0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM8L151G6U6TR

STM8L151G6U6TR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    UFQFN28

  • 描述:

    8位超低功耗MCU,高达32KB闪存,1KB数据EEPROM, RTC、LCD、定时器、USART、I2C、SPI、ADC、DAC、比较器

  • 数据手册
  • 价格&库存
STM8L151G6U6TR 数据手册
STM8L151x4, STM8L151x6, STM8L152x4, STM8L152x6 8-bit ultra-low-power MCU, up to 32 KB Flash, 1 KB Data EEPROM, RTC, LCD, timers, USART, I2C, SPI, ADC, DAC, comparators Datasheet - production data Features • Operating conditions – Operating power supply range 1.8 V to 3.6 V (down to 1.65 V at power down) – Temp. range: - 40 °C to 85, 105 or 125 °C • Low power features – 5 low power modes: Wait, Low power run (5.1 µA), Low power wait (3 µA), Active-halt with full RTC (1.3 µA), Halt (350 nA) – Consumption: 195 µA/MHz + 440 µA – Ultra-low leakage per I/0: 50 nA – Fast wakeup from Halt: 4.7 µs • Advanced STM8 core – Harvard architecture and 3-stage pipeline – Max freq. 16 MHz, 16 CISC MIPS peak – Up to 40 external interrupt sources • Reset and supply management – Low power, ultra-safe BOR reset with 5 selectable thresholds – Ultra-low-power POR/PDR – Programmable voltage detector (PVD) • Clock management – 1 to 16 MHz crystal oscillator – 32 kHz crystal oscillator – Internal 16 MHz factory-trimmed RC – Internal 38 kHz low consumption RC – Clock security system • Low power RTC – BCD calendar with alarm interrupt – Auto-wakeup from Halt w/ periodic interrupt • LCD: up to 4x28 segments w/ step-up converter • Memories – Up to 32 KB of Flash program memory and 1 Kbyte of data EEPROM with ECC, RWW – Flexible write and read protection modes – Up to 2 Kbyte of RAM • DMA – 4 channels; supported peripherals: ADC, DAC, SPI, I2C, USART, timers – 1 channel for memory-to-memory April 2017 This is information on a product in full production. UFQFPN48 7x7 mm LQFP48 7x7 mm UFQFPN32 (5x5 mm) LQFP32 7x7 mm UFQFPN28 (4x4 mm) #30 WLCSP28 • 12-bit DAC with output buffer • 12-bit ADC up to 1 Msps/25 channels – T. sensor and internal reference voltage • 2 ultra-low-power comparators – 1 with fixed threshold and 1 rail to rail – Wakeup capability • Timers – Two 16-bit timers with 2 channels (used as IC, OC, PWM), quadrature encoder – One 16-bit advanced control timer with 3 channels, supporting motor control – One 8-bit timer with 7-bit prescaler – 2 watchdogs: 1 Window, 1 Independent – Beeper timer with 1, 2 or 4 kHz frequencies • Communication interfaces – Synchronous serial interface (SPI) – Fast I2C 400 kHz SMBus and PMBus – USART (ISO 7816 interface and IrDA) • Up to 41 I/Os, all mappable on interrupt vectors • Up to 16 capacitive sensing channels supporting touchkey, proximity, linear touch and rotary touch sensors • Development support – Fast on-chip programming and non intrusive debugging with SWIM – Bootloader using USART • 96-bit unique ID Table 1. Device summary Reference Part number STM8L151xx (without LCD) STM8L151C4, STM8L151C6, STM8L151K4, STM8L151K6, STM8L151G4, STM8L151G6 STM8L152xx (with LCD) STM8L152C4, STM8L152C6, STM8L152K4, STM8L152K6 DocID15962 Rev 15 1/142 www.st.com Contents STM8L151x4/6, STM8L152x4/6 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Ultra-low-power continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Advanced STM8 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.2 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.1 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5 Low power real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.6 LCD (Liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.7 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.8 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.9 Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.10 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.11 Ultra-low-power comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.12 System configuration controller and routing interface . . . . . . . . . . . . . . . 21 3.13 Touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.14 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.15 2/142 3.2.1 3.14.1 TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.14.2 16-bit general purpose timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14.3 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.15.1 Window watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.15.2 Independent watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 4 3.16 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.17 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.17.1 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.17.2 I²C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.17.3 USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.18 Infrared (IR) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.19 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Pinout and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1 5 Contents System configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.2 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6 Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8 Unique ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 9 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 9.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 9.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 9.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 9.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 9.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 9.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 9.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 9.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 9.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 9.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 67 9.3.3 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 9.3.4 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 9.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 9.3.6 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 9.3.7 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 DocID15962 Rev 15 3/142 4 Contents 10 STM8L151x4/6, STM8L152x4/6 9.3.8 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 9.3.9 LCD controller (STM8L152xx only) . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 9.3.10 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 9.3.11 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 9.3.12 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 9.3.13 12-bit DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 9.3.14 12-bit ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 9.3.15 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 10.1 ECOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 10.2 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 10.3 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 10.4 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 10.5 UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 10.6 UFQFPN28 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 10.7 WLCSP28 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 10.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 11 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 12 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 4/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Medium-density STM8L151x4/6 and STM8L152x4/6 low-power device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Legend/abbreviation for table 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Medium-density STM8L151x4/6, STM8L152x4/6 pin description. . . . . . . . . . . . . . . . . . . . 29 Flash and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Factory conversion registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Option byte addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Unique ID registers (96 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 67 Total current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Total current consumption in Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Total current consumption and timing in Low power run mode at VDD = 1.65 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Total current consumption in Low power wait mode at VDD = 1.65 V to 3.6 V . . . . . . . . . 76 Total current consumption and timing in Active-halt mode at VDD = 1.65 V to 3.6 V. . . . . 78 Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal . . 80 Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V . . . . . . . . . . . 80 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Current consumption under external reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 HSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 LSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Flash program and data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Output driving current (PA0 with high sink LED driver capability). . . . . . . . . . . . . . . . . . . . 93 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 SPI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 I2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 LCD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Reference voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 DocID15962 Rev 15 5/142 6 List of tables Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. 6/142 STM8L151x4/6, STM8L152x4/6 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 DAC output on PB4-PB5-PB6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 ADC1 accuracy with VDDA = 3.3 V to 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 ADC1 accuracy with VDDA = 2.4 V to 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . 110 RAIN max for fADC = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 UFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 UFQFPN28 - 28-lead, 4 x 4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 WLCSP28 - 28-pin, 1.703 x 2.841 mm, 0.4 mm pitch wafer level chip scale package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Medium-density STM8L151x4/6 and STM8L152x4/6 device block diagram . . . . . . . . . . . 14 Medium-density STM8L151x4/6 and STM8L152x4/6 clock tree diagram . . . . . . . . . . . . . 19 STM8L151C4, STM8L151C6 48-pin pinout (without LCD). . . . . . . . . . . . . . . . . . . . . . . . . 26 STM8L151K4, STM8L151K6 32-pin package pinout (without LCD). . . . . . . . . . . . . . . . . . 26 STM8L151Gx UFQFPN28 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 STM8L151G4, STM8L151G6 WLCSP28 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . 27 STM8L152C4, STM8L152C6 48-pin pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 STM8L152K4, STM8L152K6 32-pin package pinout (with LCD) . . . . . . . . . . . . . . . . . . . . 28 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 POR/BOR thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Typ. IDD(RUN) vs. VDD, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Typ. IDD(LPR) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Typ. IDD(LPW) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 LSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Typical HSI frequency vs VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Typical LSI frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Typical VIL and VIH vs VDD (high sink I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Typical VIL and VIH vs VDD (true open drain I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Typical pull-up resistance RPU vs VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Typical pull-up current Ipu vs VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Typ. VOL @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Typ. VOL @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Typ. VOL @ VDD = 3.