0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TDA7294HS

TDA7294HS

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    Multiwatt-15

  • 描述:

    100 V、100 W DMOS音频放大器,支持静音和待机

  • 数据手册
  • 价格&库存
TDA7294HS 数据手册
TDA7294 Datasheet 100 V, 100 W DMOS audio amplifier with mute/st-by Features MULTIPOWER BCD TECHNOLOGY Multiwatt15V Multiwatt15H • • • • • • • • • • Very high operating voltage range (± 40 V) DMOS power stage High output power (up to 100 W music power) Muting/stand-by functions No switch on/off noise No boucherot cells Very low distortion Very low noise Short circuit protection Thermal shutdown Description The TDA7294 is a monolithic integrated circuit in Multiwatt15 package, intended for use as audio class AB amplifier in Hi-Fi field applications (Home Stereo, self powered loudspeakers, Topclass TV). Thanks to the wide voltage range and to the high out current capability it is able to supply the highest power into both 4 Ω and 8 Ω loads even in presence of poor supply regulation, with high supply voltage rejection. The built in muting function with turn on delay simplifies the remote operation avoiding switching on-off noises. Maturity status link TDA7294 Order code Package TDA7294V Multiwatt15V TDA7294HS Multiwatt15H DS0013 - Rev 8 - July 2020 For further information contact your local STMicroelectronics sales office. www.st.com TDA7294 Typical application 1 Typical application Figure 1. Typical application and test circuit C7 100nF +Vs C6 1000µF R3 22K C2 22µF R2 680Ω IN- 2 IN+ 3 IN+MUTE 4 C1 470nF +Vs +PWVs 7 13 - 14 + C5 22µF R1 22K VM R5 10K VSTBY MUTE 10 STBY 9 R4 22K C3 10µF C4 10µF OUT 6 MUTE THERMAL SHUTDOWN STBY S/C PROTECTION 1 8 15 STBY-GND -Vs -PWVs C9 100nF BOOTSTRAP R6 2.7Ω C10 100nF C8 1000µF -Vs Note: DS0013 - Rev 8 The Boucherot cell R6, C10, normally not necessary for a stable operation it could be needed in presence of particular load impedances at VS < ± 25 V. page 2/31 TDA7294 Pin connection 2 Pin connection Figure 2. Pin connection (top view) TAB connected to -VS DS0013 - Rev 8 page 3/31 TDA7294 Block diagram 3 Block diagram Figure 3. Block diagram DS0013 - Rev 8 page 4/31 TDA7294 Maximum ratings 4 Maximum ratings Table 1. Absolute maximum ratings Symbol Parameter Value Unit ± 50 V VS Supply voltage (no signal) IO Output peak current 10 A Ptot Total power dissipation (Tcase= 70 °C) 50 W Top Operating ambient temperature range 0 to 70 °C Tstg Storage temperature Tj Junction temperature 150 °C Table 2. Thermal data Symbol Rth-jcase DS0013 - Rev 8 Parameter Thermal resistance junction-case Value Unit 1.5 °C/W page 5/31 TDA7294 Electrical characteristics 5 Electrical characteristics Refer to the test circuit VS = ± 35 V, RL = 8 Ω, GV = 30 dB; Rg = 50 Ω; Tamb = 25 °C, f = 1 kHz; unless otherwise specified. Table 3. Electrical characteristics Symbol Parameter Test condition Min. Typ. Max. Unit 40 V 65 mA VS Supply range 10 Iq Quiescent current 20 Ib Input bias current 500 nA VOS Input offset voltage ±10 mV IOS Input offset current ±100 nA 30 d = 0.5%: RMS continuous output power VS = ± 35 V, RL = 8 Ω VS= ± 31 V, RL = 6 Ω VS = ± 27 V, RL = 4 Ω PO 60 70 W 60 70 W 60 70 W d = 10% Music Power (RMS) RL = 8 Ω; VS = ± 38 V 100 W IEC268.3 RULES - ∆t = 1 s (1) RL = 6 ; VS = ± 33 V 100 W 100 W 0.005 % RL = 4 Ω; VS = ± 29 V (2) PO = 5 W; f = 1 kHz PO = 0.1 to 50 W; f = 20 Hz to 20 kHz d Total harmonic distortion (3) 0.1 VS = ± 27 V, RL = 4 Ω PO = 5 W; f = 1 kHz GV eN fL, fH Ri SVR TS Slew rate 0.1 7 Open loop voltage gain Closed loop voltage gain Total input noise Frequency response (-3 dB) 24 Supply voltage rejection V/μs 80 dB 30 1 f = 20 Hz to 20 kHz 2 PO = 1 W 40 5 dB μV 20 Hz to 20 kHz 100 f = 100 Hz; Vripple = 0.5 Vrms % 10 A = curve Input resistance % 0.01 PO = 0.1 to 50 W; f = 20 Hz to 20 kHz SR % 60 Thermal shutdown kΩ 75 dB 145 °C Stand-by function (Ref: -VS or GND) VST