TDA7294
Datasheet
100 V, 100 W DMOS audio amplifier with mute/st-by
Features
MULTIPOWER BCD TECHNOLOGY
Multiwatt15V
Multiwatt15H
•
•
•
•
•
•
•
•
•
•
Very high operating voltage range (± 40 V)
DMOS power stage
High output power (up to 100 W music power)
Muting/stand-by functions
No switch on/off noise
No boucherot cells
Very low distortion
Very low noise
Short circuit protection
Thermal shutdown
Description
The TDA7294 is a monolithic integrated circuit in Multiwatt15 package, intended for
use as audio class AB amplifier in Hi-Fi field applications (Home Stereo, self powered
loudspeakers, Topclass TV). Thanks to the wide voltage range and to the high out
current capability it is able to supply the highest power into both 4 Ω and 8 Ω loads
even in presence of poor supply regulation, with high supply voltage rejection.
The built in muting function with turn on delay simplifies the remote operation
avoiding switching on-off noises.
Maturity status link
TDA7294
Order code
Package
TDA7294V
Multiwatt15V
TDA7294HS
Multiwatt15H
DS0013 - Rev 8 - July 2020
For further information contact your local STMicroelectronics sales office.
www.st.com
TDA7294
Typical application
1
Typical application
Figure 1. Typical application and test circuit
C7 100nF
+Vs
C6 1000µF
R3 22K
C2
22µF
R2
680Ω
IN-
2
IN+
3
IN+MUTE
4
C1 470nF
+Vs
+PWVs
7
13
-
14
+
C5
22µF
R1 22K
VM
R5 10K
VSTBY
MUTE
10
STBY
9
R4 22K
C3 10µF
C4 10µF
OUT
6
MUTE
THERMAL
SHUTDOWN
STBY
S/C
PROTECTION
1
8
15
STBY-GND
-Vs
-PWVs
C9 100nF
BOOTSTRAP
R6
2.7Ω
C10
100nF
C8 1000µF
-Vs
Note:
DS0013 - Rev 8
The Boucherot cell R6, C10, normally not necessary for a stable operation it could be needed in presence of
particular load impedances at VS < ± 25 V.
page 2/31
TDA7294
Pin connection
2
Pin connection
Figure 2. Pin connection (top view)
TAB connected to -VS
DS0013 - Rev 8
page 3/31
TDA7294
Block diagram
3
Block diagram
Figure 3. Block diagram
DS0013 - Rev 8
page 4/31
TDA7294
Maximum ratings
4
Maximum ratings
Table 1. Absolute maximum ratings
Symbol
Parameter
Value
Unit
± 50
V
VS
Supply voltage (no signal)
IO
Output peak current
10
A
Ptot
Total power dissipation (Tcase= 70 °C)
50
W
Top
Operating ambient temperature range
0 to 70
°C
Tstg
Storage temperature
Tj
Junction temperature
150
°C
Table 2. Thermal data
Symbol
Rth-jcase
DS0013 - Rev 8
Parameter
Thermal resistance junction-case
Value
Unit
1.5
°C/W
page 5/31
TDA7294
Electrical characteristics
5
Electrical characteristics
Refer to the test circuit VS = ± 35 V, RL = 8 Ω, GV = 30 dB; Rg = 50 Ω; Tamb = 25 °C, f = 1 kHz; unless otherwise
specified.
Table 3. Electrical characteristics
Symbol
Parameter
Test condition
Min.
Typ.
Max.
