STSPIN830
Datasheet
Compact and versatile three-phase and three-sense motor driver
Features
•
•
Operating voltage from 7 to 45 V
Maximum output current 1.5 Arms
•
RDSon HS + LS = 1 Ω typ.
•
•
•
•
Supporting both single and three shunts architectures
Current control with adjustable OFF time
Current sensing based on external shunt resistors
Flexible driving methodology user settable between 6 inputs (high side & low
side driving) and 3 inputs (direct PWM driving)
FOC compatible thanks to three shunts sensing topology support
Full protections set:
–
Non-dissipative overcurrent protection
–
Short-circuit protection
–
Underuoltage Lockout
–
Thermal shutdown
–
Interlocking function
Low standby current consumption
•
•
•
Application
Product status link
STSPIN830
Product summary
Order code
Package
Packing
STSPIN830
TFQFPN 4 x 4 x
1.05 - 24L
Tape and reel
Product label
•
•
•
•
•
•
•
Industrial robotics
Medical and health care
Factory automation end-points
Home appliances
Small pumps
Server, computing and general purpose FANs
Office and home automation
Description
STSPIN830 is a compact and versatile field oriented control FOC ready three-phase
motor driver. It integrates in a very small 4 x 4 mm QFN package, both the control
logic and a fully protected low RDSon triple half-bridge power stage.Thanks to a
dedicated MODE input pin the device offers the freedom to decide whether to drive it
through 6 inputs (one for each power switch) or a more common 3 PWM direct
driving inputs.
The STSPIN830 supports both single and three shunts architectures and embeds a
PWM current limiter based on user settable values of reference voltage and OFF
time.The devices can be forced in a low consumption state reducing the total current
consumption down to less than 45 μA.
As with all other devices from the STSPIN family, the STSPIN830 integrates a
complete set of protections for the power stages (non-dissipative overcurrent,
thermal shutdown, short-circuit, undervoltage lockout and interlocking) making it a
bulletproof solution for the new wave of demanding industrial applications.
DS12584 - Rev 2 - August 2019
For further information contact your local STMicroelectronics sales office.
www.st.com
STSPIN830
Block diagram
1
Block diagram
Figure 1. STSPIN830 block diagram
VS
UVLO
STBY\RESET
OVT
VS
VS
EN\FAULT
-
Vrelease
+
OC\SC
OUTU
+
SENSEU
MODE
CONTROL
LOGIC
INU\INUH
OUTV
OC\SC
ENU\INUL
SENSEV
INV\INVH
ENV\INVL
INW\INWH
OUTW
OC\SC
ENW\INWL
SENSEW
TOFF
Oscillator
SNS
+
-
GND
DS12584 - Rev 2
REF
page 2/27
STSPIN830
Electrical data
2
Electrical data
2.1
Absolute maximum ratings
Table 1. Absolute maximum ratings
Symbol
Parameter
Value
Unit
VS
Supply voltage
-0.3 to 48
V
VIN
Logic input voltage
-0.3 to 5.5
V
up to 48
V
-2 to 2
V
-0.3 to 2
V
1.5
Arms
VOUT,diff
Differential voltage between VSx, OUTU, OUTV, OUTW and SENSEx pins
VSENSE
Sense pins voltage(1)
VREF
Reference voltage input
IOUT,RMS
Continuous power stage output current (each bridge)
Tj
Junction temperature
-40 to 150
°C
TSTG
Storage temperature
-55 to 150
°C
1. SENSEU, SENSEV, SENSEW, SNS.
2.2
Recommended operating conditions
Table 2. Recommended operating conditions
Symbol
Min
Typ
Max
Unit
7
-
45
V
-
5
V
VS
Supply voltage
VIN
Logic input voltage
VSENSE
Sense pins voltage
-1
-
+1
V
Reference voltage input
0.1
-
1
V
400
kHz
Value
Unit
VREF
fSW
2.3
Parameter
Switching frequency
Thermal data
Table 3. Thermal data
Symbol
RthJA
Parameter
Conditions
Junction-to-ambient thermal resistance
Natural convection, according to
JESD51-2a 1
36.5
°C/W
RthJCtop
Junction-to-case thermal resistance (top side)
Cold plate on top package, according to
JESD51-121
27.6
°C/W
RthJCbot
Junction-to-case thermal resistance (bottom side)
Cold plate on exposed pad, according to
JESD51-121
5.9
°C/W
RthJB
Junction-to-board thermal resistance
according to JESD51-81
13.6
°C/W
ΨJT
Junction-to-top characterization
According to JESD51-2a1
1
°C/W
ΨJB
Junction-to-board characterization
According to JESD51-2a1
13.7
°C/W
1. Simulated on a 76.2 x 114.3 x 1.6 mm, with vias underneath the component, 2s2p board as per standard Jedec (JESD51-7)
in natural convection.
