0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TDA7387

TDA7387

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    Flexiwatt25

  • 描述:

    IC AMP AUDIO FLEXIWATT25

  • 数据手册
  • 价格&库存
TDA7387 数据手册
TDA7387 4 x 41 W quad bridge car radio amplifier Datasheet - production data  Low external component count: – Internally fixed gain (26 dB) – No external compensation – No bootstrap capacitors '!0'03 '!0'03 Flexiwatt25 Flexiwatt25 (Vertical exposed pad) Features  Protections: – Output short circuit to GND, to VS, across the load – Very inductive loads – Overrating chip temperature with soft thermal limiter – Load dump voltage – Fortuitous open GND – Reversed battery – ESD Description  High output power capability: – 4 x 41 W / 4  max. The TDA7387 is an AB class audio power amplifier, packaged in Flexiwatt 25 and designed for high end car radio applications.  Low distortion  Low output noise  Standby function  Mute function  Automute at min. supply voltage detection Based on a fully complementary PNP/NPN configuration, the TDA7387 allows a rail to rail output voltage swing with no need of bootstrap capacitors. The extremely reduced boundary components count allows very compact sets. Table 1. Device summary Order code Package Packing TDA7387 Flexiwatt25 Tube TDA7387EP Flexiwatt25 vertical, exposed pad Tube TDA7387EPAG Flexiwatt25 vertical, exposed pad Tube September 2013 This is information on a product in full production. DocID024094 Rev 2 1/15 www.st.com 1 Contents TDA7387 Contents 1 Block and pin connection diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 PCB and component layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1 Biasing and SVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Standby and muting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3.4 Stability and layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 4 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2/15 DocID024094 Rev 2 TDA7387 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 DocID024094 Rev 2 3/15 List of figures TDA7387 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. 4/15 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Standard test and application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Components and top copper layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Bottom copper layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Quiescent output voltage vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Output power vs. supply voltage (4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Distortion vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Distortion vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Power dissipation and efficiency vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Input/output biasing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Flexiwatt25 mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Flexiwatt25 mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 DocID024094 Rev 2 TDA7387 Block and pin connection diagrams Figure 1. Block diagram 6CC 6CC M& N& 34 "9 .# -54% /54 ). /54 M& 07 '.$ /54 ). /54 07 '.$ M& /54 ). /54 M& 07 '.$ /54 ). /54 07 '.$ M& !# '.$ M& 362 M& 4!" 3 '.$ '!0'03 Figure 2. Pin connection (top view) DocID024094 Rev 2 .# 0 '.$ -54% /54 6## /54 /54 /54 0 '.$ ). !# '.$ ). ). 3 '.$ ). 362 /54 0 '.$ 6## /54 34 "9 /54  /54 4!"  0 '.