0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STSPIN220

STSPIN220

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    VQFN16

  • 描述:

    LOW VOLTAGE STEPPER MOTOR DRIVER

  • 数据手册
  • 价格&库存
STSPIN220 数据手册
STSPIN220 Datasheet Low voltage stepper motor driver Features • • Operating voltage: from 1.8 to 10 V Maximum output current: 1.3 Arms • RDS(ON) HS + LS = 0.4 Ω typ. • • • Microstepping up to 1/256th of a step Current control with programmable off-time Full protection set – Non-dissipative overcurrent protection – Short-circuit protection – Thermal shutdown Energy saving and long battery life with standby consumption less than 80 nA • Applications Product status link Battery-powered stepper motor applications such as: • Pop-up camera control for smartphones • Point of sale (POS) devices • Portable printers • PC peripherals and accessories • Robotics • Toys • Reflex cameras STSPIN220 Product summary Order code STSPIN220 Package VFQFPN 3x3x1.0 16L Packing Tape & reel Description The STSPIN220 is a stepper motor driver which integrates, in a small VFQFPN 3 x 3 x 1.0 mm package, both control logic and a low RDS (on) power stage. The integrated controller implements PWM current control with fixed OFF time and a microstepping resolution up to 1/256th of a step. The device is designed to operate in battery-powered scenarios and can be forced into a zero-consumption state, allowing a significant increase in battery life. The device offers a complete set of protection features including overcurrent, overtemperature and short-circuit protection. DS11633 - Rev 5 - December 2020 For further information contact your local STMicroelectronics sales office. www.st.com STSPIN220 Block diagram 1 Block diagram Figure 1. Block diagram VBAT VS VS STBY\RESET VS 1 0 OUTA1 OC\SC REF EN\FAULT DAC Vrelease + + OUTA2 OC\SC Control logic STCK\MODE3 DIR\MODE4 MODE1 SENSEA + Stepper motor VS OC\SC OUTB1 MODE2 + TOFF OUTB2 OC\SC Oscillator OVT SENSEB GND AM040026 DS11633 - Rev 5 page 2/29 STSPIN220 Electrical data 2 Electrical data 2.1 Absolute maximum ratings Table 1. Absolute maximum ratings Symbol Parameter Value Unit VS Supply voltage -0.3 to 11 V VIN Logic input voltage -0.3 to 5.5 V VOUT - VSENSE Output-to-sense voltage drop Up to 12 V VS - VOUT Supply-to-output voltage drop Up to 12 V -1 to 1 V -0.3 to 1 V 1.3 Arms VSENSE Sense pin voltage VREF Reference voltage input IOUT,RMS 2.2 Test condition Continuous power stage output current (each bridge) Tj,OP Operative junction temperature -40 to 150 °C Tj,STG Storage junction temperature -55 to 150 °C Recommended operating conditions Table 2. Recommended operating conditions Symbol Max Unit 1.8 10 V 0 5 V Reference voltage input 0.1 0.5 V Logic inputs positive/negative pulse width 300 VS Supply voltage VIN Logic input voltage VREF tINw 2.3 Parameter Test condition Min Typ ns Thermal data Table 3. Thermal data Symbol Parameter Rth (JA) Junction to ambient thermal resistance RthJCtop RthJCbot RthJB Conditions Value Unit Natural convection, according to JESD51-2a (1) 57.1 °C/W Junction to case thermal resistance (top side) Simulation with cold plate on package top 67.3 °C/W Junction to case thermal resistance (bottom side) Simulation with cold plate on exposed pad 9.1 °C/W 23.3 °C/W Junction to board thermal resistance According to JESD51-8(1) ψJT Junction to top characterization According to JESD51-2a(1) 3.3 °C/W ψJB Junction to board characterization According to JESD51-2a(1) 22.6 °C/W 1. Simulated on a 21.2x21.2 mm board, 2s2p 1 Oz copper and four 300 µm vias below exposed pad. DS11633 - Rev 5 page 3/29 STSPIN220 ESD protection 2.4 ESD protection Table 4. ESD protection ratings Symbol DS11633 - Rev 5 Parameter Test condition Class Value Unit HBM Human body model Conforming to ANSI/ESDA/JEDEC