0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TDA7561

TDA7561

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    Flexiwatt25

  • 描述:

    智能四路BTL输出功率放大器,支持完全I2C诊断(接通、永久)

  • 数据手册
  • 价格&库存
TDA7561 数据手册
TDA7561 Multifunction quad power amplifier with built-in diagnostics features Datasheet  production data Features ■ Multipower BCD technology ■ DMOS power output ■ High output power capability 4 x 25 W / 4  @ 14.4 V, 1 kHz, 10 % THD, 4 x 35 W EIAJ ■ Max. output power 4 x 60 W / 2  '!0'03 '!0'03 I2C ■ Full bus driving: – Standby – Independent front/rear soft play/mute – Selectable gain 26 dB - 12 dB (for low noise line output function) – I2C bus digital diagnostics ■ Full fault protection ■ DC offset detection ■ Four independent short circuit protection ■ Clipping detector ■ ESD protection Flexiwatt25 (vertical) Flexiwatt25 (horizontal) Thanks to the DMOS output stage the TDA7561 has a very low distortion allowing a clear powerful sound. This device is equipped with a full diagnostics array that communicates the status of each speaker through the I2C bus.The possibility to control the configuration and behaviour of the device by means of the I2C bus makes TDA7561 a very flexible machine. Description The TDA7561 is a BCD technology quad bridge type of car radio amplifier in Flexiwatt25 package specially intended for car radio applications. Table 1. Device summary Order code Package Packing TDA7561 Flexiwatt25 (vertical) Tube TDA7561H Flexiwatt25 (horizontal) Tube September 2013 This is information on a product in full production. Doc ID 8326 Rev 6 1/27 www.st.com 1 Contents TDA7561 Contents 1 Block diagram and test/application diagram . . . . . . . . . . . . . . . . . . . . . 5 2 Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 5 3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Diagnostics functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.1 Turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.2 Permanent diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.3 Output DC offset detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Multiple faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.1 6 Faults availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.1 I2C programming/reading sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.2 I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.2.1 Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.2.2 Start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.2.3 Byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.2.4 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7 Software specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 8 Examples of bytes sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2/27 Doc ID 8326 Rev 6 TDA7561 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Double fault table for turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 IB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 IB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 DB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DB3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DB4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Doc ID 8326 Rev 6 3/27 List of figures TDA7561 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. 