$ 1 Block and pin connection diagrams '!0'03 5/15 Electrical specifications TDA7387 2 Electrical specifications 2.1 Absolute maximum ratings Table 2. Absolute maximum ratings Symbol Value Unit Operating supply voltage 18 V VS (DC) DC supply voltage 28 V VS (pk) Peak supply voltage (t = 50 ms) 50 V Output peak current: Repetitive (duty cycle 10 % at f = 10 Hz) Non repetitive (t = 100 µs) 4.5 5.5 A A Power dissipation, (Tcase = 70 °C) 80 W Tj Junction temperature 150 C Tstg Storage temperature – 55 to 150 C VS IO Ptot 2.2 Parameter Thermal data Table 3. Thermal data Symbol Rth j-case Tamb 2.3 Parameter Value Unit Thermal resistance junction-to-case max. TDA7387 TDA7387EP/EPAG 1 1.3 °C/W Operative temperature range TDA7387EP -30 to +85 C Operative temperature range TDA7387,TDA7387EPAG -40 to +105 C Electrical characteristics VS = 14.4 V; f = 1 kHz; Rg = 600 ; RL = 4 ; Tamb = 25 °C; Refer to the test and application diagram (Figure 3), unless otherwise specified. Table 4. Electrical characteristics Symbol Test condition Min. Typ. Max. Unit Quiescent current - - 180 300 mA Output offset voltage - - - 100 mV Gv Voltage gain - 25 26 27 dB Po Output power THD = 10% THD = 1% 20 - 22 18 - W Iq1 VOS 6/15 Parameter DocID024094 Rev 2 TDA7387 Electrical specifications Table 4. Electrical characteristics (continued) Symbol Po max. Parameter Test condition Max. output power (1) Min. Typ. Max. VS = 14.4 V 33 37 - VS = 15.2 V - 41 - Unit W THD Distortion Po = 4 W - 0.04 0.3 % eNo Output noise "A" Weighted; Bw = 20 Hz to 20 kHz - 50 65 150 V V SVR Supply voltage rejection f = 100 Hz 50 65 - dB fcl Low cut-off frequency - - 20 - Hz fch High cut-off frequency - 75 - kHz Ri Input impedance - 70 100 - k CT Cross talk f = 1 kHz 50 70 - dB ISB Standby current consumption Vstandby = 0 V - - 15 µA VSB out Standby out threshold voltage (Amp: on) 3.5 - - V VSB IN Standby in threshold voltage (Amp: off) - - 1.5 V Mute attenuation VO = 1Vrms 80 90 - dB VM out Mute out threshold voltage (Amp: play) 3.5 - - V VM in Mute in threshold voltage (Amp: mute) - - 1.5 V Im (L) Muting pin current VMUTE = 1.5 V (source current) 5 10 16 µA AM 1. Saturated square wave output. Figure 3. Standard test and application circuit # M& # M& 6CC  6CC   2   34 "9 + 2  # M&   -54% + # # M&  ).   ).    #M& ). /54  M& /54   #M&   ). #M& /54  3 '.$    # M& /54    362 # M& 4!" .# DocID024094 Rev 2  '!0'03 7/15 Electrical specifications 2.4 TDA7387 PCB and component layout Refer to Figure 3: Standard test and application circuit. Figure 4. Components and top copper layer Figure 5. Bottom copper layer 8/15 DocID024094 Rev 2 TDA7387 2.5 Electrical specifications Electrical characteristics curves Figure 6. Quiescent current vs. supply voltage Figure 7. Quiescent output voltage vs. supply voltage '!0'03 '!0'03 Figure 8. Output power vs. supply voltage (4)   Figure 9. Distortion vs. output power 0O7 2,/HM F+(Z 4($   4($               6S6 '!0'03 Figure 10. Distortion vs. frequency '!0'03 Figure 11. Power dissipation and efficiency vs. output power H 0TOT7 H 0TOT '!0'03 DocID024094 Rev 2 '!0'03 9/15 Application hints 3 TDA7387 Application hints Refer to Figure 3. 3.1 Biasing and SVR As shown in Figure 12, all the TDA7387’s main sections, such as Inputs, Outputs AND ACGND (pin 16) are internally biased at half supply voltage level (Vs/2), coming from the Supply Voltage Rejection (SVR) block. In this way no current flows through the internal feedback network. The AC-GND is common to all the 4 amplifiers and represents the connection point of all the inverting inputs. Both individual inputs and AC-GND are connected to Vs/2 (SVR) by means of 100 k resistors. To ensure proper operation and high supply voltage rejection, it is of fundamental importance to provide a good impedance matching between Inputs and AC-GROUND terminations. This implies that C1, C2, C3, C4, C5 capacitors have to carry the same nominal value and their tolerance should never exceed ± 10 %. Besides its contribution to the ripple rejection, the SVR capacitor controls the turn ON/OFF time sequence and, consequently, plays an essential role in the pop optimization during ON/OFF transients. To conveniently serve both needs, its minimum recommended value is 10µF. Figure 12. Input/output biasing. +7 M& #ž# +7 ). 7 7 63 +7 +7 +7 +7 362 +7 !#?'.$ M& # M& # 4/7!2$3 /4(%2#(!..