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Typ. VOL @ VDD = 1.8 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Typ. VDD - VOH @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Typ. VDD - VOH @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Typical NRST pull-up resistance RPU vs VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Typical NRST pull-up current Ipu vs VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Recommended NRST pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 SPI1 timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 SPI1 timing diagram - slave mode and CPHA=1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 SPI1 timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Typical application with I2C bus and timing diagram 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 101 ADC1 accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Maximum dynamic current consumption on VREF+ supply pin during ADC conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 113 Power supply and reference decoupling (VREF+ connected to VDDA) . . . . . . . . . . . . . . 113 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 116 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat DocID15962 Rev 15 7/142 8 List of figures Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. 8/142 STM8L151x4/6, STM8L152x4/6 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 123 LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 LQFP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 UFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 UFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 UFQFPN32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 UFQFPN28 - 28-lead, 4 x 4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 UFQFPN28 - 28-lead, 4 x 4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 UFQFPN28 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 WLCSP28 - 28-pin, 1.703 x 2.841 mm, 0.4 mm pitch wafer level chip scale package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 WLCSP28 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Medium-density STM8L15x ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . 136 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 1 Introduction Introduction This document describes the features, pinout, mechanical data and ordering information of the medium-density STM8L151x4/6 and STM8L152x4/6 devices (STM8L151Cx/Kx/Gx, STM8L152Cx/Kx microcontrollers with a 16-Kbyte or 32-Kbyte Flash memory density). These devices are referred to as medium-density devices in the STM8L15x and STM8L16x reference manual (RM0031) and in the STM8L Flash programming manual (PM0054). For more details on the whole STMicroelectronics ultra-low-power family please refer to Section 2.2: Ultra-low-power continuum on page 13. For information on the debug module and SWIM (single wire interface module), refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044). The medium-density devices provide the following benefits: • Integrated system – Up to 32 Kbyte of medium-density embedded Flash program memory – 1 Kbyte of data EEPROM – Internal high speed and low-power low speed RC – Embedded reset • Ultra-low power consumption – 195 µA/MHz + 440 µA (consumption) – 0.9 µA with LSI in Active-halt mode – Clock gated system and optimized power management – Capability to execute from RAM for Low power wait mode and Low power run mode • Advanced features – Up to 16 MIPS at 16 MHz CPU clock frequency – Direct memory access (DMA) for memory-to-memory or peripheral-to-memory access • Short development cycles – Application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals – Wide choice of development tools All devices offer 12-bit ADC, DAC, two comparators, Real-time clock three 16-bit timers, one 8-bit timer as well as standard communication interface such as SPI, I2C and USART. A 4x28-segment LCD is available on the medium-density STM8L152xx line. Table 2: Mediumdensity STM8L151x4/6 and STM8L152x4/6 low-power device features and peripheral counts and Section 3: Functional overview give an overview of the complete range of peripherals proposed in this family. Figure 1 on page 14 shows the general block diagram of the device family. DocID15962 Rev 15 9/142 58 Introduction STM8L151x4/6, STM8L152x4/6 The medium-density STM8L15x microcontroller family is suitable for a wide range of applications: • Medical and hand-held equipment • Application control and user interface • PC peripherals, gaming, GPS and sport equipment • Alarm systems, wired and wireless sensors 10/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 2 Description Description The medium-density STM8L151x4/6 and STM8L152x4/6 devices are members of the STM8L ultra-low-power 8-bit family. The medium-density STM8L15x family operates from 1.8 V to 3.6 V (down to 1.65 V at power down) and is available in the -40 to +85 °C and -40 to +125 °C temperature ranges. The medium-density STM8L15x ultra-low-power family features the enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low power operations. The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive In-Application debugging and ultra-fast Flash programming. All medium-density STM8L15x microcontrollers feature embedded data EEPROM and lowpower, low-voltage, single-supply program Flash memory. They incorporate an extensive range of enhanced I/Os and peripherals. The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools. Six different packages are proposed from 28 to 48 pins. Depending on the device chosen, different sets of peripherals are included. All STM8L ultra-low-power products are based on the same architecture with the same memory mapping and a coherent pinout. DocID15962 Rev 15 11/142 58 Description 2.1 STM8L151x4/6, STM8L152x4/6 Device overview Table 2. Medium-density STM8L151x4/6 and STM8L152x4/6 low-power device features and peripheral counts Features Flash (Kbyte) STM8L151Gx 16 32 STM8L15xKx 16 32 Data EEPROM (Kbyte) 1 RAM (Kbyte) 2 LCD Timers 4x17 (1) No Basic 1 (8-bit) General purpose 2 (16-bit) Advanced control 1 (16-bit) SPI Communication I2C interfaces USART STM8L15xCx 16 32 4x28 (1) 1 1 1 GPIOs 26(3) 30 (2)(3) or 29 (1)(3) 41(3) 12-bit synchronized ADC (number of channels) 1 (18) 1 (22 (2) or 21 (1)) 1 (25) 12-Bit DAC (number of channels) 1 (1) Comparators COMP1/COMP2 Others 2 RTC, window watchdog, independent watchdog, 16-MHz and 38-kHz internal RC, 1- to 16-MHz and 32-kHz external oscillator CPU frequency 16 MHz Operating voltage 1.8 V to 3.6 V (down to 1.65 V at power down) Operating temperature -40 to +85 °C/ -40 to +105 °C / -40 to +125 °C Packages UFQFPN28 (4x4; 0.6 mm thickness) WLCSP28 LQFP32(7x7) UFQFPN32 (5x5; 0.6 mm thickness) LQFP48 UFQFPN48 (4x4; 0.6 mm thickness) 1. STM8L152xx versions only 2. STM8L151xx versions only 3. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as general purpose output only (PA1). 12/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 2.2 Description Ultra-low-power continuum The ultra-low-power medium-densitySTM8L151x4/6 and STM8L152x4/6 devices are fully pin-to-pin, software and feature compatible. Besides the full compatibility within the family, the devices are part of STMicroelectronics microcontrollers ultra-low-power strategy which also includes STM8L101xx and STM8L15xxx. The STM8L and STM32L families allow a continuum of performance, peripherals, system architecture, and features. They are all based on STMicroelectronics 0.13 µm ultra-low leakage process. Note: 1 The STM8L151xx and STM8L152xx are pin-to-pin compatible with STM8L101xx devices. 2 The STM32L family is pin-to-pin compatible with the general purpose STM32F family. Please refer to STM32L15x documentation for more information on these devices. Performance All families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM® Cortex®-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios. This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs. Shared peripherals STM8L151xx/152xx and STM8L15xxx share identical peripherals which ensure a very easy migration from one family to another: • Analog peripherals: ADC1, DAC, and comparators COMP1/COMP2 • Digital peripherals: RTC and some communication interfaces Common system strategy To offer flexibility and optimize performance, the STM8L151xx/152xx and STM8L15xxx devices use a common architecture: • Same power supply range from 1.8 to 3.6 V, down to 1.65 V at power down • Architecture optimized to reach ultra-low consumption both in low power modes and Run mode • Fast startup strategy from low power modes • Flexible system clock • Ultra-safe reset: same reset strategy for both STM8L15x and STM32L15xxx including power-on reset, power-down reset, brownout reset and programmable voltage detector. Features ST ultra-low-power continuum also lies in feature compatibility: • More than 10 packages with pin count from 20 to 100 pins and size down to 3 x 3 mm • Memory density ranging from 4 to 128 Kbyte DocID15962 Rev 15 13/142 58 Functional overview 3 STM8L151x4/6, STM8L152x4/6 Functional overview Figure 1. Medium-density STM8L151x4/6 and STM8L152x4/6 device block diagram 26&B,1 26&B287 0+]RVFLOODWRU 0+]LQWHUQDO5& 26&B,1 26&B287 N+]RVFLOODWRU #9'' &ORFN FRQWUROOHU DQG &66 N+]LQWHUQDO5& 9'' &ORFNV WRFRUHDQG SHULSKHUDOV ,QWHUUXSWFRQWUROOHU 3RZHU 92/75(* 5(6(7 670&RUH 3253'5 6:,0 'HEXJPRGXOH 6:,0 %25 FKDQQHOV ELW7LPHU FKDQQHOV ELW7LPHU FKDQQHOV ELW7LPHU 39' '0$ FKDQQHOV 6&/6'$60% 3RUW% 3%>@ 3RUW& 3&>@ 3RUW' 3'>@ 3RUW( 3(>@ ELW$'& 3RUW) 3) 7HPSVHQVRU %HHSHU %((3 ,ð& 5;7;&. 86$57 #9''$966$ 95(),17RXW ,QWHUQDOUHIHUHQFH YROWDJH &203B,13 &203B,13 &203B,10 &203 9/&' 9 WR9 .E\WH5$0 3$>@ 63, '$&B287 95() 39'B,1 3RUW$ 026,0,62 6&.166 9''$ 966$ $'&B,1[ 95() 95() $GGUHVVFRQWURODQGGDWDEXVHV ,QIUDUHGLQWHUIDFH 1567 .E\WH SURJUDPPHPRU\ .E\WH GDWD((3520 ELW7LPHU ,5B7,0 9'' 9 WR9 966 57& $/$50&$/,% ,:'* N+]FORFN ::'* &203 ELW'$& ELW'$& /&'GULYHU [ 6(*[&20[ /&'ERRVWHU 069 1. Legend: ADC: Analog-to-digital converter BOR: Brownout reset DMA: Direct memory access DAC: Digital-to-analog converter I²C: Inter-integrated circuit multi master interface 14/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 Functional overview IWDG: Independent watchdog LCD: Liquid crystal display POR/PDR: Power on reset / power down reset RTC: Real-time clock SPI: Serial peripheral interface SWIM: Single wire interface module USART: Universal synchronous asynchronous receiver transmitter WWDG: Window watchdog 3.1 Low-power modes The medium-density STM8L151x4/6 and STM8L152x4/6 devices support five low power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: • Wait mode: The CPU clock is stopped, but selected peripherals keep running. An internal or external interrupt, event or a Reset can be used to exit the microcontroller from Wait mode (WFE or WFI mode). Wait consumption: refer to Table 21. • Low power run mode: The CPU and the selected peripherals are running. Execution is done from RAM with a low speed oscillator (LSI or LSE). Flash and data EEPROM are stopped and the voltage regulator is configured in ultra-low-power mode. The microcontroller enters Low power run mode by software and can exit from this mode by software or by a reset. All interrupts must be masked. They cannot be used to exit the microcontroller from this mode. Low power run mode consumption: refer to Table 22. • Low power wait mode: This mode is entered when executing a Wait for event in Low power run mode. It is similar to Low power run mode except that the CPU clock is stopped. The wakeup from this mode is triggered by a Reset or by an internal or external event (peripheral event generated by the timers, serial interfaces, DMA controller (DMA1), comparators and I/O ports). When the wakeup is triggered by an event, the system goes back to Low power run mode. All interrupts must be masked. They cannot be used to exit the microcontroller from this mode. Low power wait mode consumption: refer to Table 23. • Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup can be triggered by RTC interrupts, external interrupts or reset. Active-halt consumption: refer to Table 24 and Table 25. • Halt mode: CPU and peripheral clocks are stopped, the device remains powered on. The RAM content is preserved. The wakeup is triggered by an external interrupt or reset. A few peripherals have also a wakeup from Halt capability. Switching off the internal reference voltage reduces power consumption. Through software configuration it is also possible to wake up the device without waiting for the internal reference voltage wakeup time to have a fast wakeup time of 5 µs. Halt consumption: refer to Table 26. DocID15962 Rev 15 15/142 58 Functional overview STM8L151x4/6, STM8L152x4/6 3.2 Central processing unit STM8 3.2.1 Advanced STM8 Core The 8-bit STM8 core is designed