TDA7498
Datasheet
100-watt + 100-watt dual BTL class-D audio amplifier
Features
PowerSSO-36
exposed pad up
•
100 W + 100 W output power at THD = 10% with RL = 6 Ω and VCC = 36 V
•
80 W + 80 W output power at THD = 10% with RL = 8 Ω and VCC = 34 V
•
•
•
Wide-range single-supply operation (14 - 39 V)
High efficiency (η = 90%)
Four selectable, fixed gain settings of nominally 25.6 dB, 31.6 dB, 35.1 dB and
37.6 dB
Differential inputs minimize common-mode noise
Standby and mute features
Short-circuit protection
Thermal overload protection
Externally synchronizable
•
•
•
•
•
Description
The TDA7498 is a dual BTL class-D audio amplifier with single power supply
designed for home systems and active speaker applications.
It comes in a 36-pin PowerSSO package with exposed pad up (EPU) to facilitate
mounting a separate heatsink.
Product status link
TDA7498
Product summary
Order code
TDA7498TR
Temperature
range
-40 to 85 °C
Package
PowerSSO36
(EPU)
Packing
Tape and reel
DS6437 - Rev 10 - August 2020
For further information contact your local STMicroelectronics sales office.
www.st.com
TDA7498
Device block diagram
1
Device block diagram
Figure 1. Internal block diagram (showing one channel only) shows the block diagram of one of the two identical
channels of the TDA7498.
Figure 1. Internal block diagram (showing one channel only)
DS6437 - Rev 10
page 2/22
TDA7498
Pin description
2
Pin description
2.1
Pinout
Figure 2. Pin connections (top view, PCB view)
DS6437 - Rev 10
SUB_GND
1
OUTPB
2
VREF
OUTPB
3
INNB
PGNDB
4
32
INPB
PGNDB
5
31
GAIN1
PVCCB
6
30
GAIN0
PVCCB
7
29
SVR
OUTNB
8
36
VSS
35
SVCC
34
33
28 DIAG
OUTNB
9
27
SGND
OUTNA
10
26
VDDS
OUTNA
11
25
SYNCLK
PVCCA
12
24
ROSC
PVCCA
13
23
INNA
PGNDA
14
22
INPA
PGNDA
15
21
MUTE
OUTPA
16
20
STBY
OUTPA
17
19
VDDPW
PGND
18
EP, exposed pad
Conn ect to ground
page 3/22
TDA7498
Pin list
2.2
Pin list
Table 1. Pin description list
Number
DS6437 - Rev 10
Name
Type
Description
1
SUB_GND
PWR
Connect to the frame
2,3
OUTPB
O
Positive PWM for right channel
4,5
PGNDB
PWR
Power stage ground for right channel
6,7
PVCCB
PWR
Power supply for right channel
8,9
OUTNB
O
Negative PWM output for right channel
10,11
OUTNA
O
Negative PWM output for left channel
12,13
PVCCA
PWR
Power supply for left channel
14,15
PGNDA
PWR
Power stage ground for left channel
16,17
OUTPA
O
Positive PWM output for left channel
18
PGND
PWR
Power stage ground
19
VDDPW
O
3.3-V (nominal) regulator output referred to ground for power stage
20
STBY
I
Standby mode control
21
MUTE
I
Mute mode control
22
INPA
I
Positive differential input of left channel
23
INNA
I
Negative differential input of left channel
24
ROSC
O
Master oscillator frequency-setting pin
25
SYNCLK
I/O
Clock in/out for external oscillator
26
VDDS
O
3.3-V (nominal) regulator output referred to ground for signal blocks
27
SGND
PWR
Signal ground
28
DIAG
O
Open-drain diagnostic output
29
SVR
O
Supply voltage rejection
30
GAIN0
I
Gain setting input 1
31
GAIN1
I
Gain setting input 2
32
INPB
I
Positive differential input of right channel
33
INNB
I
Negative differential input of right channel
34
VREF
O
Half VDDS (nominal) referred to ground
35
SVCC
PWR
Signal power supply
36
VSS
O
3.3-V (nominal) regulator output referred to power supply
-
EP
-
Exposed pad for heatsink, to be connected to ground
page 4/22
TDA7498
Electrical specifications
3
Electrical specifications
3.1
Absolute maximum ratings
Table 2. Absolute maximum ratings
Symbol
VCC
DC supply voltage for pins PVCCA, PVCCB, SVCC
Value
Unit
45
V
VI
Voltage limits for input pins STBY, MUTE, INNA, INPA, INNB, INPB,
GAIN0, GAIN1
-0.3 to 3.6
V
Tj
Operating junction temperature
-40 to 150
°C
Storage temperature
-40 to 150
°C
Tstg
3.2
Parameter
Thermal data
Table 3. Thermal data
Symbol
Rth j-case
3.3
Parameter
Min.