4/27 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Test and application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pins connection diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Output power vs. supply voltage, RL = 2   Output power vs. supply voltage, RL = 4   Distortion vs output power, RL = 2  Distortion vs output power, RL = 4  Distortion vs. frequency, RL = 2   Distortion vs. frequency, RL = 4   Crosstalk vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Power dissipation and efficiency vs. output power (4, SINE). . . . . . . . . . . . . . . . . . . . . . 11 Power dissipation vs. average output power (audio program simulation, 4) . . . . . . . . . . 11 Power dissipation vs. average output power (audio program simulation, 2 Turn-on diagnostic: working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 SVR and output behaviour (case 1: without turn-on diagnostic). . . . . . . . . . . . . . . . . . . . . 12 SVR and output pin behaviour (case 2: with turn-on diagnostic) . . . . . . . . . . . . . . . . . . . . 13 Short circuit detection thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Load detection thresholds - high gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Load detection threshold - low gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Restart timing without diagnostic enable (permanent) - Each 1 mS time, a sampling of the fault is done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Restart timing with diagnostic enable (permanent). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Data validity on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Timing diagram on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Acknowledge on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Flexivatt25 (vertical) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . 24 Flexivatt25 (horizontal) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . 25 Doc ID 8326 Rev 6 TDA7561 1 Block diagram and test/application diagram Block diagram and test/application diagram Figure 1. Block diagram #,+ 4(%2-!, 02/4%#4)/. $5-0 2%&%2%.#% ).2& 6## $!4! 6## #$?/54 )#"53 #,)0 $%4%#4/2 -54% -54% & /542& D" ).22 3(/24#)2#5)4 02/4%#4)/. $)!'./34)# 2 /542& /5422 D" ).,& 3(/24#)2#5)4 02/4%#4)/. $)!'./34)# & /5422 /54,& D" ).,2 3(/24#)2#5)4 02/4%#4)/. $)!'./34)# 2 /54,& /54,2 D" 3(/24#)2#5)4 02/4%#4)/. $)!'./34)# 362 !#?'.$ 2& 22 ,& ,2 4!" 3?'.$ 07?'.$ Figure 2. /54,2 '!0'03 Test and application diagram # M& # M& 6CC 6CC  $!4!     )#"53  #,+   #M& ).2&  #M&   /5422   #M& ).,& /542&   ).22   /54,&  #M& ).,2   3 '.$  # M&    + # M& #$/54 Doc ID 8326 Rev 6  /54,2 4!" 6 '!0'03 5/27 Pins description 2 TDA7561 Pins description Figure 3. Pins connection diagram (top view)  $!4!  07?'.$22  /5422  #+ /5422 &LEXIWATTVERTICAL  6##  /542&  07?'.$2&  /542&  !#'.$  ).2&  ).22  3'.$  ).,2  ).,&  362  /54,&  07?'.$,&  /54,&  6## /54,2  #$ /54  /54,2  07?'.$,2  4!"  $!4!  07?'.$22  /5422  #+ /5422 &LEXIWATTHORIZONTAL  6##  /542&  07?'.$2&  /542&  !#'.$  ).2&  ).22  3'.$  ).,2  ).,&  362  /54,&  07?'.$,&  /54,&  6## /54,2  #$ /54  /54,2  07?'.$,2  4!" '!0'03 6/27 Doc ID 8326 Rev 6 TDA7561 Electrical specifications 3 Electrical specifications 3.1 Absolute maximum ratings Table 2. Absolute maximum ratings Symbol Unit Operating supply voltage 18 V VS DC supply voltage 28 V Peak supply voltage (for t = 50 ms) 50 V CK pin voltage 6 V Data pin voltage 6 V IO Output peak current (not repetitive t = 100 ms) 8 A IO Output peak current (repetitive f > 10 Hz) 6 A Power dissipation Tcase = 70 °C 85 W -55 to 150 °C Value Unit 1 °C/W VCK VDATA Ptot Tstg, Tj Storage and junction temperature Thermal data Table 3. Thermal data Symbol Rth j-case 3.3 Value Vop Vpeak 3.2 Parameter Parameter Thermal resistance junction-to-case Max. Electrical characteristics