STUSB4700
Datasheet
Stand-alone autonomous USB PD controller with short-to-VBUS protections
Features
Product status link
STUSB4700
•
•
•
•
USB power delivery (PD) controller
Type-C attach and cable orientation detection
Single role: provider
Full hardware solution - no software
•
•
•
•
I2C interface + interrupt (optional connection to MCU)
Supports up to 5 power data objects (PDO)
Configurable start-up profiles
Integrated VBUS voltage monitoring
•
Internal and/or external VBUS discharge path
•
•
Short-to-VBUS protections on CC pins (22 V)
High voltage protections on VBUS pins (28 V)
•
High and/or low voltage power supply:
–
VSYS = [3.0 V; 5.5 V]
–
•
•
VDD = [4.1 V; 22 V]
Automotive grade available
Fully compatible with:
–
USB Type-C™ rev 1.2
–
USB PD rev 2.0
–
Certification test ID 1030023
Applications
•
•
•
•
•
AC adapters and power supplies for: computer, consumer or portable
consumer applications
Smart plugs and wall adapters
Power hubs and docking stations
Displays
Any Type-C source device
Description
The STUSB4700 is a new family of USB power delivery controllers communicating
over Type-C™ configuration channel pin (CC) to negotiate a given amount of power
to be sourced to an inquiring consumer device.
The STUSB4700 addresses provider/DFP devices such as notebooks, tablets and
AC adapters. The device can handle any connections to a sink or DRP without
any MCU control, from the device attachment to power negotiation, including VBUS
discharge and protections.
DS11977 - Rev 7 - November 2022
For further information contact your local STMicroelectronics sales office.
www.st.com
STUSB4700
Functional description
1
Functional description
The STUSB4700 is an autonomous USB power delivery controller optimized as a provider. It offers an open drain
GPIO interface to make direct interconnection with a power regulation stage.
The STUSB4700 offers the benefits of a full hardware USB PD stack allowing robust and safe USB PD
negotiation in line with USB PD standard. The STUSB4700 is ideal for provider applications in which digital
or software intelligence is limited or missing.
The STUSB4700 main functions are:
•
•
•
Detect the connection between two USB ports (attach detection)
Establish a valid host to device connection
Discover and configure VBUS: Type-C low, medium or high current mode
•
•
•
•
Resolve cable orientation
Negotiate a USB power delivery contract with a PD capable device
Configure the power source accordingly
Monitor VBUS, manage transitions, handle protections and ensure user and device safety
Additionally, the STUSB4700 offers 5 customizable power data objects (PDOs), 5 general purpose I/Os, an
integrated discharge path, and is natively robust to high voltage peaks.
Figure 1. Functional block diagram
VDD
VSYS
VREG_2V7
Internal
supply
VBUS status
voltage
monitoring
VREG_1V2
VBUS_EN_SRC
ALERT#
Discharge
path
VCONN SW
(OVP & OCP)
A_B_SIDE
SCL
SDA
VBUS_SENSE
Port C
controller
I²C
slave
CC
line
access
port status
VVAR_ADDR0
VBUS_DISCH
GPIO[4..0]
RESET
VCONN
CC1
CC2
Control
POR &
reset
generator
Device
Policy
Manager
Policy
Engine
Protocol
Layer
Physical
Layer
BMC
driver
GND
DS11977 - Rev 7
page 2/41
STUSB4700
Inputs/outputs
2
Inputs/outputs
2.1
Pinout
VSYS
VREG_1V2
VBUS_EN_SRC
VBUS_DISCH
1 24 23
22
21
20
19
VDD
VREG_2V7
Figure 2. Pin connections (top view)
NC
VBUS_SENSE
CC1
2
17
A_B_SIDE
VCONN
3
16
GPIO4
15
GPIO3
14
GPIO2
13
VVAR_ADDR0
CC2
4
NC
5
7
8
9
10
11
12
SDA
ALERT#
GND
GPIO1
GPIO0
6
EP
SCL
RESET
DS11977 - Rev 7
18
page 3/41
STUSB4700
Pin list
2.2
Pin list
Table 1. Pin function list
Pin
Name
Type
Description
Connection
1
NC
2
CC1
HV AIO
3
VCONN
PWR
4
CC2
HV AIO
5
NC
-
6
RESET
DI
Reset input (active high)
7
SCL
DI
I²C clock input
To I²C master – ext. pull-up
8
SDA
DI/OD
I2C data input/output – active low open drain
To I²C master – ext. pull-up
I2C
To I²C master – ext. pull-up
Ground reference channel 1
To ground
Type-C configuration channel 1
Type-C receptacle A5
Power input for active plug
5 V power source
Type-C configuration channel 2
Type-C receptacle B5
Ground reference channel 2
To ground
9
ALERT#
OD
10
GND
GND
11
GPIO1
OD
General purpose I/O #1
12
GPIO0
OD
General purpose I/O #0
13
VVAR_ADDR0
AIO
Variable voltage output I2C device address 0
bit (at start-up)
14
GPIO2
OD
General purpose I/O #2
15
GPIO3
OD
General purpose I/O #3
16
GPIO4
OD
General purpose I/O #4
17
A_B_SIDE
OD
Cable orientation - active low open drain
USB SuperSpeed mux select –
ext. pull-up
18
VBUS_SENSE
HV AI
VBUS voltage monitoring and discharge path
From VBUS
19
VBUS_DISCH
HV OD
External output discharge path enable,
active low open drain
20
VBUS_EN_SRC
HV OD
VBUS source power path enable – active low
open drain
To switch or power system – ext.
pull-up
21
VREG_1V2
PWR
1.2 V internal regulator output
1 µF typ. decoupling capacitor
22
VSYS
PWR
Power supply from system
System low power (connect to
ground if not used)
23
VREG_2V7
PWR
2.7 V internal regulator output
1 µF typ. decoupling capacitor
24
VDD
HV PWR
Power supply from USB power line
From VBUS (system side)
-
EP
Exposed pad
Exposed pad is connected to ground
To ground
DS11977 - Rev 7
interrupt – active low open drain
Ground
To ground
page 4/41
STUSB4700
Pin list
Table 2. Legend
Type
DS11977 - Rev 7
Description
D
Digital
A
Analog
O
Output pad
I
Input pad
IO
Bidirectional pad
OD
Open drain output
PD
Pull-down
PU
Pull-up
HV
High voltage
PWR
Power
GND
Ground
page 5/41
STUSB4700
Pin description
2.3
Pin description
2.3.1
CC1 / CC2
CC1 and CC2 are the configuration channel pins used for connection and attachment detection, plug orientation
determination and system configuration management across USB Type-C cable. CC1 and CC2 are high
impedance (HiZ) during reset.
2.3.2
RESET
Active high reset. This pin resets all analog signals, states machine and reloads configuration.
2.3.3
I²C interface pins
Table 3. I2C interface pin list
Name
SCL
I²C clock – need external pull-up
SDA
I²C data – need external pull-up
ALERT#
2.3.4
Description
I²C interrupt – need external pull-up
A_B_SIDE
This output pin provides cable orientation. It is used to establish USB SuperSpeed signals routing. The cable
orientation is also provided by an internal I2C register. This signal is not required in case of USB 2.0 support or in
case of supply only.
