STNRG011
Datasheet
Digital combo multi-mode PFC and time-shift LLC resonant controller
Features
•
•
•
•
•
•
•
•
•
Digital combo multi-mode PFC + time-shift LLC resonant half-bridge controller
Onboard 800 V startup circuit, line sense and X-cap discharge compliant with
IEC 62368-1, for reduced standby power
Enhanced fixed on time multi-mode TM PFC controller with input voltage feedforward, THD optimizer and frequency limitation
Complete set of PFC protections
Time-shift control of resonant half-bridge
Enhanced burst-mode at light load with fast
transient response and line adaptive half- bridge brown-out protection
Complete set of half-bridge protections
Available in SO20 package
Applications
•
•
•
•
Open frame SMPS
Flat screen TV SMPS
ATX power supply
AC-DC adapter
Figure 1. Block diagram
Product status link
HVG
STNRG011
FGND
Product summary
Order code
STNRG011
Package
Packing
STNRG011T
R
SO20
Tube
BOOT
LVG
LLC_CS
LLC_AUX
LLC_FB
HV
AC line
interface
LLC
controller
PFC
controller
VAC
VCC
PFC_GD
PFC_CS
PFC_FB
PFC_ZCD
Tape & Reel
TX
Product label
HV
half-bridge
driver
RX
DS12075 - Rev 4 - February 2021
For further information contact your local STMicroelectronics sales office.
Power management and
communication
VCORE
www.st.com
STNRG011
Description
1
Description
The STNRG011 embodies a multi-mode (transition-mode and DCM) PFC controller, a high- voltage double-ended
controller for the LLC resonant half-bridge, an 800 V-rated startup generator and a sophisticated digital engine,
that manage optimal operation of three blocks.
The device comes in a 20-pin SO package and offers an advanced solution for power- factor-corrected highefficiency converters supposed to comply with the most stringent energy saving regulations.
The power system and the control algorithms are managed by an 8-bit core with dedicated fast peripherals
(SMED). Optimized digital algorithms together with HW analog IPs are implemented to guarantee a very high
performance, BOM optimization and robustness.
The digital algorithms are stored into an internal ROM memory and all key application parameters can be stored
into a device's NVM (non-volatile memory) memory during the production phase allowing wide configurability and
calibration.
The device can also externally communicate through a 2-pin UART, allowing the monitoring function, the black
box storing into an external E2PROM and the software patch upload from the external E2PROM.
DS12075 - Rev 4
page 2/31
STNRG011
Pin connection
2
Pin connection
Figure 2. Pin connection (top view)
BOOT
1
20
VAC
HVG
2
19
N.C.
FGND
3
18
VCC
N.C.
4
17
PFC_GD
LVG
5
16
PGND
TX
6
15
SGND
RX
7
14
VCORE
LLC_CS
8
13
PFC_FB
LLC_AUX
9
12
PFC_CS
10
11
PFC_ZCD
LLC_FB
DS12075 - Rev 4
page 3/31
STNRG011
Absolute maximum ratings and thermal data
3
Absolute maximum ratings and thermal data
Table 1. Absolute maximum ratings
Symbol
Pin
VVAC
VAC
VBOOT
BOOT
VFGND
Value
Unit
-1 to 800
V
Floating supply voltage, referred to
GND
-0.3 to 600 + VCC
V
FGND
Floating ground voltage, connected
to the half-bridge node
-3 up to a value included in the
range BOOT - VCC and BOOT
+0.3
V
dVFGND /dt
FGND
Floating ground max. slew rate
50
V/ns
VHVG
HVG
HVG voltage
FGND -0.3 to BOOT +0.3
V
VVCC
VCC
IC supply voltage
-0.3 to 19
V
VLVG
Parameter
Voltage range
LVG, PFC_GD
Voltage range
-0.3 to VCC
V
VVCORE
VCORE
Voltage range
-0.3 to 5.5
V
IPFC_CS, ILLC_CS,
IPFC_ZCD,
PFC_CS, LLC_CS,
PFC_ZCD
2
mA
VPFC_CS, VLLC_CS,
VPFC_ZCD
PFC_CS, LLC_CS,
PFC_ZCD
Positive voltage range
VCORE +0.3
V
VPFC_FB, VLLC_FB
PFC_FB. LLC_FB
Voltage range
-0.3 to VCORE +0.3
V
VRX
RX
Voltage range
-0.3 to VCORE +0.3
V
VTX
TX
Voltage range
-0.3 to VCORE+ 0.3
V
VPFC_GD
Clamped source current
(pin voltage: < 0 V, self-limited)
Table 2. Thermal data
Symbol
Parameter
Rth j-amb
Max. thermal resistance, junction to ambient
Tj
Tstg
DS12075 - Rev 4
Value
Unit
120
°C/W
Junction temperature operating range
-40 to 150
°C
Storage temperature
-55 to 150
°C
page 4/31
STNRG011
Detailed block diagram
4
Detailed block diagram
Figure 3. Detailed block diagram
SGND VCORE
VCC
BIAS
VCC
mngt
VAC
Vline_sen
BOOT
HVG
AC
interface
FGND
LLC
SMED
VCC
SURGE Comp
LVG
PGND
430 V eq.
VCC
LLC ZCD Comp
Oscillator
PFC
SMED
PFC_GD
SGND
PGND
LLC OC1 Comp
EW signal
LLC_CS
700 mV
LLC OC2 Comp
LLC BURST Comp
LLC_FB
SHUTDOWN Comp
125 mV
Power
manager
and
burst mode
engine
LLC OVP Comp
2.5 V
LLC_AUX
16x 16
MAC
PFC_CS
500 mV
900 mV
PFC ZCD Comp
PFC_ZCD
Communication
interface
TX
16 kB
ROM
PFC_FB
module
LLC_FB
DS12075 - Rev 4
PFC_FB
PFC RECOT Comp
PFC OC2 Comp
0.9 V
Int_temp
2.3 V
PFC OC1 Comp
Ext. BM Comp
Vline_sen
PFC OVP Comp
ADC
4 kB
RAM
256 b
NVM
RX
page 5/31
STNRG011
Pin function
5
Pin function
Table 3. Pin function detailed description
No.
