0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STM8L162R8T6

STM8L162R8T6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LQFP-64_10X10MM

  • 描述:

    ICMCU8BIT64KBFLASH64LQFP

  • 数据手册
  • 价格&库存
STM8L162R8T6 数据手册
STM8L162M8 STM8L162R8 8-bit ultra-low-power MCU, 64 KB Flash, 2 KB data EEPROM, RTC, AES, LCD, timers, USARTs, I2C, SPIs, ADC, DAC, COMPs Datasheet - production data Features  Operating conditions – Operating power supply: 1.65 to 3.6 V (without BOR), 1.8 to 3.6 V (with BOR) – Temp. range: -40 to 85, 105 or 125 °C  Low-power features – 5 low-power modes: Wait, Low-power run, Low-power wait, Active-halt with full RTC, Halt – Ultra low leakage per I/0: 50 nA – Fast wake up from Halt mode: 5 µs  Advanced STM8 core – Harvard architecture and 3-stage pipeline – Max freq: 16 MHz, 16 CISC MIPS peak – Up to 40 external interrupt sources  Reset and supply management – Low-power, ultra safe BOR reset with five selectable thresholds – Ultra-low-power POR/PDR – Programmable voltage detector (PVD)  Clock management – 32 kHz and 1-16 MHz crystal oscillators – Internal 16 MHz factory-trimmed RC and 38 kHz low consumption RC – Clock security system  Low-power RTC – BCD calendar with alarm interrupt, – Digital calibration with +/- 0.5ppm accuracy – LSE security system – Auto wake up from Halt w/periodic interrupt – Advanced anti-tamper detection  LCD: 8x40 or 4x44 w/ step-up converter  DMA – 4 ch. for ADC, AES, DACs, SPIs, I2C, USARTs, Timers, 1 ch. for memory-tomemory LQFP80 14 x 14 mm LQFP64 10 x 10 mm  2x12-bit DAC (dual mode) with output buffer  12-bit ADC up to 1 Msps/28 channels – Temp. sensor and internal ref. voltage  Memories – Up to 64 KB of Flash memory with up to 2 KB of data EEPROM with ECC and RWW – Flexible write/read protection modes – Up to 4 KB of RAM  2 ultra-low-power comparators – 1 with fixed threshold and 1 rail to rail – Wake up capability  Timers – Three 16-bit timers with 2 channels (IC, OC, PWM), quadrature encoder – One 16-bit advanced control timer with 3 channels, supporting motor control – One 8-bit timer with 7-bit prescaler – One window, one independent watchdog – Beeper timer with 1, 2 or 4 kHz frequencies  Communication interfaces – Two synchronous serial interface (SPI) – Fast I2C 400 kHz SMBus and PMBus – Three USARTs (ISO 7816 interface + IrDA)  Up to 67 I/Os, all mappable on interrupt vectors  Up to 16 capacitive sensing channels supporting touchkey, proximity, linear touch and rotary touch sensors  Fast on-chip programming and non-intrusive debugging with SWIM, Bootloader using USART  96-bit unique ID  AES encryption hardware accelerator February 2015 This is information on a product in full production. DocID17959 Rev 4 1/125 www.st.com Contents STM8L162M8 STM8L162R8 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 2.1 STM8L ultra-low-power 8-bit family benefits . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Ultra-low-power continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Advanced STM8 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.2 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.1 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.5 Low-power real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.6 LCD (Liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.7 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.8 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.9 Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.10 Digital-to-analog converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11 Ultra-low-power comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.12 System configuration controller and routing interface . . . . . . . . . . . . . . . 20 3.13 Touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.14 AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.15 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.16 2/125 3.2.1 3.15.1 16-bit advanced control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.15.2 16-bit general purpose timers (TIM2, TIM3, TIM5) . . . . . . . . . . . . . . . . 21 3.15.3 8-bit basic timer (TIM4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 DocID17959 Rev 4 STM8L162M8 STM8L162R8 Contents 3.16.1 Window watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.16.2 Independent watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.17 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.18 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.18.1 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.18.2 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.18.3 USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.19 Infrared (IR) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.20 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.1 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6 Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 7 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 8 Unique ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 9 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 9.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 9.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 9.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 9.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 9.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 9.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 9.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 9.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 9.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 9.3.2 Embedded reset and power control block characteristics 9.3.3 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 9.3.4 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 9.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 9.3.6 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 DocID17959 Rev 4 . . . . . . . . . . 65 3/125 4 Contents STM8L162M8 STM8L162R8 9.4 10 9.3.7 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 9.3.8 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 9.3.9 LCD controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 9.3.10 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 9.3.11 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 9.3.12 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 9.3.13 12-bit DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 9.3.14 12-bit ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 9.3.15 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 10.1 LQFP80 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 10.2 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 11 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 12 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4/125 DocID17959 Rev 4 STM8L162M8 STM8L162R8 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. High-density STM8L162x8 low-power device features and peripheral counts . . . . . . . . . . 10 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Legend/abbreviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 STM8L162x8 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Flash and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Factory conversion registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Option byte addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Unique ID registers (96 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 65 Total current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Total current consumption in Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Total current consumption and timing in Low-power run mode at VDD = 1.65 V to 3.6 V . 74 Total current consumption in Low-power wait mode at VDD = 1.65 V to 3.6 V . . . . . . . . . 76 Total current consumption and timing in Active-halt mode  at VDD = 1.65 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal . . 80 Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V . . . . . . . . . . . 81 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Current consumption under external reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 HSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 LSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Flash program and data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Output driving current (PA0 with high sink LED driver capability). . . . . . . . . . . . . . . . . . . . 