for code efficiency and performance with an Harvard architecture and a 3-stage pipeline. It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing, and 80 instructions. Architecture and registers • Harvard architecture • 3-stage pipeline • 32-bit wide program memory bus - single cycle fetching most instructions • X and Y 16-bit index registers - enabling indexed addressing modes with or without offset and read-modify-write type data manipulations • 8-bit accumulator • 24-bit program counter - 16 Mbyte linear memory space • 16-bit stack pointer - access to a 64 Kbyte level stack • 8-bit condition code register - 7 condition flags for the result of the last instruction Addressing • 20 addressing modes • Indexed indirect addressing mode for lookup tables located anywhere in the address space • Stack pointer relative addressing mode for local variables and parameter passing Instruction set 3.2.2 • 80 instructions with 2-byte average instruction size • Standard data movement and logic/arithmetic functions • 8-bit by 8-bit multiplication • 16-bit by 8-bit and 16-bit by 16-bit division • Bit manipulation • Data transfer between stack and accumulator (push/pop) with direct stack access • Data transfer using the X and Y registers or direct memory-to-memory transfers Interrupt controller The medium-density STM8L151x4/6 and STM8L152x4/6 feature a nested vectored interrupt controller: 16/142 • Nested interrupts with 3 software priority levels • 32 interrupt vectors with hardware priority • Up to 40 external interrupt sources on 11 vectors • Trap and reset interrupts DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 Functional overview 3.3 Reset and supply management 3.3.1 Power supply scheme The device requires a 1.65 V to 3.6 V operating supply voltage (VDD). The external power supply pins must be connected as follows: • VSS1; VDD1 = 1.8 to 3.6 V, down to 1.65 V at power down: external power supply for I/Os and for the internal regulator. Provided externally through VDD1 pins, the corresponding ground pin is VSS1. • VSSA; VDDA = 1.8 to 3.6 V, down to 1.65 V at power down: external power supplies for analog peripherals (minimum voltage to be applied to VDDA is 1.8 V when the ADC1 is used). VDDA and VSSA must be connected to VDD1 and VSS1, respectively. • VSS2; VDD2 = 1.8 to 3.6 V, down to 1.65 V at power down: external power supplies for I/Os. VDD2 and VSS2 must be connected to VDD1 and VSS1, respectively. • VREF+; VREF- (for ADC1): external reference voltage for ADC1. Must be provided externally through VREF+ and VREF- pin. • VREF+ (for DAC): external voltage reference for DAC must be provided externally through VREF+. 3.3.2 Power supply supervisor The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR), coupled with a brownout reset (BOR) circuitry. At power-on, BOR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently (in which case, the VDD min value at power down is 1.65 V). Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Halt mode, it is possible to automatically switch off the internal reference voltage (and consequently the BOR) in Halt mode. The device remains under reset when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external reset circuit. The device features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 3.3.3 Voltage regulator The medium-density STM8L151x4/6 and STM8L152x4/6 embeds an internal voltage regulator for generating the 1.8 V power supply for the core and peripherals. This regulator has two different modes: • Main voltage regulator mode (MVR) for Run, Wait for interrupt (WFI) and Wait for event (WFE) modes. • Low power voltage regulator mode (LPVR) for Halt, Active-halt, Low power run and Low power wait modes. When entering Halt or Active-halt modes, the system automatically switches from the MVR to the LPVR in order to reduce current consumption. DocID15962 Rev 15 17/142 58 Functional overview 3.4 STM8L151x4/6, STM8L152x4/6 Clock management The clock controller distributes the system clock (SYSCLK) coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness. Features 18/142 • Clock prescaler: to get the best compromise between speed and current consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler • Safe clock switching: Clock sources can be changed safely on the fly in run mode through a configuration register. • Clock management: To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. • System clock sources: 4 different clock sources can be used to drive the system clock: – 1-16 MHz High speed external crystal (HSE) – 16 MHz High speed internal RC oscillator (HSI) – 32.768 kHz Low speed external crystal (LSE) – 38 kHz Low speed internal RC (LSI) • RTC and LCD clock sources: the above four sources can be chosen to clock the RTC and the LCD, whatever the system clock. • Startup clock: After reset, the microcontroller restarts by default with an internal 2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. • Clock security system (CSS): This feature can be enabled by software. If a HSE clock failure occurs, the system clock is automatically switched to HSI. • Configurable main clock output (CCO): This outputs an external clock for use by the application. DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 Functional overview Figure 2. Medium-density STM8L151x4/6 and STM8L152x4/6 clock tree diagram &66 26&B,1 +6(  +6(26&  0+] 26&B287  +6, +6,5&  0+] 69@ DLE 1. Typical current consumption measured with code executed from RAM 70/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 Electrical parameters In the following table, data is based on characterization results, unless otherwise specified. Table 21. Total current consumption in Wait mode Max Symbol Parameter Conditions(1) HSI CPU not clocked, all peripherals OFF, Supply code executed IDD(Wait) current in from RAM Wait mode with Flash in IDDQ mode(5), VDD from 1.65 V to 3.6 V Typ 55°C 85 105 °C 125 °C Unit (3) (4) °C(2) fCPU = 125 kHz 0.33 0.39 0.41 0.43 0.45 fCPU = 1 MHz 0.35 0.41 0.44 0.45 0.48 fCPU = 4 MHz 0.42 0.51 0.52 0.54 0.58 fCPU = 8 MHz 0.52 0.57 0.58 0.59 0.62 fCPU = 16 MHz 0.68 0.76 0.79 0.82 0.85 fCPU = 125 kHz 0.032 0.056 0.068 0.072 0.093 f = 1 MHz HSE external CPU clock fCPU = 4 MHz (fCPU=fHSE) fCPU = 8 MHz (6) (7) (7) 0.078 0.121 0.144 0.163 0.197 0.218 0.26 0.30 0.36 0.40 0.40 0.52 0.57 0.62 0.66 fCPU = 16 MHz 0.760 1.01 1.05 1.09 1.16 (7) (7) LSI fCPU = fLSI 0.035 0.044 0.046 0.049 0.054 LSE(8) external clock (32.768 kHz) fCPU = fLSE 0.032 0.036 0.038 0.044 0.051 DocID15962 Rev 15 mA 71/142 115 Electrical parameters STM8L151x4/6, STM8L152x4/6 Table 21. Total current consumption in Wait mode (continued) Max Conditions(1) Symbol Parameter 55°C 85 105 °C 125 °C Unit (3) (4) °C(2) fCPU = 125 kHz 0.38 0.48 0.49 0.50 0.56 fCPU = 1 MHz 0.41 0.49 0.51 0.53 0.59 fCPU = 4 MHz 0.50 0.57 0.58 0.62 0.66 fCPU = 8 MHz 0.60 0.66 0.68 0.72 0.74 fCPU = 16 MHz 0.79 0.84 0.86 0.87 0.90 fCPU = 125 kHz 0.06 0.08 0.09 0.10 0.12 fCPU = 1 MHz 0.10 0.17 0.18 0.19 0.22 fCPU = 4 MHz 0.24 0.36 0.39 0.41 0.44 fCPU = 8 MHz 0.50 0.58 0.61 0.62 0.64 fCPU = 16 MHz 1.00 1.08 1.14 1.16 1.18 LSI fCPU = fLSI 0.055 0.058 0.065 0.073 0.080 LSE(8) external clock (32.768 kHz) fCPU = fLSE 0.051 0.056 0.060 0.065 0.073 HSI Supply current in IDD(Wait) Wait mode CPU not clocked, all peripherals OFF, code executed from Flash, VDD from 1.65 V to 3.6 V HSE(6) external clock (fCPU=HSE) Typ 1. All peripherals OFF, VDD from 1.65 V to 3.6 V, HSI internal RC osc., fCPU = fSYSCLK 2. 3. 4. 5. 6. For temperature range 6. For temperature range 7. For temperature range 3. Flash is configured in IDDQ mode in Wait mode by setting the EPM or WAITM bit in the Flash_CR1 register. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption (IDD HSE) must be added. Refer to Table 31. 7. Tested in production. 8. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (IDD HSE) must be added. Refer to Table 32. 72/142 DocID15962 Rev 15 mA STM8L151x4/6, STM8L152x4/6 Electrical parameters Figure 14. Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz 1)   ,'' :$,7 +6, >—$@       ƒ&  ƒ&  ƒ&       9''>9@  DLE 1. Typical current consumption measured with code executed from Flash memory. DocID15962 Rev 15 73/142 115 Electrical parameters STM8L151x4/6, STM8L152x4/6 In the following table, data is based on characterization results, unless otherwise specified. Table 22. Total current consumption and timing in Low power run mode at VDD = 1.65 V to 3.6 V Symbol Conditions(1) Parameter all peripherals OFF LSI RC osc. (at 38 kHz) with TIM2 active(2) IDD(LPR) Supply current in Low power run mode all peripherals OFF (3) external LSE clock (32.768 kHz) with TIM2 active (2) Typ Max TA = -40 °C to 25 °C 5.1 5.4 TA = 55 °C 5.7 6 TA = 85 °C 6.8 7.5 TA = 105 °C 9.2 10.4 TA = 125 °C 13.4 16.6 TA = -40 °C to 25 °C 5.4 5.7 TA = 55 °C 6.0 6.3 TA = 85 °C 7.2 7.8 TA = 105 °C 9.4 10.7 TA = 125 °C 13.8 17 TA = -40 °C to 25 °C 5.25 5.6 TA = 55 °C 5.67 6.1 TA = 85 °C 5.85 6.3 TA = 105 °C 7.11 7.6 TA = 125 °C 9.84 12 TA = -40 °C to 25 °C 5.59 6 TA = 55 °C 6.10 6.4 TA = 85 °C 6.30 7 TA = 105 °C 7.55 8.4 TA = 125 °C 10.1 15 1. No floating I/Os 2. Timer 2 clock enabled and counter running 3. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (IDD LSE) must be added. Refer to Table 32 74/142 DocID15962 Rev 15 Unit μA STM8L151x4/6, STM8L152x4/6 Electrical parameters Figure 15. Typ. IDD(LPR) vs. VDD (LSI clock source)   ƒ& ,'' /35 /6,>—$@  ƒ&  ƒ&            9''>9@ DLE DocID15962 Rev 15 75/142 115 Electrical parameters STM8L151x4/6, STM8L152x4/6 In the following table, data is based on characterization results, unless otherwise specified. Table 23. Total current consumption in Low power wait mode at VDD = 1.65 V to 3.6 V Symbol Conditions(1) Parameter Typ Max Unit TA = -40 °C to 25 °C all peripherals OFF LSI RC osc. (at 38 kHz) with TIM2 active(2) IDD(LPW) Supply current in Low power wait mode all peripherals OFF LSE external clock(3) (32.768 kHz) with TIM2 active (2) 3 3.3 TA = 55 °C 3.3 3.6 TA = 85 °C 4.4 5 TA = 105 °C 6.7 8 TA = 125 °C 11 14 TA = -40 °C to 25 °C 3.4 3.7 TA = 55 °C 3.7 4 TA = 85 °C 4.8 5.4 TA = 105 °C 7 8.3 TA = 125 °C 11.3 14.5 TA = -40 °C to 25 °C 2.35 TA = 55 °C 2.42 2.82 TA = 85 °C 3.10 3.71 TA = 105 °C 4.36 5.7 TA = 125 °C 7.20 11 TA = -40 °C to 25 °C 2.46 2.75 TA = 55 °C 2.50 2.81 TA = 85 °C 3.16 3.82 TA = 105 °C 4.51 5.9 TA = 125 °C 7.28 11 1. No floating I/Os. 2. Timer 2 clock enabled and counter is running. 3. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (IDD LSE) must be added. Refer to Table 32. 76/142 DocID15962 Rev 15 2.7 μA STM8L151x4/6, STM8L152x4/6 Electrical parameters Figure 16. Typ. IDD(LPW) vs. VDD (LSI clock source)   ƒ& ,'' /3: / 6,>—$@  ƒ&  ƒ&           9''>9@ DLE DocID15962 Rev 15 77/142 115 Electrical parameters STM8L151x4/6, STM8L152x4/6 In the following table, data is based on characterization results, unless otherwise specified. Table 24. Total current consumption and timing in Active-halt mode at VDD = 1.65 V to 3.6 V Symbol Conditions (1) Parameter Typ Max TA = -40 °C to 25 °C 0.9 2.1 TA = 55 °C 1.2 3 TA = 85 °C 1.5 3.4 TA = 105 °C 2.6 6.6 TA = 125 °C 5.1 12 TA = -40 °C to 25 °C 1.4 3.1 TA = 55 °C 1.5 3.3 TA = 85 °C 1.9 4.3 TA = 105 °C 2.9 6.8 LSI RC TA = 125 °C 5.5 13 (at 38 kHz) TA = -40 °C to 25 °C 1.9 4.3 TA = 55 °C 1.95 4.4 TA = 85 °C 2.4 5.4 TA = 105 °C 3.4 7.6 TA = 125 °C 6.0 15 TA = -40 °C to 25 °C 3.9 8.75 TA = 55 °C 4.15 9.3 TA = 85 °C 4.5 10.2 TA = 105 °C 5.6 13.5 TA = 125 °C 6.8 16.3 LCD OFF (2) LCD ON (static duty/ external VLCD) (3) IDD(AH) Supply current in Active-halt mode LCD ON (1/4 duty/ external VLCD) (4) LCD ON (1/4 duty/ internal VLCD) (5) 78/142 DocID15962 Rev 15 Unit μA STM8L151x4/6, STM8L152x4/6 Electrical parameters Table 24. Total current consumption and timing in Active-halt mode at VDD = 1.65 V to 3.6 V Symbol Conditions (1) Parameter Typ Max TA = -40 °C to 25 °C 0.5 1.2 TA = 55 °C 0.62 1.4 TA = 85 °C 0.88 2.1 TA = 105 °C 2.1 4.85 TA = 125 °C 4.8 11 TA = -40 °C to 25 °C 0.85 1.9 TA = 55 °C 0.95 2.2 TA = 85 °C 1.3 3.2 TA = 105 °C 2.3 5.3 TA = 125 °C 5.0 12 TA = -40 °C to 25 °C 1.5 2.5 TA = 55 °C 1.6 3.8 TA = 85 °C 1.8 4.2 TA = 105 °C 2.9 7.0 TA = 125 °C 5.7 14 TA = -40 °C to 25 °C 3.4 7.6 TA = 55 °C 3.7 8.3 TA = 85 °C 3.9 9.2 TA = 105 °C 5.0 14.5 TA = 125 °C 6.3 15.2 - - 2.4 - mA Wakeup time from tWU_HSI(AH)(8)(9) Active-halt mode to Run mode (using HSI) - - 4.7 7 μs Wakeup time from Active-halt mode to Run mode (using LSI) - - 150 - μs LCD IDD(AH) Supply current in Active-halt mode OFF(7) LCD ON (static duty/ external VLCD) (3) LSE external clock (32.768 kHz) (6) LCD ON (1/4 duty/ external VLCD) (4) LCD ON (1/4 duty/ internal VLCD) (5) IDD(WUFAH) tWU_LSI(AH)(8) (9) Supply current during wakeup time from Active-halt mode (using HSI) Unit μA 1. No floating I/O, unless otherwise specified. 