STSPIN32F0B
Datasheet
Advanced single shunt BLDC controller with embedded STM32 MCU
Features
•
•
Extended operating voltage from 6.7 to 45 V
Three-phase gate drivers
–
600 mA sink/source
–
Integrated bootstrap diodes
–
Cross-conduction prevention
•
32-bit ARM® Cortex®-M0 core:
–
Up to 48 MHz clock frequency
–
4-kByte SRAM with HW parity
–
32-kByte Flash memory with option bytes used for write/readout protection
–
Bootloader FW available
3.3. V DC/DC buck converter regulator with overcurrent, short-circuit, and
thermal protection
12 V LDO linear regulator with thermal protection
20 general-purpose I/O ports (GPIO)
5 general-purpose timers
12-bit ADC converter (up to 9 channels)
•
•
•
•
•
Product status link
•
•
•
•
•
I2C, USART and SPI interfaces
One rail-to-rail operational amplifier for signal conditioning
Comparator for overcurrent protection with programmable threshold
Standby mode for low power consumption
UVLO protection on each power supply:
–
VM, VDD, VREG and VBOOTx
•
•
On-chip debug support via SWD
Extended temperature range: -40 to +125 °C
STSPIN32F0B
Product summary
Order Codes
STSPIN32F0B
Tray
STSPIN32F0BTR Tape and Reel
Marking
STSPIN32F0B
Package
VFQFPN48 7x7x1mm
Applications
•
•
•
•
Power tools
FANs and pumps
Industrial automation
Battery powered home appliances
DS12907 - Rev 1 - February 2019
For further information contact your local STMicroelectronics sales office.
www.st.com
STSPIN32F0B
Description
1
Description
The STSPIN32F0B is a System-In-Package providing an integrated solution suitable for driving three-phase
brushless motors using different driving modes.
It embeds a triple half-bridge gate driver able to drive power MOSFETs with a current capability of 600 mA (sink
and source). The high- and low-side switches of same half-bridge cannot be simultaneously driven high thanks to
an integrated interlocking function.
An internal DC/DC buck converter provides the 3.3 V voltage suitable to supply both the MCU and external
components. An internal LDO linear regulator provides the supply voltage for gate drivers.
The integrated operational amplifier is available for the signal conditioning, e.g. the current sensing across the
shunt resistor.
A comparator with a programmable threshold is integrated to perform the overcurrent protection.
The integrated MCU (STM32F031C6 with extended temperature range, suffix 7 version) allows performing fieldoriented control, the 6-step sensorless and other advanced driving algorithms. It has the write-protection and
read-protection feature for the embedded Flash memory to protect against unwanted writing and/or reading. It is
possible to download the firmware on-the-field through the serial interface thanks to the embedded bootloader.
The STSPIN32F0B device also features overtemperature and undervoltage lockout protections and can be put in
the standby mode to reduce the power consumption. The device provides 20 general-purpose I/O ports (GPIO)
with the 5 V tolerant capability, one 12-bit analog-to-digital converter with up to 9 channels performing
conversions in a single-shot or scan modes, 5 synchronizable general-purpose timers and supports an easy to
use debugging serial interface (SWD).
DS12907 - Rev 1
page 2/36
STSPIN32F0B
Block diagrams
2
Block diagrams
OUTW
LSW
LS
HS
VREG12
LS
VREG12
VBOOTW
HSW
LSV
OUTV
VREG12
VREG12
VREG12
Control Logic
Gate Driver
COMP
OC_COMP
ADJ REF
6
2
12V
VREG
VREG 12V
VM
HSV
VBOOTV
LS
HS
LSU
OUTU
VREG12
HSU
VREG12
HS
VBOOTU
Figure 2. STSPIN32F0B System-In-Package block diagram
to VDDA
OP1P
OP1N
OP1O
OC_SEL
OC comp threshold select
3.3V
VM
VM
OPAMP
DC/DC Buck conv
control
SW
PA13_SWD_IO
3.3V
RESERVED
RESERVED
RESERVED
GND
PF7
PF6
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
connected
to EPAD
PA14_SWD_CLK
TEST MODE
PB6
PB7
BOOT0
VDD
VSS
STM32F031
PA14
PA15
PB3
PB4
PB5
PB6
PB7
BOOT0
PB8
PB9
VSS
PA15
PB11
PB10
PB2
PB1
PB0
PA7
PA6
PA5
PA4
VDD
VBAT
PB8
PA5
PA4
VDDA
PA0
PA1
PA2
PA3
PC13
PC14
PC15
PF0
PF1
NRST
VSSA
PB9
PB1
PA7
PA6
DS12907 - Rev 1
PA3
PA2
PA1
PA0
VDDA
PF1
NRST
PC15
PF0
PC14
VDD
page 3/36
STSPIN32F0B
Block diagrams
Figure 3. Analog IC block diagram
VREG 12V
SW
VM
VDD_3V3
PA13_SWD_IO
RESERVED
RESERVED
RESERVED
3.3V
VM
VM
12V
VREG
VREG12
VREG12
VBOOTU
HS
control
SWDIO_INT
VREG12
DC/DC Buck conv
OC_TH_STBY1
OC_TH_STBY2
OC_COMP_INT2
OC_SEL
HS3
HS2
HS1
LS3
LS2
LS1
2
OC comp threshold select
LS
HSU
OUTU
LSU
VREG12
OC_SEL
VBOOTV
Control Logic
Gate Driver
6
HS
HSV
OUTV
VREG12
LS
OC_COMP_INT1
LSV
VREG12
VBOOTW
HS
3.3V
VDD
OUTW
VREG12
LS
LSW
ADJ REF
OPAMP
OC Comp
OP1P
OP1N
OP1O
DS12907 - Rev 1
COMP
TEST MODE
GND
HSW
page 4/36
STSPIN32F0B
3
Electrical data
3.1
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 1. Absolute maximum ratings may cause permanent
damage to the device. Exposure to maximum rating conditions for extended periods may affect device reliability.
