Port B data direction register
0x00
0x00 5008
PB_CR1
Port B control register 1
0x00
0x00 5009
PB_CR2
Port B control register 2
0x00
0x00 500A
PC_ODR
Port C data output latch register
0x00
0x00 500B
PC_IDR
Port C input pin value register
0xXX
PC_DDR
Port C data direction register
0x00
0x00 500D
PC_CR1
Port C control register 1
0x00
0x00 500E
PC_CR2
Port C control register 2
0x00
0x00 500F
PD_ODR
Port D data output latch register
0x00
0x00 5010
PD_IDR
Port D input pin value register
0xXX
PD_DDR
Port D data direction register
0x00
0x00 5012
PD_CR1
Port D control register 1
0x00
0x00 5013
PD_CR2
Port D control register 2
0x00
Address
0x00 5002
0x00 5007
0x00 500C
0x00 5011
0x00 5014
to
0x00 501D
Block
Port A
Port B
Port C
Port D
Reserved area (0 bytes)
DS12167 Rev 7
29/94
43
Memory and register map
STM8L050J3
Table 7. General hardware register map
Address
Block
Register label
Register name
0x00 502E
to
0x00 5049
Reset
status
Reserved area (44 bytes)
0x00 5050
FLASH_CR1
Flash control register 1
0x00
0x00 5051
FLASH_CR2
Flash control register 2
0x00
FLASH _PUKR
Flash program memory unprotection key register
0x00
0x00 5053
FLASH _DUKR
Data EEPROM unprotection key register
0x00
0x00 5054
FLASH _IAPSR
Flash in-application programming status register
0x00
0x00 5052
Flash
0x00 5055
to
0x00 506F
Reserved area (27 bytes)
0x00 5070
DMA1_GCSR
DMA1 global configuration & status register
0xFC
0x00 5071
DMA1_GIR1
DMA1 global interrupt register 1
0x00
0x00 5072 to
0x00 5074
Reserved area (3
bytes)
0x00 5075
DMA1_C0CR
DMA1 channel 0 configuration register
0x00
0x00 5076
DMA1_C0SPR
DMA1 channel 0 status & priority register
0x00
0x00 5077
DMA1_C0NDTR
DMA1 number of data to transfer register
(channel 0)
0x00
0x00 5078
DMA1_C0PARH
DMA1 peripheral address high register
(channel 0)
0x52
0x00 5079
DMA1_C0PARL
DMA1 peripheral address low register
(channel 0)
0x00
DMA1
0x00 507A
Reserved area (1 byte)
0x00 507B
DMA1_C0M0ARH
DMA1 memory 0 address high register
(channel 0)
0x00
0x00 507C
DMA1_C0M0ARL
DMA1 memory 0 address low register
(channel 0)
0x00
30/94
DS12167 Rev 7
STM8L050J3
Memory and register map
Table 7. General hardware register map (continued)
Address
Block
Register label
Register name
0x00 507D to
0x00 507E
Reset
status
Reserved area (2 bytes)
0x00 507F
DMA1_C1CR
DMA1 channel 1 configuration register
0x00
0x00 5080
DMA1_C1SPR
DMA1 channel 1 status & priority register
0x00
0x00 5081
DMA1_C1NDTR
DMA1 number of data to transfer register
(channel 1)
0x00
0x00 5082
DMA1_C1PARH
DMA1 peripheral address high register
(channel 1)
0x52
0x00 5083
DMA1_C1PARL
DMA1 peripheral address low register
(channel 1)
0x00
0x00 5084
Reserved area (1 byte)
0x00 5085
DMA1_C1M0ARH
DMA1 memory 0 address high register
(channel 1)
0x00
0x00 5086
DMA1_C1M0ARL
DMA1 memory 0 address low register
(channel 1)
0x00
0x00 5087
0x00 5088
Reserved area (2 bytes)
0x00 5089
DMA1_C2CR
DMA1 channel 2 configuration register
0x00
0x00 508A
DMA1_C2SPR
DMA1 channel 2 status & priority register
0x00
DMA1_C2NDTR
DMA1 number of data to transfer register
(channel 2)
0x00
0x00 508C
DMA1_C2PARH
DMA1 peripheral address high register
(channel 2)
0x52
0x00 508D
DMA1_C2PARL
DMA1 peripheral address low register
(channel 2)
0x00
0x00 508B
DMA1
0x00 508E
Reserved area (1 byte)
0x00 508F
DMA1_C2M0ARH
DMA1 memory 0 address high register
(channel 2)
0x00
0x00 5090
DMA1_C2M0ARL
DMA1 memory 0 address low register
(channel 2)
0x00
0x00 5091
0x00 5092
Reserved area (2 bytes)
0x00 5093
DMA1_C3CR
DMA1 channel 3 configuration register
0x00
0x00 5094
DMA1_C3SPR
DMA1 channel 3 status & priority register
0x00
0x00 5095
DMA1_C3NDTR
DMA1 number of data to transfer register
(channel 3)
0x00
0x00 5096
DMA1_C3PARH_
C3M1ARH
DMA1 peripheral address high register
(channel 3)
0x40
0x00 5097
DMA1_C3PARL_
C3M1ARL
DMA1 peripheral address low register
(channel 3)
0x00
DS12167 Rev 7
31/94
43
Memory and register map
STM8L050J3
Table 7. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5098
DMA_C3M0EAR
DMA channel 3 memory 0 extended address
register
0x00
0x00 5099
DMA1_C3M0ARH
DMA1 memory 0 address high register
(channel 3)
0x00
DMA1_C3M0ARL
DMA1 memory 0 address low register
(channel 3)
0x00
Address
Block
DMA1
0x00 509A
0x00 509B to
0x00 509C
Reserved area (3 bytes)
0x00 509D
SYSCFG_RMPCR3
Remapping register 3
0x00
SYSCFG_RMPCR1
Remapping register 1
0x2C
0x00 509F
SYSCFG_RMPCR2
Remapping register 2
0x00
0x00 50A0
EXTI_CR1
External interrupt control register 1
0x00
0x00 50A1
EXTI_CR2
External interrupt control register 2
0x00
EXTI_CR3
External interrupt control register 3
0x00
EXTI_SR1
External interrupt status register 1
0x00
0x00 50A4
EXTI_SR2
External interrupt status register 2
0x00
0x00 50A5
EXTI_CONF1
External interrupt port select register 1
0x00
0x00 50A6
WFE_CR1
WFE control register 1
0x00
WFE_CR2
WFE control register 2
0x00
WFE_CR3
WFE control register 3
0x00
WFE_CR4
WFE control register 4
0x00
EXTI_CR4
External interrupt control register 4
0x00
EXTI_CONF2
External interrupt port select register 2
0x00
0x00 509E
0x00 50A2
0x00 50A3
0x00 50A7
0x00 50A8
SYSCFG
ITC - EXTI
WFE
0x00 50A9
0x00 50AA
0x00 50AB
ITC - EXTI
0x00 50A9
to
0x00 50AF
0x00 50B0
0x00 50B1
0x00 50B2
0x00 50B3
Reserved area (7 bytes)
RST
PWR
RST_CR
Reset control register
0x00
RST_SR
Reset status register
0x01
PWR_CSR1
Power control and status register 1
0x00
PWR_CSR2
Power control and status register 2
0x00
0x00 50B4
to
0x00 50BF
Reserved area (12 bytes)
0x00 50C0
0x00 50C1
0x00 50C2
0x00 50C3
32/94
CLK
CLK_CKDIVR
CLK Clock master divider register
0x03
CLK_CRTCR
CLK Clock RTC register
0x00(1)
CLK_ICKCR
CLK Internal clock control register
0x11
CLK_PCKENR1
CLK Peripheral clock gating register 1
0x00
DS12167 Rev 7
STM8L050J3
Memory and register map
Table 7. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 50C4
CLK_PCKENR2
CLK Peripheral clock gating register 2
0x00
0x00 50C5
CLK_CCOR
CLK Configurable clock control register
0x00
0x00 50C6
CLK_ECKCR
CLK External clock control register
0x00
0x00 50C7
CLK_SCSR
CLK System clock status register
0x01
0x00 50C8
CLK_SWR
CLK System clock switch register
0x01
0x00 50C9
CLK_SWCR
CLK Clock switch control register
0xX0
CLK_CSSR
CLK Clock security system register
0x00
0x00 50CB
CLK_CBEEPR
CLK Clock BEEP register
0x00
0x00 50CC
CLK_HSICALR
CLK HSI calibration register
0xXX
0x00 50CD
CLK_HSITRIMR
CLK HSI clock calibration trimming register
0x00
0x00 50CE
CLK_HSIUNLCKR
CLK HSI unlock register
0x00
0x00 50CF
CLK_REGCSR
CLK Main regulator control status register
0bxx11 1
00X
0x00 50D0
CLK_PCKENR3
CLK Peripheral clock gating register 3
0x00
Address
0x00 50CA
Block
CLK
0x00 50D1
to
0x00 50D2
0x00 50D3
0x00 50D4
Reserved area (2 bytes)
WWDG
WWDG_CR
WWDG control register
0x7F
WWDG_WR
WWDR window register
0x7F
0x00 50D5
to
00 50DF
Reserved area (11 bytes)
0x00 50E0
0x00 50E1
IWDG
0x00 50E2
IWDG_KR
IWDG key register
0x01
IWDG_PR
IWDG prescaler register
0x00
IWDG_RLR
IWDG reload register
0xFF
0x00 50E3
to
0x00 50EF