Refer to the test circuit, VS = 14.4 V; RL = 4 ; f = 1 kHz; Tamb = 25 °C; unless otherwise specified. Table 4. Electrical characteristics Symbol Parameter Test condition Min. Typ. Max. Unit Power amplifier VS Supply voltage range - 8 - 18 V Id Total quiescent drain current - - 150 300 mA EIAJ (VS = 13.7 V) 32 35 - W THD = 10% 22 25 - W THD = 1% - 20 - W RL = 2 ; EIAJ (VS = 13.7 V) 50 55 - W RL = 2 ; THD 10% 32 38 - W RL = 2 ; THD 1% - 30 - W RL = 2 ; Max. power - 60 - W PO Output power Doc ID 8326 Rev 6 7/27 Electrical specifications Table 4. Electrical characteristics (continued) Symbol THD TDA7561 Parameter Total harmonic distortion Test condition Min. Typ. Max. Unit PO = 1 W to 10 W - 0.04 0.1 % GV = 12 dB; VO = 0.1 to 5 VRMS - 0.02 0.05 % CT Cross talk f = 1 kHz to 10 kHz, Rg = 600  50 60 - dB RIN Input impedance - 80 100 130 k GV1 Voltage gain 1 - 25 26 27 dB Voltage gain match 1 - -1 - 1 dB Voltage gain 2 - 11 12 13 dB GV2 Voltage gain match 2 - -1 - 1 dB EIN1 Output noise voltage 1 Rg = 600 , 20 Hz to 22 kHz - 35 80 µV EIN2 Output noise voltage 2 Rg = 600 ; GV = 12 dB 20 Hz to 22 kHz - 12 20 µV SVR Supply voltage rejection f = 100 Hz to 10 kHz; Vr = 1 Vpk; Rg = 600  50 60 - dB BW Power bandwidth - 100 - - kHz ASB Standby attenuation - 90 110 - dB ISB Standby current - - 25 100 µA AM Mute attenuation - 80 100 - dB VOS Offset voltage Mute & play -100 0 100 mV VAM Min. supply mute threshold - 7 7.5 8 V TON Turn-on delay D2/D1 (IB1) 0 to 1 - 20 40 ms TOFF Turn-off delay D2/D1 (IB1) 1 to 0 - 20 40 ms CDLK Clip det. high leakage current CD off - 0 15 µA CDSAT Clip det. sat. voltage CD on; ICD = 1 mA - 150 300 mV CDTHD Clip det. THD level VS > 10 V - 1 2 % - - 1.2 V Vs -1.2 - GV1 GV2 Turn on diagnostics 1 (Power amplifier mode) Pgnd Pvs Short to GND det. (below this limit, the Output is considered in short circuit to GND) Power amplifier in standby condition Short to Vs det. (above this limit, the output is considered in short circuit to VS) V Normal operation thresholds. (Within these limits, the Output is considered without faults). - 1.8 - Vs -1.8 V Lsc Shorted load det. - - - 0.5  Lop Open load det. - 130 - Lnop Normal load det. - 1.5 - Pnop 8/27 Doc ID 8326 Rev 6  70  TDA7561 Table 4. Electrical specifications Electrical characteristics (continued) Symbol Parameter Test condition Min. Typ. Max. Unit - - 1.2 V Vs -1.2 - - V Turn-on diagnostics 2 (Line driver mode) Pgnd Pvs Short to GND det. (below this limit, the Output is considered in short circuit to GND) Power amplifier in standby Short to Vs det. (above this limit, the output is considered in short circuit to VS) Normal operation thresholds (within these limits, the output is considered without faults). - 1.8 - Vs -1.8 V Lsc Shorted load det. - - - 1.5  Lop Open load det. - 400 - -  Lnop Normal load det. - 4.5 - 200  - - 1.2 V Vs -1.2 - - V 1.8 - Vs -1.8 V Power amplifier mode - - 0.5  Line driver mode - - 1.5  1.5 2 2.5 V Pnop Permanent diagnostics 2 (Power amplifier mode or line driver mode) Pgnd Pvs Pnop Short to GND det. (below this limit, the Output is considered in short circuit to GND) Power amplifier in mute or play, one or more short circuits protection activated Short to Vs det. (above this limit, the output is considered in short circuit to VS) Normal operation thresholds. (within these limits, the output is considered without faults) LSC Shorted load det. VO Offset detection - Power amplifier in play, AC Input signals = 0 I2C bus interface fSCL Clock frequency - - 400 - kHz VIL Input low voltage - - - 1.5 V VIH Input high voltage - 2.3 - - V Doc ID 8326 Rev 6 9/27 Electrical specifications TDA7561 3.4 Electrical characteristics curves Figure 4. Quiescent current vs. supply voltage Figure 5. )DM! 0O 7                   6IN ./ , /!