Table 4. USB data mux select
Value
2.3.5
CC pin position
HiZ
CC1 pin is attached to CC line
0
CC2 pin is attached to CC line
VBUS_SENSE
This input pin is used to sense VBUS presence, monitor VBUS voltage and discharge VBUS on USB Type-C
receptacle side.
2.3.6
VBUS_EN_SRC
In source power role, this pin allows enabling of the outgoing VBUS power when the connection to a sink is
established and VBUS is in the valid operating range. The open-drain output allows a PMOS transistor to be driven
directly. The logic value of the pin is also advertised in a dedicated I2C register bit.
2.3.7
VSYS
This is the low voltage power supply from the system (if any). VSYS connection is optional, and can be connected
directly to a single cell Lithium battery or a system power supply delivering 3.3 V or 5 V. If not used, it is
recommended to connect the pin to ground.
DS11977 - Rev 7
page 6/41
STUSB4700
Pin description
2.3.8
VDD
This is the main power supply from the USB power line for applications powered by VBUS.
This pin can be used to sense the voltage level of the main power supply providing VBUS. It allows UVLO and
OVLO voltage thresholds to be considered independently on VDD pin as additional conditions to enable the VBUS
power path through VBUS_EN_SRC pin.
2.3.9
GND
Ground.
2.3.10
VVAR_ADDR0
At start-up, this pin is latched to set I²C device address 0 bit. During operation, this output can be used as an
analog voltage output to control the power management unit. Analog value is one tenth of the requested VBUS
value. This function can be enabled through appropriate non-volatile-memory (NVM) configuration.
2.3.11
VREG_2V7
This pin is used only for external decoupling of 2.7 V internal regulator.
Recommended decoupling capacitor: 1 µF typ. (0.5 µF min.; 10 µF max.).
This pin must not be used to supply any external component.
2.3.12
VREG_1V2
This pin is used for external decoupling of 1.2 V internal regulator.
Recommended decoupling capacitor: 1 µF typ. (0.5 µF min.; 10 µF max.).
This pin must not be used to supply any external component.
2.3.13
VBUS_DISCH
This output pin allows an external VBUS discharge path to be controlled in addition to the internal discharge
path when required by the application. The output pin is active at the same time as the activation of the internal
discharge path.
2.3.14
VCONN
This power input is connected to a power source that can be a 5 V power supply, or a lithium battery. It is used
to supply e-marked cables. It is internally connected to power switches that are protected against short-circuit and
overvoltage. When a valid source-to-sink connection is determined and VCONN power switches enabled, VCONN is
provided by the source to the unused CC pin.
DS11977 - Rev 7
page 7/41
STUSB4700
Pin description
2.3.15
GPIO [4:0]
Table 5. GPIO0 (pin #12) configuration
Select
NVM value
GPIO0_sel
Configuration
00b
Attach
01b
Reserved
10b
Reserved
11b
Sel_PDO2
Comments
Attached to sink (active low)
Do not use
PDO2 contract (active low)
Table 6. GPIO1 (pin #11) configuration
Select
NVM value
GPIO1_sel
Configuration
00b
VBUS_VALID
01b
Reserved
10b
Reserved
11b
Sel_PDO3
Comments
VBUS at expected voltage (active low)
Do not use
PDO3 contract (active low)
Table 7. GPIO2 (pin #14) – GPIO3 (pin #15) – GPIO4 (pin #16) configuration
Select
NVM value
00b
01b
GPIO234_sel[1:0]
10b
11b
Configuration
Comments
GPIO2 = Sel_PDO2
PDO2 contract (active low)
GPIO3 = Sel_PDO3
PDO3 contract (active low)
GPIO4 = VBUS_EN_SRC_N
Not VBUS_EN_SRC (active high)
GPIO2 = ADDR1
I2C device address 1 bit (at start-up)
GPIO3 = ADDR2
I2C device address 2 bit (at start-up)
GPIO4 = DEBUG1
SNK_DEBUG_ACCESSORY
from Type-C
Reserved
Do not use
GPIO2 = Sel_PDO4
PDO4 contract (active low)
GPIO3 = Sel_PDO5
PDO5 contract (active low)
GPIO4 = V_TRANS_UP
PDO transition up (active low for
280 ms)
Other configurations are available (please contact our customer support).
DS11977 - Rev 7
page 8/41
STUSB4700
Block descriptions
3
Block descriptions
3.1
CC interface
The STUSB4700 controls the connection to the configuration channel (CC) pins, CC1 and CC2, through two main
blocks, the CC lines interface block and the CC control logic block.
The CC lines interface block is used to:
•
•
•
Configure the pull-up termination mode on the CC pins
Monitor the CC pin voltage values relative to the attachment detection thresholds
Configure VCONN on the unconnected CC pin when required
•
Protect the CC pins against over voltage
The CC control logic block is used to:
•
•
•
•
•
•
•
Execute the Type-C FSM relative to the Type-C source power mode
Determine the electrical state for each CC pins relative to the detected thresholds
Evaluate the conditions relative to the CC pin states and VBUS voltage value to transition from one state to
another in the Type-C state machine
Detect and establish a valid source-to-sink connection
Determine the attached device type: sink or accessory
Determine cable orientation to allow external routing of the USB SuperSpeed data
Expose VBUS power capability: USB default, Type-C medium or Type-C high current mode
•
Handle hardware faults
The CC control logic block implements the Type-C state machines corresponding to source power role with
accessory support.
3.2
BMC
This block is the physical link between USB PD protocol layer and CC pin. In TX mode, it converts the data into
bi-phase mark coding (BMC), and drives the CC line to correct voltages. In RX mode, it recovers BMC data from
the CC line, and converts to baseband signaling for the protocol layer.
3.3
Protocol layer
The protocol layer has the responsibility to manage the messages from/to the physical layer. It automatically
manages the protocol receive timeouts, the message counter, the retry counter and the GoodCRC messages.
It communicates with the internal policy engine.
3.4
Policy engine
The policy engine implements the power negotiation with the connected device according to its source role, it
implements all states machine that controls protocol layer forming and scheduling the messages.
The policy engine uses the protocol layer to send/receive messages.
The policy engine interprets the device policy manager’s input in order to implement policy for port and directs the
protocol layer to send appropriate messages.
3.5
Device policy manager
The device policy manager is managing the power resources.
3.6
3.6.1
VBUS power path control
VBUS monitoring
The VBUS monitoring block supervises from the VBUS_SENSE input pin the VBUS voltage on the USB Type-C
receptacle side.
This block is used to check that VBUS is within a valid voltage range:
DS11977 - Rev 7
page 9/41
STUSB4700
VBUS power path control
•
•
To establish a valid source-to-sink connection according to USB Type-C standard specification
To enable safely the VBUS power path through VBUS_EN_SRC pin
It allows detection of unexpected VBUS voltage conditions such as undervoltage or overvoltage relative to the valid
VBUS voltage range. When such conditions occur, the STUSB4700 reacts as follows:
•
At attachment, it prevents the source-to-sink connection and the VBUS power path assertion
•
After attachment, it deactivates the source-to-sink connection and disables the VBUS power path. The
device goes into error recovery state
The VBUS voltage value is automatically adjusted at attachment and at each PDO transition. The monitoring is
then disabled during T_Transition_To_PDO (default 288 ms changed through NVM programming). Additionally, if
a transition occurs to a lower voltage, the discharge path is activated during this time.