2. RTC enabled. Clock source = LSI 3. RTC enabled, LCD enabled with external VLCD = 3 V, static duty, division ratio = 256, all pixels active, no LCD connected. 4. RTC enabled, LCD enabled with external VLCD, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected. 5. LCD enabled with internal LCD booster VLCD = 3 V, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected. 6. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (IDD LSE) must be added. Refer to Table 32. 7. RTC enabled. Clock source = LSE. 8. Wakeup time until start of interrupt vector fetch. The first word of interrupt routine is fetched 4 CPU cycles after tWU. 9. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register. DocID15962 Rev 15 79/142 115 Electrical parameters STM8L151x4/6, STM8L152x4/6 Table 25. Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal Symbol Condition(1) Parameter VDD = 1.8 V IDD(AH) (2) Supply current in Active-halt mode VDD = 3 V VDD = 3.6 V Typ LSE Unit 1.15 (3) LSE/32 1.05 LSE 1.30 LSE/32(3) 1.20 LSE 1.45 (3) µA 1.35 LSE/32 1. No floating I/O, unless otherwise specified. 2. Based on measurements on bench with 32.768 kHz external crystal oscillator. 3. RTC clock is LSE divided by 32. In the following table, data is based on characterization results, unless otherwise specified. Table 26. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V Symbol Condition(1) Parameter Typ Max 350 1400(2) 580 2000 1160 2800(2) 2560 6700(2) TA = 125 °C 4.4 13(2) µA TA = -40 °C to 25 °C IDD(Halt) TA = 55 °C Supply current in Halt mode (Ultra-low-power ULP bit =1 in TA = 85 °C the PWR_CSR2 register) TA = 105 °C Unit nA IDD(WUHalt) Supply current during wakeup time from Halt mode (using HSI) - 2.4 - mA tWU_HSI(Halt)(3)(4) Wakeup time from Halt to Run mode (using HSI) - 4.7 7 µs tWU_LSI(Halt) (3)(4) Wakeup time from Halt mode to Run mode (using LSI) - 150 - µs 1. TA = -40 to 125 °C, no floating I/O, unless otherwise specified. 2. Tested in production. 3. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register. 4. Wakeup time until start of interrupt vector fetch. The first word of interrupt routine is fetched 4 CPU cycles after tWU. 80/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 Electrical parameters Current consumption of on-chip peripherals Table 27. Peripheral current consumption Symbol Typ. Parameter VDD = 3.0 V Unit IDD(TIM1) TIM1 supply current(1) 13 IDD(TIM2) TIM2 supply current (1) 8 IDD(TIM3) TIM3 supply current (1) 8 IDD(TIM4) TIM4 timer supply current (1) 3 USART1 supply current (2) 6 IDD(SPI1) SPI1 supply current (2) 3 IDD(I2C1) I2C1 supply current (2) 5 IDD(DMA1) DMA1 supply current(2) 3 IDD(WWDG) WWDG supply current(2) 2 Peripherals ON(3) 44 µA/MHz IDD(USART1) IDD(ALL) µA/MHz IDD(ADC1) ADC1 supply current(4) 1500 µA IDD(DAC) DAC supply current(5) 370 µA IDD(COMP1) Comparator 1 supply current(6) IDD(COMP2) Comparator 2 supply current(6) IDD(PVD/BOR) IDD(BOR) IDD(IDWDG) 0.160 Slow mode 2 Fast mode 5 Power voltage detector and brownout Reset unit supply current (7) 2.6 Brownout Reset unit supply current (7) 2.4 Independent watchdog supply current µA including LSI supply current 0.45 excluding LSI supply current 0.05 1. Data based on a differential IDD measurement between all peripherals OFF and a timer counter running at 16 MHz. The CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pins toggling. Not tested in production. 2. Data based on a differential IDD measurement between the on-chip peripheral in reset configuration and not clocked and the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins toggling. Not tested in production. 3. Peripherals listed above the IDD(ALL) parameter ON: TIM1, TIM2, TIM3, TIM4, USART1, SPI1, I2C1, DMA1, WWDG. 4. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion. 5. Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC conversion of VDD /2. Floating DAC output. 6. Data based on a differential IDD measurement between COMP1 or COMP2 in reset configuration and COMP1 or COMP2 enabled with static inputs. Supply current of internal reference voltage excluded. 7. Including supply current of internal reference voltage. DocID15962 Rev 15 81/142 115 Electrical parameters STM8L151x4/6, STM8L152x4/6 Table 28. Current consumption under external reset Symbol IDD(RST) Parameter Conditions Supply current under external reset (1) All pins are externally tied to VDD Typ VDD = 1.8 V 48 VDD = 3 V 76 VDD = 3.6 V 91 Unit µA 1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset. 9.3.4 Clock and timing characteristics HSE external clock (HSEBYP = 1 in CLK_ECKCR) Subject to general operating conditions for VDD and TA. Table 29. HSE external clock characteristics Symbol Parameter Conditions fHSE_ext External clock source frequency(1) VHSEH OSC_IN input pin high level voltage VHSEL OSC_IN input pin low level voltage Cin(HSE) ILEAK_HSE - Typ Max Unit 1 - 16 MHz 0.7 x VDD - VDD V VSS - 0.3 x VDD - - 2.6 - pF VSS < VIN < VDD - - ±1 µA OSC_IN input capacitance(1) OSC_IN input leakage current Min 1. Data guaranteed by design. LSE external clock (LSEBYP=1 in CLK_ECKCR) Subject to general operating conditions for VDD and TA. Table 30. LSE external clock characteristics Symbol Parameter Min Typ Max Unit - 32.768 - kHz fLSE_ext External clock source frequency(1) VLSEH(2) OSC32_IN input pin high level voltage 0.7 x VDD - VDD VLSEL(2) OSC32_IN input pin low level voltage VSS - 0.3 x VDD Cin(LSE) OSC32_IN input capacitance(1) - 0.6 - pF OSC32_IN input leakage current - - ±1 µA ILEAK_LSE 1. Data guaranteed by design. 2. Data based on characterization results. 82/142 DocID15962 Rev 15 V STM8L151x4/6, STM8L152x4/6 Electrical parameters HSE crystal/ceramic resonator oscillator The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...). Table 31. HSE oscillator characteristics Symbol Conditions Min Typ Max Unit High speed external oscillator frequency - 1 - 16 MHz RF Feedback resistor - - 200 - kΩ C(1) Recommended load capacitance (2) - - 20 - pF C = 20 pF, fOSC = 16 MHz - - 2.5 (startup) 0.7 (stabilized)(3) fHSE IDD(HSE) gm Parameter HSE oscillator power consumption - - 2.5 (startup) 0.46 (stabilized)(3) - 3.5(3) - - mA/V VDD is stabilized - 1 - ms Oscillator transconductance tSU(HSE)(4) Startup time mA C = 10 pF, fOSC =16 MHz 1. C=CL1=CL2 is approximately equivalent to 2 x crystal CLOAD. 2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value. Refer to crystal manufacturer for more details 3. Data guaranteed by design. 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. Figure 17. HSE oscillator circuit diagram 5P /P I+6(WRFRUH &2 &P 5) &/ 26&,1 JP 5HVRQDWRU 5HVRQDWRU &/ &RQVXPSWLRQ FRQWURO 26&287 670 069 DocID15962 Rev 15 83/142 115 Electrical parameters STM8L151x4/6, STM8L152x4/6 HSE oscillator critical gm formula g mcrit = ( 2 × Π × f HSE ) 2 × R m ( 2Co + C ) 2 Rm: Motional resistance (see crystal specification), Lm: Motional inductance (see crystal specification), Cm: Motional capacitance (see crystal specification), Co: Shunt capacitance (see crystal specification), CL1=CL2=C: Grounded external capacitance gm >> gmcrit LSE crystal/ceramic resonator oscillator The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...). Table 32. LSE oscillator characteristics Symbol Parameter fLSE Low speed external oscillator frequency RF Feedback resistor C(1) Recommended load capacitance (2) IDD(LSE) gm LSE oscillator power consumption Conditions Min Typ Max Unit - - 32.768 - kHz ΔV = 200 mV - 1.2 - MΩ - - 8 - pF - - - 1.4(3) µA VDD = 1.8 V - 450 - VDD = 3 V - 600 - VDD = 3.6 V - 750 - - 3(3) - - µA/V VDD is stabilized - 1 - s Oscillator transconductance tSU(LSE)(4) Startup time nA 1. C=CL1=CL2 is approximately equivalent to 2 x crystal CLOAD. 2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small Rm value. Refer to crystal manufacturer for more details. 3. Data guaranteed by design. 4. 84/142 tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 Electrical parameters Figure 18. LSE oscillator circuit diagram 5P /P I/6( &2 5) &/ &P 26&,1 JP 5HVRQDWRU &RQVXPSWLRQ FRQWURO 5HVRQDWRU 26&287 &/ 670 06Y9 Internal clock sources Subject to general operating conditions for VDD, and TA. High speed internal RC oscillator (HSI) In the following table, data is based on characterization results, not tested in production, unless otherwise specified. Table 33. HSI oscillator characteristics Symbol fHSI ACCHSI Conditions(1) Parameter Frequency Accuracy of HSI oscillator (factory calibrated) Min Typ - VDD = 3.0 V Max Unit 16 - MHz VDD = 3.0 V, TA = 25 °C -1 (2) - 1(2) % VDD = 3.0 V, 0 °C ≤TA ≤ 55 °C -1.5 - 1.5 % VDD = 3.0 V, -10 °C ≤TA ≤ 70 °C -2 - 2 % VDD = 3.0 V, -10 °C ≤TA ≤ 85 °C -2.5 - 2 % VDD = 3.0 V, -10 °C ≤TA ≤ 125 °C -4.5 - 2 % 1.65 V ≤VDD ≤ 3.6 V, -40 °C ≤TA ≤ 125 °C -4.5 - 3 % Trimming code ≠ multiple of 16 - 0.4 0.7 % ± 1.5 % TRIM HSI user trimming step(3) Trimming code = multiple of 16 - tsu(HSI) HSI oscillator setup time (wakeup time) - - 3.7 6(4) µs IDD(HSI) HSI oscillator power consumption - - 100 140(4) µA 1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified. 2. Tested in production. 3. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0). Refer to the AN3101 “STM8L15x internal RC oscillator calibration” application note for more details. 4. Guaranteed by design. DocID15962 Rev 15 85/142 115 Electrical parameters STM8L151x4/6, STM8L152x4/6 Figure 19. Typical HSI frequency vs VDD   +6,IUHTXHQF\>0+]@      ƒ&  ƒ&  ƒ&                9''>9@ DLF Low speed internal RC oscillator (LSI) In the following table, data is based on characterization results, not tested in production. Table 34. LSI oscillator characteristics Symbol fLSI Parameter (1) Frequency tsu(LSI) LSI oscillator wakeup time IDD(LSI) LSI oscillator frequency drift(3) Conditions(1) Min Typ Max Unit - 26 38 56 kHz - - 200(2) µs -12 - 11 % 0 °C ≤TA ≤ 85 °C 1. VDD = 1.65 V to 3.6 V, TA = -40 to 125 °C unless otherwise specified. 2. Guaranteed by design. 3. This is a deviation for an individual part, once the initial frequency has been measured. 86/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 Electrical parameters Figure 20. Typical LSI frequency vs. VDD  /6,IUHTXHQF\>N+]@       ƒ&  ƒ& ƒ&         9''>9@ DLE DocID15962 Rev 15 87/142 115 Electrical parameters 9.3.5 STM8L151x4/6, STM8L152x4/6 Memory characteristics TA = -40 to 125 °C unless otherwise specified. Table 35. RAM and hardware registers Symbol Parameter Conditions Min Typ Max Unit VRM Data retention mode (1) Halt mode (or Reset) 1.65 - - V 1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware registers (only in Halt mode). Guaranteed by characterization, not tested in production. Flash memory Table 36. Flash program and data EEPROM memory Symbol VDD tprog Iprog tRET(2) Parameter Conditions Min Typ fSYSCLK = 16 MHz 1.65 Programming time for 1 or 64 bytes (block) erase/write cycles (on programmed byte) - Programming time for 1 to 64 bytes (block) write cycles (on erased byte) (1) Unit - 3.6 V - 6 - ms - - 3 - ms TA=+25 °C, VDD = 3.0 V - 0.7 - TA=+25 °C, VDD = 1.8 V - 0.7 - Data retention (program memory) after 10000 erase/write cycles at TA= –40 to +85 °C (6 suffix) TRET = +85 °C 30(1) - - Data retention (program memory) after 10000 erase/write cycles at TA= –40 to +125 °C (3 suffix) TRET = +125 °C 5(1) - - Data retention (data memory) after 300000 erase/write cycles at TA= –40 to +85 °C (6 suffix) TRET = +85 °C 30(1) - - Data retention (data memory) after 300000 erase/write cycles at TA= –40 to +125 °C (3 suffix) TRET = +125 °C 5(1) - - TA = –40 to +85 °C (6 suffix), TA = –40 to +125 °C (3 suffix) 10(1) - - - - Operating voltage (all modes, read/write/erase) Programming/ erasing consumption Erase/write cycles (program memory) NRW (3) Max Erase/write cycles (data memory) mA years 300(1) (4) kcycles 1. Data based on characterization results. 2. Conforming to JEDEC JESD22a117 3. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation addresses a single byte. 4. Data based on characterization performed on the whole data memory. 88/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 9.3.6 Electrical parameters I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error, out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation, LCD levels, etc.). The test results are given in the following table. Table 37. I/O current injection susceptibility Functional susceptibility Symbol IINJ 9.3.7 Description Negative injection Positive injection Injected current on true open-drain pins (PC0 and PC1) -5 +0 Injected current on all five-volt tolerant (FT) pins -5 +0 Injected current on all 3.6 V tolerant (TT) pins -5 +0 Injected current on any other pin -5 +5 Unit mA I/O port pin characteristics General characteristics Subject to general operating conditions for VDD and TA unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor. DocID15962 Rev 15 89/142 115 Electrical parameters STM8L151x4/6, STM8L152x4/6 Table 38. I/O static characteristics Symbol VIL Conditions(1) Min Typ Max Input voltage on true open-drain pins (PC0 and PC1) VSS-0.3 - 0.3 x VDD Input voltage on five-volt tolerant (FT) pins (PA7 and PE0) VSS-0.3 - 0.3 x VDD Input voltage on 3.6 V tolerant (TT) pins VSS-0.3 - 0.3 x VDD Input voltage on any other pin VSS-0.3 - 0.3 x VDD - 5.2 - 5.5 - 5.2 - 5.5 - 3.6 0.70 x VDD - VDD+0.3 I/Os - 200 - True open drain I/Os - 200 - VSS≤VIN≤VDD High sink I/Os - - 50 (5) VSS≤VIN≤VDD True open drain I/Os - - 200(5) VSS≤VIN≤VDD PA0 with high sink LED driver capability - - 200(5) 30 45 60 kΩ - 5 - pF Parameter Input low level voltage(2) Input voltage on true open-drain pins (PC0 and PC1) with VDD < 2 V Input voltage on true open-drain pins (PC0 and PC1) with VDD ≥ 2 V VIH Input high level voltage (2) Vhys Ilkg Schmitt trigger voltage hysteresis (3) Input leakage current (4) RPU Weak pull-up equivalent resistor(2)(6) CIO I/O pin capacitance VIN=VSS - 1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified. 2. Data based on characterization results. 3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested. 4. The max. value may be exceeded if negative current is injected on adjacent pins. 5. Not tested in production. 90/142 DocID15962 Rev 15 V 0.70 x VDD Input voltage on 3.6 V tolerant (TT) pins Input voltage on any other pin V 0.70 x VDD Input voltage on five-volt tolerant (FT) pins (PA7 and PE0) with VDD < 2 V Input voltage on five-volt tolerant (FT) pins (PA7 and PE0) with VDD ≥ 2 V Unit mV nA STM8L151x4/6, STM8L152x4/6 Electrical parameters 6. RPU pull-up equivalent resistor based on a resistive transistor (corresponding IPU current characteristics described in Figure 24). Figure 21. Typical VIL and VIH vs VDD (high sink I/Os)  ƒ& ƒ&  9,/DQG9,+>9@ ƒ&           9''>9@ DLF Figure 22. Typical VIL and VIH vs VDD (true open drain I/Os)  ƒ& ƒ&  9,/DQG9,+>9@ ƒ&         9''>9@   DLE DocID15962 Rev 15 91/142 115 Electrical parameters STM8L151x4/6, STM8L152x4/6 Figure 23. Typical pull-up resistance RPU vs VDD with VIN=VSS  ƒ&  3XOOXSUHVLVWDQFH>NŸ@  ƒ& ƒ&                9''>9@ DLE Figure 24. Typical pull-up current Ipu vs VDD with VIN=VSS  ƒ& ƒ&  3XOOXSFXUUHQW>—$@ ƒ&                   9''>9@ DLE 92/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 Electrical parameters Output driving current Subject to general operating conditions for VDD and TA unless otherwise specified. Table 39. Output driving current (high sink ports) I/O Symbol Type Output low level voltage for an I/O pin High sink VOL (1) Parameter VOH (2) Output high level voltage for an I/O pin Conditions Min Max Unit IIO = +2 mA, VDD = 3.0 V - 0.45 V IIO = +2 mA, VDD = 1.8 V - 0.45 V IIO = +10 mA, VDD = 3.0 V - 0.7 V IIO = -2 mA, VDD = 3.0 V VDD-0.45 - V IIO = -1 mA, VDD = 1.8 V VDD-0.45 - V IIO = -10 mA, VDD = 3.0 V VDD-0.7 - V 1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. The IIO current sourced must always respect the absolute maximum rating specified in Table 16 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. Table 40. Output driving current (true open drain ports) Open drain I/O Symbol Type VOL (1) Parameter Output low level voltage for an I/O pin Conditions Min Max IIO = +3 mA, VDD = 3.0 V - 0.45 IIO = +1 mA, VDD = 1.8 V - Unit V 0.45 1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. Table 41. Output driving current (PA0 with high sink LED driver capability) IR I/O Symbol Type VOL (1) Parameter Output low level voltage for an I/O pin Conditions Min Max Unit IIO = +20 mA, VDD = 2.0 V - 0.45 V 1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. DocID15962 Rev 15 93/142 115 Electrical parameters STM8L151x4/6, STM8L152x4/6 Figure 25. Typ. VOL @ VDD = 3.0 V (high sink ports) Figure 26. Typ. VOL @ VDD = 1.8 V (high sink ports)    #  #  #  #    #  #  #  #   6/, ;6= 6/, ;6=                   )/, ;M!=          )/,;M!= AI Figure 27. Typ. VOL @ VDD = 3.0 V (true open drain ports) AI Figure 28. Typ. VOL @ VDD = 1.8 V (true open drain ports)    #  #  #  #    #  #  #  #  6/, ;6= 6/, ;6=                    )/, ;M!=     )/, ;M!= BJ AI Figure 29. Typ. VDD - VOH @ VDD = 3.0 V (high sink ports) Figure 30. Typ. VDD - VOH @ VDD = 1.8 V (high sink ports)     #  #  #  #   #  #  #  #  6$$ 6/( ;6= 6$$ 6/( ;6=                     )/( ;M!=          ) /( ;M!= AI 94/142 DocID15962 Rev 15 BJ STM8L151x4/6, STM8L152x4/6 Electrical parameters NRST pin Subject to general operating conditions for VDD and TA unless otherwise specified. Table 42. NRST pin characteristics Symbol Parameter Conditions Min Typ Max VIL(NRST) NRST input low level voltage (1) - VSS - 0.8 VIH(NRST) NRST input high level voltage (1) - 1.4 - VDD IOL = 2 mA for 2.7 V ≤VDD ≤ 3.6 V - - IOL = 1.5 mA for VDD < 2.7 V - VOL(NRST) VHYST RPU(NRST) NRST output low level voltage (1) NRST input hysteresis(3) (1) V 0.4 - 10%VDD - NRST pull-up equivalent resistor Unit (2) - - mV - 30 45 60 kΩ VF(NRST) NRST input filtered pulse (3) - - - 50 VNF(NRST) NRST input not filtered pulse (3) - 300 - - ns 1. Data based on characterization results. 2. 200 mV min. 3. Data guaranteed by design. Figure 31. Typical NRST pull-up resistance RPU vs VDD  ƒ& 3XOOXSUHVLVWDQFH>NŸ@  ƒ& ƒ&            9''>9@     DLE DocID15962 Rev 15 95/142 115 Electrical parameters STM8L151x4/6, STM8L152x4/6 Figure 32. Typical NRST pull-up current Ipu vs VDD  ƒ&  ƒ& 3XOOXSFXUUHQW>—$@ ƒ&                    9''>9@ DLE The reset network shown in Figure 33 protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max. level specified in Table 42. Otherwise the reset is not taken into account internally. For power consumption sensitive applications, the external reset capacitor value can be reduced to limit the charge/discharge current. If the NRST signal is used to reset the external circuitry, attention must be paid to the charge/discharge time of the external capacitor to fulfill the external devices reset timing conditions. The minimum recommended capacity is 10 nF. Figure 33. Recommended NRST pin configuration 9'' 538 ([WHUQDO UHVHW FLUFXLW 2SWLRQDO 1 567 )LOWHU ,QWHUQDOUHVHW 670 X) 069 96/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 9.3.8 Electrical parameters Communication interfaces SPI1 - Serial peripheral interface Unless otherwise specified, the parameters given in Table 43 are derived from tests performed under ambient temperature, fSYSCLK frequency and VDD supply voltage conditions summarized in Section 9.3.1. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 43. SPI1 characteristics Symbol Conditions(1) Min Max Master mode 0 8 Slave mode 0 8 SPI1 clock rise and fall time Capacitive load: C = 30 pF - 30 tsu(NSS)(2) NSS setup time Slave mode 4 x 1/fSYSCLK - th(NSS)(2) NSS hold time Slave mode 80 - SCK high and low time Master mode, fMASTER = 8 MHz, fSCK= 4 MHz 105 145 Master mode 30 - Slave mode 3 - Master mode 15 - Slave mode 0 - fSCK 1/tc(SCK) tr(SCK) tf(SCK) (2) tw(SCKH) tw(SCKL)(2) Parameter SPI1 clock frequency tsu(MI) (2) tsu(SI)(2) Data input setup time th(MI) (2) th(SI)(2) Data input hold time ta(SO)(2)(3) Data output access time Slave mode - 3x 1/fSYSCLK tdis(SO)(2)(4) 30 - Data output disable time Slave mode (2) Data output valid time Slave mode (after enable edge) - 60 tv(MO)(2) Data output valid time Master mode (after enable edge) - 20 Slave mode (after enable edge) 15 - Master mode (after enable edge) 1 - tv(SO) th(SO)(2) th(MO)(2) Data output hold time Unit MHz ns 1. Parameters are given by selecting 10 MHz I/O output frequency. 2. Values based on design simulation and/or characterization results. 3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data. 4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z. DocID15962 Rev 15 97/142 115 Electrical parameters STM8L151x4/6, STM8L152x4/6 Figure 34. SPI1 timing diagram - slave mode and CPHA=0 166LQSXW 6&.,QSXW W68 166 &3+$  &32/  WK 166 WF 6&. WZ 6&.+ WZ 6&./ &3+$  &32/  W9 62 WD 62 0,62 287387 WU 6&. WI 6&. WK 62 06%287 %,7287 06%,1 %,7,1 WGLV 62 /6%287 WVX 6, 026, ,1387 /6%,1 WK 6, DLF Figure 35. SPI1 timing diagram - slave mode and CPHA=1(1) 166LQSXW 6&.,QSXW W68 166 &3+$  &32/  &3+$  &32/  WF 6&. WZ 6&.+ WZ 6&./ WY 62 WD 62 0,62 287 3 87 06 % 2 87 WVX 6, 026, , 1387 WK 166 WK 62 %, 7 287 WU 6&. WI 6&. WGLV 62 /6% 287 WK 6, 0 6% ,1 % , 7 ,1 /6% ,1 DL 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. 98/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 Electrical parameters Figure 36. SPI1 timing diagram - master mode(1) (IGH .33INPUT 3#+/UTPUT #0(!  #0/, 3#+/UTPUT TC3#+ #0(! #0/, #0(!  #0/, #0(! #0/, TSU-) -)3/ ).0 54 TW3#+( TW3#+, TR3#+ TF3#+ -3 "). ") 4). ,3"). TH-) -/3) /54054 - 3"/54 " ) 4/54 TV-/ ,3"/54 TH-/ AI6 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. DocID15962 Rev 15 99/142 115 Electrical parameters STM8L151x4/6, STM8L152x4/6 I2C - Inter IC control interface Subject to general operating conditions for VDD, fSYSCLK, and TA unless otherwise specified. The STM8L I2C interface (I2C1) meets the requirements of the Standard I2C communication protocol described in the following table with the restriction mentioned below: Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 44. I2C characteristics Symbol Parameter Standard mode I2C Fast mode I2C(1) Min(2) Max (2) Min (2) Max (2) Unit tw(SCLL) SCL clock low time 4.7 - 1.3 - tw(SCLH) SCL clock high time 4.0 - 0.6 - tsu(SDA) SDA setup time 250 - 100 - th(SDA) SDA data hold time 0 - 0 900 tr(SDA) tr(SCL) SDA and SCL rise time - 1000 - 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 th(STA) START condition hold time 4.0 - 0.6 - tsu(STA) Repeated START condition setup time 4.7 - 0.6 - tsu(STO) STOP condition setup time 4.0 - 0.6 - μs STOP to START condition time (bus free) 4.7 - 1.3 - μs - 400 400 pF tw(STO:STA) Cb Capacitive load for each bus line 1. fSYSCLK must be at least equal to 8 MHz to achieve max fast I2C speed (400 kHz). 2. Data based on standard I2C protocol requirement, not tested in production. Note: 100/142 For speeds around 200 kHz, the achieved speed can have a± 5% tolerance For other speed ranges, the achieved speed can have a± 2% tolerance The above variations depend on the accuracy of the external components used. DocID15962 Rev 15 μs ns μs STM8L151x4/6, STM8L152x4/6 Electrical parameters Figure 37. Typical application with I2C bus and timing diagram 1) 9'' 9'' NŸ NŸ ,&%86 Ÿ Ÿ 6'$ 6&/ 670/ 5HSHDWHGVWDUW 6WDUW WVX 67$ WZ 67267$ 6WDUW 6'$ WI 6'$ WU 6'$ 6WRS WVX 6'$ WK 6'$ 6&/ WK 67$ WZ 6&/+ WZ 6&// WU 6&/ WI 6&/ WVX 672 069 1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD DocID15962 Rev 15 101/142 115 Electrical parameters 9.3.9 STM8L151x4/6, STM8L152x4/6 LCD controller (STM8L152xx only) In the following table, data is guaranteed by design. Not tested in production. Table 45. LCD characteristics Symbol Parameter Min Typ Max. Unit VLCD LCD external voltage - - 3.6 V VLCD0 LCD internal reference voltage 0 - 2.6 - V VLCD1 LCD internal reference voltage 1 - 2.7 - V VLCD2 LCD internal reference voltage 2 - 2.8 - V VLCD3 LCD internal reference voltage 3 - 2.9 - V VLCD4 LCD internal reference voltage 4 - 3.0 - V VLCD5 LCD internal reference voltage 5 - 3.1 - V VLCD6 LCD internal reference voltage 6 - 3.2 - V VLCD7 LCD internal reference voltage 7 - 3.3 - V CEXT VLCD external capacitance 0.1 - 2 µF - 3 - µA - 3 - µA IDD Supply current(1) at VDD = 1.8 V (1) Supply current at VDD = 3 V RHN (2) High value resistive network (low drive) - 6.6 - MΩ (3) Low value resistive network (high drive) - 360 - kΩ V33 Segment/Common higher level voltage - - VLCDx V V23 Segment/Common 2/3 level voltage - 2/3VLCDx - V V12 Segment/Common 1/2 level voltage - 1/2VLCDx - V V13 Segment/Common 1/3 level voltage - 1/3VLCDx - V V0 Segment/Common lowest level voltage 0 - - V RLN 1. LCD enabled with 3 V internal booster (LCD_CR1 = 0x08), 1/4 duty, 1/3 bias, division ratio= 64, all pixels active, no LCD connected. 