Typ.
Max.
Unit
-
2
3
°C/W
Min.
Typ.
Max.
Unit
Supply voltage for pins PVCCA, PVCCB, SVCC
14
-
39
V
Ambient operating temperature
-40
-
85
°C
Thermal resistance, junction to case
Recommended operating conditions
Table 4. Recommended operating conditions
Symbol
VCC
Tamb
3.4
Parameter
Electrical specifications
Unless otherwise stated, the values in the table below are specified for the conditions: VCC = 36 V, RL = 6 Ω,
ROSC = R3 = 39 kΩ, C8 = 100 nF, f = 1 kHz, GV = 25.6 dB Tamb = 25 °C.
Table 5. Electrical specifications
Symbol
Iq
IqSTBY
Conditions
Min.
Typ.
Max.
Unit
Total quiescent current
No LC filter, no load
-
40
60
mA
Quiescent current in standby
-
-
1
10
µA
Play mode
-100
-
100
Mute mode
-60
-
60
VOS
Output offset voltage
IOCP
Overcurrent protection threshold
RL = 0 Ω
6
7
-
A
Tj
Junction temperature at thermal
shutdown
-
-
150
-
°C
Ri
Input resistance
Differential input
48
60
-
kΩ
Overvoltage protection threshold
-
42
43
-
V
VOVP
DS6437 - Rev 10
Parameter
mV
page 5/22
TDA7498
Electrical specifications
Symbol
Parameter
VUVP
Undervoltage protection threshold
RdsON
Power transistor on-resistance
Po
Output power
Po
Output power
PD
Dissipated power
η
THD
GV
ΔGV
Conditions
Min.
Typ.
Max.
Unit
-
-
-
8
V
High side
-
0.2
-
Low side
-
0.2
-
THD = 10%
-
100
-
THD = 1%
-
78
-
RL = 8 Ω, THD = 10%
-
80
-
W
-
20
-
W
Po = 100 W + 100 W,
THD = 10%
Ω
W
Efficiency
Po = 100 W + 100 W
-
90
-
%
Total harmonic distortion
Po = 1 W
-
0.1
-
%
GAIN0 = L, GAIN1 = L
24.6
25.6
26.6
GAIN0 = L, GAIN1 = H
30.6
31.6
32.6
GAIN0 = H, GAIN1 = L
34.1
35.1
36.1
GAIN0 = H, GAIN1 = H
36.6
37.6
38.6
Closed-loop gain
dB
Gain matching
-
-1
-
1
dB
CT
Crosstalk
f = 1 kHz, Po = 1 W
50
70
-
dB
eN
Total input noise
A Curve, GV = 20 dB
-
15
-
f = 22 Hz to 22 kHz
-
25
50
µV
SVRR
Supply voltage rejection ratio
fr = 100 Hz, Vr = 0.5 Vpp, CSVR
= 10 µF
-
70
-
dB
Tr, Tf
Rise and fall times
-
-
50
-
ns
fSW
Switching frequency
Internal oscillator
290
310
330
kHz
fSWR
Output switching frequency range
With internal oscillator (1)
250
-
400
With external oscillator (2)
250
-
400
VinH
Digital input high (H)
2.3
-
-
VinL
Digital input low (L)
-
-
0.8
2.7
-
-
-
-
0.5
2.5
-
-
-
-
0.8
-
70
-
VSTBY
VMUTE
AMUTE
Pin STBY voltage high (H)
Pin STBY voltage low (L)
Pin MUTE voltage high (H)
Pin MUTE voltage low (L)
Mute attenuation
-
-
VMUTE = L, VSTBY = H
kHz
V
V
V
dB
1. fSW = 106 / ((16 * ROSC + 182) * 4) kHz, fSYNCLK = 2 * fSW with R3 = 39 kΩ (see Figure 19. Application circuit for 6 Ω or 8 Ω
speakers).