The valid VBUS voltage range is defined from the VBUS nominal voltage by a high threshold voltage and a low
threshold voltage whose minimal values are respectively VBUS+5% and VBUS-5%. The nominal threshold limits
can be shifted by a fraction of VBUS from +1% to +15% for the high threshold voltage and from -1% to -15% for
the low threshold voltage. It means the threshold limits can vary from VBUS+5% to VBUS+20% for the high limit
and from VBUS-5% to VBUS-20% for the low limit.
The threshold limits are preset by default in the NVM with different shift coefficients (see Section 8.3 Electrical
and timing characteristics). The threshold limits can be changed independently through NVM programming (see
Section 4 User-defined start-up configuration) and also by software during attachment through the I2C interface
(see Section 6 I²C register map).
3.6.2
VBUS discharge
The monitoring block handles also the internal VBUS discharge path connected to the VBUS_SENSE input pin.
The discharge path is activated at detachment, during transition to a lower PDO voltage, or when the device goes
into the error recovery state (see Section 3.8 Hardware fault management).
The automatic VBUS discharge path feature is enabled by default in the NVM and can be disabled
through NVM programming only (see Section 4 User-defined start-up configuration). Discharge time
duration (T_Transition_To_PDO and T_Transition_To_0V) are also preset by default in the NVM (see
Section 8.3 Electrical and timing characteristics). The discharge time duration can be changed through NVM
programming (see Section 4 User-defined start-up configuration) and also by software through the I2C interface
(see Section 6 I²C register map).
3.6.3
VBUS power path assertion
The STUSB4700 can control the assertion of the VBUS power path on USB Type-C port, directly or indirectly,
through VBUS_EN_SRC pin.
The following table summarizes the configurations of the STUSB4700 and the operation conditions that determine
the electrical value of the VBUS_EN_SRC pin during system operations.
Table 8. Conditions for VBUS power path assertion
Pin
Electrical
value
Operating conditions
Type-C attached state
VDD monitoring
Attached.SRC
VDD > VDDUVLO if UVLO
threshold detection
enabled
UnorientedDebug
0
OrientedDebug
Accessory.SRC
VBUS_EN_SRC
HiZ
DS11977 - Rev 7
Accessory.SRC
Any other state
and/or VDD < VDDOVLO
if OVLO threshold
detection enabled
VDD < VDD if UVLO
threshold detection
enabled
or VDD > VDDOVLO
if OVLO threshold
detection enabled
VBUS-SENSE pin
monitoring
Comment
VBUS < VMONUSBH and VBUS
> VMONUSBL if VBUS voltage
range detection enabled or
VBUS > VTHUSB if VBUS
voltage range detection
disabled
The signal is asserted
only if all the valid
operation conditions
are met
VBUS > VMONUSBH or VBUS
< VMONUSBL if VBUS voltage
range detection enabled or
VBUS < VTHUSB if VBUS
voltage range detection
disabled
The signal is deasserted when at
least one non-valid
operation condition is
met
page 10/41
STUSB4700
High voltage protection
Note:
Activation of the UVLO and OVLO threshold detections can be done through NVM programming (see
Section 4 User-defined start-up configuration) and also by software through the I2C interface (see Section 6 I²C
register map). When the UVLO and/or OVLO threshold detection is activated, the VBUS_EN_SRC pin is
asserted only if the device is attached and the valid threshold conditions on VDD are met. Once the
VBUS_EN_SRC pin is asserted, the VBUS monitoring is done on VBUS_SENSE pin instead of the VDD pin.
3.7
High voltage protection
The STUSB4700 can be safely used in systems or connected to systems that handle high voltage on the VBUS
power path. The device integrates an internal circuitry on the CC pins that tolerates high voltage and ensures a
protection up to 22 V in case of unexpected short circuit with VBUS or in case of connection to a device supplying
high voltage on VBUS.
3.8
Hardware fault management
The STUSB4700 handles hardware fault conditions related to the device itself and to the VBUS power path during
system operation.
When such conditions happen, the circuit goes into a transient error recovery state named ErrorRecovery in the
Type-C FSM. The error recovery state is equivalent to force a detach event. When entering this state, the device
de-asserts the VBUS power path by disabling the VBUS_EN_SRC pin, and it removes the terminations from the
CC pins during several tens of milliseconds. Then, it transitions to the unattached source state.
The STUSB4700 goes into error recovery state when at least one condition listed below is met:
•
•
•
•
If an overtemperature is detected, the “THERMAL_FAULT” bit is set to 1b
If an internal pull-up voltage on CC pins is below UVLO threshold, the “VPU_VALID” bit is set to 0b
If an overvoltage is detected on the CC pins, the “VPU_OVP_FAULT” bit is set to 1b
If the VBUS voltage is out of the valid voltage range during attachment, the “VBUS_VALID” bit is set to 0b
•
If an undervoltage is detected on the VDD pin during attachment when UVLO detection is enabled, the
“VDD_UVLO_DISABLE” bit is set to 0b
If an overvoltage is detected on the VDD pin during attachment when OVLO detection is enabled, the
“VDD_OVLO_DISABLE” bit is set to 0b
•
The I2C register bits mentioned above in quotes give either the state of the hardware fault when it occurs or the
setting condition to detect the hardware fault.
3.9
Accessory mode detection
The STUSB4700 supports the detection of audio accessory mode and debug accessory mode as defined in the
USB Type-C standard specification source power role with accessory support.
3.9.1
Audio accessory mode detection
The STUSB4700 detects an audio accessory device when both the CC1 and CC2 pins are pulled down to
ground by a Ra resistor from the connected device. The audio accessory detection is advertised through the
CC_ATTACHED_MODE bits of the I2C register CC_CONNECTION_STATUS.
3.9.2
Debug accessory mode detection
The STUSB4700 detects a connection to a debug and test system (DTS). The debug accessory detection is
advertised through the CC_ATTACHED_MODE bits of the I2C register CC_CONNECTION_STATUS.
The VBUS_EN_SRC pin is also asserted to allow the VBUS power path to be enabled as defined in the USB
Type-C standard specification.
A debug accessory device is detected when both the CC1 and CC2 pins are pulled down to ground by a Rd
resistor from the connected device. The orientation detection is performed in two steps as described in the table
below. The A_B_SIDE pin indicates the orientation of the connection. The orientation detection is advertised
through the TYPEC_FSM_STATE bits of the I2C register CC_OPERATION_STATUS.