on Stand-by on threshold VST off Stand-by off threshold 3.5 ATTst-by Stand-by attenuation 70 Iq st-by Quiescent current @ Stand-by 1.5 V V 90 1 dB 3 mA Mute function (Ref: -VS or GND) DS0013 - Rev 8 page 6/31 TDA7294 Electrical characteristics Symbol Parameter Test condition Min. VMon Mute on threshold VMoff Mute off threshold 3.5 ATTmute Mute attenuation 60 Typ. Max. Unit 1.5 V V 80 dB 1. MUSIC POWER CONCEPT - MUSIC POWER is the maximal power which the amplifier is capable of producing across the rated load resistance (regardless of non linearity) 1 sec after the application of a sinusoidal input signal of frequency 1 kHz. 2. Limited by the max. allowable current. 3. Tested with optimized application board (see Figure 4). DS0013 - Rev 8 page 7/31 TDA7294 PCB and components 6 PCB and components Figure 4. PCB.and components layout of the circuit of figure below. (1:1 scale) Note: DS0013 - Rev 8 The Stand-by and Mute functions can be referred either to GND or -VS. On the PCB is possible to set both the configuration through the jumper J1. page 8/31 TDA7294 Application suggestion 7 Application suggestion The recommended values of the external components are those shown on the application circuit of Figure 1. Different values can be used; the following table can help the designer. COMPONENTS SUGGESTED VALUE PURPOSE LARGER THAN SUGGESTED SMALLER THAN SUGGESTED R1 (1) 22 kΩ INPUT RESISTANCE INCREASE INPUT IMPEDANCE DECREASE INPUT IMPEDANCE R2 680 Ω DECREASE OF GAIN INCREASE OF GAIN 22 kΩ CLOSED LOOP GAIN SET TO 30 dB (2) INCREASE OF GAIN DECREASE OF GAIN R4 22 kΩ ST-BYTIME CONSTANT LARGERST-BY ON/OFF TIME SMALLER ST-BY ON/OFF TIME; POP NOISE R5 10 kΩ MUTE TIME CONSTANT LARGER MUTE ON/OFF TIME SMALLER MUTE ON/OFF TIME C1 0.47 μF INPUT DC DECOUPLING HIGHER LOW FREQUENCY CUTOFF C2 22 μF FEEDBACK DC DECOUPLING HIGHER LOW FREQUENCY CUTOFF C3 10 μF MUTETIME CONSTANT LARGER MUTE ON/OFF TIME SMALLER MUTE ON/OFF TIME C4 10 μF ST-BYTIME CONSTANT LARGERST-BY ON/OFF TIME SMALLERST-BY ON/OFF TIME; POP NOISE C5 22 μF BOOT STRAPPING SIGNAL DEGRADATION AT LOW FREQUENCY C6, C8 1000 μF SUPPLY VOLTAGE BYPASS DANGER OF OSCILLATION C7, C9 0.1 μF SUPPLY VOLTAGE BYPASS DANGER OF OSCILLATION R3 (1) 1. R1= R3 for pop optimization. 2. Closed loop gain has to be 24 dB. DS0013 - Rev 8 page 9/31 TDA7294 Typical characteristics 8 Typical characteristics Application circuit of fig 1 unless otherwise specified. Figure 5. Output power vs. supply voltage (RI = 8 Ω) Figure 6. Distortion vs. output power (RI = 8 Ω) Figure 7. Output power vs. supply voltage (RI = 4 Ω) Figure 8. Distortion vs. output power (RI = 4 Ω) DS0013 - Rev 8 page 10/31 TDA7294 Typical characteristics Figure 9. Distortion vs. frequency (RI = 8 Ω) Figure 10. Distortion vs. frequency (RI = 4 Ω) Figure 11. Quiescent current vs. supply voltage Figure 12. Supply voltage rejection vs. frequency DS0013 - Rev 8 page 11/31 TDA7294 Typical characteristics Figure 13. Mute attenuation vs. Vpin10 Figure 14. St-by attenuation vs. Vpin9 Figure 15. Power dissipation vs. output power (RI = 4 Ω) Figure 16. Power dissipation vs. output power (RI = 8 Ω) DS0013 - Rev 8 page 12/31 TDA7294 Introduction 9 Introduction In consumer electronics, an increasing demand has arisen for very high power monolithic audio amplifiers able to match, with a low cost the performance obtained from the best discrete designs. The task of realizing this linear integrated circuit in conventional bipolar technology is made extremely difficult by the occurence of 2nd breakdown phenomenon. It limits the safe operating area (SOA) of the power devices, and as a consequence, the maximum attainable output power, especially in presence of highly reactive loads. Moreover, full exploitation of the SOA translates into a substantial increase in circuit and layout complexity due to the need for sophisticated protection circuits. To overcome these substantial drawbacks, the use of power MOS devices, which are immune from secondary breakdown is highly desirable. The device described has therefore been developed in a mixed bipolar-MOS high voltage technology called BCD 100. 