DS12584 - Rev 2
page 3/27
STSPIN830
ESD protection ratings
2.4
ESD protection ratings
Table 4. ESD protection ratings
Symbol
HBM
CDM
Parameter
Human body model
Charge device model
Conditions
Class
Value
Unit
Conforming to ANSI/ESDA/JEDEC JS001
H2
2
kV
Conforming to ANSI/ESDA/JEDEC JS002
C2a
500
V
-
750
V
NC
200
V
All pins
Conforming to ANSI/ESDA/JEDEC JS002
Corner pins only (1, 6, 7, 12, 13, 18, 19, 24)
MM
DS12584 - Rev 2
Machine model
Conforming to EIA/JESD22-A115-C
page 4/27
STSPIN830
Electrical characteristics
3
Electrical characteristics
Testing conditions: VS = 36 V, Tj = 25 °C unless otherwise specified.
Table 5. Electrical characteristics
Symbol
Parameter
Test condition
Min
Typ
Max
Unit
6.5
V
General
VSth(ON)
VSth(HYST)
VS turn-on threshold
VS rising from 0 V
6.0
VS turn-off threshold hysteresis
VS falling from 7 V
0.4
V
No commutations
EN = ‘0’
IS
VS supply current
2.3
2.7
mA
2.7
3
mA
0.8
V
RTOFF = 10 kΩ
No commutations
EN = ‘1’
RTOFF = 10 kΩ
VSTBYL
Standby low voltage
VSTBYH
Standby high voltage
IS, STBY
VS supply standby current
2
V
STBY = 0 V
45
μA
Power stage
VS = 21 V
1
IOUT = 1 A
RDSon HS+LS
Total on resistance HS + LS
1.3
VS = 21 V
Ω
IOUT = 1 A
Tj = 150 °C
1.4
1.6
(1)
OUTx = VS= 48 V
20
IDSS
Output leakage current
VDF
Freewheeling diode forward voltage
ID = TBD A
1
V
trise
Rise time
VS = 21 V
120
ns
tfall
Fall time
VS = 21 V
60
ns
OUTx = -0.3 V
-1
μA
Logic IO
VIH
High logic level input voltage
VIL
Low logic level input voltage
VOL
Low logic level output voltage
VRELEASE
DS12584 - Rev 2
2
V
IOL = 4 mA
FAULT open-drain release voltage
0.8
V
0.3
V
0.6
V
RSTBY
STBY pull-down resistance
60
kΩ
IPDEN
Enable pull-down current
5
µA
tENd
EN input propagation delay
From EN falling edge to OUT high
impedance
400
ns
tINd(ON)
Turn-on propagation delay
From INxH rising edge to 10% of OUTx
450
ns
page 5/27
STSPIN830
Electrical characteristics
Symbol
tINd(OFF)
Parameter
Turn-off propagation delay
Test condition
Min
From INxL rising edge to 90% of OUTx
Typ
Max
Unit
250
ns
PWM current control
VSNS,OFFSET
tOFF
ΔtOFF
tOFF,jitter
Current control offset
Total OFF time
OFF time precision
-15
15
mV
ROFF = 10 kΩ
13
µs
ROFF = 160 kΩ
146
µs
Full temperature range (1)
20%
+20%
%
Total OFF time jittering
±2%
TjSD
Thermal shutdown threshold
160
°C
TjSD,Hyst
Thermal shutdown hysteresis
40
°C
Overcurrent threshold
3
Protections
IOC
3.5
A
1. Based on characterization data on a limited number of samples, not tested during production.
DS12584 - Rev 2
page 6/27
STSPIN830
Pin description
4
Pin description
ENW\INWL
INW\INWH
ENV\INVL
INV\INVH
ENU\INUL
INU\INUH
Figure 2. Pin connection (top view)
24
23
22
21
20
19
REF
1
18
MODE
TOFF
2
17
EN\FAULT
GND
3
16
STBY\RESET
EPAD
Note:
5
14
SENSEW
GND
6
13
SENSEV
8
9
VS
7
10
11
12
OUTW
SENSEU
OUTV
GND
VS
15
NC
4
OUTU
SNS
the exposed pad must be connected to ground.
