0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TDA7577BLV

TDA7577BLV

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    Flexiwatt27

  • 描述:

    ICAMPAUDSBDLBTLFLEXIWATT27

  • 数据手册
  • 价格&库存
TDA7577BLV 数据手册
TDA7577BLV 2 x 75 W dual-bridge power amplifier with I2C complete diagnostics and "start-stop" profile (6 V operation) Datasheet - production data Description '!0'03 '!0'03 PowerSO36 (slug-up) Flexiwatt27 (vertical) '!0'03 '!0'03 Flexiwatt27 (horizontal) Flexiwatt27 (SMD) Features  MOSFET (DMOS) output power stage  High-efficiency (class SB)  Single-channel 1 Ω driving capability – 84 W undistorted power  High output power capability 2 x 28 W / 4 Ω @ 14.4 V, 1 kHz, 10 % THD  Max. output power 2 x 75 W / 2 Ω, 1 x 150 W / 1 Ω  Full I2C bus driving with 4 addresses  Low voltage (6 V) operation (i.e. 'start-stop')  Gain 16/26 dB The TDA7577BLV is a new MOSFET dual bridge amplifier specially intended for car radio applications. Thanks to the DMOS output stage the TDA7577BLV has a very low distortion allowing a clear powerful sound, together with high output power capability. It is a very flexible device capable to support the most demanding specifications in terms of power dissipation and battery transitions: its superior efficiency performance, coming from the internal exclusive structure, can reduce the dissipated output power up to the 50 % (when compared to conventional class AB solutions). Moreover it is compliant to the recent OEM specifications thanks to the capability to work down to 6 V ('start-stop' compatibility). This device is also equipped with a full diagnostic array that communicates the status of each speaker through the I2C bus. TDA7577BLV can also drive 1 Ω loads (with parallel connection of the outputs). It is possible also to exclude the I2C bus interface, controlling the device by means of the usual STBY and MUTE pins.  Full digital diagnostic (AC and DC loads)  Legacy mode (operation without I2C)  Differential inputs  Fault detection through integrated diagnostics  DC offset detection  Two independent short circuit protections  Diagnostic on clipping detector with selectable threshold (2 % / 10 %)  Clipping detector pin  ST-BY and MUTE pins Table 1. Device summary Order code Package Packing TDA7577BLV Flexiwatt 27 (vertical) Tube TDA7577BLVPD PowerSO36 Tube TDA7577BLVPDTR PowerSO36 Tape and reel TDA7577BLVH Flexiwatt 27 (horizontal) Tube TDA7577BLVSM Flexiwatt 27 (SMD) Tube  ESD protection  Very robust against misconnections January 2015 This is information on a product in full production. DocID025375 Rev 5 1/43 www.st.com Contents TDA7577BLV Contents 1 Block and pins diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.4 Electrical characteristics typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Diagnostics functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1 Turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Permanent diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.3 Output DC offset detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.4 AC diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.5 Multiple faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.6 Fault presence information availability on I2C . . . . . . . . . . . . . . . . . . . . . 22 5 1 Ω load capability setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6 Battery transitions management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.1 Low voltage operation (“start stop”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.2 Advanced battery management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7 I2C mode and legacy mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . 26 8 Application suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 8.1 9 2/43 High efficiency introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9.1 Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9.2 Start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9.3 Byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 DocID025375 Rev 5 TDA7577BLV 10 9.4 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9.5 I2C programming/reading sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Software specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 10.1 11 12 Contents Examples of bytes sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 11.1 PowerSO-36 (slug up) package mechanical data . . . . . . . . . . . . . . . . . . 