0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STR750FV0H6

STR750FV0H6

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    LFVGA100

  • 描述:

    IC MCU 32BIT 64KB FLASH 100LFBGA

  • 数据手册
  • 价格&库存
STR750FV0H6 数据手册
STR750Fxx STR751Fxx STR752Fxx STR755Fxx ARM7TDMI-S™ 32-bit MCU with Flash, SMI, 3 std 16-bit timers, PWM timer, fast 10-bit ADC, I2C, UART, SSP, USB and CAN Features ■ Core – ARM7TDMI-S 32-bit RISC CPU – 54 DMIPS @ 60 MHz ■ Memories – Up to 256 KB Flash program memory (10k W/E cycles, retention 20 yrs @ 85°C) – 16 KB Read-While-Write Flash for data (100k W/E cycles, retention 20 yrs@ 85°C) – Flash Data Readout and Write Protection – 16KBytes embedded high speed SRAM – Memory mapped interface (SMI) to ext. Serial Flash (64 MB) w. boot capability ■ ■ ■ ■ Clock, reset and supply management – Single supply 3.3V ±10% or 5V ±10% – Embedded 1.8V Voltage Regulators – Int. RC for fast start-up and backup clock – Up to 60 MHz operation using internal PLL with 4 or 8 MHz crystal/ceramic osc. – Smart Low Power Modes: SLOW, WFI, STOP and STANDBY with backup registers – Real-time Clock, driven by low power internal RC or 32.768 kHz dedicated osc, for clock-calendar and Auto Wake-up Nested interrupt controller – Fast interrupt handling with 32 vectors – 16 IRQ priorities, 2 maskable FIQ sources – 16 external interrupt / wake-up lines DMA – 4-channel DMA controller – Circular buffer management – Support for UART, SSP, Timers, ADC LQFP64 10x10 mm LFBGA64 8 x 8 x 1.7 mm LFBGA100 10 x 10 x 1.7 mm – 16-bit 6-ch. synchronizable PWM timer – Dead time generation, edge/center-aligned waveforms and emergency stop – Ideal for induction/brushless DC motors ■ 8 Communications interfaces – 1 I2C interface – 3 HiSpeed UARTs w. Modem/LIN capability – 2 SSP interfaces (SPI or SSI) up to 16 Mb/s – 1 CAN interface (2.0B Active) – 1 USB full-speed 12 Mb/s interface with 8 configurable endpoint sizes ■ 10-bit A/D converter – 16/11 chan. with prog. Scan Mode & FIFO – Programmable Analog Watchdog feature – Conversion time: min. 3.75 µs – Start conversion can be triggered by timers ■ Up to 72/38 I/O ports – 72/38 GPIOs with High Sink capabilities – Atomic bit SET and RES operations Table 1. Reference 6 Timers – 16-bit watchdog timer (WDG) – 16-bit timer for system timebase functions – 3 synchronizable timers each with up to 2 input captures and 2 output compare/PWMs. February 2009 LQFP100 14 x 14 mm Device summary Part number STR750Fxx STR750FV0, STR750FV1, STR750FV2 STR751Fxx STR751FR0, STR751FR1, STR751FR2 STR752Fxx STR752FR0, STR752FR1, STR752FR2 STR755Fxx Rev 5 STR755FR0, STR755FR1, STR755FR2 STR755FV0, STR755FV1, STR755FV2 1/84 www.st.com 1 Contents STR750Fxx STR751Fxx STR752Fxx STR755Fxx Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 3.1 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.1 Pin description table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 External components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.1 6.2 6.3 2/84 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.1.6 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.1.7 I/O characteristics versus the various power schemes (3.3V or 5.0V) . 29 6.1.8 Current consumption measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.2.1 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.2.2 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.2.3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 35 6.3.3 Embedded voltage regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.3.5 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 STR750Fxx STR751Fxx STR752Fxx STR755Fxx 7 Contents 6.3.6 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.3.7 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.3.8 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3.9 TB and TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3.10 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . 62 6.3.11 USB characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3.12 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.2.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . . 80 8 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3/84 Description 1 STR750Fxx STR751Fxx STR752Fxx STR755Fxx Description The STR750 family of 32-bit microcontrollers combines the industry-standard ARM7TDMI® 32-bit RISC core, featuring high performance, very low power, and very dense code, with a comprehensive set of peripherals and ST's latest 0.18µ embedded Flash technology. The STR750 family comprises a range of devices integrating a common set of peripherals as well as USB, CAN and some key innovations like clock failure detection and an advanced motor control timer. It supports both 3.3V and 5V, and it is also available in an extended temperature range (-40 to +105°C). This makes it a genuine general purpose microcontroller family, suitable for a wide range of applications: ● Appliances, brushless motor drives ● USB peripherals, UPS, alarm systems ● Programmable logic controllers, circuit breakers, inverters ● Medical and portable equipment 2 Device overview Table 2. Device overview Features STR755FR0 STR755FR1 STR755FR2 STR751FR0/ STR751FR1/ STR751FR2 STR752FR0/ STR752FR1/ STR752FR2 STR755FV0 STR755FV1/ STR755FV2 Flash - Bank 0 (bytes) 64K/128K/256K Flash - Bank 1 (bytes) 16K RWW STR750FV0/ STR750FV1/ STR750FV2 RAM (bytes) 16K Operating Temperature. Ambient temp.:-40 to +85°C / -40 to +105°C (see Table 49) Junction temp. -40 to + 125 °C (see Table 10) Common Peripherals USB/CAN peripherals Operating Voltage Packages (x) 4/84 3 UARTs, 2 SSPs, 1 I2C, 3 timers 1 PWM timer, 38 I/Os 13 Wake-up lines, 11 A/D Channels None USB 3.3V or 5V 3.3V CAN T=LQFP64 10x10, H=LFBGA64 3 UARTs, 2 SSPs, 1 I2C, 3 timers 1 PWM timer, 72 I/Os 15 Wake-up lines, 16 A/D Channels None USB+CAN 3.3V or 5V T=LQFP100 14x14, H=LFBGA100 STR750Fxx STR751Fxx STR752Fxx STR755Fxx 3 Introduction Introduction This Datasheet contains the description of the STR750F family features, pinout, Electrical Characteristics, Mechanical Data and Ordering information. For complete information on the Microcontroller memory, registers and peripherals. Please refer to the STR750F Reference Manual. For information on the ARM7TDMI-S core please refer to the ARM7TDMI-S Technical Reference Manual available from Arm Ltd. For information on programming, erasing and protection of the internal Flash memory please refer to the STR7 Flash Programming Reference Manual For information on third-party development tools, please refer to the http://www.st.com/mcu website. 