$3  Output power vs. supply voltage, RL = 2                6S6 Figure 6. 0O MAX 2,  /HM F+( Z 4($ 4($      6S6 '!0'03 Output power vs. supply voltage, RL = 4  Figure 7. 0O 7     '!0'03 Distortion vs output power, RL = 2  4( $     0O MAX  6 S 6 2,/ HM 2, /HM F+( Z    4( $  FK (Z   FK (Z    4( $       Figure 8.    6S6         Distortion vs output power, RL = 4   0O 7 '!0'03 '!0'03 Distortion vs. frequency, RL = 2  Figure 9. 4( $ 4($   6S 6 2,  /HM 0O 7 6 S6 2,/ HM   FK(Z   FK (Z    10/27    0O 7 '!0'03 Doc ID 8326 Rev 6   F(Z  '!0'03 TDA7561 Electrical specifications Figure 10. Distortion vs. frequency, RL = 4  Figure 11. Crosstalk vs. frequency 4($  #2/33 4!,+D"    6S 6 2,/HM 0O 7    6S6 2,/HM 0O  7 2G/HM        F(Z      F(Z '!0'03 Figure 12. Supply voltage rejection vs. frequency   '!0'03 Figure 13. Power dissipation and efficiency vs. output power (4, SINE) H 0TOT7 362 D"        H 6S6 2,X/HM F+(Z3).%        0TOT   2G/HM 6R IPPLE 6 PK             Figure 14. F(Z          '!0'03   0O7        '!0'03 Power dissipation vs. average output Figure 15. Power dissipation vs. average output power (audio program simulation, 4) power (audio program simulation, 2 0TOT7 0TOT7     6S6 2,X/HM '!533)!../)3%  6S6 2,X /HM '!533)!../)3%  #,)0 34!24   #,)0 34!24               0O 7     '!0'03 Doc ID 8326 Rev 6     0O7     '!0'03 11/27 Diagnostics functional description TDA7561 4 Diagnostics functional description 4.1 Turn-on diagnostic It is activated at the turn-on (standby out) under I2C bus request. Detectable output faults are: ● Short to GND ● Short to Vs ● Short across the speaker ● Open speaker To verify if any of the above misconnections are in place, a subsonic (inaudible) current pulse (Figure 16) is internally generated, sent through the speaker(s) and sunk back.The Turn On diagnostic status is internally stored until a successive diagnostic pulse is requested (after a I2C reading). If the "standby out" and "diag. enable" commands are both given through a single programming step, the pulse takes place first (power stage still in stand-by mode, low, outputs = high impedance). Afterwards, when the Amplifier is biased, the permanent diagnostic takes place. The previous Turn-on state is kept until a short appears at the outputs. Figure 16. Turn-on diagnostic: working principle 9Va9 ,VRXUFH , P$ ,VRXUFH ,VLQN ,VLQN aPV W PV 0HDVXUHWLPH '!0'03 Figure 17 and 18 show SVR and output waveforms at the turn-on (stand-by out) with and without turn-on diagnostic. Figure 17. SVR and output behaviour (case 1: without turn-on diagnostic) 6SVR /UT 0ERMANENTDIAGNOSTIC ACQUISITIONTIMEM34YP "IASPOWERAMPTURN ON )#"$!4! 12/27 T $IAGNOSTIC%NABLE 0ERMANENT &! 5,4 EVENT 0ERMANENT$IAGNOSTICSDATAOUTPUT PERMITTEDTIME Doc ID 8326 Rev 6 2EAD$ATA '!0'03 TDA7561 Diagnostics functional description Figure 18. SVR and output pin behaviour (case 2: with turn-on diagnostic) 6 S VR /UT 4URN ONDIAGNOSTIC ACQUISITIONTIMEM34YP 0ERMANENTDIAGNOSTIC ACQUISITIONTIMEM34YP T 4URN ON$IAGNOSTICSDATAOUTPUT PERMITTEDTIME $IAGNOSTIC%NABLE 4URN ON $IAGNOSTIC%NABLE 0ERMANENT "IASPOWERAMPTURN ON PERMITTEDTIME ) # " $ !4! 2EAD$ATA &!5,4 EVENT 0ERMANENT$IAGNOSTICDATAOUTPUT PERMITTEDTIME '!0'03 The information related to the outputs status is read and memorized at the end of the current pulse top. The acquisition time is 100 ms (typ.). No audible noise is generated in the process. As for short to GND / Vs the fault-detection thresholds remain unchanged from 26 dB to 12 dB gain setting. They are as follows: Figure 19. Short circuit detection thresholds 3#TO'.