0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STSPIN840

STSPIN840

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    TFQFN24

  • 描述:

    IC MOTOR DRIVER 7V-45V 24TQFPN

  • 数据手册
  • 价格&库存
STSPIN840 数据手册
STSPIN840 Compact dual brushed DC motor driver Datasheet - production data Description The STSPIN840 is a compact brushed DC motor driver able to drive two bi-directional brushed DC motors simultaneously. It integrates, in a very small 4 x 4 mm QFN package, both the control logic and a fully protected low RDSon dual fullbridge power stage. QFN 4 x 4 - 24 lead Thanks to a dedicated PARALLEL input pin the parallel mode function can be enabled, transforming the device in an equivalent and more powerful single full-bridge able to deliver up to 3Arms current at an equivalent HS + LS RDSon of 500 m. Features  Operating voltage from 7 to 45 V  Maximum output current 1.5 Arms  RDSon HS + LS = 1  typ.  Current control with adjustable OFF time  Current sensing based on external shunt resistors  Full protections set – Non-dissipative overcurrent protection – Short-circuit protection – Undervoltage lockout – Thermal shutdown  Parallel operation mode achieving single fullbridge configuration with output IRMS = 3 Arms and RDSon HS + LS = 500 m typ.  Low standby current consumption The STSPIN840 embeds two independent PWM current controllers (one for each full bridge) based on user settable values of reference voltage and OFF time. The devices can be forced in a low consumption state reducing the total current consumption down to less than 45 A. As with all other devices from the STSPIN family, the STSPIN840 integrates a complete set of protections for the power stages (non-dissipative overcurrent, thermal shutdown, short-circuit and undervoltage lockout) making it a bulletproof solution for the new wave of demanding industrial applications. Applications  Industrial automation and service robots  Medical and health care  ATM and money handling machines  Stage lighting  Thermal printers  Textile and sewing machines  Vending machines  Office and home automation May 2018 This is information on a product in full production. DocID031835 Rev 1 1/28 www.st.com Contents STSPIN840 Contents 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 ESD protection ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5 Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.1 Power supply and standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.2 Logic inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 PARALLEL mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.3 PWM current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 TOFF adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.4 5.5 Device protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.4.1 Overcurrent and short-circuit protections . . . . . . . . . . . . . . . . . . . . . . . . 18 5.4.2 Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.4.3 Blanking time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 ESD protection strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6 Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7 Layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 8.1 TFQFPN TFQFPN 4 x 4 x 1.05 - 24 L package information . . . . . . . . . . 25 9 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2/28 DocID031835 Rev 1 STSPIN840 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 ESD protection ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 ON and slow decay states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Typical application values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 TFQFPN 4 x 4 x 1.05 - 24 L package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DocID031835 Rev 1 3/28 28 List of figures STSPIN840 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. 