3.1 Functional description The STR750F family includes devices in 2 package sizes: 64-pin and 100-pin. Both types have the following common features: ARM7TDMI-STM core with embedded Flash & RAM STR750F family has an embedded ARM core and is therefore compatible with all ARM tools and software. It combines the high performance ARM7TDMI-STM CPU with an extensive range of peripheral functions and enhanced I/O capabilities. All devices have on-chip highspeed single voltage FLASH memory and high-speed RAM. Figure 1 shows the general block diagram of the device family. Embedded Flash memory Up to 256 KBytes of embedded Flash is available in Bank 0 for storing programs and data. An additional Bank 1 provides 16 Kbytes of RWW (Read While Write) memory allowing it to be erased/programmed on-the-fly. This partitioning feature is ideal for storing application parameters. ● When configured in burst mode, access to Flash memory is performed at CPU clock speed with 0 wait states for sequential accesses and 1 wait state for random access (maximum 60 MHz). ● When not configured in burst mode, access to Flash memory is performed at CPU clock speed with 0 wait states (maximum 32 MHz) Embedded SRAM 16 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. Enhanced interrupt controller (EIC) In addition to the standard ARM interrupt controller, the STR750F embeds a nested interrupt controller able to handle up to 32 vectors and 16 priority levels. This additional hardware block provides flexible interrupt management features with minimal interrupt latency. 5/84 Introduction STR750Fxx STR751Fxx STR752Fxx STR755Fxx Serial memory interface (SMI) The Serial Memory interface is directly able to access up to 4 serial FLASH devices. It can be used to access data, execute code directly or boot the application from external memory. The memory is addressed as 4 banks of up to 16 Mbytes each. Clocks and start-up After RESET or when exiting from Low Power Mode, the CPU is clocked immediately by an internal RC oscillator (FREEOSC) at a frequency centered around 5 MHz, so the application code can start executing without delay. In parallel, the 4/8 MHz Oscillator is enabled and its stabilization time is monitored using a dedicated counter. An oscillator failure detection is implemented: when the clock disappears on the XT1 pin, the circuit automatically switches to the FREEOSC oscillator and an interrupt is generated. In Run mode, the AHB and APB clock speeds can be set at a large number of different frequencies thanks to the PLL and various prescalers: up to 60 MHz for AHB and up to 32 MHz for APB when fetching from Flash (64 MHz and 32 MHz when fetching from SRAM). In SLOW mode, the AHB clock can be significantly decreased to reduce power consumption. The built-in Clock Controller also provides the 48 MHz USB clock directly without any extra oscillators or PLL. For instance, starting from the 4 MHz crystal source, it is possible to obtain in parallel 60 MHz for the AHB clock, 48 MHz for the USB clock and 30 MHz for the APB peripherals. Boot modes At start-up, boot pins are used to select one of five boot options: ● Boot from internal flash ● Boot from external serial Flash memory ● Boot from internal boot loader ● Boot from internal SRAM Booting from SMI memory allows booting from a serial flash. This way, a specific boot monitor can be implemented. Alternatively, the STR750F can boot from the internal boot loader that implements a boot from UART. Power supply schemes You can connect the device in any of the following ways depending on your application. 6/84 ● Power Scheme 1: Single external 3.3V power source. In this configuration the VCORE supply required for the internal logic is generated internally by the main voltage regulator and the VBACKUP supply is generated internally by the low power voltage regulator. This scheme has the advantage of requiring only one 3.3V power source. ● Power Scheme 2: Dual external 3.3V and 1.8V power sources. In this configuration, the internal voltage regulators are switched off by forcing the VREG_DIS pin to high level. VCORE is provided externally through the V18 and V18REG power pins and VBACKUP through the V18_BKP pin. This scheme is intended to save power consumption for applications which already provide an 1.8V power supply. ● Power Scheme 3: Single external 5.0V power source. In this configuration the VCORE supply required for the internal logic is generated internally by the main voltage STR750Fxx STR751Fxx STR752Fxx STR755Fxx Introduction regulator and the VBACKUP supply is generated internally by the low power voltage regulator. This scheme has the advantage of requiring only one 5.0V power source. ● Caution: Power Scheme 4: Dual external 5.0V and 1.8V power sources. In this configuration, the internal voltage regulators are switched off, by forcing the VREG_DIS pin to high level. VCORE is provided externally through the V18 and V18REG power pins and VBACKUP through the V18_BKP pin. This scheme is intended to provide 5V I/O capability. When powered by 5.0V, the USB peripheral cannot operate. Low power modes The STR750F supports 5 low power modes, SLOW, PCG, WFI, STOP and STANDBY. Caution: ● SLOW MODE: the system clock speed is reduced. Alternatively, the PLL and the main oscillator can be stopped and the device is driven by a low power clock (fRTC). The clock is either an external 32.768 kHz oscillator or the internal low power RC oscillator. ● PCG MODE (Peripheral Clock Gating MODE): When the peripherals are not used, their APB clocks are gated to optimize the power consumption. ● WFI MODE (Wait For Interrupts): only the CPU clock is stopped, all peripherals continue to work and can wake-up the CPU when IRQs occur. ● STOP MODE: all clocks/peripherals are disabled. It is also possible to disable the oscillators and the Main Voltage Regulator (In this case the VCORE is entirely powered by V18_BKP). This mode is intended to achieve the lowest power consumption with SRAM and registers contents retained. The system can be woken up by any of the external interrupts / wake-up lines or by the RTC timer which can optionally be kept running. The RTC can be clocked either by the 