0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STPA002CD-48X

STPA002CD-48X

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    Flexiwatt27

  • 描述:

    ICPWRAMPMOSFFLEXIWATT27HORZ

  • 数据手册
  • 价格&库存
STPA002CD-48X 数据手册
STPA002 4 x 52 W quad bridge power amplifier with low voltage operation Datasheet - production data – No external compensation – No bootstrap capacitors '!0'03 '!0'03 Flexiwatt25  Protections: – Output short circuit to GND, to Vs, across the load – Very inductive loads – Overrating chip temperature with soft thermal limiter – Output DC offset detection – Load dump voltage – Fortuitous open GND – Reverse battery – ESD Flexiwatt27 Features  High output power capability: – 4 x 52 W/4 Ω max. – 4 x 30 W/4 Ω @ 14.4 V, 1 kHz, 10 % – 4 x 85 W/2 Ω max. – 4 x 55 W/2 Ω @ 14.4V, 1 kHz, 10 % Description  MOSFET output power stage  Stop-start and hybrid engines compliant  Excellent 2  driving capability  Hi-Fi class distortion  Low output noise  Standby function and mute function  Automute at min. supply voltage detection  Low external component count: – Internally fixed gain (26 dB) The STPA002 is a MOSFET class AB audio power amplifier, designed for high-power car radio. In addition to the outstanding output current capability and distortion performance, the STPA002 is extremely robust against several kinds of fortuitous misconnections. It is compliant to the most recent OEM specifications for low voltage operation in startstop vehicles, and can sustain hybrid vehicles battery transitions. It includes a DC offset detector and, in Flexiwatt27 package, a clipping detector. Table 1. Device summary Order code Package Packing STPA002OD-4WX Flexiwatt25 (with OD) Tube STPA002CD-48X Flexiwatt27 (with CD) Tube September 2013 This is information on a product in full production. DocID024368 Rev 3 1/24 www.st.com Contents STPA002 Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Application circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 Electrical characteristics typical curves . . . . . . . . . . . . . . . . . . . . . . . . 12 5 General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.2 Battery variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.3 5.4 5.5 5.2.1 Low voltage operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.2.2 Cranks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.2.3 Advanced battery management (hybrid vehicles) . . . . . . . . . . . . . . . . . 17 Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.3.1 Short circuits and open circuit operation . . . . . . . . . . . . . . . . . . . . . . . . 18 5.3.2 Over-voltage and load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.3.3 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.4.1 DC offset detection (OD pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.4.2 Clipping detection and diagnostics (CD-DIAG pin) . . . . . . . . . . . . . . . . 19 Heat sink definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2/24 DocID024368 Rev 3 STPA002 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 DocID024368 Rev 3 3/24 3 List of figures STPA002 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. 