TDA7561
Multifunction quad power amplifier with built-in diagnostics features
Datasheet production data
Features
■
Multipower BCD technology
■
DMOS power output
■
High output power capability 4 x 25 W / 4 @
14.4 V, 1 kHz, 10 % THD, 4 x 35 W EIAJ
■
Max. output power 4 x 60 W / 2
'!0'03
'!0'03
I2C
■
Full
bus driving:
– Standby
– Independent front/rear soft play/mute
– Selectable gain 26 dB - 12 dB (for low noise
line output function)
– I2C bus digital diagnostics
■
Full fault protection
■
DC offset detection
■
Four independent short circuit protection
■
Clipping detector
■
ESD protection
Flexiwatt25
(vertical)
Flexiwatt25
(horizontal)
Thanks to the DMOS output stage the TDA7561
has a very low distortion allowing a clear powerful
sound.
This device is equipped with a full diagnostics
array that communicates the status of each
speaker through the I2C bus.The possibility to
control the configuration and behaviour of the
device by means of the I2C bus makes TDA7561
a very flexible machine.
Description
The TDA7561 is a BCD technology quad bridge
type of car radio amplifier in Flexiwatt25 package
specially intended for car radio applications.
Table 1.
Device summary
Order code
Package
Packing
TDA7561
Flexiwatt25 (vertical)
Tube
TDA7561H
Flexiwatt25 (horizontal)
Tube
September 2013
This is information on a product in full production.
Doc ID 8326 Rev 6
1/27
www.st.com
1
Contents
TDA7561
Contents
1
Block diagram and test/application diagram . . . . . . . . . . . . . . . . . . . . . 5
2
Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4
5
3.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4
Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Diagnostics functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1
Turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2
Permanent diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3
Output DC offset detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Multiple faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1
6
Faults availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.1
I2C programming/reading sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2
I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2.1
Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2.2
Start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2.3
Byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2.4
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7
Software specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8
Examples of bytes sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
10
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2/27
Doc ID 8326 Rev 6
TDA7561
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Double fault table for turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
IB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
IB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
DB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DB3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DB4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Doc ID 8326 Rev 6
3/27
List of figures
TDA7561
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
4/27
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Test and application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pins connection diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Output power vs. supply voltage, RL = 2
Output power vs. supply voltage, RL = 4
Distortion vs output power, RL = 2
Distortion vs output power, RL = 4
Distortion vs. frequency, RL = 2
Distortion vs. frequency, RL = 4
Crosstalk vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Power dissipation and efficiency vs. output power (4, SINE). . . . . . . . . . . . . . . . . . . . . . 11
Power dissipation vs. average output power (audio program simulation, 4) . . . . . . . . . . 11
Power dissipation vs. average output power (audio program simulation, 2
Turn-on diagnostic: working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
SVR and output behaviour (case 1: without turn-on diagnostic). . . . . . . . . . . . . . . . . . . . . 12
SVR and output pin behaviour (case 2: with turn-on diagnostic) . . . . . . . . . . . . . . . . . . . . 13
Short circuit detection thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Load detection thresholds - high gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Load detection threshold - low gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Restart timing without diagnostic enable (permanent) - Each 1 mS time,
a sampling of the fault is done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Restart timing with diagnostic enable (permanent). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Data validity on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Timing diagram on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Acknowledge on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Flexivatt25 (vertical) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . 24
Flexivatt25 (horizontal) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . 25
Doc ID 8326 Rev 6
TDA7561
1
Block diagram and test/application diagram
Block diagram and test/application diagram
Figure 1.
Block diagram
#,+
4(%2-!,
02/4%#4)/.
$5-0
2%&%2%.#%
).2&
6##
$!4!
6##
#$?/54
)#"53
#,)0
$%4%#4/2
-54% -54%
&
/542&
D"
).22
3(/24#)2#5)4
02/4%#4)/.
$)!'./34)#
2
/542&
/5422
D"
).,&
3(/24#)2#5)4
02/4%#4)/.
$)!'./34)#
&
/5422
/54,&
D"
).,2
3(/24#)2#5)4
02/4%#4)/.