DS11977 - Rev 7
page 11/41
STUSB4700
Accessory mode detection
Table 9. The orientation detection
#
DS11977 - Rev 7
CC1 pin
CC2 pin
(CC2 pin) (CC1 pin)
A_B_SIDE pin
Detection process
CC1/CC2
(CC2/CC1)
Orientation detection state
TYPEC_FSM_STATE bit value
1
Rd
Rd
1st step: debug accessory mode detected
HiZ (HiZ)
UnorientedDebugAccessory.SRC
2
Rd
≤ Ra
2nd step: orientation detected (DTS presents a
resistance to GND with a value ≤ Ra on its CC2
pin)
HiZ (0)
OrientedDebugAccessory.SRC
page 12/41
STUSB4700
User-defined start-up configuration
4
User-defined start-up configuration
4.1
Parameter overview
The STUSB4700 has a set of user-defined parameters that can be customized by NVM re-programming and/or
by software through I2C interface. It allows changing the preset configuration of USB Type-C and PD interface
and to define a new configuration to meet specific customer requirements addressing various applications, use
cases or specific implementations.
The NVM re-programming overrides the initial default setting to define a new default setting that will be used at
power-up or after a reset. The default value is copied at power-up, or after a reset, from the embedded NVM into
dedicated I2C register bits. The NVM re-programming is possible few times with a customer password.
Table 10. PDO configurations in NVM
Feature
PDO1
PDO2
PDO3
PDO4
PDO5
Parameter
Value
Voltage
5V
Current
Configurable – defined by PDO1_I [3:0]
Voltage
Configurable – defined by PDO2_V [1:0]
Current
Configurable – defined by PDO2_I [3:0]
Voltage
Configurable – defined by PDO3_V [1:0]
Current
Configurable – defined by PDO3_I [3:0]
Voltage
Configurable – defined by PDO4_V [1:0]
Current
Configurable – defined by PDO4_I [3:0]
Voltage
Configurable – defined by PDO5_V [1:0]
Current
Configurable – defined by PDO5_I [3:0]
When a default value is changed during system boot by software, the new settings apply as long as the
STUSB4700 operates and until it is changed again. But after power-off and power-up, or after a hardware reset,
the STUSB4700 takes back default values defined in the NVM.
DS11977 - Rev 7
page 13/41
STUSB4700
PDO – voltage configuration in NVM
4.2
PDO – voltage configuration in NVM
PDO2_V [1:0], PDO3_V [1:0], PDO4_V [1:0] and PDO5_V [1:0] can be configured with the following values:
Table 11. PDO NVM voltage configuration
Value
Configuration
2b00
9V
2b01
15 V
2b10
PDO_FLEX_V1
2b11
PDO_FLEX_V2
PDO_FLEX_V1 and PDO_FLEX_V2 are defined in a specific 10-bit register, value is being expressed in 50 mV
units.
For instance:
•
•
4.3
PDO_FLEX_V1 = 10b0100100010 → 14.5 V
PDO_FLEX_V2 = 10b0110000110 → 19.5 V
PDO – current configuration in NVM
PDO1_I [3:0], PDO2_I [3:0], PDO3_I [3:0], PDO4_I [3:0] and PDO5_I [3:0] can be configured with the following
fixed values:
Table 12. PDO NVM current configuration
Value
Configuration
4b0000
PDO_FLEX_I
4b0001
1.50 A
4b0010
1.75 A
4b0011
2.00 A
4b0100
2.25 A
4b0101
2.50 A
4b0110
2.75 A
4b0111
3.00 A
4b1000
3.25 A
4b1001
3.50 A
4b1010
3.75 A
4b1011
4.00 A
4b1100
4.25 A
4b1101
4.50 A
4b1110
4.75 A
4b1111
5.00 A
PDO_FLEX_I is defined in a specific 10-bit register, value is being expressed in 10 mA units. For instance:
•
4.4
Monitoring configuration in NVM
•
DS11977 - Rev 7
PDO_FLEX_I = 10b0011100001 → 2.25 A
T_Transition_To_PDO (TDISUSBPDO) can be configured from 20 to 300 ms by increments of 20 ms (0 is not
recommended)
page 14/41
STUSB4700
Factory settings
•
4.5
•
T_Transition_To_0V (TDISUSB0V) can be configured from 84 to 1260 ms by increments of 84 ms (0 is not
recommended)
V_Shift_High (VSHUSBH) can be configured from 1% to 15% of VBUS by step of 1%
•
V_Shift_Low (VSHUSBL) can be configured from 1% to 15% of VBUS by step of 1%
Factory settings
Table 13. Factory NVM setting
DS11977 - Rev 7
Parameter
STUSB4700QTR
STUSB4700YQTR
Number of PDO
5
3
PDO1 (UVLO; OVLO)
5 V / 3 A (-10%; +12%)
5 V / 3 A (-10%; +12%)
PDO2
9 V / 3 A (-10%; +10%)
9 V / 3 A (-10%; +10%)
PDO3
12 V / 3 A (-10%; +10%)
12 V / 3 A (-10%; +10%)
PDO4
15 V / 3 A (-10%; +10%)
-
PDO5
20 V / 2.25 A (-10%; +8%)
-
GPIO0
Sel_PDO2
Sel_PDO2
GPIO1
Sel_PDO3
Sel_PDO3
GPIO2
Sel_PDO4
Sel_PDO2
GPIO3
Sel_PDO5
Sel_PDO3
GPIO4
V_TRANS_UP
VBUS_EN_SRC_N
Discharge time: transition to PDO
240 ms
240 ms
Discharge time: transition to 0 V
168 ms
168 ms
page 15/41
STUSB4700
I²C interface
5
I²C interface
5.1
Read and write operations
The I²C interface is used to configure, control and read the status of the device. It is compatible with the Philips
I²C Bus® (version 2.1). The I²C is a slave serial interface based on two signals:
•
•
SCL - serial clock line: input clock used to shift data
SDA - serial data line: input/output bidirectional data transfers
A filter rejects the potential spikes on the bus data line to preserve data integrity.
The bidirectional data line supports transfers up to 400 Kbit/s (fast mode). The data are shifted to and from the
chip on the SDA line, MSB first.
The first bit must be high (START) followed by the 7-bit device address and the read/write control bit.
Eigth 7-bit device addresses are available for the STUSB4700 thanks to the external programming of DevADDR0,
DevADDR11 and/or DevADDR2 through VVAR_ADDR0, ADDR1 and ADDR2 pins respectively. It allows eight
STUSB4700 devices to be connected on the same I2C bus.
Two addresses are available by default, i.e. 0x28 or 0x29, depending on the setting of the VVAR_ADDR0 pin
(ADDR1 and ADDR2 set to 0 by default).
Table 14. Device address format
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
DevADDR6
DevADDR5
DevADDR4
DevADDR3
DevADDR2
DevADDR1
DevADDR0
R/W
0
1
0
1
ADDR2
ADDR1
ADDR0
0/1
Table 15. Register address format
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
RegADDR7
RegADDR6
RegADDR5
RegADDR4
RegADDR3
RegADDR2
RegADDR1
RegADDR0
Table 16. Register data format
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
Figure 3. Read operation
DS11977 - Rev 7
page 16/41
STUSB4700
Timing specifications
Figure 4. Write operation
5.2
Timing specifications
The device uses a standard slave I²C channel at speed up to 400 kHz.
Table 17. I2C timing parameters - VDD = 5 V
DS11977 - Rev 7
Symbol
Parameter
Min.
Typ.
Max.