Name
Function
High-side gate-drive floating supply voltage.
1
BOOT
The bootstrap capacitor is connected between this pin and FGND.
A fast diode has to be connected from this pin and VCC to guarantee recharge of the bootstrap capacitor.
High-side gate-drive output.
2
HVG
The driver is capable of 0.5 A source and 0.75 A sink peak current (minimum values) to drive the upper
MOSFET of the half-bridge leg.
A resistor internally connected to FGND ensures that the pin is never floating.
High-side gate-drive floating ground.
3
FGND
It is the return path for the high-side gate-drive current.
Layout carefully the connection of this pin to avoid too large spikes below ground.
High-voltage spacer.
4
N.C.
The pin is not internally connected to isolate the high-voltage section and ease compliance with safety
regulations (creepage distance) on the PCB.
Low-side gate-drive output.
5
LVG
The driver is capable of 0.5 A source and 0.75 A sink peak current (minimum values) to drive the lower
MOSFET of the half-bridge leg.
The pin is actively pulled to GND during UVLO.
6
TX
TX pin for UART/SDA pin for I2C interface
7
RX
RX pin for UART/SCL pin for I2C interface
8
LLC_CS
9
LLC_AUX
10
LLC_FB
11
PFC_ZCD
LLC tank current sensing input. A voltage proportional to the tank current (usually obtained with a capacitive
divider) has to be applied to this pin.
The information is used for zero-crossing detection (required by time-shift algorithm), the first and second
level OCP.
LLC_AUX is connected to a divider sensing the auxiliary voltage from the LLC transformer. The LLC OVP
detection is active on this pin.
The voltage from this pin is used as the LLC feedback voltage. It has to be connected to the feedback
phototransistor collector and a pull-up resistor to VCORE.
PFC ZCD input, connected to the PFC AUX winding through a resistor divider detecting the PFC inductor
demagnetization.
Current sense input for PFC.
12
PFC_CS
The current flowing in the MOSFET is sensed through a resistor, and the resulting voltage is applied to this
pin.
After GD turns on, a first voltage threshold cross allows enhanced COT control implementation. A second
level can be detected for overcurrent protection.
DS12075 - Rev 4
13
PFC_FB
Input for PFC output voltage. It is used for closing the PFC loop and OVP protection. It has to be connected
with a voltage divider to the bulk capacitor. If the early warning feature is enabled this pin is brought to 5 V
when the EW pulse is released.
14
VCORE
Internal VCORE bypass capacitor connection.
15
SGND
Signal ground. Reference ground for analog signals.
16
PGND
Power ground. Current return for the PFC gate-driver and the low-side gate-driver of the half- bridge. Keep
the PCB trace that goes from this pin to the sources of the PFC and the low-side MOSFETs separate from
the trace that collects the grounding of the bias components.
17
PFC_GD
PFC gate-driver output.
The output stage is able to drive power MOSFETs, it is capable of 0.7 A source current and
page 6/31
STNRG011
Pin function
No.
Name
Function
0.8 A sink current (minimum values).
18
VCC
19
N.C.
Supply voltage of both the signal part of the IC and the gate-drivers. A bypass capacitor to GND is
necessary to sustain the IC during startup and low power modes.
The voltage on the pin is internally clamped to protect the internal circuits from temporary excessive supply
voltages.
The pin is not internally connected to isolate the high-voltage section and ease compliance with safety
regulations (creepage distance) on the PCB.
High-voltage startup generator input.
The pin has to be connected directly to the mains voltage through two dedicated diodes.
If the voltage on the pin is higher than 50 V, an internal current source charges the capacitor connected
between the pin VCC and GND until the voltage on the VCC pin reaches the startup threshold.
20
VAC
Normally, the generator is re-enabled when the voltage on the VCC pin falls below the UVLO threshold.
The pin is also used as the line voltage sensing input.
This pin is internally connected to a 20 MΩ resistor divider. It is used for all line sense related functions: the
AC brown-out, surge detection, line disconnection, input voltage feed-forward, line synchronization.
When a line disconnection is detected, the internal current source is activated to discharge the X-capacitor.
DS12075 - Rev 4
page 7/31
STNRG011
Electrical characteristics
6
Electrical characteristics
Tj = 0 to +125 °C, VCC = VBOOT = 15 V, CHVG = CLVG = CPFC_GD = 1 nF; unless otherwise specified.
Note:
Adjust Vcc above VccOn before setting at 15 V.
Table 4. Electrical characteristics
Symbol
Parameter
Test condition
Min.
Typ.
Max.
Unit
19
-
-
V
Supply voltage
Vccz
Vcc clamp voltage
-
Vcc
Operating range
After turn-on
9.5
-
19
V
VccOn
Processing turn-on threshold Voltage
rising(1)
16
17
18
V
VccOff
Processing turn-off threshold Voltage falling(1)
8
8.7
9.4
V
Hysteresis
-
-
8.3
-
V
VccCoreOn
VCC threshold for VCore
turn-on
Voltage rising(1)
-
8
-
V
VccCoreOff
VCC threshold for VCore
turn-off
Voltage falling(1)
-
7
-
V
Operating range
Isource 0 to 1 mA
4.75
-
5.25
V
T 25 °C
-
0.5
-
mA
PFC and LLC off
-
18
-
PFC driver only (during PFC
SS)
-
20
-
All drivers
-
22
-
800
-
-
-
1
-
-
6
-
-
6
-
Hys
VCore
Supply current
IVccs
Quiescent current during
sleep (BM)
IVccop
Operating supply current at
fsw = 50 kHz, C = 1 nF,
VCC = 12 V
mA
High-voltage startup generator
VVAC_BR
Breakdown voltage
IHV < 50 µA
VCC > VccOn
VVAC > 40 V
VCC < 0.8 V
VVAC > 40 V
0.8 V < VCC < VccCoreOn
VVAC > 100 V
IVAC_on
ON-state VAC input current
VccCoreOn < VCC < 14 V
VVAC > 100 V
4
-
-
20
-
-
10
-
VVAC > 40 V VCC < 0.8 V
-0.5
-0.75
-1.3
VVAC > 40 V
-3.5
-5
-8
40 V < VVAC < 100 V
VccCoreOn < VCC < 14 V
40 V < VVAC < 100 V
14 V < VCC < VccOn
IVcc_charge
DS12075 - Rev 4
ON-state VCC charge
current
mA
-
14 V < VCC < VccOn
V
mA
page 8/31
STNRG011
Electrical characteristics
Symbol
Parameter
Test condition
Min.