JS-001-2014 H2 2 kV CDM Charge device model Conforming to ANSI/ESDA/JEDEC JS-002-2014 C2a 500 V page 4/29 STSPIN220 Electrical characteristics 3 Electrical characteristics Test conditions: VS = 5 V, Tj = 25 °C unless otherwise specified. Table 5. Electrical characteristics Symbol Parameter Test condition Min. Typ. Max. Unit VS rising from 0 V 1.45 1.65 1.79 V VS falling from 5 V 1.3 1.45 1.65 V Supply VSth (ON) VS turn-on voltage VSth (OFF) VSth (HYS) VS turn-off voltage VS hysteresis voltage 180 mV No commutations EN = ‘0’ IS VS supply current 960 1300 μA 1500 1950 μA 10 80 nA 0.9 V ROFF = 160 kΩ No commutations EN = ‘1’ ROFF = 160 kΩ IS,STBY VS standby current VSTBYL Standby low logic level input voltage VSTBYH Standby high logic level input voltage STBY = 0 V 1.48 V Power stage VS = 10 V, IOUT = 1.3 A 0.4 0.65 0.53 0.87 0.53 0.8 VS = 10 V, RDS (ON) HS+LS Total ON resistance HS + LS IOUT = 1.3 A, Tj = 125 °C VS = 3 V, IOUT = 0.4 A IDSS Leakage current VDF Freewheeling diode forward voltage trise Rise time tfall Fall time tDT Deadtime Ω (1) OUTx = VS OUTx = GND ID = 1.3 A VS = 10 V; unloaded outputs VS = 10 V; unloaded outputs 1 -1 µA 0.9 V 10 ns 10 ns 50 ns Current control DS11633 - Rev 5 page 5/29 STSPIN220 Electrical characteristics Symbol VSNS,OF FSET tOFF ΔfOSC Parameter Sensing offset Total OFF time Internal oscillator precision (fOSC/fOSC,ID) tOFF,jitter Total OFF time jittering tOFF,SLO W tOFF,FAS T Test condition VREF = 0.5 V; Internal reference 20% VREF Min. Typ. -15 Max. Unit +15 mV ROFF = 10 kΩ 9 µs ROFF = 160 kΩ 125 µs ROFF = 20 kΩ -20% +20% ROFF = 10 kΩ 2% Slow decay time 5/8 × tOFF µs Fast decay time 3/8 × tOFF µs Logic IOs VIH High logic level input voltage VIL Low logic level input voltage 1.6 V VRELEAS FAULT open drain release voltage E VOL EN Low logic level output voltage RSTBY STBY pull-down resistance IPDEN EN pull-down current tENd EN input propagation delay IEN = 4 mA From EN falling edge to OUT high impedance 0.6 V 0.4 V 0.4 V 36 kΩ 10.5 µA 55 ns tMODEho MODEx input hold time From STBY edge, see Figure 5 100 µs tMODEsu MODEx input setup time From STBY edge, see Figure 5 1 µs tDIRh DIR input hold time From STCK rising edge, see Figure 4 100 ns tDIRsu DIR input setup time From STCK rising edge, see Figure 4 100 ns tSTCKH STCK high time See Figure 4 100 ns tSTCKL STCK low time See Figure 4 100 ns fSTCK STCK inputs frequency See Figure 4 1 MHz Protections TjSD Thermal shutdown threshold 160 °C TjSD,Hyst Thermal shutdown hysteresis 40 °C IOC Overcurrent threshold 2 A See Figure 14. Power stage resistance versus temperature 1. Based on characterization data on a limited number of samples, not tested during production. DS11633 - Rev 5 page 6/29 STSPIN220 Pin description 4 Pin description Figure 2. Pin connection (top view) MODE1 MODE2 16 15 STBY\ RESET 14 EN\FAULT 13 DIR\MODE4 1 12 TOFF STCK\MODE3 2 11 REF EPAD OUTA1 3 10 OUTB1 SENSEA 4 9 SENSEB 5 6 7 8 OUTA2 VS GND OUTB2 Note: The exposed pad must be connected to ground. Table 6. Pin description DS11633 - Rev 5 N. Name Type 1 DIR\MODE4 Logic input Direction input, Step mode selection input 4. 2 STCK\MODE3 Logic input Step clock input, Step mode selection input 3. 3 OUTA1 Power output Power bridge output side A1. 4 SENSEA Power output Sense output of the bridge A. 5 OUTA2 Power output Power bridge output side A2. 6 VS Supply Device supply voltage. 7, EPAD GND Ground Device ground. 8 OUTB2 Power output Power bridge output side B2. 9 SENSEB Power output Sense output of the bridge B. 10 OUTB1 Power output Power bridge output side B1. 11 REF Analog input Reference voltage for the PWM current control circuitry. 12 TOFF Analog input Internal oscillator frequency adjustment. 