4/24 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Standard test and application circuit (Flexiwatt25) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Standard test and application circuit (Flexiwatt27) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Output power vs. supply voltage (4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Output power vs. supply voltage (2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Distortion vs. output power (4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Distortion vs. output power (2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Distortion vs. frequency (4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Distortion vs. frequency (2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Distortion vs. output power (4 Ω, Vs = 6 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Distortion vs. output power (2 Ω, Vs = 6 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Crosstalk vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Total power dissipation & efficiency vs. Po (4 Ω, Sine) . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Power dissipation vs. average output power (4 Ω, audio program simulation). . . . . . . . . . 14 Power dissipation vs. average output power (2 Ω, audio program simulation). . . . . . . . . . 14 ITU R-ARM frequency response, weighting filter for transient pop. . . . . . . . . . . . . . . . . . . 14 SVR charge diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Battery cranking curve example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Battery cranking curve example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Upwards fast battery transitions diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Load dump protection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Thermal protection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Audio section waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Flexiwatt25 (vertical) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . 21 Flexiwatt27 (Vertical) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . 22 DocID024368 Rev 3 STPA002 1 Overview Overview The STPA002 is a complementary quad audio power amplifier. It is available in two different packages, Flexiwatt25 and Flexiwatt27. It embeds four independent amplifiers working in class AB, a standby, a mute pin and an offset detector output. In the Flexiwatt27 package also a clipping detection pin with diagnostics information is available. The amplifier is fully operational down to a battery voltage of 6 V, without producing pop noise and continuing to play during battery transitions. The STPA002 can drive 2 ohm loads and has a very high immunity to disturbs without need of external components or compensation. It is protected against any kind of short or open circuit, over-voltage and over-temperature. 1.1 Block diagram Figure 1. Block diagram 6CC 6CC  —& 34 "9 —& /$ #$ $)!' -54% /54 ). /54 07 '.$ M& /54 /54 ). M& 07 '.$ /54 /54 ). 07 '.$ M& /54 /54 ). M& 07 '.$ !# '.$ —& 362 4!" M& 3 '.$  ONLYIN&LEXIWATT '!0'03 DocID024368 Rev 3 5/24 23 Overview 1.2 STPA002 Application circuits Figure 2. Standard test and application circuit (Flexiwatt25) # M& # M& 6CC  6CC   2 34 "9   + 2 # M&  -54%   + # # M& /54  ).    M& /54  ).  #M&  ).   #M& ).   #M& 3 '.$ /54    /54   # —&    /$ 362 # M& 4!" 2 6 + /$/54 '!0'03 Figure 3. Standard test and application circuit (Flexiwatt27) # M& # M& 6CC  6CC   2 34 "9 4!"    + 2 # M&    -54% + # # M& ). /54     M& /54  ).  #M&  ).   #M& ).   #M& 3 '.$    # —& /54    /$ 362 # M& 2 + /$/54 /54   #$ $)!' 6 2 6 + #$ $)!'/54 '!0'03 6/24 DocID024368 Rev 3 STPA002 2 Pin description Pin description Figure 4. Pin connections (top view) 4!"  07 '.$ /54 34 "9 /54 6## /54 07 '.$ /54 362 ). ). &LEXIWATT 340!/$ 78 3 '.$ ). ). !# '.$ /54 07 '.$ /54 6## /54 -54% /54 07 '.$ /$  '!0'03 4!"  /$ 07 '.$ /54 34 "9 /54 6## /54 07 '.$ /54 362 ). ). &LEXIWATT 340!#$ 8 3 '.$ ). ). !# '.$ /54 07 '.$ /54 6## /54 -54% /54 07 '.$ #$ $)!' 4!"  '!0'03 DocID024368 Rev 3 7/24 23 Pin description STPA002 Table 2. Pin functions Pin number Pin number FW27 FW25 8/24 Pin name Description 1 1 TAB Device slug connection 2 25 OD Offset detector output 3 2 PW-GND2 4 3 OUT2- Channel 2, negative output 5 4 ST-BY Stand-by 6 5 OUT2+ Channel 2, positive output 7 6 VCC 8 7 OUT1- 9 8 PW-GND1 10 9 OUT1+ 11 10 SVR Supply voltage rejection pin 12 11 IN1 Channel 1, input 13 12 IN2 Channel 2, input 14 13 S-GND 15 14 IN4 Channel 4, input 16 15 IN3 Channel 3, input 17 16 AC-GND 18 17 OUT3+ 19 18 PW-GND3 20 19 OUT3- 21 20 VCC 22 21 OUT4+ Channel 4, positive output 23 22 MUTE Mute pin 24 23 OUT4- Channel 4, negative output 25 24 PW-GND4 Channel 4, output power ground 26 n.a CD-DIAG Clipping detector and diagnostics output 27 n.a TAB Channel 2, output power ground Supply voltage Channel 1, negative output Channel 1, output power ground Channel 1, positive output Signal ground AC ground Channel 3, positive output Channel 3, output power ground Channel 3, negative output Supply voltage Device slug connection DocID024368 Rev 3 STPA002 Electrical specifications 3 Electrical specifications 3.1 Absolute maximum ratings Table 3. Absolute maximum ratings Symbol Parameter Value Unit Operating supply voltage 18 V VS (DC) DC supply voltage 28 V VS (pk) Peak supply voltage (for t = 50 ms) 50 V IO Output peak current Non repetitive (t = 100 μs) Repetitive (duty cycle 10 % at f = 10 Hz) 10 9 A A Tj Junction temperature 150 °C Tstg Storage temperature -55 to 150 °C Ground pin voltage -0.3 to 0.3 V -0.3 to 8 V -0.3 to Vs(pk) V -0.3 to 6 V Value Unit 1 °C/W VS GNDmax Vin max Input pin max voltage VSB max ST-BY pin max voltage Vmute max Mute pin max voltage 3.2 Thermal data Table 4. Thermal data Symbol Parameter Rth j-case 3.3 Thermal resistance junction-to-case Max. Electrical characteristics Refer to the test and application diagram, VS = 14.4 V; RL = 4 Ω; Rg = 600 Ω; f = 1 kHz; Tamb = 25 °C; unless otherwise specified. Table 5. Electrical characteristics Symbol Parameter Test condition Min. Typ. Max. Unit 6 - 18 V General characteristics VS Supply voltage range - Iq1 Quiescent current RL = ∞ 100 200 300 mA Output offset voltage Mute mode -75 - +75 mV VOS DocID024368 Rev 3 9/24 23 Electrical specifications STPA002 Table 5. Electrical characteristics (continued) Symbol dVOS Parameter During mute ON/OFF output offset voltage During standby ON/OFF output offset voltage Ri Input impedance ISB Standby current consumption Test condition Min. Typ. Max. Unit -7.5 - +7.5 mV -15 - +15 mV 45 55 65 kΩ VSt-by = 1.2 V - - 2 μA VSt-by = 0 - - 1 μA VS = 14.4 V; THD = 10 % VS = 14.4 V; THD = 1 % 27 21 30 24 - W W VS = 14.4 V; THD = 10 %, 2 Ω VS = 14.4 V; THD = 1 %, 2 Ω 49 39 55 43 - W W ITU R-ARM weighted - Audio performances Po Output power Max. output power(1) VS = 15.2 V; RL = 4 Ω - 52 - W Distortion Po = 4 W - 0.01 0.04 % Gv Voltage gain - 25 26 27 dB dGv Channel gain unbalance - -1 - +1 dB eNo Output Noise "A" Weighted Bw = 20 Hz to 20 kHz - 40 50 70 μV μV SVR Supply voltage rejection f = 100 Hz; Vr = 1 Vrms 60 70 - dB fch High cut-off frequency PO = 0.5 W 100 300 - kHz CT Cross talk f = 1 kHz PO = 4 W f = 10 kHz PO = 4 W 65 45 75 60 - dB dB AM Mute attenuation POref = 4 W 85 95 - dB - - 0.5 μA Po max. THD Control pin characteristics Ipin5 Standby pin current VSt-by = 1.2 V to 2.6 V VSB out Standby out threshold voltage (Amp: ON) 2.6 - - V VSB in Standby in threshold voltage (Amp: OFF) - - 1.2 V VM out Mute out threshold voltage (Amp: Play) 2.6 - - V VM in Mute in threshold voltage (Amp: Mute) - - 1.2 V (Amp: Mute) Att  80 dB; POref = 4 W 4.5 5 5.5 V (Amp: Play) Att < 0.1 dB; PO = 0.5 W - - 6 V 6 8.5 11 μA VAM in Ipin23 10/24 VS automute threshold Muting pin current VMUTE = 1.2 V (Sourced current) DocID024368 Rev 3 STPA002 Electrical specifications