2. fSW = fSYNCLK / 2 with the external oscillator.
DS6437 - Rev 10
page 6/22
TDA7498
Characterization curves
4
Characterization curves
4.1
Test circuit
Figure 3. Test circuit for characterizations shows the test circuit with which the characterization curves, shown in
the next sections, were measured. Figure 4. Test board shows the PCB layout.
Figure 3. Test circuit for characterizations
1
SUB_GND
OUTPA 16
22
INPA
OUTPA 17
C3
1nF
23
INNA
PGNDA
14
C4
1nF
PGNDA
15
27
SGND
C1
1uF
C2
1uF
J1
C5
INPUT
100nF
3
L-
4
L+
1
R-
2
R+
For
J7
Single-Ended
Input
VDDS 26
VDDS
R1
DIAG
28
100k
R7
22R
DIAG
FREQUENCY SHIFT
R9
Q1
KTC3875(S) 180K
3
C8
R13
FS
100nF
1
47k
2
R14
100k
25 SYNCLK
R3
24
ROSC
J5 30
GAIN0
39K
VDDS
J8
31 GAIN1
C10
C11
FS
32
1uF
3V3
C13
1nF
C12
J4
S2
1uF
MUTE
1
2
3
IN
IC2
1 L4931CZ33 3
2 GND C9
100nF
DS6437 - Rev 10
INNB
21 MUTE
+
C15
2.2uF
20 STBY
16V
33k
+
C7
2.2uF
16V
6.8k
D1
18V
3V3 POWER SUPPLY
33
INPB
120k
R2
R8 VCC
OUT
C29
2.2uF
C14
1nF
R4
S1 STBY
1
2
3
1uF
680nF
220nF
C27
330pF
2
PVCCB
7
PVCCB
6
PGNDB
5
4
OUTNB
9
OUTNB
8
VREF
C23+
50V
*
J3
1
VCC
2
GND
OUTPUT
Load = 6 ohm
L+
1
L2
R3
R+
4
J2
22uH
*
C18
22R
220nF
R17
8R
C42
100nF
PGNDB
2200uF
L1
R5
R16
8R
22uH
3
OUTPB
C41
220nF
L3
*
OUTPB
C40
*
C24
PVCCA 13
SVCC
100nF 36 VSS
3V3
TDA7498
*
100nF
IC1
R15
8R
220nF
PVCCA 12
C19
35
220nF
C30
J6
For
Single-Ended
Input
22R
OUTNA 11
18 PGND
*
C28
C25
OUTNA 10
100nF
*
R6
C26
19 VDDPW
C6
L4
22uH
C20
C31
680nF
1uF
*
*
220nF
220nF
R18
8R
L2
*
34
C43
C22
C21
330pF
220nF
22uH
C17
SVR
29
TDA7498
CLASS-D AMPLIFIER
10uF
10V
C16
10uF
10V
LC FILTER COMPONENTS
Load
L1,L2,L3,L4
6 ohm
22 uH
680 nF
220 nF
8 ohm
22 uH
470 nF
220 nF
C20,C26
C18,C22,C24,C28
page 7/22
TDA7498
Characterization curves
Figure 4. Test board
4.2
Characterization curves
Unless otherwise stated the measurements were made under the following conditions:
VCC = 36 V, f = 1 kHz, GV = 25.6 dB, ROSC = 39 kΩ, COSC = 100 nF, Tamb = 25 °C
DS6437 - Rev 10
page 8/22
TDA7498
Characterization curves
4.2.1
For RL = 6 Ω
Figure 5. Output power (THD = 10%) vs. supply
voltage
Figure 6. THD vs. output power
10
5
120
110
2
100
1
THD+N (%)
Output powe r (W)
90
80
70
0.5
0.2
f = 1 kHz
60
0.1
50
0.05
40
f = 100 Hz
30
0.02
20
0.01
10
0.005
100m
+10
+12
+14
+16
+1 8
+20