Table 1. Absolute maximum ratings
Symbol
VM
VREG12
Parameter
Power supply voltage
Linear regulator output and gate driver supply voltage
Test condition
Value
Unit
-
-0.3 to 48
V
VREG12 shorted to VM
15
V
VOPP
Op amp positive input voltage
-
-0.2 to VDD + 0.2
V
VOPN
Op amp negative input voltage
-
-0.2 to VDD + 0.2
V
VCP
Comparator input voltage
-
-2 to 2
V
VHS
High-side gate output voltage
-
VOUT - 0.3 to VBOOT + 0.3
V
VLS
Low-side gate output voltage
-
-0.3 to VREG12 + 0.3
V
VBOOT
Bootstrap voltage
-
VOUT
Output voltage (OUTU, OUTV, OUTW)
-
dVOUT/dt Output slew rate
Max. (VOUT - 0.3 or -0.3) to
min. ('VOUT + VREG12 + 0.3' or 60)
TTa type
VIO
IIO
ΣIIO
VDD
VDDA
Tstg
Tj
MCU logic input
-2 to VM + 2
V
± 10
V/ns
-
voltage(1)
FT, FTf
(1)
type(1)
V
-0.3 to 4
-0.3 to VDD + 4 (2)
V
BOOT0
0 to 9.0
(1)
-25 to 25
mA
, (3) (1)
-80 to 80
mA
MCU digital supply voltage
(1)
-0.3 to 4
V
MCU analog supply voltage
(1)
-0.3 to 4
V
Storage temperature
-
-55 to 150
°C
Operating junction temperature
-
-40 to 150
°C
MCU I/O output current
MCU I/O total output current
1. See Table 15 Voltage characteristics in the STM32F031C6 datasheet (suffix 7 version).
2. Valid only if the internal pull-up/pull-down resistors are disabled. If internal the pull-up or pull-down resistor is
enabled, the maximum limit is 4 V.
3. If the MCU supply voltage is provided by an integrated DC/DC regulator, the application current
consumption is limited at IDDA,max value (see Table 5. Electrical characteristics).
DS12907 - Rev 1
page 5/36
STSPIN32F0B
ESD protections
3.2
ESD protections
Table 2. ESD protection ratings
Symbol
3.3
Parameter
Test condition
Conforming to ANSI/ESDA/JEDEC
HBM
Human body model
CDM
Charge device model
JS-001-2014
Conforming to ANSI/ESDA/JEDEC
JS-002-2014
Class
Value
Unit
H2
2
kV
C2
750
V
Recommended operating conditions
Table 3. Recommended operating conditions
Symbol
VM
dVM/dt
Parameter
Test condition
Min.
Typ.
Max.
Unit
-
6.7 (1)
-
45
V
VM = 45 V
-
-
0.75
V/µs
Power supply voltage
Power supply voltage slope
VDDA
DC/DC regulator output voltage
-
-
3.3
-
V
LSW
Output inductance
-
-
22
-
µH
CDDA
Output capacitance
-
47
-
-
µF
ESRDDA
Output capacitor ESR
-
-
-
200
mΩ
VREG12
Linear regulator output and gate driver supply voltage
13 < VM < 45 V
-
12
-
Shorted to VM
6.7(1)
-
15
-
1
10
-
µF
CREG
ESRREG
Load capacitance
-
-
-
1.2
Ω
VBO
Floating supply voltage
(2)
-
-
VREG12 - 1
15
V
VCP
Comparator input voltage
-
0
-
1
V
Analog IC
-40
-
125
°C
MCU (3)
-40
-
125
°C
Tj
ESR load capacitance
V
Operating junction temperature
1. UVLO threshold VMOn_max.
2. VBO = VBOOT - VOUT.
3. See the STM32F031C6 datasheet (suffix 7 version).
3.4
Thermal data
Thermal values are calculated by simulation with the following boundary conditions: 2s2p board as per the std.
JEDEC (JESD51-7) in natural convection, board dimensions: 114.3 x 76.2 x 1.6 mm, ambient temperature: 25 °C.
Table 4. Thermal data
DS12907 - Rev 1
Symbol
Parameter
Value
Unit
Rth (JA)
Thermal resistance junction to ambient
45.6
°C/W
page 6/36
STSPIN32F0B
Electrical characteristics
4
Electrical characteristics
Testing conditions: VM = 15 V; VDD = 3.3 V, unless otherwise specified.
Typical values are tested at Tj = 25 °C, minimum and maximum values are guaranteed by thermal
characterization in the temperature range of -40 to 125 °C, unless otherwise specified.
Table 5. Electrical characteristics
Symbol
Parameter
Test condition
Min. Typ.
Max.
Unit
Power supply and standby mode
VM = 45 V; VDD = 3.5 V externally supplied
IM
VM current consumption
Standby PF7 = '0' PF6 = '0'
VM = 45 V; VDD = 3.5 V externally supplied
-
2
2.6
mA
-
880
1100
µA
VMOn
VM UVLO turn-on threshold
VM rising from 0 V
6.0
6.3
6.6
V
VMOff
VM UVLO turn-off threshold
VM falling from 8 V
5.8
7.1
6.4
V
VMHys
VM UVLO threshold hysteresis
-
-
0.2
-
V
VDD = 3.5 V externally supplied
-
2.5
5
-
2.5
5
-
400
550
-
80
125
IDD
VDD current consumption
Standby PF7 = '0' PF6 = '0'
VDD = 3.5 V externally supplied
VDD = 3.5 V externally supplied
IDDA
VDDA current consumption
Standby PF7 = '0' PF6 = '0'
VDD = 3.5 V externally supplied
mA
µA
VDDOn
VDD UVLO turn-on threshold
VDD rising from 0 V
2.5
2.65
2.8
V
VDDOff
VDD UVLO turn-off threshold
VDD falling from 3.3 V
2.2
2.35
2.5
V
VDDHys
VDD UVLO threshold hysteresis
-
-
0.3
-
V
-
800
1200
VREG = 13 V externally supplied, VM = 45 V;
IREG12
VREG current consumption
no commutation
Standby PF7 = '0' PF6 = '0' VREG = 13 V
externally supplied
µA
-
800
1200
VREG12On
VREG12 UVLO turn-on threshold
VREG12 rising from 0 V
6.0
6.3
6.6
V
VREG12Off
VREG12 UVLO turn-off threshold
VREG12 falling from 8 V
5.8
6.1
6.4
V
VREG12Hys
VREG12 UVLO threshold hysteresis
-
-
0.25
-
V
IBOOT
VBO current consumption
HS on, VBO = 13 V
-
200
290
µA
VBOOn
VBO UVLO turn-on threshold
VBO rising from 0 V
5.5
5.8
6.1
V
VBOOff
VBOUVLO turn-off threshold
VBO falling from 8 V
5.3
5.6
5.9
V
VBOHys
VBO UVLO threshold hysteresis
-
-
0.15
-
V
Standby set time
-
-
-
1
µs
-
5.6
6
6.4
V
3.09
3.3
3.5
V
-
-
70
mA
tsleep
DC/DC switching regulator
VPWR_OK
Power good voltage
VDDA
Average output voltage
IDDA
Output current
DS12907 - Rev 1
DC; MCU current consumption included
page 7/36
STSPIN32F0B
Electrical characteristics
Symbol
fSW
Parameter
Maximum SW switching frequency
ISW,peak
IOVC
tSS
Open loop, VDDA floating
Min. Typ.
