0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TDA7563ASMTR

TDA7563ASMTR

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    Flexiwatt27

  • 描述:

    Amplifier IC 4-Channel (Quad) Class AB 27-Flexiwatt (SMD)

  • 数据手册
  • 价格&库存
TDA7563ASMTR 数据手册
TDA7563A 4 x 50 W power amplifier with high efficiency and built-in I2C diagnostic Datasheet - production data  Full fault protection  DC offset detection  Four independent short circuit protection  Clipping detector pin with selectable threshold (2 %/10 %) '!0'03 '!0'03 Flexiwatt27 (Horiz.) Flexiwatt27 (SMD)  Standby/mute pin Flexiwatt27 (Vert.)  Linear thermal shutdown with multiple thermal warning '!0'03 '!0'03 PowerSO36 (Slug up)  ESD protection Description Features The TDA7563A is a new BCD technology Quad Bridge type of car radio amplifier in Flexiwatt27 & PowerSO36 packages specially intended for car radio applications.  Multipower BCD technology  MOSFET output power stage  DMOS power output  New high efficiency (class SB)  High output power capability 4 x 28 W / 4 Ω @ 14.4 V, 1 kHz, 10 % THD, 4 x 50 W max power  Max. output power 4 x 72 W / 2 Ω  Full I2C bus driving: – Standby – Independent front/rear soft play/mute – Selectable gain 26 dB /12 dB (for low noise line output function) – High efficiency enable/disable – I2C bus digital diagnostics (including DC and AC load detection) Thanks to the DMOS output stage the TDA7563A has a very low distortion allowing a clear powerful sound. Among the features, its superior efficiency performance coming from the internal exclusive structure, makes it the most suitable device to simplify the thermal management in high power sets. The dissipated output power under average listening condition is in fact reduced up to 50% when compared to the level provided by conventional class AB solutions. This device is equipped with a full diagnostics array that communicates the status of each speaker through the I2C bus. Table 1. Device summary Order code Package Packing TDA7563A Flexiwatt27 (vertical) Tube TDA7563AH Flexiwatt27 (horizontal) Tube TDA7563ASM Flexiwatt27 (SMD) Tube TDA7563ASMTR Flexiwatt27 (SMD) Tape and reel TDA7563APD PowerSO36 (slug up) Tube December 2013 This is information on a product in full production. DocID14407 Rev 5 1/35 www.st.com Contents TDA7563A Contents 1 Block, pins connection and application diagrams . . . . . . . . . . . . . . . . . 5 2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 4 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Diagnostics functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 Turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Permanent diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Output DC offset detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1 AC diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Multiple faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3 Faults availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6 Fast muting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 7 I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7.1 I2C programming/reading sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7.2 I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7.3 Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7.4 Start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7.5 Byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7.6 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 8 Software specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 9 Examples of bytes sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 10 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2/35 DocID14407 Rev 5 TDA7563A List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Double fault table for turn on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 IB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 IB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 DB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 DB3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DB4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 DocID14407 Rev 5 3/35 3 List of figures TDA7563A List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. 