+22
+24
+26
+2 8
+30
+32
+34
200m
500m
1
2
5
10
20
50
100
200
Output powe r (W)
+36
Su pply volta ge (V)
Figure 7. THD vs. frequency (1 W)
Figure 8. THD vs. frequency (100 mW)
2
1
1
0.5
0.5
0.2
0.2
THD+N (%)
THD+N (%)
2
0.1
0.1
0.05
0.05
0.02
0.02
0.01
0.01
20
50
100
200
500
1k
2k
5k
10k
20k
20
50
100
200
500
1k
2k
5k
10k
20k
Fre qu ency (Hz)
Fre qu ency (Hz)
Figure 9. Frequency response
Figure 10. FFT performance (0 dBFS)
+3
+0
-10
+2.5
-20
+2
-30
-40
+1.5
-50
-60
-70
+0.5
FFT (dB)
Ampl (dB)
+1
+0
-0.5
-80
-90
-100
-110
-120
-1
-130
-1.5
-140
-150
-2
-160
-2.5
-3
-170
-180
10
20
50
100
200
500
1k
2k
5k
10k
20k
20
50
100
200
500
1k
2k
5k
10k
20k
Fre qu ency (Hz)
Fre qu ency (Hz)
Figure 11. FFT performance (-60 dBFS)
+0
-10
-20
-30
-40
-50
-60
FFT (dB)
-70
-80
-90
-100
-110
-120
-130
-140
-150
-160
-170
-180
20
50
100
200
500
1k
2k
5k
10k
20k
Fre qu ency (Hz)
DS6437 - Rev 10
page 9/22
TDA7498
Characterization curves
4.2.2
For RL = 8 Ω
Figure 12. Output power (THD = 10%) vs. supply
voltage
Figure 13. THD vs. output power
10
5
120
110
2
100
1
90
THD+N %
( )
Output powe r (W)
0.5
80
70
60
0.2
f = 1 kHz
0.1
0.05
50
40
0.02
f = 100 Hz
30
0.01
20
10
0.005
100m
+10
+12
+14
+16
+1 8
+20
+22
+24
+26
+2 8
+30
+32
+34
200m
500m
1
2
5
10
20
50
100
200
Output powe r (W)
+36
Su pply volta ge (V)
Figure 14. THD vs. frequency (1 W)
Figure 15. THD vs. frequency (100 mW)
2
1
1
0.5
0.5
0.2
0.2
THD+N (%)
THD+N (%)
2
0.1
0.05
0.02
0.01
0.1
0.05
0.02
20
50
100
200
500
1k
2k
5k
10k
0.01
20k
20
50
Fre qu ency (Hz)
100
200
500
1k
2k
5k
10k
20k
Fre qu ency (Hz)
Figure 17. FFT performance (0 dB)
Figure 16. Frequency response
+3
+2.5
+2
+1.5
+1
Ampl (dB)
+0.5
+0
-0.5
-1
-1.5
-2
-2.5
-3
10
20
50
100
200
500
1k
2k
5k
10k
20k
Fr e quency (H z)
Figure 18. FFT performance (-60 dB)
+0
-10
-20
-30
-40
-50
-60
FFT (dB)
-70
-80
-90
-100
-110
-120
-130
-140
-150
-160
-170
-180
20
50
100
200
500
1k
2k
5k
10k
20k
Fre qu ency (Hz)
DS6437 - Rev 10
page 10/22
TDA7498
Application information
5
Application information
5.1
Application circuit
Figure 19. Application circuit for 6 Ω or 8 Ω speakers
1
C1
1uF
C3
1nF
C2
1uF
C4
1nF
J1
C5
INPUT
100nF
3
L-
4
L+
1
R-
2
J7
R+
For
Single-Ended
Input
SUB_GND
OUTPA 16
22
INPA
OUTPA 17
23
INNA
PGNDA
14
PGNDA
15