4/28 Block diagram (general) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 UVLO protection management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Dual brush DC motor driver time diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 PARALLEL mode typical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 PWM current control sequence example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 OFF time regulation circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 OFF time vs ROFF value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Overcurrent and short-circuit protections management . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Disable time versus REN and CEN values (VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Overcurrent threshold versus temperature (normalized at 25 °C) . . . . . . . . . . . . . . . . . . . 20 Thermal shutdown management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 ESD protection strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 PCB layout example (top layer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 TFQFPN 4 x 4 x 1.05 - 24 L package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 TFQFPN 4 x 4 x 1.05 - 24 L suggested footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 DocID031835 Rev 1 STSPIN840 1 Block diagram Block diagram Figure 1. Block diagram (general) 74 74 74 67-0 45#:= 3&4&5 065"  0$ =4$ 075 &/= '"6-5" 4&/4&"  7SFMFBTF #S V TI %$ 065"  0$ =4$ 1)" 4&/4&" 18. " $0/530-0(*$ &/= '"6-5# 7SFMFBTF  74 4/4"  0$ =4$ 065# 1)# 4&/4&# 18. # #S V TI %$ 1" 3"--&-  065# 0$ =4$ 50'' 0TDJMM BU P S 4&/4&# 4/4# (/% 3&'" 3&'# ". DocID031835 Rev 1 5/28 28 Electrical data STSPIN840 2 Electrical data 2.1 Absolute maximum ratings Table 1. Absolute maximum ratings Symbol Parameter Test condition Value Unit VS Supply voltage - -0.3 to 48 V VIN Logic input voltage - -0.3 to 5.5 V Differential voltage between VSx, OUT1x, OUT2x and SENSEx pins - up to 48 V - -2 to 2 V - -0.3 to 2 V - 1.5 Arms VOUT,diff VSENSE Sense pins voltage(1) VREFX Reference voltage input IOUT,RM Continuous power stage output current (each full bridge) S Tj Junction temperature - -40 to 150 °C Tstg Storage temperature - -55 to 150 °C 1. SENSEA1, SENSEA2, SNSA, SENSEB1, SENSEB2, SNSB. 2.2 Recommended operating conditions Table 2. Recommended operating conditions Symbol Parameter VS Supply voltage VIN Logic input voltage VSENSE Sense pins voltage VREFX 6/28 Reference voltage input DocID031835 Rev 1 Min. Typ. Max. Unit 7 - 45 V - 5 V -1 - +1 V 0.1 - 1 V STSPIN840 2.3 Electrical data Thermal data Table 3. Thermal data Symbol RthJA Parameter Junction to ambient thermal resistance Conditions Natural convection, according to JESD51-2a(1) Value Unit 36.5 °C/W RthJCtop Junction to case thermal resistance Cold plate on top package, according (top side) to JESD51-12(1) 27.6 °C/W RthJCbot Junction to case thermal resistance Cold plate on exposed pad, (bottom side) according to JESD51-12(1) 5.9 °C/W Junction to board thermal resistance According to JESD51-8(1) 13.6 °C/W JT Junction to top characterization According to JESD51-2a(1) 1 °C/W JB Junction to board characterization According to JESD51-2a(1) 13.7 °C/W RthJB 1. Simulated on a 76.2 x 114.3 x 1.6 mm, with vias underneath the component, 2s2p board as per standard JEDEC (JESD51-7) in natural convection. 