Unit
40
V
65
mA
VS
Supply range
10
Iq
Quiescent current
20
Ib
Input bias current
500
nA
VOS
Input offset voltage
±10
mV
IOS
Input offset current
±100
nA
30
d = 0.5%:
RMS continuous output power
VS = ± 35 V, RL = 8 Ω
VS= ± 31 V, RL = 6 Ω
VS = ± 27 V, RL = 4 Ω
PO
60
70
W
60
70
W
60
70
W
d = 10%
Music Power (RMS)
RL = 8 Ω; VS = ± 38 V
100
W
IEC268.3 RULES - ∆t = 1 s (1)
RL = 6 ; VS = ± 33 V
100
W
100
W
0.005
%
RL = 4 Ω; VS = ± 29 V (2)
PO = 5 W; f = 1 kHz
PO = 0.1 to 50 W; f = 20 Hz to 20 kHz
d
Total harmonic distortion (3)
0.1
VS = ± 27 V, RL = 4 Ω
PO = 5 W; f = 1 kHz
GV
eN
fL, fH
Ri
SVR
TS
Slew rate
0.1
7
Open loop voltage gain
Closed loop voltage gain
Total input noise
Frequency response (-3 dB)
24
Supply voltage rejection
V/μs
80
dB
30
1
f = 20 Hz to 20 kHz
2
PO = 1 W
40
5
dB
μV
20 Hz to 20 kHz
100
f = 100 Hz; Vripple = 0.5 Vrms
%
10
A = curve
Input resistance
%
0.01
PO = 0.1 to 50 W; f = 20 Hz to 20 kHz
SR
%
60
Thermal shutdown
kΩ
75
dB
145
°C
Stand-by function (Ref: -VS or GND)
VST on
Stand-by on threshold
VST off
Stand-by off threshold
3.5
ATTst-by
Stand-by attenuation
70
Iq st-by
Quiescent current @ Stand-by
1.5
V
V
90
1
dB
3
mA
Mute function (Ref: -VS or GND)
DS0013 - Rev 8
page 6/31
TDA7294
Electrical characteristics
Symbol
Parameter
Test condition
Min.
VMon
Mute on threshold
VMoff
Mute off threshold
3.5
ATTmute
Mute attenuation
60
Typ.
Max.
Unit
1.5
V
V
80
dB
1. MUSIC POWER CONCEPT - MUSIC POWER is the maximal power which the amplifier is capable of
producing across the rated load resistance (regardless of non linearity) 1 sec after the application of a
sinusoidal input signal of frequency 1 kHz.
2. Limited by the max. allowable current.
3. Tested with optimized application board (see Figure 4).
DS0013 - Rev 8
page 7/31
TDA7294
PCB and components
6
PCB and components
Figure 4. PCB.and components layout of the circuit of figure below. (1:1 scale)
Note:
DS0013 - Rev 8
The Stand-by and Mute functions can be referred either to GND or -VS.
On the PCB is possible to set both the configuration through the jumper J1.
page 8/31
TDA7294
Application suggestion
7
Application suggestion
The recommended values of the external components are those shown on the application circuit of Figure 1.
Different values can be used; the following table can help the designer.
COMPONENTS
SUGGESTED
VALUE
PURPOSE
LARGER THAN
SUGGESTED
SMALLER THAN
SUGGESTED
R1 (1)
22 kΩ
INPUT RESISTANCE
INCREASE INPUT
IMPEDANCE
DECREASE INPUT
IMPEDANCE
R2
680 Ω
DECREASE OF GAIN
INCREASE OF GAIN
22 kΩ
CLOSED LOOP GAIN SET
TO 30 dB (2)
INCREASE OF GAIN
DECREASE OF GAIN
R4
22 kΩ
ST-BYTIME CONSTANT
LARGERST-BY ON/OFF
TIME
SMALLER ST-BY ON/OFF
TIME; POP NOISE
R5
10 kΩ
MUTE TIME CONSTANT
LARGER MUTE ON/OFF
TIME
SMALLER MUTE ON/OFF
TIME
C1
0.47 μF
INPUT DC DECOUPLING
HIGHER LOW
FREQUENCY CUTOFF
C2
22 μF
FEEDBACK DC
DECOUPLING
HIGHER LOW
FREQUENCY CUTOFF
C3
10 μF
MUTETIME CONSTANT
LARGER MUTE ON/OFF
TIME
SMALLER MUTE ON/OFF
TIME
C4
10 μF
ST-BYTIME CONSTANT
LARGERST-BY ON/OFF
TIME
SMALLERST-BY ON/OFF
TIME; POP NOISE
C5
22 μF
BOOT STRAPPING
SIGNAL DEGRADATION AT
LOW FREQUENCY
C6, C8
1000 μF
SUPPLY VOLTAGE
BYPASS
DANGER OF
OSCILLATION
C7, C9
0.1 μF
SUPPLY VOLTAGE
BYPASS
DANGER OF
OSCILLATION
R3
(1)
1. R1= R3 for pop optimization.
2. Closed loop gain has to be 24 dB.
DS0013 - Rev 8
page 9/31
TDA7294
Typical characteristics
8
Typical characteristics
Application circuit of fig 1 unless otherwise specified.