$)!'./34)#
2
/54,&
/54,2
D"
3(/24#)2#5)4
02/4%#4)/.
$)!'./34)#
362
!#?'.$
2&
22
,&
,2
4!"
3?'.$
07?'.$
Figure 2.
/54,2
'!0'03
Test and application diagram
#
M&
#
M&
6CC
6CC
$!4!
)#"53
#,+
#M&
).2&
#M&
/5422
#M&
).,&
/542&
).22
/54,&
#M&
).,2
3
'.$
#
M&
+
#
M&
#$/54
Doc ID 8326 Rev 6
/54,2
4!"
6
'!0'03
5/27
Pins description
2
TDA7561
Pins description
Figure 3.
Pins connection diagram (top view)
$!4!
07?'.$22
/5422
#+
/5422
&LEXIWATTVERTICAL
6##
/542&
07?'.$2&
/542&
!#'.$
).2&
).22
3'.$
).,2
).,&
362
/54,&
07?'.$,&
/54,&
6##
/54,2
#$
/54
/54,2
07?'.$,2
4!"
$!4!
07?'.$22
/5422
#+
/5422
&LEXIWATTHORIZONTAL
6##
/542&
07?'.$2&
/542&
!#'.$
).2&
).22
3'.$
).,2
).,&
362
/54,&
07?'.$,&
/54,&
6##
/54,2
#$
/54
/54,2
07?'.$,2
4!"
'!0'03
6/27
Doc ID 8326 Rev 6
TDA7561
Electrical specifications
3
Electrical specifications
3.1
Absolute maximum ratings
Table 2.
Absolute maximum ratings
Symbol
Unit
Operating supply voltage
18
V
VS
DC supply voltage
28
V
Peak supply voltage (for t = 50 ms)
50
V
CK pin voltage
6
V
Data pin voltage
6
V
IO
Output peak current (not repetitive t = 100 ms)
8
A
IO
Output peak current (repetitive f > 10 Hz)
6
A
Power dissipation Tcase = 70 °C
85
W
-55 to 150
°C
Value
Unit
1
°C/W
VCK
VDATA
Ptot
Tstg, Tj
Storage and junction temperature
Thermal data
Table 3.
Thermal data
Symbol
Rth j-case
3.3
Value
Vop
Vpeak
3.2
Parameter
Parameter
Thermal resistance junction-to-case
Max.
Electrical characteristics
Refer to the test circuit, VS = 14.4 V; RL = 4 ; f = 1 kHz; Tamb = 25 °C; unless otherwise specified.
Table 4.
Electrical characteristics
Symbol
Parameter
Test condition
Min.
Typ.
Max.
Unit
Power amplifier
VS
Supply voltage range
-
8
-
18
V
Id
Total quiescent drain current
-
-
150
300
mA
EIAJ (VS = 13.7 V)
32
35
-
W
THD = 10%
22
25
-
W
THD = 1%
-
20
-
W
RL = 2 ; EIAJ (VS = 13.7 V)
50
55
-
W
RL = 2 ; THD 10%
32
38
-
W
RL = 2 ; THD 1%
-
30
-
W
RL = 2 ; Max. power
-
60
-
W
PO
Output power
Doc ID 8326 Rev 6
7/27
Electrical specifications
Table 4.
Electrical characteristics (continued)
Symbol
THD
TDA7561
Parameter
Total harmonic distortion
Test condition
Min.
Typ.
Max.