2.4 ESD protection ratings Table 4. ESD protection ratings Symbol HBM CDM MM Parameter Human body model Charge device model Machine model Conditions Class Value Unit Conforming to ANSI/ESDA/JEDEC JS001 H2 2 kV Conforming to ANSI/ESDA/JEDEC JS002 All pins C2a 500 V - 750 V NC 200 V Conforming to ANSI/ESDA/JEDEC JS002 Corner pins only (1, 6, 7, 12, 13, 18, 19, 24) Conforming to EIA/JESD22-A115-C DocID031835 Rev 1 7/28 28 Electrical characteristics 3 STSPIN840 Electrical characteristics Testing conditions: VS = 36 V, Tj = 25 °C unless otherwise specified. Table 5. Electrical characteristics Symbol Parameter Test condition Min. Typ. Max. Unit General VSth(ON) VSth(HYST) IS VS turn-on threshold VS rising from 0 V - 6.0 6.5 V VS turn-off threshold hysteresis VS falling from 7 V - 0.4 - V No commutations ENx = '0' RTOFF = 10 k - 2.3 2.7 mA No commutations ENx = '1' RTOFF = 10 k - 2.7 3 mA VS supply current VSTBYL Standby low voltage - - - 0.8 V VSTBYH Standby high voltage - 2 - - V IS, STBY VS supply standby current STBY = '0' - - 45 A VS = 21 V IOUT = 1 A - 1 1.3 VS = 21 V IOUT = 1 A Tj = 150 °C(1) - 1.4 1.6 OUTx = VS = 48 V - - 20 OUTx = -0.3 V -1 - - Power stage RDSon HS+LS Total on resistance HS + LS  A IDSS Output leakage current VDF Freewheeling diode forward voltage ID = 1.5 A - 1 - V trise Rise time VS = 21 V - 120 - ns tfall Fall time VS = 21 V - 60 - ns VIH High logic level input voltage - 2 - - V VIL Low logic level input voltage - - - 0.8 V VOL Low logic level output voltage IOL = 4 mA - - 0.3 V FAULT open drain release voltage - - - 0.6 V STBY pull-down resistance - - 60 - k IENx Enable pull-down current - - 5 - µA tENxd Enable input propagation delay From ENx falling edge to OUTx high impedance - 400 - ns tPWM,d(ON) PWM turn-on propagation delay (2) - - ns Logic IO VRELEASE RSTBY 8/28 DocID031835 Rev 1 450 STSPIN840 Electrical characteristics Table 5. Electrical characteristics (continued) Symbol tPWM,d(OFF) tPH,d Parameter Test condition Min. Typ. Max. Unit PWMx turn-off propagation delay (2) - 250 - ns PHx propagation delay (2) - 450 - ns - -15 - 15 mV - - 1.5 - µs ROFF = 10 k - 13 - µs ROFF = 160 k - 146 - µs -20 - +20 PWM current control VSNS,OFFSET Current control offset tBLANK Blanking time tOFF Total OFF time tOFF OFF time precision Full temperature range(1) Total OFF time jittering - - ±2 - TjSD Thermal shutdown threshold - - 160 - °C TjSD,Hyst Thermal shutdown hysteresis - - 40 - °C Overcurrent protection threshold - - 3 3.5 A tOFF,jitter % Protections IOC 1. Based on characterization data on a limited number of samples, not tested during production. 2. See Figure 4. DocID031835 Rev 1 9/28 28 Pin connection 4 STSPIN840 Pin connection TOFF PA RA L LE L PHB PW MB PHA PW MA Figure 2. Pin connection (top view) 24 23 22 21 20 19 REFA 1 18 ENB\ FAULTB REFB 2 17 ENA\ FAULTA GND 3 16 STBY\RESET SNSA 4 15 SNSB SENSEA1 5 14 SENSEB1 SENSEA2 6 13 SENSEB2 7 8 9 10 11 12 OUTA1 OUTA 2 VS VS OUTB 2 OUTB 1 EPA D AM040367 Note: The exposed pad must be connected to ground. Table 6. Pin description 10/28 No. Name Type Function 1 REFA Analog input Reference voltage for the PWM current control circuitry (side A) 2 REFB Analog input Reference voltage for the PWM current control circuitry (side B) 3, EPAD GND Ground 4 SNSA Analog input 5 SENSEA1 Power output Sense output of the bridge A 6 SENSEA2 Power output Sense output of the bridge A 7 OUTA1 Power output Power bridge output side A1 8 OUTA2 Power output Device ground Full bridge A current regulator sense input Power bridge output side A2 DocID031835 Rev 1 STSPIN840 Pin connection Table 6. Pin description (continued) No. Name Type Function 9 VS Supply Device supply voltage 10 VS Supply Device supply voltage 11 OUTB2 Power output Power bridge output side B2 12 OUTB1 Power output Power bridge output side B1 13 SENSEB2 Power output Sense output of the bridge B 14 SENSEB1 Power output Sense output of the bridge B 15 SNSB Analog input 16 STBY\ RESET Logic input Standby\Reset input. When forced low the device enter in low consumption mode 17 ENA\ FAULTA Logic input\ open drain output Logic input 5 V compliant with open drain output. This is the full bridge A enable (when low, the power stage is turned off) and is forced low through the integrated open-drain MOSFET when a failure occurs. 