Figure 5. Output power vs. supply voltage (RI = 8 Ω)
Figure 6. Distortion vs. output power (RI = 8 Ω)
Figure 7. Output power vs. supply voltage (RI = 4 Ω)
Figure 8. Distortion vs. output power (RI = 4 Ω)
DS0013 - Rev 8
page 10/31
TDA7294
Typical characteristics
Figure 9. Distortion vs. frequency (RI = 8 Ω)
Figure 10. Distortion vs. frequency (RI = 4 Ω)
Figure 11. Quiescent current vs. supply voltage
Figure 12. Supply voltage rejection vs. frequency
DS0013 - Rev 8
page 11/31
TDA7294
Typical characteristics
Figure 13. Mute attenuation vs. Vpin10
Figure 14. St-by attenuation vs. Vpin9
Figure 15. Power dissipation vs. output power (RI = 4 Ω)
Figure 16. Power dissipation vs. output power (RI = 8 Ω)
DS0013 - Rev 8
page 12/31
TDA7294
Introduction
9
Introduction
In consumer electronics, an increasing demand has arisen for very high power monolithic audio amplifiers able to
match, with a low cost the performance obtained from the best discrete designs.
The task of realizing this linear integrated circuit in conventional bipolar technology is made extremely difficult by
the occurence of 2nd breakdown phenomenon. It limits the safe operating area (SOA) of the power devices, and
as a consequence, the maximum attainable output power, especially in presence of highly reactive loads.
Moreover, full exploitation of the SOA translates into a substantial increase in circuit and layout complexity due to
the need for sophisticated protection circuits.
To overcome these substantial drawbacks, the use of power MOS devices, which are immune from secondary
breakdown is highly desirable.
The device described has therefore been developed in a mixed bipolar-MOS high voltage technology called BCD
100.
9.1
Output stage
The main design task one is confronted with while developing an integrated circuit as a power operational
amplifier, independently of the technology used, is that of realizing the output stage.
The solution shown as a principle shematic by Figure 17 represents the DMOS unity-gain output buffer of the
TDA7294.
This large-signal, high-power buffer must be capable of handling extremely high current and voltage levels while
maintaining acceptably low harmonic distortion and good behaviour over frequency response; moreover, an
accurate control of quiescent current is required.
A local linearizing feedback, provided by differential amplifier A, is used to fullfil the above requirements, allowing
a simple and effective quiescent current setting.
Proper biasing of the power output transistors alone is however not enough to guarantee the absence of
crossover distortion.
While a linearization of the DC transfer characteristic of the stage is obtained, the dynamic behaviour of the
system must be taken into account.
A significant aid in keeping the distortion contributed by the final stage as low as possible is provided by the
compensation scheme, which exploits the direct connection of the Miller capacitor at the amplifier’s output to
introduce a local AC feedback path enclosing the output stage itself.
9.2
Protections
In designing a power IC, particular attention must be reserved to the circuits devoted to protection of the device
from short circuit or overload conditions.
Due to the absence of the 2nd breakdown phenomenon, the SOA of the power DMOS transistors is delimited only
by a maximum dissipation curve dependent on the duration of the applied stimulus.
In order to fully exploit the capabilities of the power transistors, the protection scheme implemented in this device
combines a conventional SOA protection circuit with a novel local temperature sensing technique which "
dynamically" controls the maximum dissipation.
DS0013 - Rev 8
page 13/31
TDA7294
Protections
Figure 17. Principle schematic of a DMOS unity-gain buffer
DS0013 - Rev 8
page 14/31
TDA7294
Protections
Figure 18. Turn ON/OFF suggested sequence
+Vs
(V)
+35
-35
-Vs
VIN
(mV)
VST-BY
PIN #9
(V)
VMUTE
PIN #10
(V)
5V
5V
IP
(mA)
VOUT
(V)
OFF
ST-BY
PLAY
MUTE
ST-BY
OFF
MUTE
In addition to the overload protection described above, the device features a thermal shutdown circuit which
initially puts the device into a muting state (@ Tj = 145 °C) and then into stand-by (@ Tj = 150 °C).
Full protection against electrostatic discharges on every pin is included.
Figure 19. Single signal ST-BY/MUTE control circuit
MUTE
MUTE/
ST-BY
10K
30K
1N4148
DS0013 - Rev 8
STBY
20K
10µF
10µF
page 15/31
TDA7294
Other features
9.3
Other features
The device is provided with both stand-by and mute functions, independently driven by two CMOS logic
compatible input pins.