4/35 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin connections - Flexiwatt27 (Top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin connections - PowerSO36 (Top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Output power vs. supply voltage (4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Output power vs. supply voltage (2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Distortion vs. output power (4 Ω, STD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Distortion vs. output power (4 Ω, HI-EFF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Distortion vs. output power (2 Ω, STD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Distortion vs. frequency (4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Distortion vs. frequency (2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Crosstalk vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Power dissipation and efficiency vs. output power (4 Ω, STD, SINE). . . . . . . . . . . . . . . . . 12 Power dissipation and efficiency vs. output power (4 Ω, HI-EFF, SINE) . . . . . . . . . . . . . . 12 Power dissipation vs. average output power (audio program simulation, 4 Ω). . . . . . . . . . 12 Power dissipation vs. average output power (audio program simulation, 2 Ω). . . . . . . . . . 12 Turn-on diagnostic: working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 SVR and output behavior (case 1: without turn-on diagnostic). . . . . . . . . . . . . . . . . . . . . . 14 SVR and output pin behavior (case 2: with turn-on diagnostic) . . . . . . . . . . . . . . . . . . . . . 14 Thresholds for short to GND/VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Thresholds for short across the speaker/open speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Thresholds for line-drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Restart timing without diagnostic enable (permanent) - Each 1ms time, a sampling of the fault is done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Restart timing with diagnostic enable (permanent). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Current detection: Load impedance |Z| vs. output peak voltage. . . . . . . . . . . . . . . . . . . . . 18 Thermal foldback diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Data validity on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Timing diagram on the I2C bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Timing acknowledge clock pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Flexiwatt27 (horizontal) mechanical data and package dimensions. . . . . . . . . . . . . . . . . . 30 Flexiwatt27 (vertical) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . 31 Flexiwatt27 (SMD) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . 32 PowerSO36 (slug up) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . 33 DocID14407 Rev 5 TDA7563A 1 Block, pins connection and application diagrams Block, pins connection and application diagrams Figure 1. Block diagram #,+ $!4! 6## 6## 34 "9 -54% 4HERMAL 0ROTECTION $UMP )#"53 -UTE -UTE ).2& 2EFERENCE #$?/54 #LIP $ETECTOR & /542& 3HORT#IRCUIT 0ROTECTION $IAGNOSTIC ).22 /542& 2 ).,& /5422 & ).,2 /5422 3HORT#IRCUIT 0ROTECTION $IAGNOSTIC /54,& 3HORT#IRCUIT 0ROTECTION $IAGNOSTIC 2 /54,& /54,2 3HORT#IRCUIT 0ROTECTION $IAGNOSTIC !#?'.$ 362 2& 22 /54,2 3?'.$ 4! " ,& ,2 07?'.$ *$3*36 Figure 2. Application circuit # M& # M& 6CC 666 ##  $!4!  #,+  6CC      )#"53  /542&  #M& ).2&    #M& ).22    #M& ).,& /5422   /54,&  #M& ).,2   3 '.$  # M&      + # M& #$/54 DocID14407 Rev 5 /54,2 4!" 6 *$3*36 5/35 34 Block, pins connection and application diagrams TDA7563A Figure 3. Pin connections - Flexiwatt27 (Top view)  4!"  4!"  $!4!  $!4!  07?'.$22  07?'.$22  /5422  /5422  #+  #+  /5422  /5422  6##  6##  /542&  /542&  07?'.$2&  07?'.$2&  /542&  /542&  !#'.$  !#'.$  ).2&  ).2&  ).22  ).22  3?'.$  3?'.$  ).,2  ).,2  ).,&  ).,&  362  362  /54,&  /54,&  07?'.$,&   /54,&  /54,&  6##  6##  /54,2  /54,2  #$ /54  #$ /54  /54,2  /54,2  07?'.$,2  07?'.$,2  34"9  34"9  4!"  4!" )OH[LZDWW KRUL]RQWDO60' )OH[LZDWW YHUWLFDO 07?'.$,& *$3*36 Figure 4. Pin connections - PowerSO36 (Top view) 6##   4!" /54   #+ .#   .# .#   /54 07'.$   .# /54   07'.$ !#'.$   6## ).   $!4! ).   /54 3'.$   /54 ).   34"9 ).   6## 362   07'.$ /54   .# 07'.$   /54 .#   .# /54   .