9.1 Output stage The main design task one is confronted with while developing an integrated circuit as a power operational amplifier, independently of the technology used, is that of realizing the output stage. The solution shown as a principle shematic by Figure 17 represents the DMOS unity-gain output buffer of the TDA7294. This large-signal, high-power buffer must be capable of handling extremely high current and voltage levels while maintaining acceptably low harmonic distortion and good behaviour over frequency response; moreover, an accurate control of quiescent current is required. A local linearizing feedback, provided by differential amplifier A, is used to fullfil the above requirements, allowing a simple and effective quiescent current setting. Proper biasing of the power output transistors alone is however not enough to guarantee the absence of crossover distortion. While a linearization of the DC transfer characteristic of the stage is obtained, the dynamic behaviour of the system must be taken into account. A significant aid in keeping the distortion contributed by the final stage as low as possible is provided by the compensation scheme, which exploits the direct connection of the Miller capacitor at the amplifier’s output to introduce a local AC feedback path enclosing the output stage itself. 9.2 Protections In designing a power IC, particular attention must be reserved to the circuits devoted to protection of the device from short circuit or overload conditions. Due to the absence of the 2nd breakdown phenomenon, the SOA of the power DMOS transistors is delimited only by a maximum dissipation curve dependent on the duration of the applied stimulus. In order to fully exploit the capabilities of the power transistors, the protection scheme implemented in this device combines a conventional SOA protection circuit with a novel local temperature sensing technique which " dynamically" controls the maximum dissipation. DS0013 - Rev 8 page 13/31 TDA7294 Protections Figure 17. Principle schematic of a DMOS unity-gain buffer DS0013 - Rev 8 page 14/31 TDA7294 Protections Figure 18. Turn ON/OFF suggested sequence +Vs (V) +35 -35 -Vs VIN (mV) VST-BY PIN #9 (V) VMUTE PIN #10 (V) 5V 5V IP (mA) VOUT (V) OFF ST-BY PLAY MUTE ST-BY OFF MUTE In addition to the overload protection described above, the device features a thermal shutdown circuit which initially puts the device into a muting state (@ Tj = 145 °C) and then into stand-by (@ Tj = 150 °C). Full protection against electrostatic discharges on every pin is included. Figure 19. Single signal ST-BY/MUTE control circuit MUTE MUTE/ ST-BY 10K 30K 1N4148 DS0013 - Rev 8 STBY 20K 10µF 10µF page 15/31 TDA7294 Other features 9.3 Other features The device is provided with both stand-by and mute functions, independently driven by two CMOS logic compatible input pins. The circuits dedicated to the switching on and off of the amplifier have been carefully optimized to avoid any kind of uncontrolled audible transient at the output. The sequence that we recommend during the ON/OFF transients is shown by Figure 18. The application of Figure 19 shows the possibility of using only one command for both st-by and mute functions. On both the pins, the maximum applicable range corresponds to the operating supply voltage. DS0013 - Rev 8 page 16/31 TDA7294 Application information 10 Application information High-efficiency Constraints of implementing high power solutions are the power dissipation and the size of the power supply. These are both due to the low efficiency of conventional AB class amplifier approaches. Here below (Figure 18) is