94 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 SPI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 I2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 LCD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Reference voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 DocID17959 Rev 4 5/125 6 List of tables Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. 6/125 STM8L162M8 STM8L162R8 Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 DAC output on PB4-PB5-PB6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 ADC1 accuracy with VDDA = 3.3 V to 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 ADC1 accuracy with VDDA = 2.4 V to 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . 110 EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data. . . . . . . . . 119 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 DocID17959 Rev 4 STM8L162M8 STM8L162R8 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. High-density STM8L162x8 device block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Clock tree diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 STM8L162M8 80-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 STM8L162R8 64-pin pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Power supply thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Typical IDD(RUN) from RAM vs. VDD (HSI clock source), fCPU =16 MHz . . . . . . . . . . . . . . . 70 Typical IDD(RUN) from Flash vs. VDD (HSI clock source), fCPU = 16 MHz . . . . . . . . . . . . . . 70 Typical IDD(Wait) from RAM vs. VDD (HSI clock source), fCPU = 16 MHz . . . . . . . . . . . . . . 73 Typical IDD(Wait) from Flash (HSI clock source), fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . 73 Typical IDD(LPR) vs. VDD (LSI clock source), all peripherals OFF . . . . . . . . . . . . . . . . . . . . 75 Typical IDD(LPW) vs. VDD (LSI clock source), all peripherals OFF . . . . . . . . . . . . . . . . . . . 77 Typical IDD(AH) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Typical IDD(Halt) vs. VDD (internal reference voltage OFF) . . . . . . . . . . . . . . . . . . . . . . . . 81 HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 LSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Typical HSI frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Typical LSI clock source frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Typical VIL and VIH vs. VDD (standard I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Typical VIL and VIH vs. VDD (true open drain I/Os). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Typical pull-up resistance RPU vs. VDD with VIN=VSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Typical pull-up current Ipu vs. VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Typical VOL @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Typical VOL @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Typical VOL @ VDD = 3.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Typical VOL @ VDD = 1.8 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Typical VDD - VOH @ VDD = 3.0 V (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Typical VDD - VOH @ VDD = 1.8 V (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Typical NRST pull-up resistance RPU vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Typical NRST pull-up current Ipu vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Recommended NRST pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 SPI1 timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 SPI1 timing diagram - slave mode and CPHA=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 SPI1 timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Typical application with I2C bus and timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 ADC1 accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 112 Power supply and reference decoupling (VREF+ connected to VDDA) . . . . . . . . . . . . . . 112 LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 116 LQFP80 14 x 14 mm low-profile quad flat package footprint . . . . . . . . . . . . . . . . . . . . . . 117 LQFP80 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 119 LQFP64, 10 x 10 mm low-profile quad flat package footprint . . . . . . . . . . . . . . . . . . . . . . 120 LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 DocID17959 Rev 4 7/125 7 Introduction 1 STM8L162M8 STM8L162R8 Introduction This document describes the features, pinout, mechanical data and ordering information for STM8L162R8 and STM8L162M8 devices. For further details on the STMicroelectronics ultra-low-power family please refer to Section 2.3: Ultra-low-power continuum on page 11. For detailed information on device operation and registers, refer to the reference manual (RM0031). For information on to the Flash program memory and data EEPROM, refer to the programming manual (PM0054). For information on the debug module and SWIM (single wire interface module), refer to the STM8 SWIM communication protocol and debug module user manual (UM0470). For information on the STM8 core, refer to the STM8 CPU programming manual (PM0044). 2 Description The high-density STM8L162x8 ultra-low-power devices feature an enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low-power operations. The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive in-application debugging and ultrafast Flash programming. All high-density STM8L162x8 microcontrollers feature embedded data EEPROM and lowpower low-voltage single-supply program Flash memory. The devices incorporate an extensive range of enhanced I/Os and peripherals, a 12-bit ADC, two DACs, two comparators, a real-time clock, AES, 8x40 or 4x44-segment LCD, four 16-bit timers, one 8-bit timer, as well as standard communication interfaces such as two SPIs, an I2C interface, and three USARTs. The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools. 8/125 DocID17959 Rev 4 STM8L162M8 STM8L162R8 2.1 Description STM8L ultra-low-power 8-bit family benefits High-density STM8L162x8 devices are part of the STM8L ultra-low-power family providing the following benefits:     Integrated system – 64 Kbytes of high-density embedded Flash program memory – 2 Kbytes of data EEPROM – 4 Kbytes of RAM – Internal high-speed and low-power low speed RC. – Embedded reset ultra-low-power consumption – 1 µA in Active-halt mode – Clock gated system and optimized power management – Capability to execute from RAM for Low-power wait mode and Low-power run mode Advanced features – Up to 16 MIPS at 16 MHz CPU clock frequency – Direct memory access (DMA) for memory-to-memory or peripheral-to-memory access. Short development cycles – Application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals. – Wide choice of development tools STM8L ultra-low-power microcontrollers can operate either from 1.8 to 3.6 V (down to 1.65 V at power-down) or from 1.65 to 3.6 V. They are available in the -40 to +85 °C and -40 to +125 °C temperature ranges. These features make the STM8L ultra-low-power microcontroller families suitable for a wide range of applications:  Medical and handheld equipment  Application control and user interface  PC peripherals, gaming, GPS and sport equipment  Alarm systems, wired and wireless sensors  Metering The devices are offered in four different packages from 48 to 80 pins. Different sets of peripherals are included depending on the device. Refer to Section 3 for an overview of the complete range of peripherals proposed in this family. All STM8L ultra-low-power products are based on the same architecture with the same memory mapping and a coherent pinout. Figure 1 shows the block diagram of the High-density STM8L162x8 families. DocID17959 Rev 4 9/125 56 Description 2.2 STM8L162M8 STM8L162R8 Device overview Table 1. High-density STM8L162x8 low-power device features and peripheral counts Features STM8L162R8 STM8L162M8 Flash (Kbytes) 64 64 Data EEPROM (Kbytes) 2 2 RAM (Kbytes) 4 4 AES 1 1 LCD 8x36 or 4x40 8x40 or 4x44 Basic 1 (8-bit) 1 (8-bit) General purpose 3 (16-bit) 3 (16-bit) Advanced control 1 (16-bit) 1 (16-bit) SPI 2 2 I2C 1 1 USART 3 3 GPIOs 54(1) 68(1) 12-bit synchronized ADC (number of channels) 1 (28) 1 (28) Number of channels 2 2 2 2 Comparators (COMP1/COMP2) 2 2 Timers Communicatio n interfaces 12-Bit DAC Others RTC, window watchdog, independent watchdog, 16-MHz and 38-kHz internal RC, 1- to 16-MHz and 32-kHz external oscillator CPU frequency Operating voltage Operating temperature Packages 16 MHz 1.8 to 3.6 V (down to 1.65 V at power-down) with BOR 1.65 to 3.6 V without BOR 40 to +85 °C / 40 to +125 °C LQFP64 LQFP80 1. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as general purpose output only (PA1). 