Unit
PO = 1 W to 10 W
-
0.04
0.1
%
GV = 12 dB; VO = 0.1 to 5 VRMS
-
0.02
0.05
%
CT
Cross talk
f = 1 kHz to 10 kHz, Rg = 600
50
60
-
dB
RIN
Input impedance
-
80
100
130
k
GV1
Voltage gain 1
-
25
26
27
dB
Voltage gain match 1
-
-1
-
1
dB
Voltage gain 2
-
11
12
13
dB
GV2
Voltage gain match 2
-
-1
-
1
dB
EIN1
Output noise voltage 1
Rg = 600 , 20 Hz to 22 kHz
-
35
80
µV
EIN2
Output noise voltage 2
Rg = 600 ; GV = 12 dB
20 Hz to 22 kHz
-
12
20
µV
SVR
Supply voltage rejection
f = 100 Hz to 10 kHz;
Vr = 1 Vpk; Rg = 600
50
60
-
dB
BW
Power bandwidth
-
100
-
-
kHz
ASB
Standby attenuation
-
90
110
-
dB
ISB
Standby current
-
-
25
100
µA
AM
Mute attenuation
-
80
100
-
dB
VOS
Offset voltage
Mute & play
-100
0
100
mV
VAM
Min. supply mute threshold
-
7
7.5
8
V
TON
Turn-on delay
D2/D1 (IB1) 0 to 1
-
20
40
ms
TOFF
Turn-off delay
D2/D1 (IB1) 1 to 0
-
20
40
ms
CDLK
Clip det. high leakage current
CD off
-
0
15
µA
CDSAT
Clip det. sat. voltage
CD on; ICD = 1 mA
-
150
300
mV
CDTHD
Clip det. THD level
VS > 10 V
-
1
2
%
-
-
1.2
V
Vs -1.2
-
GV1
GV2
Turn on diagnostics 1 (Power amplifier mode)
Pgnd
Pvs
Short to GND det. (below this
limit, the Output is considered in
short circuit to GND)
Power amplifier in standby
condition
Short to Vs det. (above this limit,
the output is considered in short circuit to VS)
V
Normal operation thresholds.
(Within these limits, the Output
is considered without faults).
-
1.8
-
Vs -1.8
V
Lsc
Shorted load det.
-
-
-
0.5
Lop
Open load det.
-
130
-
Lnop
Normal load det.
-
1.5
-
Pnop
8/27
Doc ID 8326 Rev 6
70
TDA7561
Table 4.
Electrical specifications
Electrical characteristics (continued)
Symbol
Parameter
Test condition
Min.
Typ.
Max.
Unit
-
-
1.2
V
Vs -1.2
-
-
V
Turn-on diagnostics 2 (Line driver mode)
Pgnd
Pvs
Short to GND det. (below this
limit, the Output is considered in
short circuit to GND)
Power amplifier in standby
Short to Vs det. (above this limit,
the output is considered in short circuit to VS)
Normal operation thresholds
(within these limits, the output is
considered without faults).
-
1.8
-
Vs -1.8
V
Lsc
Shorted load det.
-
-
-
1.5
Lop
Open load det.
-
400
-
-
Lnop
Normal load det.
-
4.5
-
200
-
-
1.2
V
Vs -1.2
-
-
V
1.8
-
Vs -1.8
V
Power amplifier mode
-
-
0.5
Line driver mode
-
-
1.5
1.5
2
2.5
V
Pnop
Permanent diagnostics 2 (Power amplifier mode or line driver mode)
Pgnd
Pvs
Pnop
Short to GND det. (below this
limit, the Output is considered in
short circuit to GND)
Power amplifier in mute or play,
one or more short circuits
protection activated
Short to Vs det. (above this limit,
the output is considered in short circuit to VS)
Normal operation thresholds.
(within these limits, the output is
considered without faults)
LSC
Shorted load det.
VO
Offset detection
-
Power amplifier in play, AC Input
signals = 0
I2C bus interface
fSCL
Clock frequency
-
-
400
-
kHz
VIL
Input low voltage
-
-
-
1.5
V
VIH
Input high voltage
-
2.3
-
-
V
Doc ID 8326 Rev 6
9/27
Electrical specifications
TDA7561
3.4
Electrical characteristics curves
Figure 4.
Quiescent current vs. supply
voltage
Figure 5.
)DM!
0O 7
6IN
./ , /!$3
Output power vs. supply voltage,
RL = 2
6S6
Figure 6.
0O
MAX
2, /HM
F+( Z
4($
4($
6S6
'!0'03
Output power vs. supply voltage,
RL = 4
Figure 7.