13 EN\FAULT Logic input\Open drain output 14 STBY\RESET Logic input When forced low, the device is forced into low consumption mode. 15 MODE2 Logic input Step mode selection input 2. 16 MODE1 Logic input Step mode selection input 1. Function This is the power stage enable (when low, the power stage is turned off) and is forced low through the integrated open-drain MOSFET when a failure occurs. page 7/29 STSPIN220 Typical application 5 Typical application Table 7. Typical application values Name Value CS 2.2 µF / 16V CSPOL 22 µF / 16V RSNSA, RSNSB 330 mΩ / 1W CEN 10 nF / 6.3V REN 18 kΩ CSTBY 1 nF / 6.3V RSTBY 18 kΩ COFF 22 nF RCOFF 1 kΩ ROFF 47 kΩ (tOFF ≅ 37 µs) Figure 3. Typical application schematic VS VDD VS RSTBY CSTBY VDD REN CEN CS CSPOL STBY OUTA1 EN\FAULT OUTA2 SENSEA STCK\MODE3 RSNSA DIR\MODE4 MODE1 STSPIN220 Stepper motor OUTB1 MODE2 OUTB2 REF PWM SENSEB RSNSB TOFF RRCOFF CRCOFF DS11633 - Rev 5 ROFF GND page 8/29 STSPIN220 Functional description 6 Functional description The STSPIN220 is a stepper motor driver integrating a microstepping sequencer (up to 1/256th of a step), two PWM current controllers and a power stage composed of two fully-protected full-bridges. 6.1 Standby and power-up The device provides a low consumption mode which is set forcing the STBY\RESET input below the VSTBYL threshold. When the device is in standby status, the power stage is disabled (outputs are in high impedance) and the supply to the integrated control circuitry is cut off. When the device exits the standby status, all of the control circuitry is reset to power-up condition. At power-up, power-down and when leaving the standby condition, the EN/FAULT pin is forced low until the internal circuitry stabilize. 6.2 Microstepping sequencer The value of the MODEx inputs is latched at power-up and when the device exits the STBY condition. After this, the input value is unimportant and the MODE3 and MODE4 inputs start operating as step-clock and direction input. The only exception is the MODE1 = MODE2 = LOW condition; in this case the system is forced into full-step mode. The previous condition is restored as soon as the MODE1 and MODE2 inputs switch to a different combination. An example of mode selection is shown in Figure 4. STCK and DIR timing. At each STCK rising edge, the sequencer of the device is increased (DIR input high) or decreased (DIR input low) of a module selected through the MODEx inputs as listed in Table 8. Step mode selection through MODEx inputs. The sequencer is a 10-bit counter that sets the reference value of the PWM current controller and the direction of the current for both of the H bridges. Table 8. Step mode selection through MODEx inputs DS11633 - Rev 5 MODE3 MODE4 (STCK) (DIR) 0 MODE1 MODE2 Step mode 0 0 0 Full-step 0 0 0 1 1/32nd step 0 0 1 0 1/128th step 0 0 1 1 1/256th step 0 1 0 0 Full-step - 1/32nd step (1) 0 1 0 1 1/4th step 0 1 1 0 1/256th step 0 1 1 1 1/64th step 1 0 0 0 Full-step - 1/128nd step 1 0 0 1 1/256th step 1 0 1 0 1/2 step 1 0 1 1 1/8th step 1 1 0 0 Full-step - 1/256th step 1 1 0 1 1/64th step (1) (1) page 9/29 STSPIN220 Microstepping sequencer MODE3 MODE4 (STCK) (DIR) 1 1 MODE1 MODE2 Step mode 1 1 0 1/8th step 1 1 1 1/16th step 1. This driving mode is automatically bypassed by the MODE1 = MODE2 = 0 if it is kept after the device quit the standby condition. Figure 4. STCK and DIR timing DIR tDIR,su tDIR,ho STCK tSTCKH tSTCKL 1/fSTCK Figure 5. Mode selection example VS VSth(ON) STBY\ RESET t MODEsu t MODEh MODE1 MODE2 t MODEsu t MODEh MODE3 (STCK) MODE4 (DIR) Stepping mode Undeterminated 1/256 th step Full-step 1/256th step Undeterminated 1/16 th step When the full-step mode is set, the reference value of the PWM current controller and the direction of the current for both H bridges as listed in Table 8. Step mode selection through MODEx inputs. DS11633 - Rev 5 page 10/29 