10/125 DocID17959 Rev 4 STM8L162M8 STM8L162R8 2.3 Description Ultra-low-power continuum The ultra-low-power STM8L151x6/8, STM8L152x6/8 and STM8L162x8 are fully pin-to-pin, software and feature compatible. Besides the full compatibility within the family, the devices are part of STMicroelectronics microcontrollers ultra-low-power strategy which also includes STM8L101 line, STM8L151/152 lines, and STM8L162 line. The STM8L and STM32L families allow a continuum of performance, peripherals, system architecture, and features. They are all based on STMicroelectronics 0.13 µm ultra low-leakage process. Note: 1 The STM8L151xx and STM8L152xx are pin-to-pin compatible with STM8L101xx devices. 2 The STM32L family is pin-to-pin compatible with the general purpose STM32F family. Please refer to STM32L15xx documentation for more information on these devices. Performance All families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM® Cortex®-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios. This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs. Shared peripherals STM8L162x8 and STM32L15xxx share identical peripherals which ensure a very easy migration from one family to another:  Analog peripherals: ADC1, DAC1/DAC2, and comparators COMP1/COMP2  Digital peripherals: RTC and some communication interfaces Common system strategy To offer flexibility and optimize performance, the STM8L162x8 and STM32L1xxxx devices use a common architecture:  Same power supply range from 1.65 to 3.6 V. For STM8L101xx and medium-density STM8L15xxx, the power supply must be above 1.8 V at power-on, and go below 1.65 V at power-down.  Architecture optimized to reach ultra low consumption both in low-power modes and Run mode  Fast startup strategy from low-power modes  Flexible system clock  Ultra safe reset: same reset strategy for both STM8L162x8 and STM32L1xxxx including power-on reset, power-down reset, brownout reset and programmable voltage detector. Features STMicroelectronics ultra-low-power continuum also lies in feature compatibility:  More than 10 packages with pin counts from 20 to 100 pins and size down to 3 x 3 mm  Memory density ranging from 4 to 128 Kbytes DocID17959 Rev 4 11/125 56 Functional overview 3 STM8L162M8 STM8L162R8 Functional overview Figure 1. High-density STM8L162x8 device block diagram 26&B,1 26&B287 #9'' 0+]RVFLOODWRU 0+]LQWHUQDO5& 26&B,1 26&B287 9'' &ORFN FRQWUROOHU DQG&66 N+]RVFLOODWRU 92/75(* &ORFNV WRFRUHDQG SHULSKHUDOV N+]LQWHUQDO5& 5(6(7 ,QWHUUXSWFRQWUROOHU 'HEXJPRGXOH 6:,0 ELW7LPHU FKDQQHOV ELW7LPHU FKDQQHOV ELW7LPHU 39' ELW7LPHU FKDQQHOV ,5B7,0 ELW7LPHU ,QIUDUHGLQWHUIDFH '0$ FKDQQHOV 6&/6'$ 60% 63,B026,63,B0,62 63,B6&.63,B166 63,B026,63,B0,62 63,B6&.63,B166 86$57B5;86$57B7; 86$57B&. 86$57B5;86$57B7; 86$57B&. 86$57B5;86$57B7; 86$57B&. 9 9 ''$ 66$ $'&B,1[ 9 ''5() 9 665() ,ð& 63, 63, 86$57 .E\WH5$0 3RUW$ 3$>@ 3RUW% 3%>@ 3RUW& 3&>@ 3RUW' 3'>@ 3RUW( 3(>@ 86$57 3RUW) 3)>@ 3RUW* 3*>@ 3RUW+ 3+>@ 3RUW, 3,>@ 86$57 #9 9 ''$ 66$ ELW$'& 7HPSVHQVRU %HHSHU &203B,13 &203B,13 &203B,10 ,QWHUQDOUHIHUHQFH YROWDJH 39'B,1 .E\WH 3URJUDP PHPRU\ .E\WH 'DWD((3520 57& 95(),17RXW 1567 %25 $ G G U HV V  FR Q W UR O DQ G G DW DE X VH V FKDQQHOV 9 '' 9 WR 9 9 66 3253'5 670&RUH 6:,0  3RZHU %((3 $/$50&$/,% 7$03 ,:'* N+]FORFN &203 ::'* &203 '$& $) ELW'$& ELW'$& '$& $) ELW'$& ELW'$& ,) /&'GULYHU [RU[ 6(*[&20[ $(6 9  WR9 /&' /&'ERRVWHU DL 1. Legend: AF: alternate function ADC: Analog-to-digital converter AES: Advanced encryption standard hardware accelerator BOR: Brownout reset DMA: Direct memory access  DAC: Digital-to-analog converter  I²C: Inter-integrated circuit multimaster interface  12/125 DocID17959 Rev 4 STM8L162M8 STM8L162R8 Functional overview IWDG: Independent watchdog LCD: Liquid crystal display POR/PDR: Power on reset / power-down reset RTC: Real-time clock SPI: Serial peripheral interface SWIM: Single wire interface module USART: Universal synchronous asynchronous receiver transmitter WWDG: Window watchdog 3.1 Low-power modes The high-density STM8L162x8 devices support five low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:  Wait mode: CPU clock is stopped, but selected peripherals keep running. An internal or external interrupt or a Reset can be used to exit the microcontroller from Wait mode (WFE or WFI mode).  Low-power run mode: The CPU and the selected peripherals are running. Execution is done from RAM with a low speed oscillator (LSI or LSE). Flash memory and data EEPROM are stopped and the voltage regulator is configured in ultra-low-power mode. The microcontroller enters Low-power run mode by software and can exit from this mode by software or by a reset.  All interrupts must be masked. They cannot be used to exit the microcontroller from this mode.  Low-power wait mode: This mode is entered when executing a Wait for event in Lowpower run mode. It is similar to Low-power run mode except that the CPU clock is stopped. The wakeup from this mode is triggered by a Reset or by an internal or external event (peripheral event generated by the timers, serial interfaces, DMA controller (DMA1), comparators and I/O ports). When the wakeup is triggered by an event, the system goes back to Low-power run mode.  All interrupts must be masked. They cannot be used to exit the microcontroller from this mode.  Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup can be triggered by RTC interrupts, external interrupts or reset.  Halt mode: CPU and peripheral clocks are stopped, the device remains powered on. The RAM content is preserved. The wakeup is triggered by an external interrupt or reset. A few peripherals have also a wakeup from Halt capability. Switching off the internal reference voltage reduces power consumption. Through software configuration it is also possible to wake up the device without waiting for the internal reference voltage wakeup time to have a fast wakeup time of 5 µs. DocID17959 Rev 4 13/125 56 Functional overview STM8L162M8 STM8L162R8 3.2 Central processing unit STM8 3.2.1 Advanced STM8 Core The 8-bit STM8 core is designed for code efficiency and performance with an Harvard architecture and a 3-stage pipeline. It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing, and 80 instructions. Architecture and registers  Harvard architecture  3-stage pipeline  32-bit wide program memory bus - single cycle fetching most instructions  X and Y 16-bit index registers - enabling indexed addressing modes with or without offset and read-modify-write type data manipulations  8-bit accumulator  24-bit program counter - 16 Mbyte linear memory space  16-bit stack pointer - access to a 64 Kbyte level stack  8-bit condition code register - 7 condition flags for the result of the last instruction Addressing  20 addressing modes  Indexed indirect addressing mode for lookup tables located anywhere in the address space  Stack pointer relative addressing mode for local variables and parameter passing Instruction set 3.2.2  80 instructions with 2-byte average instruction size  Standard data movement and logic/arithmetic functions  8-bit by 8-bit multiplication  16-bit by 8-bit and 16-bit by 16-bit division  Bit manipulation  Data transfer between stack and accumulator (push/pop) with direct stack access  Data transfer using the X and Y registers or direct memory-to-memory transfers Interrupt controller The high-density STM8L162x8 devices feature a nested vectored interrupt controller: 14/125  Nested interrupts with 3 software priority levels  32 interrupt vectors with hardware priority  Up to 40 external interrupt sources on 11 vectors  Trap and reset interrupts DocID17959 Rev 4 STM8L162M8 STM8L162R8 Functional overview 3.3 Reset and supply management 3.3.1 Power supply scheme The device requires a 1.65 V to 3.6 V operating supply voltage (VDD). The external power supply pins must be connected as follows: 3.3.2  VSS1, VDD1, VSS2, VDD2, VSS3, VDD3, VSS4, VDD4= 1.65 to 3.6 V: external power supply for I/Os and for the internal regulator. Provided externally through VDD pins, the corresponding ground pin is VSS. VSS1/VSS2/VSS3/VSS4 and VDD1/VDD2/VDD3/VDD4 must not be left unconnected.  VSSA, VDDA = 1.65 to 3.6 V: external power supplies for analog peripherals (minimum voltage to be applied to VDDA is 1.8 V when the ADC1 is used). VDDA and VSSA must be connected to VDD and VSS, respectively.  VREF+, VREF- (for ADC1): external reference voltage for ADC1. Must be provided externally through VREF+ and VREF- pin.  