0O 7
'!0'03
Distortion vs output power,
RL = 2
4( $
0O
MAX
6 S 6
2,/ HM
2, /HM
F+( Z
4( $
FK (Z
FK (Z
4( $
Figure 8.
6S6
Distortion vs output power,
RL = 4
0O 7
'!0'03
'!0'03
Distortion vs. frequency, RL = 2
Figure 9.
4( $
4($
6S 6
2, /HM
0O 7
6 S6
2,/ HM
FK(Z
FK (Z
10/27
0O 7
'!0'03
Doc ID 8326 Rev 6
F(Z
'!0'03
TDA7561
Electrical specifications
Figure 10. Distortion vs. frequency, RL = 4
Figure 11. Crosstalk vs. frequency
4($
#2/33 4!,+D"
6S 6
2,/HM
0O 7
6S6
2,/HM
0O 7
2G/HM
F(Z
F(Z
'!0'03
Figure 12. Supply voltage rejection vs.
frequency
'!0'03
Figure 13. Power dissipation and efficiency
vs. output power (4, SINE)
H
0TOT7
362 D"
H
6S6
2,X/HM
F+(Z3).%
0TOT
2G/HM
6R IPPLE 6 PK
Figure 14.
F(Z
'!0'03
0O7
'!0'03
Power dissipation vs. average output Figure 15. Power dissipation vs. average output
power (audio program simulation, 4)
power (audio program simulation, 2
0TOT7
0TOT7
6S6
2,X/HM
'!533)!../)3%
6S6
2,X /HM
'!533)!../)3%
#,)0
34!24
#,)0
34!24
0O 7
'!0'03
Doc ID 8326 Rev 6
0O7
'!0'03
11/27
Diagnostics functional description
TDA7561
4
Diagnostics functional description
4.1
Turn-on diagnostic
It is activated at the turn-on (standby out) under I2C bus request. Detectable output faults
are:
●
Short to GND
●
Short to Vs
●
Short across the speaker
●
Open speaker
To verify if any of the above misconnections are in place, a subsonic (inaudible) current
pulse (Figure 16) is internally generated, sent through the speaker(s) and sunk back.The
Turn On diagnostic status is internally stored until a successive diagnostic pulse is
requested (after a I2C reading).
If the "standby out" and "diag. enable" commands are both given through a single
programming step, the pulse takes place first (power stage still in stand-by mode, low,
outputs = high impedance).
Afterwards, when the Amplifier is biased, the permanent diagnostic takes place. The
previous Turn-on state is kept until a short appears at the outputs.
Figure 16. Turn-on diagnostic: working principle
9Va9
,VRXUFH
,P$
,VRXUFH
,VLQN
,VLQN
aPV
WPV
0HDVXUHWLPH
'!0'03
Figure 17 and 18 show SVR and output waveforms at the turn-on (stand-by out) with and
without turn-on diagnostic.
Figure 17. SVR and output behaviour (case 1: without turn-on diagnostic)
6SVR
/UT
0ERMANENTDIAGNOSTIC
ACQUISITIONTIMEM34YP
"IASPOWERAMPTURN
ON
)#"$!4!
12/27
T
$IAGNOSTIC%NABLE
0ERMANENT
&! 5,4
EVENT
0ERMANENT$IAGNOSTICSDATAOUTPUT
PERMITTEDTIME
Doc ID 8326 Rev 6
2EAD$ATA
'!0'03
TDA7561
Diagnostics functional description
Figure 18. SVR and output pin behaviour (case 2: with turn-on diagnostic)
6 S VR
/UT
4URN
ONDIAGNOSTIC
ACQUISITIONTIMEM34YP
0ERMANENTDIAGNOSTIC
ACQUISITIONTIMEM34YP
T
4URN
ON$IAGNOSTICSDATAOUTPUT
PERMITTEDTIME
$IAGNOSTIC%NABLE
4URN
ON
$IAGNOSTIC%NABLE
0ERMANENT
"IASPOWERAMPTURN
ON
PERMITTEDTIME
) # " $ !4!