STSPIN220 Microstepping sequencer Table 9. Target reference and current direction according to sequencer value (full-step mode) Phase A Sequencer value Phase B Reference voltage Current direction Reference voltage Current direction 0 0 X X X X X X X X 100% × VREF A1 → A2 100% × VREF B1 → B2 0 1 X X X X X X X X 100% × VREF A1 → A2 100% × VREF B1 ← B2 1 0 X X X X X X X X 100% × VREF A1 ← A2 100% × VREF B1 ← B2 1 1 X X X X X X X X 100% × VREF A1 ← A2 100% × VREF B1 → B2 When the step mode is different from the full-step mode the values listed in Table 10. Target reference and current direction according to sequencer value (not full-step mode) are used. Table 10. Target reference and current direction according to sequencer value (not full-step mode) Phase A Sequencer value 0 0 0 0 0 0 0 0 0 0 0 0 N 0 1 0 0 0 0 0 0 0 0 0 1 N 1 0 0 0 0 0 0 0 0 0 1 0 N 1 1 0 0 0 0 0 0 0 0 1 1 N Phase B Current direction Reference voltage Current direction - 100% × VREF B1 → B2 Sin(N/256 × π/2) × VREF A1 → A2 Cos(N/256 × π/2) × VREF B1 → B2 100% × VREF A1 → A2 Sin(π/2 + N/256 × π/2) × VREF A1 → A2 Cos(π/2 + N/256 × π/2) × VREF B1 ← B2 - 100% × VREF B1 ← B2 Sin(N/256 × π/2) × VREF A1 ← A2 Cos(N/256 × π/2) × VREF B1 ← B2 100% × VREF A1 ← A2 Sin(π/2 + N/256 × π/2) × VREF A1 ← A2 Reference voltage Zero (power bridge disabled) Zero (power bridge disabled) Zero (power bridge disabled) Zero (power bridge disabled) Cos(π/2 + N/256 × π/2) × VREF - B1 → B2 The following table shows the target reference and sequencer values for 1/2-, 1/4- and 1/8-step operation. Higher microstepping resolutions follow the same pattern. The reset state (home state) for all stepping mode is entered at power-up or when the device exits the standby status. DS11633 - Rev 5 page 11/29 STSPIN220 PWM current control Table 11. Example 1/2 step 1/4 step 1/8 step VREF phase A VREF phase B 1 1 1 0% 100% 2 19.509% 98.079% 0000100000 3 38.268% 92.388% 0001000000 4 55.557% 83.147% 0001100000 5 70.711% 70.711% 0010000000 6 83.147% 55.557% 0010100000 7 92.388% 19.509% 0011100000 8 98.079% 19.509% 0011100000 9 100% 0% 0100000000 10 98.079% -19.509% 0100100000 11 92.388% -38.268% 0101000000 12 83.147% -55.557% 0101100000 13 70.711% -70.711% 0110000000 14 55.557% -83.147% 0110100000 15 38.268% -92.388% 0111000000 16 19.509% -98.079% 1000100000 17 0% 100% 1000000000 18 -19.509% -98.079% 1000100000 19 -38.268% -92.388% 1001000000 20 -55.557% -83.147% 1001100000 2 2 3 4 3 5 6 4 7 8 5 9 10 6 11 12 7 13 14 8 15 16 Note: 6.3 Sequencer value 0000000000 home state 21 -70.711% -70.711% 1010000000 22 -83.147% -55.557% 1010100000 23 -92.388% -38.268% 1011000000 24 -98.079% -19.509% 1011100000 25 -100% 0% 1100000000 26 -98.079% 19.509% 1100100000 27 -92.388% 38.268% 1101000000 28 -83.147% 55.557% 1101100000 29 -70.711% 70.711% 1110000000 30 -55.557% 83.147% 1110100000 31 -38.268% 92.388% 1111000000 32 -19.509% 98.079% 1111100000 The positive number means that the output current is flowing from OUTx1 to OUTx2, vice versa for a negative value. PWM current control The device implements two independent PWM current controllers, one for each full bridge. DS11633 - Rev 5 page 12/29 STSPIN220 PWM current control The voltage of the sense pins (VSENSEA and VSENSEB) is compared to the respective internal reference generated based on the sequencer value (see Table 9. Target reference and current direction according to sequencer value (full-step mode) and Table 10. Target reference and current direction according to sequencer value (not full-step mode)). When VSENSEX > VREFX, the integrated comparator is triggered, the OFF time counter is started and the decay sequence is performed. The decay sequence starts turning on both the low sides of the full bridge. When 5/8ths of the programmed OFF time (tOFF,SLOW) has expired, the