The circuits dedicated to the switching on and off of the amplifier have been carefully optimized to avoid any kind
of uncontrolled audible transient at the output.
The sequence that we recommend during the ON/OFF transients is shown by Figure 18.
The application of Figure 19 shows the possibility of using only one command for both st-by and mute functions.
On both the pins, the maximum applicable range corresponds to the operating supply voltage.
DS0013 - Rev 8
page 16/31
TDA7294
Application information
10
Application information
High-efficiency
Constraints of implementing high power solutions are the power dissipation and the size of the power supply.
These are both due to the low efficiency of conventional AB class amplifier approaches.
Here below (Figure 18) is described a circuit proposal for a high efficiency amplifier which can be adopted for both
HI-FI and CAR-RADIO applications.
The TDA7294 is a monolithic MOS power amplifier which can be operated at 80 V supply voltage (100 V with no
signal applied) while delivering output currents up to ± 10 A.
This allows the use of this device as a very high power amplifier (up to 180 W as peak power with
T.H.D. = 10 % and Rl = 4 Ohm); the only drawback is the power dissipation, hardly manageable in the above
power range.
Figure 22 shows the power dissipation versus output power curve for a class AB amplifier, compared with a high
efficiency one.
In order to dimension the heatsink (and the power supply), a generally used average output power value is one
tenth of the maximum output power at T.H.D. = 10 %.
From Figure 22, where the maximum power is around 200 W, we get an average of 20 W, in this condition, for a
class AB amplifier the average power dissipation is equal to 65 W.
The typical junction-to-case thermal resistance of the TDA7294 is 1 °C/W (max= 1.5 °C/W). To avoid that, in worst
case conditions, the chip temperature exceedes 150 °C, the thermal resistance of the heatsink must be 0.038
°C/W (@ max ambient temperature of 50 °C).
As the above value is pratically unreachable; a high efficiency system is needed in those cases where the
continuous RMS output power is higher than 50-60 W.
The TDA7294 was designed to work also in higher efficiency way.
For this reason there are four power supply pins: intended for the signal part and two for the power part.
T1 and T2 are two power transistors that only operate when the output power reaches a certain threshold (e.g. 20
W). If the output power increases, these transistors are switched on during the portion of the signal where more
output voltage swing is needed, thus "bootstrapping" the power supply pins (#13 and #15).
The current generators formed by T4, T7, zener diodes Z1,Z2 and resistors R7, R8 define the minimum drop
across the power MOS transistors of the TDA7294. L1, L2, L3 and the snubbers C9, R1 and C10, R2 stabilize the
loops formed by the "bootstrap" circuits and the output stage of the TDA7294.
DS0013 - Rev 8
page 17/31
TDA7294
Application information
Figure 20. High efficiency application circuit
+40V
T1
BDX53A
T3
BC394
R4
270
D1 BYW98100
+20V
T4
BC393
270
L1 1µH
C3
100nF
C5
1000µF
C7
100nF
C9
330nF
IN
ST-BY
C2
1000µF
-20V
C4
100nF
C6
1000µF
C8
100nF
R2
2
C10
330nF
3
7
13
2
4
PLAY
GND
D5
1N4148
C13 10µF
R13 20K
TDA7294
C14
10µF
D2 BYW98100
8
15
R7
3.3K
L3 5µH
C16
1.8nF
OUT
C15
22µF
270
R8
3.3K
C17
1.8nF
1
Z2 3.9V
L2 1µH
D4 1N4148
T7
BC394
270
T2
BDX54A
-40V
C11 22µF
14
6
10
R3 680
R16
13K
9
R14 30K
R15 10K
R6
20K
Z1 3.9V
R16
13K
R1
2
T5
BC393
D3 1N4148
C11 330nF
C1
1000µF
R5
270
T6
BC393
R9
270
T8
BC394
R10
270
R11
29K
Figure 21. P.C.B. and components layout of the circuit of figure 18 (1:1 scale)
DS0013 - Rev 8
page 18/31
TDA7294
Application information
In Figure 23, Figure 24 the performances of the system in terms of distortion and output power at various
frequencies (measured on PCB shown in Figure 21) are displayed.