Max.
Unit
-
200
330
kHz
ISW = 200 mA
-
1.4
-
Ω
Efficiency
VM = 8 V; IDDA = IDDA,max
-
80
-
%
Peak current threshold
-
-
320
-
mA
Latched overcurrent threshold
-
-
1
-
A
Soft-start time
-
2.5
5
7.5
ms
11.4
12
12.6
V
-
200
400
mV
VM = 13 V
20
-
40
mA
TJ = 25 °C
400
600
-
mA
Full temperature range
350
-
-
mA
Input lines pull-down resistor
-
30
60
95
kΩ
Input-to-output propagation delay (4)
-
-
20
40
ns
Delay matching, HS and LS turn-on/off (5)
-
-
10
20
ns
Bootstrap diode ON resistance
-
-
120
240
Ω
-
-0.1
-
VDD + 0.1
V
Vout = 1.65; Tj = 25 °C
-
1
6
mV
Vout = 1.65; full temp. range
-
-
7
mV
Vout = 1.65
-
-
100
pA
-
-
100
pA
RSWDS(ON) Switch ON resistance
η
Test condition
ISW = 100 mA
Linear regulator
VREG12
Linear regulator output and gate driver supply
voltage
VREG12,drop Drop voltage
IREG12,lim
Linear regulator current limit
VM = 13 ÷ 45 V (3)
IO = 10 mA
VM = 8 ÷ 11 V, IO = 10 mA
Gate drivers
ISI
ISO
RPDin
ton
toff
MT
RDS_diode
Maximum sink/source current capabilities
Operational amplifier
Vicm
Input common mode voltage range
VOPio
Input offset voltage
IOPio
Input offset current
IOPib
Input bias current
Common mode rejection ratio
0 to 3.3 V; Vout = 1.65 V
70
90
-
dB
Open loop gain
RL = 10 kΩ; Vout = 1.65
-
90
-
dB
VDD - VOH
High level output voltage
RL = 10 kΩ
-
15
40
mV
VOL
Low level output voltage
RL = 10 kΩ
-
15
40
mV
Vout = 3.3 V; Tj = 25 °C
18
-
-
mA
Vout = 3.3 V; full temp. range
16
-
-
Vout = 0 V; Tj = 25 °C
18
-
-
Vout = 0 V; full temp. range
16
-
-
10
18
-
MHz
-
4
-
V/V
CMRR
AOL
Sink output current
IOUT
Source output current
GBP
Gain bandwidth product
Gain
Minimum gain for stability
DS12907 - Rev 1
RL = 2 kΩ; CL = 100 pF
Vout = 1.65
Phase margin = 45°
0.2 V < Vout < VDD - 0.2
mA
page 8/36
STSPIN32F0B
Electrical characteristics
Symbol
SR
Parameter
Test condition
RL = 2 kΩ; CL = 100 pF
Slew rate
Min. Typ.
Max.
Unit
-
10
-
V/µs
PF6 = '0' PF7 = '1'
90
100
120
mV
PF6 = '1' PF7 =' 0'
235
255
275
mV
PF6 = '1' PF7 = '1'
465
505
545
mV
-
80
120
ns
35
50
-
ns
-
-
20
ns
Vin 1 to 2 V step
OC comparator
OCth
tCPD
Overcurrent threshold
OCth = 0.5 V;
Comparator propagation delay
OC_Comp: voltage step from 0 to 1 V
tOCdeglitch
Comparator input deglitch filter time
tOCrelease
Minimum overcurrent latch release pulse width
Thermal protection
TSD
Thermal shut-down temperature
-
130
140
150
°C
Thys
Thermal shut-down hysteresis
-
20
30
40
°C
1. The current consumption depends on the firmware loaded in the microcontroller.
2. Using the 47 μF capacitor (APXG250ARA470MF61G), 22 μH inductor (MLF1608C220KTA00), and diode
1N4448TR.
3. With 11 < VM < 13 V the linear output voltage can be VREG12 or 'VM-VREG12,drop' depending on the
linear regulator is already turned-on or not.
4. See Figure 4. Gate drivers timing
5. MT = max. (|ton(LVG) - toff(LVG)|, |ton(HVG) - toff(HVG)|, |toff(LVG) - ton(HVG)|, |toff(HVG) - ton(LVG)|).
6. Guaranteed by design.
7. Guaranteed by IOUT test.
8. See Figure 17. Driver logic overcurrent management signals.
Figure 4. Gate drivers timing
LS1 (2) (3)
HS1 (2) (3)
50%
50%
90%
LSU(V)(W)
HSU(V)(W)
DS12907 - Rev 1
10%
ton
toff
page 9/36
STSPIN32F0B
Pin description
5
Pin description
VDD
RESERVED
PB9
PB8
GND
RESERVED
BOOT0
PB7
PB6
PA15
PA14_SWD_CLK
PA13_SWD_IO
Figure 5. STSPIN32F0B SiP pin connection (top view)
48
47
46
45
44
43
42
41
40
39
38
37
PC14
1
36
LSU
PC15
2
35
VBOOTU
RESERVED
3
34
OUTU
PF0
4
33
HSU
PF1
5
32
LSV
VREG12
6
31
VBOOTV
NRST
7
30
OUTV
VM
8
29
HSV
SW
9
28
LSW
VDDA
10
27
VBOOTW
PA0
11
26
OUTW
PA1
12
25
HSW
15
16
17
18
19
20
21
22
PA3
PA4
PA5
PA6
PA7
PB1
TESTMODE
OP1O
OP1N
23
24
OC_Comp
14
OP1P
13
PA2
EPAD
Table 6. STSPIN32F0B SiP pin description
DS12907 - Rev 1
No.