Typ.
Max.
-
-5
-
-
-3.5
-
-
-18
-
-
-8
-
Unit
0.8 V < VCC < VccCoreOn
VVAC > 100 V
VccCoreOn < VCC < 14 V
VVAC > 100 V
IVcc_charge
ON-state VCC charge
current
14 V < VCC < VccOn
40 V < VVAC < 100 V
VccCoreOn < VCC < 14 V
40 V < VVAC < 100 V
14 V < VCC < VccOn
IVAC_off
IVAC_HV_SINK
mA
OFF-state VAC input current
VVAC = 400 V, VCC > VccOn
-
20
40
µA
VAC reading improvement
current
VVAC = 100 V
-
100
-
µA
-
-
0.7
V
9.85
9.95
-
V
PFC - gate-driver
VOL
Output low voltage
Isink = 100 mA
Isource = -10 mA
VOH
Output high voltage
VCC = 10 V,
VCC = 18 V
17.9
17.95
-
nF(2)
-0.7
-1.1
-
A
0.8
1.3
-
A
Isrcpk
Peak source current
Cgate = 4.7
Isnkpk
Peak sink current
Cgate = 4.7 nF(2)
tf
Voltage fall time
-
-
25
-
ns
tr
Voltage rise time
-
-
30
-
ns
PFC_GD_uvlo
UVLO saturation
VCC = 0 to VccOn, Isink = 1 mA
-
0.9
1.15
V
-
-
0.7
V
VCC = 10 V
9.85
9.9
-
V
VCC = 18 V
17.85
17.9
-
Low-side gate-driver (voltages referred to GND)
VOL
Output low voltage
Isink = 100 mA
Isource = -10 mA
VOH
Output high voltage
Isrcpk
Peak source current
Cgate = 4.7 nF(2)
-0.5
-0.8
-
A
Isnkpk
Peak sink current
Cgate = 4.7 nF(2)
0.75
1.2
-
A
tf
Voltage fall time
-
-
25
-
ns
tr
Voltage rise time
-
-
40
-
ns
LVG_uvlo
UVLO saturation
VCC = 0 to VccOn, Isink = 1 mA
-
0.9
1.1
V
-
-
0.7
V
Isource = -10 mA VBOOT= 10 V,
9.85
9.9
-
VBOOT = 18 V
17.85
17.9
-
High-side gate-driver (voltages referred to FGND)
VOL
Output low voltage
VOH
Output high voltage
Isrcpk
Peak source current
Cgate = 4.7 nF(2)
-0.5
-0.8
-
A
Isnkpk
Peak sink current
Cgate = 4.7 nF(2)
0.75
1.2
-
A
Voltage fall time
-
-
25
-
ns
tf
DS12075 - Rev 4
Isink = 100 mA
V
page 9/31
STNRG011
Electrical characteristics
Symbol
tr
Parameter
Test condition
Min.
Typ.
Max.
Unit
Voltage rise time
-
-
40
-
ns
HVG_pdw
HVG-FGND pull-down
resistor
-
-
25
-
kΩ
IFGND
Current from VBOOT to
FGND
VBOOT = 200 V
-
1.5
-
µA
X-CAP discharge
XCD_inact_time
IXCD
Inactivity detection time
-
-
50
-
ms
Discharge current
-
4
-
-
mA
Vline rising
112
114
116
V
Vline falling
-
108
-
V
Brown-in/out
BI
BO
BIBO_H
BO_mask
TH
HYST
-
5.25
6
6.75
V
Brown-out time
-
-
45
-
ms
Overtemperature (by design)
TH
T rising
130
140
150
°C
HYST
T falling
-
-30
-
°C
57
60
63.7
MHz
Vin ADC > 50 mV
-
10
-
bit
CS
0
-
1.5
V
Other
0
-
2.5
V
Differential non linearity
Vin ADC > 50 mV
-
±1.5
-
lsb
Clock frequency
Vin ADC > 50 mV
-
15
-
MHz
Ts
Sampling time
Vin ADC > 50 mV
-
7
-
Tc
Total conversion time
(sampling included)
Vin ADC > 50 mV
-
18
-
OTP
CK
Fck
System clock in run mode
ADC
ADC_res
FSR_L
FSR_H
DNL
Fck_ADC
Resolution
Conversion range
ADC
Ck cycles
ADC
Ck cycles
Comparators
PFC_CS
RECOT(3)
TH RISING (DAC 6 bits)
FSR = 125
STEP = 1.95
Input pin PFC_CS
HYST
PFC_CS OC1
PFC_CS OC2
PFC_ZCD ZCD(3)
PFC_FB OVP
LLC_FB(3) BURST
DS12075 - Rev 4
TH RISING
TH FALLING
TH RISING
TH FALLING
TH FALLING (TH_F)
TH RISING (TH_R)
TH RISING
HYST
TH RISING
mV
5
Input pin PFC_CS
Input pin PFC_CS
Input pin PFC_ZCD
Input pin PFC_FB
Input pin LLC_FB
-
500
-
-
450
-
-
900
-
-
850
-
0/50/100/200
210/110(4)/310/ TH_F +10
mV
mV
mV
-
2.33
-
V
-
75
-
mV
0.75/1/1.25
V
page 10/31
STNRG011
Electrical characteristics
Symbol
LLC_FB(3)
BURST
LLC_FB SHUTDOWN
LLC_AUX OVP
LLC_AUX Ext. BM
LINE SURGE
LLC_CS
OC1(3)
Parameter
HYST
TH RISING
TH FALLING
TH RISING
TH FALLING
TH RISING
TH FALLING
TH RISING
TH FALLING
TH RISING
Test condition
Min.