Reserved area (13 bytes)
0x00 50F0
0x00 50F1
0x00 50F2
BEEP_CSR1
BEEP_CSR2
0x00 50F4
to0x00 513F
0x00 5142
BEEP control/status register 2
0x1F
Reserved area (76 bytes)
0x00 5140
0x00 5141
0x00
Reserved area (2 bytes)
BEEP
0x00 50F3
BEEP control/status register 1
RTC
RTC_TR1
RTC Time register 1
0x00
RTC_TR2
RTC Time register 2
0x00
RTC_TR3
RTC Time register 3
0x00
DS12167 Rev 7
33/94
43
Memory and register map
STM8L050J3
Table 7. General hardware register map (continued)
Address
Block
Register label
Register name
0x00 5143
Reset
status
Reserved area (1 byte)
0x00 5144
RTC_DR1
RTC Date register 1
0x01
0x00 5145
RTC_DR2
RTC Date register 2
0x21
0x00 5146
RTC_DR3
RTC Date register 3
0x00
0x00 5147
Reserved area (1 byte)
0x00 5148
RTC_CR1
RTC Control register 1
0x00(1)
0x00 5149
RTC_CR2
RTC Control register 2
0x00(1)
0x00 514A
RTC_CR3
RTC Control register 3
0x00(1)
0x00 514B
Reserved area (1 byte)
0x00 514C
RTC_ISR1
RTC Initialization and status register 1
0x01
0x00 514D
RTC_ISR2
RTC Initialization and Status register 2
0x00
0x00 514E
0x00 514F
Reserved area (2 bytes)
0x00 5150
RTC_SPRERH
RTC Synchronous prescaler register high
0x00(1)
0x00 5151
RTC_SPRERL
RTC Synchronous prescaler register low
0xFF(1)
0x00 5152
RTC_APRER
RTC Asynchronous prescaler register
0x7F(1)
0x00 5153
0x00 5154
0x00 5155
Reserved area (1 byte)
RTC
RTC_WUTRH
RTC Wakeup timer register high
0xFF(1)
RTC_WUTRL
RTC Wakeup timer register low
0xFF(1)
0x00 5156
Reserved area (1 byte)
0x00 5157
RTC_SSRL
RTC Subsecond register low
0x00
0x00 5158
RTC_SSRH
RTC Subsecond register high
0x00
0x00 5159
RTC_WPR
RTC Write protection register
0x00
0x00 5158
RTC_SSRH
RTC Subsecond register high
0x00
0x00 5159
RTC_WPR
RTC Write protection register
0x00
0x00 515A
RTC_SHIFTRH
RTC Shift register high
0x00
0x00 515B
RTC_SHIFTRL
RTC Shift register low
0x00
0x00 515C
RTC_ALRMAR1
RTC Alarm A register 1
0x00(1)
0x00 515D
RTC_ALRMAR2
RTC Alarm A register 2
0x00(1)
0x00 515E
RTC_ALRMAR3
RTC Alarm A register 3
0x00(1)
0x00 515F
RTC_ALRMAR4
RTC Alarm A register 4
0x00(1)
0x00 5160 to
0x00 5163
Reserved area (4 bytes)
0x00 5164
RTC_ALRMASSRH
RTC Alarm A subsecond register high
0x00(1)
0x00 5165
RTC_ALRMASSRL
RTC Alarm A subsecond register low
0x00(1)
34/94
DS12167 Rev 7
STM8L050J3
Memory and register map
Table 7. General hardware register map (continued)
Address
Block
0x00 5166
Register label
Register name
Reset
status
RTC_ALRMASSMSKR
RTC Alarm A masking register
0x00(1)
0x00 5167 to
0x00 5169
Reserved area (3 bytes)
0x00 516A
0x00 516B
0x00 516C
RTC
0x00 516D
RTC_CALRH
RTC Calibration register high
0x00(1)
RTC_CALRL
RTC Calibration register low
0x00(1)
RTC_TCR1
RTC Tamper control register 1
0x00(1)
RTC_TCR2
RTC Tamper control register 2
0x00(1)
0x00 516E to
0x00 518A
Reserved area (36 bytes)
0x00 5190
CSSLSE_CSR
0x00 519A to
0x00 51FF
CSS on LSE control and status register
0x00(1)
Reserved area (111 bytes)
0x00 5200
SPI1_CR1
SPI1 control register 1
0x00
0x00 5201
SPI1_CR2
SPI1 control register 2
0x00
0x00 5202
SPI1_ICR
SPI1 interrupt control register
0x00
SPI1_SR
SPI1 status register
0x02
SPI1_DR
SPI1 data register
0x00
0x00 5205
SPI1_CRCPR
SPI1 CRC polynomial register
0x07
0x00 5206
SPI1_RXCRCR
SPI1 Rx CRC register
0x00
0x00 5207
SPI1_TXCRCR
SPI1 Tx CRC register
0x00
0x00 5203
0x00 5204
SPI1
0x00 5208
to
0x00 520F
Reserved area (8 bytes)
0x00 5210
I2C1_CR1
I2C1 control register 1
0x00
0x00 5211
I2C1_CR2
I2C1 control register 2
0x00
0x00 5212
I2C1_FREQR
I2C1 frequency register
0x00
0x00 5213
I2C1_OARL
I2C1 own address register low
0x00
0x00 5214
I2C1_OARH
I2C1 own address register high
0x00
0x00 5215
I2C1_OAR2
I2C1 own address register for dual mode
0x00
I2C1_DR
I2C1 data register
0x00
0x00 5217
I2C1_SR1
I2C1 status register 1
0x00
0x00 5218
I2C1_SR2
I2C1 status register 2
0x00
0x00 5219
I2C1_SR3
I2C1 status register 3
0x0X
0x00 521A
I2C1_ITR
I2C1 interrupt control register
0x00
0x00 521B
I2C1_CCRL
I2C1 clock control register low
0x00
0x00 521C
I2C1_CCRH
I2C1 clock control register high
0x00
0x00 5216
I2C1
DS12167 Rev 7
35/94
43
Memory and register map
STM8L050J3
Table 7. General hardware register map (continued)
Address
0x00 521D
0x00 521E
Block
I2C1
Register label
Register name
Reset
status
I2C1_TRISER
I2C1 TRISE register
0x02
I2C1_PECR
I2C1 packet error checking register
0x00
0x00 521F
to
0x00 522F
Reserved area (17 bytes)
0x00 5230
USART1_SR
USART1 status register
0xC0
0x00 5231
USART1_DR
USART1 data register
0xXX
0x00 5232
USART1_BRR1
USART1 baud rate register 1
0x00
0x00 5233
USART1_BRR2
USART1 baud rate register 2
0x00
0x00 5234
USART1_CR1
USART1 control register 1
0x00
USART1_CR2
USART1 control register 2
0x00
0x00 5236
USART1_CR3
USART1 control register 3
0x00
0x00 5237
USART1_CR4
USART1 control register 4
0x00
0x00 5238
USART1_CR5
USART1 control register 5
0x00
0x00 5239
USART1_GTR
USART1 guard time register
0x00
0x00 523A
USART1_PSCR
USART1 prescaler register
0x00
0x00 5235
USART1
0x00 523B
to
0x00 524F
Reserved area (21 bytes)
0x00 5250
TIM2_CR1
TIM2 control register 1
0x00
0x00 5251
TIM2_CR2
TIM2 control register 2
0x00
0x00 5252
TIM2_SMCR
TIM2 Slave mode control register
0x00
0x00 5253
TIM2_ETR
TIM2 external trigger register
0x00
0x00 5254
TIM2_DER
TIM2 DMA1 request enable register
0x00
0x00 5255
TIM2_IER
TIM2 interrupt enable register
0x00
0x00 5256
TIM2_SR1
TIM2 status register 1
0x00
TIM2_SR2
TIM2 status register 2
0x00
TIM2_EGR
TIM2 event generation register
0x00
0x00 5259
TIM2_CCMR1
TIM2 capture/compare mode register 1
0x00
0x00 525A
TIM2_CCMR2
TIM2 capture/compare mode register 2
0x00
0x00 525B
TIM2_CCER1
TIM2 capture/compare enable register 1
0x00
0x00 525C
TIM2_CNTRH
TIM2 counter high
0x00
0x00 525D
TIM2_CNTRL
TIM2 counter low
0x00
0x00 525E
TIM2_PSCR
TIM2 prescaler register
0x00
0x00 525F
TIM2_ARRH
TIM2 auto-reload register high
0xFF
0x00 5257
0x00 5258
36/94
TIM2
DS12167 Rev 7
STM8L050J3
Memory and register map
Table 7. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5260
TIM2_ARRL
TIM2 auto-reload register low
0xFF
0x00 5261
TIM2_CCR1H
TIM2 capture/compare register 1 high
0x00
0x00 5262
TIM2_CCR1L
TIM2 capture/compare register 1 low
0x00
TIM2_CCR2H
TIM2 capture/compare register 2 high
0x00
0x00 5264
TIM2_CCR2L
TIM2 capture/compare register 2 low
0x00
0x00 5265
TIM2_BKR
TIM2 break register
0x00
0x00 5266
TIM2_OISR
TIM2 output idle state register
0x00
Address
0x00 5263
Block
TIM2
0x00 5267 to
0x00 527F
Reserved area (25 bytes)
0x00 5280
TIM3_CR1
TIM3 control register 1
0x00
0x00 5281
TIM3_CR2
TIM3 control register 2
0x00
0x00 5282
TIM3_SMCR
TIM3 Slave mode control register
0x00
0x00 5283
TIM3_ETR
TIM3 external trigger register
0x00
0x00 5284
TIM3_DER
TIM3 DMA1 request enable register
0x00
0x00 5285
TIM3_IER
TIM3 interrupt enable register
0x00
0x00 5286
TIM3_SR1
TIM3 status register 1
0x00
0x00 5287
TIM3_SR2
TIM3 status register 2
0x00
0x00 5288
TIM3_EGR
TIM3 event generation register
0x00
0x00 5289
TIM3_CCMR1
TIM3 Capture/Compare mode register 1