32.768 kHz Crystal or the Low Power RC Oscillator. Alternatively, STOP mode gives flexibility to keep the either main oscillator, or the Flash or the Main Voltage Regulator enabled when a fast start after wake-up is preferred (at the cost of some extra power consumption). ● STANDBY MODE: This mode (only available in single supply power schemes) is intended to achieve the lowest power consumption even when the temperature is increasing. The digital power supply (VCORE) is completely removed (no leakage even at high ambient temperature). SRAM and all register contents are lost. Only the RTC remains powered by V18_BKP. The STR750F can be switched back from STANDBY to RUN mode by a trigger event on the WKP_STDBY pin or an alarm timeout on the RTC counter. It is important to bear in mind that it is forbidden to remove power from the VDD_IO power supply in any of the Low Power Modes (even in STANDBY MODE). DMA The flexible 4-channel general-purpose DMA is able to manage memory to memory, peripheral to memory and memory to peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer. The DMA can be used with the main peripherals: UART0, SSP0, Motor control PWM timer (PWM), standard timer TIM0 and ADC. RTC (real-time clock) The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a 7/84 Introduction STR750Fxx STR751Fxx STR752Fxx STR755Fxx periodic interrupt. It is clocked by an external 32.768 kHz oscillator or the internal low power RC oscillator. The RC has a typical frequency of 300 kHz and can be calibrated. WDG (watchdog timer) The watchdog timer is based on a 16-bit downcounter and 8-bit prescaler. It can be used as watchdog to reset the device when a problem occurs, or as free running timer for application time out management. Timebase timer (TB) The timebase timer is based on a 16-bit auto-reload counter and not connected to the I/O pins. It can be used for software triggering, or to implement the scheduler of a real-time operating system. Synchronizable standard timers (TIM2:0) The three standard timers are based on a 16-bit auto-reload counter and feature up to 2 input captures and 2 output compares (for external triggering or time base / time out management). They can work together with the PWM timer via the Timer Link feature for synchronization or event chaining. In reset state, timer Alternate Function I/Os are connected to the same I/O ports in both 64-pin and 100-pin devices. To optimize timer functions in 64-pin devices, timer Alternate Function I/Os can be connected, or “remapped”, to other I/O ports as summarized in Table 3 and detailed in Table 6. This remapping is done by the application via a control register. Table 3. Standard timer alternate function I/Os Number of alternate function I/Os Standard timer functions 64-pin package 100-pin package Default mapping Remapped Input Capture 2 1 2 Output Compare/PWM 2 1 2 Input Capture 2 1 1 Output Compare/PWM 2 1 1 Input Capture 2 2 2 Output Compare/PWM 2 1 2 TIM 0 TIM 1 TIM 2 Any of the standard timers can be used to generate PWM outputs. One timer (TIM0) is mapped to a DMA channel. Motor control PWM timer (PWM) The Motor Control PWM Timer (PWM) can be seen as a three-phase PWM multiplexed on 6 channels. The 16-bit PWM generator has full modulation capability (0...100%), edge or centre-aligned patterns and supports dead-time insertion. It has many features in common with the standard TIM timers which has the same architecture and it can work together with the TIM timers via the Timer Link feature for synchronization or event chaining.The PWM timer is mapped to a DMA channel. 8/84 STR750Fxx STR751Fxx STR752Fxx STR755Fxx Introduction I²C bus The I²C bus interface can operate in multi-master and slave mode. It can support standard and fast modes (up to 400KHz). High speed universal asynch. receiver transmitter (UART) The three UART interfaces are able to communicate at speeds of up to 2 Mbit/s. They provide hardware management of the CTS and RTS signals and have LIN Master capability. To optimize the data transfer between the processor and the peripheral, two FIFOs (receive/transmit) of 16 bytes each have been implemented. One UART can be served by the DMA controller (UART0). Synchronous serial peripheral (SSP) The two SSPs are able to communicate up to 8 Mbit/s (SSP1) or up to 16 Mbit/s (SSP0) in standard full duplex 4-pin interface mode as a master device or up to 2.66 Mbit/s as a slave device. To optimize the data transfer between the processor and the peripheral, two FIFOs (receive/transmit) of 8 x 16 bit words have been implemented. The SSPs support the Motorola SPI or TI SSI protocols. One SSP can be served by the DMA controller (SSP0). Controller area network (CAN) The CAN is compliant with the specification 2.0 part B (active) with a bit rate up to 1Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Up to 32 message objects are handled through an internal RAM buffer. In LQFP64 devices, CAN and USB cannot be connected simultaneously. Universal serial bus (USB) The STR750F embeds a USB device peripheral compatible with the USB Full speed 12Mbs. The USB interface implements a full speed (12 Mbit/s) function interface. It has software configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock source is generated from the internal main PLL. VDD must be in the range 3.3V±10% for USB operation. ADC (analog to digital converter) The 10-bit Analog to Digital Converter, converts up to 16 external channels (11 channels in 64-pin devices) in single-shot or scan modes. In scan mode, continuous conversion is performed on a selected group of analog inputs. The minimum conversion time is 3.75 µs (including the sampling time). The ADC can be served by the DMA controller. An analog watchdog feature allows you to very precisely monitor the converted voltage of up to four channels. An IRQ is generated when the converted voltage is outside the programmed thresholds. The events generated by TIM0, TIM2 and PWM timers can be internally connected to the ADC start trigger, injection trigger, and DMA trigger respectively, to allow the application to synchronize A/D conversion and timers. 9/84 Introduction STR750Fxx STR751Fxx STR752Fxx STR755Fxx GPIOs (general purpose input/output) Each of the 72 GPIO pins (38 GPIOs in 64-pin devices) can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as Peripheral Alternate Function. Port 1.15 is an exception, it can be used as general-purpose input only or wake-up from STANDBY mode (WKP_STDBY). Most of the GPIO pins are shared with digital or analog alternate functions. 