$ 6 X 6 .ORMAL/PERATION 6 X 63 6 3#TO6S 63 6 63 '!0'03 Concerning short across the speaker / open speaker, the threshold varies from 26 dB to 12 dB gain setting, since different loads are expected (either normal speaker's impedance or high impedance). The values in case of 26 dB gain are as follows: Figure 20. Load detection thresholds - high gain setting 3#ACROSS,OAD 6 X 7 .ORMAL/PERATION 7 X /PEN,OAD 7 7 )NFINITE '!0'03 If the line-driver mode (Gv = 12 dB and line driver mode diagnostic = 1) is selected, the same thresholds will change as follows: Figure 21. Load detection threshold - low gain setting 3#ACROSS,OAD 7 7 X .ORMAL/PERATION 7 Doc ID 8326 Rev 6 7 X /PEN,OAD 7 INFINITE '!0'03 13/27 Diagnostics functional description 4.2 TDA7561 Permanent diagnostics Detectable conventional faults are: ● Short to GND ● Short to Vs ● Short across the speaker The following additional features are provided: ● Output offset detection The TDA7561 has 2 operating statuses: 1. Restart mode. The diagnostic is not enabled. Each audio channel operates independently from each other. If any of the a.m. faults occurs, only the channel(s) interested is shut down. A check of the output status is made every 1 ms (Figure 22). Restart takes place when the overload is removed. 2. Diagnostic mode. It is enabled via I2C bus and self activates if an output overload (such to cause the intervention of the short-circuit protection) occurs to the speakers outputs. Once activated, the diagnostics procedure develops as follows (Figure 23): – To avoid momentary re-circulation spikes from giving erroneous diagnostics, a check of the output status is made after 1ms: if normal situation (no overloads) is detected, the diagnostic is not performed and the channel returns back active. – Instead, if an overload is detected during the check after 1 ms, then a diagnostic cycle having a duration of about 100 ms is started. – After a diagnostic cycle, the audio channel interested by the fault is switched to restart mode. The relevant data are stored inside the device and can be read by the microprocessor. When one cycle has terminated, the next one is activated by an I2C reading. This is to ensure continuous diagnostics throughout the car-radio operating time. – To check the status of the device a sampling system is needed. The timing is chosen at microprocessor level (over half a second is recommended). Figure 22. Restart timing without diagnostic enable (permanent) - Each 1 mS time, a sampling of the fault is done /UT M3  M3 M3 M3 M3 T /VERCURRENT AND SHOR T CIRCUIT PROTECTIONINTERVENTION IESHORT CIRCUI TT O'.$ 3HORT CI RCUI TREMOVED '!0'03 Figure 23. Restart timing with diagnostic enable (permanent)  M3 M3 M3 M3 T /VERCURRENT ANDSHORT CIRCUITPROTECTI ON IN TERVENTI ON IES HORTC IRCUI TTO'.$ 14/27 3HO RTCIRCUIT REMOVED '!0'03 Doc ID 8326 Rev 6 TDA7561 4.3 Diagnostics functional description Output DC offset detection Any DC output offset exceeding ±2 V are signalled out. This inconvenient might occur as a consequence of initially defective or aged and worn-out input capacitors feeding a DC component to the inputs, so putting the speakers at risk of overheating. This diagnostic has to be performed with low-level output AC signal (or Vin = 0). The test is run with selectable time duration by microprocessor (from a "start" to a "stop" command): ● Start = Last reading operation or setting IB1 - D5 - (offset enable) to 1 ● Stop = Actual reading operation Excess offset is signalled out if persistent throughout the assigned testing time. This feature is disabled if any overloads leading to activation of the short-circuit protection occurs in the process. Doc ID 8326 Rev 6 15/27 Multiple faults 5 TDA7561 Multiple faults When more misconnections are simultaneously in place at the audio outputs, it is guaranteed that at least one of them is initially read out. The others are notified after successive cycles of I2C reading and faults removal, provided that the diagnostic is enabled. This is true for both kinds of diagnostic (turn on and permanent). The table below shows all the couples of possible double-fault. It should be taken into account that a short circuit with the 4 ohm speaker unconnected is considered as double fault. Table 5. Double fault table for turn-on diagnostic S. GND (so) S. GND (sk) S. Vs S. Across L. Open L. S. GND (so) S. GND S. GND S. Vs + S. GND S. GND S. GND S. GND (sk) / S. GND S. Vs S. GND Open L. (*) S. Vs / / S. Vs S. Vs S. Vs S. Across L. / / / S. Across L. N.A. Open L. / / / / Open L. (*) S. GND (so) / S. GND (sk) in the above table make a distinction according to which of the 2 outputs is shorted to ground (test-current source side= so, test-current sink side = sk). More precisely, so = CH+, sk = CH-. In permanent diagnostic the table is the same, with only a difference concerning Open Load(*), which is not among the recognizable faults. Should an Open Load be present during the device's normal working, it would be detected at a subsequent Turn on Diagnostic cycle (i.e. at the successive Car Radio Turn on). 5.1 Faults availability All the results coming from I2C bus, by read operations, are the consequence of measurements inside a defined period of time. If the fault is stable throughout the whole period, it will be sent out. To guarantee always resident functions, every kind of diagnostic cycles (Turn-on, Permanent, Offset) will be reactivate after any I2C reading operation. So, when the microprocessor reads the I2C, a new cycle will be able to start, but the read data will come from the previous diag. cycle (i.e. The device is in turn-on state, with a short to GND, then the short is removed and micro reads I2C. The short to GND is still present in bytes, because it is the result of the previous cycle. If another I2C reading operation occurs, the bytes do not show the short). In general to observe a change in diagnostic bytes, two I2C reading operations are necessary. 16/27 Doc ID 8326 Rev 6 TDA7561 I2C bus 6 I2C bus 6.1 I2C programming/reading sequence A correct turn on/off sequence respectful of the diagnostic timings and producing no audible noises could be as follows (after battery connection): 6.2 ● Turn-on: (Standby out + Diag enable) --- 500 ms (min) --- Muting out ● Turn-off: Muting in --- 20 ms --- (Diag disable + Standby in) ● Car radio installation: Diag enable (write) --- 200 ms --- I2C read (repeat until All faults disappear). ● Offset test: Device in Play (no signal) -- Offset enable - 30 ms - I2C reading (repeat I2C reading until high-offset message disappears). I2C bus interface Data transmission from microprocessor to the TDA7561 and viceversa takes place through the 2 wires I2C bus interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected). 