Table 6. Pin description
N.
DS12584 - Rev 2
Name
Type
Function
1
REF
Analog input
Reference voltage for the PWM current control circuitry
2
TOFF
Analog input
Internal oscillator frequency adjustment
3, 6, 15
GND
Ground
4
SNS
Analog input
Current limiter sense input
5
SENSEU
Power output
Sense output of the bridge U
7
OUTU
Power output
Power bridge output U
9
VS
Supply
Device supply voltage
10
VS
Supply
Device supply voltage
11
OUTV
Power output
Power bridge output V
12
OUTW
Power output
Power bridge output W
13
SENSEV
Power output
Sense output of the bridge V
14
SENSEW
Power output
Sense output of the bridge W
Device ground
page 7/27
STSPIN830
Pin description
N.
Name
Type
16
STBY\RESET
Logic input
Function
Standby\Reset input
When forced low the device enters in low consumption mode
17
18
EN\FAULT
MODE
Logic input\ Open
drain output
Logic input
Logic input 5 V compliant with open drain output.
This is the power stage input enable (when low, the power stage is
turned off) and is forced low through the integrated open-drain
MOSFET when a failure occurs
Inputs driving method selection.
When low the ENx\INx option is selected, when high the INxH\INxL
option is enabled
19
INU\INUH
Logic input
Output U high-side driving input (1)
20
ENU\INUL
Logic input
Output U low-side driving input (1)
21
INV\INVH
Logic input
Output V high-side driving input (1)
22
ENV\INVL
Logic input
Output V low-side driving input (1)
23
INW\INWH
Logic input
Output W high-side driving input (1)
24
ENW\INWL
Logic input
Output W low-side driving input (1)
8
NC
NC
Not connected.
1. Refer to :Section 5.2 Logic inputs for more details
DS12584 - Rev 2
page 8/27
STSPIN830
Functional description
5
Functional description
The STSPIN830 is a 3-phase motor driver integrating a PWM current limiter and a power stage composed by
three fully-protected half-bridges.
5.1
Power supply and standby
The device is supplied through the VS pins, the two pins must be at the same voltage.
At power-up the power stage is disabled and the FAULT pin is forced low until the VS voltage rise above the
VSth(ON) threshold.
If the VS fall below the VSth(ON) - VSth(HYST) value the power stage is immediately disabled and the FAULT pins
are forced low.
Figure 3. UVLO protection management
VSth(ON)
VSth(ON) - VSth(HYST)
Vs
Internal OD
released
FAULT
POWER
stage
DISABLED
Outputs state
according to
input status
Internal OD
released
Outputs state
according to
input status
The device provides a low consumption mode which is set forcing the STBY\RESET input below the VSTBYL
threshold.
When the device is in standby status the power stage is disabled (outputs are in high impedance) and the supply
to the integrated control circuitry is strongly reduced. When the device leaves the standby status, all the control
circuitry is reset at power-up condition.
5.2
Logic inputs
The STSPIN830 offers two alternative method to drive the power stage, the proper can be selected setting the
status of MODE pin.
If MODE pin is set low (connected to GND) the output of each half bridge is controlled by the respective ENx and
INx inputs.
If MODE pin is set high the output of each half bridge is controlled by the respective INxH and INxL inputs.
In both cases the status of the power bridge is also determined by the PWM current limiter as indicated in Section
5.3 PWM current limiter.
Note:
DS12584 - Rev 2
The MODE pin status must not be changed during device working.
When the EN\FAULT input is forced low the power stage is immediately disabled (all MOSFETs are turned off).