10/84 STR750Fxx STR751Fxx STR752Fxx STR755Fxx Block diagram STR750 block diagram BOOT1, BOOT0 as AF TEST NJTRST JTDI JTCK JTMS JTDO as AF ARM7TDMI-S CPU 60MHz AHB JTAG & ICE-RT GP DMA 4 streams AHB Arbiter SCLK, MOSI MISO as AF 4 CS as AF SERIAL MEMORY INTERFACE HRESETN PRESETN SRAM 16KB AHB LITE (up to 60MHz) Figure 1. BUS MATRIX 3.2 Introduction FLASH 256KB +16KB (RWW) NESTED INTERRUPT CTL RESET & POWER VDD_IO VCORE VBACKUP VDDA_PLL VDDA_ADC DC-DC 3.3V TO 1.8V MAIN LOW POWER 32xIRQ 2xFIQ HCLK OSC 32K CLOCK MANAGEMENT 15AF P0[31:0] P1[19:0] P2[19:0] 16AF VDDA_ADC VSSA_ADC PLL OSC 4M XT1 XT2 VDDA_PLL VSSA_PLL CK_USB EXT.IT WAKEUP RTC_XT1 RTC_XT2 FREE OSC PCLK APB BRIDGE VDD_IO V18 V18BKP VSS LP OSC CK_RTC CK_SYS NRSTIN NRSTOUT USB Full Speed GPIO PORT 0 USBDP USBDM CAN 2.0B RX,TX as AF GPIO PORT 2 FIFO 2x(16x8bit) UART0 RX,TX,CTS, RTS as AF 10-bit ADC FIFO 2x(16x8bit) UART1 RX,TX,CTS, RTS as AF WATCHDOG FIFO 2x(16x8bit) UART2 RX,TX,CTS, RTS as AF FIFO 2x(8x16bit) SSP0 MOSI,MISO, SCK,NSS as AF FIFO 2x(8x16bit) SSP1 MOSI,MISO, SCK,NSS as AF GPIO PORT 1 RTC TB TIMER 2xICAP, 2xOCMP as AF 2xICAP, 2xOCMP as AF TIM0 TIMER 2xICAP, 2xOCMP as AF TIM2 TIMER PWM1, PWM1N PWM2, PWM2N PWM3, PWM3N PWM_EMERGENCY as AF PWM TIMER TIM1 TIMER I2C SCL,SDA as AF APB (up to 32 MHz) AF: alternate function on I/O port pin Note: I/Os shown for 100 pin devices. 64-pin devices have the I/O set shown in Figure 3. 11/84 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 P0.03 / TIM2_TI1 / ADC_IN1 VDD_IO VSS_IO VSS18 V18 P1.00 / TIM0_OC2 P1.01 / TIM0_TI2 P1.13 / ADC_IN14 P1.14/ ADC_IN15 P1.04 / PWM3N / ADC_IN9 P1.05 / PWM3 P1.06 / PWM2N/ ADC_IN10 P1.07 / PWM2 P1.08 / PWM1N/ ADC_IN11 P2.05 / PWM3N P2.06 / PWM3 P2.07 / PWM2N P2.08 / PWM2 P2.09 / PWM1N P1.09 / PWM1 P1.10 / PWM_EMERGENCY P0.04 / SMI_CS0 / SSP0_NSS P0.05 / SSP0_SCLK / SMI_CK P0.06 / SMI_DIN / SSP0_MISO P0.07 / SMI_DOUT / SSP0_MOSI 4 Figure 2. ADC_IN13 / P1.12 ADC_IN0 / TIM2_OC1/ P0.02 MCO / TIM0_TI1 / P0.01 BOOT0 / TIM0_OC1 / P0.00 TIM1_TI2 / P0.31 TIM1_OC2 / P0.30 ADC_IN8 / TIM1_TI1 / P0.29 TIM1_OC1 / P0.28 TEST VSS_IO ADC_IN6 / UART1_RTS / P0.23 TIM2_OC1/ P2.04 UART1_RTS / P2.03 P2.02 ADC_IN5 / UART1_CTS / P0.22 UART1_TX / P0.21 UART1_RX / P0.20 JTMS / P1.19 JTCK / P1.18 JTDO / P1.17 JTDI / P1.16 NJTRST P2.01 P2.00 UART0_RTS / RTCK / P0.13 12/84 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 = 16 A/D input channels = 15 External interrupts / Wake-up Lines SMI_CS1 / ADC_IN2 / UART0_CTS / P0.12 SMI_CS2 / BOOT1 / UART0_TX / P0.11 SMI_CS3 / UART0_RX / P0.10 I2C_SDA / P0.09 I2C_SCL / P0.08 P2.19 P2.18 UART2_RTS / P2.17 ADC_IN12 / UART0_RTS P1.11 ADC_IN7 /UART2_RTS / P0.27 UART2_CTS / P0.26 UART2_TX / P0.25 UART2_RX / P0.24 ADC_IN4 / SSP1_NSS / USB_CK / P0.19 SSP1_MOSI / P0.18 ADC_IN3 / SSP1_MISO / P0.17 SSP1_SCLK / P0.16 P2.16 VDD_IO VDDA_PLL XT2 XT1 VSS_IO VSSA_PLL P2.15 Pin description STR750Fxx STR751Fxx STR752Fxx STR755Fxx Pin description LQFP100 pinout LQFP100 V18BKP I/Os 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 VREG_DIS VSS_IO VSSA_ADC P2.10 P2.11 VDDA_ADC VDD_IO P1.02 / TIM2_OC2 P1.03 / TIM2_TI2 USB_DP USB_DN P0.14 / CAN_RX P0.15 / CAN_TX P2.12 P2.13 P1.15 / WKP_STDBY NRSTIN NRSTOUT XRTC2 XRTC1 V18BKP VSSBKP VSS18 V18REG P2.14 STR750Fxx STR751Fxx STR752Fxx STR755Fxx = 11 A/D input channels = 13 External interrupts / Wake-up Lines P1.09 / PWM1 P1.10 / PWM_EMERGENCY P0.04 / SMI_CS0 /SSP0_NSS P0.05 / SSP0_SCLK / SMI_CK P0.06 / SMI_DIN / SSP0_MISO P0.07 / SMI_DOUT / SSP0_MOSI 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 1 47 2 46 3 45 4 44 5 43 6 42 7 41 8 LQFP64 40 9 39 10 38 11 V18BKP I/Os 37 12 36 13 35 14 34 15 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VREG_DIS VSS_IO_2 VSSA_ADC VDDA_ADC VDD_IO_2 P1.03 / TIM2_TI2 P0.14 / CAN_RX or USB_DP P0.15 / CAN_TX or USB_DN NRSTIN NRSTOUT XRTC2 XRTC1 V18BKP VSSBKP VSS18 V18REG SMI_CS1 / ADC_IN2 / UART0_CTS / UART2_RX /P0.12 SMI_CS2 / BOOT1 / UART0_TX / P0.11 SMI_CS3 / UART0_RX / P0.10 I2C_SDA/ P0.09 I2C_SCL / P0.08 ADC_IN12 / UART0_RTS / P1.11 ADC_IN4 / SSP1_NSS / USB_CK / P0.19 SSP1_MOSI / P0.18 ADC_IN3 / SSP1_MISO / P0.17 SSP1_SCLK / P0.16 VDD_IO_3 VDDA_PLL XT2 XT1 VSS_IO_3 VSSA_PLL ADC_IN13 / P1.12 ADC_IN0 / TIM2_OC1 / P0.02 MCO / TIM0_TI1 / P0.01 BOOT0 / TIM0_OC1 / P0.00 ADC_IN8 / TIM1_TI1 / P0.29 TIM1_OC1 / P0.28 TEST VSS_IO_4 UART1_TX / P0.21 UART1_RX / P0.20 JTMS / P1.19 JTCK / P1.18 JTDO / P1.17 JTDI / P1.16 NJTRST UART2_TX / UART0_RTS / RTCK / P0.13 P1.08 / PWM1N / ADC_IN11 LQFP64 pinout P0.03 / TIM2_TI1 / ADC_IN1 VDD_IO_1 VSS_IO_1 VSS18 V18 P1.04 / PWM3N / ADC_IN9 P1.05 / PWM3 P1.06 / PWM2N / ADC_IN10 P1.07 / PWM2 Figure 3. Pin description 13/84 Pin description STR750Fxx STR751Fxx STR752Fxx STR755Fxx Table 4. LFBGA100 ball connections 1 3 4 5 6 7 8 9 10 A P0.03 P1.13 P1.14 P1.04 P1.06 P1.08 P0.05 P0.06 P0.07 P1.02 B P1.12 P0.02 P0.01 P1.05 P1.07 P1.09 P0.04 P2.13 P1.03 P2.10 C P0.31 P0.00 VDD_IO V18 P1.10 P2.09 VSS_IO VSSA_ADC P2.11 USB_DP D P0.29 P0.30 VSS_IO VSS18 P1.01 P1.15 VDD_IO VDDA_ADC P2.12 USB_DN E P0.28 P0.23 P0.22 VSS_IO TEST P1.00 NRSTOUT VREG_DIS NRSTIN P0.14 F P2.03 P0.21 P0.20 P2.02 P2.04 P2.05 P2.06 VSS18 VSSBKP P0.15 NJTRST P1.18 P1.19 P2.01 P2.00 P2.07 2.08 V18REG V18BKP XRTC2 G H P0.13 P1.16 P1.17 P2.19 P2.18 P2.17 P0.24 P2.14 P2.16 XRTC1 J P0.11 P0.12 P1.11 P0.27 P0.19 P0.26 P0.25 P2.15 VDD_IO VSS_IO K P0.10 P0.09 P0.08 P0.18 P0.17 P0.16 XT1 XT2 Table 5. 