described a circuit proposal for a high efficiency amplifier which can be adopted for both HI-FI and CAR-RADIO applications. The TDA7294 is a monolithic MOS power amplifier which can be operated at 80 V supply voltage (100 V with no signal applied) while delivering output currents up to ± 10 A. This allows the use of this device as a very high power amplifier (up to 180 W as peak power with T.H.D. = 10 % and Rl = 4 Ohm); the only drawback is the power dissipation, hardly manageable in the above power range. Figure 22 shows the power dissipation versus output power curve for a class AB amplifier, compared with a high efficiency one. In order to dimension the heatsink (and the power supply), a generally used average output power value is one tenth of the maximum output power at T.H.D. = 10 %. From Figure 22, where the maximum power is around 200 W, we get an average of 20 W, in this condition, for a class AB amplifier the average power dissipation is equal to 65 W. The typical junction-to-case thermal resistance of the TDA7294 is 1 °C/W (max= 1.5 °C/W). To avoid that, in worst case conditions, the chip temperature exceedes 150 °C, the thermal resistance of the heatsink must be 0.038 °C/W (@ max ambient temperature of 50 °C). As the above value is pratically unreachable; a high efficiency system is needed in those cases where the continuous RMS output power is higher than 50-60 W. The TDA7294 was designed to work also in higher efficiency way. For this reason there are four power supply pins: intended for the signal part and two for the power part. T1 and T2 are two power transistors that only operate when the output power reaches a certain threshold (e.g. 20 W). If the output power increases, these transistors are switched on during the portion of the signal where more output voltage swing is needed, thus "bootstrapping" the power supply pins (#13 and #15). The current generators formed by T4, T7, zener diodes Z1,Z2 and resistors R7, R8 define the minimum drop across the power MOS transistors of the TDA7294. L1, L2, L3 and the snubbers C9, R1 and C10, R2 stabilize the loops formed by the "bootstrap" circuits and the output stage of the TDA7294. DS0013 - Rev 8 page 17/31 TDA7294 Application information Figure 20. High efficiency application circuit +40V T1 BDX53A T3 BC394 R4 270 D1 BYW98100 +20V T4 BC393 270 L1 1µH C3 100nF C5 1000µF C7 100nF C9 330nF IN ST-BY C2 1000µF -20V C4 100nF C6 1000µF C8 100nF R2 2 C10 330nF 3 7 13 2 4 PLAY GND D5 1N4148 C13 10µF R13 20K TDA7294 C14 10µF D2 BYW98100 8 15 R7 3.3K L3 5µH C16 1.8nF OUT C15 22µF 270 R8 3.3K C17 1.8nF 1 Z2 3.9V L2 1µH D4 1N4148 T7 BC394 270 T2 BDX54A -40V C11 22µF 14 6 10 R3 680 R16 13K 9 R14 30K R15 10K R6 20K Z1 3.9V R16 13K R1 2 T5 BC393 D3 1N4148 C11 330nF C1 1000µF R5 270 T6 BC393 R9 270 T8 BC394 R10 270 R11 29K Figure 21. P.C.B. and components layout of the circuit of figure 18 (1:1 scale) DS0013 - Rev 8 page 18/31 TDA7294 Application information In Figure 23, Figure 24 the performances of the system in terms of distortion and output power at various frequencies (measured on PCB shown in Figure 21) are displayed. The output power that the TDA7294 in highefficiency application is able to supply at Vs = + 40 V / + 20 V / - 20 V / - 40 V; f = 1 kHz is: - Pout = 150 W @ T.H.D. = 10 % with Rl = 4 Ω - Pout = 120 W @ T.H.D. = 1 % with Rl = 4 Ω - Pout = 100 W @ T.H.D. = 10 % with Rl = 8 Ω - Pout = 80 W @ T.H.D. = 10 % with Rl = 8 Ω Results from efficiency measurements (4 and 8 Ω loads, Vs = ± 40 V) are shown by figures Figure 25 and Figure 26. We have 3 curves: total power dissipation, power dissipation of the TDA7294 and power dissipation of the darlingtons. By considering again a maximum average output power (music signal) of 20 W, in case of the high efficiency application, the thermal resistance value needed from the heatsink is 2.2 °C / W (Vs = ± 40 V and