# 6##   #$ *$3*36 6/35 DocID14407 Rev 5 TDA7563A Electrical specifications 2 Electrical specifications 2.1 Absolute maximum ratings Table 2. Absolute maximum ratings Symbol Parameter Value Unit Vop Operating supply voltage 18 V VS DC supply voltage 28 V Peak supply voltage (for t = 50 ms) 50 V CK pin voltage 6 V Data pin voltage 6 V IO Output peak current (not repetitive t = 100 ms) 8 A IO Output peak current (repetitive f > 10 Hz) 6 A Power dissipation Tcase = 70 °C 85 W -55 to 150 °C Vpeak VCK VDATA Ptot Tstg, Tj 2.2 Storage and junction temperature Thermal data Table 3. Thermal data Symbol Rth j-case 2.3 Parameter Thermal resistance junction-to-case PowerSO36 Flexiwatt 27 Unit 1 1 °C/W Max Electrical characteristics Refer to the test circuit, VS = 14.4 V; f = 1 kHz; RL = 4 Ω; Tamb= 25 °C unless otherwise specified. Table 4. Electrical characteristics Symbol Parameter Test condition Min. Typ. Max. Unit Power amplifier VS Supply voltage range - 8 - 18 V Id Total quiescent drain current - - 170 300 mA Max. power (VS = 15.2 V, square wave input (2-Vrms)) - 50 - W THD = 10-% THD = 1-% 25 20 28 22 - W W RL = 2-Ω; EIAJ (VS = 13.7-V) RL = 2-Ω; THD 10-% RL = 2-Ω; THD 1-% RL = 2-Ω; max power 55 40 32 60 68 50 40 75 - W W W W PO Output power DocID14407 Rev 5 7/35 34 Electrical specifications TDA7563A Table 4. Electrical characteristics (continued) Symbol THD Parameter Total harmonic distortion Test condition Min. Typ. Max. Unit PO = 1 to 10 W; STD MODE HE MODE; PO = 1.5 W HE MODE; PO = 8 W - 0.015 0.01 0.1 0.1 0.1 0.5 % % % PO = 1-10 W, f = 10kHz; STD mode - 0.15 0.5 % RL = 2 Ω; HE MODE; PO = 3W - 0.02 0.5 % GV = 12 dB; STD mode VO = 0.1 to 5 VRMS - 0.015 0.1 % CT Cross talk f = 1 kHz to 10 kHz, Rg = 600 Ω 50 60 - dB RIN Input impedance - 60 100 130 kΩ GV1 Voltage gain 1 (default) - 25 26 27 dB Voltage gain match 1 - -1 1 dB Voltage gain 2 - 11 12 13 dB GV2 Voltage gain match 2 - -1 - 1 dB EIN1 Output noise voltage 1 Rg = 600 Ω; filter 20 Hz to 22 kHz - 35 - µV EIN2 Output noise voltage 2 Rg = 600 Ω; GV = 12 dB filter 20 Hz to 22 kHz - 11 - µV SVR Supply voltage rejection f = 100 Hz to 10 kHz; Vr = 1 Vpk; Rg = 600 Ω 50 70 - dB BW Power bandwidth - 100 - - kHz ASB Standby attenuation - 90 110 ISB Standby current Vstandby = 0 - 1 AM Mute attenuation - 80 100 VOS Offset voltage Mute & Play -60 0 60 mV VAM Min. supply mute threshold - 7 7.5 8 V TON Turn on delay D2/D1 (IB1) 0 to 1 - 5 20 ms TOFF Turn off delay D2/D1 (IB1) 1 to 0 - 5 20 ms VSBY Standby/mute pin for standby - 0 - 1.5 V VMU Standby/mute pin for mute - 3.5 - 5 V Input CMRR VCM = 1 Vpk-pk; Rg = 0 Ω - 55 - dB 7 - VS V Vstandby/mute = 8.5 V - 20 40 µA Vstandby/mute < 1.5 V - 0 5 µA GV1 GV2 CMRR VOP Standby/mute pin for operating IMU Standby/mute pin current dB 10 µA dB CDLK Clip det. high leakage current CD off / VCD = 6 V - 0 5 µA CDSAT Clip det. saturation voltage CD on; ICD = 1 mA - - 300 mV 8/35 DocID14407 Rev 5 TDA7563A Electrical specifications Table 4. Electrical characteristics (continued) Symbol CDTHD Parameter Clip det. THD level Test condition Min. Typ. Max. Unit D0 (IB1) = 1 5 10 15 % D0 (IB1) = 0 1 2 3 % Turn on diagnostics 1 (Power amplifier mode) Pgnd Short to GND det. (below this limit, the output is considered in short circuit to GND) - - 1.2 V Pvs Short to Vs det. (above this limit, the output is considered in short circuit to VS) Vs -1.2 - - V Pnop Normal operation thresholds. (within these limits, the output is considered without faults). 1.8 - Vs -1.8 V - - 0.5 Ω Power amplifier in standby Lsc Shorted load det. Lop Open load det. 130 - - Ω Lnop Normal load det. 1.5 - 70 Ω - - 1.2 V Vs -1.2 - - V 1.8 - Vs -1.8 V - 1.5 Ω Turn on diagnosticS 2 (Line driver mode) Pgnd Pvs Short to GND det. (below this limit, the output is considered in Power amplifier in standby short circuit to GND) Short to Vs det. (above this limit, the output is considered in short circuit to VS) Normal operation thresholds. (within these limits, the output is considered without faults). - Lsc Shorted load det. - Lop Open load det. - 400 - - Ω Lnop Normal load det. - 4.5 - 200 Ω - - 1.2 V Vs -1.2 - - V 1.8 - Vs -1.8 V Power amplifier mode - - 0.5 Ω Line driver mode - - 1.5 Ω Pnop Permanent diagnostics 2 (Power amplifier mode or line driver mode) Pgnd Pvs Pnop LSC Short to GND det. (below this limit, the output is considered in short circuit to GND) Short to Vs det. (above this Power amplifier in mute or play, limit, the output is considered in one or more short circuits short circuit to Vs) protection activated Normal operation thresholds. (within these limits, the output is considered without faults). Shorted load det. DocID14407 Rev 5 9/35 34 Electrical specifications TDA7563A Table 4. Electrical characteristics (continued) Symbol Parameter VO Offset detection INL Normal load current detection IOL Open load current detection Test condition Min. Typ. Max. Unit Power amplifier in play, STD mode AC input signals = 0 ±1.5 ±2 ±2.5 V 500 - - mA - - 250 mA VO < (VS-5)pk I2C bus interface SCL Clock frequency - - - 400 kHz VIL Input low voltage - - - 1.5 V VIH Input high voltage - 2.3 - - V 2.4 Electrical characteristics curves Figure 5. Quiescent current vs. supply voltage Figure 6. Output power vs. supply voltage (4 Ω) 3R : ,G P$      3RPD[  9LQ  12/2$'6 5/ 2KP I .