2EAD$ATA
&!5,4
EVENT
0ERMANENT$IAGNOSTICDATAOUTPUT
PERMITTEDTIME
'!0'03
The information related to the outputs status is read and memorized at the end of the
current pulse top. The acquisition time is 100 ms (typ.). No audible noise is generated in the
process. As for short to GND / Vs the fault-detection thresholds remain unchanged from 26
dB to 12 dB gain setting. They are as follows:
Figure 19. Short circuit detection thresholds
3#TO'.$
6
X
6
.ORMAL/PERATION
6
X
63
6
3#TO6S
63
6
63
'!0'03
Concerning short across the speaker / open speaker, the threshold varies from 26 dB to 12
dB gain setting, since different loads are expected (either normal speaker's impedance or
high impedance). The values in case of 26 dB gain are as follows:
Figure 20. Load detection thresholds - high gain setting
3#ACROSS,OAD
6
X
7
.ORMAL/PERATION
7
X
/PEN,OAD
7
7
)NFINITE
'!0'03
If the line-driver mode (Gv = 12 dB and line driver mode diagnostic = 1) is selected, the
same thresholds will change as follows:
Figure 21. Load detection threshold - low gain setting
3#ACROSS,OAD
7
7
X
.ORMAL/PERATION
7
Doc ID 8326 Rev 6
7
X
/PEN,OAD
7
INFINITE
'!0'03
13/27
Diagnostics functional description
4.2
TDA7561
Permanent diagnostics
Detectable conventional faults are:
●
Short to GND
●
Short to Vs
●
Short across the speaker
The following additional features are provided:
●
Output offset detection
The TDA7561 has 2 operating statuses:
1.
Restart mode. The diagnostic is not enabled. Each audio channel operates
independently from each other. If any of the a.m. faults occurs, only the channel(s)
interested is shut down. A check of the output status is made every 1 ms (Figure 22).
Restart takes place when the overload is removed.
2.
Diagnostic mode. It is enabled via I2C bus and self activates if an output overload (such
to cause the intervention of the short-circuit protection) occurs to the speakers outputs.
Once activated, the diagnostics procedure develops as follows (Figure 23):
–
To avoid momentary re-circulation spikes from giving erroneous diagnostics, a
check of the output status is made after 1ms: if normal situation (no overloads) is
detected, the diagnostic is not performed and the channel returns back active.
–
Instead, if an overload is detected during the check after 1 ms, then a diagnostic
cycle having a duration of about 100 ms is started.
–
After a diagnostic cycle, the audio channel interested by the fault is switched to
restart mode. The relevant data are stored inside the device and can be read by
the microprocessor. When one cycle has terminated, the next one is activated by
an I2C reading. This is to ensure continuous diagnostics throughout the car-radio
operating time.
–
To check the status of the device a sampling system is needed. The timing is
chosen at microprocessor level (over half a second is recommended).
Figure 22. Restart timing without diagnostic enable (permanent) - Each 1 mS time, a
sampling of the fault is done
/UT
M3
M3
M3
M3
M3
T
/VERCURRENT AND SHOR T
CIRCUIT PROTECTIONINTERVENTION
IESHORT CIRCUI TT O'.$
3HORT CI RCUI TREMOVED
'!0'03
Figure 23. Restart timing with diagnostic enable (permanent)
M3
M3
M3
M3
T
/VERCURRENT ANDSHORT
CIRCUITPROTECTI ON IN TERVENTI ON
IES HORTC IRCUI TTO'.$
14/27
3HO RTCIRCUIT REMOVED
'!0'03
Doc ID 8326 Rev 6
TDA7561
4.3
Diagnostics functional description
Output DC offset detection
Any DC output offset exceeding ±2 V are signalled out. This inconvenient might occur as a
consequence of initially defective or aged and worn-out input capacitors feeding a DC
component to the inputs, so putting the speakers at risk of overheating.
This diagnostic has to be performed with low-level output AC signal (or Vin = 0).