18 ENB\ FAULTB Logic input\ open drain output Logic input 5 V compliant with open drain output. This is the full bridge B enable (when low, the power stage is turned off) and is forced low through the integrated open-drain MOSFET when a failure occurs. 19 PWMA Logic input Full bridge A PWM input 20 PHA Logic input Full bridge A current direction input 21 PWMB Logic input Full bridge B PWM input 22 PHB Logic input Full bridge B current direction input 23 PARALLEL Logic input Parallel mode input (see paragraph PARALLEL mode) 24 TOFF Analog input Full bridge B current regulator sense input Internal oscillator frequency adjustment. DocID031835 Rev 1 11/28 28 Detailed description 5 STSPIN840 Detailed description The STSPIN840 is a dual brush DC motor driver integrating two PWM current controllers and a power stage composed of two fully-protected full-bridges. 5.1 Power supply and standby The device is supplied through the VS pins, the two pins must be at the same voltage. At power-up the power stage is disabled and the FAULT pins are forced low until the VS voltage rise above the VSth(ON) threshold. If the VS falls below the VSth(ON) - VSth(HYST) value power stage is immediately disabled and the FAULT pins are forced low. Figure 3. UVLO protection management VSth(ON) VSth(ON) - VSth( HYST) VS Internal OD released FAULT POWER stage DISABLED Outputs state according to input status Internal OD released Outputs state according to input status AM040368 The device provides a low consumption mode, which is set by forcing the STBY\RESET input below the VSTBYL threshold. When the device is in standby status the power stage is disabled (outputs are at high impedance) and the supply to the integrated control circuitry is strongly reduced. When the device leaves the standby status, all the control circuitry is reset to the power-up condition. 12/28 DocID031835 Rev 1 STSPIN840 5.2 Detailed description Logic inputs The outputs of each full bridge are controlled by the respective PWMx and PHx inputs. The status of the power bridge is also determined by the PWM current controller as indicated in Section 5.3. Table 7. Truth table ENx PHx PWMx OUTx1 OUTx2 Full bridge condition 0 X(1) X(1) High Z(2) High Z(2) 1 0 0 GND GND 1 0 1 GND VS 1 1 0 GND GND Both LS on 1 1 1 VS GND HS1 and LS2 on (current OUTx1  OUTx2) Disabled Both LS on HS2 and LS1 on (current OUTx1  OUTx2) 1. X: don't care. 2. High Z: high impedance. Figure 4. Dual brush DC motor driver time diagram 1)Y 18.Y U 18. E 0'' U 18. E 0/ U 1) E  065Y   U 1) E 065Y   ". DocID031835 Rev 1 13/28 28 Detailed description STSPIN840 PARALLEL mode The device can operate in parallel mode by forcing the PARALLEL input pin high. In this operation mode both the full bridges are driven by the ENA, PWMA and PHA inputs. The PWM current control comparator of the bridge B is disabled, and bridge A one drives both the power stages. The resulting single full-bridge power stage allows an increase in the output current capability and reduce the device power dissipation. The outputs and sense pins configuration must be:  OUT1A connected with OUT1B  OUT2A connected with OUT2B  All SENSE and SNS pins connected together as shown in Figure 5. The ENA\FAULTA pin is also used as FAULT indication through the integrated open-drain MOSFETs as described in Section 5.4 and Section 5.4.3 on page 21. Note: In parallel mode the ENB\FAULTB pin is forced low. Figure 5. PARALLEL mode typical application 74 7%% 7%% $4 3 45#: 3&/ 74 45#:=3&4&5 $410- 74 #SVTI%$ $45#: 065" &/='"6-5" $&/ 065" &/='"6-5# 4&/4&" 18." 