Name
Type
1
PC14
GPIO
MCU PC14
2
PC15
GPIO
MCU PC15
3
RESERVED
-
4
PF0
GPIO
MCU PF0
5
PF1
GPIO
MCU PF1
6
VREG12
Power
12 V linear regulator output
7
NRST
GPIO
MCU reset pin
8
VM
Power
Power supply voltage (bus voltage)
9
SW
Analog out
10
VDDA
Power
MCU analog power supply voltage
11
PA0
GPIO
MCU PA0
Function
Reserved for test mode
3.3 V DC/DC buck regulator switching node
page 10/36
STSPIN32F0B
Pin description
DS12907 - Rev 1
No.
Name
Type
Function
12
PA1
GPIO
MCU PA1
13
PA2
GPIO
MCU PA2
14
PA3
GPIO
MCU PA3
15
PA4
GPIO
MCU PA4
16
PA5
GPIO
MCU PA5
17
PA6
GPIO
MCU PA6
18
PA7
GPIO
MCU PA7
19
PB1
GPIO
MCU PB1
20
TESTMODE
Digital In
21
OP1O
Analog out
22
OP1N
Analog in
Operational amplifier inverting input
23
OP1P
Analog in
Operational amplifier non-inverting input
24
OC_COMP
Analog in
Overcurrent comparator input
25
HSW
Analog out
26
OUTW
Power
W phase high-side (floating) common voltage
27
VBOOTW
Power
W phase bootstrap supply voltage
28
LSW
Analog out
W phase low-side driver output
29
HSV
Analog out
V phase high-side driver output
30
OUTV
Power
V phase high-side (floating) common voltage
31
VBOOTV
Power
V phase bootstrap supply voltage
32
LSV
Analog out
V phase low-side driver output
33
HSU
Analog out
U phase high-side driver output
34
OUTU
Power
U phase high-side (floating) common voltage
35
VBOOTU
Power
U phase bootstrap supply voltage
36
LSU
Analog out
37
PA13_SWD_IO
GPIO
MCU PA13/SWDIO (system debug data via analog IC)
38
PA14_SWD_CLK
GPIO
MCU PA14/SWDCLK (system debug clock)
39
PA15
GPIO
MCU PA15
40
PB6
GPIO
MCU PB6
41
PB7
GPIO
MCU PB7
42
BOOT0
Digital in
43
RESERVED
-
44
GND
Power
Ground
45
PB8
GPIO
MCU PB8
46
PB9
GPIO
MCU PB9
47
RESERVED
-
48
VDD
Power
MCU digital power supply
EPAD
Power
Internally connected to ground
Test mode input
Operational amplifier output
W phase high-side driver output
U phase low-side driver output
MCU BOOT0
Reserved for test mode (can be left floating in application)
Reserved for test mode
page 11/36
STSPIN32F0B
Pin description
Table 7. STSPIN32F0B MCU pad mapping
MCU pad
Type
Analog IC pad
Alternate and additional functions
PC14
I/O - TC
-
OSC32_IN
PC15
I/O - TC
-
OSC32_OUT
PF0
I/O - FT
-
OSC_IN
PF1
I/O - FT
-
OSC_OUT
NRST
I/O - RST
-
Device reset input / internal reset output (active low)
VDDA
S
VDD_3V3
PA0
I/O - TTa
-
PA1
I/O - TTa
-
PA2
I/O - TTa
-
PA3
I/O - TTa
-
PA4
I/O - TTa
-
PA5
I/O - TTa
-
PA6
I/O - TTa
-
Analog power supply voltage
TIM2_CH1_ETR, USART1_CTS
ADC_IN0, RTC_TAMP2, WKUP1
TIM2_CH2, EVENTOUT, USART1_RTS
ADC_IN1
TIM2_CH3, USART1_TX
ADC_IN2
TIM2_CH4, USART1_RX
ADC_IN3
SPI1_NSS, I2S1_WS, TIM14_CH1, USART1_CK
ADC_IN4
SPI1_SCK, I2S1_CK, TIM2_CH1_ETR
ADC_IN5
SPI1_MISO, I2S1_MCK, TIM3_CH1, TIM1_BKIN,
TIM16_CH1, EVENTOUT
ADC_IN6
PB1
I/O - TTa
-
PA7
I/O - TTa
-
TIM3_CH4, TIM14_CH1, TIM1_CH3N
ADC_IN9
SPI1_MOSI, I2S1_SD, TIM3_CH2, TIM14_CH1,
TIM1_CH1N, TIM17_CH1, EVENTOUT
ADC_IN7
DS12907 - Rev 1
PB12
I/O - FT
OC_COMP_INT
TIM1_BKIN (1)
PB13
I/O - FT
LS1
TIM1_CH1N(1)
PB14
I/O - FT
LS2
TIM1_CH2N(1)
PB15
I/O - FT
LS3
TIM1_CH3N(1)
PA8
I/O - FT
HS1
TIM1_CH1(1)
PA9
I/O - FTf
HS2
TIM1_CH2(1)
PA10
I/O - FTf
HS3
TIM1_CH3
PA11
I/O - FT
OC_SEL
PA12
I/O - FT
PA13_SWD_IO
I/O - FT
SWDIO_INT
IR_OUT, SWDIO
PF6
I/O - FTf
OC_TH_STBY2
Push-pull output(1)
PF7
I/O - FTf
OC_TH_STBY1
Push-pull output(1)
PA14_SWD_CLK
I/O - FT
-
USART1_TX, SWCLK
PA15
I/O - FT
-
SPI1_NSS, I2S1_WS, TIM2_CH_ETR, EVENTOUT,
USART1_RX
Push-pull output(1)
OC_COMP_INT2 TIM1_ETR(1)
page 12/36
STSPIN32F0B
Pin description
MCU pad
Type
Analog IC pad
Alternate and additional functions
PB6
I/O - FTf
-
I2C1_SCL, USART1_TX, TIM16_CH1N
PB7
I/O - FTf
-
I2C1_SDA, USART1_RX, TIM17_CH1N
PB8
I/O - FTf
-
I2C1_SCL, TIM16_CH1
PB9
I/O - FTf
-
I2C1_SDA, TIM17_CH1
VBAT, VDD
S
VDD
VSS, VSSA
S
-
Ground
BOOT0
I
-
Boot memory selection
PC15, PB0, PB2, PB10, PB11,
PA15, PB3, PB4, PB5
-
-
Not connected
Backup and digital power supply
1. The analog IC is designed to support these GPIOs configuration only. Different configuration could cause device
malfunctioning. The GPIO input configuration without pull-up or pull-down is always allowed.