27
SGND
VDDS 26
VDDS
R1
28
DIAG
FREQUENCY SHIFT
R9
Q1
KTC3875(S) 180K
3
R13
FS
47k
R14
100k
1
100nF
24
39K
TDA7498
ROSC
2
J5 30
GAIN0
31 GAIN1
3
OUTPB
2
PVCCB
7
PVCCB
6
For
Single-Ended
Input
35
SVCC
PGNDB
C11
FS
1uF
3V3
C13
1nF
C12
J4
1uF
MUTE
1
2
3
S1 STBY
1
2
3
S2
IN
IC2
1 L4931CZ33 3
2 GND C9
100nF
+
33k
+
R8 VCC
OUT
C29
2.2uF
C14
1nF
R4
120k
R2
32
INPB
33
INNB
21 MUTE
*
9
8
VCC
2
GND
22uH
*
C18
220nF
R17
8R
C42
C20
C31
680nF
1uF
VREF
34
SVR
29
*
*
R18
8R
L2
*
C43
220nF
220nF
C21
330pF
220nF
C22
4
OUTNB
1
J2
22R
C7
2.2uF
16V
TDA7498
CLASS-D AMPLIFIER
6.8k
D1
18V
C23+
50V
L1
R5
R16
8R
2200uF
5
OUTNB
C41
220nF
L3
22uH
J3
OUTPUT
Load = 6 ohm
L+
1
L2
R3
R+
4
22uH
C17
C15
2.2uF
20 STBY
16V
3V3 POWER SUPPLY
5.2
330pF
100nF
PGNDB
*
C24
C19
C10
C40
220nF
220nF
C27
*
OUTPB
J6
100nF 36 VSS
3V3
680nF
IC1
25 SYNCLK
R3
VDDS
J8
C26
1uF
OUTNA 11
18 PGND
C8
*
C30
OUTNA 10
C6
R15
8R
C28
220nF
C25
19 VDDPW
100nF
*
R6
22R
100nF
PVCCA 13
DIAG
22uH
PVCCA 12
100k
R7
22R
L4
*
10uF
10V
C16
10uF
10V
LC FILTER COMPONENTS
Load
L1,L2,L3,L4
6 ohm
22 uH
680 nF
220 nF
8 ohm
22 uH
470 nF
220 nF
C20,C26
C18,C22,C24,C28
Mode selection
The three operating modes of the TDA7498 are set by the two inputs, STBY (pin 20) and MUTE (pin 21).
•
Standby mode: all circuits are turned off, very low current consumption.
•
Mute mode: inputs are connected to ground and the positive and negative PWM outputs are at 50% duty
cycle.
•
Play mode: the amplifiers are active.
The protection functions of the TDA7498 are enabled by pulling down the voltages of the STBY and MUTE inputs
shown in Figure 20. Standby and mute circuits. The input current of the corresponding pins must be limited to 200
µA.
Table 6. Mode settings
Mode
STBY
(1)
MUTE
Standby
L
X (don’t care)
Mute
H (1)
L
Play
H
H
1. Drive levels defined in Table 5. Electrical specifications
DS6437 - Rev 10
page 11/22
TDA7498
Gain setting
Figure 20. Standby and mute circuits
Standby
STBY
3.3 V
0V
R2
30 kΩ
C7
2.2 µF
R4
30 kΩ
C15
2.2 µF
Mute
TDA7498
MUTE
3.3 V
0V
Figure 21. Turn on/off sequence for minimizing speaker “pop”
5.3
Gain setting
The gain of the TDA7498 is set by the two inputs, GAIN0 (pin 30) and GAIN1 (pin31). Internally, the gain is set by
changing the feedback resistors of the amplifier.