The output power that the TDA7294 in highefficiency application is able to supply at Vs = + 40 V / + 20 V / - 20 V /
- 40 V; f = 1 kHz is:
- Pout = 150 W @ T.H.D. = 10 % with Rl = 4 Ω
- Pout = 120 W @ T.H.D. = 1 % with Rl = 4 Ω
- Pout = 100 W @ T.H.D. = 10 % with Rl = 8 Ω
- Pout = 80 W @ T.H.D. = 10 % with Rl = 8 Ω
Results from efficiency measurements (4 and 8 Ω loads, Vs = ± 40 V) are shown by figures Figure 25 and
Figure 26. We have 3 curves: total power dissipation, power dissipation of the TDA7294 and power dissipation of
the darlingtons.
By considering again a maximum average output power (music signal) of 20 W, in case of the high efficiency
application, the thermal resistance value needed from the heatsink is 2.2 °C / W (Vs = ± 40 V and Rl = 4 Ω).
All components (TDA7294 and power transistors T1 and T2) can be placed on a 1.5 °C / W heatsink, with the
power darlingtons electrically insulated from the heatsink.
Since the total power dissipation is less than that of a usual class AB amplifier, additional cost savings can be
obtained while optimizing the power supply, even with a high headroom.
DS0013 - Rev 8
page 19/31
TDA7294
Application information
Figure 22. Power dissipation vs. output power (RI = 4 Ω)
Figure 23. Distortion vs. output power (RI = 4 Ω)
HIGH-EFFICIENCY
Figure 24. Distortion vs. output power (RI = 8 Ω)
DS0013 - Rev 8
Figure 25. Power dissipation vs. output power (RI = 4 Ω)
page 20/31
TDA7294
Application information
Figure 26. Power dissipation vs. output power (RI = 8 Ω)
DS0013 - Rev 8
page 21/31
TDA7294
Bridge application
11
Bridge application
Another application suggestion is the BRIDGE configuration, where two TDA7294 are used, as shown by the
schematic diagram of Figure 27.
In this application, the value of the load must not be lower than 8 Ω for dissipation and current capability reasons.
A suitable field of application includes HI-FI/TV subwoofers realizations.
The main advantages offered by this solution are:
- High power performances with limited supply voltage level.
- Considerably high output power even with high load values (i.e. 16 Ω).
The characteristics shown by Figure 29 and Figure 30, measured with loads respectively 8 Ω and 16 Ω.
With Rl = 8 Ω, Vs = ± 25 V the maximum output power obtainable is 150 W, while with Rl = 16 Ω, Vs = ± 35 V the
maximum Pout is 170 W.
Figure 27. Bridge application circuit
+Vs
0.22µF
2200µF
7
3
Vi
0.56µF
13
6
+
22K
14
22µF
-
22K
2
1
4
ST-BY/MUTE
10
TDA7294
9
15
680
8
20K
22K
22µF
10K
30K
10
9
15
8
TDA7294
22µF
3
0.56µF
+
22K
6
14
2
1
4
DS0013 - Rev 8
-Vs
0.22µF
2200µF
1N4148
7
13
22µF
22K
680
page 22/31
TDA7294
Bridge application
Figure 28. Frequency response of the bridge application
Figure 29. Distortion vs. output power (RI = 8 Ω)
Figure 30. Distortion vs. output power (RI = 16 Ω)
DS0013 - Rev 8
page 23/31
TDA7294
Package information
12
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
DS0013 - Rev 8
page 24/31
TDA7294
Multiwatt15 V package information
12.1
Multiwatt15 V package information
Figure 31. Multiwatt15 V package outline
Table 4. Multiwatt15 V mechanical data
Dim.
mm
Min.
Typ.
A
5
B
2.65
C
1.6
D
1
E
0.49
0.55
F
0.66
0.75
G
1.02
1.27
1.52
G1
17.53
17.78
18.03
H1
19.6
H2
DS0013 - Rev 8
Max.
20.2
L
21.9
22.2
22.5
L1
21.7
22.1
22.5
L2
17.65
L3
17.25
17.5
17.75
L4
10.3
10.7
10.9
L7
2.65
M
4.25
4.55
4.85
M1
4.63
5.08
5.53
S
1.9
2.6
S1
1.9
2.6
Diam. 1
3.65
3.85
18.1
2.9
page 25/31
TDA7294
Multiwatt15 H package information
12.2
Multiwatt15 H package information
Figure 32. Multiwatt15 H package outline
Table 5. Multiwatt15 H mechanical data
Dim.
mm
Min.
Max.