Note:
Each unused GPIO inside the SiP should be configured in the OUTPUT mode low level after the startup by
software.
Table 8. STSPIN32F0B analog IC pad description
DS12907 - Rev 1
Pinout name
Pad name
Type
Function
PA13_SWD_IO
SYS_SWDIO
Digital I/O
VDDA
VDD_3V3
Power
3.3 V DC/DC buck regulator voltage output
VM
VM
Power
Power supply voltage (bus voltage)
SW
SW
Analog out
VREG12
VREG12
Power
12 V linear regulator output
VBOOTU
VBOOTU
Power
U phase bootstrap supply voltage
HSU
HSU
Analog out
OUTU
OUTU
Power
LSU
LSU
Analog out
VBOOTV
VBOOTV
Power
HSV
HSV
Analog out
OUTV
OUTV
Power
LSV
LSV
Analog out
VBOOTW
VBOOTW
Power
System debug data (connected to the output through the analog IC)
3.3 V DC/DC buck regulator switching node
U phase high-side driver output
U phase high-side (floating) common voltage
U phase low-side driver output
V phase bootstrap supply voltage
V phase high-side driver output
V phase high-side (floating) common voltage
V phase low-side driver output
W phase bootstrap supply voltage
HSW
HSW
Analog out
OUTW
OUTW
Power
W phase high-side driver output
LSW
LSW
Analog out
OC_Comp
OC_COMP
Analog in
OP1P
OP1P
Analog out
OP1N
OP1N
Analog in
Op amp 1 inverting input
OP1O
OP1O
Analog in
Op amp 1 non-inverting input
RESERVED
RESERVED
-
Reserved for test mode
RESERVED
RESERVED
-
Reserved for test mode
RESERVED
RESERVED
-
Reserved for test mode
GND
GND
Power
W phase high-side (floating) common voltage
W phase low-side driver output
Overcurrent comparator input
Op amp 1 output
Ground
page 13/36
STSPIN32F0B
Pin description
DS12907 - Rev 1
Pinout name
Pad name
Type
Function
TESTMODE
TESTMODE
Digital in
-
VDD
Power
-
OC_COMP_INT
Digital out
OC comparator output
-
HS1
Digital in
High-side input driver U
-
HS2
Digital in
High-side input driver V
-
HS3
Digital in
High-side input driver W
-
LS1
Digital in
Low-side input driver U
-
LS2
Digital in
Low-side input driver V
-
LS3
Digital in
Low-side input driver W
-
OC_SEL
Digital in
OC protection selection
-
OC_COMP_INT2
Digital out
OC comparator output
-
SWD_IO_INT
Digital in
System debug data (connected to the output through the analog IC)
-
OC_TH_STBY1
Digital in
Overcurrent threshold selection and standby input 1
-
OC_TH_STBY2
Digital in
Overcurrent threshold selection and standby input 2
Test mode input
MCU digital power supply
page 14/36
STSPIN32F0B
Device description
6
Device description
The STSPIN32F0B is a System-In-Package providing an integrated solution suitable for driving the three-phase
BLDC motors.
6.1
UVLO and thermal protections
Table 9. UVLO and OT protection management summarizes the UVLO and OT protection management.
Table 9. UVLO and OT protection management
VM UVLO
VDD UVLO
VREG12 UVLO
VBOOT UVLO
Lin. Reg OT
DC/DC Reg OT
DC/DC regulator
-
-
-
-
-
OFF
Linear regulator
OFF
OFF
-
-
OFF
-
Op amps and OC comp
OFF
OFF
-
-
-
-
-
-
-
Block
HSU, HSV, HSW output
LOW
LSU, LSV, LSW output
LOW
-
LOW
LOW
(1)
LOW,
LOW
LOW(1)
-
(2) (1)
1. The N-channel of the gate driver is turned ON with all the available supply voltage, refer to Figure 6. Gate
drivers' outputs characteristics in UVLO conditions.
2. Only the high-side gate driver in which the UVLO condition is detected (e.g. UVLO on VBOOTU causes the
HSU turning off).
Figure 6. Gate drivers' outputs characteristics in UVLO conditions
ILVG/HVG
(mA)
550
500
Vcc = 6 to 12 V
450
Vcc = 5 V
400
350
300
Vcc = 4 V
250
200
150
Vcc = 3 V
100
Vcc = 2 V
Vcc = 1 V
Vcc = 0 V
Vcc = VREG for LS rails
50
Vcc = VBOOT -VOUT for HS rails
0
0.5
DS12907 - Rev 1
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
VLVG/HVG (V)
page 15/36
STSPIN32F0B
DC/DC buck regulator
6.1.1
UVLO on supply voltages
The STSPIN32F0B device provides UVLO protections on all power supplies.
The device enters into the undervoltage condition when the power supply voltage falls below the off threshold
voltage and expires when the motor supply voltage goes over the on threshold voltage.
Table 9. UVLO and OT protection management shows the UVLO protection management: which blocks are
switched off after an UVLO event.
Figure 7. Power-up and power-down sequence
13 V typ.
VMOn
PWR_OK
PWR_OK
VM
VDDOn
VDD
The DC/DC Reg
stops to work
The actualVDD voltage falls to 0V
discharging the output capacitan ce
tss
The Lin Reg
stops to work
The actualVREG voltage falls to 0V
discharging the output capacitan ce
VREG
6.1.2
Thermal protection
The device embeds an overtemperature shut-down protection. The thermal sensors are placed next to the DC/DC
and linear regulator blocks.
When the OT protection is triggered the correspondent block is switched off, the thermal shut-down condition only
expires when the temperature goes below the “TSD - Thys” temperature (auto-restart).
Table 9. UVLO and OT protection management shows the thermal protection management which blocks are
switched off after an overtemperature event.
6.2
DC/DC buck regulator
The internal DC/DC buck converter provides the 3.3 V supply voltage suitable to supply the MCU and other
external devices.
The regulator operates in the discontinuous current mode (DCM).
A soft-start function with fixed start-up time is implemented to minimize the inrush current at the start-up, refer to
Figure 9. Soft-start timing.
An overcurrent and short-circuit protection is provided.
If a failure event occurs on the SW pin, the regulator is latched off. To restart the DC/DC regulator a power-down
and power-up cycle of device supply voltage (VM) is needed.
If a failure event occurs on the regulator output (VDDA pin) and the voltage goes below the UVLO threshold
(VDDOff), the regulator restarts with a new soft-start sequence until the OC condition is removed. In this case the
current in the coil is limited by ISW.peak.