Unit
Fscl
SCL clock frequency
0
-
400
kHz
thd,sta
Hold time (repeated) START condition
0.6
-
-
µs
tlow
LOW period of the SCL clock
1.3
-
-
µs
thigh
HIGH period of the SCL clock
0.6
-
-
µs
tsu,dat
Setup time for repeated START condition
0.6
-
-
µs
thd,dat
Data hold time
0.04
-
0.9
µs
tsu,dat
Data setup time
100
-
-
µs
tr
Rise time of both SDA and SCL signals
20 + 0.1 Cb
-
300
ns
tf
Fall time of both SDA and SCL signals
20 + 0.1 Cb
-
300
ns
tsu,sto
Setup time for STOP condition
0.6
-
-
µs
tbuf
Bus free time between a STOP and START condition
1.3
-
-
µs
Cb
Capacitive load for each bus line
-
-
400
pF
page 17/41
STUSB4700
Timing specifications
Figure 5. I²C timing diagram
DS11977 - Rev 7
page 18/41
STUSB4700
I²C register map
6
I²C register map
Table 18. Register access legend
Access code
Expanded name
Description
RO
Read only
Register can be read only
R/W
Read/write
Register can be read or written
RC
Read and clear
Register can be read and is cleared after it is read
Table 19. STUSB4700 register map overview
Address
Register name
Access
00h to 0Ah
Reserved
RO
Do not use
0Bh
ALERT_STATUS
RC
Alert register linked to transition registers
0Ch
ALERT_STATUS_MASK_CTRL
R/W
Allows the interrupt mask on the ALERT_STATUS register to be changed
0Dh
CC_CONNECTION_STATUS_TRANS
RC
Alerts about transition in CC_CONNECTION_STATUS register
0Eh
CC_CONNECTION_STATUS
RO
Gives status on CC connection
0Fh
MONITORING_STATUS_TRANS
RC
Alerts about transition in MONITORING_STATUS register
10h
MONITORING_STATUS
RO
Gives status on VBUS voltage monitoring
11h
CC_CONNECTION_STATUS
RO
Gives status on CC connection
12h
HW_FAULT_STATUS_TRANS
RC
Alerts about transition in HW_FAULT_STATUS register
13h
HW_FAULT_STATUS
RO
Gives status on hardware faults
14h to 17h
Reserved
RO
Do not use
18h
CC_CAPABILITY_CTRL
R/W
Allows CC capabilities to be changed
19h to 22h
Reserved
RO
Do not use
23h
RESET_CTRL
R/W
Controls the device reset by software
24h
Reserved
RO
Do not use
25h
VBUS_DISCHARGE_TIME_CTRL
R/W
Allows the VBUS discharge time parameters to be changed
26h
VBUS_DISCHARGE_STATUS
RO
Gives status on VBUS discharge path activation
27h
VBUS_ENABLE_STATUS
RO
Gives status on VBUS power path activation
28h to 2Dh
Reserved
RO
Do not use
2Eh
VBUS_MONITORING_CTRL
R/W
Allows the monitoring conditions of VBUS voltage to be changed
2Fh to 70h
Reserved
RO
Do not use
71h to 74h
SRC_PDO1
R/W
PDO1 capabilities configuration
75h to 78h
SRC_PDO2
R/W
PDO2 capabilities configuration
79h to 7Ch
SRC_PDO3
R/W
PDO3 capabilities configuration
7Dh to 80h
SRC_PDO4
R/W
PDO4 capabilities configuration
81h to 84h
SRC_PDO5
R/W
PDO5 capabilities configuration
85h to 90h
Reserved
RO
Do not use
91h to 94h
SRC_RDO
RO
PDO request status
DS11977 - Rev 7
Description
page 19/41
STUSB4700
I²C register map
Table 20. Register access legend
Access code
Expanded name
RO
Read only
R/W
Read / Write
RC
Read and clear
DS11977 - Rev 7
Description
Register can be read only
Register can be read or written
Register can be read and is cleared after read
page 20/41
STUSB4700
Typical use cases
7
Typical use cases
7.1
Power supply – buck topology
Figure 6. Power supply - buck topology
Power Control
C21
100nF
T2
STL6P3LLH6
HC
C24
100pF
+
R9
10k
R8
820
T3
STL6P3LLH6
Vbus
1µF
A1
A2
A3
A4
A5
TC-DP A6
TC-DM A7
A8
A9
A10
A11
A12
R11
2k2
C2
1µF
GND
16
GPIO4
15
GPIO3
R3
4k7
14
GPIO2
11
GPIO1
12
GPIO0
R4
4k87
R5
8k66
R6
33k
9
ALERT#
SCL
7
SCL
SDA
8
SDA
6
Reset
13
Addr0
R7
100k
GND
23
21
22
24
VDD
R2
13k
GND
VSYS
Vsrc
1µF
C1
GND
R1
200k
FB
C3
VCONN 3
GND
VReg_2V7
Power plane
GND
J1
C4
10µF
R10
10k
Small signal
VReg_1V2
FB
220 µF
2
4
T1
STR2P3LLH6
Vsrc
68µH
10 µF
FB
L21
C35
PG
SW
8
C25
220nF
EN2
/EN1
SW
D21
STPS5L25B
C23
5
3
Vin
GND
C22 10 µF
C32 10µF
7
6
Vin
Boot
1
U2
ST1S14PHR
U1
STUSB4700
B12
B11
B10
B9
Vbus
Vbus
B8
CC1
Sbu2
B7 TC-DM
D+1
D-2
B6 TC-DP
D-1
D+2
B5
Sbu1
CC2
B4
Vbus USB 3.1 Vbus
TYPE C Tx-2 B3
Rx-2
B2
Tx+2
Rx+2
B1
GND
GND
GND
GND
Tx+1
Rx+1
Tx-1
Rx-1
VBus_DISCH 19
VBus_EN_SRC 20
VBus_Sense 18
GND
A_B_Side 17
Autonomous USB
PD controller
with integrated
discharge path
TC-DM
CC1GND 1
R12
TC-DP
100
CC1 2
CC1
CC2 4
CC2
CC2GND 5
GND
GND
ExpPAD
10
0
GND
GND
GND
The STUSB4700 offers the possibility to have up to 5 PDOs.
Vsrc
Figure 7. Power supply - buck topology extract
FB
R1
200k
16
R2
13k
15
14
R3
4k7
11
12
R4
4k87
9
SCL
R5
8k66
R6
33k
GND
SDA
7
8
6
R7
100k
13
GPIO4
GPIO3
GPIO2
GPIO1
GPIO0
ALERT#
SCL
SDA
Reset
Addr0
GND
In the above example, the Vsafe5V is generated by R1 and the full ladder R2+R3+R4+R5+R6. When a power
delivery negotiation results in a PD contract that is not 5 V (PDO2, PDO3, PDO4 and PDO5), GPIO0, GPIO1,
GPIO2 and GPIO3 are asserted (active low), respectively. This shorts R6, R5, R4 and R3 according to the
following table.