%,3 '!0'03 3.2 Input stage The TDA7387’s inputs are ground-compatible and can stand very high input signals (± 8 Vpk) without any performances degradation. If the standard value for the input capacitors (0.1 µF) is adopted, the low frequency cut-off turns out to be 16 Hz. 10/15 DocID024094 Rev 2 TDA7387 3.3 Application hints Standby and muting Standby and muting facilities are both CMOS-compatible. If unused, a straight connection to Vs of their respective pins would be admissible. Conventional low-power transistors can be used to drive muting and stand-by pins in absence of true CMOS ports or microprocessors. R-C cells have always to be used in order to smooth down the transitions for preventing any audible transient noises. Since a DC current of about 10 µA normally flows out of pin 22, the maximum allowable muting-series resistance (R2) is 70 k, which is sufficiently high to allow a muting capacitor reasonably small (about 1 µF). If R2 is higher than recommended, the involved risk is that the voltage at pin 22 may rise to above the 1.5 V threshold voltage and the device is consequently fails to turn OFF when the mute line is brought down. About the stand-by, the time constant to be assigned in order to obtain a virtually pop-free transition has to be slower than 2.5 V/ms. 3.4 Stability and layout considerations If properly layouted and hooked to standard car-radio speakers, the TDA7387 is intrinsically stable with no need of external compensations such as output R-C cells. Due to the high number of channels involved, this translates into a very remarkable components saving if compared to similar devices on the market. To simplify pc-board layout design, each amplifier stage has its own power ground externally accessible (pins 2,8,18,24) and one supply voltage pin for each couple of them. Even more important, this makes it possible to achieve the highest possible degree of separation among the channels, with remarkable benefits in terms of cross-talk and distortion features. About the layout grounding, it is particularly important to connect the AC-GND capacitor (C5) to the signal GND, as close as possible to the audio inputs ground: this guarantees high rejection of any common mode spurious signal. The SVR capacitor (C6) has also to be connected to the signal GND. Supply filtering elements (C7, C8) have naturally to be connected to the power-ground and located as close as possible to the Vs pins. Pin 1, which is mechanically attached to the device’s tab, needs to be tied to the cleanest power ground point in the pc-board, which is generally near the supply filtering capacitors. The exposed pad package doesn't require any particular care compared to the ST standard flexiwatt package. For particular PCB configurations, in order to maximize the rejection against any disturbances coming from the battery line (SVR), it is suggested to use one of the following IC metal slug (heat-sink) connections:  leave the slug simply electrically isolated from the PCB ground;  in case of 2 layers board, connect the slug to the PCB power ground (P-GND) and not to the signal ground (S-GND);  in case of a PCB with a layer dedicated to grounding (wide / diffused GND area with no distinction between P-GND and S-GND) connect the slug to the common board ground. DocID024094 Rev 2 11/15 Package information 4 TDA7387 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Figure 13. Flexiwatt25 mechanical data and package dimensions $)- ! " # $ % & ' ' ( ( ( ( , , , , , , - . / 2 2 2 2 2 6 6 6 6 -).              MM 490                           -!8   -).                          INCH 490                           -!8   /54,).%!.$ -%#(!.)#!,$!4!             &LEXIWATTVERTICAL ƒ 7\S ƒ 7\S ƒ 7\S ƒ 7\S  DAM BARPROTUSIONNOTINCLUDED  MOLDINGPROTUSIONINCLUDED 6 # " 6 ( ( 6 ! ( / ( 2 , 2 6 2 , . , 2 , , 6 6 2 $ 2 , 0IN 2 2 % ' ' & &,%8-% - -  '!0'03 12/15 DocID024094 Rev 2 TDA7387 Package information Figure 14. Flexiwatt25 mechanical data and package dimensions ',0 0,1 $ % & ' ( ( ( ( ( ( ) * * + + + + / / / / / / 0 0 1 2 5 5 5 5 5 9 9 9 9                  PP 7
TDA7387 价格&库存

很抱歉,暂时无法提供与“TDA7387”相匹配的价格&库存,您可以联系我们找货

免费人工找货