The DC/DC regulator embeds a thermal protection as described in Section 6.1.2 Thermal protection.
DS12907 - Rev 1
page 16/36
STSPIN32F0B
Linear regulator
Figure 8. DC/DC buck regulator topology
VM
LSW
To MCU
C VDDA
VDDA
SW
VM
VM
3.3 V
Co ntrol
DC/DC buck conv.
AM039986
Figure 9. Soft-start timing
VDDA [V]
3.3
4.5
t [ms]
tSS
6.2.1
External optional 3.3 V supply voltage
It is possible provide externally the 3.3 V supply voltage directly on the VDDA pin. In this case, there are two
possible configurations:
1.
The SW pin floating or shorted to VM: in this case the internal power switch of the DC/DC converter
continues to switch on/off according to the internal clock
2.
The SW pin shorted to GND or VDD: in this case the internal power switch detects a short-circuit and it is
latched off.
Note:
It is not allowed to apply VDD voltage externally in case of VM < VDD.
6.3
Linear regulator
The internal 12 V linear regulator is a LDO regulator providing the supply voltage for the gate drivers section. An
external capacitor connected to the VREG12 pin is required.
DS12907 - Rev 1
page 17/36
STSPIN32F0B
Linear regulator
Figure 10. Linear regulator block diagram
C REG
VREG12
VM
12 V LIN
regulator
VREG12
When the VM voltage is below to 12 V, the VM pin and the linear regulator output can be shorted together
providing the gate driver supply externally.
The linear regulator embeds a thermal protection as described in Section 6.1.2 Thermal protection.
Figure 11. Linear regulator output characteristics
VM
[V]
45
13
7.5
7.2
t
VREG12
[V]
12
t
Note:
DS12907 - Rev 1
The linear regulator is designed to supply the internal circuitry only and must not be used to supply external
components.
page 18/36
STSPIN32F0B
Standby mode
6.4
Standby mode
The device is forced into the standby mode to reduce power consumption forcing both the OC_TH_STBY1 and
OC_TH_STBY2 analog IC inputs low (see Table 12. OC threshold values).
When the standby mode is set the analog IC is put into the low consumption mode after
a tsleep time, in particular:
•
•
•
•
The linear regulator is switched off
All the output drivers are forced low (external power switches turned off)
Op amps and comparators disabled
The DC/DC regulator remains operative.
When the device exits from the standby mode a set time is necessary to recover a proper value of the 12 V
internal regulator. This set time is strictly dependent by the capacitor connected on the VREG12 pin and can be
calculated with Equation 1.
Figure 12. “Standby to normal” operation timing (CREG = 1 µF)
Equation 1
6.5
Gate drivers
tREG =
CREG ∙ VREG12
IREG12, lim
(1)
The STSPIN32F0B device integrates a triple half-bridge gate driver able to drive N-channel power MOSFETs or
IGBTs. The high-side section is supplied by a bootstrapped voltage technique with an integrated bootstrap diode.
All the input lines (refer to Figure 3. Analog IC block diagram) are connected to
a pull-down resistor (60 kΩ typical value) to guarantee the low logic level during the device start-up and when the
MCU lines are not present.
The high- and low-side outputs of same half-bridge cannot be simultaneously driven high thanks to an integrated
interlocking function.
6.6
Microcontroller unit
The integrated MCU is the STM32F031C6 with following main characteristics:
•
•
•
•
DS12907 - Rev 1
Core: ARM® 32-bit Cortex™-M0 CPU, frequency up to 48 MHz
Memories: 4kB of SRAM, 32 kB of Flash memory
CRC calculation unit
Up to 20 fast I/Os
page 19/36
STSPIN32F0B
Microcontroller unit
•
•
•
Advanced-control timer dedicated for PWM generation
Up to 5 general purpose timers
12-bit ADC (up to 9 channels)
•
•
•
Communication interfaces: I2C, USART, SPI
Serial wire debug (SWD)
Extended temperature range: -40 to 125 °C
For more details refer to the STM32F031C6 datasheet on www.st.com
6.6.1
Memories and boot mode
The device has the following features:
•
4 Kbytes of the embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring
embedded parity checking with an exception generation for fail-critical applications.
•
The non-volatile memory is divided into two arrays:
–
32 Kbytes of the embedded Flash memory for programs and data
–
Option bytes
The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole
memory with the following options:
•
Level 0: no readout protection
•
Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug
features are connected or the boot in the RAM is selected
•
Level 2: chip readout protection, debug features (Cortex-M0 serial wire) and the boot in the RAM selection
disabled.
At startup the BOOT0 pin and the boot selector option bit are used to select one of the three boot options:
•
Boot from user Flash memory
•
Boot from system memory
•
Boot from embedded SRAM
The boot loader is located in the system memory. It is used to reprogram the Flash memory by using USART on
pins PA14/PA15.
The main Flash memory is aliased in the boot memory space (0x00000000), but still accessible from its original
memory space (0x08000000). In other words, the Flash memory contents can be accessed starting from the
address 0x00000000 or 0x08000000.
6.6.2
Power management
The VDD pin is the power supply for the I/Os and the internal regulator.
The VDDA pin is the power supply for the ADC, reset blocks, RCs and PLL. The VDDA voltage can be generated
through the internal DC/DC buck converter, otherwise it is possible to provide externally the supply voltage
directly on the VDDA pin.
Note:
The VDDA voltage level must be always greater or equal to the VDD voltage level and must be established
first.
The MCU has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active,
and ensure proper operation above a threshold of 2 V. The device remains in the reset mode when the monitored
supply voltage is below a specified threshold.
•
The POR monitors only the VDD supply voltage. During the startup phase it is required that VDDA should
arrive first and be greater than or equal to VDD.
•
The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power supply supervisor can
be disabled (by programming a dedicated option bit) to reduce the power consumption if the application
design ensures that VDDA is higher than or equal to VDD.
The device features an embedded programmable voltage detector (PVD) that monitors the VDD power supply and
compares it to the VPVD threshold. An interrupt can be generated when VDD drops below the VPVD threshold
DS12907 - Rev 1
page 20/36
STSPIN32F0B
Microcontroller unit
and/or when VDD is higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
The MCU supports three low-power modes to achieve the best compromise between low-power consumption,
short start-up time and available wake-up sources:
•
Sleep mode
•
In the sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake-up the CPU
when an interrupt/event occurs.
