TDA7318
®
DIGITAL CONTROLLED STEREO AUDIO PROCESSOR
INPUT MULTIPLEXER:
- 4 STEREO INPUTS
- SELECTABLE INPUT GAIN FOR OPTIMAL
ADAPTION TO DIFFERENT SOURCES
INPUT AND OUTPUT FOR EXTERNAL
EQUALIZER OR NOISE REDUCTION SYSTEM
VOLUME CONTROL IN 1.25dB STEPS
TREBLE AND BASS CONTROL
FOUR SPEAKER ATTENUATORS:
- 4 INDEPENDENT SPEAKERS CONTROL
IN 1.25dB STEPS FOR BALANCE AND
FADER FACILITIES
- INDEPENDENT MUTE FUNCTION
ALL FUNCTIONS PROGRAMMABLE VIA SERIAL I2C BUS
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
DESCRIPTION
The TDA7318 is a volume, tone (bass and treble)
balance (Left/Right) and fader (front/rear) processor
for quality audio applications in car radio and Hi-Fi
systems.
DIP28
SO28
ORDERING NUMBERS:
TDA7318
TDA7318D
Selectable input gain is provided. Control is accomplished by serial I2C bus microprocessor interface.
The AC signal setting is obtained by resistor networks
and switches combined with operational amplifiers.
Thanks to the used BIPOLAR/CMOS Tecnology,
Low Distortion, Low Noise and Low DC stepping are
obtained.
PIN CONNECTION (Top view)
November 1999
1/14
TDA7318
TEST CIRCUIT
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
THERMAL DATA
Symbol
Rth j-pins
Description
Thermal Resistance Junction-pins
max
SO28
85
DIP28
65
Unit
°C/W
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
VS
Tamb
Operating Supply Voltage
Operating Ambient Temperature
Tstg
Storage Temperature Range
Value
Unit
10.2
-40 to 85
V
°C
-55 to +150
°C
QUICK REFERENCE DATA
Symbol
VS
Parameter
Supply Voltage
VCL
Max. input signal handling
THD
Total Harmonic Distortion V = 1Vrms f = 1KHz
Typ.
9
Max.
10
0.01
0.1
2
Unit
V
Vrms
%
S/N
Signal to Noise Ratio
106
dB
SC
Channel Separation f = 1KHz
103
dB
Volume Control 1.25dB step
Bass and Treble Control 2db step
-78.75
-14
0
+14
dB
dB
Fader and Balance Control
Input Gain 6.25dB step
-38.75
0
0
18.75
dB
dB
Mute Attenuation
2/14
Min.
6
1.25dB step
100
dB
RIGHT
INPUTS
LEFT
INPUTS
14
L2
4x
2.2µF
R1
C8
9
R3
C6
VCC
2
11
10
8
R4
C5
R2
12
L4
C4
C7
13
L3
C3
C2
15
4x
2.2µF
C1
L1
AGND
3
SUPPLY
R1
R2
R3
R4
L4
L3
L2
L1
OUT(R)
22µF
C9
1
CREF
7
C10 2.2µF
IN(R)
6
16
17
INPUT
SELECTOR
+ GAIN
IN(L)
OUT(L)
VOL
VOL
100nF
C13
100nF
C12
R1
BIN(R)
20
RB
BASS
5.6K
100nF
C15
BIN(L)
TREBLE(L)
TREBLE
4
C17
2.7nF
5
2.7nF
C16
TREBLE(R)
TREBLE
I2C BUS DECODER + LATCHES
BASS
RB
18
R2
BOUT(R)
21
19
100nF
C14
BOUT(L)
5.6K
MUTE
SPKR
ATT
MUTE
SPKR
ATT
MUTE
SPKR
ATT
MUTE
SPKR
ATT
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
C11 2.2µF
D95AU265
22
24
26
27
28
23
25
BUS
OUT
RIGHT REAR
OUT
RIGHT FRONT
DIGGND
SDA
SCL
OUT
LEFT REAR
OUT
LEFT FRONT
TDA7318
BLOCK DIAGRAM
3/14
TDA7318
ELECTRICAL CHARACTERISTICS (refer to the test circuit Tamb = 25°C, VS = 9V, RL = 10KΩ,