+]    7+'           7+'             9V 9       *$3*36  9V 9      *$3*36 Figure 7. Output power vs. supply voltage (2 Ω) Figure 8. Distortion vs. output power (4 Ω, STD) 3R : 4($    3RPD[   5/ 2KP I .+]  34!.$!2$-/$% 636 2,7 F+(Z 7+'        7+'  F+(Z    10/35     9V 9       *$3*36 DocID14407 Rev 5   0O7  *$3*36 TDA7563A Electrical specifications Figure 9. Distortion vs. output power (4 Ω, HIEFF) 4($ 4($   () %&&-/$% 636 2,7  Figure 10. Distortion vs. output power (2 Ω, STD) 34!.$!2$-/$% 636 2,7  F+(Z F+(Z   F+(Z        F+(Z      0O7 0O7 *$3*36 *$3*36 Figure 12. Distortion vs. frequency (2 Ω) Figure 11. Distortion vs. frequency (4 Ω) 4($  4($  34!.$!2$-/$% 636 2,7 0O7  34!.$!2$-/$% 636 2,7 0O7            F(Z    *$3*36   34!.$!2$-/$% 2,7 0O7 2G 7 362D"    34$(%-/$% 2G7 6RIPPLE6RMS            Figure 14. Supply voltage rejection vs. frequency #2/334!,+D"   *$3*36 Figure 13. Crosstalk vs. frequency   F(Z        F(Z *$3*36 DocID14407 Rev 5     F(Z *$3*36 11/35 34 Electrical specifications TDA7563A Figure 15. Power dissipation and efficiency vs. Figure 16. Power dissipation and efficiency vs. output power (4 Ω, STD, SINE) output power (4 Ω, HI-EFF, SINE) 3WRW : Q  3WRW : Q 67$1'$5'02'( 9V 9 5/ [2KP I .+]6,1(             Q      +,())02'( 9V 9 5/ [2KP I .+]6,1(  Q    3WRW                3WRW                     3R : *$3*36     3R : *$3*36 Figure 17. Power dissipation vs. average output Figure 18. Power dissipation vs. average output power (audio program simulation, 4Ω) power (audio program simulation, 2 Ω) 0TOT7 0TOT7     34$-/$% 6S6 2,X/HM '!533)!../)3%  6S6 2,X/HM '!533)!../)3%   34$-/$%  #,)0 34! 24   () %&&-/$%  #,)0 34!24        () %&&-/$%       0O7 12/35    *$3*36 DocID14407 Rev 5      0O7     *$3*36 TDA7563A Diagnostics functional description 3 Diagnostics functional description 3.1 Turn-on diagnostic It is activated at the turn-on (standby out) under I2C bus request. Detectable output faults are:  Short to GND  Short to Vs  Short across the speaker  Open speaker To verify if any of the above misconnections are in place, a subsonic (inaudible) current pulse (Figure 19) is internally generated, sent through the speaker(s) and sunk back.The Turn On diagnostic status is internally stored until a successive diagnostic pulse is requested (after a I2C reading). If the "standby out" and "diagnostic enable" commands are both given through a single programming step, the pulse takes place first (power stage still in standby mode, low, outputs = high impedance). Afterwards, when the amplifier is biased, the PERMANENT diagnostic takes place. The previous Turn On state is kept until a short appears at the outputs. Figure 19. Turn-on diagnostic: working principle 9Va9 ,VRXUFH , P$ ,VRXUFH #( ,VLQN #( ,VLQN aPV W PV 0HDVXUHWLPH '!0'03 Figure 20 and 21 show SVR and OUTPUT waveforms at the turn-on (standby out) with and without TURN-ON DIAGNOSTIC. DocID14407 Rev 5 13/35 34 Diagnostics functional description TDA7563A Figure 20. SVR and output behavior (case 1: without turn-on diagnostic) 9VYU 2XW 3HUPDQHQWGLDJQRVWLF DFTXLVLWLRQWLPH P67\S W 'LDJQRVWLF(QDEOH 3HUPDQHQW %LDV SRZHUDPSWXUQRQ )$8/7 HYHQW ,&%'$7$ 5HDG'DWD 3HUPDQHQW'LDJQRVWLFVGDWD RXWSXW SHUPLWWHGWLPH '!0'03 Figure 21. SVR and output pin behavior (case 2: with turn-on diagnostic) 9VYU 2XW 7XUQRQGLDJQRVWLF DFTXLVLWLRQWLPH P67\S 3HUPDQHQWGLDJQRVWLF DFTXLVLWLRQWLPH P67\S W 'LDJQRVWLF(QDEOH 7XUQRQ 7XUQRQ'LDJQRVWLFVGDWD RXWSXW SHUPLWWHGWLPH %LDV SRZHUDPSWXUQRQ SHUPLWWHGWLPH 'LDJQRVWLF(QDEOH 3HUPDQHQW 5HDG'DWD )$8/7 HYHQW 3HUPDQHQW'LDJQRVWLFVGDWD RXWSXW SHUPLWWHGWLPH ,&%'$7$ '!0'03 The information related to the outputs status is read and memorized at the end of the current pulse top. The acquisition time is 100 ms (typ.). No audible noise is generated in the process. As for SHORT TO GND / VS the fault-detection thresholds remain unchanged from 26 dB to 12 dB gain setting. They are as follows:TDA7563A Figure 22. Thresholds for short to GND/VS 3#TO'.