Table 5. Electrical characteristics (continued) Symbol Parameter Test condition Min. Typ. Max. Unit ±1 ±2 ±3 V Vo > ±3 V, Ioff Det = 1 mA - 0.2 0.4 V Vo < ±1 V - 0 15 μA Offset detector VOFF Detected differential output offset VOFF_SAT Off detector saturation voltage VOFF_LK Off detector leakage current - Clipping detector (2) CDLK Clip detector high leakage current Cd off - 0 1 μA CDSAT Clip detector saturation voltage DC On; ICD = 1 mA - 0.2 0.4 V CDTHD Clip detector THD level - - 1 - % 1. Saturated square wave output 2. Clipping detection is guaranteed till a minimum supply voltage of 7 V. DocID024368 Rev 3 11/24 23 Electrical characteristics typical curves 4 STPA002 Electrical characteristics typical curves Figure 5. Quiescent current vs. supply voltage Figure 6. Output power vs. supply voltage (4 Ω) ,T P$    3R :  5/  7 I N+]   9LQ  5/ 7  3RPD[          7+'  7+'           9V 9            *$3*36 Figure 7. Output power vs. supply voltage (2 Ω)     '!0'03 9V 9 5/ 7 5/  7 I N+]    7+'      Figure 8. Distortion vs. output power (4 Ω) 3R :     9V 9 3RPD[   I N +]  7+'     I N+]  7+'              9V 9      Figure 9. Distortion vs. output power (2 Ω)    '!0'03 7+'    '!0'03 7+'   9V   9 5/  7 9V 9 5/ 7  3R :  I N+]    Figure 10. Distortion vs. frequency (4 Ω)   3R :   I N+]        3R :    '!0'03 12/24 DocID024368 Rev 3   I +]   '!0'03 STPA002 Electrical characteristics typical curves Figure 11. Distortion vs. frequency (2 Ω) Figure 12. Distortion vs. output power (4 Ω, Vs = 6 V) 7+'    7+'    9V   9 5/  7 3R   :  9V   9 5/  7  I N+]         I +]   I N+]     3R :  '!0'03 '!0'03 Figure 13. Distortion vs. output power (2 Ω, Vs = 6 V) Figure 14. Supply voltage rejection vs. frequency 7+'    695 G%   9V   9 5/  7 5J 7 9ULSSOH  9UPV    I N+]     I N+]        3R :      I +]   '!0'03 Figure 15. Crosstalk vs. frequency '!0'03 Figure 16. Total power dissipation & efficiency vs. Po (4 Ω, Sine) &52667$/. G%        H    3GLVV :    H 9V 9 5/ [7 [  I  N+]  5/ 7 3R  : 5J  7       3GLVV                   I +] '!0'03 DocID024368 Rev 3               3R :  '!0'03 13/24 23 Electrical characteristics typical curves STPA002 Figure 17. Power dissipation vs. average output Figure 18. Power dissipation vs. average output power (4 Ω, audio program simulation) power (2 Ω, audio program simulation) 3GLVV :    9V 9 5/ [Ÿ 3,1.12,6(  3GLVV :   9V 9 5/ [Ÿ 3,1.12,6(     &/,367$57  &/,367$57              3RDYJ :     '!0'03 Figure 19. ITU R-ARM frequency response, weighting filter for transient pop  /UTPUTATTENUATIOND"           14/24   (Z   '!0'03 DocID024368 Rev 3      3RDYJ :      '!0'03 STPA002 General information 5 General information 5.1 Operation The STPA002's inputs are ground-compatible. If the standard value for the input capacitors (0.22 μF) is adopted, the low frequency cut-off will amount to 16 Hz. The input capacitors should have the same value of the capacitor connected to AC-GND pin for optimum pop performances (see Figure 2: Standard test and application circuit (Flexiwatt25)). Standby and mute pins are 3.3 V and 5 V compatible. RC cells at both mute and stand-by pins have always to be used in order to smooth the transitions for preventing any audible transient noise. A time constant slower than 2.5 V/ms is suggested for the stand-by pin and 0.5 V/ms for the mute pin. In case the standby function is not used, it could steadily be connected to Vs through a 470 kΩ resistor. The capacitance on SVR sets the start-up and shut-down times and helps to have pop-noise free transitions. Its minimum recommended value is 10 μF. However, to have a fast start-up time, the internal resistor on SVR pin, used to set the time constant, is reduced from 