DS11977 - Rev 7
page 21/41
STUSB4700
Power supply – flyback topology
Table 21. Resistor value
VOUT
PDO
5
20
4
15
3
12
2
9
1
5
Calculation
Resistor value (ohm)
R1
200 k
R2 = R1 ∙ V 1.22
OUT − 1.22
13 k
R3 = R1 ∙ V 1.22
− R2
OUT − 1.22
4.7 k
R4 = R1 ∙ V 1.22
− R2 − R3
OUT − 1.22
4.87 k
R5 = R1 ∙ V 1.22
− R2 − R3 − R4
OUT − 1.22
8.66 k
R6 = R1 ∙ V 1.22
− R2 − R3 − R4 − R5
OUT − 1.22
33 k
To implement a different VBUS output voltage for every PDO, the Resistor matrix needs to be calculated using the
following formula:
R
VBUS = 1.22 ∙ R + R + R1 + R + R
2
3
4
5
6
7.2
(1)
Power supply – flyback topology
Figure 8. Flyback topology
J1
R24
0.15
C24
1.5nF
T1
STS5P3LLH6
D21
5
Tr20
C25
1000pF
R25
R26
22k
360k
VDD
T21
BC847C
R30
+ C26
22 µF
R27
D23
D24 20k
15V
R28
4.7
BAV103
+ C27
22 µF
1k
R29
U22A
SFH617A-2 12k
R31
1k
C29
220pF
U22B
SFH617A-2
C3
µF
1
C1
µF
1
C2
µF
1
R1
100k
23 21
C28
33nF
D25
TLVH431AIL3T
R32
30k
R9
10k
16 GPIO4
15 GPIO3
R3
8k87
14 GPIO2
11 GPIO1
R4
2k49
R5
4k42
R6
16k2
6 Reset
13 Addr0
R7
100k
VBus_DISCH 19
VBus_EN_SRC 20
VBus_Sense 18
A_B_Side 17
CC1GND 1
CC1 2
CC1
4
CC2
CC2
Autonomous USB PD
CC2GND 5
controller with
Integrated discharge path
GND
10
Vbus
+ C4
10 µF
A1 GND
B12
GND
A2 Tx+1
B11
Rx+1
A3 Tx-1
Rx-1 B10
A4 Vbus
B9 Vbus
Vbus
A5 CC1
B8
Sbu2
A6 D+1
B7
D -2
A7 D-1
B6
D+2
A8 Sbu1
B5
CC2
Vbus A9 Vbus
B4 Vbus
Vbus
A10 Rx-2 USB 3.1Tx-2 B3
A11 Rx+2 TYPE CTx+2 B2
A12 GND
B1
GND
U1
STUSB4700
22 24
12 GPIO0
9 ALERT#
SCL 7 SCL
SDA 8 SDA
R10
10k
R11
2k2
Vbus_DISCH
D22
1N4148WS
R8
1k5
+ C23
680
µF
Vbus_EN_SRC
4.7
B
4
R22
33
VDD
R23 STTH1R06A
T2
STS10P3LLH6
A
1
8
sense
1
STCH02
VDD
GD 7
current
control
5
2 NC
HV
GND
ZCD
+
-
3 FB
2.5V
6
U21
2
R21
220 D20
100nF
4
C21
2.2nF
R20
100k
C22
VSYS
VDD
VCONN 3
68µF
VReg_1V2
+ C20
VReg_2V7
-
U20
STF10LN80K5
+
~
T20
~
3
ExpPAD
0
GND
DS11977 - Rev 7
page 22/41
STUSB4700
Power supply – flyback topology
In the above example, only 4 power profiles are used: 5 V, 9 V, 12 V and 15 V.
Figure 9. Flyback topology extract
R27
1k
U22A
SFH617A-2
R31
C28
1k
33nF
R29
12k
R1
100k
16
D25
TLVH431AIL3T
R3
8k87
15
R4
2k49
11
R5
4k42
9
R6
16k2
14
12
SCL 7
SDA 8
6
13
GPIO4
GPIO3
GPIO2
GPIO1
GPIO0
ALERT#
SCL
SDA
Reset
Addr0
R7
100k
The Vsafe5V is generated by R1 and the full ladder R3+R4+R5+ R6.When a power delivery negotiation results
in a PD contract that is not 5 V (PDO2, PDO3, PDO4), GPIO0, GPIO1 and GPIO2 are asserted (active low),
respectively. This shorts R6, R5, R4 according to the following table.
Table 22. Resistor value
PDO
VOUT
Calculation
R1
4
15
3
12
2
9
1
5
R3 = R1 ∙ V 1.24
OUT − 1.24
R4 = R1 ∙ V 1.24
− R3
OUT − 1.24
R5 = R1 ∙ V 1.24
− R3 − R4
OUT − 1.24
R6 = R1 ∙ V 1.24
− R3 − R4 − R5
OUT − 1.24
Resistor value
(Ω)
100 k
8.87 k
2.49 k
4.42 k
16.2 k
To implement a different VBUS output voltage for every PDO, the Resistor matrix needs to be calculated using the
following formula:
R
VBUS = 1.24 ∙ R + R +1 R + R
3
4
5
6
DS11977 - Rev 7
(2)
page 23/41
STUSB4700
Electrical characteristics
8
Electrical characteristics
8.1
Absolute maximum ratings
All voltages are referenced to GND.
Table 23. Absolute maximum ratings
Symbol
Parameter
Value
Unit
VDD
Supply voltage on VDD pin
28
V
VSYS
Supply voltage on VSYS pin
6
V
High voltage on CC pins
22
V
High voltage on VBUS pins
28
V
-0.3 to 6
V
6
V
-55 to 150
°C
145
°C
VCC1
VCC2
VVBUS_EN_SRC
VVBUS_SENSE
VSCL
VSDA
VALERT#
VRESET
Operating voltage on I/O pins
VA_B_SIDE
VGPIO[4 :0]
VCONN
TSTG
TJ
ESD
DS11977 - Rev 7
VCONN voltage
Storage temperature
Maximum junction temperature
HBM
4
CDM
1.5
kV
page 24/41
STUSB4700
Operating conditions
8.2
Operating conditions
Table 24. Operating conditions
Symbol
Parameter
Value
Unit
VDD
Supply voltage on VDD pin
4.1 to 22
V
VSYS
Supply voltage on VSYS pin
3.0 to 5.5
V
CC pins (1)
-0.3 to 5.5
V
High voltage pins
0 to 22
V
Operating voltage on I/O pins
0 to 4.5
V
VCC1, VCC2
VVBUS_EN_SRC
VVBUS_DISCH
VVBUS_SENSE
VSCL VSDA
VALERT#
VRESET
VA_B_SIDE
VGPIO[4 :4]
VCONN
VCONN voltage
2.7 to 5.5
V
ICONN
VCONN rated current (default = 0.35 A)
0.1 to 0.6
A
Operating temperature
-40 to 105
°C
TA
1. Transient voltage on CC1 and CC2 pins are allowed to go down to -0.3 during BMC communication from connected
devices.
DS11977 - Rev 7
page 25/41
STUSB4700
Electrical and timing characteristics
8.3
Electrical and timing characteristics
Unless otherwise specified: VDD = 5 V, TA = +25 °C, all voltages are referenced to GND.