4&/4&" 1)" 4541*/ 18.# 4/4" 065# 1)# 7%% 065# 1"3" --&18. 4&/4&# 3&' 4&/4&# 50'' 30'' 4/4# (/% 34/4 ". 14/28 DocID031835 Rev 1 STSPIN840 5.3 Detailed description PWM current control The device implements two independent PWM current controllers, one for each full bridge. The bridge current is sensed through the SNS pins monitoring the voltage drop across an external resistor connected between the source of the low side power MOSFET (SENSE pins) and ground. The voltage of the SNS pins (VSNSA and VSNSB) is compared to the respective reference voltage pin (VREFA and VREFB). When VSNSX > VREFX the current limiter is triggered, the OFF time counter is started and the low sides of the full bridge are turned on (slow decay) until the end of count of the timer. During current decays the inputs values are ignored until the system returns to ON condition (decay time expired). Table 8. ON and slow decay states PHx(1) 0 0 1 1 PWMx(1) ON Slow decay 0 HSx1 = OFF LSx1 = ON HSx2 = OFF LSx2 = ON HSx1 = OFF LSx1 = ON HSx2 = OFF LSx2 = ON 1 HSx1 = OFF LSx1 = ON HSx2 = ON LSx2 = OFF HSx1 = OFF LSx1 = ON HSx2 = OFF LSx2 = ON 0 HSx1 = OFF LSx1 = ON HSx2 = OFF LSx2 = ON HSx1 = OFF LSx1 = ON HSx2 = OFF LSx2 = ON 1 HSx1 = ON LSx1 = OFF HSx2 = OFF LSx2 = ON HSx1 = OFF LSx1 = ON HSx2 = OFF LSx2 = ON 1. When the device works in parallel mode the PHA and PWMA inputs drive both Full bridge A and B. The reference voltage value, VREF, has to be selected according the load current target value (peak value) and sense resistors value. Equation 1 VREF = RSENSE ILOAD,peak DocID031835 Rev 1 15/28 28 Detailed description STSPIN840 The choice of sense resistors value must be take into account two main issues:  The sensing resistor dissipates energy and provides dangerous negative voltages on the SENSE pins during the current recirculation. For this reason the resistance of this component should be kept low (using multiple resistors in parallel will help obtaining the required power rating with standard resistors).  The lower is the RSENSE value, the higher is the peak current error due to noise on VREF pin and to the input offset of the current sense comparator: too small values of RSENSE must be avoided. Figure 6. PWM current control sequence example 74 74 0659 0659 0659 4&/4&9 34&/4& 74 74 74 74 74 74 0659 0659 4&/4&9 0659 0659 4&/4&9 4&/4&9 34&/4& 34&/4& 0659 34&/4& U 0'' 73&'Y 34&/4& *QIBTF U %5 73&' 74&/4&Y  ". Note: 16/28 When the voltage on the SNSx pin exceeds the absolute ratings, a fault condition is triggered and the respective ENx\FAULTx output is forced low. DocID031835 Rev 1 STSPIN840 Detailed description TOFF adjustment The OFF time is adjusted through an external resistor connected between the TOFF pin and ground as shown in Figure 7. Figure 7. OFF time regulation circuit 50'' 30''  ". The relation between the OFF time and the external resistor value is shown in the graph of Figure 8. The value typically ranges from 10 µs to 150 µs. The recommended value for ROFF is in the range between 5 k and 180 k. Figure 8. OFF time vs ROFF value DocID031835 Rev 1 17/28 28 Detailed description STSPIN840 5.4 Device protections 5.4.1 Overcurrent and short-circuit protections The device has circuitry embedded to protect each power MOSFET against the overload