100 kΩ to 3 kΩ till voltage on SVR reaches VCC/4 -2VBE and then released. In this way the capacitor on SVR is charged very quickly to VCC/4, as shown in the following figure. Figure 20. SVR charge diagram 6## 6##n 6"% 4IME '!0'03 SVR pin accomplishes multiple functions:  it is used as a reference voltage for input pins (VCC/4)  the capacitor connected to SVR helps the supply voltage ripple rejection  it is used as a reference to generate the half supply voltage for the output When the amplifier goes in stand-by mode or goes out from this condition, it is suggested to put the amplifier in mute to ensure the absence of audible noise. Then the standby pin can be set to the appropriate value (ground or > 2.6 V) and the capacitance on SVR pin is discharged or charged consequently. DocID024368 Rev 3 15/24 23 General information STPA002 5.2 Battery variations 5.2.1 Low voltage operation The most recent OEM specifications require automatic stop of car engine at traffic lights, in order to reduce emissions of polluting substances. The STPA002, thanks to its innovating design, allows a continuous operation when battery falls down. At 6 V it is still fully operational, only the maximum output power is reduced accordingly to the available voltage supply. If the battery voltage drops below the minimum operating voltage of 6 V the amplifier is fast muted, the capacitor on SVR is discharged and the amplifier restarts when the battery voltage returns to the correct voltage. 5.2.2 Cranks STPA002 can sustain worst case cranks from 16 V to 6 V, continuing to play and without producing any pop noise. Examples of battery cranking curves are shown below, indicating the shape and duration of allowed battery transitions. Figure 21. Battery cranking curve example 1 6BATT6 6 6 6 6 T T T T T T T TS V1 = 16 V; V2 = 6 V; V3 = 7 V; V4 = 8 V t1 = 2 ms; t2 = 50 ms; t3 = 5 ms; t4 = 300 ms; t5 =10 ms; t6 = 1 s; t7 = 2 ms 16/24 DocID024368 Rev 3 '!0'03 STPA002 General information Figure 22. Battery cranking curve example 2 6BATT6 6 6 6 T T T T T TS '!0'03 V1 = 16 V; V2 = 6 V; V3 = 7 V t1 = 2 ms; t2 = 5 ms; t3 = 15 ms; t5 = 1 s; t6 = 50 ms 5.2.3 Advanced battery management (hybrid vehicles) In addition to compatibility with low Vbatt, the STPA002 is able to sustain upwards fast battery transitions without causing unwanted audible effects, like pop noise, and without any sound interruption thanks to the innovative circuit topology. In fact, in hybrid vehicles, the engine ignition causes a fast increase of battery voltage which can reach 16 V in less than 10 ms. Figure 23. Upwards fast battery transitions diagram '!0'03 DocID024368 Rev 3 17/24 23 General information STPA002 5.3 Protections 5.3.1 Short circuits and open circuit operation When the IC detects a short circuit to ground, to Vsupply or across the load, the output of the amplifier is put in three-state (high impedance condition). The power stage remains in this condition until the short is removed. In case of short circuit to ground or Vcc, the amplifier exits from the three-state condition only when the output returns inside the limits imposed by an internal voltage comparator. When a short across the load is present, the power stage sees an over-current and is brought in protection mode for 150 μs. After this time, if the short circuit condition is removed the amplifier returns to play, otherwise the high impedance state is maintained and the check is repeated every 150 μs. Disconnection of load (open load condition) doesn't damage the amplifier, which continues to play. 5.3.2 Over-voltage and load dump protection When the battery voltage is higher than 19 V, the amplifier is switched