$ 6 6 X .ORMAL/PERATION 6 63 6 X 3#TO6S 63 6 63 '!0'03 14/35 DocID14407 Rev 5 TDA7563A Diagnostics functional description Concerning SHORT ACROSS THE SPEAKER / OPEN SPEAKER, the threshold varies from 26 dB to 12 dB gain setting, since different loads are expected (either normal speaker's impedance or high impedance). The values in case of 26 dB gain are as follows: Figure 23. Thresholds for short across the speaker/open speaker 3#ACROSS,OAD 6 X 7 .ORMAL/PERATION 7 X /PEN,OAD 7 7 )NFINITE '!0'03 If the Line-Driver mode (Gv= 12 dB and Line Driver Mode diagnostic = 1) is selected, the same thresholds will change as follows: Figure 24. Thresholds for line-drivers 3#ACROSS,OAD 7 X 7 .ORMAL/PERATION 7 7 X /PEN,OAD 7 INFINITE '!0'03 3.2 Permanent diagnostics Detectable conventional faults are:  Short to GND  Short to Vs  Short across the speaker The following additional features are provided:  Output offset detection The TDA7563A has 2 operating statuses: 1. RESTART mode. The diagnostic is not enabled. Each audio channel operates independently from each other. If any of the a.m. faults occurs, only the channel(s) interested is shut down. A check of the output status is made every 1 ms (Figure 25). Restart takes place when the overload is removed. 2. DIAGNOSTIC mode. It is enabled via I2C bus and self activates if an output overload (such to cause the intervention of the short-circuit protection) occurs to the speakers outputs. Once activated, the diagnostics procedure develops as follows (Figure 26): – To avoid momentary re-circulation spikes from giving erroneous diagnostics, a check of the output status is made after 1ms: if normal situation (no overloads) is detected, the diagnostic is not performed and the channel returns back active. – Instead, if an overload is detected during the check after 1 ms, then a diagnostic cycle having a duration of about 100 ms is started. – After a diagnostic cycle, the audio channel interested by the fault is switched to RESTART mode. The relevant data are stored inside the device and can be read by the microprocessor. When one cycle has terminated, the next one is activated DocID14407 Rev 5 15/35 34 Diagnostics functional description TDA7563A by an I2C reading. This is to ensure continuous diagnostics throughout the carradio operating time. – To check the status of the device a sampling system is needed. The timing is chosen at microprocessor level (over half a second is recommended). Figure 25. Restart timing without diagnostic enable (permanent) - Each 1ms time, a sampling of the fault is done /UT M3  M3 M3 M3 M3 T /VERCURRENT AND SHOR T CIRCUIT PROTECTIONINTERVENTION IESHORT CIRCUI TT O'.$ 3HORT CI RCUI TREMOVED '!0'03 Figure 26. Restart timing with diagnostic enable (permanent)  M3 M3 M3 M3 T /VERCURRENT ANDSHORT CIRCUITPROTECTI ON IN TERVENTI ON IES HORTC IRCUI TTO'.$ 16/35 3HO RTCIRCUIT REMOVED '!0'03 DocID14407 Rev 5 TDA7563A 4 Output DC offset detection Output DC offset detection Any DC output offset exceeding ± 2 V are signalled out. This inconvenient might occur as a consequence of initially defective or aged and worn-out input capacitors feeding a DC component to the inputs, so putting the speakers at risk of overheating. This diagnostic has to be performed with low-level output AC signal (or Vin = 0). The test is run with selectable time duration by microprocessor (from a "start" to a "stop" command):  START = Last reading operation or setting IB1 - D5 - (OFFSET enable) to 1  STOP = Actual reading operation Excess offset is signalled out if it is persistent for all the assigned testing time. This feature is disabled if any overload leading to activation of the short-circuit protection occurs in the process. 4.1 AC diagnostic It is targeted at detecting accidental disconnection of tweeters in 2-way speaker and, more in general, presence of capacitively (AC) coupled loads.  