34 11.2 Flexiwatt 27 (vertical) package mechanical data . . . . . . . . . . . . . . . . . . . 36 11.3 Flexiwatt 27 (horizontal) package mechanical data . . . . . . . . . . . . . . . . . 38 11.4 Flexiwatt 27 (SMD) package mechanical data . . . . . . . . . . . . . . . . . . . . . 40 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 DocID025375 Rev 5 3/43 3 List of tables TDA7577BLV List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. 4/43 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Double fault table for turn on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Address selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 IB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 IB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 DB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 PowerSO-36 (slug up) package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Flexiwatt 27 (vertical) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Flexiwatt 27 (horizontal) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Flexiwatt 27 (SMD) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 DocID025375 Rev 5 TDA7577BLV List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Application circuit (TDA7577BLVPD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Quiescent drain current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Output power vs. supply voltage (4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Output power vs. supply voltage (2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Output power vs. supply voltage (1 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Distortion vs. output power (4 Ω, STD mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Distortion vs. output power (2 Ω, STD mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Distortion vs. output power (2 Ω, HI-EFF mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Distortion vs. output power (1 Ω, STD mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Distortion vs. frequency (4 Ω load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Distortion vs. frequency (2 Ω load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Distortion vs. frequency (1 Ω load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Output attenuation vs. supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 CMRR vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Cross talk vs frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power dissipation vs. average Po (2 Ω, STD mode, sine wave) . . . . . . . . . . . . . . . . . . . . 15 Power dissipation vs. Po (2 Ω, STD mode, audio program simulation) . . . . . . . . . . . . . . . 15 Power dissipation vs. average Po (2Ω, HI-EFF mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power dissipation vs. Po (1 Ω, STD mode, audio program simulation) . . . . . . . . . . . . . . . 15 ITU R-ARM frequency response, weighting filter for transient pop. . . . . . . . . . . . . . . . . . . 16 Turn-on diagnostic: working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 SVR and output behavior - case 1: without turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . 17 SVR and output pin behavior - case 2: with turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . 18 Short circuit detection thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Load detection thresholds - high gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Load detection thresholds - high gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Restart timing without diagnostic enable (permanent) each 1ms time, a sampling of the fault is done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Restart timing with diagnostic enable (permanent). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Current detection high: load impedance |Z| vs. output peak voltage . . . . . . . . . . . . . . . . . 