Input pin LLC_FB
Input pin LLC_FB
Input pin LLC_AUX
Input pin LLC_AUX
Input pin VAC
TH RISING
TH FALLING
Max.
5/10
Unit
mV
-
145
-
-
125
-
-
2.5
-
-
2.4
-
-
0.9
-
-
0.8
-
-
430
-
-
410
-
mV
V
V
V
FSR = 500
STEP = 15.6
Input pin LLC_CS
HYST
LLC_CS OC2
Typ.
mV
20
Input pin LLC_CS
-
700
-
-
650
-
mV
1. Parameters tracking each other.
2. Guaranteed by design, not production tested.
3. Thresholds and hysteresis are programmed by the software in use.
4. The selection for TH_R = 110 mV is not allowed if TH_F = 200 mV.
DS12075 - Rev 4
page 11/31
DS12075 - Rev 4
7
Application schematics
Figure 4. Typical application schematic
D1
L1
D2
C1
+
D3
Q1
R1
+
EMI filter
-
C2
R2
C3
D4
D5
R3
R4
R5
R6
VCC
D8
Optional
for surge
3
2
1
D6
VCC
J1
Mains input
R7
U1
20
19
18
D9
17
C5
16
15
R10
14
13
12
11
D12
C11
VAC
BOOT
N.C.
HVG
VCC
FGND
PFC_GD
N.C.
PGND
LVG
SGND
TX
VCORE
RX
PFC_FB
LLC_CS
PFC_CS
LLC_AUX
PFC_ZCD
1
D7
C4
R8
2
T1
3
J2
D10
1
2
4
R9
5
6
1
2
3
7
D11
R11
9
C7
10
C9
C8
R13
R12
C10
R14
R16
R15
R18
ISO1
R17
C13
VOUT
C6
8
LLC_FB
+
Q3
J3
UART
STNRG011
C12
Q2
C14
R19
R20
C15
R21
D13
VCC
Q4
R23
+
C16
C18
D14
D15
D16
D17
U2
TL431
R22
+
C17
STNRG011
page 12/31
Application schematics
D18
STNRG011
Architecture
8
Architecture
The PFC and LLC external MOSFETs gates are managed by the “State Machine Event Driven” (SMEDs): 2 for
PFC (PFC SMEDs) and 2 for LLC (LLC SMEDs).
The SMEDs are programmable state machine driven by events:
•
External events
–
Analog comparators outputs
–
Power manager generated events (protections)
•
Internal events
–
Timer events
PFC SMEDs
•
Input events: PFC RECOT, PFC OC1, PFC ZCD
•
Outputs: PFC_GD
LLC SMEDs
•
Input events: LLC ZCD
•
Outputs: LVG, HVG
The µP subsystem dynamically manages the control loop.
•
Analog comparators thresholds setting
•
SMED configuration
•
SMED timers
•
ADC scheduler
•
Interrupt management
The multichannel ADC is controlled by a programmable event driven scheduler: sampling sequence can be
configured and every sample can be triggered by a specific SMED state occurrence and an internal timer value.
Different priorities can be programmed to allow fast sampling for real time control and slow sampling for state
control (i.e., temperature).
The scheduler can be programmed to generate interrupts after completion of selectable conversions.
A dedicated AC line monitor easily follows the AC line providing system triggers.
The µP reads data from the ADC and performs the loop calculation with the support of a dedicated 16-b x 16-b
multiplier and a 32-b accumulator unit.
A Power management and burst-mode machine manages the system power state in order to have very low
idle consumption and fast activity restart during the burst-mode operation.
Hard protections are managed with a very low propagation delay; the protection enable and the latched/not
latched response are programmable.
The power manager controls also the brown-in/out, VCC charge/discharge, AC monitor and X-cap discharge.
A Watchdog resets the system in case of missed µP signal for a long time.
A communication peripheral allows serial communication at startup and during the normal operation for:
•
External memory communication for
–
Black box external recording
–
Patch SW upload
•
Monitoring
•
Internal memory R/W and OTP management
•
Test mode
DS12075 - Rev 4
page 13/31
STNRG011
Functional description
9
Functional description
The main functions are:
•
HV startup and VCC management
•
Line monitor and protection
•
Drivers
•
PFC control and fault management
•
Resonant LLC HB control and fault management
•
Power management
•
Communication and configuration
9.1
HV startup and VCC management
The VAC pin voltage is a rectified sine wave at 100 Hz/120 Hz, connected to the mains AC line (Vline) through
two dedicated diodes. The VAC pin is the device supply at the startup.
The VAC pin voltage is different from the PFC power path (Vin) where big caps are connected: the VAC pin
partially follows the Vline also at no load condition while the Vin could be very close to a DC; this assumption
allows to detect the AC line disconnection to implement the X-cap discharge function.
At the VAC pin a HV DMOS is internally connected to charge the capacitor connected to the VCC pin.
From the VCC pin an internal LDO provides the 5 V VCore for analog and digital circuitry; the digital section is
supplied by the internal LDO from the VCORE pin.
At startup, from the HV DMOS the capacitor connected to the VCC pin is charged to provide the power supply to
the whole device; then the HV DMOS is turned off.
The VCC pin starts sourcing current to the connected capacitor after a minimum 15 V VAC pin voltage.
The VCC capacitor charge current is limited to 0.75 mA during the first charge phase to limit the temperature
increase in case the VCC pin is short-circuited at startup. After the VCC pin voltage is above 0.8 V, the charging
current rises to 5 mA.
VCORE pin voltage rises when the VCC pin crosses 8 V (VccCoreOn). There is a VCORE overload protection that
limits the VCC charging current below 1 mA in case the VCORE pin is short-circuited at startup. Then the VCC
capacitor charge continues with an average current higher than 6 mA: the current is increased during the time the
VAC pin voltage is below 100 V.
Once the VCC pin crosses the 17 V VccOn rising threshold the HV DMOS turns off and the whole device starts
working: the µP boots.