This diagnostic is based on the notion that the overall speaker's impedance (woofer + parallel tweeter) will tend to increase towards high frequencies if the tweeter gets disconnected, because the remaining speaker (woofer) would be out of its operating range (high impedance). The diagnostic decision is made according to peak output current thresholds, as follows: Iout > 500 mApk = NORMAL STATUS Iout < 250 mApk = OPEN TWEETER To correctly implement this feature, it is necessary to briefly provide a signal tone (with the amplifier in "play") whose frequency and magnitude are such as to determine an output current higher than 500 mApk in normal conditions and lower than 250 mApk should the parallel tweeter be missing. The test has to last for a minimum number of 3 sine cycles starting from the activation of the AC diagnostic function IB2) up to the I2C reading of the results (measuring period). To confirm presence of tweeter, it is necessary to find at least 3 current pulses over 500 mA over all the measuring period, else an "open tweeter" message will be issued. The frequency / magnitude setting of the test tone depends on the impedance characteristics of each specific speaker being used, with or without the tweeter connected (to be calculated case by case). High-frequency tones (> 10 kHz) or even ultrasonic signals are recommended for their negligible acoustic impact and also to maximize the impedance module's ratio between with tweeter-on and tweeter-off. Figure 27 shows the Load Impedance as a function of the peak output voltage and the relevant diagnostic fields.  This feature is disabled if any overload leading to activation of the short-circuit protection occurs in the process. DocID14407 Rev 5 17/35 34 Output DC offset detection TDA7563A Figure 27. Current detection: Load impedance |Z| vs. output peak voltage ,O AD\Z\/HM  )OUTPEAK M! ,OWCURRENTDETECTIONAREA /PENLOAD $OFTHE$"XBYRES   )OUTPEAK M!  )"$  (IGHCURRENTDETECTIONAREA .ORMALLOAD $OFTHE$"XBYTES             6OUT 0EAK 4.2 '!0'03 Multiple faults When more misconnections are simultaneously in place at the audio outputs, it is guaranteed that at least one of them is initially read out. The others are notified after successive cycles of I2C reading and faults removal, provided that the diagnostic is enabled. This is true for both kinds of diagnostic (Turn on and Permanent). The table below shows all the couples of double-fault possible. It should be taken into account that a short circuit with the 4 ohm speaker unconnected is considered as double fault. Table 5. Double fault table for turn on diagnostic S. GND (so) S. GND (sk) S. Vs S. Across L. Open L. S. GND (so) S. GND S. GND S. Vs + S. GND S. GND S. GND S. GND (sk) / S. GND S. Vs S. GND Open L. (*) S. Vs / / S. Vs S. Vs S. Vs S. Across L. / / / S. Across L. N.A. Open L. / / / / Open L. (*) S. GND (so) / S. GND (sk) in the above table make a distinction according to which of the 2 outputs is shorted to ground (test-current source side= so, test-current sink side = sk). More precisely, in Channels LF and RR, so = CH+, sk = CH-; in Channels LR and RF, so = CH-, sk = CH+. In Permanent Diagnostic the table is the same, with only a difference concerning Open Load(*), which is not among the recognizable faults. Should an Open Load be present during the device's normal working, it would be detected at a subsequent Turn on Diagnostic cycle (i.e. at the successive Car Radio Turn on). 18/35 DocID14407 Rev 5 TDA7563A 4.3 Output DC offset detection Faults availability All the results coming from I2C bus, by read operations, are the consequence of measurements inside a defined period of time. If the fault is stable throughout the whole period, it will be sent out. To guarantee always resident functions, every kind of diagnostic cycles (Turn on, Permanent, Offset) will be reactivated after any I2C reading operation. So, when the micro reads the I2C, a new cycle will be able to start, but the read data will come from the previous diag. cycle (i.e. The device is in Turn On state, with a short to Gnd, then the short is removed and micro reads I2C. The short to Gnd is still present in bytes, because it is the result of the previous cycle. If another I2C reading operation occurs, the bytes do not show the short). In general to observe a change in Diagnostic bytes, two I2C reading operations are necessary. DocID14407 Rev 5 19/35 34 Thermal protection 5 TDA7563A Thermal protection Thermal protection is implemented through thermal foldback (Figure 28). Thermal foldback begins limiting the audio input to the amplifier stage as the junction temperatures rise above the normal operating range. This effectively limits the output power capability of the device thus reducing the temperature to acceptable levels without totally interrupting the operation of the device. The output power will decrease to the point at which thermal equilibrium is reached. Thermal equilibrium will be reached when the reduction in output power reduces the dissipated power such that the die temperature falls below the thermal foldback threshold. Should the device cool, the audio level will increase until a new thermal equilibrium is reached or the amplifier reaches full power. Thermal foldback will reduce the audio output level in a linear manner. Three Thermal warnings are available through the I2C bus data. Figure 28. Thermal foldback diagram 6OUT 6OUT 4(7!2. 