Table 7. Gain settings
GAIN0
5.4
Nominal gain, Gv (dB)
GAIN1
L
L
25.6
L
H
31.6
H
L
35.6
H
H
37.6
Input resistance and capacitance
The input impedance is set by an internal resistor Ri = 60 kΩ (typical). An input capacitor (Ci) is required to couple
the AC input signal.
The equivalent circuit and frequency response of the input components are shown in Figure 22. Input circuit and
frequency response. For Ci = 470 nF the high-pass filter cutoff frequency is below 20 Hz:
fC = 1 / (2 * π * Ri * Ci)
DS6437 - Rev 10
page 12/22
TDA7498
Internal and external clocks
Figure 22. Input circuit and frequency response
5.5
Internal and external clocks
The clock of the class-D amplifier can be generated internally or can be driven by an external source.
If two or more class-D amplifiers are used in the same system, it is recommended that all devices operate at the
same clock frequency. This can be implemented by using one TDA7498 as master clock, while the other devices
are in slave mode, that is, externally clocked. The clock interconnect is via pin SYNCLK of each device. As
explained below, SYNCLK is an output in master mode and an input in slave mode.
5.5.1
Master mode (internal clock)
Using the internal oscillator, the output switching frequency, fSW, is controlled by the resistor, ROSC, connected to
pin ROSC:
fSW = 106 / [(ROSC * 16 + 182) * 4] kHz
where ROSC is in kΩ.
In master mode, pin SYNCLK is used as a clock output pin whose frequency is:
fSYNCLK = 2 * fSW
For master mode to operate correctly then resistor ROSC must be less than 60 kΩ as given below in Table 8. How
to set up SYNCLK.
5.5.2
Slave mode (external clock)
In order to accept an external clock input the pin ROSC must be left open, that is, floating. This forces pin
SYNCLK to be internally configured as an input as given in Table 8. How to set up SYNCLK.
The output switching frequency of the slave devices is:
fSW = fSYNCLK / 2
Table 8. How to set up SYNCLK
DS6437 - Rev 10
Mode
ROSC
SYNCLK
Master
ROSC < 60 kΩ
Output
Slave
Floating (not connected)
Input
page 13/22
TDA7498
Output low-pass filter
Figure 23. Master and slave connection
ROSC
Ma s te r
S la ve
TDA7498
TDA7498
SYNCLK
Output
Cosc
100 nF
5.6
SYNCLK
ROSC
Inpu t
Rosc
39 k Ω
Output low-pass filter
To avoid EMI problems, it may be necessary to use a low-pass filter before the speaker. The cutoff frequency
should be larger than 22 kHz and much lower than the output switching frequency. It is necessary to choose the L
and C component values depending on the loudspeaker impedance. Some typical values, which give a cutoff
frequency of 27 kHz, are shown in Figure 24. Typical LC filter for an 8 Ω speaker and Figure 25. Typical LC filter
for a 6 Ω speaker below.
Figure 24. Typical LC filter for an 8 Ω speaker
Figure 25. Typical LC filter for a 6 Ω speaker
DS6437 - Rev 10
page 14/22
TDA7498
Protection functions
5.7
Protection functions
The TDA7498 is fully protected against overvoltages, undervoltages, overcurrents and thermal overloads as
explained here.
Overvoltage protection (OVP)
If the supply voltage exceeds the value for VOVP given in Table 5. Electrical specifications , the overvoltage
protection is activated which forces the outputs to the high-impedance state. When the supply voltage falls back
to within the operating range, the device restarts.