If the VCC pin goes below the 9 V VccOff falling threshold (UVLO threshold) the µP stops working and the HV
DMOS turns on again.
If the VCC pin falls below 7 V (VccCoreOff) the device stops working and the capacitor connected to the VCORE
pin discharges. The VCC pin can rise again only after the voltage on the VCORE pin falls below 1 V.
The worst-case average charging current from the 0.8 V to the VccOn threshold is estimated in 4.63 mA and 4.11
mA, in case the mains voltage is 115 Vac - 60 Hz and 230 Vac - 50 Hz respectively.
9.2
AC line monitor and protection
A HV voltage divider is internally connected to the VAC pin to generate Vline_sense for the AC line monitoring
and protection:
•
Brown-in/out
•
Line synchronization
•
Line disconnection and X-cap discharge
•
Surge detection and stop
•
Line monitor for PFC control
DS12075 - Rev 4
page 14/31
STNRG011
Gate-drivers
9.2.1
Brown-in/out
Brown-in and -out functions are implemented based on the Vline_sense information. The peak VAC voltage is
monitored to enable and disable the PFC.
The PFC is enabled when the AC line crosses the brown-in threshold. The PFC is disabled after 45 ms the AC
line is below the brown-out threshold.
In order to improve AC line reading and avoid false brown-in, the HV DMOS is turned on sinking IXCD current
for 100 ms in case of brown-out or line disconnection events. This function can be enabled / disabled through the
dedicated NVM bit.
9.2.2
Line synchronization
A dedicated digital peripheral manages the PFC synchronization with the AC line sine wave.
In order to improve AC line reading and synchronization, the HV DMOS is turned on sinking IVAC_HV_SINK
current at startup. This function can be enabled / disabled through the dedicated NVM bit.
9.2.3
Line disconnection and X-cap discharge
The Vline_sense is monitored to detect the AC line disconnection in order to discharge the X-cap through the
internal HV DMOS.
The detection is based on AC activity absence on the VAC pin (the X-cap discharge function is triggered if there
is no line activity for more than 50 ms). To discharge the X-cap, the HV DMOS turns on sinking a current of 4 mA
minimum.
In order to improve AC line reading and avoid false brown-in, the HV DMOS is turned on sinking IXCD current
for 100 ms in case of brown-out or line disconnection events. This function can be enabled / disabled through the
dedicated NVM bit.
The discharge current stays on until the VAC pin is discharged or the AC line activity is detected again.
9.2.4
Vline surge stop
A surge can be detected on the VAC pin (430 V).
During the surge the PFC activity is stopped for one half-cycle.
If a line surge is detected during the PFC soft-start, the system shuts down with a not latched fault.
9.2.5
Line monitor for PFC control
A 20 MΩ voltage divider for the AC line monitor is internally connected from the VAC pin to GND.
9.2.6
Early warning signal
If a brown-out or another stopping event (early warning managed faults) is detected, the STNRG011:
•
Stops the PFC
•
LLC continues switching for about 5 ms, trying to keep the LLC output voltage regulated
•
PFC_FB pin is pulled up to VCore voltage for about 5 ms (early warning signal)
The early warning managed faults are:
•
Brown-out
•
X-cap
•
PFC UVP
•
LLC OLP
If any other faults / events occur, the STNRG011 stops both PFC and LLC and generates an early warning signal
for about 250 µs.
The early warning signal generation is active as soon as the device starts driving the PFC MOSFET.
This function can be enabled / disabled through the dedicated NVM bit.
9.3
Gate-drivers
The HVG and LVG are matched drivers. Deadtimes are programmable by the user.
DS12075 - Rev 4
page 15/31
STNRG011
PFC control and fault management
During the burst-mode sleep phase, the HS BOOT capacitor discharges. The burst packets always start with a
LVG pulse to recharge the bootstrap capacitor. A fast external bootstrap diode is necessary.
9.4
PFC control and fault management
9.4.1
PFC resources
Table 5. Related pins
Pin name
Description
Level
0 - 125 mV
PFC_CS
PFC MOSFET current sense
PFC_ZCD PFC auxiliary connection for ZCD detection
6-bit ramp enhanced COT feature
500 mV
OCP1
900 mV
OCP2 fault
-
-
PFC_FB Reading for PFC Vout estimation
ADC, 10 bits
-
VAC
ADC, 10 bits
-
-
-
Mains line voltage reading
PFC_GD PFC MOSFET gate-driver
9.4.2
Function
Vin reading
Input line voltage peak (Vin) reading on the VAC pin by the ADC at the AC line peak.
9.4.3
PFC output voltage feedback reading
PFC output voltage reading on the PFC_FB pin by the ADC.
9.4.4
PFC OVP comparator
The PFC OVP comparator sets the limit for the PFC output voltage. It monitors the PFC_FB pin with respect to a
fixed 2.3 V threshold.
9.4.5
PFC RECOT comparator
The PFC RECOT comparator implements the TON adjustment for the ramp enhanced constant on-time (RECOT)
control.
It monitors the PFC_CS pin with respect to a programmable threshold. Its output communicates to the PFC
SMED.
9.4.6
PFC OC1 comparator
The PFC OC1 comparator sets the limit for the operational maximum allowed peak current into the PFC
MOSFET. If the OC1 threshold is hit the PFC_GD is turned off. This protection works cycle by cycle.
It monitors the PFC_CS pin with respect to a fixed 500 mV threshold. Its output communicates to the PFC SMED.
9.4.7
PFC OC2 comparator
The PFC OC2 comparator sets an HW limit for the current flowing into the PFC MOSFET: it triggers the OCP
fault.
It monitors the PFC_CS pin with respect to a fixed 900 mV threshold.
9.4.8
PFC ZCD
The PFC ZCD comparator performs the zero cross detection to implement the soft switching of the PFC
MOSFET.
It monitors the PFC_ZCD pin with respect to two programmable rising and falling thresholds.
Its output communicates to the PFC SMED.
DS12075 - Rev 4
page 16/31
STNRG011
PFC algorithm
9.4.9
PFC state machine event driven (SMED)
The PFC high frequency operations are managed by a programmable 8-state ”State Machine Event Driven” (2
coupled 4-state SMEDs).