decay sequence performs a quasi-synchronous fast decay. Table 12. ON, slow decay and fast decay states Current direction(1) Zero (power bridge disabled) X1 → X2 X1 ← X2 ON Slow decay Fast decay (quasi-synch) HSX1 = OFF HSX1 = OFF HSX1 = OFF LSX1 = OFF LSX1 = OFF LSX1 = OFF HSX2 = OFF HSX2 = OFF HSX2 = OFF LSX2 = OFF LSX2 = OFF LSX2 = OFF HSX1 = ON HSX1 = OFF HSX1 = OFF LSX1 = OFF LSX1 = ON LSX1 = ON HSX2 = OFF HSX2 = OFF HSX2 = OFF LSX2 = ON LSX2 = ON LSX2 = OFF HSX1 = OFF HSX1 = OFF HSX1 = OFF LSX1 = ON LSX1 = ON LSX1 = OFF HSX2 = ON HSX2 = OFF HSX2 = OFF LSX2 = OFF LSX2 = ON LSX2 = ON 1. The current direction is set according toTable 9. Table 9 and Table 9. Target reference and current direction according to sequencer value (full-step mode)Table 10. Target reference and current direction according to sequencer value (not full-step mode) . The reference voltage value, VREF, must be selected according to the load current target value (peak value) and sense resistor value. Equation 1 In choosing the sense resistor value, two main issues must be taken into account: • The sense resistor dissipates energy and provides dangerous negative voltages on the SENSE pins during current recirculation. For this reason the resistance of this component should be kept low (using multiple resistors in parallel will help to obtain the required power rating with standard resistors). • The lower the RSNSx value, the higher the peak current error due to noise on the VREF pin and the input offset of the current sense comparator. Values of RSNSx that are too low must be avoided. DS11633 - Rev 5 page 13/29 STSPIN220 PWM current control Figure 6. PWM current control sequence VS VS VS OUTX1 VS VS OUTX2 OUTX1 OUTX2 SENSEX RSENSE VS VS OUTX1 OUTX2 SENSEX OUTX1 RSENSE VS OUTX2 SENSEX RSENSE VS VS OUTX1 SENSEX RSENSE OUTX2 SENSEX RSENSE t OFF VREFX/RSENSE t DT t DT Iphase t OFF,SLOW t OFF,FAST VREFX VSENSEX 6.3.1 OFF time adjustment The total OFF time (slow decay + fast decay) is adjusted through an external resistor connected between the TOFF pin and ground, as shown in Figure 6. PWM current control sequence. A small RC series must be inserted in parallel with the regulator resistor in order to increase the stability of the regulation circuit according to Table 12. ON, slow decay and fast decay states indications. Figure 7. OFF time regulation circuit TOFF RRCOFF ROFF CRCOFF The relationship between the OFF time and the external resistor value is shown in Figure 7. OFF time regulation circuit. The value typically ranges from 10 µs to 150 µs. DS11633 - Rev 5 page 14/29 STSPIN220 Overcurrent and short-circuit protection Table 13. Recommended R RCOFF and C RCOFF values according to R OFF ROFF RRCOFF CRCOFF 10 kΩ ≤ ROFF < 82 kΩ 1 kΩ 22 nF 82 kΩ ≤ ROFF ≤ 160 kΩ 2.2 kΩ 22 nF Figure 8. OFF time vs. ROFF value 140 Off time [us] 120 100 80 60 40 20 0 0 50 100 150 200 Off resistor [kohm] 6.4 Overcurrent and short-circuit protection The device embeds circuitry protecting each power output against the overload and short circuit conditions (short-circuit to ground, short-circuit to VS and short-circuit between outputs). When the overcurrent or short-circuit protection is triggered, the power stage is disabled and the EN\FAULT input is forced low through the integrated open-drain MOSFET discharging the external CEN capacitor (refer to Figure 9. Overcurrent and short-circuit protection management). The power stage is kept disabled and the open-drain MOSFET is kept ON until the EN\FAULT input falls below the VRELEASE threshold, then the CEN capacitor is charged through the external REN resistor. DS11633 - Rev 5 page 15/29 STSPIN220 Overcurrent and short-circuit protection Figure 9. Overcurrent and short-circuit protection management MCU DEVICE FAULT_MCU VRELEASE