4(7!2 . 4(7!2 . /. /. /.   43$ #$OUT  4(3( 34!24 4(3( %.$ 43$ WITHSAMEINPUT SIGNAL 4J # 4J # 4J # '!0'03 20/35 DocID14407 Rev 5 TDA7563A 6 Fast muting Fast muting The muting time can be shortened to less than 1.5 ms by setting (IB2) D5 = 1. This option can be useful in transient battery situations (i.e. during car engine cranking) to quickly turnoff the amplifier for avoiding any audible effects caused by noise/transients being injected by preamp stages. The bit must be set back to “0” shortly after the mute transition. DocID14407 Rev 5 21/35 34 I2C bus TDA7563A 7 I2C bus 7.1 I2C programming/reading sequences A correct turn on/off sequence respectful of the diagnostic timings and producing no audible noises could be as follows (after battery connection): TURN-ON: PIN2 > 7V --- 10ms --- (STANDBY OUT + DIAG ENABLE) --- 500 ms (min) --MUTING OUT TURN-OFF: MUTING IN --- 20 ms --- (DIAG DISABLE + STANDBY IN) --- 10ms --- PIN2 = 0 Car Radio Installation: PIN2 > 7V --- 10ms DIAG ENABLE (write) --- 200 ms --- I2C read (repeat until All faults disappear). OFFSET TEST: Device in Play (no signal) -- OFFSET ENABLE - 30ms - I2C reading (repeat I2C reading until high-offset message disappears). 7.2 I2C bus interface Data transmission from microprocessor to the TDA7563A and vice versa takes place through the 2 wires I2C BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected). 7.3 Data validity As shown by Figure 29, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW. 7.4 Start and stop conditions As shown by Figure 30 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH. 7.5 Byte format Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first. 22/35 DocID14407 Rev 5 TDA7563A 7.6 I2C bus Acknowledge The transmitter(*) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see Figure 31). The receiver(**) has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock pulse. (*) Transmitter – master (µP) when it writes an address to the TDA7563A – slave (TDA7563A) when the µP reads a data byte from TDA7563A (**) Receiver – slave (TDA7563A) when the µP writes an address to the TDA7563A – master (µP) when it reads a data byte from TDA7563A Figure 29. Data validity on the I2C bus 3$! 3#, $!4!,).% 34!",% $!4! 6!,)$ #(!.'% $!4! !,,/7%$ '!0'03 Figure 30. Timing diagram on the I2C bus 3#, )#"53 3$! 34!24 34/0 '!0'03 Figure 31. Timing acknowledge clock pulse 3#,       3$! -3" !#+./7,%$'-%.4 &2/-2%#%)6%2 34!24 DocID14407 Rev 5 '!0'03 23/35 34 Software specifications 8 TDA7563A Software specifications All the functions of the TDA7563A are activated by I2C interface. The bit 0 of the "ADDRESS BYTE" defines if the next bytes are write instruction (from P to TDA7563A) or read instruction (from TDA7563A to µP). Chip address D7 D0 1 1 0 1 1 0 X = 0 Write to device X = 1 Read from device If R/W = 0, the µP sends 2 "Instruction Bytes": IB1 and IB2. Table 6. IB1 Bit 24/35 Instruction decoding bit D7 0 D6 Diagnostic enable (D6 = 1) Diagnostic defeat (D6 = 0) D5 Offset Detection enable (D5 = 1) Offset Detection defeat (D5 = 0) D4 Front Channel Gain = 26dB (D4 = 0) Gain = 12dB (D4 = 1) D3 Rear Channel Gain = 26dB (D3 = 0) Gain = 12dB (D3 = 1) D2 Mute front channels (D2 = 0) Unmute front channels (D2 = 1) D1 Mute rear channels (D1 = 0) Unmute rear channels (D1 = 1) D0 CD 2% (D0 = 0) CD 10% (D0 = 1) DocID14407 Rev 5 0 X D8 Hex TDA7563A Software specifications Table 7. IB2 Bit Instruction decoding bit D7 0 D6 0 D5 Normal muting time (D5 = 0) Fast muting time (D5 = 1) D4 Standby on - Amplifier not working - (D4 = 0) Standby off - Amplifier working - (D4 = 1) D3 Power amplifier mode diagnostic (D3 = 0) Line driver mode diagnostic (D3 = 1) D2 Current Detection Diagnostic Enabled (D2 =1) Current Detection Diagnostic Defeat (D2 =0) D1 Right Channel Power amplifier working in standard mode (D1 = 0) Power amplifier