The pin is also used as FAULT indication through the integrated open-drain MOSFET as described in paragraph
Section 5.4 Device protections and Section 5.5 ESD protection strategy.
page 9/27
STSPIN830
PWM current limiter
Table 7. ENx and INx inputs truth table (MODE = ‘L’)
MODE
EN\FAULT
ENx
INx
OUTx
‘x’ Half-bridge condition
0
0
X (1)
X(1)
High Z (2)
Disabled
0
1
0
X(1)
High Z (2)
Disabled
0
1
1
0
GND
LS on
0
1
1
1
VS
HS on
1. X: don’t care.
2. High Z: high impedance
Table 8. INxL and INxH inputs truth table (MODE = ‘H’)
MODE
EN\FAULT
INxH
INxL
OUTx
‘x’ Half-bridge condition
1
0
X(1)
X(1)
High Z (2)
Disabled
1
1
0
0
High Z (2)
Disabled
1
1
0
1
GND
LS on
1
1
1
0
VS
HS on
1
1
1
1
High Z (2)
Disabled (interlocking)
1. X: don’t care.
5.3
PWM current limiter
The device implements a PWM current limiter.
The load current is sensed through the SNS pin monitoring the voltage drop across an external resistor connected
between the source of the low side power MOSFET (SENSEx pins) and ground.
The voltage of the sense pin (VSNS) is compared to the reference voltage pin (VREF).
When VSNS > VREF the internal comparator is triggered, the OFF time counter is started and all the power outputs
are disabled (high impedance) until the end of count of the timer.
During current decays the inputs values are ignored until the system returns to ON condition (decay time expired).
The reference voltage value, VREF, has to be selected according the load current target value (peak value) and
sense resistors value.
Equation 1
(1)
VREF = R
SENSE × ILOAD, peak
The choice of sense resistors value must be take into account two main issues:
•
The sensing resistor dissipates energy and provides dangerous negative voltages on the SENSE pins during
the current recirculation. For this reason the resistance of this component should be kept low (using multiple
resistors in parallel will help obtaining the required power rating with standard resistors).
•
The lower is the RSENSE value, the higher is the peak current error due to noise on VREF pin and to the input
offset of the current sense comparator: too small values of RSENSE must be avoided.
DS12584 - Rev 2
page 10/27
STSPIN830
PWM current limiter
Figure 4. PWM current limit sequence example
VS
VS
VS
OUTU
M
OUTV
OUTW
OUTU
SENSEx
R SENSE
VS
VS
VS
OUTV
M
OUTW
OUTU
M
OUTV
OUTW
SENSEx
SENSEx
R SENSE
RSENSE
t OFF
VREF/ RSNS
Iphase
VREF
VSENSE
- VREF
AM040382
Note:
When the voltage on the SNS pin exceeds the absolute ratings, fault condition is triggered and the EN\FAULT
output is forced low.
TOFF adjustment
The OFF time is adjusted through an external resistor connected between the TOFF pin and
ground as shown in Figure 5. OFF time regulation circuit .
Figure 5. OFF time regulation circuit
TOFF
ROFF
AM040383
DS12584 - Rev 2
page 11/27
STSPIN830
Device protections
The relation between the OFF time and the external resistor value is shown in the graph of
Figure 6. OFF time vs ROFF value. The value typically ranges from 10 μs to 150 μs.
The recommended value for ROFF is in the range between 5 kΩ kΩ
Figure 6. OFF time vs ROFF value
5.4
Device protections
5.4.1
Overcurrent and short circuit protections
The device embeds a circuitry protecting each power MOSFET against the over load and short circuit conditions
(short to ground, short to VS and short between outputs).
When the overcurrent or the short circuit protection is triggered the power stage is disabled and the EN\FAULT
input is forced low through the integrated open drain MOSFET discharging the external CEN capacitor.
The power stage is kept disabled and the open drain MOSFET is kept ON until the EN\FAULT input falls below
the VRELEASE threshold, then the CEN capacitor is charged through the external REN resistor.