VREF+ (for DAC1/2): external voltage reference for DAC1 and DAC2 must be provided externally through VREF+. Power supply supervisor The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR). For the device sales types without the “D” option (see Section 11: Ordering information scheme), it is coupled with a brownout reset (BOR) circuitry. It that case the device operates between 1.8 and 3.6 V, BOR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently (in which case, the VDD min. value at power-down is 1.65 V). Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Halt mode, it is possible to automatically switch off the internal reference voltage (and consequently the BOR) in Halt mode. The device remains in reset state when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external reset circuit. Note: For device sales types with the “D” option (see Section 11: Ordering information scheme) BOR is permanently disabled and the device operates between 1.65 and 3.6 V. In this case it is not possible to enable BOR through the option bytes. The device features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. DocID17959 Rev 4 15/125 56 Functional overview 3.3.3 STM8L162M8 STM8L162R8 Voltage regulator The high-density STM8L162x8 devices embed an internal voltage regulator for generating the 1.8 V power supply for the core and peripherals. This regulator has two different modes:  Main voltage regulator mode (MVR) for Run, Wait for interrupt (WFI) and Wait for event (WFE) modes.  Low-power voltage regulator mode (LPVR) for Halt, Active-halt, Low-power run and Low-power wait modes. When entering Halt or Active-halt modes, the system automatically switches from the MVR to the LPVR in order to reduce current consumption. 3.4 Clock management The clock controller distributes the system clock (SYSCLK) coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. Features 16/125  Clock prescaler: to get the best compromise between speed and current consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler  Safe clock switching: Clock sources can be changed safely on the fly in run mode through a configuration register.  Clock management: To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.  System clock sources: 4 different clock sources can be used to drive the system clock: – 1-16 MHz High speed external crystal (HSE) – 16 MHz High speed internal RC oscillator (HSI) – 32.768 Low speed external crystal (LSE) – 38 kHz Low speed internal RC (LSI)  RTC and LCD clock sources: the above four sources can be chosen to clock the RTC and the LCD, whatever the system clock.  Startup clock: After reset, the microcontroller restarts by default with an internal  2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.  Clock security system (CSS): This feature can be enabled by software. If a HSE clock failure occurs, the system clock is automatically switched to HSI.  Configurable main clock output (CCO): This outputs an external clock for use by the application. DocID17959 Rev 4 STM8L162M8 STM8L162R8 Functional overview Figure 2. Clock tree diagram &66 +6( +6(26&  0+] 26&B287 26&B,1 6@ /6, /6,5& N +] PHPRU\ 6@ 26&B287 57& SUHVFDOHU  /6(26&  N+] 26&B,1 57&&/. &66B/6( FRQILJXUDEOH FORFNRXWSXW  &&2 &&2 SUHVFDOHU   3&/. WRSHULSKHUDOV /&'SHULSKHUDO   FORFNHQDEOH ELW   57&&/. WR57& WR/&' +DOW +6, /6, +6( /6( 6> gmcrit LSE crystal/ceramic resonator oscillator The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...). Table 31. LSE oscillator characteristics Symbol Parameter fLSE Low speed external oscillator frequency RF Feedback resistor C(1)(2) IDD(LSE) (4) Min. V = 200 mV Recommended load capacitance LSE oscillator power consumption Startup time Typ. Max. Unit 32.768 kHz 1.2 M 8 pF VDD = 1.8 V 450 VDD = 3 V 600 VDD = 3.6 V 750 nA 3(3) Oscillator transconductance gm tSU(LSE) Conditions VDD is stabilized µA/V 1 s 1. C=CL1=CL2 is approximately equivalent to 2 x crystal CLOAD. 2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small Rm value. Refer to crystal manufacturer for more details. 3. Guaranteed by design. Not tested in production. 4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. DocID17959 Rev 4 85/125 115 Electrical parameters STM8L162M8 STM8L162R8 Figure 18. LSE oscillator circuit diagram I/6( 5P 5) &2 /P &/ 26&B,1 &P JP 5HVRQDWRU &RQVXPSWLRQ FRQWURO 5HVRQDWRU 670 26&B287 &/ 069 Internal clock sources Subject to general operating conditions for VDD, and TA. High speed internal RC oscillator (HSI) In the following table, data are based on characterization results, not tested in production, unless otherwise specified. Table 32. HSI oscillator characteristics Symbol fHSI ACCHSI TRIM Conditions(1) Parameter Frequency Accuracy of HSI oscillator (factory calibrated) HSI user trimming step(3) Min. VDD = 3.0 V Typ. Max. 16 (2) Unit MHz % VDD = 3.0 V, TA = 25 °C -1 VDD = 3.0 V, 0 °C TA  55 °C -1.5 1.5 % VDD = 3.0 V, -10 °C TA  70 °C -2 2 % VDD = 3.0 V, -10 °C TA  85 °C -2.5 2 % VDD = 3.0 V, -10 °C TA  125 °C -4.5 2 % 1.65 V  VDD  3.6 V, -40 °C TA  125 °C -4.5 3 % 0.7 % ± 1.5 % Trimming code multiple of 16 1 (2) 0.4 Trimming code = multiple of 16 tsu(HSI) HSI oscillator setup time (wakeup time) 3.7 6 (4) µs IDD(HSI) HSI oscillator power consumption 100 140(4) µA 1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified. 2. Tested in production. 3. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0). Refer to the AN3101 “STM8L15x internal RC oscillator calibration” application note for more details. 4. Guaranteed by design, not tested in production 86/125 DocID17959 Rev 4 STM8L162M8 STM8L162R8 Electrical parameters Figure 19. Typical HSI frequency vs. VDD   (3)FREQUENCY;-(Z=       #  #  #  #              6$$;6=      AI Low speed internal RC oscillator (LSI) In the following table, data are based on characterization results, not tested in production. Table 33. LSI oscillator characteristics Symbol fLSI Conditions(1) Parameter Frequency tsu(LSI) LSI oscillator wakeup time D(LSI) LSI oscillator frequency drift(3) 0 °C TA  85 °C Min. Typ. Max. Unit 26 38 56 kHz 200(2) µs 11 % -12 1. VDD = 1.65 V to 3.6 V, TA = -40 to 125 °C unless otherwise specified. 2. Guaranteed by Design, not tested in production. 3. This is a deviation for an individual part, once the initial frequency has been measured. DocID17959 Rev 4 87/125 115 Electrical parameters STM8L162M8 STM8L162R8 Figure 20. Typical LSI clock source frequency vs. VDD  ƒ& ƒ& ƒ&  ƒ& 2#+ #HECK -(Z ƒ&               6$$ 6 -36 9.3.5 Memory characteristics TA = -40 to 125 °C unless otherwise specified. Table 34. RAM and hardware registers Symbol VRM Parameter Data retention mode (1) Conditions Min. Typ. Max. Unit Halt mode (or Reset) 1.65 - - V 1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware registers (only in Halt mode). Guaranteed by characterization, not tested in production. 88/125 DocID17959 Rev 4 STM8L162M8 STM8L162R8 Electrical parameters Flash memory Table 35. Flash program and data EEPROM memory Symbol VDD Parameter Operating voltage  (all modes, read/write/erase) Conditions Min. fSYSCLK = 16 MHz 1.65 - - Programming time for 1 or 128 bytes (block) erase/write cycles (on programmed byte) tprog Iprog tRET(2) 6 Max. (1) Unit 3.6 V ms Programming time for 1 to 128 bytes (block) write cycles (on erased byte) - - TA+25 °C, VDD = 3.0 V - TA+25 °C, VDD = 1.8 V - Data retention (program memory) after 10000 erase/write cycles at TA+85 °C  (6 suffix) TRET+85 °C 30(1) - - Data retention (program memory) after 10000 erase/write cycles at TA+125 °C  (3 suffix) TRET+125 °C 5(1) - - Programming/ erasing consumption 3 - 0.7 mA - years Data retention (data memory) after 300000 erase/write cycles at TA+85 °C  (6 suffix) TRET+85 °C 30(1) - - Data retention (data memory) after 300000 erase/write cycles at TA+125 °C  (3 suffix) TRET+125 °C 5(1) - - TA+85 °C (6 suffix), TA+105 °C (7 suffix) or TA+125 °C (3 suffix) 10(1) - - - - Erase/write cycles (program memory) NRW (3) Typ. Erase/write cycles (data memory) 300(1) (4) kcycles 1. Data based on characterization results, not tested in production. 2. Conforming to JEDEC JESD22a117 3. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation addresses a single byte. 4. Data based on characterization performed on the whole data memory. DocID17959 Rev 4 89/125 115 Electrical parameters 9.3.6 STM8L162M8 STM8L162R8 I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error, out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation, LCD levels, etc.). The test results are given in the following table. Table 36. I/O current injection susceptibility Functional susceptibility Symbol IINJ 9.3.7 Description Negative injection Positive injection Injected current on true open-drain pins -5 +0 Injected current on all 5 V tolerant (FT) pins -5 +0 Injected current on any other pin -5 +5 Unit mA I/O port pin characteristics General characteristics Subject to general operating conditions for VDD and TA unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor. 90/125 DocID17959 Rev 4 STM8L162M8 STM8L162R8 Electrical parameters Table 37. I/O static characteristics Symbol VIL Parameter Input low level voltage(2) Conditions(1) Min. Typ. Max. Input voltage on true open-drain pins (PC0 and PC1) VSS-0.3 - 0.3 x VDD Input voltage on fivevolt tolerant (FT) pins VSS-0.3 - 0.3 x VDD Input voltage on any other pin VSS-0.3 - 0.3 x VDD - 5.2 - 5.5 Input voltage on true open-drain pins (PC0 and PC1)  with VDD < 2 V Input voltage on true open-drain pins (PC0 and PC1)  with VDD 2 V VIH Input high level voltage (2) Input voltage on fivevolt tolerant (FT) pins  with VDD < 2 V Ilkg Input leakage current (4) RPU Weak pull-up equivalent resistor(2)(6) CIO I/O pin capacitance 0.70 x VDD V 5.2 - 5.5 0.70 x VDD - VDD+0.3 Standard I/Os - 200 - True open drain I/Os - 200 - VSSVIN VDD Standard I/Os - - 50 (5) VSSVIN VDD True open drain I/Os - - 200(5) VSSVIN VDD PA0 with high sink LED driver capability - - 200(5) 30 45 60 k - 5 - pF Input voltage on any other pin Schmitt trigger voltage hysteresis (3) V - Input voltage on fivevolt tolerant (FT) pins  with VDD  2 V Vhys Unit 0.70 x VDD mV VINVSS - nA 1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified. 2. Data based on characterization results, not tested in production. 3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested. 4. The max. value may be exceeded if negative current is injected on adjacent pins. 5. Not tested in production. 6. RPU pull-up equivalent resistor based on a resistive transistor (corresponding IPU current characteristics described in Figure 24). DocID17959 Rev 4 91/125 115 Electrical parameters STM8L162M8 STM8L162R8 Figure 21. Typical VIL and VIH vs. VDD (standard I/Os)   #  #  #  # 6),AND6)(;6=         6$$;6=    AI Figure 22. Typical VIL and VIH vs. VDD (true open drain I/Os)   #  #  #  # 6),AND6)(;6=          6$$;6=   AI Figure 23. Typical pull-up resistance RPU vs. VDD with VIN=VSS   #  #  #  # 0ULL 5PRESISTANCE;K7=             6$$;6=      AI 92/125 DocID17959 Rev 4 STM8L162M8 STM8L162R8 Electrical parameters Figure 24. Typical pull-up current Ipu vs. VDD with VIN=VSS   #  #  #  # 0ULL 5PCURRENT;—!=                6$$;6=      AI Output driving current Subject to general operating conditions for VDD and TA unless otherwise specified. Table 38. Output driving current (high sink ports) I/O Symbol Type Output low level voltage for an I/O pin Standard VOL (1) Parameter VOH (2) Output high level voltage for an I/O pin Conditions Min. Max. IIO = +2 mA, VDD = 3.0 V - 0.45 IIO = +2 mA, VDD = 1.8 V - 0.45 IIO = +10 mA, VDD = 3.0 V - 0.7 Unit V IIO = -2 mA, VDD = 3.0 V VDD-0.45 - IIO = -1 mA, VDD = 1.8 V VDD-0.45 - IIO = -10 mA, VDD = 3.0 V VDD-0.7 - 1. The IIO current sunk must always respect the absolute maximum rating specified in Table 15 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. The IIO current sourced must always respect the absolute maximum rating specified in Table 15 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. DocID17959 Rev 4 93/125 115 Electrical parameters STM8L162M8 STM8L162R8 Table 39. Output driving current (true open drain ports) Open drain I/O Symbol Type VOL (1) Parameter Output low level voltage for an I/O pin Conditions Min. Max. IIO = +3 mA, VDD = 3.0 V - 0.45 IIO = +1 mA, VDD = 1.8 V - Unit V 0.45 1. The IIO current sunk must always respect the absolute maximum rating specified in Table 15 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. Table 40. Output driving current (PA0 with high sink LED driver capability) I/O Symbol Type IR VOL (1) Parameter Output low level voltage for an I/O pin Conditions Min. Max. Unit IIO = +20 mA, VDD = 2.0 V - 0.45 V 1. The IIO current sunk must always respect the absolute maximum rating specified in Table 15 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. Figure 25. Typical VOL @ VDD = 3.0 V (high sink Figure 26. Typical VOL @ VDD = 1.8 V (high sink ports) ports)     #  #  #  #  6/, ;6= 6/, ;6=   #  #  #  #                     )/, ;M!=         )/,;M!= AI AI Figure 27. Typical VOL @ VDD = 3.0 V (true open Figure 28. Typical VOL @ VDD = 1.8 V (true open drain ports) drain ports)    #  #  #  #   6/, ;6= 6/, ;6=                )/, ;M!=         )/, ;M!= BJ AI 94/125  #  #  #  #  DocID17959 Rev 4 STM8L162M8 STM8L162R8 Electrical parameters Figure 29. Typical VDD - VOH @ VDD = 3.0 V (high Figure 30. Typical VDD - VOH @ VDD = 1.8 V (high sink ports) sink ports)     #  #  #  #   #  #  #  #  6$$ 6/( ;6= 6$$ 6/( ;6=                      )/( ;M!=         ) /( ;M!= AI BJ NRST pin Subject to general operating conditions for VDD and TA unless otherwise specified. Table 41. NRST pin characteristics Symbol Parameter Conditions Min. Typ. Max. VIL(NRST) NRST input low level voltage (1) - VSS - 0.8 VIH(NRST) NRST input high level voltage (1) - 1.4 - VDD IOL = 2 mA 2.7 V  VDD  3.6 V - - IOL = 1.5 mA VDD < 2.7 V - - VOL(NRST) NRST output low level voltage (1) Unit V 0.4 VHYST NRST input hysteresis(3) - 10%VDD(2) - - mV RPU(NRST) NRST pull-up equivalent resistor(1) - 30 45 60 k VF(NRST) NRST input filtered pulse (3) - - 50 VNF(NRST) NRST input not filtered pulse (3) - - - ns 300 1. Data based on characterization results, not tested in production. 2. 200 mV min. 3. Data guaranteed by design, not tested in production. DocID17959 Rev 4 95/125 115 Electrical parameters STM8L162M8 STM8L162R8 Figure 31. Typical NRST pull-up resistance RPU vs. VDD   #  #  #  # 0ULL UPRESISTANCE;K7=             6$$;6=      AI Figure 32. Typical NRST pull-up current Ipu vs. VDD   #  #  #  # 0ULL 5PCURRENT;—!=                     6$$ ;6= AI The reset network shown in Figure 33 protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the VIL max. level specified in Table 41. Otherwise the reset is not taken into account internally. For power consumptionsensitive applications, the capacity of the external reset capacitor can be reduced to limit the charge/discharge current. If the NRST signal is used to reset the external circuitry, the user must pay attention to the charge/discharge time of the external capacitor to meet the reset timing conditions of the external devices. The minimum recommended capacity is 10 nF. Figure 33. Recommended NRST pin configuration 6$$ 205 567,1 (;7(51$/ 5(6(7 &,5&8,7 &ILTER ).4%2.!,2%3%4 670/ M) 069 96/125 DocID17959 Rev 4 STM8L162M8 STM8L162R8 9.3.8 Electrical parameters Communication interfaces SPI1 - Serial peripheral interface Unless otherwise specified, the parameters given in Table 42 are derived from tests performed under ambient temperature, fSYSCLK frequency and VDD supply voltage conditions summarized in Section 9.3.1. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 42. SPI1 characteristics Symbol fSCK 1/tc(SCK) tr(SCK) tf(SCK) tsu(NSS)(2) th(NSS) (2) Parameter Min. Max. Master mode 0 8 Slave mode 0 8 SPI1 clock rise and fall time Capacitive load: C = 30 pF - 30 NSS setup time Slave mode 4 x 1/fSYSCLK - NSS hold time Slave mode 80 - SCK high and low time Master mode,  fMASTER = 8 MHz, fSCK= 4 MHz 105 145 Master mode 30 - Slave mode 3 - Master mode 15 - Slave mode 0 - Data output access time Slave mode - 3x 1/fSYSCLK 30 - tsu(MI) (2) tsu(SI)(2) Data input setup time th(MI) (2) th(SI)(2) Data input hold time ta(SO) (2)(3) tdis(SO)(2)(4) Data output disable time Slave mode (2) Data output valid time Slave mode (after enable edge) - 60 tv(MO)(2) Data output valid time Master mode (after enable edge) - 20 Slave mode (after enable edge) 15 - Master mode (after enable edge) 1 - tv(SO) th(SO)(2) th(MO)(2) Unit SPI1 clock frequency (2) tw(SCKH) tw(SCKL)(2) Conditions(1) Data output hold time MHz ns 1. Parameters are given by selecting 10 MHz I/O output frequency. 2. Values based on design simulation and/or characterization results, and not tested in production. 3. Min. time is for the minimum time to drive the output and max. time is for the maximum time to validate the data. 4. Min. time is for the minimum time to invalidate the output and max. time is for the maximum time to put the data in Hi-Z. DocID17959 Rev 4 97/125 115 Electrical parameters STM8L162M8 STM8L162R8 Figure 34. SPI1 timing diagram - slave mode and CPHA=0 166LQSXW 6&.,QSXW W 68 166 &3+$  &32/  W F 6&. W K 166 W Z 6&.+ W Z 6&./ &3+$  &32/  W Y 62 W D 62 0,62 287387 W U 6&. W I 6&. W K 62 06%287 %,7287 06%,1 %,7,1 W GLV 62 /6%287 W VX 6, 026, ,1387 /6%,1 W K 6, DL Figure 35. SPI1 timing diagram - slave mode and CPHA=1 166LQSXW 6&.LQSXW W 68 166 &3+$ &32/ &3+$ &32/     W F 6&. W Z 6&.