•
Stop mode
•
The stop mode achieves very low-power consumption while retaining the content of the SRAM and registers.
All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are
disabled. The voltage regulator can also be put either in the normal or in the low-power mode.
•
The device can be woken-up from the stop mode by any of the EXTI lines (one of the 16 external lines, the
PVD output, RTC, I2C1 or USART1).
•
Standby mode
•
The standby mode is used to achieve the lowest power consumption. The internal voltage regulator is
switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal
oscillators are also switched off. After entering the standby mode, SRAM and register contents are lost
except for registers in the RTC domain and standby circuitry.
•
The device exits the standby mode when an external reset (NRST pin), an IWDG reset,
•
a rising edge on the WKUP pins, or an RTC event occurs.
6.6.3
High-speed external clock source
The high-speed external (HSE) clock can be generated from the external clock signal or supplied with a 4 to 32
MHz crystal/ceramic resonator oscillator (see Figure 14. Typical application with 8 MHz crystal).
The external clock signal has to respect the I/O characteristics and follows the recommended clock input
waveform (refer to Figure 13. HSE clock source timing diagram).
Figure 13. HSE clock source timing diagram
Figure 14. Typical application with 8 MHz crystal
DS12907 - Rev 1
page 21/36
STSPIN32F0B
Test mode
In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. The REXT value depends on the crystal
characteristics (refer to the crystal resonator manufacturer for more details on them).
6.6.4
Advanced-control timer (TIM1)
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has
complementary PWM outputs with programmable inserted deadtimes.
This timer is used to generate the PWM signal for the three half-bridge gate drivers as shown in Table 10. TIM1
channel configuration.
Table 10. TIM1 channel configuration
6.7
MCU I/O
Analog IC input
TIM1 channel
PB13
LS1
TIM1_CH1N
PB14
LS2
TIM1_CH2N
PB15
LS3
TIM1_CH3N
PA8
HS1
TIM1_CH1
PA9
HS2
TIM1_CH2
PA10
HS3
TIM1_CH3
Test mode
A dedicated pin TESTMODE is available to enter into the test mode.
Note:
In the application, the TESTMODE pin should be shorted to GND in order not to enter the test mode
inadvertently.
6.8
Operational amplifier
The device integrates a rail-to-rail operational amplifier suitable for signal conditioning, in particular for current
sensing.
The operational amplifier provides a rail-to-rail output stage with fast recovery in the saturation condition. The
output stage saturation happens in linear applications when a high amplitude input signal occurs and causes the
output of the operational amplifier to move outside its real capabilities.
DS12907 - Rev 1
page 22/36
STSPIN32F0B
Comparator
Figure 15. Operational amplifier
To input
ADC
INN
INP
6.9
OP1O
OP
xN
OP1N
OP1N
OP1P
Comparator
A comparator is available to perform an overcurrent protection. The OC Comp pin can be connected to the shunt
resistor to monitor the load current, the internal OC threshold can be set via MCU (PF6 and PF7 port, see
Table 12. OC threshold values).
When an OC event is triggered, the OC comparator output signals the OC event to the PB12 and PA12 inputs of
MCU (BKIN and ETR).
Depending on the status of the OC_SEL signal (see Table 11. OC protection selection) the OC event is acting
directly on the control logic of the gate driver switching off all high-side gate outputs, and consequently the
external high-side power switches.
DS12907 - Rev 1
page 23/36
STSPIN32F0B
Comparator
Figure 16. Comparator
VM
To PB12 and PA12
of MCU and
control logic
OC_COMP
OC th
COMP
Rshunt
Table 11. OC protection selection
OC_SEL (PA11)
Function
0
OC comparator output signal is visible only to MCU (default)
1
OC comparator output signal is visible to MCU and also acts on gate driver control logic
Table 12. OC threshold values
OC_TH_STBY2 (PF6)
OC_TH_STBY1 (PF7)
OC threshold [mV]
0
0
N.A.
0
1
100
-
1
0
250
-
1
1
500
-
Note
Standby mode
(see Section 6.4 Standby mode)
When the overcurrent condition disappears, the latched overcurrent signal is released only after all the high-side
outputs are kept low for at least tOCrelease time. (Refer to Figure 17. Driver logic overcurrent management
signals).
DS12907 - Rev 1
page 24/36
STSPIN32F0B
ESD protection strategy
Figure 17. Driver logic overcurrent management signals
t
> OCdeglitch
tCPD
Whenthe OCdisappears,
the latched OCsignal isreleased
after the first HS_inputrising edge
tCPD
t
< OCdeglitch
OC_COMP
PB12
t
> OCrelease
OC_blk_n
(latched signal)
HS1
HS2
HS3
6.10
ESD protection strategy
Figure 18. ESD protection strategy
VDD(3.3 V)
DigitalI/O
AnalogI/O
GND
VM(45 VMAX.)
VBOOT
POWER
BOOTSTRAP
DIODE
Linear reg.