The SMED controls the PFC MOSFET based on the PFC comparators output and internally controlled counters.
It generates also the comparators' enable signals. It works at 60 MHz.
9.5
PFC algorithm
The PFC operates based on a multi-mode scheme.
A constant on-time (COT) control is implemented; TON is calculated from the PFC feedback and the measured
Vin peak.
TON is calculated and updated at the line cycle valley.
Based on the working PFC's operating state variables the working mode is changed to optimize the overall
efficiency.
9.5.1
Ramp enhanced COT improved (patented)
The PFC control is based on the constant on-time scheme, with a proprietary improved algorithm: the calculated
TON is applied only after the PFC RECOT comparator is triggered to balance the recovery diode energy and the
EMI capacitor current.
The PFC RECOT comparator threshold is adjusted by the core with a 6-bit DAC and allows to apply the
programmed base and ramp (defined by user into NVM).
This feature allows improving the total harmonic distortion (THD) and the power factor (PF) of the application.
9.5.2
Operating modes
The PFC manager changes the operating modes by dynamically reconfiguring the SMEDs, obtaining optimal
performances in term of both efficiency and THD/PF.
•
Transition mode (TM mode)
•
Valley skipping
•
Discontinuous mode (DCM)
9.6
PFC protections
9.6.1
PFC OVP
In case the bulk voltage triggers the PFC OVP comparator, the system enters the fault state; the overvoltage
protection can be programmed as latched or not latched.
The device implements also software overvoltage protection (SW OVP) that allows turning off the PFC until the
next line valley in case the SW OVP threshold is reached. The SW OVP threshold is a NVM parameter.
9.6.2
PFC OCP2
If the PFC OC2 comparator is triggered, the PFC gate is truncated and remains off until the beginning of a
new line half cycle. In case the PFC OC2 comparator is triggered for more than a programmable number of
consecutive half line cycles the device enters the OCP2 fault and it is turned off.
The OCP2 fault can be programmed as latched or not latched.
9.6.3
Surge
When the surge comparator signal is high the PFC MOSFET is turned off and an interrupt is generated. The
device will turn on the PFC MOSFET at the new line half cycle if the surge comparator output is low.
9.6.4
PFC soft-start timeout
If the PFC soft-start is not finished after 1 s the system enters the PFC soft-start timeout fault state and it is turned
off. The fault is not latched.
DS12075 - Rev 4
page 17/31
STNRG011
LLC control and fault management
9.6.5
PFC UVP
If the PFC_FB pin is below a threshold set by the user the device enters the PFC UVP fault and it is shut down.
The system provides two different times of intervention configurable by NVM: adaptive and slow.
The slow intervention allows to shut off the system in case the UVP threshold is confirmed for at least 100 ms.
The adaptive one allows to shut off the device immediately in case also the mains AC line is sensed below the
brownout threshold for at least 1 half line cycle. On the contrary, the shut off will be delayed as if the intervention
is set to slow, until the UVP and the mains conditions remain.
9.6.6
PFC_FB disconnection
If the PFC_FB is stuck low the system enters the PFC_FB disconnection fault state (latched) and it is turned off if
the disconnection faults detection is enabled in NVM.
9.6.7
PFC_CS disconnection
If the PFC_CS pin is stuck low (or high) during the the PFC soft-start the system enters the PFC_CS
disconnection fault state (latched) and it is shut down if the disconnection faults detection is enabled in NVM.
In case the PFC_CS is stuck high during the operative mode the system enters the PFC_CS disconnection fault
state and it is turned off if the disconnection faults detection is enabled in NVM.
9.6.8
PFC_ZCD disconnection
If the PFC_ZCD pin is stuck low or high during the PFC soft-start, the system enters the PFC_ZCD disconnection
fault (latched) and it is turned off if the disconnection faults detection is enabled in NVM.
9.7
LLC control and fault management
9.7.1
LLC related resources
Table 6. Pin descriptions
Pin name
LLC_CS
Description
Low-side current sense
LLC_AUX LLC auxiliary winding voltage sense
LLC_FB
9.7.2
LLC OPTO feedback sense, burst comparator and SHUTDOWN
comparator
Level
Function
0 - 500 mV
5-bit OLP
700 mV
OCP2 fault
0.9 V
External burst-mode
2.5 V
LLC output OVP
ADC, 10 bits
Feedback sense
Programmable
Burst comparator
125 mV
Shutdown comparator
HVG
High-side gate driving
-
-
LVG
Low-side gate driving
-
-
LLC OC1 comparator
The LLC OC1 comparator implements the overload protection (OLP). It monitors the LLC_CS pin with respect to
a programmable threshold. If the LLC_CS pin goes every cycle over the OC1 threshold for a programmable time,
the IC shuts down and enters the OLP fault.
Both threshold and duration are programmable trough NVM parameters.
9.7.3
LLC OC2 comparator
The LLC OC2 comparator sets an HW limit for the current flowing into the LLC resonant tank: it triggers the OCP2
fault.
DS12075 - Rev 4
page 18/31
STNRG011
LLC protections
It monitors the LLC_CS pin with respect to a fixed 700 mV threshold. If this threshold is triggered for a
programmable consecutive number of cycles, the OCP2 fault is triggered and the system shuts down.
9.7.4
LLC ZCD comparator
The LLC ZCD comparator detects the LLC current zero-crossing during the normal operation to implement the
time-shift control and the anti capacitive protection.
Its output communicates to the LLC SMED.
The comparator’s hysteresis is programmable by NVM choosing between the available values 5 mV or 10 mV.
9.7.5
LLC_FB voltage reading: OPTO feedback loop error
The LLC_FB pin is connected to the optocoupler and its voltage is the error signal of the LLC loop.
The LLC_FB voltage is sampled by the ADC to calculate the time-shift.
9.7.6
Shutdown feature
If the LLC_FB pin is forced below 125 mV, the device shuts down. If the voltage returns over such threshold the
system restarts performing the soft-start.
This feature can be enabled / disabled using a NVM bit.