RG = 600Ω, all controls flat (G = 0), f = 1KHz unless otherwise specified)
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
Unit
6
9
10
V
11
mA
SUPPLY
VS
Supply Voltage
IS
Supply Current
4
8
Ripple Rejection
60
85
SVR
dB
INPUT SELECTORS
RII
Input Resistance
35
50
VCL
Clipping Level
Input 1, 2, 3, 4
2
2.5
70
Vrms
KΩ
SIN
Input Separation (2)
80
100
dB
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
RL
GINmin
Output Load resistance
pin 7, 17
2
Min. Input Gain
-1
0
1
KΩ
dB
GINmax
Max. Input Gain
17
18.75
20
dB
GSTEP
Step Resolution
5
6.25
7.5
dB
20
mV
eIN
Input Noise
G = 18.75dB
2
VDC
DC Steps
adjacent gain steps
4
G = 18.75 to Mute
4
µV
mV
VOLUME CONTROL
RIV
CRANGE
Input Resistance
20
33
50
kΩ
Control Range
70
75
80
dB
dB
AVMIN
Min. Attenuation
-1
0
1
AVMAX
ASTEP
Max. Attenuation
70
75
80
dB
Step Resolution
0.5
1.25
1.75
dB
-1.25
-3
0
1.25
2
dB
dB
2
dB
0
0.5
3
7.5
mV
mV
EA
Attenuation Set Error
ET
Tracking Error
VDC
DC Steps
Av = 0 to -20dB
Av = -20 to -60dB
adjacent attenuation steps
From 0dB to Av max
SPEAKER ATTENUATORS
Crange
Control Range
35
37.5
40
dB
SSTEP
Step Resolution
0.5
1.25
1.75
dB
EA
AMUTE
VDC
Attenuation set error
1.5
Output Mute Attenuation
DC Steps
80
adjacent att. steps
from 0 to mute
100
dB
dB
0
1
3
10
mV
mV
BASS CONTROL (1)
Gb
Control Range
+12
+14
+16
dB
BSTEP
Step Resolution
1
2
3
dB
Internal Feedback Resistance
34
44
58
KΩ
+13
+14
+15
dB
1
2
3
dB
RB
Max. Boost/cut
TREBLE CONTROL (1)
Gt
Control Range
TSTEP
Step Resolution
4/14
Max. Boost/cut
TDA7318
ELECTRICAL CHARACTERISTICS (continued)
Symbol
Parameter
Test Condition
Min.
Typ.
2
2.5
Max.
Unit
AUDIO OUTPUTS
VOCL
Clipping Level
RL
Output Load Resistance
CL
Output Load Capacitance
d = 0.3%
Vrms
2
KΩ
10
nF
ROUT
Output resistance
30
75
120
Ω
VOUT
DC Voltage Level
4.2
4.5
4.8
V
GENERAL
eNO
Output Noise
BW = 20-20KHz, flat
output muted
all gains = 0dB
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
2.5
5
A curve all gains = 0dB
S/N
d
Signal to Noise Ratio
Distortion
Sc
Channel Separation left/right
Total Tracking error
all gains = 0dB; VO = 1Vrms
AV = 0, VIN = 1Vrms
AV = -20dB VIN = 1Vrms
VIN = 0.3Vrms
AV = 0 to -20dB
-20 to -60 dB
µV
µV
3
µV
106
dB
0.01
0.09
0.04
80
15
0.1
0.3
103
0
0
%
%
%
dB
1
2
dB
dB
BUS INPUTS
VIL
Input Low Voltage
VIH
Input High Voltage
3
1
IIN
Input Current
-5
VO
Output Voltage SDA
Acknowledge
IO = 1.6mA
V
V
+5
µA
0.4
V
Notes:
(1) Bass and Treble response see attached diagram (fig.19). The center frequency and quality of the resonance behaviour can be choosen by
the external circuitry. A standard first order bass response can be realized by a standard feedback network
(2) The selected input is grounded thru the 2.2µF capacitor.