14/84 2 VDDA_PLL VSSA_PLL LFBGA64 ball connections 1 2 3 4 5 6 7 8 A P0.03 VSS_IO P1.04 P1.06 P1.08 P0.05 P0.06 P0.07 B P1.12 VDD_IO P1.05 P1.07 P1.09 P0.04 P1.10 P1.03 C P0.01 P0.02 P0.00 V18 VSS18 VDD_IO VSS_IO P0.14 D P0.29 P0.28 TEST VSS_IO VREG_DIS VDDA_ADC VSSA_ADC E P1.18 P1.19 P0.20 P0.21 NRSTOUT NRSTIN V18BKP XRTC2 F P0.13 NJTRST P1.16 P1.17 V18REG VSS18 VSSBKP XRTC1 G P0.11 P0.12 P1.11 P0.19 VDD_IO VSS_IO H P0.10 P0.09 P0.08 P0.17 P0.18 P0.16 P0.15 VDDA_PLL VSSA_PLL XT2 XT1 STR750Fxx STR751Fxx STR752Fxx STR755Fxx 4.1 Pin description Pin description table Legend / abbreviations for Table 6: Type: I = input, O = output, S = supply, Input levels: All Inputs are LVTTL at VDD_IO = 3.3V+/-0.3V or TTL at VDD_IO = 5V± 0.5V. In both cases, TT means VILmax =0.8V VIHmin=2.0V Inputs: All inputs can be configured as floating or with internal weak pull-up or pull down (pu/pd) Outputs: All Outputs can be configured as Open Drain (OD) or Push-Pull (PP) (see also note 6 below Table 6). There are 3 different types of Output with different drives and speed characteristics: – O8: fmax = 40 MHz on CL=50pF and 8 mA static drive capability for VOL=0.4V and up to 20 mA for VOL=1.3V (seeOutput driving current on page 55) – O4: fmax = 20 MHz on CL=50pF and 4 mA static drive capability for VOL=0.4V (seeOutput driving current on page 55) – O2: fmax = 10 MHz on CL=50pF and 2 mA static drive capability of for VOL=0.4V (seeOutput driving current on page 55) External interrupts/wake-up lines: EITx 15/84 Pin description STR750Fxx STR751Fxx STR752Fxx STR755Fxx Port reset state The reset state of the I/O ports is GPIO input floating. Exceptions are P1[19:16] and P0.13 which are configured as JTAG alternate functions: ● The JTAG inputs (JTDI, JTMS and JTDI) are configured as input floating and are ready to accept JTAG sequences. ● The JTAG output JTDO is configured as floating when idle (no JTAG operation) and is configured in output push-pull only when serial JTAG data must be output. ● The JTAG output RTCK is always configured as output push-pull. It outputs '0' level during the reset phase and then outputs the JTCK input signal resynchronized 3 times by the internal AHB clock. ● The GPIO_PCx registers do not control JTAG AF selection, so the reset values of GPIO_PCx for P1[19:16] and P0. 13 are the same as other ports. Refer to the GPIO section of the STR750 Reference Manual for the register description and reset values. ● P0.11 and P0.00 are sampled by the boot logic after reset, prior to fetching the first word of user code at address 0000 0000h. ● When booting from SMI (and only in this case), the reset state of the following GPIOs is "SMI alternate function output enabled": – P0.07 (SMI_DOUT) – P0.05 (SMI_CLK) – P0.04 (SMI_CS0) – P0.06 (SMI_DIN) Note that the other SMI pins: SMI_CS1,2,3 (P0.12, P0.11, P0.10) are not affected. To avoid excess power consumption, unused I/O ports must be tied to ground. STR750F pin description Ext. int /Wake-up Capability X X Port 1.12 ADC: Analog input 13 I/O TT X X EIT0 O8 X X Port 0.02 TIM2: Output Compare 1(4) I/O TT X X O8 X X Port 0.01 TIM0: Input Main Clock Capture / trigger Output / external clock 1 I/O TT X X O8 X X Port 0.00 / Boot mode selection input 0 TIM0: Output Compare 1 P0.31 / TIM1_TI2 I/O TT X X O2 X X Port 0.31 TIM1: Input Capture / trigger / external clock 2 P0.30 / TIM1_OC2 I/O TT X X O2 X X Port 0.30 TIM1: Output Compare 2 1 B1 2 B2 2 P0.02 / C2 TIM2_OC1 / ADC_IN0 3 B3 3 C1 4 C2 4 P0.00 / C3 TIM0_OC1 / BOOT0 5 C1 6 D2 P1.12 / ADC_IN13 P0.01 / TIM0_TI1 / MCO Input Level O8 B1 Pin name Type EIT12 LFBGA64(2) X LQFP64(2) X LFBGA100(1) TT LQFP100(1) I/O 1 16/84 Output pu/pd Input floating Pin n° Usable in Standby Table 6. OD (3) PP Main function (after reset) Alternate function ADC: Analog input 0 STR750Fxx STR751Fxx STR752Fxx STR755Fxx Input Output floating pu/pd 5 D1 P0.29 / TIM1_TI1 / ADC_IN8 I/O TT X X O2 X X Port 0.29 TIM1: Input Capture 1 8 E1 6 D2 P0.28 / TIM1_OC1 I/O TT X X O2 X X Port 0.28 TIM1: Output Compare 1 9 E5 7 D3 TEST I Reserved, must be tied to ground 10 E4 8 D4 VSS_IO S Ground Voltage for digital I/Os Capability LFBGA64(2) D1 Input Level LQFP64(2) 7 Pin name Type LFBGA100(1) Main function (after reset) LQFP100(1) Pin n° Usable in Standby STR750F pin description (continued) Ext. int /Wake-up Table 6. Pin description OD (3) PP Alternate function I/O TT X X O2 X X Port 0.23 UART1: Ready To Send output(4) ADC: Analog input 8 11 E2 P0.23 / UART1_RTS / ADC_IN6 12 F5 P2.04 / TIM2_OC1 I/O TT X X O2 X X Port 2.04 TIM2: Output Compare 1(4) 13 F1 P2.03 / UART1_RTS I/O TT X X O2 X X Port 2.03 UART1: Ready To Send output(4) 14 F4 P2.02 I/O TT X X O2 X X Port 2.02 15 E3 P0.22 / UART1_CTS / ADC_IN5 I/O TT X X O2 X X Port 0.22 UART1: Clear To Send input 16 F2 9 E4 P0.21 / UART1_TX I/O TT X X O2 X X Port 0.21 UART1: Transmit data output (remappable to P0.15)(4) 17 F3 10 E3 P0.20 / UART1_RX I/O TT X X O2 X X Port 0.20 UART1: Receive data input (remappable to P0.14)(4) 18 G3 11 E2 P1.19 / JTMS I/O TT X X O2 X X JTAG mode selection input(6) Port 1.19 19 G2 12 E1 P1.18 / JTCK I/O TT X X O2 X X JTAG clock input(6) Port 1.18 20 H3 13 F4 P1.17 / JTDO I/O TT X X O8 X X JTAG data output(6) Port 1.17 21 H2 14 F3 P1.16 / JTDI I/O TT X X O2 X X JTAG data input(6) Port 1.16 22 G1 15 F2 NJTRST I TT 23 G4 P2.01 I/O TT X X O2 X X Port 2.01 24 G5 P2.00 I/O TT X X O2 X X Port 2.00 X JTAG return clock output(6) ADC analog input 6 ADC: Analog input 5 JTAG reset input(5) Port 0.13 25 H1 16 P0.13 / RTCK / F1 UART0_RTS UART2_TX I/O TT X X O8 X UART2: Transmit UART0: Ready To Send output(4) Data output (when remapped)(8) 17/84 Pin description 26 J2 P0.12 / UART2_RX / 17 G2 UART0_CTS / ADC_IN2 / SMI_CS1 I/O TT X X Capability Output Ext. int /Wake-up pu/pd Input Level Pin name Type Input LFBGA64(2) LQFP64(2) LFBGA100(1) LQFP100(1) Pin n° O4 OD (3) X PP X Usable in Standby STR750F pin description (continued) floating Table 6. STR750Fxx STR751Fxx STR752Fxx STR755Fxx Main function (after reset) Port 0.12 Alternate function UART0: Clear To Send input ADC: Analog input 2 Serial Memory Interface: chip select output 1 UART2: Receive Data input (when remapped)(8) O4 X X Port 0.11/Boot mode selection input 1 O2 X X Port 0.10 UART0: Receive Data input O4 X X Port 0.09 I2C: Serial Data O4 X X Port 0.08 I2C: Serial clock X O2 X X Port 2.19 X X O2 X X Port 2.18 TT X X O2 X X Port 2.17 UART2: Ready To Send output(4) I/O TT X X O8 X X Port 1.11 UART0: Ready To Send output(4) ADC: Analog input 12 P0.27 / UART2_RTS / ADC_IN7 I/O TT X X O2 X X Port 0.27 UART2: Ready To Send output(8) ADC: Analog input 7 J6 P0.26 / UART2_CTS I/O TT X X O2 X X Port 0.26 UART2: Clear To Send input 37 J7 P0.25 / UART2_TX I/O TT X X O2 X X Port 0.25 UART2: Transmit data output (remappable to P0.13)(8) 38 H7 P0.24 / UART2_RX I/O TT X X O2 X X Port 0.24 UART2: Receive data input (remappable to P0.12)(8) 27 J1 P0.11 / UART0_TX / 18 G1 BOOT1 / SMI_CS2 28 K1 P0.10 / 19 H1 UART0_RX / SMI_CS3 I/O TT X X 29 K2 20 H2 P0.09 / I2C_SDA I/O TT X X 30 K3 21 H3 P0.08 / I2C_SCL I/O TT X X 31 H4 P2.19 I/O TT X 32 H5 P2.18 I/O TT 33 H6 P2.17 / UART2_RTS I/O 34 J3 P1.11 22 G3 /UART0_RTS ADC_IN12 35 J4 36 39 J5 P0.19 / USB_CK / 23 G4 SSP1_NSS / ADC_IN4 P0.18 / SSP1_MOSI 40 K4 24 H5 41 K5 P0.17 / 25 H4 SSP1_MISO / ADC_IN3 42 K6 26 H6 18/84 P0.16 / SSP1_SCLK I/O TT X X I/O TT X X EIT4 EIT3 EIT11 EIT6 O2 X X Port 0.19 UART0: Transmit data output Serial Memory Interface: chip select output 2 Serial Memory Interface: chip select output 3 SSP1: Slave select input (remappable to P0.11)(8) ADC: Analog input 4 USB: 48 MHz Clock input I/O TT X X O2 X X Port 0.18 SSP1: Master out/slave in data (remappable to P0.10)(8) I/O TT X X O2 X X Port 0.17 SSP1: Master in/slave out data (remappable to P0.09)(8) I/O TT X X O2 X X Port 0.16 SSP1: serial clock (remappable to P0.08)(8) ADC: Analog input 3 STR750Fxx STR751Fxx STR752Fxx STR755Fxx Input Output Supply voltage for digital I/Os 45 K9 28 G7 VDDA_PLL S Supply voltage for PLL 46 K8 29 H7 XT2 47 K7 30 H8 XT1 48 J10 31 G6 VSS_IO S Ground voltage for digital I/Os 49 K10 32 G8 VSSA_PLL S Ground voltage for PLL X X Capability S TT pu/pd 27 G5 VDD_IO I/O floating J9 P2.16 Input Level 44 Pin name Type H9 LFBGA64(2) 43 LQFP64(2) LFBGA100(1) Main function (after reset) LQFP100(1) Pin n° Usable in Standby STR750F pin description (continued) Ext. int /Wake-up Table 6. Pin description O2 OD (3) PP X X Alternate function Port 2.16 4 MHz main oscillator 50 J8 P2.15 I/O TT X X O2 X X Port 2.15 51 H8 P2.14 I/O TT X X O2 X X Port 2.14 52 G8 33 F5 V18REG Stabilization for main voltage regulator. Requires external capacitors of at least 10µF between V18REG and VSS18. See Figure 4.2. S To be connected to the 1.8V external power supply when embedded regulators are not used, 53 F8 34 F6 VSS18 S Ground Voltage for the main voltage regulator 54 F9 35 F7 VSSBKP S Stabilization for low power voltage regulator. S Ground Voltage for the low power voltage regulator. Requires external capacitors of at least 1µF between V18BKP and VSSBKP. See Figure 4.2. To be connected to the 1.8V external power supply when embedded regulators are not used, 55 G9 36 E7 V18BKP 56 H10 37 F8 XRTC1 X 57 G10 38 E8 XRTC2 X 32 kHz oscillator for Realtime Clock 58 E7 39 E5 NRSTOUT O 59 E9 40 E6 NRSTIN I TT 60 D6 I TT X P1.15 / WKP_STDBY EIT15 X Reset output X Reset input X Port 1.15 Wake-up from STANDBY input pin 61 B8 P2.13 I/O TT X X O2 X X Port 2.13 62 D9 P2.12 I/O TT X X O2 X X Port 2.12 63 F10 P0.15 / CAN_TX I/O TT X X O2 X X Port 0.15 CAN: Transmit data output 64 E10 P0.14 / CAN_RX I/O TT X X O2 X X Port 0.14 CAN: Receive data input 65 D10 USB_DN I/O USB: bidirectional data (data -) 66 C10 USB_DP I/O USB: bidirectional data (data +) 67 B9 41 D8 (7) (7) 42 C8 (7) (7) 41 D8 (7) (7) 42 C8 (7) (7) 43 B8 P1.03 / TIM2_TI2 I/O TT X X EIT5 O2 X X Port 1.03 TIM2: Input Capture / trigger / external clock 2 (remappable to P0.07)(8) 19/84 Pin description Input Output Supply Voltage for digital I/Os 70 D8 45 D6 VDDA_ADC S Supply Voltage for A/D converter X X Capability S TT pu/pd 44 C6 VDD_IO I/O floating D7 P1.02 / TIM2_OC2 Input Level 69 Pin name Type A10 LFBGA64(2) 68 LQFP64(2) LFBGA100(1) Main function (after reset) LQFP100(1) Pin n° Usable in Standby STR750F pin description (continued) Ext. int /Wake-up Table 6. STR750Fxx STR751Fxx STR752Fxx STR755Fxx O2 OD (3) PP X X Port 1.02 Alternate function TIM2: Output compare 2 (remappable to P0.06)(8) 71 C9 P2.11 I/O TT X X O2 X X Port 2.11 72 B10 P2.10 I/O TT X X O2 X X Port 2.10 73 C8 46 D7 VSSA_ADC S Ground Voltage for A/D converter 74 C7 47 C7 VSS_IO S Ground Voltage for digital I/Os 75 E8 48 D5 VREG_DIS I TT I/O TT X X I/O TT X X I/O TT X X I/O TT X X Voltage Regulator Disable input 76 A9 49 P0.07 / A8 SMI_DOUT / SSP0_MOSI 77 A8 50 A7 78 A7 51 P0.05 / A6 SSP0_SCLK / SMI_CK 79 B7 52 B6 80 C5 53 P1.10 B7 PWM_EMERGE NCY I/O TT X X 81 B6 54 B5 P1.09 / PWM1 I/O TT X X 82 C6 P2.09 / PWM1N I/O TT X 83 G7 P2.08 / PWM2 I/O TT 84 G6 P2.07 / PWM2N I/O 85 F7 P2.06 / PWM3 86 F6 87 A6 55 A5 88 B5 56 B4 P1.07 / PWM2 89 A5 57 A4 90 B4 58 B3 P1.05 / PWM3 20/84 O4 X X Port 0.07 Serial Memory Interface: data output SSP0: Master out Slave in data O4 X X Port 0.06 Serial Memory Interface: data input SSP0: Master in Slave out data O4 X X Port 0.05 SSP0: Serial clock Serial Memory Interface: Serial clock output O4 X X Port 0.04 Serial Memory Interface: chip select output 0 SSP0: Slave select input EIT10 O2 X X Port 1.10 PWM: Emergency input EIT9 O4 X X Port 1.09 PWM: PWM1 output X O2 X X Port 2.09 PWM: PWM1 complementary output(4) X X O2 X X Port 2.08 PWM: PWM2 output(4) TT X X O2 X X Port 2.07 PWM: PWM2 complementary output(4) I/O TT X X O2 X X Port 2.06 PWM: PWM3 output(4) P2.05 / PWM3N I/O TT X X O2 X X Port 2.05 PWM: PWM3 complementary output(4) P1.08 / PWM1N / ADC_IN11 I/O TT X X O4 X X Port 1.08 PWM: PWM1 complementary output(8) I/O TT X X O4 X X Port 1.07 PWM: PWM2 output(4) I/O TT X X O4 X X Port 1.06 PWM: PWM2 complementary output(4) I/O TT X X O4 X X Port 1.05 PWM: PWM3 output(4) P0.06 / SMI_DIN / SSP0_MISO P0.04 / SMI_CS0 / SSP0_NSS P1.06 / PWM2N / ADC_IN10 EIT2 EIT1 EIT8 EIT7 ADC: analog input 11 ADC: analog input 10 STR750Fxx STR751Fxx STR752Fxx STR755Fxx 92 Capability A3 Main function (after reset) pu/pd 59 Output floating LFBGA64(2) A4 Input Level LQFP64(2) 91 Type LFBGA100(1) Input LQFP100(1) Pin n° Usable in Standby STR750F pin description (continued) Ext. int /Wake-up Table 6. Pin description P1.04 / PWM3N / ADC_IN9 I/O TT X X O4 X X Port 1.04 PWM: PWM3 complementary output(4) A3 P1.14 / ADC_IN15 I/O TT X X O8 X X Port 1.14 ADC: analog input 15 93 A2 P1.13 / ADC_IN14 I/O TT X X O8 X X Port 1.13 ADC: analog input 14 94 D5 P1.01 / TIM0_TI2 I/O TT X X O2 X X Port 1.01 TIM0: Input Capture / trigger / external clock 2 (remappable to P0.05)(8) 95 E6 P1.00 / TIM0_OC2 I/O TT X X O2 X X Port 1.00 TIM0: Output compare 2 (remappable to P0.04)(8) Pin name EIT13 OD (3) PP Alternate function ADC: analog input 9 96 C4 60 C4 V18 S Stabilization for main voltage regulator. Requires external capacitors 33nF between V18 and VSS18. See Figure 4.2. To be connected to the 1.8V external power supply when embedded regulators are not used. 97 D4 61 C5 VSS18 S Ground Voltage for the main voltage regulator. 98 D3 62 A2 VSS_IO S Ground Voltage for digital I/Os 99 C3 63 B2 VDD_IO S Supply Voltage for digital I/Os 100 A1 64 A1 P0.03 / TIM2_TI1 / ADC_IN1 I/O TT X X O2 X X Port 0.03 TIM2: Input Capture / trigger / external clock 1 ADC: analog input 1 1. For STR755FVx part numbers, the USB pins must be left unconnected. 