DS12584 - Rev 2
page 12/27
STSPIN830
Device protections
Figure 7. Overcurrent and short-circuit protections management
MCU
DEVICE
FAULT_MCU
VRELEASE
EN\FAULT
EN_MCU
REN
RELEASE
EN
CEN
FAULT
OC\SC
THSD
Overcurrent
protection
VEN
VIH
VIL
VRELEASE
Power
stage
ENABLED
DISABLED
tdischarge
ENABLED
t charge
t OCSD
FAULT
t DIS
AM040384
The total disable time after an overcurrent event is set sizing properly the external network connected to EN
\FAULT pin (refer to Figure 8. Disable time versus REN and CEN values (VDD = 3.3 V) ) and it is the sum of the
discharging and charging time of the CEN capacitor:
Equation 2
(2)
tDIS = tdischarge + tcharge
Considering tdischarge is normally significantly lower than tcharge, its contribution is negligible and the disable time
is almost equal to tcharge only:
Equation 3
(3)
VDD − REN × IPD − VRELEASE
tDIS ≅ REN × CEN × ln
VDD − REN × IPD − VIH
Where VDD is the pull-up voltage of REN resistor.
The recommended value for REN and CEN are respectively 39 kΩ and 10 nF that allow obtaining 200 µs
disable time.
DS12584 - Rev 2
page 13/27
STSPIN830
Device protections
Figure 8. Disable time versus REN and CEN values (VDD = 3.3 V)
Figure 9. Overcurrent threshold versus temperature (normalized at 25 °C)
Normalized OC threshold
1.10
1.05
1.00
-40
-20
0
20
40
60
80
100
120
140
160
0.95
0.90
Temperatur e [°C]
AM040385
5.4.2
Thermal shutdown
The device embeds a circuitry protecting it from the overtemperature condition.
When the thermal shutdown temperature is reached the power bridges are disabled and the EN\FAULT input is
forced low through the integrated open drain MOSFET (refer to Figure 10. Thermal shutdown management ).
The protection and the EN\FAULT output are released when the IC temperature returns below a safe operating
value (TjSD - TjSD,Hyst).
DS12584 - Rev 2
page 14/27
STSPIN830
ESD protection strategy
Figure 10. Thermal shutdown management
MCU
DEVICE
FAULT_MCU
V
RELEASE
EN\FAULT
EN_MCU
REN
RELEASE
EN
CEN
OC\SC
THSD
FAULT
Thermal
shutdown
TjSD
TjSD,hyst
Tj
VEN
VIH
VIL
VRELEASE
Power
stage
ENABLED
DISABLED
DISABLED
ENABLED
t THSD
FAULT
AM040386
5.4.3
Blanking time
The device provides a blanking time tBLANK after each power MOSFET commutation to prevent false triggering of
protections and current limiter.
During blanking time the protections (overcurrent, short circuit, thermal shutdown) and the comparator of the
current limiter are inhibit.
5.5
ESD protection strategy
Figure 11. ESD protection strategy
VS
48V ESD
Active Clamp
GND
SENSEU
SENSEV
SENSEW
POWER PCH
5 V Internal Reg.
OUTU/V/W
INV\INVH
POWER NCH
INx
5V ESD
Active Clamp
GND
INx = ENW\INWL, INW\INWH, ENV\INVL, ENU\INUL, INU\INUH,
MODE, STBY\RESET, EN\FAULT, REF, TOFF
Below GND
SNS
DS12584 - Rev 2
page 15/27
STSPIN830
Typical applications
6
Typical applications
Table 9. Typical application values
Name
Value
CS
330 nF
CSPOL
33 µF
RSNS
330 mΩ / 1W
CEN
10 nF
REN
39 kΩ
CSTBY
1 nF
RSTBY
18 kΩ
ROFF
10 kΩ (TOFF 13 µs)
Figure 12. Typical application schematic with single shunt
VS
VDD
R STBY
REN
CSPOL
CS
VDD
VS
STBY\RESET
C STBY
VS
3-phase
Motor
OUTU
EN\FAULT
CEN
OUTV
MODE
OUTW
INU\INUH
ENU\INUL
STSPIN830
INV\INVH
SNS
SENSEU
ENV\INVL
SENSEV
INW\INWH
ENW\INWL
PWM
SENSEW
REF
R SNS
TOFF
R OFF
DS12584 - Rev 2
GND
page 16/27
STSPIN830
Typical applications
Figure 13. Typical application schematic with triple shunt
VS
VDD
R STBY
REN
CSPOL
CS
VDD
VS
STBY\RESET
CSTBY
VS
3-phase
Motor
OUTU
EN\FAULT
CEN
OUTV
MODE
OUTW
INU\INUH
ENU\INUL
STSPIN830
INV\INVH
SNS
SENSEU
ENV\INVL
SENSEV
INW\INWH
ENW\INWL
PWM
SENSEW
REF
RSNSW
RSNSV
RSNSU
TOFF
ROFF
DS12584 - Rev 2
GND
page 17/27
STSPIN830
Layout recommendations
7
Layout recommendations
The integrates the power stage; in order to improve the thermal dissipation, the exposed pad must be connected
to the ground plane on the bottom layer using multiple vias equally spaced. This ground plane acts as a heatsink,
for this reason it should be as wide as possible.