0x00
0x00 528A
TIM3_CCMR2
TIM3 Capture/Compare mode register 2
0x00
TIM3_CCER1
TIM3 Capture/Compare enable register 1
0x00
0x00 528C
TIM3_CNTRH
TIM3 counter high
0x00
0x00 528D
TIM3_CNTRL
TIM3 counter low
0x00
0x00 528E
TIM3_PSCR
TIM3 prescaler register
0x00
0x00 528F
TIM3_ARRH
TIM3 Auto-reload register high
0xFF
0x00 5290
TIM3_ARRL
TIM3 Auto-reload register low
0xFF
0x00 5291
TIM3_CCR1H
TIM3 Capture/Compare register 1 high
0x00
0x00 5292
TIM3_CCR1L
TIM3 Capture/Compare register 1 low
0x00
0x00 5293
TIM3_CCR2H
TIM3 Capture/Compare register 2 high
0x00
0x00 5294
TIM3_CCR2L
TIM3 Capture/Compare register 2 low
0x00
0x00 5295
TIM3_BKR
TIM3 break register
0x00
0x00 5296
TIM3_OISR
TIM3 output idle state register
0x00
0x00 528B
0x00 5297 to
0x00 52DF
TIM3
Reserved area (72 bytes)
DS12167 Rev 7
37/94
43
Memory and register map
STM8L050J3
Table 7. General hardware register map (continued)
Register label
Register name
Reset
status
0x00 52E0
TIM4_CR1
TIM4 control register 1
0x00
0x00 52E1
TIM4_CR2
TIM4 control register 2
0x00
0x00 52E2
TIM4_SMCR
TIM4 Slave mode control register
0x00
0x00 52E3
TIM4_DER
TIM4 DMA1 request enable register
0x00
TIM4_IER
TIM4 Interrupt enable register
0x00
TIM4_SR1
TIM4 status register 1
0x00
0x00 52E6
TIM4_EGR
TIM4 Event generation register
0x00
0x00 52E7
TIM4_CNTR
TIM4 counter
0x00
0x00 52E8
TIM4_PSCR
TIM4 prescaler register
0x00
0x00 52E9
TIM4_ARR
TIM4 Auto-reload register
0x00
Address
0x00 52E4
0x00 52E5
Block
TIM4
0x00 52EA
to
0x00 52FE
0x00 52FF
Reserved area (21 bytes)
IRTIM
IR_CR
0x00 5317
to
0x00 533F
Infrared control register
0x00
Reserved area (41 bytes)
0x00 5340
ADC1_CR1
ADC1 configuration register 1
0x00
0x00 5341
ADC1_CR2
ADC1 configuration register 2
0x00
0x00 5342
ADC1_CR3
ADC1 configuration register 3
0x1F
0x00 5343
ADC1_SR
ADC1 status register
0x00
0x00 5344
ADC1_DRH
ADC1 data register high
0x00
0x00 5345
ADC1_DRL
ADC1 data register low
0x00
0x00 5346
ADC1_HTRH
ADC1 high threshold register high
0x0F
0x00 5347
ADC1_HTRL
ADC1 high threshold register low
0xFF
ADC1_LTRH
ADC1 low threshold register high
0x00
ADC1_LTRL
ADC1 low threshold register low
0x00
0x00 534A
ADC1_SQR1
ADC1 channel sequence 1 register
0x00
0x00 534B
ADC1_SQR2
ADC1 channel sequence 2 register
0x00
0x00 534C
ADC1_SQR3
ADC1 channel sequence 3 register
0x00
0x00 534D
ADC1_SQR4
ADC1 channel sequence 4 register
0x00
0x00 534E
ADC1_TRIGR1
ADC1 trigger disable 1
0x00
0x00 534F
ADC1_TRIGR2
ADC1 trigger disable 2
0x00
0x00 5350
ADC1_TRIGR3
ADC1 trigger disable 3
0x00
0x00 5351
ADC1_TRIGR4
ADC1 trigger disable 4
0x00
0x00 5348
0x00 5349
38/94
ADC1
DS12167 Rev 7
STM8L050J3
Memory and register map
Table 7. General hardware register map (continued)
Address
Block
Register label
0x00 53C8 to
0x00 542F
Register name
Reset
status
Reserved area(104 bytes)
0x00 5430
Reserved area (1 byte)
0x00
0x00 5431
RI_ICR1
RI Timer input capture routing register 1
0x00
0x00 5432
RI_ICR2
RI Timer input capture routing register 2
0x00
0x00 5433
RI_IOIR1
RI I/O input register 1
0xXX
0x00 5434
RI_IOIR2
RI I/O input register 2
0xXX
0x00 5435
RI_IOIR3
RI I/O input register 3
0xXX
0x00 5436
RI_IOCMR1
RI I/O control mode register 1
0x00
RI_IOCMR2
RI I/O control mode register 2
0x00
RI_IOCMR3
RI I/O control mode register 3
0x00
0x00 5439
RI_IOSR1
RI I/O switch register 1
0x00
0x00 543A
RI_IOSR2
RI I/O switch register 2
0x00
0x00 543B
RI_IOSR3
RI I/O switch register 3
0x00
0x00 543C
RI_IOGCR
RI I/O group control register
0xFF
0x00 543D
RI_ASCR1
Analog switch register 1
0x00
0x00 543E
RI_ASCR2
RI Analog switch register 2
0x00
0x00 543F
RI_RCR
RI Resistor control register
0x00
0x00 5440
COMP_CSR1
Comparator control and status register 1
0x00
COMP_CSR2
Comparator control and status register 2
0x00
COMP_CSR3
Comparator control and status register 3
0x00
0x00 5443
COMP_CSR4
Comparator control and status register 4
0x00
0x00 5444
COMP_CSR5
Comparator control and status register 5
0x00
0x00 5437
0x00 5438
RI
0x00 5441
0x00 5442
COMP1/
COMP2
0x00 5445
to
0x00 544F
Reserved area (16 bytes)
0x00 5450
RI_CR
RI I/O control register
0x00
0x00 5451
RI_MASKR1
RI I/O mask register 1
0x00
0x00 5452
RI_MASKR2
RI I/O mask register 2
0x00
RI_MASKR3
RI I/O mask register 3
0x00
RI_MASKR4
RI I/O mask register 4
0x00
0x00 5455
RI_IOIR4
RI I/O input register 4
0xXX
0x00 5456
RI_IOCMR4
RI I/O control mode register 4
0x00
0x00 5457
RI_IOSR4
RI I/O switch register 4
0x00
0x00 5453
0x00 5454
RI
1. These registers are not impacted by a system reset. They are reset at power-on.
DS12167 Rev 7
39/94
43
Memory and register map
STM8L050J3
Table 8. CPU/SWIM/debug module/interrupt controller registers
Register label
Register name
Reset
status
0x00 7F00
A
Accumulator
0x00
0x00 7F01
PCE
Program counter extended
0x00
0x00 7F02
PCH
Program counter high
0x00
0x00 7F03
PCL
Program counter low
0x00
XH
X index register high
0x00
XL
X index register low
0x00
0x00 7F06
YH
Y index register high
0x00
0x00 7F07
YL
Y index register low
0x00
0x00 7F08
SPH
Stack pointer high
0x03
0x00 7F09
SPL
Stack pointer low
0xFF
0x00 7F0A
CCR
Condition code register
0x28
Address
Block
0x00 7F04
0x00 7F05
0x00 7F0B to
0x00 7F5F
(1)
CPU
Reserved area (85 bytes)
CPU
0x00 7F60
CFG_GCR
Global configuration register
0x00
0x00 7F70
ITC_SPR1
Interrupt Software priority register 1
0xFF
0x00 7F71
ITC_SPR2
Interrupt Software priority register 2
0xFF
0x00 7F72
ITC_SPR3
Interrupt Software priority register 3
0xFF
ITC_SPR4
Interrupt Software priority register 4
0xFF
ITC_SPR5
Interrupt Software priority register 5
0xFF
0x00 7F75
ITC_SPR6
Interrupt Software priority register 6
0xFF
0x00 7F76
ITC_SPR7
Interrupt Software priority register 7
0xFF
0x00 7F77
ITC_SPR8
Interrupt Software priority register 8
0xFF
0x00 7F73
0x00 7F74
ITC-SPR
0x00 7F78
to
0x00 7F79
0x00 7F80
Reserved area (2 bytes)
SWIM
SWIM_CSR
0x00 7F81
to
0x00 7F8F
SWIM control status register
0x00
Reserved area (15 bytes)
0x00 7F90
DM_BK1RE
DM breakpoint 1 register extended byte
0xFF
0x00 7F91
DM_BK1RH
DM breakpoint 1 register high byte
0xFF
0x00 7F92
DM_BK1RL
DM breakpoint 1 register low byte
0xFF
DM_BK2RE
DM breakpoint 2 register extended byte
0xFF
0x00 7F94
DM_BK2RH
DM breakpoint 2 register high byte
0xFF
0x00 7F95
DM_BK2RL
DM breakpoint 2 register low byte
0xFF
0x00 7F96
DM_CR1
DM Debug module control register 1
0x00
0x00 7F93
40/94
DM
DS12167 Rev 7
STM8L050J3
Memory and register map
Table 8. CPU/SWIM/debug module/interrupt controller registers (continued)
Address
Block
0x00 7F97
0x00 7F98
0x00 7F99
DM
0x00 7F9A
0x00 7F9B
to
0x00 7F9F
Register label
Register name
Reset
status
DM_CR2
DM Debug module control register 2
0x00
DM_CSR1
DM Debug module control/status register 1
0x10
DM_CSR2
DM Debug module control/status register 2
0x00
DM_ENFCTR
DM enable function register
0xFF
Reserved area (5 bytes)
1. Accessible by debug module only
DS12167 Rev 7
41/94
43
Interrupt vector mapping
6
STM8L050J3
Interrupt vector mapping
The interrupt vector mapping is described in Table 9.