and short-circuit conditions (short-circuit to ground, short-circuit to VS and short-circuit between outputs). When the overcurrent or the short-circuit protection is triggered the respective power stage is disabled and the relative EN\FAULT input is forced low through the integrated open-drain MOSFET discharging the external CEN capacitor (refer to Figure 9). The power stage is kept disabled and the open-drain MOSFET is kept ON until the EN\FAULT input falls below the VRELEASE threshold, then the CEN capacitor is charged through the external REN resistor. Figure 9. Overcurrent and short-circuit protections management .$6 %&7*$& '"6-5@.$6 73&-&"4& &/='"6-5Y &/@.$6 &/Y $&/ 3&/ 3&-&"4& '"6-5Y 0$=4$Y 5)4% 0WFSDVSSFOU QSPUFDUJPO 7&/Y 7*) 7*73&-&"4& 1PXFS TUBHF9 &/"#-&% %*4"#-&% UEJTDIBSHF &/"#-&% U DIBSHF U 0$4% '"6-5Y U %*4 ". The total disable time after an overcurrent event is set sizing properly the external network connected to EN\FAULT pins (refer to Figure 10) and it is the sum of the discharging and charging time of the CEN capacitor: Equation 2 tDIS = tdischarge + tcharge 18/28 DocID031835 Rev 1 STSPIN840 Detailed description Considering tdischarge is normally significantly lower than tcharge, its contribution is negligible and the disable time is almost equal to tcharge only: Equation 3  V DD – R EN  I PD  – V RELEASE t DIS  R EN  C EN  I n --------------------------------------------------------------------------------- V DD – R EN  I PD  – V IH Where VDD is the pull-up voltage of REN resistor. The recommended value for REN and CEN are respectively 39 k and 10 nF that allow obtaining 300 µs disable time. Figure 10. Disable time versus REN and CEN values (VDD = 3.3 V) DocID031835 Rev 1 19/28 28 Detailed description STSPIN840 Figure 11. Overcurrent threshold versus temperature (normalized at 25 °C) /PSNBMJ[FE 0$ UISFTIPME                 5FNQFSBUVSF ". 5.4.2 Thermal shutdown The device has circuitry embedded to protect it from overtemperature conditions. When the thermal shutdown temperature is reached both the power bridge are disabled and both the EN\FAULT inputs are forced low through the integrated open-drain MOSFETs (refer to Figure 12). The protection and the EN\FAULT outputs are released when the IC temperature returns below a safe operating value (TjSD - TjSD,Hyst). 20/28 DocID031835 Rev 1 STSPIN840 Detailed description Figure 12. Thermal shutdown management .$6 %&7*$& '"6-5@.$6 73&-&"4& 3&-&"4& &/='"6-5Y &/@.$6 &/Y $&/ 3&/ 0$=4$Y 5)4% '"6-5Y 5IFSNBM TIVUEPXO 5K4% 5K4% IZTU 5K 7&/Y 7*) 7*73&-&"4& #PUIQPXFS TUBHF &/"#-&% %*4"#-&% %*4"#-&% &/"#-&% U 5)4% '"6-5Y ". 5.4.3 Blanking time The device provides a blanking time tBLANK after each power MOSFET commutation to prevent false triggering of protections and current control. During blanking time the following circuits are inhibited:  Overcurrent and short-circuit protections of commutating power stage  Current control comparator of the commutating power stage  Thermal protection of the commutating power stage. DocID031835 Rev 1 21/28 28 Detailed description 5.5 STSPIN840 ESD protection strategy Figure 13. ESD protection strategy 74  7 &4% BDUJWF DMBNQ 108&3 1$)  7 JOUFS OBMSFH 065"Y #Y (/% 4&/4&"#  4&/4&"#  18 .# 108&3 /$) */Y 7 &4% BDUJWF DMBNQ (/% */ Y1)" 1)# 18." 45#:=3 &4&5 1"3"--&- &/"='"6- 5" &/#='"6- 5# 3&'" 3&'# 50'' #FMPX (/% 4/4"# ". 22/28 DocID031835 Rev 1 STSPIN840 6 Typical applications Typical applications Table 9. Typical application values Name Value CS 330 nF CSPOL 33 µF RSNSA, RSNSB 330 m / 1 W CENA, CENB 10 nF RENA, RENB 39 k CSTBY 1 nF RSTBY 18 k ROFF 10 k (TOFF  13 µs) Figure 14. Typical application schematic 74 7%% 3 45#: 3&/# 3&/" $410- $4 7%% 74 45#:=3&4&5 74 #SVTI %$" $45#: 065" &/='"6-5" $&/" 065" &/='"6-5# 4&/4&" $&/# 18." 