The test is run with selectable time duration by microprocessor (from a "start" to a "stop"
command):
●
Start = Last reading operation or setting IB1 - D5 - (offset enable) to 1
●
Stop = Actual reading operation
Excess offset is signalled out if persistent throughout the assigned testing time. This feature
is disabled if any overloads leading to activation of the short-circuit protection occurs in the
process.
Doc ID 8326 Rev 6
15/27
Multiple faults
5
TDA7561
Multiple faults
When more misconnections are simultaneously in place at the audio outputs, it is
guaranteed that at least one of them is initially read out. The others are notified after
successive cycles of I2C reading and faults removal, provided that the diagnostic is enabled.
This is true for both kinds of diagnostic (turn on and permanent).
The table below shows all the couples of possible double-fault. It should be taken into
account that a short circuit with the 4 ohm speaker unconnected is considered as double
fault.
Table 5.
Double fault table for turn-on diagnostic
S. GND (so)
S. GND (sk)
S. Vs
S. Across L.
Open L.
S. GND (so)
S. GND
S. GND
S. Vs + S.
GND
S. GND
S. GND
S. GND (sk)
/
S. GND
S. Vs
S. GND
Open L. (*)
S. Vs
/
/
S. Vs
S. Vs
S. Vs
S. Across L.
/
/
/
S. Across L.
N.A.
Open L.
/
/
/
/
Open L. (*)
S. GND (so) / S. GND (sk) in the above table make a distinction according to which of the 2
outputs is shorted to ground (test-current source side= so, test-current sink side = sk). More
precisely, so = CH+, sk = CH-.
In permanent diagnostic the table is the same, with only a difference concerning Open
Load(*), which is not among the recognizable faults. Should an Open Load be present during
the device's normal working, it would be detected at a subsequent Turn on Diagnostic cycle
(i.e. at the successive Car Radio Turn on).
5.1
Faults availability
All the results coming from I2C bus, by read operations, are the consequence of
measurements inside a defined period of time. If the fault is stable throughout the whole
period, it will be sent out.
To guarantee always resident functions, every kind of diagnostic cycles (Turn-on,
Permanent, Offset) will be reactivate after any I2C reading operation. So, when the
microprocessor reads the I2C, a new cycle will be able to start, but the read data will come
from the previous diag. cycle (i.e. The device is in turn-on state, with a short to GND, then
the short is removed and micro reads I2C. The short to GND is still present in bytes,
because it is the result of the previous cycle. If another I2C reading operation occurs, the
bytes do not show the short). In general to observe a change in diagnostic bytes, two I2C
reading operations are necessary.
16/27
Doc ID 8326 Rev 6
TDA7561
I2C bus
6
I2C bus
6.1
I2C programming/reading sequence
A correct turn on/off sequence respectful of the diagnostic timings and producing no audible
noises could be as follows (after battery connection):
6.2
●
Turn-on: (Standby out + Diag enable) --- 500 ms (min) --- Muting out
●
Turn-off: Muting in --- 20 ms --- (Diag disable + Standby in)
●
Car radio installation: Diag enable (write) --- 200 ms --- I2C read (repeat until All faults
disappear).
●
Offset test: Device in Play (no signal) -- Offset enable - 30 ms - I2C reading (repeat I2C
reading until high-offset message disappears).
I2C bus interface
Data transmission from microprocessor to the TDA7561 and viceversa takes place through
the 2 wires I2C bus interface, consisting of the two lines SDA and SCL (pull-up resistors to
positive supply voltage must be connected).
6.2.1
Data validity
As shown by Figure 24, the data on the SDA line must be stable during the high period of
the clock.
The High and Low state of the data line can only change when the clock signal on the SCL
line is Low.
6.2.2
Start and stop conditions
As shown by Figure 25 a start condition is a High to Low transition of the SDA line while SCL
is HIGH.
The stop condition is a Low to High transition of the SDA line while SCL is High.
6.2.3
Byte format
Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an
acknowledge bit. The MSB is transferred first.
Doc ID 8326 Rev 6
17/27
I2C bus
6.2.4
TDA7561
Acknowledge
The transmitter puts a resistive HIGH level on the SDA line during the acknowledge clock
pulse (see Figure 26). The receive the acknowledges has to pull-down (LOW) the SDA line
during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock
pulse.