I
IRQ
No.
Table 9. Interrupt mapping
Source
block
RESET
Description
Reset
Wakeup
from Halt
mode
Wakeup
from
Active-halt
mode
Wakeup
from Wait
(WFI
mode)
Wakeup
from Wait
(WFE
mode)(1)
Yes
Yes
Yes
Yes
0x00 8000
Vector
address
TRAP
Software interrupt
-
-
-
-
0x00 8004
TLI(2)
External Top level Interrupt
-
-
-
-
0x00 8008
1
FLASH
FLASH end of programing/
write attempted to
protected page interrupt
-
-
Yes
Yes
0x00 800C
2
DMA1 0/1
DMA1 channels 0/1 half
transaction/transaction
complete interrupt
-
-
Yes
Yes
0x00 8010
3
DMA1 2/3
DMA1 channels 2/3 half
transaction/transaction
complete interrupt
-
-
Yes
Yes
0x00 8014
4
RTC
RTC alarm A/wakeup/
tamper 1/tamper 2/tamper 3
Yes
Yes
Yes
Yes
0x00 8018
5
PVD
PVD interrupt
Yes
Yes
Yes
Yes
0x00 801C
6
EXTIB
External interrupt port B
Yes
Yes
Yes
Yes
0x00 8020
7
EXTID
External interrupt port D
Yes
Yes
Yes
Yes
0x00 8024
8
EXTI0
External interrupt 0
Yes
Yes
Yes
Yes
0x00 8028
9
EXTI1
External interrupt 1
Yes
Yes
Yes
Yes
0x00 802C
10
EXTI2
External interrupt 2
Yes
Yes
Yes
Yes
0x00 8030
11
EXTI3
External interrupt 3
Yes
Yes
Yes
Yes
0x00 8034
12
EXTI4
External interrupt 4
Yes
Yes
Yes
Yes
0x00 8038
13
EXTI5
External interrupt 5
Yes
Yes
Yes
Yes
0x00 803C
14
EXTI6
External interrupt 6
Yes
Yes
Yes
Yes
0x00 8040
15
EXTI7
External interrupt 7
Yes
Yes
Yes
Yes
0x00 8044
0
16
Reserved
17
CLK
18
ADC1
42/94
CLK system clock
switch/CSS interrupt
ACD1 end of conversion/
analog watchdog/
overrun interrupt
0x00 8048
-
-
Yes
Yes
0x00 804C
Yes
Yes
Yes
Yes
0x00 8050
DS12167 Rev 7
STM8L050J3
Interrupt vector mapping
Table 9. Interrupt mapping (continued)
Wakeup
from Halt
mode
Wakeup
from
Active-halt
mode
Wakeup
from Wait
(WFI
mode)
Wakeup
from Wait
(WFE
mode)(1)
TIM2 update
/overflow/trigger/break
interrupt
-
-
Yes
Yes
0x00 8054
TIM2
TIM2 Capture/Compare
interrupt
-
-
Yes
Yes
0x00 8058
21
TIM3
TIM3 Update
/Overflow/Trigger/Break
interrupt
-
-
Yes
Yes
0x00 805C
22
TIM3
TIM3 Capture/Compare
interrupt
-
-
Yes
Yes
0x00 8060
23
RI
RI trigger interrupt
-
-
Yes
-
0x00 8064
IRQ
No.
Source
block
19
TIM2
20
Description
24
Reserved
Vector
address
0x00 8068
25
TIM4
TIM4 update/overflow/
trigger interrupt
-
-
Yes
Yes
0x00 806C
26
SPI1
SPI1 TX buffer empty/
RX buffer not empty/
error/wakeup interrupt
Yes
Yes
Yes
Yes
0x00 8070
USART 1
USART1 transmit data
register empty/
transmission complete
interrupt
-
-
Yes
Yes
0x00 8074
28
USART 1
USART1 received data
ready/overrun error/
idle line detected/parity
error/global error interrupt
-
-
Yes
Yes
0x00 8078
29
I2C1
Yes
Yes
Yes
Yes
0x00 807C
27
I2C1 interrupt(3)
1. The Low-power wait mode is entered when executing a WFE instruction in Low-power run mode. In WFE mode, the
interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes back to WFE mode.
When the interrupt is configured as a wakeup event, the CPU wakes up and resumes processing.
2. The TLI interrupt is the logic OR between TIM2 overflow interrupt, and TIM4 overflow interrupts.
3. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.
DS12167 Rev 7
43/94
43
Option bytes
7
STM8L050J3
Option bytes
Option bytes contain configurations for device hardware features as well as the memory
protection of the device. They are stored in a dedicated memory block.
All option bytes can be modified in ICP mode (with SWIM) by accessing the EEPROM
address. See Table 10 for details on option byte addresses.
The option bytes can also be modified ‘on the fly’ by the application in IAP mode, except for
the ROP and UBCvalues which can only be taken into account when they are modified in
ICP mode (with the SWIM).
Refer to the How to program STM8L and STM8AL Flash program memory and data
EEPROM programming manual (PM0054) and the STM8 SWIM communication protocol
and debug module user manual (UM0470) for information on SWIM programming
procedures.
Table 10. Option byte addresses
Addr.
Option name
Option
byte
No.
Option bits
7
6
5
4
3
2
1
0
Factory
default
setting
0x00 4800
Read-out
protection
(ROP)
OPT0
ROP[7:0]
0xAA
0x00 4802
UBC (User
Boot code size)
OPT1
UBC[7:0]
0x00
0x00 4807
Reserved
Independent
watchdog
option
OPT3
[3:0]
Reserved
Number of
stabilization
0x00 4809 clock cycles for
HSE and LSE
oscillators
OPT4
Reserved
Brownout reset
(BOR)
OPT5
[3:0]
Reserved
Bootloader
option bytes
(OPTBL)
OPTBL
[15:0]
0x00 4808
0x00 480A
0x00 480B
0x00 480C
44/94
0x00
WWDG WWDG IWDG
_HALT _HW _HALT
LSECNT[1:0]
BOR_TH
IWDG
_HW
HSECNT[1:0]
BOR_
ON
0x00
0x00
0x00
0x00
OPTBL[15:0]
DS12167 Rev 7
0x00
STM8L050J3
Option bytes
Table 11. Option byte description
Option
byte
No.
Option description
OPT0
ROP[7:0] Memory readout protection (ROP)
0xAA: Disable readout protection (write access via SWIM protocol)
Refer to the “Readout protection” section in the STM8L050J3, STM8L051F3, STM8L052C6,
STM8L052R8 MCUs and STM8L151/L152, STM8L162, STM8AL31, STM8AL3L lines reference
manual (RM0031).
OPT1
UBC[7:0] Size of the user boot code area
0x00: UBC is not protected.
0x01: Page 0 is write protected.
0x02: Page 0 and 1 reserved for the UBC and write protected. It covers only the interrupt vectors.
0x03: Page 0 to 2 reserved for UBC and write protected.
0x7F to 0xFF - All 128 pages reserved for UBC and write protected.
The protection of the memory area not protected by the UBC is enabled through the MASS keys.
Refer to the “User boot code” section in the STM8L050J3, STM8L051F3, STM8L052C6,
STM8L052R8 MCUs and STM8L151/L152, STM8L162, STM8AL31, STM8AL3L lines reference
manual (RM0031).
OPT2
Reserved
IWDG_HW: Independent watchdog
0: Independent watchdog activated by software
1: Independent watchdog activated by hardware
OPT3
IWDG_HALT: Independent window watchdog off on Halt/Active-halt
0: Independent watchdog continues running in Halt/Active-halt mode
1: Independent watchdog stopped in Halt/Active-halt mode
WWDG_HW: Window watchdog
0: Window watchdog activated by software
1: Window watchdog activated by hardware
WWDG_HALT: Window window watchdog reset on Halt/Active-halt
0: Window watchdog stopped in Halt mode
1: Window watchdog generates a reset when MCU enters Halt mode
HSECNT: Number of HSE oscillator stabilization clock cycles
0x00 - 1 clock cycle
0x01 - 16 clock cycles
0x10 - 512 clock cycles
0x11 - 4096 clock cycles
OPT4
LSECNT: Number of LSE oscillator stabilization clock cycles
0x00 - 1 clock cycle
0x01 - 16 clock cycles
0x10 - 512 clock cycles
0x11 - 4096 clock cycles
Refer to Table 29: LSE oscillator characteristics on page 64.
DS12167 Rev 7
45/94
46
Option bytes
STM8L050J3
Table 11. Option byte description (continued)
Option
byte
No.
OPT5
Option description
BOR_ON:
0: Brownout reset off
1: Brownout reset on
BOR_TH[3:1]: Brownout reset thresholds. Refer to Table 20 for details on the thresholds according to
the value of BOR_TH bits.
OPTBL
46/94
OPTBL[15:0]:
This option is checked by the boot ROM code after reset. Depending on
content of addresses 00 480B, 00 480C and 0x8000 (reset vector) the
CPU jumps to the bootloader or to the reset vector.