6.2.1 Data validity As shown by Figure 24, the data on the SDA line must be stable during the high period of the clock. The High and Low state of the data line can only change when the clock signal on the SCL line is Low. 6.2.2 Start and stop conditions As shown by Figure 25 a start condition is a High to Low transition of the SDA line while SCL is HIGH. The stop condition is a Low to High transition of the SDA line while SCL is High. 6.2.3 Byte format Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first. Doc ID 8326 Rev 6 17/27 I2C bus 6.2.4 TDA7561 Acknowledge The transmitter puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see Figure 26). The receive the acknowledges has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock pulse. Transmitter: – master (µP) when it writes an address to the TDA7561 – slave (TDA7561) when the µP reads a data byte from TDA7561 Receiver: – slave (TDA7561) when the µP writes an address to the TDA7561 – master (µP) when it reads a data byte from TDA7561 Figure 24. Data validity on the I2C bus 3$! 3#, $!4!,).% 34!",% $!4! 6!,)$ #(!.'% $!4! !,,/7%$ '!0'03 Figure 25. Timing diagram on the I2C bus 3#, )#"53 3$! 34!24 34/0 '!0'03 Figure 26. Acknowledge on the I2C bus 3#,       3$! -3" !#+./7,%$'-%.4 &2/-2%#%)6%2 34!24 18/27 Doc ID 8326 Rev 6 '!0'03 TDA7561 7 Software specifications Software specifications All the functions of the TDA7561 are activated by I2C interface. The bit 0 of the "Address byte" defines if the next bytes are write instruction (from µP to TDA7561) or read instruction (from TDA7561 to µP). Chip address D7 D0 1 1 0 1 1 0 0 X D8 Hex X = 0 Write to device X = 1 Read from device If R/W = 0, the µP sends 2 "Instruction Bytes": IB1 and IB2. Table 6. IB1 Bit Instruction decoding bit D7 X D6 Diagnostic enable (D6 = 1) Diagnostic defeat (D6 = 0) D5 Offset detection enable (D5 = 1) Offset detection defeat (D5 = 0) D4 Front channel Gain = 26dB (D4 = 0) Gain = 12dB (D4 = 1) D3 Rear channel Gain = 26dB (D3 = 0) Gain = 12dB (D3 = 1) D2 Mute front channels (D2 = 0) Unmute front channels (D2 = 1) D1 Mute rear channels (D1 = 0) Unmute rear channels (D1 = 1) D0 X Doc ID 8326 Rev 6 19/27 Software specifications Table 7. TDA7561 IB2 Bit Instruction decoding bit D7 X D6 Used for testing D5 Used for testing D4 Standby on - Amplifier not working - (D4 = 0) Standby off - Amplifier working - (D4 = 1) D3 Power amplifier mode diagnostic (D3 = 0) Line driver mode diagnostic (D3 = 1) D2 X D1 X D0 X If R/W = 1, the TDA7561 sends 4 "Diagnostics Bytes" to µP: DB1, DB2, DB3 and DB4. Table 8. DB1 Bit 20/27 Instruction decoding bit D7 Thermal warning active (D7 = 1) D6 Diag. cycle not activated or not terminated (D6 = 0) Diag. cycle terminated (D6 = 1) D5 X D4 Channel LFTurn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1) D3 Channel LF Normal load (D3 = 0) Short load (D3 = 1) D2 Channel LFTurn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Offset diag.: No output offset (D2 = 0) Output offset detection (D2 = 1) D1 Channel LFNo short to Vcc (D1 = 0)Short to Vcc (D1 = 1) D0 Channel LFNo short to GND (D1 = 0)Short to GND (D1 = 1) Doc ID 8326 Rev 6 TDA7561 Software specifications Table 9. DB2 Bit Instruction decoding bit D7 Offset detection not activated (D7 = 0) Offset detection activated (D7 = 1) D6 X D5 X D4 Channel LRTurn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1) D3 Channel LRNormal load (D3 = 0) Short load (D3 = 1) D2 Channel LRTurn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Permanent diag.: No output offset (D2 = 0) Output offset detection (D2 = 1) D1 Channel LR No short to Vcc (D1 = 0) Short to Vcc (D1 = 1) D0 Channel LR No short to GND (D1 = 0) Short to GND (D1 = 1) Table 10. DB3 Bit Instruction