Figure 1: Noise vs. Volume/Gain Settings
Figure 2: Signal to Noise Ratio vs. Volume
Setting
5/14
TDA7318
Figure 3: Distortion & Noise vs. Frequency
Figure 4: Distortion & Noise vs. Frequency
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Figure 5: Distortion vs. Load Resistance
Figure 6: Channel Separation (L → R) vs.
Frequency
Figure 7: Input Separation (L1 → L2, L3, L4) vs.
Frequency
Figure 8: Supply Voltage Rejection vs.
Frequency
6/14
TDA7318
Figure 9: Output Clipping Level vs. Supply
Voltage
Figure 10: Quiescent Current vs. Supply Voltage
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Figure 11: Supply Current vs. Temperature
Figure 12: Bass Resistance vs. Temperature
Figure 13: Typical Tone Response (with the ext.
components indicated in the test
circuit)
7/14
TDA7318
I2C BUS INTERFACE
Data transmission from microprocessor to the
TDA7318 and viceversa takes place thru the 2
wires I2C BUS interface, consisting of the two
lines SDA and SCL (pull-up resistors to positive
supply voltage must be connected).
Data Validity
As shown in fig. 14, the data on the SDA line
must be stable during the high period of the clock.
The HIGH and LOW state of the data line can
only change when the clock signal on the SCL
line is LOW.
Start and Stop Conditions
As shown in fig.15 a start condition is a HIGH to
LOW transition of the SDA line while SCL is
HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.
knowledge bit. The MSB is transferred first.
Acknowledge
The master (µP) puts a resistive HIGH level on the
SDA line during the acknowledge clock pulse (see
fig. 16). The peripheral (audioprocessor) that acknowledges has to pull-down (LOW) the SDA line
during the acknowledge clock pulse, so that the
SDA line is stable LOW during this clock pulse.
The audioprocessor which has been addressed
has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains
at the HIGH level during the ninth clock pulse
time. In this case the master transmitter can generate the STOP information in order to abort the
transfer.
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Byte Format
Every byte transferred on the SDA line must contain 8 bits. Each byte must be followed by an acFigure 14: Data Validity on the I2CBUS
Figure 15: Timing Diagram of I2CBUS
Figure 16: Acknowledge on the I2CBUS
8/14
Transmission without Acknowledge
Avoiding to detect the acknowledge of the audioprocessor, the µP can use a simplier transmission: simply it waits one clock without checking
the slave acknowledging, and sends the new
data.
This approach of course is less protected from
misworking and decreases the noise immunity.
TDA7318
address (the 8th bit of the byte must be 0). The
TDA7318 must always acknowledge at the end
of each transmitted byte.
A sequence of data (N-bytes + acknowledge)
A stop condition (P)
SOFTWARE SPECIFICATION
Interface Protocol
The interface protocol comprises:
A start condition (s)
A chip address byte, containing the TDA7318
TDA7318 ADDRESS
MSB
first byte
LSB
MSB
LSB
MSB
LSB
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
S
1
0
0
0
1
0
0
DATA
0 ACK
DATA
ACK
ACK P
Data Transferred (N-bytes + Acknowledge)
ACK = Acknowledge
S = Start
P = Stop
MAX CLOCK SPEED 100kbits/s
SOFTWARE SPECIFICATION
Chip address
1
MSB
0
0
0
1
0
0
0
LSB
DATA BYTES
MSB
0
1
1
1
1
0
0
0
LSB