Refer to the UM0560 STM8 bootloader user manual for more details.
DS12167 Rev 7
STM8L050J3
8
Electrical parameters
Electrical parameters
This section describes the quantification of the given device’s parameters.
8.1
Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
8.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA= 25 °C and TA = TA max (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
is indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3σ).
8.1.2
Typical values
Unless otherwise specified, typical data is based on TA = 25 °C, VDD = 3 V. It is given only as
design guidelines and is not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2σ).
8.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
8.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 5.
Figure 5. Pin loading conditions
STM8 PIN
50 pF
MSv37774V1
DS12167 Rev 7
47/94
87
Electrical parameters
8.1.5
STM8L050J3
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 6.
Figure 6. Pin input voltage
STM8 PIN
VIN
MSv37775V1
8.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 12: Voltage characteristics,
Table 13: Current characteristics, and Table 14: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect the device's reliability.
The device's mission profile (application conditions) is compliant with the JEDEC JESD47
Qualification Standard, extended mission profiles are available on demand.
Table 12. Voltage characteristics
Symbol
VDD- VSS
Ratings
External supply voltage (including
VDDA)(1)
VIN(2)
Input voltage on any other pin
VESD
Electrostatic discharge voltage
Min
Max
Unit
- 0.3
4.0
V
VSS - 0.3
VDD + 0.3
V
see Absolute maximum
ratings (electrical sensitivity)
on page 87
-
1. All power (VDD1, VDDA) and ground (VSS1, VSSA) pins must always be connected to the external power
supply.
2. VIN maximum must always be respected. Refer to Table 13: Current characteristics for maximum allowed
injected current values.
48/94
DS12167 Rev 7
STM8L050J3
Electrical parameters
Table 13. Current characteristics
Symbol
Ratings
Max.
IVDD
Total current into VDD power line (source)
80
IVSS
Total current out of VSS ground line (sink)
80
Output current sunk by IR_TIM pin (with high sink LED driver
capability)
80
Output current sunk by any other I/O and control pin
25
IIO
Output current sourced by any I/Os and control pin
1.
IINJ(PIN)
Injected current on any pin (1)
ΣIINJ(PIN)
Total injected current (sum of all I/O and control pins) (2)
Unit
mA
- 25
- 5 / +5
± 25
A positive injection is induced by VIN>VDD while a negative injection is induced by VIN> gmcrit
DS12167 Rev 7
63/94
87
Electrical parameters
STM8L050J3
LSE crystal/ceramic resonator oscillator
The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All
the information given in this paragraph is based on characterization results with specified
typical external components. In the application, the resonator and the load capacitors have
to be placed as close as possible to the oscillator pins in order to minimize output distortion
and startup stabilization time. Refer to the crystal resonator manufacturer for more details
(frequency, package, accuracy...).
Table 29. LSE oscillator characteristics
Symbol
Parameter
fLSE
Low speed external oscillator
frequency
RF
Feedback resistor
C(1)
Recommended load capacitance (2)
IDD(LSE)
gm
LSE oscillator power consumption
Conditions
Min
Typ
Max
Unit
-
-
32.768
-
kHz
ΔV = 200 mV
-
1.2
-
MΩ
-
-
8
-
pF
-
-
-
1.4(3)
µA
VDD = 1.8 V
-
450
-
VDD = 3 V
-
600
-
VDD = 3.6 V
-
750
-
-
3(3)
-
-
µA/V
VDD is stabilized
-
1
-
s
Oscillator transconductance
tSU(LSE)(4) Startup time
nA
1. C=CL1=CL2 is approximately equivalent to 2 x crystal CLOAD.
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small Rm value.
Refer to crystal manufacturer for more details.
3. Guaranteed by design.
4.
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation.
This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
Figure 13. LSE oscillator circuit diagram
64/94
DS12167 Rev 7
STM8L050J3
Electrical parameters
Internal clock sources
Subject to general operating conditions for VDD, and TA.
High speed internal RC oscillator (HSI)
In the following table, data is based on characterization results, not tested in production,
unless otherwise specified.
Table 30. HSI oscillator characteristics
Symbol
fHSI
Conditions(1)
Parameter
Min
Typ
Max
Unit
Frequency
VDD = 3.0 V
-
16
-
MHz
Accuracy of HSI
oscillator (factory
calibrated)
VDD = 3.0 V, TA = 25 °C
-5
-
5
%
ACCHSI
-7.5(2)
-
7.5(2)
%
TRIM
HSI user trimming
step(3)
1.8 V ≤ VDD ≤ 3.6 V,
-40 °C ≤ TA ≤ 125 °C
Trimming code ≠ multiple of 16
-
0.4
0.7
%
Trimming code = multiple of 16
-
-
± 1.5
%
tsu(HSI)
HSI oscillator setup
time (wakeup time)
-
-
3.7
6(4)
µs
IDD(HSI)
HSI oscillator power
consumption
-
-
100
140(4)
µA
1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified.
2. Guaranteed by characterization results.
3. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16
(0x00, 0x10, 0x20, 0x30...0xE0). Refer to the AN3101 “STM8L15x internal RC oscillator calibration” application note for
more details.
4. Guaranteed by design.
DS12167 Rev 7
65/94
87
Electrical parameters
STM8L050J3
Low speed internal RC oscillator (LSI)
In the following table, data is based on characterization results, not tested in production.
Table 31. LSI oscillator characteristics
Parameter (1)
Symbol
fLSI
Conditions(1)
Min
Typ
Max
Unit
-
26
38
56
kHz
Frequency
tsu(LSI)
LSI oscillator wakeup time
IDD(LSI)
LSI oscillator frequency
drift(3)
0 °C ≤ TA ≤ 85 °C
(2)
-
-
200
-12
-
11
µs
%
1. VDD = 1.8 V to 3.6 V, TA = -40 to 125 °C unless otherwise specified.
2. Guaranteed by design.
3. This is a deviation for an individual part, once the initial frequency has been measured.
Figure 14. Typical LSI frequency vs. VDD
45
43
LSI frequency [kHz]
41
39
37
35
33
-40°C
31
25°C
85°C
29
27
25
1.8
2.1
2.6
3.1
3.6
VDD [V]
ai18219b
66/94
DS12167 Rev 7
STM8L050J3
8.3.5
Electrical parameters
Memory characteristics
TA = -40 to 125 °C unless otherwise specified.
Table 32. RAM and hardware registers
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VRM
Data retention mode (1)
Halt mode (or Reset)
1.8
-
-
V
1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware
registers (only in Halt mode). Guaranteed by characterization.
Flash memory
Table 33. Flash program and data EEPROM memory
Symbol
VDD
tprog
Iprog
tRET(2)
Parameter
Conditions
Min
Typ
fSYSCLK = 16 MHz
1.8
Programming time for 1 or 64 bytes (block)
erase/write cycles (on programmed byte)
-
Programming time for 1 to 64 bytes (block)
write cycles (on erased byte)
(1)
Unit
-
3.6
V
-
6
-
ms
-
-
3
-
ms
TA=+25 °C, VDD = 3.0 V
-
TA=+25 °C, VDD = 1.8 V
-
Data retention (program memory) after 100
erase/write cycles at TA= –40 to +85 °C
TRET = +85 °C
30(1)
-
-
Data retention (program memory) after 1000
erase/write cycles at TA= –40 to +125 °C
TRET = +125 °C
5(1)
-
-
Data retention (data memory) after 100000
erase/write cycles at TA= –40 to +85 °C
TRET = +85 °C
30(1)
-
-
Data retention (data memory) after 300000
erase/write cycles at TA= –40 to +125 °C
TRET = +125 °C
5(1)
-
-
-
100(1)
-
-
cycles
-
-
kcycles
Operating voltage
(all modes, read/write/erase)
Programming/ erasing consumption
Erase/write cycles (program memory)
NRW
Max
(3)
Erase/write cycles (data memory)
TA = –40 to +85 °C
100(1)
(4)
0.7
-
mA
years
1. Guaranteed by characterization results.
2. Conforming to JEDEC JESD22a117
3. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation
addresses a single byte.
4. Data based on characterization performed on the whole data memory.
DS12167 Rev 7
67/94
87
Electrical parameters
8.3.6
STM8L050J3
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard pins) should be avoided during normal product operation.
However, in order to give an indication of the robustness of the microcontroller in cases
when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error, out of spec current
injection on adjacent pins or other functional failure (for example reset, oscillator frequency
deviation, LCD levels, etc.).
The test results are given in the following table.
Table 34. I/O current injection susceptibility
Functional susceptibility
Symbol
IINJ
68/94
Description
Injected current on any other pin
DS12167 Rev 7
Negative
injection
Positive
injection
-5
+5
Unit
mA
STM8L050J3
8.3.7
Electrical parameters
I/O port pin characteristics
General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All
unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or
an external pull-up or pull-down resistor.
Table 35. I/O static characteristics
Symbol
VIL
Conditions(1)
Min
Typ
Max
Input voltage on true open-drain
pins (PC0 and PC1)
VSS-0.3
-
0.3 x VDD
Input voltage on any other pin
VSS-0.3
-
0.3 x VDD
0.70 x VDD
-
VDD+0.3
Parameter
(2)
Input low level voltage
Unit
V
VIH
Input high level voltage (2)
Input voltage on any other pin
Vhys
Schmitt trigger voltage
hysteresis (3)
I/Os
-
200
-
True open drain I/Os
-
200
-
VSS ≤ VIN ≤ VDD
High sink I/Os
-
-
50 (5)
VSS ≤ VIN ≤ VDD
True open drain I/Os
-
-
200(5)
VSS ≤ VIN ≤ VDD
PA0 with high sink LED driver
capability
-
-
200(5)
30
45
60
kΩ
-
5(7)
-
pF
Ilkg
Input leakage current (4)
RPU
Weak pull-up equivalent
resistor(2)(6)
CIO
I/O pin capacitance
VIN = VSS
-
V
mV
nA
1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified.