2. RHN is the total high value resistive network. 3. RLN is the total low value resistive network. VLCD external capacitor (STM8L152xx only) The application can achieve a stabilized LCD reference voltage by connecting an external capacitor CEXT to the VLCD pin. CEXT is specified in Table 45. 102/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 9.3.10 Electrical parameters Embedded reference voltage In the following table, data is based on characterization results, not tested in production, unless otherwise specified. Table 46. Reference voltage characteristics Symbol Conditions Min Typ Max. Unit Internal reference voltage consumption - - 1.4 - µA ADC sampling time when reading the internal reference voltage - - 5 10 µs Internal reference voltage buffer consumption (used for ADC) - - 13.5 25 µA Reference voltage output - 1.202(3) 1.224 1.242(3) V Internal reference voltage low power buffer consumption (used for comparators or output) - - 730 1200 nA IREFOUT(2) Buffer output current(4) - - - 1 µA CREFOUT Reference voltage output load - - - 50 pF tVREFINT Internal reference voltage startup time - - 2 3 ms tBUFEN(2) Internal reference voltage buffer startup time once enabled (1) - - - 10 µs Accuracy of VREFINT stored in the VREFINT_Factory_CONV byte(5) - - - ±5 mV Stability of VREFINT over temperature -40 °C ≤TA ≤ 125 °C - 20 50 ppm/°C Stability of VREFINT over temperature 0 °C ≤TA ≤ 50 °C - - 20 ppm/°C - - - TBD ppm IREFINT TS_VREFINT(1)(2) IBUF(2) VREFINT out ILPBUF(2) ACCVREFINT STABVREFINT STABVREFINT Parameter Stability of VREFINT after 1000 hours 1. Defined when ADC output reaches its final value ±1/2LSB 2. Data guaranteed by design. 3. Tested in production at VDD = 3 V ±10 mV. 4. To guaranty less than 1% VREFOUT deviation. 5. Measured at VDD = 3 V ±10 mV. This value takes into account VDD accuracy and ADC conversion accuracy. DocID15962 Rev 15 103/142 115 Electrical parameters 9.3.11 STM8L151x4/6, STM8L152x4/6 Temperature sensor In the following table, data is based on characterization results, not tested in production, unless otherwise specified. Table 47. TS characteristics Symbol Parameter Min Typ Max. Unit V90(1) Sensor reference voltage at 90°C ±5 °C, 0.580 0.597 0.614 V - ±1 ±2 °C TL VSENSOR linearity with temperature (2) Average slope 1.59 1.62 1.65 mV/°C IDD(TEMP)(2) Consumption - 3.4 6 µA TSTART(2)(3) Temperature sensor startup time - - 10 µs TS_TEMP(2) ADC sampling time when reading the temperature sensor 10 - - µs Avg_slope 1. Tested in production at VDD = 3 V ±10 mV. The 8 LSB of the V90 ADC conversion result are stored in the TS_Factory_CONV_V90 byte. 2. Data guaranteed by design. 3. Defined for ADC output reaching its final value ±1/2LSB. 9.3.12 Comparator characteristics In the following table, data is guaranteed by design, not tested in production, unless otherwise specified. Table 48. Comparator 1 characteristics Min Typ Max(1) Unit Analog supply voltage 1.65 - 3.6 V Temperature range -40 - 125 °C R400K R400K value 300 400 500 R10K R10K value 7.5 10 12.5 Comparator 1 input voltage range 0.6 - VDDA 1.202 1.224 1.242 Comparator startup time - 7 10 Propagation delay(3) - 3 10 Voffset Comparator offset error - ±3 ±10 mV ICOMP1 consumption(4) - 160 260 nA Symbol VDDA TA VIN VREFINT tSTART td Parameter Internal reference voltage(2) Current 1. Based on characterization. 2. Tested in production at VDD = 3 V ±10 mV. 3. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference. 4. Comparator consumption only. Internal reference voltage not included. 104/142 DocID15962 Rev 15 kΩ V µs STM8L151x4/6, STM8L152x4/6 Electrical parameters In the following table, data is guaranteed by design, not tested in production. Table 49. Comparator 2 characteristics Conditions Min Typ Max(1) Unit Analog supply voltage - 1.65 - 3.6 V TA Temperature range - -40 - 125 °C VIN Comparator 2 input voltage range - 0 - VDDA V Fast mode - 15 20 Slow mode - 20 25 1.65 V ≤VDDA ≤2.7 V - 1.8 3.5 2.7 V ≤VDDA ≤3.6 V - 2.5 6 1.65 V ≤VDDA ≤2.7 V - 0.8 2 2.7 V ≤VDDA ≤3.6 V - 1.2 4 - - ±4 ±20 Fast mode - 3.5 5 Slow mode - 0.5 2 Symbol VDDA Parameter tSTART Comparator startup time td slow Propagation delay in slow mode(2) td fast Propagation delay in fast mode(2) Voffset Comparator offset error ICOMP2 Current consumption(3) µs mV µA 1. Based on characterization. 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference. 3. Comparator consumption only. Internal reference voltage not included. DocID15962 Rev 15 105/142 115 Electrical parameters 9.3.13 STM8L151x4/6, STM8L152x4/6 12-bit DAC characteristics In the following table, data is guaranteed by design, not tested in production. Table 50. DAC characteristics Symbol Parameter Conditions Min Typ Max Unit V VDDA Analog supply voltage - 1.8 - 3.6 VREF+ Reference supply voltage - 1.8 - VDDA VREF+ = 3.3 V, no load, middle code (0x800) - 130 220 VREF+ = 3.3 V, no load, worst code (0x000) - 220 350 VDDA = 3.3 V, no load, middle code (0x800) - 210 320 VDDA = 3.3 V, no load, worst code (0x000) - 320 520 IVREF IVDDA Current consumption on VREF+ supply Current consumption on VDDA supply µA TA Temperature range - -40 - 125 °C RL Resistive load(1) (2) DACOUT buffer ON 5 - - kΩ RO Output impedance DACOUT buffer OFF - 8 10 kΩ CL Capacitive load(3) - - - 50 pF DACOUT buffer ON 0.2 - VDDA-0.2 V DACOUT buffer OFF 0 - VREF+ -1 LSB V Settling time (full scale: for a 12bit input code transition between the lowest and the highest input codes when DAC_OUT reaches the final value ±1LSB) RL ≥5 kΩ, CL≤ 50 pF - 7 12 µs Max frequency for a correct DAC_OUT (@95%) change Update rate when small variation of the input code (from code i to i+1LSB). RL ≥ 5 kΩ, CL ≤50 pF - 1 Msps DAC_OUT DAC_OUT voltage(4) tsettling tWAKEUP Wakeup time from OFF state. Input code between lowest and highest possible codes. RL ≥5 kΩ, CL≤50 pF - 9 15 µs PSRR+ Power supply rejection ratio (to VDDA) (static DC measurement) RL≥ 5 kΩ, CL≤50 pF - -60 -35 dB 1. Resistive load between DACOUT and GNDA. 2. Output on PF0 (48-pin package only). 3. Capacitive load at DACOUT pin. 4. It gives the output excursion of the DAC. 106/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 Electrical parameters In the following table, data is based on characterization results, not tested in production. Table 51. DAC accuracy Symbol Parameter Conditions RL ≥5 kΩ, CL≤50 pF DNL Differential non linearity DACOUT buffer ON(2) (1) No load DACOUT buffer OFF RL ≥5 kΩ, CL≤ 50 pF INL DACOUT buffer ON(2) Integral non linearity(3) No load DACOUT buffer OFF Offset1 Offset error at Code 1 (5) Gain error Gain error 3 2 4 No load DACOUT buffer OFF ±5 ±8 DACOUT buffer OFF ±1.5 ±5 +0.1/-0.2 +0.2/-0.5 +0/-0.2 +0/-0.4 12 30 8 12 DACOUT buffer ON(2) No load DACOUT buffer OFF DACOUT buffer ON(2) Total unadjusted error 1.5 ±25 RL ≥5 kΩ, CL≤ 50 pF TUE 3 ±10 RL ≥5 kΩ, CL≤ 50 pF (6) 1.5 4 DACOUT buffer ON(2) Offset error(4) Max 2 RL ≥5 kΩ, CL≤ 50 pF Offset Typ No load DACOUT buffer OFF Unit 12-bit LSB % 12-bit LSB 1. Difference between two consecutive codes - 1 LSB. 2. For 48-pin packages only. For 28-pin and 32-pin packages, DAC output buffer must be kept off and no load must be applied. 3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023. 4. Difference between the value measured at Code (0x800) and the ideal value = VREF+/2. 5. Difference between the value measured at Code (0x001) and the ideal value. 6. Difference between the ideal slope of the transfer function and the measured slope computed from Code 0x000 and 0xFFF when buffer is ON, and from Code giving 0.2 V and (VDDA -0.2) V when buffer is OFF. In the following table, data is guaranteed by design, not tested in production. Table 52. DAC output on PB4-PB5-PB6(1) Symbol Rint Parameter Internal resistance between DAC output and PB4-PB5-PB6 output Conditions Max 2.7 V < VDD < 3.6 V 1.4 2.4 V < VDD < 3.6 V 1.6 2.0 V < VDD < 3.6 V 3.2 1.8 V < VDD < 3.6 V 8.2 Unit kΩ 1. 32 or 28-pin packages only. The DAC channel can be routed either on PB4, PB5 or PB6 using the routing interface I/O switch registers. DocID15962 Rev 15 107/142 115 Electrical parameters 9.3.14 STM8L151x4/6, STM8L152x4/6 12-bit ADC1 characteristics In the following table, data is guaranteed by design, not tested in production. Table 53. ADC1 characteristics Symbol Parameter VDDA Analog supply voltage VREF+ Reference supply voltage VREF- Conditions Min Typ Max Unit - 1.8 - 3.6 V 2.4 V ≤VDDA≤ 3.6 V 2.4 - VDDA V 1.8 V ≤VDDA≤ 2.4 V VDDA V Lower reference voltage - VSSA V IVDDA Current on the VDDA input pin - - - - IVREF+ Current on the VREF+ input pin 1000 400 - - 1450 µA 700 (peak)(1) µA 450 (average)(1) µA VAIN Conversion voltage range - 0(2) - VREF+ V TA Temperature range - -40 - 125 °C on PF0 fast channel - - on all other channels - - 50(3) kΩ on PF0 fast channel - on all other channels - 2.4 V≤VDDA≤3.6 V without zooming 0.320 - 16 MHz 1.8 V≤VDDA≤2.4 V with zooming 0.320 - 8 MHz VAIN on PF0 fast channel - - 1(4)(5) MHz VAIN on all other channels - - 760(4)(5) kHz RAIN External resistance on VAIN CADC Internal sample and hold capacitor fADC fCONV ADC sampling clock frequency 12-bit conversion rate 16 - pF fTRIG External trigger frequency - - - tconv 1/fADC tLAT External trigger latency - - - 3.5 1/fSYSCLK 108/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 Electrical parameters Table 53. ADC1 characteristics (continued) Symbol tS Parameter Sampling time tconv 12-bit conversion time tWKUP Wakeup time from OFF state tIDLE(6) tVREFINT Time before a new conversion Internal reference voltage startup time Conditions Min Typ Max Unit VAIN on PF0 fast channel VDDA < 2.4 V 0.43(4)(5) - - µs VAIN on PF0 fast channel 2.4 V ≤VDDA≤ 3.6 V 0.22(4)(5) - - µs VAIN on slow channels VDDA < 2.4 V 0.86(4)(5) - - µs VAIN on slow channels 2.4 V ≤VDDA≤ 3.6 V 0.41(4)(5) - - µs - 12 + tS 1/fADC 16 MHz 1(4) µs - - - 3 µs TA = +25 °C - - 1(7) s TA = +70 °C - - 20(7) ms ms ms TA = +125 °C - - 2(7) - - - refer to Table 46 1. The current consumption through VREF is composed of two parameters: - one constant (max 300 µA) - one variable (max 400 µA), only during sampling time + 2 first conversion pulses. So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 µA at 1Msps 2. VREF- or VDDA must be tied to ground. 3. Guaranteed by design. 4. Minimum sampling and conversion time is reached for maximum Rext = 0.5 kΩ. 5. Value obtained for continuous conversion on fast channel. 6. The time between 2 conversions, or between ADC ON and the first conversion must be lower than tIDLE. 7. The tIDLE maximum value is ∞ on the “Z” revision code of the device. DocID15962 Rev 15 109/142 115 Electrical parameters STM8L151x4/6, STM8L152x4/6 In the following three tables, data is guaranteed by characterization result, not tested in production. Table 54. ADC1 accuracy with VDDA = 3.3 V to 2.5 V Symbol Parameter Conditions Typ Max 1 1.6 Differential non linearity fADC = 8 MHz 1 1.6 fADC = 4 MHz 1 1.5 fADC = 16 MHz 1.2 2 fADC = 8 MHz 1.2 1.8 fADC = 4 MHz 1.2 1.7 fADC = 16 MHz 2.2 3.0 fADC = 8 MHz 1.8 2.5 fADC = 4 MHz 1.8 2.3 fADC = 16 MHz 1.5 2 fADC = 8 MHz 1 1.5 fADC = 4 MHz 0.7 1.2 1 1.5 fADC = 16 MHz DNL INL Integral non linearity TUE Total unadjusted error Offset Offset error fADC = 16 MHz Gain Gain error fADC = 8 MHz Unit LSB LSB fADC = 4 MHz Table 55. ADC1 accuracy with VDDA = 2.4 V to 3.6 V Symbol Parameter Typ Max Unit 1 2 LSB 1.7 3 LSB DNL Differential non linearity INL Integral non linearity TUE Total unadjusted error 2 4 LSB Offset Offset error 1 2 LSB Gain Gain error 1.5 3 LSB Table 56. ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V Symbol 110/142 Parameter Typ Max Unit DNL Differential non linearity 1 2 LSB INL Integral non linearity 2 3 LSB TUE Total unadjusted error 3 5 LSB Offset Offset error 2 3 LSB Gain Gain error 2 3 LSB DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 Electrical parameters Figure 38. ADC1 accuracy characteristics V V [1LSBIDEAL = REF+ (or DDA depending on package)] 4096 4096 EG (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line 4095 4094 4093 (2) ET 7 (1) 6 5 4 ET=Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO=Offset Error: deviation between the first actual transition and the first ideal one. EG=Gain Error: deviation between the last ideal transition and the last actual one. ED=Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. (3) EO EL 3 ED 2 1 LSBIDEAL 1 0 1 VSSA 2 3 4 5 6 7 4093 4094 4095 4096 VDDA ai14395b Figure 39. Typical connection diagram using the ADC 670 9'' 6DPSOHDQGKROG$'& FRQYHUWHU 97 9  5$,1 9$,1 5$'& $,1[ &SDUDVLWLF  97 9 ELW FRQYHUWHU &$'&  , /“ Q$ DLI 1. Refer to Table 53 for the values of RAIN and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. DocID15962 Rev 15 111/142 115 Electrical parameters STM8L151x4/6, STM8L152x4/6 Figure 40. Maximum dynamic current consumption on VREF+ supply pin during ADC conversion Sampling (n cycles) Conversion (12 cycles) ADC clock Iref+ 700µA 300µA Table 57. RAIN max for fADC = 16 MHz(1) RAIN max (kohm) Ts (cycles) Ts (µs) Slow channels Fast channels 2.4 V < VDDA < 3.6 V 1.8 V < VDDA < 2.4 V 2.4 V < VDDA < 3.3 V 1.8 V < VDDA < 2.4 V 4 0.25 Not allowed Not allowed 0.7 Not allowed 9 0.5625 0.8 Not allowed 2.0 1.0 16 1 2.0 0.8 4.0 3.0 24 1.5 3.0 1.8 6.0 4.5 48 3 6.8 4.0 15.0 10.0 96 6 15.0 10.0 30.0 20.0 192 12 32.0 25.0 50.0 40.0 384 24 50.0 50.0 50.0 50.0 1. Guaranteed by design. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 41 or Figure 42, depending on whether VREF+ is connected to VDDA or not. Good quality ceramic 10 nF capacitors should be used. They should be placed as close as possible to the chip. 112/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 Electrical parameters Figure 41. Power supply and reference decoupling (VREF+ not connected to VDDA) 670/ 95() ([WHUQDO UHIHUHQFH —)Q) 6XSSO\ 9''$ —)Q) 966$95() DLF Figure 42. Power supply and reference decoupling (VREF+ connected to VDDA) 670/ 95()9''$ 6XSSO\ —)Q) 95()9''$ DLF DocID15962 Rev 15 113/142 115 Electrical parameters 9.3.15 STM8L151x4/6, STM8L152x4/6 EMC characteristics Susceptibility tests are performed on a sample basis during product characterization. Functional EMS (electromagnetic susceptibility) Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs). • ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 61000 standard. • FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000 standard. A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709. Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Table 58. EMS data Symbol Parameter Conditions VFESD VDD = 3.3 V, TA = +25 °C, Voltage limits to be applied on any I/O pin to induce a functional fCPU= 16 MHz, disturbance conforms to IEC 61000 VEFTB Fast transient voltage burst limits VDD = 3.3 V, TA = +25 °C, to be applied through 100 pF on Using HSI fCPU = 16 MHz, VDD and VSS pins to induce a conforms to IEC 61000 Using HSE functional disturbance Level/ Class 3B 4A 2B Electromagnetic interference (EMI) Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC61967-2 which specifies the board and the loading of each pin. 114/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 Electrical parameters Table 59. EMI data (1) Symbol Parameter SEMI VDD = 3.6 V, TA = +25 °C, LQFP32 conforming to IEC61967-2 Peak level Monitored frequency band Conditions Max vs. Unit 16 MHz 0.1 MHz to 30 MHz -3 30 MHz to 130 MHz 9 130 MHz to 1 GHz 4 SAE EMI Level 2 dBμV - 1. Not tested in production. Absolute maximum ratings (electrical sensitivity) Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: human body model and charge device model. This test conforms to the JESD22-A114A/A115A standard. Table 60. ESD absolute maximum ratings Symbol Ratings Conditions VESD(HBM) Electrostatic discharge voltage (human body model) VESD(CDM) Electrostatic discharge voltage (charge device model) Maximum value (1) Unit 2000 TA = +25 °C V 500 1. Data based on characterization results. Static latch-up • LU: 3 complementary static tests are required on 6 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181. Table 61. Electrical sensitivities Symbol LU Parameter Static latch-up class DocID15962 Rev 15 Class II 115/142 115 Package information STM8L151x4/6, STM8L152x4/6 10 Package information 10.1 ECOPACK In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 10.2 LQFP48 package information Figure 43. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline C ! ! ! 3%!4).' 0,!.% # MM '!5'%0,!.% CCC # + ! $ $ , , $      0). )$%.4)&)#!4)/. %    E 1. Drawing is not to scale. 116/142 % % B DocID15962 Rev 15 "?-%?6 STM8L151x4/6, STM8L152x4/6 Package information Table 62. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID15962 Rev 15 117/142 136 Package information STM8L151x4/6, STM8L152x4/6 Figure 44. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint                    AID 1. Dimensions are expressed in millimeters. 118/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 Package information Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below. Figure 45. LQFP48 marking example (package top view) 3URGXFW  LGHQWLILFDWLRQ 45.- $5 'DWHFRGH 6WDQGDUG67ORJR : 88 5HYLVLRQFRGH 3LQLGHQWLILHU 3 069 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. DocID15962 Rev 15 119/142 136 Package information 10.3 STM8L151x4/6, STM8L152x4/6 UFQFPN48 package information Figure 46. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline 3LQLGHQWLILHU ODVHUPDUNLQJDUHD ' $ ( ( 7 GGG $ 6HDWLQJ SODQH E H 'HWDLO< ' ([SRVHGSDG DUHD < '  /  &[ƒ SLQFRUQHU ( 5W\S 'HWDLO=  =  $%B0(B9 1. Drawing is not to scale. 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life. 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground. 120/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 Package information Table 63. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 D 6.900 7.000 7.100 0.2717 0.2756 0.2795 E 6.900 7.000 7.100 0.2717 0.2756 0.2795 D2 5.500 5.600 5.700 0.2165 0.2205 0.2244 E2 5.500 5.600 5.700 0.2165 0.2205 0.2244 L 0.300 0.400 0.500 0.0118 0.0157 0.0197 T - 0.152 - - 0.0060 - b 0.200 0.250 0.300 0.0079 0.0098 0.0118 e - 0.500 - - 0.0197 - ddd - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 47. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package recommended footprint                      !"?&0?6 1. Dimensions are expressed in millimeters. DocID15962 Rev 15 121/142 136 Package information STM8L151x4/6, STM8L152x4/6 Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below. Figure 48. UFQFPN48 marking example (package top view) 3URGXFW  LGHQWLILFDWLRQ - $6 'DWHFRGH 6WDQGDUG67ORJR : 88 5HYLVLRQFRGH 3LQLGHQWLILHU 3 069 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. 122/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 LQFP32 package information Figure 49. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline C ! ! ! 3%!4).' 0,!.% # MM CCC '!5'%0,!.% # + $ ! , $ , $       0). )$%.4)&)#!4)/.  % % % B 10.4 Package information  E 7@.&@7 1. Drawing is not to scale. DocID15962 Rev 15 123/142 136 Package information STM8L151x4/6, STM8L152x4/6 Table 64. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.300 0.370 0.450 0.0118 0.0146 0.0177 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.600 - - 0.2205 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.600 - - 0.2205 - e - 0.800 - - 0.0315 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.100 - - 0.0039 1. Values in inches are converted from mm and rounded to 4 decimal digits. 124/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 Package information Figure 50. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package recommended footprint                    6?&0?6 1. Dimensions are expressed in millimeters. Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below. Figure 51. LQFP32 marking example (package top view) 3URGXFW  LGHQWLILFDWLRQ 45.,5 'DWHFRGH 6WDQGDUG67ORJR : 88 5HYLVLRQFRGH 3LQLGHQWLILHU 3 069 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering DocID15962 Rev 15 125/142 136 Package information STM8L151x4/6, STM8L152x4/6 Samples to run qualification activity. 10.5 UFQFPN32 package information Figure 52. UFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package outline ' $ H ' $ $ GGG & & 6($7,1* 3/$1( E H ( E ( (  /  3,1,GHQWLILHU ' / !"?-%?6 1. Drawing is not to scale. 126/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 Package information Table 65. UFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 A3 - 0.152 - - 0.0060 - b 0.180 0.230 0.280 0.0071 0.0091 0.0110 D 4.900 5.000 5.100 0.1929 0.1969 0.2008 D1 3.400 3.500 3.600 0.1339 0.1378 0.1417 D2 3.400 3.500 3.600 0.1339 0.1378 0.1417 E 4.900 5.000 5.100 0.1929 0.1969 0.2008 E1 3.400 3.500 3.600 0.1339 0.1378 0.1417 E2 3.400 3.500 3.600 0.1339 0.1378 0.1417 e - 0.500 - - 0.0197 - L 0.300 0.400 0.500 0.0118 0.0157 0.0197 ddd - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 53. UFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package recommended footprint                    $%B)3B9 1. Dimensions are expressed in millimeters. DocID15962 Rev 15 127/142 136 Package information STM8L151x4/6, STM8L152x4/6 Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below. Figure 54. UFQFPN32 marking example (package top view) 3URGXFW  LGHQWLILFDWLRQ -, 'DWHFRGH 6WDQGDUG67ORJR : 88 5HYLVLRQFRGH 3 'RW SLQ 069 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. 128/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 10.6 Package information UFQFPN28 package information Figure 55. UFQFPN28 - 28-lead, 4 x 4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline 'HWDLO< ' ( ' ' ( 'HWDLO= !"?-%?6 1. Drawing is not to scale. Table 66. UFQFPN28 - 28-lead, 4 x 4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data(1) millimeters inches Symbol Min Typ Max Min Typ Max A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 - 0.000 0.050 - 0.0000 0.0020 D 3.900 4.000 4.100 0.1535 0.1575 0.1614 D1 2.900 3.000 3.100 0.1142 0.1181 0.1220 E 3.900 4.000 4.100 0.1535 0.1575 0.1614 E1 2.900 3.000 3.100 0.1142 0.1181 0.1220 L 0.300 0.400 0.500 0.0118 0.0157 0.0197 L1 0.250 0.350 0.450 0.0098 0.0138 0.0177 T - 0.152 - - 0.0060 - b 0.200 0.250 0.300 0.0079 0.0098 0.0118 e - 0.500 - - 0.0197 - DocID15962 Rev 15 129/142 136 Package information STM8L151x4/6, STM8L152x4/6 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 56. UFQFPN28 - 28-lead, 4 x 4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package recommended footprint           1. Dimensions are expressed in millimeters. 130/142 DocID15962 Rev 15 !"?&0?6 STM8L151x4/6, STM8L152x4/6 Package information Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below. Figure 57. UFQFPN28 marking example (package top view) 3URGXFW  LGHQWLILFDWLRQ ( 5HYLVLRQFRGH 'DWHFRGH 'RW SLQ : 88 3 069 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. DocID15962 Rev 15 131/142 136 Package information 10.7 STM8L151x4/6, STM8L152x4/6 WLCSP28 package information Figure 58. WLCSP28 - 28-pin, 1.703 x 2.841 mm, 0.4 mm pitch wafer level chip scale package outline EEE = H $EDOO ORFDWLRQ H ' ; < H 'HWDLO$ H ( 1RWFK * ) %XPSVLGH 'LH,' DDD ; $ $ :DIHUEDFNVLGH 6LGHYLHZ $ $ %XPS )URQWYLHZ $ HHH= = FFF = ; < E [ GGG = 6HDWLQJSODQH 'HWDLO$ URWDWHGE\ƒ $$0B0(B9 1. Drawing is not to scale. 