2. The non available pins on LQPFP64 and LFBGA64 packages are internally tied to low level. 3. None of the I/Os are True Open Drain: when configured as Open Drain, there is always a protection diode between the I/O pin and VDD_IO. 4. In the 100-pin package, this Alternate Function is duplicated on two ports. You can configure one port to use this AF, the other port is then free for general purpose I/O (GPIO), external interrupt/wake-up lines, or analog input (ADC_IN) where these functions are listed in the table. 5. It is mandatory that the NJTRST pin is reset to ground during the power-up phase. It is recommended to connect this pin to NRSTOUT pin (if available) or NRSTIN. 6. After reset, these pins are enabled as JTAG alternate function see (Port reset state on page 16). To use these ports as general purpose I/O (GPIO), the DBGOFF control bit in the GPIO_REMAP0R register must be set by software (in this case, debugging these I/Os via JTAG is not possible). 7. There are two different TQFP and BGA 64-pin packages: in the first one, pins 41 and 42 are mapped to USB DN/DP while for the second one, they are mapped to P0.15/CAN_TX and P0.14/CAN_RX. 8. For details on remapping these alternate functions, refer to the GPIO_REMAP0R register description. 21/84 Pin description 4.2 STR750Fxx STR751Fxx STR752Fxx STR755Fxx External components Figure 4. Required external capacitors when regulators are used 33 nF 33 nF 96 VSS18 V18 97 V18BKP 55 VSSBKP 54 LQFP100 VSS18 1µF V18BKP 36 VSSBKP 35 1µF LQFP64 53 V18REG 52 61 60 VSS18 V18 VSS18 10 µF 34 V18REG 33 10 µF VDD_IO 27 VDD_IO 44 1 µF 1 µF 33 nF 33 nF D4 C4 VSS18 V18 VSSBKP F9 LFBGA100 1µF V18BKP E7 VSSBKP F7 1µF LFBGA64 VSS18 VSS18 F8 V18REG G8 VDD_IO J9 1 µF 22/84 C5 C4 VSS18 V18 V18BKP G9 10 µF F6 V18REG F5 VDD_IO G5 1 µF 10 µF STR750Fxx STR751Fxx STR752Fxx STR755Fxx 5 Memory map Memory map Figure 5. Memory map Addressable Memory Space 4 Gbytes 0xFFFF FFFF 0xFFFF 8000 APB TO ARM7 BRIDGE Peripheral Memory Space 32 Kbytes 0xFFFF FFFF 32K 0xFFFF FC00 0xFFFF FBFF 0xFFFF F800 0xFFFF F7FF 7 Reserved 1K EIC 1K EXTIT 1K RTC 1K DMA 1K Reserved 1K GPIO I/O Ports 1K Reserved 1K UART2 1K UART1 1K UART0 1K Reserved 1K 0xFFFF F400 0xFFFF F3FF FLASH Memory Space 128/256 Kbytes 0xE000 0000 0xDFFF FFFF 0xFFFF F000 0xFFFF EFFF 0xFFFF EC00 0xFFFF EBFF 6 0x2010 DFFF 0x2010 C000 SystemMemory 8K 0x2010 0017 0x2010 0000 Flash registers 24B 0xFFFF E800 0xFFFF E7FF 0xFFFF E400 0xFFFF E3FF 0xFFFF E000 0xFFFF DFFF 0xC000 0000 0xBFFF FFFF 0xFFFF DC00 0xFFFF DBFF 0xFFFF D800 0xFFFF D7FF 5 0x200C 0x200C 0x200C 0x200C 0x200C 0xA000 0000 0x9FFF FFFF 4 0x9000 0013 0x9000 0000 0x83FF FFFF 0x8000 0000 0x7FFF FFFF SMI Registers 4000 3FFF 2000 1FFF 0000 0xFFFF D400 0xFFFF D3FF B1F1 8K B1F0 8K 0xFFFF D000 0xFFFF CFFF 0xFFFF CC00 0xFFFF CBFF 0xFFFF C800 0xFFFF C7FF 20B 0xFFFF C400 0xFFFF C3FF SMI Ext. Memory 4 x 16M 0xFFFF C000 0xFFFF BFFF 0xFFFF BC00 0xFFFF BBFF 0xFFFF B800 0xFFFF B7FF 3 0x6000 0047 0x6000 0000 0x5FFF FFFF 0xFFFF B400 0xFFFF B3FF CONF + MRCC 1K 0x2003 FFFF 0xFFFF B000 0xFFFF AFFF B0F7(2) 2 0x4000 3FFF 0x4000 0000 0x3FFF FFFF 64K 0xFFFF A800 0xFFFF A7FF 0x2003 0000 0x2002 FFFF Internal SRAM B0F6(2) 16K 64K 0x2002 0000 0x2001 FFFF 1 0x2010 0017 0x2000 0000 0x1FFF FFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF B0F5 128K/256K+16K+32B 64K 0x2001 0000 0x2000 FFFF 0 Boot Memory(1) 128K/256K 0x2000 0x2000 0x2000 0x2000 0x2000 0x2000 0x2000 0x2000 0x2000 8000 7FFF 6000 5FFF 4000 3FFF 2000 1FFF 0000 1K CAN 1K Reserved 1K SSP1 1K SSP0 1K Reserved 1K WDG 1K Reserved 1K USB Registers 1K Reserved 1K A400 A3FF A200 USB RAM 256 x16-bit A000 9FFF 0xFFFF 9000 0xFFFF 8FFF 32K 1K PWM 1K TIM2 1K TIM1 1K TIM0 1K TB Timer 1K ADC 1K Reserved 1K 0xFFFF 8C00 0xFFFF 8BFF B0F1 8K 8K 8K 0xFFFF 8400 0xFFFF 83FF B0F0 8K 0xFFFF 8000 B0F3 B0F2 0xFFFF 8800 0xFFFF 87FF 1K Reserved 0xFFFF 9800 0xFFFF 97FF 0xFFFF 9400 0xFFFF 93FF Internal Flash 1K 0xFFFF 9C00 0xFFFF 9BFF B0F4 0x0000 0000 0xFFFF AC00 0xFFFF ABFF I2C Reserved (1) In internal Flash Boot Mode, internal FLASH is aliased at 0x0000 0000h (2) Only available in STR750Fx2 Reserved 23/84 Electrical parameters 6 Electrical parameters 6.1 Parameter conditions STR750Fxx STR751Fxx STR752Fxx STR755Fxx Unless otherwise specified, all voltages are referred to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TAmax (given by the selected temperature range). Data based on product characterisation, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA=25° C, VDD_IO=3.3 V (for the 3.0 V≤VDD_IO≤3.6 V voltage range) and V18=1.8 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2Σ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 24/84 STR750Fxx STR751Fxx STR752Fxx STR755Fxx 6.1.4 Electrical parameters Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 6. Figure 6. Pin loading conditions STR7 PIN CL=50pF 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 7. Figure 7. Pin input voltage STR7 PIN VIN 25/84 Electrical parameters 6.1.6 STR750Fxx STR751Fxx STR752Fxx STR755Fxx Power supply schemes When mentioned, some electrical parameters can refer to a dedicated power scheme among the four possibilities. The four different power schemes are described below. Power supply scheme 1: Single external 3.3 V power source Figure 8. Power supply scheme 1 IN STANDBY MODE THIS BLOCK IS KEPT POWERED ON V18_BKP 1µF VSS_BKP NORMAL MODE VREG_DIS LOW POWER V LPVREG ~1.4V VOLTAGE REGULATOR V18 33nF BACKUP CIRCUITRY OSC32K, RTC WAKEUP LOGIC, BACKUP REGISTERS) POWER SWITCH VSS18 V18REG 10µF VBACKUP V18 VSS18 VDD_IO 3.3V 1µF MAIN VMVREG = 1.8V VOLTAGE REGULATOR +/-0.3V VSS_IO VIO=3.3V OUT I/O LOGIC GP I/Os IN VDD_PLL 3.3V PLL VSS_PLL VDD_ADC VSS_ADC ADCIN 26/84 3.3V ADC VCORE KERNEL LOGIC (CPU & DIGITAL & MEMORIES) STR750Fxx STR751Fxx STR752Fxx STR755Fxx Electrical parameters Power supply scheme 2: Dual external 1.8V and 3.3V supply Figure 9. Power supply scheme 2 V18_BKP VSS_BKP VDD_IO VBACKUP OFF LOW POWER VOLTAGE REGULATOR VREG_DIS V18 VLPVREG BACKUP CIRCUITRY (OSC32K, RTC WAKEUP LOGIC, BACKUP REGISTERS) V18REG POWER SWITCH 1.8V VSS18 OFF VDD_IO MAIN VOLTAGE REGULATOR 3.3V +/-0.3V VCORE VMVREG VSS_IO KERNEL (CORE & DIGITAL & MEMORIES) VIO=3.3V OUT GP I/Os I/O LOGIC IN VDD_PLL 3.3V VSS_PLL VDD_ADC VSS_ADC PLL 3.3V ADC ADCIN NOTE : THE EXTERNAL 3.3 V POWER SUPPLY MUST ALWAYS BE KEPT ON 27/84 Electrical parameters STR750Fxx STR751Fxx STR752Fxx STR755Fxx Power