9.7.7
SMEDs
HVG and LVG are driven by an event driven 60 MHz state machine (2 coupled 4-state SMEDs).
Driving events are the ZCD event and the elapsing of the programmable time which sets the high-side and
low-side time-shift values and drivers deadtime.
9.7.8
Algorithm
The LLC operation is based on “Symmetric Time-Shift Control” (STSC), an improved version of time-shift control
that guarantees 50% of the HB duty cycle. The time-shift value is calculated from the LLC_FB pin.
9.7.9
Time-shift (patented)
The TSC methodology consists in controlling the amount of time elapsing from a zero- crossing of the tank current
to the switch-off of the MOSFET currently on.
Conceptually, with TSC an inner loop is closed and the outer loop that regulates the output voltage provides the
reference for the inner loop. This inner loop is completely managed by SMEDs using the zero current detection
information.
9.8
LLC protections
9.8.1
Anti-capacitive protection
Anti-capacitive control is applied at the SMEDs level using ZCD time events.
The IC monitors the phase relationship between the LLC tank current sensed on the LLC_CS pin and the voltage
at the HVG and LVG, checking the time between the gate rising edge and the tank current zero cross detection.
If this time is below a programmable threshold, which is indicative of impending the capacitive-mode operation,
the monitoring circuit activates the “Soft” ACP procedure: the time-shift is reduced (and therefore the switching
frequency is increased) in order to keep the converter away from that dangerous condition.
If the time reaches “zero” the device is stopped immediately. This is called “Hard” ACP. Both hard and soft ACP
can be enabled and disabled through NVM.
9.8.2
LLC OLP
If the LLC OC1 comparator is triggered the system could enter the overload protection (OLP). During this phase
the system regulates the output and checks for a programmable time if the OCP1 event is still present, in this
case the device is shut down entering the OLP fault state that can be programmed as latched or not latched.
DS12075 - Rev 4
page 19/31
STNRG011
ADC
9.8.3
LLC OCP2
If the LLC OC2 comparator is triggered for a number of times greater than a threshold set by the user the device
sets the OCP2 fault and it is shut down. The OCP2 fault can be programmed as latched or not latched.
9.8.4
LLC soft-start timeout
If the LLC output voltage cannot reach the regulation value within 100 ms, the device enters the LLC soft-start
timeout fault and it is shut down. The fault can be programmed as latched or not latched.
9.8.5
LLC OVP
If the LLC_AUX pin voltage is higher than the LLC OVP comparator threshold (2.5 V), the system enters the LLC
OVP fault state and it is turned off. The fault can be programmed as latched or not latched and can be disabled.
9.8.6
LLC_CS disconnection
If the LLC_CS pin is stuck at 0 V or 5 V during the soft-start the system enters the LLC_CS disconnection fault
(latched) and it is shut down if the disconnection faults detection is enabled in NVM.
9.8.7
LLC_AUX disconnection
If the pure external burst-mode is enabled and the LLC_AUX pin is stuck at 0 V during the burst and the
LLC_FB pin is higher than the burst comparator threshold, after 32 burst packets, the system enters LLC_AUX
disconnection protection (latched) and it is shut down if the disconnection faults detection is enabled in NVM.
9.9
ADC
The system ADC is an 8-channel 15-MHz SAR 10-bit A/D converter.
It needs 7 cycles (470 ns) for sampling and 11 cycles (740 ns) to convert the data.
It is controlled by a SW programmable scheduler allowing flexible system signals reading:
•
Fixed time sequence conversion
•
Event driven sequence conversion
Table 7. ADC input signals
9.10
9.10.1
Signal
Pin
Notes
FSR
Input line voltage
VAC
Internal voltage divider
PFC feedback voltage
PFC_FB
Direct reading
2.5 V
LLC feedback voltage
LLC_FB
Direct reading
2.5 V
484.5 V
Burst-mode
Specific resources
Burst comparator on LLC_FB pin
The LLC BURST comparator at the LLC_FB pin is used to wake-up the system, in order to perform a burst
sequence.
The comparator is alive also during sleep and the wake-up threshold is programmable (0.75 V, 1 V, 1.25 V).
External burst-mode comparator on LLC_AUX pin
The external burst-mode comparator with the 0.9 V threshold on the LLC_AUX pin is used to enter / exit the
burst-mode using an external digital signal. The external burst-mode operation can be enabled / disabled using a
NVM bit.
30-kHz system oscillator
A 30-kHz oscillator (always on) keeps the system alive.
DS12075 - Rev 4
page 20/31
STNRG011
Communication and configuration
9.10.2
Algorithm
The system can manage the deep sleep state with very low VCC current consumption (500 µA).
The system in deep sleep
•
Monitors the AC line for X-cap discharge and brown-out condition
•
Monitors the burst comparator to detect wake condition
•
Monitors the VCC for data integrity
•
All RAM data are maintained
The device implements two different burst-mode algorithms: the LLC_FB burst or external burst. The first one is
based on just the LLC_FB pin voltage, the second one is based on the external BM comparator on the LLC_AUX
pin that can be driven sensing the output current.
The burst-mode can be programmed to depends either on the LLC_FB pin only, or LLC_AUX pin only, or both.
This third possibility is called hybrid external burst.
In case of the LLC_FB burst-mode, the device enters the sleep mode if the LLC_FB pin voltage goes below a
programmable threshold. The burst switching activity is enabled after the burst comparator is triggered.
The normal switching activity is restored if the time between two bursts is lower than
a programmable threshold. This time defines a precise power level at which the controller exits the burst-mode. In
order to have a faster response to the big load transient the system exits the burst-mode also if the LLC_FB pin
voltage is still above the burst comparator threshold after one burst packet.
In case of the LLC_AUX pin driven burst mode, two types of external burst mode could be defined:
•
Pure external burst mode: only the external BM comparator manages the burst mode entering / exiting;
•
Hybrid external burst mode: if the external BM comparator is high, the system stays out of burst mode while
if the external BM comparator is low, burst mode entering / exiting is managed by the LLC_FB pin settings.