2. Guaranteed by characterization results.
3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.
4. The max. value may be exceeded if negative current is injected on adjacent pins.
5. Not tested in production.
6. RPU pull-up equivalent resistor based on a resistive transistor (corresponding IPU current characteristics described in
Figure 18).
7. Capacitance per one GPIO on pin. Complete pin capacitance depends on how many GPIOs are connected on a given pin
(see Table 4). The total pin capacitance is then N x CIO where N = number of GPIOs on a given pin).
DS12167 Rev 7
69/94
87
Electrical parameters
STM8L050J3
Figure 15. Typical VIL and VIH vs VDD (high sink I/Os)
3
-40°C
25°C
2.5
85°C
VIL and VIH [V]
2
1.5
1
0.5
0
1.8
2.1
2.6
3.1
3.6
VDD [V]
ai18220c
Figure 16. Typical VIL and VIH vs VDD (true open drain I/Os)
3
-40°C
25°C
2.5
VIL and VIH [V]
85°C
2
1.5
1
0.5
0
1.8
2.1
2.6
VDD [V]
3.1
3.6
ai18221b
70/94
DS12167 Rev 7
STM8L050J3
Electrical parameters
Figure 17. Typical pull-up resistance RPU vs VDD with VIN=VSS
60
-40°C
55
25°C
Pull-up resistance [kΩ]
85°C
50
45
40
35
30
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VDD [V]
ai18222b
Figure 18. Typical pull-up current Ipu vs VDD with VIN=VSS
120
-40°C
25°C
100
Pull-up current [μA]
85°C
80
60
40
20
0
1.8
1.95 2.1
2.25 2.4
2.55 2.7
2.85
3
3.15 3.3
3.45 3.6
VDD [V]
ai18223b
DS12167 Rev 7
71/94
87
Electrical parameters
STM8L050J3
Output driving current
Subject to general operating conditions for VDD and TA unless otherwise specified.
Table 36. Output driving current (high sink ports)
I/O
Symbol
Type
Output low level voltage for an I/O pin
High sink
VOL (1)
Parameter
VOH (2) Output high level voltage for an I/O pin
Conditions
Min
Max
Unit
IIO = +2 mA,
VDD = 3.0 V
-
0.45
V
IIO = +2 mA,
VDD = 1.8 V
-
0.45
V
IIO = +10 mA,
VDD = 3.0 V
-
0.7
V
IIO = -2 mA,
VDD = 3.0 V
VDD-0.45
-
V
IIO = -1 mA,
VDD = 1.8 V
VDD-0.45
-
V
IIO = -10 mA,
VDD = 3.0 V
VDD-0.7
-
V
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 13: Current
characteristics and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
2. The IIO current sourced must always respect the absolute maximum rating specified in Table 13: Current
characteristics and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
Table 37. Output driving current (true open drain ports)
Open drain
I/O
Symbol
Type
VOL (1)
Parameter
Output low level voltage for an I/O pin
Conditions
Min
Max
IIO = +3 mA,
VDD = 3.0 V
-
0.45
IIO = +1 mA,
VDD = 1.8 V
-
Unit
V
0.45
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 13: Current
characteristics and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
Table 38. Output driving current (PA0 with high sink LED driver capability)
IR
I/O
Symbol
Type
VOL (1)
Parameter
Output low level voltage for an I/O pin
Conditions
Min
Max
Unit
IIO = +20 mA,
VDD = 2.0 V
-
0.45
V
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 13: Current
characteristics and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
72/94
DS12167 Rev 7
STM8L050J3
Electrical parameters
Figure 19. Typ. VOL @ VDD = 3.0 V (high sink
ports)
Figure 20. Typ. VOL @ VDD = 1.8 V (high sink
ports)
1
0.7
-40°C
25°C
85°C
0.6
-40°C
25°C
85°C
0.5
VOL [V]
VOL [V]
0.75
0.5
0.25
0.4
0.3
0.2
0.1
0
0
2
4
6
8
10
12
14
16
18
0
20
0
IOL [mA]
1
2
3
4
ai18226V2
Figure 21. Typ. VOL @ VDD = 3.0 V (true open
drain ports)
5
6
7
IOL [mA]
Figure 22. Typ. VOL @ VDD = 1.8 V (true open
drain ports)
0.5
0.5
-40°C
25°C
85°C
0.4
0.4
-40°C
25°C
85°C
0.3
VOL [V]
VOL [V]
0.3
0.2
0.2
0.1
0.1
0
0
0
1
2
3
4
5
6
0
7
1
2
3
4
5
6
ai18229V2
ai18228V2
Figure 23. Typ. VDD - VOH @ VDD = 3.0 V (high
sink ports)
Figure 24. Typ. VDD - VOH @ VDD = 1.8 V (high
sink ports)
2
0.5
-40°C
25°C
85°C
1.75
-40°C
25°C
85°C
1.25
0.4
VDD - VOH [V]
1.5
7
IOL [mA]
IOL [mA]
VDD - VOH [V]
8
ai18227V2
1
0.75
0.3
0.2
0.5
0.1
0.25
0
0
0
2
4
6
8
10
12
14
16
18
20
0
IOH [mA]
1
2
3
4
5
6
7
IOH [mA]
ai18231V2
ai12830V2
DS12167 Rev 7
73/94
87
Electrical parameters
8.3.8
STM8L050J3
Communication interfaces
SPI1 - Serial peripheral interface
Unless otherwise specified, the parameters given in Table 39 are derived from tests
performed under ambient temperature, fSYSCLK frequency and VDD supply voltage
conditions summarized in Section 8.3.1. Refer to I/O port characteristics for more details on
the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 39. SPI1 characteristics
Symbol
fSCK
1/tc(SCK)
tr(SCK)
tf(SCK)
tsu(NSS)(2)
th(NSS)
(2)
(2)
tw(SCKH)
tw(SCKL)(2)
Parameter
Conditions(1)
Min
Max
Master mode
0
8
Slave mode
0
8
SPI1 clock rise and fall
time
Capacitive load: C = 30 pF
-
30
NSS setup time
Slave mode
4 x 1/fSYSCLK
-
NSS hold time
Slave mode
80
-
SCK high and low time
Master mode,
fMASTER = 8 MHz, fSCK= 4 MHz
105
145
Master mode
30
-
Slave mode
3
-
Master mode
15
-
Slave mode
0
-
SPI1 clock frequency
tsu(MI) (2)
tsu(SI)(2)
Data input setup time
th(MI) (2)
th(SI)(2)
Data input hold time
ta(SO)(2)(3)
Data output access time
Slave mode
-
3x 1/fSYSCLK
tdis(SO)(2)(4)
30
-
Data output disable time
Slave mode
(2)
Data output valid time
Slave mode (after enable edge)
-
60
tv(MO)(2)
Data output valid time
Master mode (after enable
edge)
-
20
Slave mode (after enable edge)
15
-
Master mode (after enable
edge)
1
-
tv(SO)
th(SO)(2)
th(MO)(2)
Data output hold time
1. Parameters are given by selecting 10 MHz I/O output frequency.
2. Values based on design simulation and/or characterization results, and not tested in production.
3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.
4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z.
74/94
DS12167 Rev 7
Unit
MHz
ns
STM8L050J3
Electrical parameters
Figure 25. SPI1 timing diagram - slave mode and CPHA=0
Figure 26. SPI1 timing diagram - slave mode and CPHA=1(1)
NSS input
SCK input
tSU(NSS)
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tw(SCKH)
tw(SCKL)
th(SO)
tv(SO)
ta(SO)
MISO
OUTPUT
MSB OUT
BIT6 OUT
tr(SCK)
tf(SCK)
tdis(SO)
LSB OUT
th(SI)
tsu(SI)
MOSI
INPUT
th(NSS)
tc(SCK)
MSB IN
BIT 1 IN
LSB IN
ai14135b
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
DS12167 Rev 7
75/94
87
Electrical parameters
STM8L050J3
Figure 27. SPI1 timing diagram - master mode(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
76/94
DS12167 Rev 7
STM8L050J3
Electrical parameters
I2C - Inter IC control interface
Subject to general operating conditions for VDD, fSYSCLK, and TA unless otherwise specified.
The STM8L I2C interface (I2C1) meets the requirements of the Standard I2C
communication protocol described in the following table with the restriction mentioned
below:
Refer to I/O port characteristics for more details on the input/output alternate function
characteristics (SDA and SCL).
Table 40. I2C characteristics
Symbol
Parameter
Standard mode
I2C
(2)
Min
Fast mode I2C(1)
Unit
Max (2)
Min (2)
Max (2)
tw(SCLL)
SCL clock low time
4.7
-
1.3
-
tw(SCLH)
SCL clock high time
4.0
-
0.6
-
tsu(SDA)
SDA setup time
250
-
100
-
th(SDA)
SDA data hold time
0
-
0
900
tr(SDA)
tr(SCL)
SDA and SCL rise time
-
1000
-
300
tf(SDA)
tf(SCL)
SDA and SCL fall time
-
300
-
300
th(STA)
START condition hold time
4.0
-
0.6
-
tsu(STA)
Repeated START condition setup
time
4.7
-
0.6
-
tsu(STO)
STOP condition setup time
4.0
-
0.6
-
μs
STOP to START condition time (bus
free)
4.7
-
1.3
-
μs
-
400
-
400
pF
tw(STO:STA)
Cb
Capacitive load for each bus line
μs
ns
μs
1. fSYSCLK must be at least equal to 8 MHz to achieve max fast I2C speed (400 kHz).