Undervoltage protection (UVP)
If the supply voltage drops below the value for VUVP given in Table 5. Electrical specifications , the undervoltage
protection is activated which forces the outputs to the high-impedance state. When the supply voltage falls back
to within the operating range, the device restarts.
Overcurrent protection (OCP)
If the output current exceeds the value for IOCP given in Table 5. Electrical specifications , the overcurrent
protection is activated which forces the outputs to the high-impedance state. Periodically, the device attempts to
restart. If the overcurrent condition is still present, then the OCP remains active. The restart time, TOC, is
determined by the RC components connected to pin STBY.
Thermal protection (OTP)
If the junction temperature, Tj, reaches 145 °C (nominally), the device goes to mute mode and the positive and
negative PWM outputs are forced to 50% duty cycle. If the junction temperature reaches the value for Tj given in
Table 5. Electrical specifications , the device shuts down and the output is forced to the high-impedance state.
When the device cools sufficiently the device restarts.
5.8
Diagnostic output
The output pin DIAG is an open-drain transistor. When any protection is activated, it switches to the highimpedance state. The pin can be connected to a power supply (< 39 V) by a pull-up resistor whose value is limited
by the maximum sinking current (200 µA) of the pin.
Figure 26. Behavior of pin DIAG for various protection conditions
VDD
TDA7498
R1
DIAG
Protection logic
VDD
Overcurrent
prot ection
DS6437 - Rev 10
Restart
Restart
OV, UV, OT
prot ection
page 15/22
TDA7498
Package information
6
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
6.1
PowerSSO-36 EPU package information
Figure 27. PowerSSO-36 EPU package outline
DS6437 - Rev 10
page 16/22
TDA7498
PowerSSO-36 EPU package information
Table 9. PowerSSO-36 EPU package mechanical data
Symbol
DS6437 - Rev 10
mm
inches
Min.
Typ.
Max.
Min.
Typ.
Max.
A
2.15
-
2.45
0.085
-
0.096
A2
2.15
-
2.35
0.085
-
0.093
a1
0
-
0.10
0
-
0.004
b
0.18
-
0.36
0.007
-
0.014
c
0.23
-
0.32
0.009
-
0.013
D
10.10
-
10.50
0.398
-
0.413
E
7.40
-
7.60
0.291
-
0.299
e
-
0.5
-
-
0.020
-
e3
-
8.5
-
-
0.335
-
F
-
2.3
-
-
0.091
-
G
-
-
0.10
-
-
0.004
H
10.10
-
10.50
0.398
-
0.413
h
-
-
0.40
-
-
0.016
k
0
-
8 degrees
0
-
8 degrees
L
0.55
-
0.85
0.022
-
0.033
M
-
4.30
-
-
0.169
-
N
-
-
10 degrees
-
-
10 degrees
O
-
1.20
-
-
0.047
-
Q
-
0.80
-
-
0.031
-
S
-
2.90
-
-
0.114
-
T
-
3.65
-
-
0.144
-
U
-
1.00
-
-
0.039
-
X
4.10
-
4.70
0.161
-
0.185
Y
6.50
-
7.10
0.193
-
0.280
page 17/22
TDA7498
Revision history
Table 10. Document revision history
Date
Revision
11-Aug-2009
1
27-Aug-2009
2
Changes
Initial release.
Updated supply voltage range on page 1.
Updated package exposed pad dimension Y (Min) in Section 6.1 .
Updated first feature on page 1.
Updated order code name in Section
23-Oct-2009
3
Updated Table 5. Electrical specifications
Updated Section 4.2 Characterization curves
Removed tables for standby, mute and gain after Figure 19. Application circuit for 6 Ω
or 8 Ω speakers.
Removed datasheet preliminary status, updated features list and updated Section
DS6437 - Rev 10
30-Jun-2010
4
Added Table 4. Recommended operating conditions with updated minimum supply
voltage.
27-Jan-2011
5
Updated applications circuit in Figure 19. Application circuit for 6 Ω or 8 Ω speakers.
11-Feb-2011
6
Updated test circuit for characterizations in Section 4.1 .