+ W Z 6&./ W Y 62 W D 62 0,62 287387 06%287 W K 62 %,7287 W VX 6, 026, ,1387 W K 166 W U 6&. W I 6&. W GLV 62 /6%287 W K 6, 06%,1 %,7,1 /6%,1 DL 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. 98/125 DocID17959 Rev 4 STM8L162M8 STM8L162R8 Electrical parameters Figure 36. SPI1 timing diagram - master mode (IGH .33INPUT 3#+/UTPUT #0(!  #0/, 3#+/UTPUT TC3#+ #0(! #0/, #0(!  #0/, #0(! #0/, TSU-) -)3/ ).0 54 TW3#+( TW3#+, -3 "). TR3#+ TF3#+ ") 4). ,3"). TH-) -/3) /54054 - 3"/54 " ) 4/54 TV-/ ,3"/54 TH-/ AI6 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. DocID17959 Rev 4 99/125 115 Electrical parameters STM8L162M8 STM8L162R8 I2C - Inter IC control interface Subject to general operating conditions for VDD, fSYSCLK, and TA unless otherwise specified. The STM8L I2C interface (I2C1) meets the requirements of the Standard I2C communication protocol described in the following table with the restriction mentioned below: Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 43. I2C characteristics Standard mode I2C Symbol Fast mode I2C(1) Parameter Unit Min.(2) Max. (2) Min. (2) Max. (2) tw(SCLL) SCL clock low time 4.7 - 1.3 - tw(SCLH) SCL clock high time 4.0 - 0.6 - tsu(SDA) SDA setup time 250 - 100 - th(SDA) SDA data hold time 0 - 0 900 tr(SDA) tr(SCL) SDA and SCL rise time - 1000 - 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 th(STA) START condition hold time 4.0 - 0.6 - tsu(STA) Repeated START condition setup time 4.7 - 0.6 - tsu(STO) STOP condition setup time 4.0 - 0.6 - s STOP to START condition time (bus free) 4.7 - 1.3 - s - 400 - 400 pF tw(STO:STA) Cb Capacitive load for each bus line 1. fSYSCLK must be at least equal to 8 MHz to achieve max fast I2C speed (400 kHz). 2. Data based on standard I2C protocol requirement, not tested in production. Note: 100/125 For speeds around 200 kHz, the achieved speed can have a 5% tolerance. For other speed ranges, the achieved speed can have a  2% tolerance. The above variations depend on the accuracy of the external components used. DocID17959 Rev 4 s ns s STM8L162M8 STM8L162R8 Electrical parameters Figure 37. Typical application with I2C bus and timing diagram 9'' 9'' NŸ ,& NŸ %86 Ÿ 6'$ Ÿ 6&/ 670/ 5(3($7(' 67$57 67$57 WVX 67$ WZ 67267$ 67$57 6'$ WU 6'$ WI 6'$ WVX 6'$ WK 6'$ WU 6&/ WI 6&/ 6723 6&/ WK 67$ WZ 6&/+ WZ 6&// WVX 672 069 1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD 9.3.9 LCD controller In the following table, data are guaranteed by Design, not tested in production. Table 44. LCD characteristics Symbol Parameter Min. VLCD LCD external voltage - VLCD0 LCD internal reference voltage 0 - 2.6 - VLCD1 LCD internal reference voltage 1 - 2.7 - VLCD2 LCD internal reference voltage 2 - 2.8 - VLCD3 LCD internal reference voltage 3 - 3.0 - VLCD4 LCD internal reference voltage 4 - 3.1 - VLCD5 LCD internal reference voltage 5 - 3.2 - VLCD6 LCD internal reference voltage 6 - 3.4 - VLCD7 LCD internal reference voltage 7 - 3.5 - CEXT VLCD external capacitance 0.1 1 2 - 3 - - 3 - Supply IDD current(1) at VDD = 1.8 V (1) Supply current at VDD = 3 V Typ. Max. Unit 3.6 V µF µA RHN(2) High value resistive network (low drive) - 6.6 - M (3) Low value resistive network (high drive) - 240 - k RLN DocID17959 Rev 4 101/125 115 Electrical parameters STM8L162M8 STM8L162R8 Table 44. LCD characteristics (continued) Symbol Parameter Min. Typ. Max. V33 Segment/Common higher level voltage - V34 Segment/Common 3/4 level voltage - 3/4VLCDx - V23 Segment/Common 2/3 level voltage - 2/3VLCDx - V12 Segment/Common 1/2 level voltage - 1/2VLCDx - V13 Segment/Common 1/3 level voltage - 1/3VLCDx - V14 Segment/Common 1/4 level voltage - 1/4VLCDx - V0 Segment/Common lowest level voltage 0 - - Unit VLCDx V 1. LCD enabled with 3 V internal booster (LCD_CR1 = 0x08), 1/4 duty, 1/3 bias, division ratio= 64, all pixels active, no LCD connected. 2. RHN is the total high value resistive network. 3. RLN is the total low value resistive network. VLCD external capacitor The application can achieve a stabilized LCD reference voltage by connecting an external capacitor CEXT to the VLCD pin. CEXT is specified in Table 44. 102/125 DocID17959 Rev 4 STM8L162M8 STM8L162R8 9.3.10 Electrical parameters Embedded reference voltage In the following table, data are based on characterization results, not tested in production, unless otherwise specified. Table 45. Reference voltage characteristics Symbol Parameter Conditions Min. Typ. IREFINT Internal reference voltage consumption - - 1.4 TS_VREFINT(1)(2) ADC sampling time when reading the internal reference voltage - - 5 10 µs IBUF(1) Internal reference voltage buffer consumption (used for ADC) - - 13.5 25 µA VREFINT out Reference voltage output - ILPBUF(1) Internal reference voltage low-power buffer consumption (used for comparators or output) IREFOUT(1)(4) 1.202 (3) 1.224 - - 730 Buffer output current - CREFOUT Reference voltage output load tVREFINT(1) Max. Unit µA 1.242 (3) V 1200 nA - 1 µA - - 50 pF Internal reference voltage startup time - - 3 ms tBUFEN(1)(2) Internal reference voltage buffer startup time once enabled - - 10 µs ACCVREFINT(5) Accuracy of VREFINT stored in the VREFINT_Factory_CONV byte - - ±5 mV Stability of VREFINT over temperature -40 °C TA  125 °C - 20 50 ppm/°C Stability of VREFINT over temperature 0 °C TA  50 °C - - 20 ppm/°C Stability of VREFINT after 1000 hours - - - 1000 ppm STABVREFINT STABVREFINT 2 1. Guaranteed by design, not tested in production 2. Defined when ADC output reaches its final value ±1/2LSB 3. Tested in production at VDD = 3 V ±10 mV. 4. To guarantee less than 1% VREFOUT deviation 5. Measured at VDD = 3 V ±10 mV. This value takes into account VDD accuracy and ADC conversion accuracy. DocID17959 Rev 4 103/125 115 Electrical parameters 9.3.11 STM8L162M8 STM8L162R8 Temperature sensor In the following table, data are based on characterization results, not tested in production, unless otherwise specified. Table 46. TS characteristics Symbol Parameter Min. Typ. Max. Unit V90 (1) Sensor reference voltage at 90°C ±5 °C, 0.580 0.597 0.614 V - ±1 ±2 °C TL VSENSOR linearity with temperature (2) Average slope 1.59 1.62 1.65 mV/°C (2) Consumption - 3.4 6 µA TSTART(2)(3) Temperature sensor startup time - - 10 µs TS_TEMP(2) ADC sampling time when reading the temperature sensor - 5 10 µs Avg_slope IDD(TEMP) 1. Tested in production at VDD = 3 V ±10 mV. The 8 LSB of the V90 ADC conversion result are stored in the TS_Factory_CONV_V90 byte. 2. Guaranteed by design, not tested in production. 3. Defined for ADC output reaching its final value ±1/2LSB. 9.3.12 Comparator characteristics In the following tables, data are guaranteed by design, not tested in production. Table 47. Comparator 1 characteristics Symbol Parameter Conditions Min(1) Typ Max(1) Unit 1.65 - 3.6 V VDDA Analog supply voltage R400K R400K value - - 400 - R10K R10K value - - 10 - Comparator 1 input voltage range - 0.6 - VDDA Comparator startup time - - 7 10 - - 3 10 - - 3 10 mV 0 1.5 10 mV/1000 h - 160 260 nA VIN tSTART td Propagation delay Voffset Comparator offset dVoffset/dt ICOMP1 k (2) Comparator offset variation in worst voltage stress conditions Current consumption(3) V µs VDDA 3.6 V VIN+ 0 V VIN- VREFINT TA = 25 C - 1. Based on characterization, not tested in production. 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference. 3. Comparator consumption only. Internal reference voltage not included. 104/125 DocID17959 Rev 4 STM8L162M8 STM8L162R8 Electrical parameters Table 48. Comparator 2 characteristics Symbol VDDA VIN tSTART td slow td fast Voffset dThreshold/dt ICOMP2 Conditions Min Typ Max(1) Unit Analog supply voltage - 1.65 3.6 V Comparator 2 input voltage range - 0 VDDA V Fast mode - 15 20 Slow mode - 20 25 1.65 V  VDDA  2.7 V - 1.8 3.5 2.7 V  VDDA  3.6 V - 2.5 6 1.65 V  VDDA  2.7 V - 0.8 2 2.7 V  VDDA  3.6 V - 1.2 4 - - 4 20 mV VDDA 3.3V TA = 0 to 50 C V- = VREF+, 3/4 VREF+, 1/2 VREF+, 1/4 VREF+. - 15 30 ppm /°C Fast mode - 3.5 5 Slow mode - 0.5 2 Parameter Comparator startup time Propagation delay(2) in slow mode Propagation delay(2) in fast mode Comparator offset error Threshold voltage temperature coefficient Current consumption(3) µs µA 1. Based on characterization, not tested in production. 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference. 