decoding bit D7 Standby status (= IB1 - D4) D6 Diagnostic status (= IB1 - D6) D5 X D4 Channel RFTurn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1) D3 Channel RFNormal load (D3 = 0) Short load (D3 = 1) D2 Channel RF Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Permanent diag.: No output offset (D2 = 0) Output offset detection (D2 = 1) D1 Channel RFNo short to Vcc (D1 = 0) Short to Vcc (D1 = 1) D0 Channel RFNo short to GND (D1 = 0) Short to GND (D1 = 1) Doc ID 8326 Rev 6 21/27 Software specifications Table 11. TDA7561 DB4 Bit 22/27 Instruction decoding bit D7 X D6 X D5 X D4 Channel RR Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1) D3 Channel RR Normal load (D3 = 0) Short load (D3 = 1) D2 Channel RR Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Permanent diag.:No output offset (D2 = 0) Output offset detection (D2 = 1) D1 Channel RRNo short to Vcc (D1 = 0) Short to Vcc (D1 = 1) D0 Channel RRNo short to GND (D1 = 0) Short to GND (D1 = 1) Doc ID 8326 Rev 6 TDA7561 8 Examples of bytes sequence Examples of bytes sequence 1 - Turn-on diagnostic - Write operation Start Address byte with D0 = 0 ACK IB1 with D6 = 1 ACK IB2 ACK STOP 2 - Turn-on diagnostic - Read operation Start Address byte with D0 = 1 ACK DB1 ACK DB2 ACK DB3 ACK DB4 ACK STOP The delay from 1 to 2 can be selected by software, starting from 1 ms 3a - Turn-on of the power amplifier with 26 dB gain, mute on, diagnostic defeat. Start Address byte with D0 = 0 ACK IB1 ACK X000000X IB2 ACK STOP XXX1X0XX 3b - Turn-off of the power amplifier Start Address byte with D0 = 0 ACK IB1 ACK X0XXXXXX IB2 ACK STOP XXX0XXXX 4 - Offset detection procedure enable Start Address byte with D0 = 0 ACK IB1 ACK XX1XX11X IB2 ACK STOP XXX1X0XX 5 - Offset detection procedure stop and reading operation (the results are valid only for the offset detection bits (D2 of the bytes DB1, DB2, DB3, DB4). Start Address byte with D0 = 1 ACK DB1 ACK DB2 ACK DB3 ACK DB4 ACK STOP ● The purpose of this test is to check if a DC offset (2V typ.) is present on the outputs, produced by input capacitor with anomalous leakage current or humidity between pins. ● The delay from 4 to 5 can be selected by software, starting from 1 ms. Doc ID 8326 Rev 6 23/27 Package information 9 TDA7561 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Figure 27. Flexivatt25 (vertical) mechanical data and package dimensions $)- ! " # $ % & ' ' ( ( ( ( , , , , , , - . / 2 2 2 2 2 6 6 6 6 -).              MM 490                           -!8   -).                          INCH 490                           -!8   /54,).%!.$ -%#(!.)#!,$!4!             &LEXIWATTVERTICAL ƒ 7\S ƒ 7\S ƒ 7\S ƒ 7\S  DAM BARPROTUSIONNOTINCLUDED  MOLDINGPROTUSIONINCLUDED 6 # " 6 ( ( 6 ! ( / ( 2 , 2 6 2 , . , 2 , , 6 6 2 $ 2 , 0IN 2 2 % ' ' & &,%8-% - -  '!0'03 24/27 Doc ID 8326 Rev 6 TDA7561 Package information Figure 28. Flexivatt25 (horizontal) mechanical data and package dimensions ',0 $ % & ' ( )  * * +  + + + /  / /  / / / / 0 0 0 1 3 5 5 5 5 5 9 9 9 9 0,1               PP 7
TDA7561 价格&库存

很抱歉,暂时无法提供与“TDA7561”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TDA7561
  •  国内价格
  • 1+74.84195
  • 2+67.63746
  • 5+63.90808
  • 10+61.45007

库存:8

TDA7561
  •  国内价格
  • 1+101.04480
  • 10+89.56440
  • 40+81.97200

库存:10

TDA7561
  •  国内价格
  • 1+160.95970
  • 10+107.30650
  • 40+89.42210

库存:0

TDA7561
  •  国内价格 香港价格
  • 1+88.380201+11.00251
  • 17+65.9310617+8.20780
  • 34+62.6662334+7.80136
  • 102+58.62929102+7.29880
  • 255+56.09466255+6.98326
  • 510+54.56713510+6.79310
  • 1003+53.337661003+6.64004

库存:325