In both external burst mode cases, the burst switching activity is anyway managed by the LLC_FB pin and the
burst comparator.
The PFC and LLC switching activities during the burst-mode are synchronized.
The LLC can perform a burst without the PFC, depending on the system conditions.
9.11
Communication and configuration
The device communicates with an external digital device through a serial interface.
The serial interface uses two dedicated pins with a standard UART protocol. It implements also an I2C protocol
for external E2PROM writing and reading.
The serial interface allows the user to:
•
write the NVM to configure the device in a specific application: 20 bytes are available.
•
write into the RAM for test and SW patch purpose
•
read the NVM content
•
read the RAM content
•
read register content
•
configure the device for specific tests
Based on a specific code into the NVM the serial interface functionality can be reduced for security reasons.
9.11.1
Monitor
Some internal data can be provided to an external digital device trough the UART interface for monitoring
purposes.
9.11.2
Black box
Black box data are written into the external E2PROM during the normal operation.
9.11.3
Patches
SW patches (if necessary) are uploaded by the device from the external E2PROM at the startup.
Maximum patch size is 2.5 kB.
DS12075 - Rev 4
page 21/31
STNRG011
Package information
10
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
10.1
SO20 package information
Figure 5. SO20 package outline
DS12075 - Rev 4
page 22/31
STNRG011
SO20 package information
Table 8. SO20 package mechanical data
Dimensions
mm
Symbol
Min.
Typ.
Max.
Typ.
Max.
A
2.35
-
2.65
0.093
-
0.104
A1
0.10
-
0.30
0.004
-
0.012
B
0.33
-
0.51
0.013
-
0.020
C
0.23
-
0.32
0.009
-
0.013
D
12.60
-
13.00
0.496
-
0.512
E
7.40
-
7.60
0.291
-
0.299
e
-
1.27
-
H
10.00
-
10.65
0.394
-
0.419
h
0.25
-
0.75
0.010
-
0.030
L
0.40
-
1.27
0.016
-
0.050
K
DS12075 - Rev 4
inch
Min.
-
0.050
-
0° (min.), 8° (max.)
page 23/31
STNRG011
Ordering information
11
Ordering information
Table 9. Order codes
DS12075 - Rev 4
Part number
Package
Packing
STNRG011
SO20
Tube
STNRG011TR
SO20
Tape and reel
page 24/31
STNRG011
Revision history
Table 10. Document revision history
Date
Version
Changes
25-Oct-2017
1
Initial release.
15-Dec-2017
2
Updated Figure 4: Typical application schematic on page 15 (replaced by new figure).
15-Mar-2018
3
Updated Table 9: Order codes on page 32.
In Table 4. Electrical characteristics:
- updated IVcc_charge Max. values for tests:
26-Feb-2021
4
-- (i) VVAC > 40 V, VCC < 0.8 V
-- (ii) VVAC > 40 V, 0.8 V < VCC < VccCoreOn
- updated Fck Max. value
DS12075 - Rev 4
page 25/31
STNRG011
Contents
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
3
Absolute maximum ratings and thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4
Detailed block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5
Pin function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
6
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
7
Application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
8
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
9
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
9.1
HV startup and VCC management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9.2
AC line monitor and protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9.2.1
Brown-in/out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9.2.2
Line synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9.2.3
Line disconnection and X-cap discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9.2.4
Vline surge stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9.2.5
Line monitor for PFC control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9.2.6
Early warning signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9.3
Gate-drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9.4
PFC control and fault management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9.5
9.4.1
PFC resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9.4.2
Vin reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9.4.3
PFC output voltage feedback reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9.4.4
PFC OVP comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9.4.5
PFC RECOT comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9.4.6
PFC OC1 comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9.4.7
PFC OC2 comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9.4.8
PFC ZCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9.4.9
PFC state machine event driven (SMED) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
PFC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
9.5.1
DS12075 - Rev 4
Ramp enhanced COT improved (patented). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
page 26/31
STNRG011
Contents
9.5.2
9.6
9.7
9.8
Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
PFC protections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
9.6.1
PFC OVP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
9.6.2
PFC OCP2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
9.6.3
Surge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
9.6.4
PFC soft-start timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
9.6.5
PFC UVP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9.6.6
PFC_FB disconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9.6.7
PFC_CS disconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9.6.8
PFC_ZCD disconnection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
LLC control and fault management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9.7.1
LLC related resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9.7.2
LLC OC1 comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9.7.3
LLC OC2 comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9.7.4
LLC ZCD comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.7.5
LLC_FB voltage reading: OPTO feedback loop error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.7.6
Shutdown feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.7.7
SMEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.7.8
Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.7.9
Time-shift (patented) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
LLC protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.8.1
Anti-capacitive protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.8.2
LLC OLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.8.3
LLC OCP2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.8.4
LLC soft-start timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.8.5
LLC OVP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.8.6
LLC_CS disconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.8.7
LLC_AUX disconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.9
ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.10
Burst-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
DS12075 - Rev 4
9.10.1
Specific resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.10.2
Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
page 27/31
STNRG011
Contents
9.11
10
9.11.1
Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9.11.2
Black box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9.11.3
Patches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
10.1
11
Communication and configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
SO20 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
DS12075 - Rev 4
page 28/31
STNRG011
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
DS12075 - Rev 4
Block diagram . . . . . . . . . . .
Pin connection (top view) . . . .
Detailed block diagram . . . . .
Typical application schematic .
SO20 package outline . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 1
. 3
. 5
12
22
page 29/31
STNRG011
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Absolute maximum ratings . . . .
Thermal data. . . . . . . . . . . . . .
Pin function detailed description.
Electrical characteristics . . . . . .
Related pins . . . . . . . . . . . . . .
Pin descriptions . . . . . . . . . . . .
ADC input signals . . . . . . . . . .
SO20 package mechanical data
Order codes . . . . . . . . . . . . . .
Document revision history . . . . .
DS12075 - Rev 4
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 4
. 4
. 6
. 8
16
18
20
23
24
25
page 30/31
STNRG011
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2021 STMicroelectronics – All rights reserved
DS12075 - Rev 4
page 31/31