21 Current detection low: load impedance |Z| vs. output peak voltage . . . . . . . . . . . . . . . . . . 21 Worst case battery cranking curve sample 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Worst case battery cranking curve sample 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Upwards fast battery transitions diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 High efficiency - basic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Data validity on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Timing diagram on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Timing acknowledge clock pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 PowerSO-36 (slug up) package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Flexiwatt 27 (vertical) package mechanical drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Flexiwatt 27 (horizontal) package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Flexiwatt 27 (SMD) package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 DocID025375 Rev 5 5/43 5 Block and pins diagrams 1 TDA7577BLV Block and pins diagrams Figure 1. Block diagram !$$2%33 ! " 63 #,+ $!4! 6## #$?/54 #,)0 $%4%#4/2 )#"53 ). /54 ). /54 3(/24#)2#5)4 02/4%#4)/. ). /54 ). /54 3(/24#)2#5)4 02/4%#4)/. 362 34 "9(% 3?'.$ 07?'.$ 4!" )#%. 7 -54% '!0'03 Figure 2. Pin connections (top view) /54   4!" /54   ). 6##   ). 6##   "   07'.$  07'.$ /54  4!"  07'.$  !  /54  .#  /54  6## -54%  ). 34?"9  ).  3'.$  )#%.   $!4!  7   #+  #$?/54  362  #+  $!4! /54   .# /54   .# /54   .#  3'.$ 07'.$   .#  344 "9 07'.$   362  -54% !   #$ /54  ). 6##    /(-  ).  6##  /54  .#  /54  "  07'.$  4!" 6##   )# %. /54   ). /54   ). '!0'03 PowerSO36 (slug-up) '!0'03 Flexiwatt 27 (vertical) 6/43 DocID025375 Rev 5 TDA7577BLV 2 Application circuit Application circuit Figure 3. Application circuit (TDA7577BLVPD) 63 )#"53 ! " #,+ #$?/54 $!4! # M& # M& 2+7 6 6##          #M& ).    ).    ).    ).  /54 /54 #M& #M&   /54 /54 #M&  # M&   K7     3?'.$ 07?'.$ 34 "9(%  )#"53 %.!",%    4!" -54% # M& 2+7 73%44).' '!0'03 DocID025375 Rev 5 7/43 42 Electrical specifications TDA7577BLV 3 Electrical specifications 3.1 Absolute maximum ratings Table 2. Absolute maximum ratings Symbol Parameter Value Unit Vop Operating supply voltage 18 V VS DC supply voltage 28 V Peak supply voltage (for t = 50 ms) 50 V -0.3 to 6 V Vpeak VCK, VDATA I2C CK and DATA pin voltage GNDmax Ground pin voltage -0.3 to 0.3 V Vst-by Standby pin voltage -0.3 to Vop V VCP Clip detector voltage -0.3 to Vop V Input max voltage -0.3 to Vop V Vin max IO Output peak current (not repetitive t = 100 ms) 8 A IO Output peak current (repetitive f > 10 Hz) 6 A 86 W -55 to 150 °C -40 to 105 °C Ptot Tstg, Tj Tamb Power dissipation Tcase = 70 °C (1) Storage and junction temperature (2) Operative temperature range 1. This is maximum theoretical value; for power dissipation in real application conditions, please refer to curves reported in Section 3.4: Electrical characteristics typical curves. 2. A suitable dissipation system should be used to keep Tj inside the specified limits. 3.2 Thermal data Table 3. Thermal data Symbol Rth j-case 3.3 Parameter Thermal resistance junction-to-case PowerSO36 Flexiwatt 27 Unit 1 1 °C/W Max Electrical characteristics Refer to the test circuit, VS = 14.4 V; RL = 4 Ω; f = 1 kHz; GV = 26 dB; Tamb = 25 °C; unless otherwise specified. Tested at Tamb = 25 °C and Thot = 105 °C; functionality guaranteed for Tj = -40 °C to 150 °C. Table 4. Electrical characteristics Symbol Parameter Test condition Min. Typ. Max. Unit - 6 - 18 V RL = 2 Ω 6 - 16 V General characteristics VS 8/43 Supply voltage range DocID025375 Rev 5 TDA7577BLV Electrical specifications Table 4. Electrical characteristics (continued) Symbol Id Parameter Test condition Min. Typ. Max. Unit Total quiescent drain current - - 140 200 mA RIN Input impedance - 100 115 140 kΩ VAM Min supply mute threshold Start-stop IB1(D7) = 0 (default) 5 - 6 No start-stop IB1(D7) = 1 7 - 8 VOS Offset voltage Mute & play, standard bridge -65 - 65 mV ISB Standby current consumption Vst-by = 0 V - 1 5 μA