Table 25. Electrical characteristics
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
Device idle as source (not connected, no communication)
IIDD(SRC)
Current consumption
VSYS @ 3.3 V
–
158
–
µA
VDD @ 5.0 V
–
188
–
µA
-20%
80
+20%
µA
-8%
180
+8%
µA
-8%
330
+8%
µA
CC1 and CC2 pins
IP-USB
IP-1.5
CC current sources
CC pin voltage VCC =
-0.3 to 2.6 V
-40° < TA < +105°
IP-3.0
VCCO
CC open pin voltage
CC unconnected,
VDD=3.0 to 5.5 V
2.75
–
–
V
RINCC
CC input impedance
Terminations off
200
–
–
kΩ
VTH0.2
Detection threshold 1
Max. Ra detection by
source at IP = IP -USB
0.15
0.2
0.25
V
VTH0.4
Detection threshold 2
Max. Ra detection by
source at IP = IP-1.5
0.35
0.4
0.45
V
VTH0.8
Detection threshold 3
Max. Ra detection by
source at IP = IP-3.0
0.75
0.8
0.85
V
VTH1.6
Detection threshold 4
Max. Rd detection by
source at IP = IP-USB and
IP = IP-1.5
1.5
1.6
1.65
V
2.45
2.6
2.75
V
0.25
0.5
0.975
Ω
85
100
125
300
350
400
550
600
650
5.9
6
6.1
Low UVLO threshold
2.6
2.65
2.7
High UVLO threshold
(default)
4.6
4.65
4.8
VTH2.6
Detection threshold 5
Max. Rd detection by
source at IP-3.0,
max. CC voltage for
connected sink
VCONN pin and power switches
RVCONN
IOCP
VCONN power path
resistance
Overcurrent protection
VOVP
Overvoltage protection
on CC output pins
VUVP
Undervoltage
protection on VCONN
input pin
IVCONN = 0.2 A
-40 °C < TA < +105 °C
Programmable current
limit threshold (from 100
mA to 600 mA by step of
50 mA)
mA
V
V
VDD pin monitoring
VDDOVLO
Overvoltage lockout
OVLO threshold
detection enabled, VDD
pin supplied
5.8
6
6.2
V
VDDUVLO
Undervoltage lockout
UVLO threshold
detection enabled, VDD
pin supplied
3.8
3.9
4.0
V
DS11977 - Rev 7
page 26/41
STUSB4700
Electrical and timing characteristics
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
VBUS_SENSE pin monitoring and driving
VTHUSB
VBUS presence
threshold (UVLO)
VSYS=3.0 to 5.5 V
3.8
3.9
4
V
VTH0V
VBUS safe 0V
threshold (vSafe0V)
VSYS=3.0 to 5.5 V
0.5
0.6
0.7
V
RDISUSB
VBUS discharge
resistor
600
700
800
Ω
TDISUSB0V
VBUS discharge time
to 0 V
Coefficient TDISPAR0V
programmable by NVM,
default TDISPAR0V = 2,
TDISUSB0V = 168 ms
70 *TDISPAR0V
84 *TDISPAR0V
100 *TDISPAR0V
ms
TDISUSBPDO
VBUS transition
discharge time to new
PDO
Coefficient TDISPARPDO
programmable by NVM,
default TDISPARPDO = 12,
TDISUSBPDO = 288 ms
20
*TDISPARPDO
24
*TDISPARPDO
28
*TDISPARPDO
ms
–
VBUS +5%
+VSHUSBH
–
V
–
VBUS -5%
-VSHUSBL
–
V
1.2
–
–
V
–
–
0.35
V
Ioh = 3 mA
–
–
0.4
V
Ioh = 3 mA
–
–
0.4
V
Coefficient VSHUSBH
programmable by NVM
from 1% to 15% of VBUS
by step of 1%, default
VMONUSBH
VBUS monitoring high
voltage limit
VMONUSBH = VBUS+12%
(PDO1)
VMONUSBH = VBUS+10%
(PDO2, PDO3, PDO4)
VMONUSBH = VBUS+8%
(PDO5)
VMONUSBL
VBUS monitoring low
voltage limit
Coefficient VSHUSBL
programmable by NVM
from 1% to 15% of VBUS
by step of 1%, default
VMONUSBL = VBUS-10%
(all PDOs)
Digital input/output (SCL, SDA, ALERT#, A_B_SIDE, RESET)
VIH
High level input
voltage
VIL
Low level input voltage
VOL
Low level output
voltage
20 V open-drain outputs (VBUS_EN_SRC)
VOL
DS11977 - Rev 7
Low level output
voltage
page 27/41
STUSB4700
Package information
9
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
DS11977 - Rev 7
page 28/41
STUSB4700
QFN24 EP 4x4 mm package information
9.1
QFN24 EP 4x4 mm package information
Figure 10. QFN24 EP 4x4 mm package outline
DS11977 - Rev 7
page 29/41
STUSB4700
QFN24 EP 4x4 mm package information
Table 26. QFN24 EP 4x4 mm package mechanical data
mm
Symbol
Min.
Typ.
Max.
A
0.80
0.90
1.00
A1
0.00
0.02
0.05
A3
0.20 Ref.
b
0.18
0.25
0.30
D
3.90
4.00
4.10
D2
2.55
2.70
2.80
E
3.90
4.00
4.10
E2
2.55
2.70
2.80
e
0.50
k
0.20
-
-
L
0.30
0.40
0.50
Table 27. Tolerance of form and position
Symbol
mm
aaa
0.05
bbb
0.10
ccc
0.10
ddd
0.05
eee
0.08
Figure 11. QFN24 EP 4x4 mm recommended footprint
DS11977 - Rev 7
page 30/41
STUSB4700
QFN24 EP 4x4 mm wettable flank package information
9.2
QFN24 EP 4x4 mm wettable flank package information
Figure 12. QFN24 EP 4x4 mm wettable flank package outline
Table 28. QFN24 EP 4x4 mm wettable flank mechanical data
Symbol
mm
Min.
Typ.
Max.
A
0.80
0.85
090
A1
0.00
0.05
A2
0.65
A3
0.203 REF
B
0.20
0.25
0.30
D
3.90
4.00
4.10
E
3.90
4.00
4.10
D2
2.40
2.50
2.60
E2
2.40
2.50
2.60
e
L
DS11977 - Rev 7
0.50 BSC
0.30
0.40
0.50
page 31/41
STUSB4700
Packing information
9.3
Packing information
Figure 13. Reel information
Table 29. Tape dimensions
DS11977 - Rev 7
Package
Pitch
Carrier width
Reel
QFN 4x4 - 24L
8 mm
12 mm
13"
page 32/41
STUSB4700
Thermal information
10
Thermal information
Table 30. Thermal information
Symbol
Parameter
Value
RθJA
Junction-to-ambient thermal resistance
37
RθJC
Junction-to-case thermal resistance
5
DS11977 - Rev 7
Unit
°C/W
page 33/41
STUSB4700
Terms and abbreviations
11
Terms and abbreviations
Table 31. List of terms and abbreviations
Term
Accessory
modes
Audio adapter accessory mode. It is defined by the presence of Ra/Ra on the CC1/CC2 pins.
Debug accessory mode. It is defined by the presence of Rd/Rd on CC1/CC2 pins in source power role or
Rp/Rp on CC1/CC2 pins in sink power role.
DFP
Downstream facing port, associated with the flow of data in a USB connection. Typically, the ports on a host
or the ports on a hub to which devices are connected. In its initial state, the DFP sources VBUS and VCONN
and supports data.