4&/4&" 4541*/ 1)" 18.# 4/4" 34/4" #SVTI %$# 065# 1)# 1"3"--&18. 065# 4&/4&# 3&' 4&/4&# 50'' 3 0'' 34/4# 4/4# (/% ". DocID031835 Rev 1 23/28 28 Layout recommendations 7 STSPIN840 Layout recommendations The STSPIN840 device integrates the power stage; in order to improve the thermal dissipation, the exposed pad must be connected to the ground plane on the bottom layer using multiple vias equally spaced. This ground plane acts as a heatsink, for this reason it should be as wide as possible. The voltage supply VS must be stabilized and filtered with a ceramic bypass capacitor, typically 330 nF. It must be placed on the same side and as close as possible to the VS pin in order to reject high frequency noise components on the supply. A bulk capacitor could also be required (typically a 33 F). The connection between the power supply connector and the VS pins must be as short as possible using wide traces. In order to ensure the best ground connection between the STSPIN840 and the other components, a GND plane surrounding the device is recommended. A capacitor between REF pins and ground should be positioned as near as possible to the device in order to filter the noise and stabilize the reference voltage. Several vias should be positioned as near as possible each sense resistor connecting them to the ground plane on the bottom layer. In this way, both the GND planes provide a path for the current flowing into the power stage. The path between the ground of the shunt resistors and the ceramic bypass capacitor of the device is critical; for this reason it must be as short as possible minimizing parasitic inductances that can cause voltage spikes on SENSE and OUT pins. The OUT pins and the VS nets can be routed using the bottom layer, it is recommended to use two vias for output connections. Figure 15. PCB layout example (top layer) 4541*/ 73&'DBQBDJUPST GPSOPJTFGJMUFSJOH QMBDFEDMPTFUP73&'M FBET 7JBT POFYQPTFEQBE UPJNQSPWFUIFSNBMEJTTJQBUJPO 4IVOUSFTJTUPS DMPTFUPSFTQFDUJWF 4&/4&BOE 4/4MFBET (SPVOEQMBOF DPOOFDUTBMM UIFHSPVOET POUIF501MBZFS UPSFEVDF QBSBTJUJDFGGFDUT 4FWFSBM WJBT UPDPOOFDU UIFTIVOUHSPVOE XJUIUIFCPUUPN HSPVOEQMBOF 065USBDLT WJBT 4FWFSBM WJBT UPDPOOFDU UIFTIVOUHSPVOE XJUIUIFCPUUPN HSPVOEQMBOF 065USBDLT WJBT $FSBNJDCZQBTT DBQBDJUPSDMPTFUP 74MFBET ". 24/28 DocID031835 Rev 1 STSPIN840 8 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 8.1 TFQFPN TFQFPN 4 x 4 x 1.05 - 24 L package information Figure 16. TFQFPN 4 x 4 x 1.05 - 24 L package outline #0550.7*&8 4*%&7*&8 5017*&8 5'2'1/YY DocID031835 Rev 1 25/28 28 Package information STSPIN840 Table 10. TFQFPN 4 x 4 x 1.05 - 24 L package mechanical data Dimensions (mm) Symbol Note Min. Typ. Max. A 0.90 1.00 1.10 - A1 0.00 0.02 0.05 - b 0.20 0.25 0.30 (1) D 3.90 4.00 4.10 - D2 2.55 2.60 2.65 - E 3.90 4.00 4.10 - E2 2.55 2.60 2.65 - e - 0.50 - - L 0.35 0.40 0.45 k - 0.30 - - ddd - 0.05 - - 1. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum “b” dimension by more than 0.08 mm. Figure 17. TFQFPN 4 x 4 x 1.05 - 24 L suggested footprint  5'2'1/YY- 26/28 DocID031835 Rev 1 STSPIN840 9 Ordering information Ordering information Table 11. Device summary 10 Order code Package Packaging STSPIN840 TFQFPN 4 x 4 x 1.05 - 24 L Tape and reel Revision history Table 12. Document revision history Date Revision 18-May-2018 1 Changes Initial release. DocID031835 Rev 1 27/28 28 STSPIN840 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2018 STMicroelectronics – All rights reserved 28/28 DocID031835 Rev 1
STSPIN840 价格&库存

很抱歉,暂时无法提供与“STSPIN840”相匹配的价格&库存,您可以联系我们找货

免费人工找货