supply scheme 3: Single external 5 V power source Figure 10. Power supply scheme 3 IN STANDBY MODE THIS BLOCK IS KEPT POWERED ON V18_BKP 1µF VSS_BKP NORMAL MODE VREG_DIS LOW POWER V LPVREG ~1.4V VOLTAGE REGULATOR V18 33nF BACKUP CIRCUITRY OSC32K, RTC WAKEUP LOGIC, BACKUP REGISTERS) POWER SWITCH VSS18 V18REG 10µF VBACKUP V18 VSS18 VDD_IO 5.0V 1µF MAIN VMVREG = 1.8V VOLTAGE REGULATOR +/-0.5V VSS_IO VIO=5.0V OUT I/O LOGIC GP I/Os IN VDD_PLL 5.0V PLL VSS_PLL VDD_ADC VSS_ADC ADCIN 28/84 5.0V ADC VCORE KERNEL LOGIC (CPU & DIGITAL & MEMORIES) STR750Fxx STR751Fxx STR752Fxx STR755Fxx Electrical parameters Power supply scheme 4: Dual external 1.8 V and 5.0 V supply Figure 11. Power supply scheme 4 V18_BKP VSS_BKP VDD_IO VBACKUP OFF LOW POWER VLPVREG VOLTAGE REGULATOR VREG_DIS V18 BACKUP CIRCUITRY (OSC32K, RTC WAKEUP LOGIC, BACKUP REGISTERS) V18REG POWER SWITCH 1.8V VSS18 OFF VDD_IO MAIN VOLTAGE REGULATOR 5.0V +/-0.5V VCORE VMVREG VSS_IO KERNEL (CORE & DIGITAL & MEMORIES) VIO=5.0V OUT GP I/Os I/O LOGIC IN VDD_PLL 5.0V PLL VSS_PLL VDD_ADC VSS_ADC 5.0V ADC ADCIN NOTE : THE EXTERNAL 5.0V POWER SUPPLY MUST ALWAYS BE KEPT ON 6.1.7 I/O characteristics versus the various power schemes (3.3V or 5.0V) Unless otherwise mentioned, all the I/O characteristics are valid for both ● VDD_IO=3.0 V to 3.6 V with bit EN33=1 ● VDD_IO=4.5 V to 5.5 V with bit EN33=0 When VDD_IO=3.0 V to 3.6 V, I/Os are not 5V tolerant. 6.1.8 Current consumption measurements All the current consumption measurements mentioned below refer to Power scheme 1 and 2 as described in Figure 12 and Figure 13 29/84 Electrical parameters STR750Fxx STR751Fxx STR752Fxx STR755Fxx Figure 12. Power consumption measurements in power scheme 1 (regulators enabled) VDDA_ADC pins VDDA_PLL pins IDDA_PLL IDDA_ADC ADC load PLL load VDD_IO pins IDD ballast regulator I33 transistor 3.3V Supply 3.3V internal load V18 pins (including V18BKP) I18 1.8V internal load IDD is measured, which corresponds to the total current consumption : IDD = IDDA_PLL + IDDA_ADC + I33 + I18 Figure 13. Power consumption measurements in power scheme 2 (regulators disabled) VDDA_ADC pins VDDA_PLL pins IDDA_PLL IDD_v33 3.3V Supply 30/84 PLL load I33 3.3V internal load I18 1.8V internal load IDD_v18 IDD_v33 and IDD_v18 are measured which correspond to: IDD_v33 = IDDA_PLL + IDDA_ADC + I33 IDD_v18 = I18 ADC load VDD_IO pins V18 pins (including V18BKP) 1.8V Supply IDDA_ADC STR750Fxx STR751Fxx STR752Fxx STR755Fxx Electrical parameters Figure 14. Power consumption measurements in power scheme 3 (regulators enabled) VDDA_ADC pins VDDA_PLL pins IDDA_PLL IDDA_ADC ADC load PLL load VDD_IO pins IDD ballast regulator I50 transistor 5.0V Supply 5.0V internal load V18 pins (including V18BKP) I18 1.8V internal load IDD is measured, which corresponds to the total current consumption : IDD = IDDA_PLL + IDDA_ADC + I50 + I18 Figure 15. Power consumption measurements in power scheme 4 (regulators disabled) VDDA_ADC pins VDDA_PLL pins IDDA_PLL IDD_v50 5.0V Supply PLL load I50 5.0V internal load I18 1.8V internal load IDD_v18 IDD_v50 and IDD_v18 are measured which correspond to: IDD_v50= IDDA_PLL + IDDA_ADC + I50 IDD_v18 = I18 ADC load VDD_IO pins V18 pins (including V18BKP) 1.8V Supply IDDA_ADC 31/84 Electrical parameters 6.2 STR750Fxx STR751Fxx STR752Fxx STR755Fxx Absolute maximum ratings Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. 6.2.1 Voltage characteristics Table 7. Voltage characteristics Symbol Ratings VDD_x - VSS_X(1) Including VDDA_ADC and VDDA_PLL V18 - VSS18 VIN Digital 1.8 V Supply voltage on all V18 power pins (when 1.8 V is provided externally) Input voltage on any pin (2) Min Max Unit -0.3 6.5 V -0.3 2.0 VSS-0.3 to VDD_IO+0.3 VSS-0.3 to VDD_IO+0.3 |ΔVDDx| Variations between different 3.3 V or 5.0 V power pins 50 |ΔV18x| Variations between different 1.8 V power pins(3) 25 Variations between all the different ground pins 50 |VSSX - VSS| VESD(HBM) Electro-static discharge voltage (Human Body Model) VESD(MM) Electro-static discharge voltage (Machine Model) see : Absolute maximum ratings (electrical sensitivity) on page 52 mV see : Absolute maximum ratings (electrical sensitivity) on page 52 1. All 3.3 V or 5.0 V power (VDD_IO, VDDA_ADC, VDDA_PLL) and ground (VSS_IO, VSSA_ADC, VDDA_ADC) pins must always be connected to the external 3.3V or 5.0V supply. When powered by 3.3V, I/Os are not 5V tolerant. 2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN>VDD while a negative injection is induced by VINVDD while a negative injection is induced by VIN85° C 56 MHz Accessing Flash with 0 wait states 0 32 Write access to Flash registers(1) 0 30 Accessing Flash in RWW mode 0 16 0 32 Standard Operating Voltage Power Scheme 1 & 2 3.0 3.6 Standard Operating Voltage Power Scheme 3 & 4 4.5 5.5 V18 Standard Operating Voltage Power Scheme 2 & 4 1.65 1.95 PD Power dissipation at TA= 85° C for suffix 6 or TA= 105° C for suffix 7(2) fPCLK VDD_IO TA TJ Internal APB Clock frequency Unit LQFP100 434 LQFP64 444 LFBGA100 487 LFBGA64 344 MHz V mW Ambient temperature for 6 suffix Maximum power dissipation version Low power dissipation(3) -40 85 °C -40 105 °C Ambient temperature for 7 suffix Maximum power dissipation version Low power dissipation (3) -40 105 °C -40 125 °C 6 Suffix Version -40 105 °C 7 Suffix Version -40 125 °C Junction temperature range 1. Write access to Flash registers is either a program, erase, set protection or un-set protection operation. 2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.2: Thermal characteristics on page 79). 3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.2: Thermal characteristics on page 79). 34/84 STR750Fxx STR751Fxx STR752Fxx STR755Fxx 6.3.2 Electrical parameters Operating conditions at power-up / power-down Subject to general operating conditions for TA. Table 11. Operating conditions at power-up / power-down Symbol Parameter Conditions Min(1) Typ Max(1) μs/V 20 tVDD_IO VDD_IO rise time rate tV18 V18 rise time rate (1) 20 When 1.8 V power is supplied externally Unit ms/V μs/V 20 20 ms/V 1. Data guaranteed by characterization, not tested in production. 6.3.3 Embedded voltage regulators Subject to general operating conditions for VDD_IO, and TA Table 12. Embedded voltage regulators Symbol Parameter Conditions Min Typ Max Unit VMVREG MVREG power supply(1) load
STR750FV0H6 价格&库存

很抱歉,暂时无法提供与“STR750FV0H6”相匹配的价格&库存,您可以联系我们找货

免费人工找货
STR750FV0H6

    库存:0