to a high impedance state. It stops playing till the supply voltage returns in the permitted range. The amplifier is protected against load dump surges having amplitude as high as 50 V and a rising time lower than 5 ms (see Figure 24). Figure 24. Load dump protection diagram 66DUMP 66CC MS MS '!0'03 5.3.3 Thermal protection If the junction temperature of the IC reaches Tj = 150 °C, a smooth mute is applied to reduce output power and limit power dissipation. If this is not enough and the junction temperature continues to increase, the amplifier is switched off when it reaches the maximum temperature of 170 °C. /UTPUTPOWER Figure 25. Thermal protection diagram  # 18/24 *UNCTIONTEMPERATURE  # DocID024368 Rev 3  # '!0'03 STPA002 General information 5.4 Warnings 5.4.1 DC offset detection (OD pin) The STPA002 integrates a DC offset detector to avoid that an anomalous input DC offset is multiplied by the amplifier gain producing a dangerous large offset at the output. In fact an output offset may lead to speakers damage for overheating. To correctly detect a DC offset, the power amplifier has to be un-muted with no input signal. When the differential output voltage is out of a window comparator with thresholds ± 2 V (typ), the OD pin is pulled down. 5.4.2 Clipping detection and diagnostics (CD-DIAG pin) When clipping occurs, the output signal is distorted. If the signal distortion on one of the output channels exceeds 1 %, the CD-DIAG pin is pulled down. This information can be sent to an audio processor in order to reduce the input signal of the amplifier and reduce the clipping. Thanks to a particular internal circuitry, the clip detector is always functional till 7 V. A short to ground and short to Vcc is signaled by CD-DIAG. This pin is pulled down to ground till these shorts are present to inform the user a protection occurred. CD-DIAG acts also as thermal warning. In fact every time Tj exceeds 140 °C, it is pulled down to notify this occurrence. Figure 26. Audio section waveforms 34 "90). 6/,4!'% T -54%0). 6/,4!'% T 6S /54054 7!6%&/2T $)!'PIN 7!6%&/2T #,)00).' 3(/244/'.$ /24/6S 4(%2-!, 02/8)-)49 '!0'03 DocID024368 Rev 3 19/24 23 General information 5.5 STPA002 Heat sink definition Assuming we have a dissipated power of 26 W (e.g. in the worst case situation of frequent clipping occurrence, with music signal), considering Tj max is 150 °C and assuming ambient temperature is 70 °C, the available temperature gap for a correct dissipation is 80 °C. This means the thermal resistance of the system Rth has to be 80 °C/26 W = 3 °C/W. The junction to case thermal resistance is 1 °C/W. So the heat sink thermal resistance should be approximately 2 °C/W. This would avoid any thermal shutdown occurrence even after long-term and full-volume operation. 20/24 DocID024368 Rev 3 STPA002 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Figure 27. Flexiwatt25 (vertical) mechanical data and package dimensions $)- ! " # $ % & ' ' ( ( ( ( , , , , , , - . / 2 2 2 2 2 6 6 6 6 -).              MM 490                           -!8   -).                          INCH 490                           -!8   /54,).%!.$ -%#(!.)#!,$!4!             &LEXIWATTVERTICAL ƒ 7\S ƒ 7\S ƒ 7\S ƒ 7\S  DAM BARPROTUSIONNOTINCLUDED  MOLDINGPROTUSIONINCLUDED 6 # " 6 ( ( 6 ! ( / ( 2 , 2 6 2 , . 2 , 6 Package information , , 6 6 2 $ 2 , 0IN 2 2 % ' ' & &,%8-% - -  '!0'03 DocID024368 Rev 3 21/24 23 Package information STPA002 Figure 28. Flexiwatt27 (Vertical) mechanical data and package dimensions ',0 0,1   $ % & ' ( )  * * +  + + + /  / /  / / / 0 0 1 2 5 5 5 5 5 9 9 9 9            PP 7
STPA002CD-48X 价格&库存

很抱歉,暂时无法提供与“STPA002CD-48X”相匹配的价格&库存,您可以联系我们找货

免费人工找货