RELEASE EN\FAULT EN_MCU REN VEN CEN EN IPDEN OC\SC THSD FAULT Overcurrent protection VIH VIL VRELEASE Power stage ENABLED DISABLED tdischarge ENABLED tcharge FAULT tDIS The total disable time after an overcurrent event can be set sizing properly the external network connected to the EN\FAULT pin (refer to Figure 9. Overcurrent and short-circuit protection management): Equation 2 But tcharge is normally much higher than tdischarge, thus we can consider the following: Equation 3 DS11633 - Rev 5 page 16/29 STSPIN220 Overcurrent and short-circuit protection where VDD is the pull-up voltage of the REN resistor. Figure 10. Disable time versus REN and CEN values (VDD = 3.3 V) 1000 REN = 18 kΩ REN = 10 kΩ REN = 6.8 kΩ Disable time [µs] REN = 4.7 kΩ REN = 3.3 kΩ REN = 2.2 kΩ 100 10 0 10 20 30 40 50 60 70 80 90 100 90 100 CEN [nF] Figure 11. Disable time versus REN and CEN values (VDD = 1.8 V) REN = 18 kΩ 1000 REN = 10 kΩ REN = 6.8 kΩ REN = 4.7 kΩ REN = 3.3 kΩ Disable time [µs] REN = 2.2 kΩ 100 10 0 10 20 30 40 50 60 70 80 CEN [nF] DS11633 - Rev 5 page 17/29 STSPIN220 Thermal shutdown 6.5 Thermal shutdown The device embeds circuitry protecting it from the overtemperature conditions. When the thermal shutdown temperature is reached, the power stage is disabled and the EN\FAULT input is forced low through the integrated open-drain MOSFET (refer to Figure 12. Thermal shutdown management). The protection and the EN\FAULT output are released when the IC temperature returns below a safe operating value (TjSD - TjSD,Hyst). Figure 12. Thermal shutdown management MCU DEVICE FAULT_MCU VRELEASE EN\FAULT EN_MCU REN CEN RELEASE EN IPDEN OC\SC THSD FAULT Thermal shutdown TjSD TjSD,hyst Tj VEN VIH VIL VRELEASE Power stage FAULT DS11633 - Rev 5 ENABLED DISABLED DISABLED ENABLED t THSD page 18/29 STSPIN220 Graphs 7 Graphs Figure 13. Power stage resistance versus supply voltage Figure 14. Power stage resistance versus temperature RDS(ON) HS+LS normalized at 25°C 1.4 1.3 1.2 1.1 1 VS = 1. 8 V VS = 3 V 0.9 VS = 10 V 0.8 -50 0 50 100 150 Temperature [°C] DS11633 - Rev 5 page 19/29 STSPIN220 Graphs Figure 15. Overcurrent threshold versus supply voltage DS11633 - Rev 5 page 20/29 STSPIN220 Package information 8 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. DS11633 - Rev 5 page 21/29 STSPIN220 VFQFPN 3x3x1.0 16L package information 8.1 VFQFPN 3x3x1.0 16L package information Figure 16. VFQFPN 3x3x1.0 16L package outline DS11633 - Rev 5 page 22/29 STSPIN220 VFQFPN 3x3x1.0 16L package information Table 14. Table A: Package dimensions SYMBOL Dimensions [mm] Min. (mm) Nom. Max. A 0.80 0.90 1.00 A1 0.00 0.02 0.05 A3 b 0.20 0.20 0.25 D 3.00 BSC D1 1.50 BSC D2 1.60 1.70 e 0.50 BSC E 3.00 BSC D2 1.50 BSC 0.30 1.80 E2 1.60 1.70 1.80 L 0.30 0.40 0.50 k 0.20 N 16 Table 15. Table B: Position and form tolerance DS11633 - Rev 5 SYMBOL TOLERANCE OF FORM AND POSITION aaa 0.15 bbb 0.10 ccc 0.10 ddd 0.05 eee 0.08 fff 0.10 page 23/29 STSPIN220 VFQFPN 3x3x1.0 16L package information Figure 17. VFQFPN 3x3x1.0 16L recommended footprint DS11633 - Rev 5 page 24/29 STSPIN220 Revision history Table 16. Document revision history Date Version 06-May-2016 1 Changes Initial release. - Updated document status to Datasheet - production data on page 1. 30-Jun-2016 2 - Updated Table 1 (changed Max. value of VS from 12 to 11) and Table 7 (changed tOFF value from ≅47 µs to ≅37 µs). - Updated Figure 1 in Section 1 Block diagram (replaced by new figure). - Updated Table 2 in Section 2.2 Recommended operating conditions (added tINw symbol). - Updated Table 3 in Section 2.3 Thermal data(replaced by new table). 