29-Mar-2011
7
Updated IOCP in Table 5. Electrical specifications .
12-Sep-2011
8
Updated OUTNA in Table 1. Pin description list
09-Sep-2015
9
Updated VCC in Table 2. Absolute maximum ratings and dimension L in Section 6.1
28-Aug-2020
10
Removed order code for tube version.
page 18/22
TDA7498
Contents
Contents
1
Device block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
3
4
5
6
2.1
Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2
Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1
Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Characterization curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1
Test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2
Characterization curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2.1
For RL = 6 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2.2
For RL = 8 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
5.1
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2
Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3
Gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4
Input resistance and capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.5
Internal and external clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.5.1
Master mode (internal clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.5.2
Slave mode (external clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.6
Output low-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.7
Protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.8
Diagnostic output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
6.1
PowerSSO-36 EPU package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
DS6437 - Rev 10
page 19/22
TDA7498
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Pin description list . . . . . . . . . . . . . . . . . . . .
Absolute maximum ratings . . . . . . . . . . . . . .
Thermal data. . . . . . . . . . . . . . . . . . . . . . . .
Recommended operating conditions. . . . . . . .
Electrical specifications . . . . . . . . . . . . . . . .
Mode settings . . . . . . . . . . . . . . . . . . . . . . .
Gain settings . . . . . . . . . . . . . . . . . . . . . . . .
How to set up SYNCLK. . . . . . . . . . . . . . . . .
PowerSSO-36 EPU package mechanical data .
Document revision history . . . . . . . . . . . . . . .
DS6437 - Rev 10
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 4
. 5
. 5
. 5
. 5
11
12
13
17
18
page 20/22
TDA7498
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
DS6437 - Rev 10
Internal block diagram (showing one channel only) . . .
Pin connections (top view, PCB view) . . . . . . . . . . .
Test circuit for characterizations . . . . . . . . . . . . . . . .
Test board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output power (THD = 10%) vs. supply voltage . . . . . .
THD vs. output power . . . . . . . . . . . . . . . . . . . . . . .
THD vs. frequency (1 W) . . . . . . . . . . . . . . . . . . . . .
THD vs. frequency (100 mW) . . . . . . . . . . . . . . . . . .
Frequency response . . . . . . . . . . . . . . . . . . . . . . . .
FFT performance (0 dBFS) . . . . . . . . . . . . . . . . . . .
FFT performance (-60 dBFS) . . . . . . . . . . . . . . . . . .
Output power (THD = 10%) vs. supply voltage . . . . . .
THD vs. output power . . . . . . . . . . . . . . . . . . . . . . .
THD vs. frequency (1 W) . . . . . . . . . . . . . . . . . . . . .
THD vs. frequency (100 mW) . . . . . . . . . . . . . . . . . .
Frequency response . . . . . . . . . . . . . . . . . . . . . . . .
FFT performance (0 dB) . . . . . . . . . . . . . . . . . . . . .
FFT performance (-60 dB) . . . . . . . . . . . . . . . . . . . .
Application circuit for 6 Ω or 8 Ω speakers . . . . . . . . .
Standby and mute circuits . . . . . . . . . . . . . . . . . . . .
Turn on/off sequence for minimizing speaker “pop” . . .
Input circuit and frequency response . . . . . . . . . . . . .
Master and slave connection . . . . . . . . . . . . . . . . . .
Typical LC filter for an 8 Ω speaker . . . . . . . . . . . . . .
Typical LC filter for a 6 Ω speaker . . . . . . . . . . . . . . .
Behavior of pin DIAG for various protection conditions .
PowerSSO-36 EPU package outline . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 2
. 3
. 7
. 8
. 9
. 9
. 9
. 9
. 9
. 9
. 9
10
10
10
10
10
10
10
11
12
12
13
14
14
14
15
16
page 21/22
TDA7498
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2020 STMicroelectronics – All rights reserved
DS6437 - Rev 10
page 22/22