Power supply rejection ratio f = 100 Hz to 10 kHz; Vr = 1 Vpk; Rg = 600 Ω 60 75 - dB TON Turn on delay D2 (IB1) 0 to 1 - 30 50 ms TOFF Turn off delay D2 (IB1) 1 to 0 - 30 50 ms VMC Max. common mode input level f = 1 kHz - - 1 Vrms SR Slew rate - 2 4.5 - V/μs Max. power(1) THD = 10 % THD = 1 % 40 25 - 45 28 22 - W RL = 2 Ω; THD 10 % RL = 2 Ω; THD 1 % RL = 2 Ω; Max. power(1) 45 70 50 40 78 - W Single channel configuration (1 Ω pin >2.5 V); RL = 1 Ω; THD 3 % Max. power(1) 80 140 85 155 - W Max. power(1), Vs = 6 V - 6 - W Max. power(1), Vs = 6 V, RL = 1 Ω; - 25 - W PO = 1-12W; STD MODE HE MODE; PO = 1-2 W HE MODE; PO = 4-8 W - 0.04 0.03 0.1 0.1 0.1 - % PO = 1-12 W, f = 10 kHz, STD MODE - 0.3 0.5 % RL = 2 Ω; HE MODE; Po = 3 W - 0.05 0.5 % Single channel configuration (1Ω pin > 2.5 V); RL = 1 Ω; PO = 4-30 W - 0.085 0.15 % PSRR V Audio performances Po THD Output power Total harmonic distortion CT Cross talk Rg = 600 Ω; PO = 1 W 75 90 - dB GV1 Voltage gain 1 (default) - 25 26 27 dB Voltage gain match 1 - -1 - 1 dB Voltage gain 2 - 15 16 17 dB Voltage gain match 2 - -1 - 1 dB ΔGV1 GV2 ΔGV2 DocID025375 Rev 5 9/43 42 Electrical specifications TDA7577BLV Table 4. Electrical characteristics (continued) Symbol Parameter Test condition Min. Typ. Max. Unit EIN1 Output noise voltage gain 1 Rg = 600 Ω; Gv = 26 dB filter 20 to 22 kHz - 45 60 μV EIN2 Output noise voltage gain 2 Rg = 600 Ω; Gv = 16 dB filter 20 to 22 kHz - 20 30 μV BW Power bandwidth (-3 dB) 100 - - kHz Input CMRR VCM = 1 Vpk-pk; Rg = 0 Ω 55 70 - dB Standby to Mute and Mute to Standby transition ITU-R 2K, Csvr = 10 μF -7.5 - +7.5 mV Mute to Play transition: Low gain High gain ITU-R 2K (2) -7.5 -12 - +7.5 +12 mV mV -7.5 -12 - +7.5 +12 mV mV CMRR ΔVOITU ITU Pop filter output voltage Play to Mute transition Low gain High gain ITU-R 2K (3) Clip detector ICDH Clip pin high leakage current CD off, 0 V < VCD < 5.5 V -5 - 5 μA ICDL Clip pin low sink current CD on; VCD < 300 mV 1 - - mA CD Clip detect THD level D0 (IB1) = 0 1 2 3 % D0 (IB1) = 1 5 10 15 % Control pin characteristics VOFF ST-BY pin for standby (4) - 0 - 1.2 V VSB ST-BY pin for standard bridge - 2.6 - 5 V VHE ST-BY pin for Hi-eff - 7 - 18 V ST-BY pin current 1.2 V < Vst-by/HE < 18 V - 150 200 μA ST-BY pin current Vstby < 1.2 V - 1 5 μA Mute pin voltage for mute mode - 0 - 1 V Mute pin voltage for play mode - 2.6 - 18 V Mute pin current (st_by) Vmute = 0 V, Vst-by < 1.2 V -5 - 5 μA Mute pin current (operative) 0 V < Vmute < 18 V, Vst-by > 2.6 V - 60 100 μA I2C pin voltage for I2C disabled - 0 - 1.5 V I2C - 2.5 - 18 V -5 - 5 μA 7 13 18 μA IO (ST-BY) Vm Im VI2C II2C 10/43 I2C I2C pin voltage for I2C enabled pin current (standby) 0V< pin current (operative) I2C I2C EN < 18 V, Vstby < 1.2 V EN 2.6 V DocID025375 Rev 5 TDA7577BLV Electrical specifications Table 4. Electrical characteristics (continued) Symbol Parameter Test condition Min. Typ. Max. Unit 1Ω pin voltage for 2ch mode - 0 - 1.5 V 1Ω pin voltage for 1 Ω mode - 2.5 - 18 V 1Ω pin current (standby) 0 V < 1 Ω 2.6 V 7 13 18 μA Low logic level 0 - 1.5 V High logic level 2.5 - 18 V A pin current (ST-BY) 0 V < A < 18 V, Vst-by < 1.2 V -5 - 5 μA A pin current (operative) A < 18 V, Vst-by > 2.6 V 7 13 18 μA Low logic level 0 - 1.5 V High logic level 2.5 - 18 V B pin current (ST-BY) 0V < B < 18 V, Vstby < 1.2 V -5 - 5 μA B pin current (operative) B < 18 V, Vst-by > 2.6 V 7 13 18 μA ASB Standby attenuation - 90 100 - dB AM Mute attenuation - 80 100 - dB - - 1.2 V V1Ω I1 La Ha Ia Lb Hb Ib A pin voltage B pin voltage Turn on diagnostics (Power amplifier mode) Pgnd Short to GND det. (below this limit, the Output is considered in Short Circuit to GND) Power amplifier in standby condition Pvs Short to Vs det. (above this limit, the Output is considered in Short Circuit to VS) Vs 0.9 - - V Pnop Normal operation thresholds.(Within these limits, the Output is considered without faults). 1.8 - Vs 1.5 V 0.5 Ω Lsc Shorted load det. - - - Lop Open load det. - 85 - Lnop Normal load det. - 1.5 - 45 Ω Ω Turn on diagnostics (Line driver mode) Pgnd Short to GND det. (below this limit, the Output is considered in Short Circuit to GND) - - 1.2 V Pvs Short to Vs det. (above this limit, the Output is considered in Short Circuit to VS) Vs 0.9 - - V Pnop Normal operation thresholds.