2. Data based on standard I2C protocol requirement, not tested in production.
Note:
For speeds around 200 kHz, the achieved speed can have a± 5% tolerance
For other speed ranges, the achieved speed can have a± 2% tolerance
The above variations depend on the accuracy of the external components used.
DS12167 Rev 7
77/94
87
Electrical parameters
STM8L050J3
Figure 28. Typical application with I2C bus and timing diagram 1)
1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD
78/94
DS12167 Rev 7
STM8L050J3
8.3.9
Electrical parameters
Embedded reference voltage
In the following table, data is based on characterization results, not tested in production,
unless otherwise specified.
Table 41. Reference voltage characteristics
Symbol
Conditions
Min
Typ
Max.
Unit
Internal reference voltage
consumption
-
-
1.4
-
µA
ADC sampling time when reading
the internal reference voltage
-
-
5
10
µs
Internal reference voltage buffer
consumption (used for ADC)
-
-
13.5
25
µA
Reference voltage output
-
1.202(3)
1.224
1.242(3)
V
Internal reference voltage lowpower buffer consumption (used for
comparator or output)
-
-
730
1200
nA
IREFOUT(2)
Buffer output current(4)
-
-
-
1
µA
CREFOUT
Reference voltage output load
-
-
-
50
pF
tVREFINT
Internal reference voltage startup
time
-
-
2
3
ms
tBUFEN(2)
Internal reference voltage buffer
startup time once enabled (1)
-
-
-
10
µs
Accuracy of VREFINT stored in the
VREFINT_Factory_CONV byte(5)
-
-
-
±5
mV
Stability of VREFINT over
temperature
-40 °C ≤ TA ≤ 125
°C
-
20
50
ppm/°C
Stability of VREFINT over
temperature
0 °C ≤ TA ≤ 50
°C
-
-
20
ppm/°C
-
-
-
TBD
ppm
IREFINT
TS_VREFINT(1)(2)
IBUF(2)
VREFINT out
ILPBUF(2)
ACCVREFINT
STABVREFINT
STABVREFINT
Parameter
Stability of VREFINT after 1000
hours
1. Defined when ADC output reaches its final value ±1/2LSB
2. Data guaranteed by design.
3. Tested in production at VDD = 3 V ±10 mV.
4. To guaranty less than 1% VREFOUT deviation.
5. Measured at VDD = 3 V ±10 mV. This value takes into account VDD accuracy and ADC conversion accuracy.
DS12167 Rev 7
79/94
87
Electrical parameters
8.3.10
STM8L050J3
Comparator characteristics
In the following table, data is guaranteed by design, not tested in production, unless
otherwise specified.
Table 42. Comparator 1 characteristics
Min
Typ
Max(1)
Unit
Analog supply voltage
1.65
-
3.6
V
Temperature range
-40
-
125
°C
R400K
R400K value
300
400
500
R10K
R10K value
7.5
10
12.5
0.6
-
VDDA
1.202
1.224
1.242
-
7
10
-
3
10
Symbol
VDDA
TA
VIN
VREFINT
tSTART
td
Parameter
Comparator 1 input voltage range
Internal reference
voltage(2)
Comparator startup time
Propagation
delay(3)
kΩ
V
μs
Voffset
Comparator offset error
-
±3
±10
mV
ICOMP1
consumption(4)
-
160
260
nA
Current
1. Guaranteed by characterization results.
2. Tested in production at VDD = 3 V ±10 mV.
3. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference.
4. Comparator consumption only. Internal reference voltage not included.
Table 43. Comparator 2 characteristics
Conditions
Min
Typ
Max(1)
Unit
Analog supply voltage
-
1.65
-
3.6
V
TA
Temperature range
-
-40
-
125
°C
VIN
Comparator 2 input voltage range
-
0
-
VDDA
V
Fast mode
-
15
20
Slow mode
-
20
20
1.65 V ≤ VDDA
≤ 2.7 V
-
1.8
3.5
2.7 V ≤ VDDA
≤ 3.6 V
-
2.5
6
1.65 V ≤ VDDA
≤ 2.7 V
-
0.8
2
2.7 V ≤ VDDA
≤ 3.6 V
-
1.2
4
-
-
±4
±20
Fast mode
-
3.5
5
Slow mode
-
0.5
2
Symbol
VDDA
tSTART
td slow
td fast
80/94
Parameter
Comparator startup time
Propagation delay in slow mode(2)
Propagation delay in fast mode(2)
Voffset
Comparator offset error
ICOMP2
Current consumption(3)
DS12167 Rev 7
μs
mV
μA
STM8L050J3
Electrical parameters
1. Guaranteed by characterization results.
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference.
3. Comparator consumption only. Internal reference voltage not included.
8.3.11
12-bit ADC1 characteristics
In the following table, data is guaranteed by design, not tested in production.
Table 44. ADC1 characteristics
Symbol
Parameter
VDDA
Analog supply voltage
VREF+
Reference supply
voltage
VREFIVDDA
IVREF+
Conditions
2.4 V ≤ VDDA ≤ 3.6 V
Min
Typ
Max
Unit
1.8
-
3.6
V
2.4
-
VDDA
V
1.8 V ≤ VDDA ≤ 2.4 V
VDDA
V
Lower reference voltage
-
VSSA
V
Current on the VDDA
input pin
-
-
-
-
Current on the VREF+
input pin
1000
400
-
-
1450
µA
700
(peak)(1)
µA
450
(average)(1)
µA
VAIN
Conversion voltage
range
-
0(2)
-
VREF+
-
TA
Temperature range
-
-40
-
125
°C
RAIN
External resistance on
VAIN
on other channels
-
-
50(3)
kΩ
CADC
Internal sample and hold
capacitor
on other channels
-
16
-
pF
2.4 V ≤ VDDA ≤ 3.6 V
without zooming
0.320
-
16
MHz
1.8 V ≤ VDDA ≤ 2.4 V
with zooming
0.320
-
8
MHz
VAIN on all other
channels
-
-
760
kHz
fADC
ADC sampling clock
frequency
fCONV
12-bit conversion rate
fTRIG
External trigger
frequency
-
-
-
tconv
1/fADC
tLAT
External trigger latency
-
-
-
3.5
1/fSYSCLK
VAIN on channels
VDDA < 2.4 V
0.86
-
-
µs
VAIN on channels
2.4 V ≤ VDDA ≤ 3.6 V
0.41
-
-
µs
tS
Sampling time
DS12167 Rev 7
81/94
87
Electrical parameters
STM8L050J3
Table 44. ADC1 characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
-
12 + tS
1/fADC
16 MHz
1
µs
tconv
12-bit conversion time
tWKUP
Wakeup time from OFF
state
-
-
-
3
µs
tIDLE
Time before a new
conversion
-
-
-
∞
ms
tVREFINT
Internal reference
voltage startup time
-
-
-
refer to
Table 41
ms
1. The current consumption through VREF is composed of two parameters:
- one constant (max 300 µA)
- one variable (max 400 µA), only during sampling time + 2 first conversion pulses.
So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 µA at
1Msps
2. VREF- or VSSA must be tied to ground.
3. Guaranteed by design.
82/94
DS12167 Rev 7
STM8L050J3
Electrical parameters
In the following three tables, data is guaranteed by characterization result, not tested in
production.
Table 45. ADC1 accuracy with VDDA = 3.3 V to 2.5 V
Symbol
Parameter
Conditions
Typ
Max
1
1.6
Differential non linearity fADC = 8 MHz
1
1.6
fADC = 4 MHz
1
1.5
fADC = 16 MHz
1.2
2
fADC = 8 MHz
1.2
1.8
fADC = 4 MHz
1.2
1.7
fADC = 16 MHz
2.2
3.0
fADC = 8 MHz
1.8
2.5
fADC = 4 MHz
1.8
2.3
fADC = 16 MHz
1.5
2
fADC = 8 MHz
1
1.5
fADC = 4 MHz
0.7
1.2
1
1.5
fADC = 16 MHz
DNL
INL
TUE
Offset
Integral non linearity
Total unadjusted error
Offset error
fADC = 16 MHz
Gain
Gain error
fADC = 8 MHz
Unit
LSB
LSB
fADC = 4 MHz
Table 46. ADC1 accuracy with VDDA = 2.4 V to 3.6 V
Symbol
Parameter
Typ
Max
Unit
1
2
LSB
1.7
3
LSB
DNL
Differential non linearity
INL
Integral non linearity
TUE
Total unadjusted error
2
4
LSB
Offset
Offset error
1
2
LSB
Gain
Gain error
1.5
3
LSB
Table 47. ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V
Symbol
Parameter
Typ
Max
Unit
DNL
Differential non linearity
1
2
LSB
INL
Integral non linearity
2
3
LSB
TUE
Total unadjusted error
3
5
LSB
Offset
Offset error
2
3
LSB
Gain
Gain error
2
3
LSB
DS12167 Rev 7
83/94
87
Electrical parameters
STM8L050J3
Figure 29. ADC1 accuracy characteristics
Figure 30. Typical connection diagram using the ADC
STM8
VDD
Sample and hold ADC
converter
VT
0.6V
(1)
RAIN
Cparasitic (2)
VAIN
RADC
AINx
VT
0.6V
12-bit
converter
CADC(1)
I L± 50nA
ai17090f
1. Refer to Table 48 for the values of RAIN and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value downgrades the conversion accuracy. To remedy
this, fADC should be reduced.