3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not included. DocID17959 Rev 4 105/125 115 Electrical parameters 9.3.13 STM8L162M8 STM8L162R8 12-bit DAC characteristics In the following table, data are guaranteed by design, not tested in production. Table 49. DAC characteristics Symbol Parameter Conditions Min. Typ. Max. VDDA Analog supply voltage - 1.8 - 3.6 VREF+ Reference supply voltage - 1.8 - VDDA VREF+ = 3.3 V, no load, middle code (0x800) - 130 220 IVREF Current consumption on VREF+ supply VREF+ = 3.3 V, no load, worst code (0x000) - 220 350 Unit V µA IVDDA TA RL(1) (2) Current consumption on VDDA supply VDDA = 3.3 V, no load, middle code (0x800) - 210 320 VDDA = 3.3 V, no load, worst code (0x000) - 320 520 -40 - 125 °C Temperature range Resistive load DACOUT buffer ON 5 - - k Output impedance DACOUT buffer OFF - 8 10 k - - 50 pF DACOUT buffer ON 0.2 - VDDA - 0.2 V DACOUT buffer OFF 0 - VREF+ -1 LSB V Settling time (full scale: for a 12bit input code transition between the lowest and the highest input codes when DAC_OUT reaches the final value ±1LSB) RL 5 k, CL50 pF - 7 12 µs Max frequency for a correct DAC_OUT (@95%) change Update rate when small variation of the input code (from code i to i+1LSB). RL 5 k, CL 50 pF - - 1 Msps RO CL(3) DAC_OUT (4) tsettling Capacitive load DAC_OUT voltage tWAKEUP Wakeup time from OFF state. Input code between lowest and highest possible codes. RL 5 k, CL50 pF - 9 15 µs PSRR+ Power supply rejection ratio (to VDDA) (static DC measurement) RL5 k, CL50 pF - -60 -35 dB 1. Resistive load between DACOUT and GNDA 2. Output on PF0 or PF1 3. Capacitive load at DACOUT pin 4. It gives the output excursion of the DAC 106/125 DocID17959 Rev 4 STM8L162M8 STM8L162R8 Electrical parameters In the following table, data based on characterization results, not tested in production. Table 50. DAC accuracy Symbol Parameter Conditions Typ. Max. 1.5 3 1.5 3 2 4 2 4 ±10 ±25 No load DACOUT buffer OFF ±5 ±8 DACOUT buffer OFF ±1.5 ±5 RL 5 k, CL50 pF DNL Differential non linearity DACOUT buffer ON(2) (1) No load DACOUT buffer OFF RL 5 k, CL50 pF INL Integral non linearity DACOUT buffer ON(2) (3) No load DACOUT buffer OFF RL 5 k, CL50 pF Offset Offset1 DACOUT buffer ON(2) (4) Offset error Offset error at Code 1 (5) RL 5 k, CL50 pF Gain error DACOUT buffer ON(2) Gain error(6) No load DACOUT buffer OFF RL 5 k, CL50 pF TUE DACOUT buffer ON(2) Total unadjusted error No load -DACOUT buffer OFF Unit 12-bit LSB +0.1/-0.2 +0.2/-0.5 % +0/-0.2 +0/-0.4 12 30 8 12 12-bit LSB 1. Difference between two consecutive codes - 1 LSB. 2. In 48-pin package devices the DAC2 output buffer must be kept off and no load must be applied on the DAC_OUT2 output. 3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023. 4. Difference between the value measured at Code (0x800) and the ideal value = VREF+/2. 5. Difference between the value measured at Code (0x001) and the ideal value. 6. Difference between the ideal slope of the transfer function and the measured slope computed from Code 0x000 and 0xFFF when buffer is ON, and from Code giving 0.2 V and (VDDA -0.2) V when buffer is OFF. In the following table, data are guaranteed by design, not tested in production. Table 51. DAC output on PB4-PB5-PB6(1) Symbol Rint Parameter Internal resistance between DAC output and PB4-PB5-PB6 output Conditions Max 2.7 V < VDD < 3.6 V 1.4 2.4 V < VDD < 3.6 V 1.6 2.0 V < VDD < 3.6 V 3.2 1.8 V < VDD < 3.6 V 8.2 Unit k 1. 32 or 28-pin packages only. The DAC channel can be routed either on PB4, PB5 or PB6 using the routing interface I/O switch registers. DocID17959 Rev 4 107/125 115 Electrical parameters 9.3.14 STM8L162M8 STM8L162R8 12-bit ADC1 characteristics In the following table, data are guaranteed by design, not tested in production. Table 52. ADC1 characteristics Symbol Parameter VDDA Analog supply voltage VREF+ Reference supply voltage VREF- Conditions Min. Typ. - 1.8 3.6 2.4 V VDDA3.6 V 2.4 VDDA 1.8 VVDDA 2.4 V VDDA Lower reference voltage - VSSA IVDDA Current on the VDDA input pin - - - - IVREF+ Current on the VREF+ input pin 1000 Max. Unit V 1450 700 (peak)(1) µA 400 - - 450 (average)(1) VAIN Conversion voltage range - 0(2) - VREF+ TA Temperature range - -40 - 125 °C on PF0/1/2/3 fast channels - - 50(3) k on all other channels - on PF0/1/2/3 fast channels - on all other channels - 2.4 VVDDA3.6 V without zooming 0.320 - 16 1.8 VVDDA2.4 V with zooming 0.320 - 8 VAIN on PF0/1/2/3 fast channels - - 1(3)(4) VAIN on all other channels - - 760(3)(4) kHz RAIN CADC fADC fCONV External resistance on VAIN Internal sample and hold capacitor ADC sampling clock frequency 16 pF - MHz 12-bit conversion rate fTRIG External trigger frequency - - - tconv 1/fADC tLAT External trigger latency - - - 3.5 1/fSYSCLK 108/125 DocID17959 Rev 4 STM8L162M8 STM8L162R8 Electrical parameters Table 52. ADC1 characteristics (continued) Symbol tS Parameter Sampling time Conditions Min. Typ. Max. VAIN PF0/1/2/3 fast channels VDDA < 2.4 V 0.43(3)(4) - - VAIN PF0/1/2/3 fast channels 2.4 V VDDA3.6 V 0.22(3)(4) - - VAIN on slow channels VDDA < 2.4 V 0.86(3)(4) - - VAIN on slow channels 2.4 V VDDA3.6 V 0.41(3)(4) - - Unit µs - 12 + tS 1/fADC 16 MHz 1(3) µs tconv 12-bit conversion time tWKUP Wakeup time from OFF state - - - 3 µs tIDLE(5) Time before a new conversion - - -  s tVREFINT Internal reference voltage startup time - - - refer to Table 45 ms 1. The current consumption through VREF is composed of two parameters: - one constant (max 300 µA) - one variable (max 400 µA), only during sampling time + 2 first conversion pulses. So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 µA at 1Msps 2. VREF- must be tied to ground. 3. Minimum sampling and conversion time is reached for maximum RAIN= 0.5 k 4. Value obtained for continuous conversion on fast channel. 5. The time between 2 conversions, or between ADC ON and the first conversion must be lower than tIDLE. DocID17959 Rev 4 109/125 115 Electrical parameters STM8L162M8 STM8L162R8 In the following three tables, data are guaranteed by characterization result, not tested in production. Table 53. ADC1 accuracy with VDDA = 3.3 V to 2.5 V Symbol Parameter Conditions Typ. Max. 1 1.6 Differential non linearity fADC = 8 MHz 1 1.6 fADC = 4 MHz 1 1.5 fADC = 16 MHz 1.2 2 fADC = 8 MHz 1.2 1.8 fADC = 4 MHz 1.2 1.7 fADC = 16 MHz 2.2 3.0 fADC = 8 MHz 1.8 2.5 fADC = 4 MHz 1.8 2.3 fADC = 16 MHz 1.5 2 fADC = 8 MHz 1 1.5 fADC = 4 MHz 0.7 1.2 1 1.5 fADC = 16 MHz DNL INL Integral non linearity TUE Total unadjusted error Offset Offset error Unit LSB fADC = 16 MHz Gain Gain error fADC = 8 MHz fADC = 4 MHz Table 54. ADC1 accuracy with VDDA = 2.4 V to 3.6 V Symbol Parameter Typ. Max. 1 2 1.7 3 DNL Differential non linearity INL Integral non linearity TUE Total unadjusted error 2 4 Offset Offset error 1 2 Gain Gain error 1.5 3 Unit LSB Table 55. ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V Symbol 110/125 Parameter Typ. Max. DNL Differential non linearity 1 2 INL Integral non linearity 2 3 TUE Total unadjusted error 3 5 Offset Offset error 2 3 Gain Gain error 2 3 DocID17959 Rev 4 Unit LSB STM8L162M8 STM8L162R8 Electrical parameters Figure 38. ADC1 accuracy characteristics 9''$ 95() >/6%,'($/  RUGHSHQGLQJRQSDFNDJH @   (*     (7      (2  (/  ('  ([DPSOHRIDQDFWXDOWUDQVIHUFXUYH  7KHLGHDOWUDQVIHUFXUYH  (QGSRLQWFRUUHODWLRQOLQH (7 7RWDOXQDGMXVWHG(UURUPD[LPXPGHYLDWLRQ EHWZHHQWKHDFWXDODQGWKHLGHDOWUDQVIHUFXUYHV (2 2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO WUDQVLWLRQDQGWKHILUVWLGHDORQH (* *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVWLGHDO WUDQVLWLRQDQGWKHODVWDFWXDORQH (' 'LIIHUHQWLDOOLQHDULW\(UURUPD[LPXPGHYLDWLRQ EHWZHHQDFWXDOVWHSVDQGWKHLGHDORQH (/ ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW FRUUHODWLRQOLQH  /6%,'($/    966$           9''$ DLE Figure 39. Typical connection diagram using the ADC 670/[[[ 9 '' 6DPSOHDQGKROG$'& FRQYHUWHU 97 9 5$,1  5$'& $,1[ 97 9 9$,1 & SDUDVLWLF ELW FRQYHUWHU &$'&  ,/“ Q$ DLF 1. Refer to Table 52 for the values of RAIN and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 40 or Figure 41, depending on whether VREF+ is connected to VDDA or not. Good quality ceramic 10 nF capacitors should be used. They should be placed as close as possible to the chip. DocID17959 Rev 4 111/125 115 Electrical parameters STM8L162M8 STM8L162R8 Figure 40. Power supply and reference decoupling (VREF+ not connected to VDDA) 670/ 95() —)Q) 9''$ —)Q) 9''$95() DL Figure 41. Power supply and reference decoupling (VREF+ connected to VDDA) 670/ 95()9''$ —)Q) 95()966$ DL 112/125 DocID17959 Rev 4 STM8L162M8 STM8L162R8 9.3.15 Electrical parameters EMC characteristics Susceptibility tests are performed on a sample basis during product characterization. Functional EMS (electromagnetic susceptibility) Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).  ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 61000 standard.  FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000 standard. A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709. Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Prequalification trials: Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Table 56. EMS data Symbol Parameter Conditions VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VEFTB Fast transient voltage burst limits VDD 3.3 V, TA +25 °C,  Using HSI to be applied through 100 pF on fCPU 16 MHz, VDD and VSS pins to induce a conforms to IEC 61000 Using HSE functional disturbance VDD 3.3 V, TA +25 °C,  fCPU16 MHz, conforms to IEC 61000 DocID17959 Rev 4 Level/ Class 2B 4A 2B 113/125 115 Electrical parameters STM8L162M8 STM8L162R8 Electromagnetic interference (EMI) Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC61967-2 which specifies the board and the loading of each pin. Table 57. EMI data (1) Symbol SEMI Parameter Peak level Monitored frequency band Conditions VDD 3.6 V, TA +25 °C, LQFP80 conforming to IEC61967-2 Max vs. Unit 16 MHz 0.1 MHz to 30 MHz 10 30 MHz to 130 MHz 4 130 MHz to 1 GHz 1 SAE EMI Level 1.5 dBV - 1. Not tested in production. Absolute maximum ratings (electrical sensitivity) Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: human body model and charge device model. This test conforms to the JESD22-A114A/A115A standard. Table 58. ESD absolute maximum ratings Symbol VESD(HBM) Ratings Electrostatic discharge voltage (human body model) Electrostatic discharge voltage VESD(CDM) (charge device model) Conditions Maximum value (1) Unit 2000 TA +25 °C V 750 1. Data based on characterization results, not tested in production. Static latch-up  114/125 LU: 3 complementary static tests are required on 10 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181. DocID17959 Rev 4 STM8L162M8 STM8L162R8 Electrical parameters Table 59. Electrical sensitivities Symbol LU 9.4 Parameter Class Static latch-up class II Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 17: General operating conditions on page 64. The maximum chip-junction temperature, TJmax, in degree Celsius, may be calculated using the following equation: TJmax = TAmax + (PDmax x JA) Where:  TAmax is the maximum ambient temperature in C  JA is the package junction-to-ambient thermal resistance in C/W  PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax)  PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power.  PI/Omax represents the maximum power dissipation on output pins Where: PI/Omax = (VOL*IOL) + ((VDD-VOH)*I OH),  taking into account the actual VOL/IOL and VOH/IOH of the I/Os at low and high level in the application. Table 60. Thermal characteristics(1) Symbol Parameter Value Unit JA Thermal resistance junction-ambient LQFP 64 - 10 x 10 mm 48 °C/W JA Thermal resistance junction-ambient LQFP 80 - 14 x 14 mm 38 °C/W 1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment. DocID17959 Rev 4 115/125 115 Package information 10 STM8L162M8 STM8L162R8 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 10.1 LQFP80 package information Figure 42. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline C ! ! ! 3%!4).' 0,!.% # MM '!5'%0,!.% # ! CCC , $ K , $ $      0).  )$%.4)&)#!4)/. % % % B   E 3?-% 116/125 DocID17959 Rev 4 STM8L162M8 STM8L162R8 Package information Table 61. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package mechanical data(1) millimeters inches Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.220 0.320 0.380 0.0087 0.0126 0.0150 c 0.090 - 0.200 0.0035 - 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 - 12.350 - - 0.4862 - E 15.800 16.000 16.200 0.6220 0.6299 0.6378 E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 - 12.350 - - 0.4862 - e - 0.650 - - 0.0256 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.100 - - 0.0039 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 43. LQFP80 14 x 14 mm low-profile quad flat package footprint                4@'1 1. Dimensions are in millimeters. DocID17959 Rev 4 117/125 122 Package information STM8L162M8 STM8L162R8 Device marking The following figure shows the marking for the LQFP80 package. Figure 44. LQFP80 marking example (package top view) 2SWLRQDOJDWHPDUN 5HYLVLRQFRGH 3URGXFWLGHQWLILFDWLRQ  3 45.- .5 3LQLGHQWLILFDWLRQ 'DWHFRGH : 88 069 118/125 DocID17959 Rev 4 STM8L162M8 STM8L162R8 LQFP64 package information Figure 45. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline PP *$8*(3/$1( F $ $ 6($7,1*3/$1( & $ $ FFF & ' ' ' . / /      3,1 ,'(17,),&$7,21 ( ( E ( 10.2 Package information    H :B0(B9 1. Drawing is not to scale. Table 62. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D - 12.000 - - 0.4724 - D1 - 10.000 - - 0.3937 - D3 - 7.500 - - 0.2953 - E - 12.000 - - 0.4724 - E1 - 10.000 - - 0.3937 - E3 - 7.500 - - 0.2953 - DocID17959 Rev 4 119/125 122 Package information STM8L162M8 STM8L162R8 Table 62. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max e - 0.500 - - 0.0197 -  0° 3.5° 7° 0° 3.5° 7° L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 46. LQFP64, 10 x 10 mm low-profile quad flat package footprint                 AIC 1. Dimensions are in millimeters. 120/125 DocID17959 Rev 4 STM8L162M8 STM8L162R8 Package information Device marking The following figure shows the marking for the LQFP64 package. Figure 47. LQFP64 marking example (package top view) 3URGXFWLGHQWLILFDWLRQ  45.- 35 'DWHFRGH : 88 6WDQGDUG67ORJR 5HYLVLRQFRGH 3LQLGHQWLILHU 3 069 1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID17959 Rev 4 121/125 122 Ordering information scheme 11 STM8L162M8 STM8L162R8 Ordering information scheme Table 63. Ordering information scheme  Example: STM8 L 162 M 8 T 6 D Device family STM8 microcontroller Product type L = Low-power Device subfamily 162: STM8L162 device family Pin count R = 64 pins M = 80 pins Program memory size 8 = 64 Kbytes of Flash memory Package T = LQFP Temperature range 3 = Industrial temperature range, –40 to 125 °C 6 = Industrial temperature range, –40 to 85 °C Option Blank = VDD range from 1.8 to 3.6 V and BOR enabled D = VDD range from 1.65 to 3.6 V and BOR disabled For a list of available options (e.g. memory size, package) and order-able part numbers or for further information on any aspect of this device, please go to www.st.com or contact the ST Sales Office nearest to you. 122/125 DocID17959 Rev 4 STM8L162M8 STM8L162R8 12 Revision history Revision history Table 64. Document revision history Date Revision 14-Sep-2010 1 Initial release. 2 Table 4: STM8L162x8 pin description: updated “standard port” changed to “high sink port”. Figure 5: Memory map: updated the address range of the AES registers. Table 8: General hardware register map: updated the address range of the AES registers. Table 14: Voltage characteristics: updated Table 15: Current characteristics: updated Table 34: RAM and hardware registers: updated VRM data min. retention. Added Table 9.3.6: I/O current injection characteristics. Table 37: I/O static characteristics: updated Table 44: LCD characteristics: updated 22-Mar-2011 Changes DocID17959 Rev 4 123/125 124 Revision history STM8L162M8 STM8L162R8 Table 64. Document revision history Date 10-Jul-2012 19-Feb-2015 124/125 Revision Changes 3 Modified LCD pin names in Table 4: STM8L162x8 pin description Corrected LCD corresponding register numbers in Table 8: General hardware register map Corrected the user manual name in Section 7: Option bytes Replaced comparator tables with STM32 tables in Section 9.3.12: Comparator characteristics Added “The ram content is preserved” in Section 3.1: Low-power modes Modified capacitive sensing channel bullet in Features Modified last sentence in Section 3.12: System configuration controller and routing interface Added Section 3.13: Touch sensing Replaced “Vref+ - 0.2” with “VDDA - 0.2” for DAC_OUT in Table 49: DAC characteristics 4 Updated – Table 61: LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package mechanical data – Figure 42: LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline – Figure 43: LQFP80 14 x 14 mm low-profile quad flat package footprint – Table 62: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data – Figure 45: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline – Figure 46: LQFP64, 10 x 10 mm low-profile quad flat package footprint Added: – Figure 44: LQFP80 marking example (package top view) – Figure 47: LQFP64 marking example (package top view) DocID17959 Rev 4 STM8L162M8 STM8L162R8 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved DocID17959 Rev 4 125/125 125
STM8L162R8T6 价格&库存

很抱歉,暂时无法提供与“STM8L162R8T6”相匹配的价格&库存,您可以联系我们找货

免费人工找货