working in high efficiency mode (D1 = 1) D0 Left Channel Power amplifier working in standard mode (D0 = 0) Power amplifier working in high efficiency mode (D0 = 1) If R/W = 1, the TDA7563A sends 4 "Diagnostics Bytes" to µP: DB1, DB2, DB3 and DB4. Table 8. DB1 Bit Instruction decoding bit D7 Thermal warning active (D7 = 1), TJ = 155°C D6 Diag. cycle not activated or not terminated (D6 = 0) Diag. cycle terminated (D6 = 1) D5 Channel LF Current Detection Output peak current 500mA - Output load (D5 = 0) D4 Channel LF Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1) D3 Channel LF Normal load (D3 = 0) Short load (D3 = 1) D2 Channel LF Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Offset diag.: No output offset (D2 = 0) Output offset detection (D2 = 1) D1 Channel LF No short to Vcc (D1 = 0) Short to Vcc (D1 = 1) D0 Channel LF No short to GND (D1 = 0) Short to GND (D1 = 1) DocID14407 Rev 5 25/35 34 Software specifications TDA7563A Table 9. DB2 Bit 26/35 Instruction decoding bit D7 Offset detection not activated (D7 = 0) Offset detection activated (D7 = 1) D6 0 D5 Channel LR Current Detection Output peak current 500mA - Output load (D5 = 0) D4 Channel LR Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1) D3 Channel LR Normal load (D3 = 0) Short load (D3 = 1) D2 Channel LR Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Permanent diag.: No output offset (D2 = 0) Output offset detection (D2 = 1) D1 Channel LR No short to Vcc (D1 = 0) Short to Vcc (D1 = 1) D0 Channel LR No short to GND (D1 = 0) Short to GND (D1 = 1) DocID14407 Rev 5 TDA7563A Software specifications Table 10. DB3 Bit Instruction decoding bit D7 Standby status (= IB2 - D4) D6 Diagnostic status (= IB1 - D6) D5 Channel RF Current Detection Output peak current 500mA - Output load (D5 = 0) D4 Channel RF Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1) D3 Channel RF Normal load (D3 = 0) Short load (D3 = 1) D2 Channel RF Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Permanent diag.: No output offset (D2 = 0) Output offset detection (D2 = 1) D1 Channel RF No short to Vcc (D1 = 0) Short to Vcc (D1 = 1) D0 Channel RF No short to GND (D1 = 0) Short to GND (D1 = 1) DocID14407 Rev 5 27/35 34 Software specifications TDA7563A Table 11. DB4 Bit 28/35 Instruction decoding bit D7 Thermal warning 2 active (D7 = 1), TJ = 140°C D6 Thermal warning 3 active (D6 = 1), TJ = 120°C D5 Channel RR Current Detection Output peak current 500mA - Output load (D5 = 0) D4 Channel RR Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1) D3 Channel R R Normal load (D3 = 0) Short load (D3 = 1) D2 Channel RR Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Permanent diag.: No output offset (D2 = 0) Output offset detection (D2 = 1) D1 Channel RR No short to Vcc (D1 = 0) Short to Vcc (D1 = 1) D0 Channel RR No short to GND (D1 = 0) Short to GND (D1 = 1) DocID14407 Rev 5 TDA7563A 9 Examples of bytes sequence Examples of bytes sequence 1 - Turn-On diagnostic - Write operation Start Address byte with D0 = 0 ACK IB1 with D6 = 1 ACK IB2 ACK STOP 2 - Turn-On diagnostic - Read operation Start  Address byte with D0 = 1 ACK DB1 ACK DB2 ACK DB3 ACK DB4 ACK STOP The delay from 1 to 2 can be selected by software, starting from 1ms 3a - Turn-On of the power amplifier with 26dB gain, mute on, diagnostic defeat, CD = 2%. Start Address byte with D0 = 0 ACK IB1 ACK X0000000 IB2 ACK STOP ACK STOP ACK STOP XXX1XX11 3b - Turn-Off of the power amplifier Start Address byte with D0 = 0 ACK IB1 ACK X0XXXXXX IB2 XXX0XXXX 4 - Offset detection procedure enable Start Address byte with D0 = 0 ACK IB1 ACK XX1XX11X IB2 XXX1XXXX 5 - Offset detection procedure stop and reading operation (the results are valid only for the offset detection bits (D2 of the bytes DB1, DB2, DB3, DB4). Start Address byte with D0 = 1 ACK DB1 ACK DB2 ACK DB3 ACK DB4 ACK STOP  The purpose of this test is to check if a D.C. offset (2V typ.) is present on the outputs, produced by input capacitor with anomalous leakage current or humidity between pins.  The delay from 4 to 5 can be selected by software, starting from 1ms DocID14407 Rev 5 29/35 34 Package information 10 TDA7563A Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Figure 32. Flexiwatt27 (horizontal) mechanical data and package dimensions ',0 $ % & ' ( )  * * +  + + + /  / /  / / / / 0 0 0 1 3 5 5 5 5 5 9 9 9 9 PP 7
TDA7563ASMTR 价格&库存

很抱歉,暂时无法提供与“TDA7563ASMTR”相匹配的价格&库存,您可以联系我们找货

免费人工找货