0
1
1
0
0
1
1
1
B2
0
1
0
1
0
1
1
B1
B1
B1
B1
B1
G1
0
1
B0
B0
B0
B0
B0
G0
C3
C3
A2
A2
A2
A2
A2
S2
C2
C2
A1
A1
A1
A1
A1
S1
C1
C1
A0
A0
A0
A0
A0
S0
C0
C0
FUNCTION
Volume control
Speaker ATT LR
Speaker ATT RR
Speaker ATT LF
Speaker ATT RF
Audio switch
Bass control
Treble control
Ax = 1.25dB steps; Bx = 10dB steps; Cx = 2dB steps; Gx = 6.25dB steps
9/14
TDA7318
SOFTWARE SPECIFICATION (continued)
DATA BYTES (detailed description)
Volume
MSB
0
LSB
0
B2
B1
B0
A2
A1
A0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
A2
A1
A0
FUNCTION
Volume 1.25dB steps
0
-1.25
-2.5
-3.75
-5
-6.25
-7.5
-8.75
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
0
0
B2
B1
B0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Volume 10dB steps
0
-10
-20
-30
-40
-50
-60
-70
For example a volume of -45dB is given by:
0 0 1 0 0 1 0 0
Speaker Attenuators
MSB
1
1
1
1
LSB
0
0
1
1
0
1
0
1
B1
B1
B1
B1
B0
B0
B0
B0
0
0
1
1
0
1
0
1
1
1
A2
A2
A2
A2
A1
A1
A1
A1
A0
A0
A0
A0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
-1.25
-2.5
-3.75
-5
-6.25
-7.5
-8.75
0
-10
-20
-30
1
For example attenuation of 25dB on speaker RF is given by:
1 0 1 1 0 1 0 0
10/14
FUNCTION
Speaker LF
Speaker RF
Speaker LR
Speaker RR
1
1
Mute
TDA7318
Audio Switch
MSB
0
LSB
1
0
G1
G0
0
0
1
1
FUNCTION
S2
S1
S0
Audio Switch
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Stereo 1
Stereo 2
Stereo 3
Stereo 4
Not allowed
Not allowed
Not allowed
Not allowed
0
1
0
1
+18.75dB
+12.5dB
+6.25dB
0dB
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
For example to select the stereo 2 input with a gain of +12.5dB the 8bit string is:
0 1 0 0 1 0 0 1
Bass and Treble
0
0
1
1
1
1
0
1
C3
C3
0
0
0
0
0
0
0
0
C2
C2
0
0
0
0
1
1
1
1
C1
C1
0
0
1
1
0
0
1
1
C0
C0
0
1
0
1
0
1
0
1
Bass
Treble
-14
-12
-10
-8
-6
-4
-2
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
2
4
6
8
10
12
14
C3 = Sign
For example Bass at -10dB is obtained by the following 8 bit string:
0 1 1 0 0 0 1 0
11/14
TDA7318
mm
DIM.
MIN.
TYP.
A
inch
MAX.
MIN.
TYP.
2.65
MAX.
0.104
a1
0.1
0.3
0.004
0.012
b
0.35
0.49
0.014
0.019
b1
0.23
0.32
0.009
0.013
C
OUTLINE AND
MECHANICAL DATA
0.5
0.020
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o SO28
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
c1
45° (typ.)
D
17.7
18.1
0.697
0.713
E
10
10.65
0.394
0.419
e
1.27
0.050
e3
16.51
0.65
F
7.4
7.6
0.291
0.299
L
0.4
1.27
0.016
0.050
S
12/14
8 ° (max.)
TDA7318
mm
inch
DIM.
MIN.
TYP.
MAX.
MIN.
TYP.
a1
0.63
0.025
b
0.45
0.018
b1
0.23
b2
0.31
0.009
1.27
MAX.
OUTLINE AND
MECHANICAL DATA
0.012
0.050
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o DIP28
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
D
E
37.34
15.2
16.68
1.470
0.598
0.657
e
2.54
0.100
e3
33.02
1.300
F
14.1
0.555
I
4.445
0.175
L
3.3
0.130
13/14
TDA7318
)
s
(
t
c
u
d
o
)
r
s
(
P
t
c
e
t
u
e
d
l
o
o
r
s
P
b
e
O
t
e
l
)
o
s
(
s
t
b
c
u
O
d
o
)
r
s
P
(
t
c
e
t
u
e
l
d
o
o
r
s
P
b
O
e
t
e
l
o
s
b
O
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved
Purchase of I2C Components of STMicrolectronics, conveys a license under the Philips I2C Patent Rights to use these components in an I2C
system, provided that the system conforms to the I2C Standard Specifications as defined by Philips.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
14/14
很抱歉,暂时无法提供与“TDA7318”相匹配的价格&库存,您可以联系我们找货
免费人工找货