Transmitter:
–
master (µP) when it writes an address to the TDA7561
–
slave (TDA7561) when the µP reads a data byte from TDA7561
Receiver:
–
slave (TDA7561) when the µP writes an address to the TDA7561
–
master (µP) when it reads a data byte from TDA7561
Figure 24. Data validity on the I2C bus
3$!
3#,
$!4!,).%
34!",%$!4!
6!,)$
#(!.'%
$!4!
!,,/7%$
'!0'03
Figure 25. Timing diagram on the I2C bus
3#,
)#"53
3$!
34!24
34/0
'!0'03
Figure 26. Acknowledge on the I2C bus
3#,
3$!
-3"
!#+./7,%$'-%.4
&2/-2%#%)6%2
34!24
18/27
Doc ID 8326 Rev 6
'!0'03
TDA7561
7
Software specifications
Software specifications
All the functions of the TDA7561 are activated by I2C interface.
The bit 0 of the "Address byte" defines if the next bytes are write instruction (from µP to
TDA7561) or read instruction (from TDA7561 to µP).
Chip address
D7
D0
1
1
0
1
1
0
0
X
D8 Hex
X = 0 Write to device
X = 1 Read from device
If R/W = 0, the µP sends 2 "Instruction Bytes": IB1 and IB2.
Table 6.
IB1
Bit
Instruction decoding bit
D7
X
D6
Diagnostic enable (D6 = 1)
Diagnostic defeat (D6 = 0)
D5
Offset detection enable (D5 = 1)
Offset detection defeat (D5 = 0)
D4
Front channel
Gain = 26dB (D4 = 0)
Gain = 12dB (D4 = 1)
D3
Rear channel
Gain = 26dB (D3 = 0)
Gain = 12dB (D3 = 1)
D2
Mute front channels (D2 = 0)
Unmute front channels (D2 = 1)
D1
Mute rear channels (D1 = 0)
Unmute rear channels (D1 = 1)
D0
X
Doc ID 8326 Rev 6
19/27
Software specifications
Table 7.
TDA7561
IB2
Bit
Instruction decoding bit
D7
X
D6
Used for testing
D5
Used for testing
D4
Standby on - Amplifier not working - (D4 = 0)
Standby off - Amplifier working - (D4 = 1)
D3
Power amplifier mode diagnostic (D3 = 0)
Line driver mode diagnostic (D3 = 1)
D2
X
D1
X
D0
X
If R/W = 1, the TDA7561 sends 4 "Diagnostics Bytes" to µP: DB1, DB2, DB3 and DB4.
Table 8.
DB1
Bit
20/27
Instruction decoding bit
D7
Thermal warning active (D7 = 1)
D6
Diag. cycle not activated or not terminated (D6 = 0)
Diag. cycle terminated (D6 = 1)
D5
X
D4
Channel LFTurn-on diagnostic (D4 = 0)
Permanent diagnostic (D4 = 1)
D3
Channel LF
Normal load (D3 = 0)
Short load (D3 = 1)
D2
Channel LFTurn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Offset diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
D1
Channel LFNo short to Vcc (D1 = 0)Short to Vcc (D1 = 1)
D0
Channel LFNo short to GND (D1 = 0)Short to GND (D1 = 1)
Doc ID 8326 Rev 6
TDA7561
Software specifications
Table 9.
DB2
Bit
Instruction decoding bit
D7
Offset detection not activated (D7 = 0)
Offset detection activated (D7 = 1)
D6
X
D5
X
D4
Channel LRTurn-on diagnostic (D4 = 0)
Permanent diagnostic (D4 = 1)
D3
Channel LRNormal load (D3 = 0)
Short load (D3 = 1)
D2
Channel LRTurn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Permanent diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
D1
Channel LR
No short to Vcc (D1 = 0)
Short to Vcc (D1 = 1)
D0
Channel LR
No short to GND (D1 = 0)
Short to GND (D1 = 1)
Table 10.