DRP
Dual-role port. A port that can operate as either a source or a sink. The port role may be changed
dynamically.
Sink
Port asserting Rd on the CC pins and consuming power from the VBUS; most commonly a device.
Source
Port asserting Rp on the CC pins and providing power over the VBUS; usually a host or hub DFP.
UFP
DS11977 - Rev 7
Description
Upstream facing port, specifically associated with the flow of data in a USB connection. The port on a device
or a hub that connects to a host or the DFP of a hub. In its initial state, the UFP sinks the VBUS and supports
data.
page 34/41
STUSB4700
Ordering information
12
Ordering information
Table 32. Ordering information
DS11977 - Rev 7
Order code
AEC-Q100
Package
Marking
STUSB4700QTR
No
QFN24 EP 4x4 mm
4700
STUSB4700YQTR
Yes
QFN24 EP 4x4 mm
Wettable flanks
4700Y
Temperature range
-40 °C to 105 °C
page 35/41
STUSB4700
Revision history
Table 33. Document revision history
Date
Version
24-Jan-2017
1
Initial release.
2
Updated comments columns in Table 7: "GPIO1 (pin #11) configuration" and Table 8: "GPIO2 (pin
#14) – GPIO3 (pin #15) – GPIO4 (pin #16) configuration", and ESD parameter description in Table
18: "Absolute maximum rating".
22-Mar-2017
Changes
In Table 19: "Operating conditions " replaced VVBUS_EN_SNK with VVBUS_DISCH. Replaced
Figure 6: "Power supply - buck topology" with a new figure. Minor changes throughout the document.
On cover page:
- updated title description
- updated feature regarding protections
- added feature regarding Automotive grade availability
06-Dec-2017
3
- updated feature regarding Certification test ID
- updated Table 1: "Device summary table"
Updated Section 7.1 Power supply – buck topology
Updated Section 7.2 Power supply – flyback topology
Added Section 9.2 QFN24 EP 4x4 mm wettable flank package information
DS11977 - Rev 7
12-Jun-2018
4
Minor text changes
16-Oct-2019
5
06-Apr-2021
6
Updated Section 9.1 QFN24 EP 4x4 mm package information.
11-Nov-2022
7
Updated Section 9.2 QFN24 EP 4x4 mm wettable flank package information
Updated Table 13. Factory NVM setting.
Updated Figure 6. Power supply - buck topology and Figure 8. Flyback topology.
page 36/41
STUSB4700
Contents
Contents
1
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2
Inputs/outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
3
2.1
Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2
Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.1
CC1 / CC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2
RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.3
I²C interface pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.4
A_B_SIDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.5
VBUS_SENSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.6
VBUS_EN_SRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.7
VSYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.8
VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.9
GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.10
VVAR_ADDR0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.11
VREG_2V7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.12
VREG_1V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.13
VBUS_DISCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.14
VCONN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.15
GPIO [4:0]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Block descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1
CC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2
BMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3
Protocol layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4
Policy engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5
Device policy manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.6
VBUS power path control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.6.1
VBUS monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.6.2
VBUS discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.6.3
VBUS power path assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.7
High voltage protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.8
Hardware fault management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.9
Accessory mode detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
DS11977 - Rev 7
3.9.1
Audio accessory mode detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.9.2
Debug accessory mode detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
page 37/41
STUSB4700
Contents
4
5
User-defined start-up configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
4.1
Parameter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2
PDO – voltage configuration in NVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3
PDO – current configuration in NVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4
Monitoring configuration in NVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5
Factory settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
I²C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
5.1
Read and write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2
Timing specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6
I²C register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
7
Typical use cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
8
9
7.1
Power supply – buck topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.2
Power supply – flyback topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
8.1
Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.2
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.3
Electrical and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
9.1
QFN24 EP 4x4 mm package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.2
QFN24 EP 4x4 mm wettable flank package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9.3
Packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
10
Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
11
Terms and abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
12
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
DS11977 - Rev 7
page 38/41
STUSB4700
List of tables
List of tables
Table 1.
Table 2.
Pin function list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Legend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
I2C interface pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
USB data mux select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GPIO0 (pin #12) configuration . . . . . . . . . . . . . . . . . . . . . . . . . .
GPIO1 (pin #11) configuration . . . . . . . . . . . . . . . . . . . . . . . . . . .
GPIO2 (pin #14) – GPIO3 (pin #15) – GPIO4 (pin #16) configuration
Conditions for VBUS power path assertion . . . . . . . . . . . . . . . . . .
The orientation detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PDO configurations in NVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PDO NVM voltage configuration . . . . . . . . . . . . . . . . . . . . . . . . .
PDO NVM current configuration . . . . . . . . . . . . . . . . . . . . . . . . . .
Factory NVM setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Device address format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Register address format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Register data format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 6
. 6
. 8
. 8
. 8
10
12
13
14
14
15
16
16
16
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
I2C timing parameters - VDD = 5 V. . . . . . . . . . . .
Register access legend . . . . . . . . . . . . . . . . . . .
STUSB4700 register map overview . . . . . . . . . . .
Register access legend . . . . . . . . . . . . . . . . . . .
Resistor value . . . . . . . . . . . . . . . . . . . . . . . . . .
Resistor value . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute maximum ratings . . . . . . . . . . . . . . .
Operating conditions . . . . . . . . . . . . . . . . . . . . .
Electrical characteristics . . . . . . . . . . . . . . . . . . .
QFN24 EP 4x4 mm package mechanical data . . . .
Tolerance of form and position . . . . . . . . . . . . . . .
QFN24 EP 4x4 mm wettable flank mechanical data
Tape dimensions . . . . . . . . . . . . . . . . . . . . . . . .
Thermal information . . . . . . . . . . . . . . . . . . . . . .
List of terms and abbreviations . . . . . . . . . . . . . .
Ordering information. . . . . . . . . . . . . . . . . . . . . .
Document revision history . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
17
19
19
20
22
23
24
25
26
30
30
31
32
33
34
35
36
DS11977 - Rev 7
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
page 39/41
STUSB4700
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
DS11977 - Rev 7
Functional block diagram . . . . . . . . . . . . . . . . . .
Pin connections (top view) . . . . . . . . . . . . . . . . .
Read operation. . . . . . . . . . . . . . . . . . . . . . . . .
Write operation . . . . . . . . . . . . . . . . . . . . . . . . .
I²C timing diagram. . . . . . . . . . . . . . . . . . . . . . .
Power supply - buck topology . . . . . . . . . . . . . . .
Power supply - buck topology extract. . . . . . . . . .
Flyback topology. . . . . . . . . . . . . . . . . . . . . . . .
Flyback topology extract . . . . . . . . . . . . . . . . . .
QFN24 EP 4x4 mm package outline . . . . . . . . . .
QFN24 EP 4x4 mm recommended footprint . . . . .
QFN24 EP 4x4 mm wettable flank package outline
Reel information . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 2
. 3
16
17
18
21
21
22
23
29
30
31
32
page 40/41
STUSB4700
IMPORTANT NOTICE – READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2022 STMicroelectronics – All rights reserved
DS11977 - Rev 7
page 41/41