Rl = 4 Ω). All components (TDA7294 and power transistors T1 and T2) can be placed on a 1.5 °C / W heatsink, with the power darlingtons electrically insulated from the heatsink. Since the total power dissipation is less than that of a usual class AB amplifier, additional cost savings can be obtained while optimizing the power supply, even with a high headroom. DS0013 - Rev 8 page 19/31 TDA7294 Application information Figure 22. Power dissipation vs. output power (RI = 4 Ω) Figure 23. Distortion vs. output power (RI = 4 Ω) HIGH-EFFICIENCY Figure 24. Distortion vs. output power (RI = 8 Ω) DS0013 - Rev 8 Figure 25. Power dissipation vs. output power (RI = 4 Ω) page 20/31 TDA7294 Application information Figure 26. Power dissipation vs. output power (RI = 8 Ω) DS0013 - Rev 8 page 21/31 TDA7294 Bridge application 11 Bridge application Another application suggestion is the BRIDGE configuration, where two TDA7294 are used, as shown by the schematic diagram of Figure 27. In this application, the value of the load must not be lower than 8 Ω for dissipation and current capability reasons. A suitable field of application includes HI-FI/TV subwoofers realizations. The main advantages offered by this solution are: - High power performances with limited supply voltage level. - Considerably high output power even with high load values (i.e. 16 Ω). The characteristics shown by Figure 29 and Figure 30, measured with loads respectively 8 Ω and 16 Ω. With Rl = 8 Ω, Vs = ± 25 V the maximum output power obtainable is 150 W, while with Rl = 16 Ω, Vs = ± 35 V the maximum Pout is 170 W. Figure 27. Bridge application circuit +Vs 0.22µF 2200µF 7 3 Vi 0.56µF 13 6 + 22K 14 22µF - 22K 2 1 4 ST-BY/MUTE 10 TDA7294 9 15 680 8 20K 22K 22µF 10K 30K 10 9 15 8 TDA7294 22µF 3 0.56µF + 22K 6 14 2 1 4 DS0013 - Rev 8 -Vs 0.22µF 2200µF 1N4148 7 13 22µF 22K 680 page 22/31 TDA7294 Bridge application Figure 28. Frequency response of the bridge application Figure 29. Distortion vs. output power (RI = 8 Ω) Figure 30. Distortion vs. output power (RI = 16 Ω) DS0013 - Rev 8 page 23/31 TDA7294 Package information 12 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. DS0013 - Rev 8 page 24/31 TDA7294 Multiwatt15 V package information 12.1 Multiwatt15 V package information Figure 31. Multiwatt15 V package outline Table 4. Multiwatt15 V mechanical data Dim. mm Min. Typ. A 5 B 2.65 C 1.6 D 1 E 0.49 0.55 F 0.66 0.75 G 1.02 1.27 1.52 G1 17.53 17.78 18.03 H1 19.6 H2 DS0013 - Rev 8 Max. 20.2 L 21.9 22.2 22.5 L1 21.7 22.1 22.5 L2 17.65 L3 17.25 17.5 17.75 L4 10.3 10.7 10.9 L7 2.65 M 4.25 4.55 4.85 M1 4.63 5.08 5.53 S 1.9 2.6 S1 1.9 2.6 Diam. 1 3.65 3.85 18.1 2.9 page 25/31 TDA7294 Multiwatt15 H package information 12.2 Multiwatt15 H package information Figure 32. Multiwatt15 H package outline Table 5. Multiwatt15 H mechanical data Dim. mm Min. Max. A 5.00 B 2.65 C 1.60 E 0.49 0.55 F 0.66 0.75 G 1.02 1.27 1.52 G1 17.53 17.78 18.03 H1 19.60 20.20 H2 19.60 20.20 L1 17.80 18.0 18.20 L2 2.30 2.50 2.80 L3 17.25 17.50 17.75 L4 10.3 10.70 10.90 L5 2.70 3.00 3.30 L7 2.65 R DS0013 - Rev 8 Typ. 2.90 1.50 S 1.90 2.60 S1 1.90 2.60 Diam. 1 3.65 3.85 page 26/31 TDA7294 Revision history Table 6. Document revision history DS0013 - Rev 8 Date Version Changes Apr-2003 7 First issue in EDOCS DMS. 31-Jul-2020 8 Updated Section 12.2 Multiwatt15 H package information. page 27/31 TDA7294 Contents Contents 1 Typical application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 4 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 5 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 PCB and components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 7 Application suggestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 8 Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 9 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 9.1 Output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 