28-Nov-2016 3 - Updated Table 8 in Section 6.2 Microstepping sequencer [removed "Sequencer module (binary)" column]. - Added Table 11 in Section 6.2 Microstepping sequencer. - Updated Table 13 in (updated title). - Updated Figure 13 in (replaced by new figure). - Minor modifications throughout document. DS11633 - Rev 5 21-Mar-2019 4 Updated Section 8.1 VFQFPN 3x3x1.0 16L package information 09-Dec-2020 5 Updated Figure 9 in Section 6.4 , Figure 16 and Figure 17. Updated Table 14 and added Table 15 page 25/29 STSPIN220 Contents Contents 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 2 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 2.1 Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.4 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 5 Typical application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 6 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6.1 Standby and power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6.2 Microstepping sequencer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6.3 PWM current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6.3.1 OFF time adjustment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.4 Overcurrent and short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6.5 Thermal shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 8 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 8.1 VFQFPN 3x3x1.0 16L package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 List of figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 DS11633 - Rev 5 page 26/29 STSPIN220 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ESD protection ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical application values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Step mode selection through MODEx inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Target reference and current direction according to sequencer value (full-step mode) . . . Target reference and current direction according to sequencer value (not full-step mode) Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ON, slow decay and fast decay states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended R RCOFF and C RCOFF values according to R OFF . . . . . . . . . . . . . . . . . . . Table 14. Table 15. Table 16. Table A: Package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table B: Position and form tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 DS11633 - Rev 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 3 . 3 . 4 . 5 . 7 . 8 . 9 11 11 12 13 15 page 27/29 STSPIN220 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. DS11633 - Rev 5 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . Typical application schematic . . . . . . . . . . . . . . . . . . . STCK and DIR timing . . . . . . . . . . . . . . . . . . . . . . . . Mode selection example . . . . . . . . . . . . . . . . . . . . . . PWM current control sequence . . . . . . . . . . . . . . . . . . OFF time regulation circuit . . . . . . . . . . . . . . . . . . . . . OFF time vs. ROFF value . . . . . . . . . . . . . . . . . . . . . . Overcurrent and short-circuit protection management . . Disable time versus REN and CEN values (VDD = 3.3 V) . Disable time versus REN and CEN values (VDD = 1.8 V) . Thermal shutdown management . . . . . . . . . . . . . . . . . Power stage resistance versus supply voltage . . . . . . . Power stage resistance versus temperature . . . . . . . . . Overcurrent threshold versus supply voltage . . . . . . . . VFQFPN 3x3x1.0 16L package outline . . . . . . . . . . . . VFQFPN 3x3x1.0 16L recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 7 . 8 10 10 14 14 15 16 17 17 18 19 19 20 22 24 page 28/29 STSPIN220 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2020 STMicroelectronics – All rights reserved DS11633 - Rev 5 page 29/29
STSPIN220 价格&库存

很抱歉,暂时无法提供与“STSPIN220”相匹配的价格&库存,您可以联系我们找货

免费人工找货
STSPIN220
    •  国内价格
    • 1+9.03850

    库存:0