132/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 Package information Table 67. WLCSP28 - 28-pin, 1.703 x 2.841 mm, 0.4 mm pitch wafer level chip scale package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.540 0.570 0.600 0.0213 0.0224 0.0236 A1 - 0.190 - - 0.0075 - A2 - 0.380 - - 0.0150 - (2) 0.240 0.270 0.300 0.0094 0.0106 0.0118 D 1.668 1.703 1.738 0.0657 0.0670 0.0684 E 2.806 2.841 2.876 0.1105 0.1119 0.1132 e - 0.400 - - 0.0157 - e1 - 1.200 - - 0.0472 - e2 - 2.400 - - 0.0945 - F - 0.251 - - 0.0099 - G - 0.222 - - 0.0087 - aaa - - 0.100 - - 0.0039 bbb - - 0.100 - - 0.0039 ccc - - 0.100 - - 0.0039 ddd - - 0.050 - - 0.0020 eee - - 0.050 - - 0.0020 b 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. Dimension is measured at the maximum bump diameter parallel to primary datum Z. Device marking The following figure gives an example of topside marking orientation versus ball A1 identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below. DocID15962 Rev 15 133/142 136 Package information STM8L151x4/6, STM8L152x4/6 Figure 59. WLCSP28 marking example (package top view) 'RW EDOO 3URGXFW  LGHQWLILFDWLRQ - 'DWHFRGH 5HYLVLRQFRGH : 88 3 069 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity. 134/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 10.8 Package information Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 18: General operating conditions on page 66. The maximum chip-junction temperature, TJmax, in degree Celsius, may be calculated using the following equation: TJmax = TAmax + (PDmax x ΘJA) Where: • TAmax is the maximum ambient temperature in ° C • ΘJA is the package junction-to-ambient thermal resistance in ° C/W • PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax) • PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. • PI/Omax represents the maximum power dissipation on output pins Where: PI/Omax = Σ (VOL*IOL) + Σ((VDD-VOH)*I OH), taking into account the actual VOL/IOL and VOH/IOH of the I/Os at low and high level in the application. Table 68. Thermal characteristics(1) Symbol Parameter Value Unit ΘJA Thermal resistance junction-ambient LQFP 48- 7 x 7 mm 65 °C/W ΘJA Thermal resistance junction-ambient UFQFPN 48- 7 x 7mm 32 °C/W ΘJA Thermal resistance junction-ambient LQFP 32 - 7 x 7 mm 59 °C/W ΘJA Thermal resistance junction-ambient UFQFPN 32 - 5 x 5 mm 38 °C/W ΘJA Thermal resistance junction-ambient UFQFPN28 - 4 x 4 mm 118 °C/W ΘJA Thermal resistance junction-ambient WLCSP28 70 °C/W 1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment. DocID15962 Rev 15 135/142 136 Part numbering 11 STM8L151x4/6, STM8L152x4/6 Part numbering For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office. Figure 60. Medium-density STM8L15x ordering information scheme Example: STM8 L 151 C 4 U 6 TR Product class STM8 microcontroller Family type L = Low power Sub-family type 151 = Ultra-low-power 152 = Ultra-low-power with LCD Pin count C = 48 pins K = 32 pins G = 28 pins Program memory size 4 = 16 Kbyte 6 = 32 Kbyte Package U = UFQFPN T = LQFP Y = WLCSP Temperature range 3 = - 40 °C to 125 °C 7 = - 40 °C to 105 °C 6 = - 40 °C to 85 °C Delivery TR = Tape & Reel 1. For a list of available options (e.g. memory size, package) and orderable part numbers or for further information on any aspect of this device, please contact the ST sales office nearest to you. 136/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 12 Revision history Revision history Table 69. Document revision history Date Revision 06-Aug-2009 1 Initial release 2 Updated peripheral naming throughout document. Added Figure: STM8L151Cx 48-pin pinout (without LCD). Added capacitive sensing channels in Features. Updated PA7, PC0 and PC1 in Table: Medium density STM8L15x pin description. Changed CLK and REMAP register names. Changed description of WDGHALT. Added typical power consumption values in Table 18 to Table 26. Corrected VIH max value. 3 Added WLCSP28 package Modified Figure: Memory map and added 2 notes. Modified Low power run mode in Section: Low power modes. Added Section: Unique ID. Modified Table: Interrupt mapping (added reserved area at address 0x00 8008) Modified OPT4 option bits in Table: Option byte addresses. Table: Option byte description: modified OPT0 description (“disable” instead of “enable”) and OPT1 description Added OPTBL option bytes Modified Section: Electrical parameters. 4 Changed title of the document (STM8L151x4, STM8L151x6, STM8L152x4, STM8L152x6) Changed pinout (VSS1, VDD1, VSS2, VDD 2 instead of VSS, VDD, VSSIO, VDDIO Changed packages Changed first page Modified note 1 in Table: Medium density STM8L15x pin description. Added note to PA7, PC0, PC1 and PE0 in Table: Medium density STM8L15x pin description. Modified Figure: Memory map. Modified Table: WLCSP28 – 28-pin wafer level chip scale package, package mechanical data (min and max columns swapped) Modified Figure: WLCSP28 – 28-pin wafer level chip scale package, package outline (A1 ball location) Renamed Rm, Lm and Cm EXTI_CONF replaced with EXTI_CONF1 in Table: General hardware register map. Updated Section: Electrical parameters. 10-Sep-2009 11-Dec-2009 02-Apr-2010 Changes DocID15962 Rev 15 137/142 141 Revision history STM8L151x4/6, STM8L152x4/6 Table 69. Document revision history (continued) Date 23-Jul-2010 11-Mar-2011 138/142 Revision Changes 5 Modified Introduction and Description. Modified Table: Legend/abbreviation for table 5 and Table: Medium density STM8L15x pin description (for PA0, PA1, PB0 and PB4 and for reset states in the floating input column) Modified Figure: Low density STM8L151xx device block diagram, Figure: Low density STM8L15x clock tree diagram, Figure: Low power modes and Figure : Low power real-time clock. Modified CLK_PCKENR2 and CLK_HSICALR reset values in Table: General hardware register map. Modified notes below Figure: Memory map. Modified PA_CR1 reset value. Modified reset values for Px_IDR registers. Modified Table: Voltage characteristics and Table: Current characteristics. Modified VIH in Table: I/O static characteristics. Modified Table: Total current consumption in Wait mode. Modified Figure Typical application with I2C bus and timing diagram 1). Modified IL value in Figure: Typical connection diagram using the ADC1. Modified RH and RL in Table: LCD characteristics. Added graphs in Section: Electrical parameters. Modified note 3 below Table: Reference voltage characteristics. Modified note 1 below Table: TS characteristics. Changed VESD(CDM) value in Table: ESD absolute maximum ratings. Updated notes for UFQFPN32 and UFQFPN48 packages. 6 Modified note on true open drain I/Os and I/O level columns in Table: Medium density STM8L15x pin description. Remapping option removed for USART1_TX, USART1_RX, and USART1_CK on PC2, PC3 and PC4 in Table: Medium density STM8L15x pin description. Modified IDWDG_KR reset value in Table: General hardware register map. Replaced VREF_OUT with VREFINT and TIMx_TRIG with TIMx_ETR. Added Table: Factory conversion registers. Modified reset values for TIM1_DCR1, IWDG_KR, RTC_DR1, RTC_DR2, RTC_SPRERH, RTC_SPRERL, RTC_APRER, RTC_WUTRH, and RTC_WUTRL in Table: General hardware register map. Added notes to certain values in Section: Embedded reference voltage and Section: Temperature sensor. DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 Revision history Table 69. Document revision history (continued) Date 11-Mar-2011 06-Sep-2011 Revision Changes 6 cont’d Modified OPT1 and OPT4 description in Table: Option byte description. Updated Section: Electrical parameters “standard I/Os” replaced with “high sink I//Os”. Updated RHN and RHN descriptions in Table: LCD characteristics. Added Tape & Reel option to Figure: Medium density STM8L15x ordering information scheme. 7 Features: updated bullet point concerning capacitive sensing channels. Section: Low power modes: updated Wait mode and Halt mode definitions. Section: Clock management: added ‘kHz’ to 32.768 in the ‘System clock sources bullet point’. Section: System configuration controller and routing interface: replaced last sentence concerning management of charge transfer acquisition sequence. Added Section: Touchsensing Section Development support: updated the Bootloader. Table: Medium density STM8L15x pin description: added LQFP32 to second column (same pinout as UFQFPN32); “Timer X - trigger” replaced by “Timer X external trigger”; added note at the end of this table concerning the slope control of all GPIO pins. Table: Interrupt mapping: merged footnotes 1 and 2; updated some of the source blocks and descriptions. Section: Option bytes: replaced PM0051 by PM0054 and UM0320 by UM0470. Table: Option byte description: replaced the factory default setting (0xAA) for OPT0. NRST pin: updated text above the Figure; updated Figure: Recommended NRST pin configuration. Table: TS characteristics: removed typ and max values for the parameter TS_TEMP; added min value for same. Table: Comparator 1 characteristics: added typ value for ‘Comparator offset error’; added footnote 1. Table: Comparator 2 characteristics: updated tSTART, tdslow, tdfast, Voffset, ICOMP2; added footnotes 1. and 3. Table: DAC characteristics: updated max value for DAC_OUT voltage (DACOUT buffer ON). Section: 12-bit ADC1 characteristics: updated. Replaced Figure: UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline and Figure: UFQFPN48 7 x 7 mm recommended footprint (dimensions in mm). Figure: Medium density STM8L15x ordering information scheme: removed ‘TR = Tape & Reel”. DocID15962 Rev 15 139/142 141 Revision history STM8L151x4/6, STM8L152x4/6 Table 69. Document revision history (continued) Date Revision Changes 8 Features: replaced “’Dynamic consumption’ with ‘Consumption’. Table: Medium density STM8L15x pin description: updated OD column of NRST/PA1 pin. Table: Interrupt mapping: removed tamper 1, tamper 2 and tamper 3. Figure: UFQFPN48 package outline: replaced. Table: UFQFPN48 package mechanical data: updated title. Figure: UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package outline (5 x 5): removed the line over A1. Figure: UFQFPN28 package outline: replaced to improve readability of UFQFPN28 package dimensions A, L, and L1. Figure: Recommended UFQFPN28 footprint (dimensions in mm): updated title. Figure: WLCSP28 package outline: updated title. Table: WLCSP28 package mechanical data: updated title. 9 Updated Table: UFQFPN48 package mechanical data. Updated Figure: UFQFPN28 package outline, Figure: Recommended UFQFPN28 footprint (dimensions in mm) and Table: UFQFPN28 package mechanical data. Table: WLCSP28 package mechanical data: Min and Max values removed for e1, e2, e3, e4, F and G dimensions. 30-Mar-2012 10 Figure: SPI1 timing diagram - master mode(1): changed SCK signals to ‘output’ instead of ‘input’. Figure: Medium density STM8L15x ordering information scheme: added ‘Tape & reel’ to package section. 26-Apr-2012 11 Updated Table: WLCSP28 package mechanical data. 12 Updated Table: WLCSP28 package mechanical data. Updated Table: Medium-density STM8L15x pin description. Updated Table 2: Medium density STM8L15x low power device features and peripheral counts. Added Figure: Recommended LQFP48 footprint and Figure: Recommended LQFP32 footprint. 13 Changed the default setting value of OPT5 to 0x00 in Table: Option byte addresses. Added tTEMP ‘BOR detector enabled’ and ‘disabled’ characteristics in Table: Embedded reset and power control block characteristics. Updated E2, D2 and ddd in Table: UFQFPN48 package mechanical data 10-Feb-2012 02-Mar-2012 12-Nov-2013 12-Aug-2013 140/142 DocID15962 Rev 15 STM8L151x4/6, STM8L152x4/6 Revision history Table 69. Document revision history (continued) Date 21-Apr-2015 07-Apr-2017 Revision Changes 14 Added: – Figure 45: LQFP48 marking example (package top view), – Figure 48: UFQFPN48 marking example (package top view), – Figure 51: LQFP32 marking example (package top view), – Figure 54: UFQFPN32 marking example (package top view), – Figure 57: UFQFPN28 marking example (package top view), – Figure 59: WLCSP28 marking example (package top view). 15 Changed symbol V125 to V90 in Table 47: TS characteristics and updated related Min/Typ/Max values. Updated Section 9.2: Absolute maximum ratings. Updated table notes for Table 30, Table 31, Table 32, Table 33, Table 34, Table 36, Table 38, Table 42, Table 43, Table 46, Table 47, Table 48, Table 49, Table 53, Table 57, and Table 60. Updated device marking paragraphs in Section 10.2, Section 10.3, Section 10.4, Section 10.5, Section 10.6, and Section 10.7. DocID15962 Rev 15 141/142 141 STM8L151x4/6, STM8L152x4/6 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2017 STMicroelectronics – All rights reserved 142/142 DocID15962 Rev 15
STM8L151G6U6TR 价格&库存

很抱歉,暂时无法提供与“STM8L151G6U6TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
STM8L151G6U6TR
  •  国内价格 香港价格
  • 3000+10.288463000+1.28029
  • 6000+9.881836000+1.22969

库存:6000

STM8L151G6U6TR
  •  国内价格
  • 5+13.95871
  • 50+13.67962
  • 100+13.40678

库存:3000

STM8L151G6U6TR
  •  国内价格 香港价格
  • 1+22.130061+2.75386
  • 10+16.4202010+2.04333
  • 25+15.0001425+1.86661
  • 100+13.44004100+1.67248
  • 250+12.69543250+1.57982
  • 500+12.24667500+1.52397
  • 1000+11.877151000+1.47799

库存:8030