POWER
HVU/V/W
ESD active
POWER
clamp
POWER
REG
SW
OUT
POWER
ESD active
High-side driver(X3)
LVU/V/W
clamp
ESD active
clamp
POWER
GND
Low- sidedriver(X3)
DS12907 - Rev 1
BELOW GND
page 25/36
STSPIN32F0B
Application example
7
Application example
Figure 19. Application example shows an application example using the STSPIN32F0B device to drive a threephase motor with single shunt configuration and digital Hall effect sensors. The others features implemented are:
•
VDD (3.3 V) power supply internally generated via DC/DC regulator
•
VREG12 (12 V) power supply internally generated via LDO linear regulator
•
USART serial interface (PB6 and PB7)
•
Serial wire debug ports (PA13_SWD_IO, PA14_SWD_CLK)
•
Ready and alarm lines (PF0, PF1)
•
Reset dedicated pin
•
Overcurrent protection using internal comparator
•
Current sensing using operational amplifier and ADC (PA5)
•
Digital Hall effect sensors decoding (PA0, PA1, PA2)
•
Bus voltage compensation using internal ADC (PA3)
•
Application temperature monitoring using internal ADC (PA4)
DS12907 - Rev 1
page 26/36
DS12907 - Rev 1
CBUS
from Hall ef ect
sensors
connected
to EPAD
PB1
PB0
PA7
PA6
PA5
PA4
PA6
PA5
PA4
RTH
SWDCLK PA14
NTC
OPAMP
CTH
ADJ REF
VDD
3.3V
6
OC_SEL
OC comp threshold select
12V
VREG
VM
CREG
CVDD
COMP
RBUS2
STM32F031
control
CVM
DC/DC Buck conv
VM
+
D1
Control Logic
Gate Driver
RBUS1
VDD
VBAT
VM
PA3
PA2
PB9
VDDA
PA0
PA1
PA2
PA3
VDD
PA1
PB8
PA0
BOOT0
CDDA
CRST
USART_TX PB6
PA14
PA15
PB3
PB4
PB5
PB6
PB7
BOOT0
PB8
PB9
VSS
VDD
USART_RX PB7
NRST
2
3.3V
CDD
VM
VDD
VREG12V
VDDA
PA15
PF7
PF6
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
to VDDA
PF1
PC13
PC14
PC15
PF0
PF1
NRST
VSSA
SWDIO PA13
PF0
RBOOT
SW
PC15
PC14
CDD
VDD
L1
CLP
RLP
VREG12
VREG12
VREG12 VREG12
LS
VREG12
HS
LS
VREG12
HS
LS
VREG12
HS
LSW
OUTW
HSW
VBOOTW
LSV
OUTV
HSV
VBOOTV
LSU
LS
OUT
HS
RGL
RGH
CBOOT
LS
HS
VM
3x Power Half-Bridge
VBOOT
HSU
OUTU
VBOOTU
to PA0, PA1, PA2
MCU GPIO
Hall
M
THREE-PHASE
MOTOR
Application example
STSPIN32F0B
Figure 19. Application example
OC_COMP
OP1P
OP1N
OP1O
RESERVED
RESERVED
RESERVED
GND
TEST MODE
PB11
PB10
PB2
VDD
VSS
PB1
PA7
page 27/36
STSPIN32F0B
Package information
8
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK®
packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions
and product status are available at: www.st.com. ECOPACK® is an ST trademark.
A customized VFQFPN48 7 x 7 package is proposed. A smaller EPAD, internally connected to the ground pin, is
desired to place through holes on the bottom of the package.
Lead plating is Nickel/Palladium/Gold (Ni/Pd/Au).
DS12907 - Rev 1
page 28/36
STSPIN32F0B
VFQFPN48 7 x 7 package information
8.1
VFQFPN48 7 x 7 package information
Figure 20. VFQFPN48 7 x 7 x 1.0 - 48L, pitch 0.5 package outline
DS12907 - Rev 1
page 29/36
STSPIN32F0B
VFQFPN48 7 x 7 package information
Table 13. VFQFPN48 7 x 7 x 1.0 - 48L, pitch 0.5 - package mechanical data
Symbol
Dimensions (mm)
Min.
Typ.
Max.
A
0.90
0.95
1.00
A1
0.0
-
0.05
A2
0.75
A3
0.203
b
0.20
0.25
0.30
D
6.90
7.00
7.10
E
6.90
7.00
7.10
e
0.50
D2
2.50
2.60
2.70
E2
2.50
2.60
2.70
K
L
1.80
0.30
0.40
0.50
Figure 21. VFQFPN48 7 x 7 x 1.0 - 48L, pitch 0.5 - suggested footprint
DS12907 - Rev 1
page 30/36
STSPIN32F0B
Revision history
Table 14. Document revision history
DS12907 - Rev 1
Date
Revision
18-Feb-2019
1
Changes
Initial release.
page 31/36
STSPIN32F0B
Contents
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2
Block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
3
Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
3.1
Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2
ESD protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
6
Device description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
6.1
6.2
UVLO and thermal protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.1.1
UVLO on supply voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.1.2
Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
DC/DC buck regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2.1
External optional 3.3 V supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3
Linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.4
Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.5
Gate drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.6
Microcontroller unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.6.1
Memories and boot mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.6.2
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.6.3
High-speed external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.6.4
Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.7
Test mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.8
Operational amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.9
Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.10
ESD protection strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7
Application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
8
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
DS12907 - Rev 1
page 32/36
STSPIN32F0B
Contents
8.1
VFQFPN48 7 x 7 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
List of figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
DS12907 - Rev 1
page 33/36
STSPIN32F0B
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ESD protection ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Recommended operating conditions. . . . . . . . . . . . . . . . . . . . . .
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STSPIN32F0B SiP pin description . . . . . . . . . . . . . . . . . . . . . . .
STSPIN32F0B MCU pad mapping . . . . . . . . . . . . . . . . . . . . . . .
STSPIN32F0B analog IC pad description . . . . . . . . . . . . . . . . . .
UVLO and OT protection management . . . . . . . . . . . . . . . . . . . .
TIM1 channel configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OC protection selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OC threshold values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VFQFPN48 7 x 7 x 1.0 - 48L, pitch 0.5 - package mechanical data .
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DS12907 - Rev 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 5
. 6
. 6
. 6
. 7
10
12
13
15
22
24
24
30
31
page 34/36
STSPIN32F0B
List of figures
List of figures
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
DS12907 - Rev 1
STSPIN32F0B System-In-Package block diagram . . . . . . .
Analog IC block diagram . . . . . . . . . . . . . . . . . . . . . . . . .
Gate drivers timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STSPIN32F0B SiP pin connection (top view) . . . . . . . . . . .
Gate drivers' outputs characteristics in UVLO conditions . . .
Power-up and power-down sequence . . . . . . . . . . . . . . . .
DC/DC buck regulator topology. . . . . . . . . . . . . . . . . . . . .
Soft-start timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Linear regulator block diagram . . . . . . . . . . . . . . . . . . . . .
Linear regulator output characteristics . . . . . . . . . . . . . . . .
“Standby to normal” operation timing (CREG = 1 µF) . . . . . .
HSE clock source timing diagram . . . . . . . . . . . . . . . . . . .
Typical application with 8 MHz crystal . . . . . . . . . . . . . . . .
Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Driver logic overcurrent management signals . . . . . . . . . . .
ESD protection strategy . . . . . . . . . . . . . . . . . . . . . . . . . .
Application example . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VFQFPN48 7 x 7 x 1.0 - 48L, pitch 0.5 package outline . . . .
VFQFPN48 7 x 7 x 1.0 - 48L, pitch 0.5 - suggested footprint .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 3
. 4
. 9
10
15
16
17
17
18
18
19
21
21
23
24
25
25
27
29
30
page 35/36
STSPIN32F0B
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2019 STMicroelectronics – All rights reserved
DS12907 - Rev 1
page 36/36