The voltage supply VS must be stabilized and filtered with a ceramic bypass capacitor, typically 330nF. It must be
placed on the same side and as close as possible to VS pin in order to reject high frequency noise components
on the supply. A bulk capacitor could also be required (typically a 33 μF). The connection between the power
supply connector and the VS pins must be as short as possible using wide traces.
In order to ensure the best ground connection between the and the other components, a GND plane surrounding
the device is recommended.
A capacitor between REF pins and ground should be positioned as near as possible to the device in order to filter
the noise and stabilize the reference voltage.
Several vias should be positioned as near as possible each sense resistor connecting them to the ground plane
on the bottom layer. In this way, both the GND planes provide a path for the current flowing into the power stage.
The path between the ground of the shunt resistors and the ceramic bypass capacitor of the device is critical; for
this reason it must be as short as possible minimizing parasitic inductances that can cause voltage spikes on
SENSE and OUT pins.
The OUT pins and the VS nets can be routed using the bottom layer, it is recommended to use two vias for output
connections.
Figure 14. PCB layout example with triple shunt (top layer)
STSPIN830
VREF capacitor
for noise filtering
placed close to VREF
leads
Vias on exposed pad
to improve thermal dissipation
Shunt resistor close to
respective SENSE and
SNS leads
Ground plane:
connects all
the grounds on
the TOP layer
to reduce
parasitic effects
Several vias
to connect
the shunt ground
with the bottom
ground plane
Several vias
to connect
the shunt ground
with the bottom
ground plane
OUT tracks
vias
Ceramic bypass
capacitor close to
VS leads
OUT tracks
vias
AM040390
In case of single shunt configuration take special care for the SENSE and SNS pins connection.
As suggested in the Figure 15. PCB layout example with single shunt (top layer) and Figure 16. PCB layout
example with single shunt (bottom layer), the shunt resistor can be placed in the top layer close to SENSEU and
SNS pins with a wide copper area and vias. The connection with other sense pins (SENSEV and SENSEW) can
be routed in the bottom layer taking care to maximize the track area and add more vias near to the pins.
DS12584 - Rev 2
page 18/27
STSPIN830
Layout recommendations
Figure 15. PCB layout example with single shunt (top layer)
Vias on exposed pad
to improve thermal
dissipation
STSPIN830
VREF capacitor
for noise filtering:
placed close to VREF leads
Shunt resistor
close to respective
SENSE and
SNS leads
Ground plane:
connects all
the grounds
on the TOP layer
to reduce
parasitic effects
Several vias
to connect
the shunt tracks
with the bottom
plane
Several vias
to connect
the shunt ground
with the bottom
ground plane
Several vias
to connect
the shunt tracks
with the bottom
plane
OUT tracks
vias
Ceramic bypass
capacitor close to
VS leads
OUT tracks
vias
AM040391
Figure 16. PCB layout example with single shunt (bottom layer)
STSPIN830
Top layer tracks
Bottom layer tracks
SENSE
GND
OUTs
AM040392
DS12584 - Rev 2
page 19/27
STSPIN830
Package information
8
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK®packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
8.1
TFQFPN 4x4x1.05 24L package information
Figure 17. TFQFPN 4 x 4 x 1.05 - 24L package outline
BOTTOM VIEW
SIDE VIEW
TOP VIEW
TFQFPN-4x4x1.05-24
DS12584 - Rev 2
page 20/27
STSPIN830
TFQFPN 4x4x1.05 24L package information
Table 10. TFQFPN 4x4x1.05 24L package mechanical data
Dimensions
Symbol
(mm)
Min.