9.2 Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 9.3 Other features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 10 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 11 Bridge application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 12 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 12.1 Multiwatt15 leads package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 12.2 Multiwatt15 H package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 DS0013 - Rev 8 page 28/31 TDA7294 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Absolute maximum ratings . . . Thermal data. . . . . . . . . . . . . Electrical characteristics . . . . . Multiwatt15 V mechanical data Multiwatt15 H mechanical data Document revision history . . . . DS0013 - Rev 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 5 . 6 25 26 27 page 29/31 TDA7294 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. DS0013 - Rev 8 Typical application and test circuit . . . . . . . . . . . . . . . . . . . . . . . . . Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCB.and components layout of the circuit of figure below. (1:1 scale) Output power vs. supply voltage (RI = 8 Ω) . . . . . . . . . . . . . . . . . . Distortion vs. output power (RI = 8 Ω) . . . . . . . . . . . . . . . . . . . . . . Output power vs. supply voltage (RI = 4 Ω) . . . . . . . . . . . . . . . . . . Distortion vs. output power (RI = 4 Ω) . . . . . . . . . . . . . . . . . . . . . . Distortion vs. frequency (RI = 8 Ω) . . . . . . . . . . . . . . . . . . . . . . . . Distortion vs. frequency (RI = 4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . Supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . . Mute attenuation vs. Vpin10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . St-by attenuation vs. Vpin9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power dissipation vs. output power (RI = 4 Ω). . . . . . . . . . . . . . . . . Power dissipation vs. output power (RI = 8 Ω). . . . . . . . . . . . . . . . . Principle schematic of a DMOS unity-gain buffer . . . . . . . . . . . . . . . Turn ON/OFF suggested sequence . . . . . . . . . . . . . . . . . . . . . . . . Single signal ST-BY/MUTE control circuit . . . . . . . . . . . . . . . . . . . . High efficiency application circuit. . . . . . . . . . . . . . . . . . . . . . . . . . P.C.B. and components layout of the circuit of figure 18 (1:1 scale) . . Power dissipation vs. output power (RI = 4 Ω). . . . . . . . . . . . . . . . . Distortion vs. output power (RI = 4 Ω) . . . . . . . . . . . . . . . . . . . . . . Distortion vs. output power (RI = 8 Ω) . . . . . . . . . . . . . . . . . . . . . . Power dissipation vs. output power (RI = 4 Ω). . . . . . . . . . . . . . . . . Power dissipation vs. output power (RI = 8 Ω). . . . . . . . . . . . . . . . . Bridge application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frequency response of the bridge application . . . . . . . . . . . . . . . . . Distortion vs. output power (RI = 8 Ω) . . . . . . . . . . . . . . . . . . . . . . Distortion vs. output power (RI = 16 Ω) . . . . . . . . . . . . . . . . . . . . . Multiwatt15 V package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . Multiwatt15 H package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . 3 . 4 . 8 10 10 10 10 11 11 11 11 12 12 12 12 14 15 15 18 18 20 20 20 20 21 22 23 23 23 25 26 page 30/31 TDA7294 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2020 STMicroelectronics – All rights reserved DS0013 - Rev 8 page 31/31
TDA7294HS 价格&库存

很抱歉,暂时无法提供与“TDA7294HS”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TDA7294HS
  •  国内价格
  • 1+91.99440
  • 10+79.63920
  • 25+72.11160

库存:11

TDA7294HS
  •  国内价格 香港价格
  • 1+63.028931+7.83076
  • 10+48.8661710+6.07117
  • 25+45.3260325+5.63134
  • 100+41.42926100+5.14720
  • 250+40.08131250+4.97973

库存:2303