Figure 31. Maximum dynamic current consumption on VREF+ supply pin during ADC
conversion
Sampling
(n cycles)
Conversion (12 cycles)
ADC clock
Iref+
700 μA
300 μA
MS46324V1
84/94
DS12167 Rev 7
STM8L050J3
Electrical parameters
Table 48. RAIN max for fADC = 16 MHz(1)
RAIN max (kohm)
Ts (cycles)
Ts
(µs)
Slow channels
2.4 V < VDDA < 3.6 V
1.8 V < VDDA < 2.4 V
4
0.25
Not allowed
Not allowed
9
0.5625
0.8
Not allowed
16
1
2.0
0.8
24
1.5
3.0
1.8
48
3
6.8
4.0
96
6
15.0
10.0
192
12
32.0
25.0
384
24
50.0
50.0
1. Guaranteed by design.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 32. Good quality ceramic
10 nF capacitors should be used. They should be placed as close as possible to the chip.
Figure 32. Power supply and reference decoupling (VREF+ connected to VDDA)
STM8L
VREF+/VDDA
Supply
1 μF // 10 nF
VREF-/VSSA
ai17032d
DS12167 Rev 7
85/94
87
Electrical parameters
8.3.12
STM8L050J3
EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),
the product is stressed by two electromagnetic events until a failure occurs (indicated by the
LEDs).
•
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device
until a functional disturbance occurs. This test conforms with the IEC 61000 standard.
•
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms
with the IEC 61000 standard.
A device reset allows normal operations to be resumed. The test results are given in the
table below based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Prequalification trials
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Table 49. EMS data
Symbol
Parameter
Conditions
VFESD
VDD = 3.3 V, TA = +25 °C,
Voltage limits to be applied on
any I/O pin to induce a functional fCPU= 16 MHz,
disturbance
conforms to IEC 61000
VEFTB
Fast transient voltage burst limits
Using HSI
VDD = 3.3 V, TA = +25 °C,
to be applied through 100 pF on
fCPU = 16 MHz,
VDD and VSS pins to induce a
Using HSE
conforms to IEC 61000
functional disturbance
Level/
Class
3B
4A
2B
Electromagnetic interference (EMI)
Based on a simple application running on the product (toggling 2 LEDs through the I/O
ports), the product is monitored in terms of emission. This emission test is in line with the
norm IEC61967-2 which specifies the board and the loading of each pin.
86/94
DS12167 Rev 7
STM8L050J3
Electrical parameters
Table 50. EMI data (1)
Symbol
Parameter
SEMI
VDD = 3.6 V,
TA = +25 °C,
SO8N
conforming to
IEC61967-2
Peak level
Monitored
frequency band
Conditions
Max vs.
Unit
16 MHz
0.1 MHz to 30 MHz
-3
30 MHz to 130 MHz
9
130 MHz to 1 GHz
4
SAE EMI Level
2
dBμV
-
1. Not tested in production.
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the
product is stressed in order to determine its performance in terms of electrical sensitivity.
For more details, refer to the application note AN1181.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models
can be simulated: human body model and charge device model. This test conforms to the
JESD22-A114A/A115A standard.
Table 51. ESD absolute maximum ratings
Symbol
Ratings
Conditions
VESD(HBM)
Electrostatic discharge voltage
(human body model)
VESD(CDM)
Electrostatic discharge voltage
(charge device model)
Maximum
value (1)
Unit
2000
TA = +25 °C
V
500
1. Guaranteed by characterization results.
Static latch-up
•
LU: 3 complementary static tests are required on 6 parts to assess the latch-up
performance. A supply overvoltage (applied to each power supply pin) and a current
injection (applied to each input, output and configurable I/O pin) are performed on each
sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details,
refer to the application note AN1181.
Table 52. Electrical sensitivities
Symbol
LU
Parameter
Static latch-up class
DS12167 Rev 7
Class
II
87/94
87
Package characteristics
9
STM8L050J3
Package characteristics
Failure analysis and guarantee
The small number of pins available induces limitations on failure analysis depth in case of
isolated symptoms, typically with an impact lower than 0.1%. Contact your sales office for
additional information for any failure analysis. STMicroelectronics makes a feasibility study
for investigation based on failure rate and symptom description prior to responsibility
endorsement.
9.1
ECOPACK
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
9.2
SO8N package information
Figure 33. SO8N – 8-lead, 4.9 x 6 mm, plastic small outline, 150 mils body width,
package outline
h x 45˚
A
A2
c
ccc
b
e
0.25 mm
GAUGE PLANE
D
k
8
E1
E
1
A1
L
L1
SO-A_V2
1. Drawing is not to scale.
Table 53. SO8N – 8-lead 4.9 x 6 mm, plastic small outline, 150 mils body width,
package mechanical data
inches(1)
millimeters
Symbol
88/94
Min.
Typ.
Max.
Min.
Typ.
Max.
A
-
-
1.750
-
-
0.0689
A1
0.100
-
0.250
0.0039
-
0.0098
A2
1.250
-
-
0.0492
-
-
b
0.280
-
0.480
0.0110
-
0.0189
c
0.170
-
0.230
0.0067
-
0.0091
DS12167 Rev 7
STM8L050J3
Package characteristics
Table 53. SO8N – 8-lead 4.9 x 6 mm, plastic small outline, 150 mils body width,
package mechanical data (continued)
inches(1)
millimeters
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
D
4.800
4.900
5.000
0.1890
0.1929
0.1969
E
5.800
6.000
6.200
0.2283
0.2362
0.2441
E1
3.800
3.900
4.000
0.1496
0.1535
0.1575
e
-
1.270
-
-
0.0500
-
h
0.250
-
0.500
0.0098
-
0.0197
k
0°
-
8°
0°
-
8°
L
0.400
-
1.270
0.0157
-
0.0500
L1
-
1.040
-
-
0.0409
-
ccc
-
-
0.100
-
-
0.0039
1. Values in inches are converted from mm and rounded to four decimal digits.
Figure 34. SO8N – 8-lead 4.9 x 6 mm, plastic small outline, 150 mils body width,
package recommended footprint
3.9
6.7
0.6 (x8)
1.27
O7_FP_V1
1. Dimensions are expressed in millimeters.
DS12167 Rev 7
89/94
92
Package characteristics
STM8L050J3
Device marking for SO8N – 8-lead 4.9 x 6 mm, plastic small outline, 150 mils
body width
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 35. Example of SO8N marking (package top view)
Product identification
8L050J3
R
Y
WW
Date code
Unmarkable surface
PIN1 reference
Additional information
MSv46320V1
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
90/94
DS12167 Rev 7
STM8L050J3
9.3
Package characteristics
Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 15: General operating conditions on page 50.
The maximum chip-junction temperature, TJmax, in degree Celsius, may be calculated using
the following equation:
TJmax = TAmax + (PDmax x ΘJA)
Where:
•
TAmax is the maximum ambient temperature in °C
•
ΘJA is the package junction-to-ambient thermal resistance in °C/W
•
PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax)
•
PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
•
PI/Omax represents the maximum power dissipation on output pins
Where:
PI/Omax = Σ (VOL*IOL) + Σ((VDD-VOH)*I OH),
taking into account the actual VOL/IOL and VOH/IOH of the I/Os at low and high level in
the application.
Table 54. Thermal characteristics(1)
Symbol
ΘJA
Parameter
Thermal resistance junction-ambient
SO8N
Value
Unit
102
°C/W
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection
environment.
DS12167 Rev 7
91/94
92
Ordering information
10
STM8L050J3
Ordering information
Figure 36. Low density value line STM8L050J3 ordering information scheme
Example:
STM8
L
050
J
3
M
3
Product class
STM8 microcontroller
Family type
L = Low power
Sub-family type
050 = Low density
Pin count
J = 8 pins
Program memory size
3 = 8 Kbytes
Package
M = SO8N
Temperature range
3 = – 40 to 125 °C
For a list of available options (for example memory size, package) and orderable part numbers or
for further information on any aspect of this device, please contact the ST sales office nearest to
you.
92/94
DS12167 Rev 7
STM8L050J3
11
Revision history
Revision history
Table 55. Document revision history
Date
Revision
06-Jun-2017
1
Initial release.
04-Oct-2017
2
Updated:
– Document’s classification to “Public”
– Section 1: Introduction
– Section 3.1: Low-power modes
– Section 3.2.2: Interrupt controller
– Section 3.3.3: Voltage regulator
– Section 3.14.1: SPI
– Section 3.14.3: USART
– Table 4: STM8L050J3 pin description
– Note 3 on page 26
– Section 4.1: System configuration options
04-Jul-2018
3
Updated:
– Recommendations for SWIM pin (pin#1) sharing on Section 3.16:
Development support
4
Updated:
– Table 42: Comparator 1 characteristics
– Table 43: Comparator 2 characteristics
– Table 44: ADC1 characteristics
5
Updated:
– Table 49: EMS data
– Table 50: EMI data
– Table 51: ESD absolute maximum ratings
12-Sep-2018
30-Jul-2020
Changes
Deleted:
– Figure Typical HSI frequency vs VDD
07-Sep-2020
6
Updated:
– Table 30: HSI oscillator characteristics
31-Jan-2022
7
Updated Port C rows on Table 6: I/O port hardware register map
DS12167 Rev 7
93/94
93
STM8L050J3
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgment.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2022 STMicroelectronics – All rights reserved
94/94
DS12167 Rev 7