A
5.00
B
2.65
C
1.60
E
0.49
0.55
F
0.66
0.75
G
1.02
1.27
1.52
G1
17.53
17.78
18.03
H1
19.60
20.20
H2
19.60
20.20
L1
17.80
18.0
18.20
L2
2.30
2.50
2.80
L3
17.25
17.50
17.75
L4
10.3
10.70
10.90
L5
2.70
3.00
3.30
L7
2.65
R
DS0013 - Rev 8
Typ.
2.90
1.50
S
1.90
2.60
S1
1.90
2.60
Diam. 1
3.65
3.85
page 26/31
TDA7294
Revision history
Table 6. Document revision history
DS0013 - Rev 8
Date
Version
Changes
Apr-2003
7
First issue in EDOCS DMS.
31-Jul-2020
8
Updated Section 12.2 Multiwatt15 H package information.
page 27/31
TDA7294
Contents
Contents
1
Typical application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
3
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
4
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
5
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6
PCB and components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
7
Application suggestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8
Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
9
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
9.1
Output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
9.2
Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
9.3
Other features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
10
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
11
Bridge application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
12
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
12.1
Multiwatt15 leads package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
12.2
Multiwatt15 H package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
DS0013 - Rev 8
page 28/31
TDA7294
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Absolute maximum ratings . . .
Thermal data. . . . . . . . . . . . .
Electrical characteristics . . . . .
Multiwatt15 V mechanical data
Multiwatt15 H mechanical data
Document revision history . . . .
DS0013 - Rev 8
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 5
. 5
. 6
25
26
27
page 29/31
TDA7294
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
DS0013 - Rev 8
Typical application and test circuit . . . . . . . . . . . . . . . . . . . . . . . . .
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PCB.and components layout of the circuit of figure below. (1:1 scale)
Output power vs. supply voltage (RI = 8 Ω) . . . . . . . . . . . . . . . . . .
Distortion vs. output power (RI = 8 Ω) . . . . . . . . . . . . . . . . . . . . . .
Output power vs. supply voltage (RI = 4 Ω) . . . . . . . . . . . . . . . . . .
Distortion vs. output power (RI = 4 Ω) . . . . . . . . . . . . . . . . . . . . . .
Distortion vs. frequency (RI = 8 Ω) . . . . . . . . . . . . . . . . . . . . . . . .
Distortion vs. frequency (RI = 4 Ω) . . . . . . . . . . . . . . . . . . . . . . . .
Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . .
Supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . .
Mute attenuation vs. Vpin10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
St-by attenuation vs. Vpin9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power dissipation vs. output power (RI = 4 Ω). . . . . . . . . . . . . . . . .
Power dissipation vs. output power (RI = 8 Ω). . . . . . . . . . . . . . . . .
Principle schematic of a DMOS unity-gain buffer . . . . . . . . . . . . . . .
Turn ON/OFF suggested sequence . . . . . . . . . . . . . . . . . . . . . . . .
Single signal ST-BY/MUTE control circuit . . . . . . . . . . . . . . . . . . . .
High efficiency application circuit. . . . . . . . . . . . . . . . . . . . . . . . . .
P.C.B. and components layout of the circuit of figure 18 (1:1 scale) . .
Power dissipation vs. output power (RI = 4 Ω). . . . . . . . . . . . . . . . .
Distortion vs. output power (RI = 4 Ω) . . . . . . . . . . . . . . . . . . . . . .
Distortion vs. output power (RI = 8 Ω) . . . . . . . . . . . . . . . . . . . . . .
Power dissipation vs. output power (RI = 4 Ω). . . . . . . . . . . . . . . . .
Power dissipation vs. output power (RI = 8 Ω). . . . . . . . . . . . . . . . .
Bridge application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frequency response of the bridge application . . . . . . . . . . . . . . . . .
Distortion vs. output power (RI = 8 Ω) . . . . . . . . . . . . . . . . . . . . . .
Distortion vs. output power (RI = 16 Ω) . . . . . . . . . . . . . . . . . . . . .
Multiwatt15 V package outline . . . . . . . . . . . . . . . . . . . . . . . . . . .
Multiwatt15 H package outline . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 2
. 3
. 4
. 8
10
10
10
10
11
11
11
11
12
12
12
12
14
15
15
18
18
20
20
20
20
21
22
23
23
23
25
26
page 30/31
TDA7294
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2020 STMicroelectronics – All rights reserved
DS0013 - Rev 8
page 31/31