DB3
Bit
Instruction decoding bit
D7
Standby status (= IB1 - D4)
D6
Diagnostic status (= IB1 - D6)
D5
X
D4
Channel RFTurn-on diagnostic (D4 = 0)
Permanent diagnostic (D4 = 1)
D3
Channel RFNormal load (D3 = 0)
Short load (D3 = 1)
D2
Channel RF
Turn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Permanent diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
D1
Channel RFNo short to Vcc (D1 = 0)
Short to Vcc (D1 = 1)
D0
Channel RFNo short to GND (D1 = 0)
Short to GND (D1 = 1)
Doc ID 8326 Rev 6
21/27
Software specifications
Table 11.
TDA7561
DB4
Bit
22/27
Instruction decoding bit
D7
X
D6
X
D5
X
D4
Channel RR
Turn-on diagnostic (D4 = 0)
Permanent diagnostic (D4 = 1)
D3
Channel RR
Normal load (D3 = 0)
Short load (D3 = 1)
D2
Channel RR
Turn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Permanent diag.:No output offset (D2 = 0)
Output offset detection (D2 = 1)
D1
Channel RRNo short to Vcc (D1 = 0) Short to Vcc (D1 = 1)
D0
Channel RRNo short to GND (D1 = 0) Short to GND (D1 = 1)
Doc ID 8326 Rev 6
TDA7561
8
Examples of bytes sequence
Examples of bytes sequence
1 - Turn-on diagnostic - Write operation
Start
Address byte with D0 = 0
ACK
IB1 with D6 = 1 ACK
IB2
ACK
STOP
2 - Turn-on diagnostic - Read operation
Start Address byte with D0 = 1 ACK
DB1
ACK
DB2
ACK
DB3
ACK
DB4
ACK STOP
The delay from 1 to 2 can be selected by software, starting from 1 ms
3a - Turn-on of the power amplifier with 26 dB gain, mute on, diagnostic defeat.
Start
Address byte with D0 = 0
ACK
IB1
ACK
X000000X
IB2
ACK STOP
XXX1X0XX
3b - Turn-off of the power amplifier
Start
Address byte with D0 = 0
ACK
IB1
ACK
X0XXXXXX
IB2
ACK STOP
XXX0XXXX
4 - Offset detection procedure enable
Start
Address byte with D0 = 0
ACK
IB1
ACK
XX1XX11X
IB2
ACK STOP
XXX1X0XX
5 - Offset detection procedure stop and reading operation (the results are valid only for the
offset detection bits (D2 of the bytes DB1, DB2, DB3, DB4).
Start Address byte with D0 = 1 ACK
DB1
ACK
DB2
ACK
DB3
ACK
DB4
ACK STOP
●
The purpose of this test is to check if a DC offset (2V typ.) is present on the outputs,
produced by input capacitor with anomalous leakage current or humidity between pins.
●
The delay from 4 to 5 can be selected by software, starting from 1 ms.
Doc ID 8326 Rev 6
23/27
Package information
9
TDA7561
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 27. Flexivatt25 (vertical) mechanical data and package dimensions
$)-
!
"
#
$
%
&
'
'
(
(
(
(
,
,
,
,
,
,
-
.
/
2
2
2
2
2
6
6
6
6
-).
MM
490
-!8
-).
INCH
490
-!8
/54,).%!.$
-%#(!.)#!,$!4!
&LEXIWATTVERTICAL
7\S
7\S
7\S
7\S
DAM
BARPROTUSIONNOTINCLUDED
MOLDINGPROTUSIONINCLUDED
6
#
"
6
(
(
6
!
(
/
(
2
,
2
6
2
,
.
,
2
,
,
6
6
2
$
2
,
0IN
2
2
%
'
'
&
&,%8-%
-
-
'!0'03
24/27
Doc ID 8326 Rev 6
TDA7561
Package information
Figure 28. Flexivatt25 (horizontal) mechanical data and package dimensions
',0
$
%
&
'
(
)
*
*
+
+
+
+
/
/
/
/
/
/
/
0
0
0
1
3
5
5
5
5
5
9
9
9
9
0,1
PP
7