Typ.
Max.
A
0.90
1.00
1.10
A1
0.00
0.02
0.05
b
0.20
0.25
0.30
D
3.90
4.00
4.10
D2
2.55
2.60
2.65
E
3.90
4.00
4.10
E2
2.55
2.60
2.65
e
L
NOTES
(1)
0.50
0.35
0.40
k
0.30
ddd
0.05
0.45
Dimension “b” does
1. not include dambar protrusion. Allowable dambar protrusion shall not cause the lead
width to exceed the maximum “b” dimension by more than 0.08 mm
Figure 18. TFQFPN 4 x 4 x 1.05 - 24L suggested footprint
TFQFPN 4 x 4 x 1.05 - 24 L
DS12584 - Rev 2
page 21/27
STSPIN830
Ordering information
9
Ordering information
Table 11. Ordering information
DS12584 - Rev 2
Order code
Package
Packing
STSPIN830
TFQFPN 4 x 4 x 1.05 - 24L
Tape and reel
page 22/27
STSPIN830
Revision history
Table 12. Document revision history
DS12584 - Rev 2
Date
Version
Changes
18-May-2018
1
Initial release.
02 Aug-2019
2
Some minor text changes inside the document, cover image updated, updated
Table 2. Recommended operating conditions
page 23/27
STSPIN830
Contents
Contents
1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2
Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2.1
Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4
ESD protection ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
5
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.1
Power supply and standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2
Logic inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3
PWM current limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.4
Device protections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.5
5.4.1
Overcurrent and short circuit protections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4.2
Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4.3
Blanking time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
ESD protection strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
7
Layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
8
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
8.1
9
[Package name] package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
List of figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
DS12584 - Rev 2
page 24/27
STSPIN830
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Absolute maximum ratings . . . . . . . . . . . . . . . .
Recommended operating conditions. . . . . . . . . .
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . .
ESD protection ratings . . . . . . . . . . . . . . . . . . .
Electrical characteristics . . . . . . . . . . . . . . . . . .
Pin description. . . . . . . . . . . . . . . . . . . . . . . . .
ENx and INx inputs truth table (MODE = ‘L’) . . . .
INxL and INxH inputs truth table (MODE = ‘H’). . .
Typical application values . . . . . . . . . . . . . . . . .
TFQFPN 4x4x1.05 24L package mechanical data
Ordering information. . . . . . . . . . . . . . . . . . . . .
Document revision history . . . . . . . . . . . . . . . . .
DS12584 - Rev 2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 3
. 3
. 3
. 4
. 5
. 7
10
10
16
21
22
23
page 25/27
STSPIN830
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
DS12584 - Rev 2
STSPIN830 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UVLO protection management . . . . . . . . . . . . . . . . . . . . . . . .
PWM current limit sequence example . . . . . . . . . . . . . . . . . . .
OFF time regulation circuit . . . . . . . . . . . . . . . . . . . . . . . . . . .
OFF time vs ROFF value . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overcurrent and short-circuit protections management . . . . . . .
Disable time versus REN and CEN values (VDD = 3.3 V). . . . . .
Overcurrent threshold versus temperature (normalized at 25 °C).
Thermal shutdown management . . . . . . . . . . . . . . . . . . . . . . .
ESD protection strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical application schematic with single shunt . . . . . . . . . . . . .
Typical application schematic with triple shunt . . . . . . . . . . . . .
PCB layout example with triple shunt (top layer) . . . . . . . . . . . .
PCB layout example with single shunt (top layer) . . . . . . . . . . .
PCB layout example with single shunt (bottom layer) . . . . . . . . .
TFQFPN 4 x 4 x 1.05 - 24L package outline . . . . . . . . . . . . . . .
TFQFPN 4 x 4 x 1.05 - 24L suggested footprint . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 2
. 7
. 9
11
11
12
13
14
14
15
15
16
17
18
19
19
20
21
page 26/27
STSPIN830
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2019 STMicroelectronics – All rights reserved
DS12584 - Rev 2
page 27/27