(Within these limits, the Output is considered without faults). 1.8 - Vs 1.5 V - - 1.5 Ω 330 - - Ω Lsc Shorted load det. Lop Open load det. Power amplifier in standby DocID025375 Rev 5 11/43 42 Electrical specifications TDA7577BLV Table 4. Electrical characteristics (continued) Symbol Lnop Parameter Normal load det. Test condition Power amplifier in standby Min. Typ. Max. Unit 4.5 - 180 Ω - - 1.2 V Permanent diagnostics (Power amplifier mode or line driver mode) Pgnd Short to GND det. (below this limit, the Output is considered in Short Circuit to GND) Power amplifier in Mute or Play condition, one or more short circuits protection activated Pvs Short to Vs det. (above this limit, the Output is considered in Short Circuit to VS) Vs 0.9 - - V Pnop Normal operation thresholds.(Within these limits, the Output is considered without faults). 1.8 - Vs 1.5 V Pow. amp. mode - - 0.5 Ω Line driver mode - - 1.5 Ω Lsc Shorted load det. VO Offset detection Power amplifier in play condition AC input signals = 0 ±1.5 ±2 ±2.5 V INLH Normal load current detection VO < (VS - 5)pk IB2 (D0) = 0 500 - - mA INLL Normal load current detection VO < (VS - 5)pk IB2 (D0) = 1 250 - - mA IOLH Open load current detection VO < (VS - 5)pk IB2 (D0) = 0 - - 250 mA IOLL Open load current detection VO < (VS - 5)pk IB2 (D0) =1 - - 125 mA I2C bus interface fSCL Clock frequency - - - 400 kHz VIL Input low voltage - - - 1.5 V VIH Input high voltage - 2.3 - - V 1. Saturated square wave output. 2. Voltage ramp on Mute pin: from 350 mV to 3.05 V in 40 ms. In case of I2C interface enabled command IB1(D2)=1 (Mute->Unmute) must be transmitted before to start the voltage ramp on Mute pin. 3. Voltage ramp on Mute pin: from 2.8 V to 1.2 Vin 40 ms. In case of I2C interface enabled the I2C command IB1(D2)=0 (Unmute->Mute) must be NOT transmitted before to start the voltage ramp on Mute pin. 4. ST-BY pin high enables the I2C bus; ST-BY pin low enables ST-BY condition: detailed pin levels description is contained in paragraph 'I2C habilitation settings' . 12/43 DocID025375 Rev 5 TDA7577BLV 3.4 Electrical specifications Electrical characteristics typical curves Figure 4. Quiescent drain current vs. supply voltage ,T P$   Figure 5. Output power vs. supply voltage (4 Ω)  3R :     9LQ  12/2$'   5/  2KP  I .+] 3RPD[          7+'  7+'                   9V 9       '!0'03 Figure 6. Output power vs. supply voltage (2 Ω)     9V 9       '!0'03 Figure 7. Output power vs. supply voltage (1 Ω) 3R :  3R :   5/ 2KP I .+]    5/  2KP I  .+]   3RPD[ 3RPD[    7+'   7+'         7+'       7+'                9V 9  '!0'03 Figure 8. Distortion vs. output power (4 Ω, STD mode)  7+'          9V 9     '!0'03 Figure 9. Distortion vs. output power (2 Ω, STD mode)  67'02'( 9V 9 5/ 2KP  7+'    67'02'(  9V  9 5/ 2KP  I .+]   I  .+] I .+]      3R :     '!0'03 DocID025375 Rev 5 I .+]  3R :   '!0'03 13/43 42 Electrical specifications TDA7577BLV Figure 10. Distortion vs. output power (2 Ω, HI-EFF mode) Figure 11. Distortion vs. output power (1 Ω, STD mode) 7+'   7+'     +,())  02'( 9V  9 5/  2KP   67'02'( 9V  9  5/  2KP  I .+] I .+]   I .+] I  .+]     3R :      Figure 12. Distortion vs. frequency (4 Ω load)  Figure 13. Distortion vs. frequency (2 Ω load)    67'02'(  9V    9 5/ 2KP  3R  :          I +]             I +]  I +]      '!0'03 Figure 15. Output attenuation vs. supply voltage 7+'  67'02'(  9V   9 5/ 2KP 3R  :  '!0'03 Figure 14. Distortion vs. frequency (1 Ω load) 14/43 67'02'(  9V  9 5/  2KP  3R  :      '!0'03 7+'  7+'    3R :  '!0'03                287$77 G%  5/   2KP  G%  9UPV  '!0'03 DocID025375 Rev 5       9V  9     '!0'03 TDA7577BLV Electrical specifications Figure 16. CMRR vs. frequency  Figure 17. Cross talk vs frequency &055 G%                        I +]      '!0'03 3GLVV :        H 9V  9 5/ 2KP   67'02'(  I .+]   I +]  Figure 19. Power dissipation vs. Po (2 Ω, STD mode, audio program simulation) H   3GLVV :    '!0'03 Figure 18. Power dissipation vs. average Po (2 Ω, STD mode, sine wave)  67'02'( 5/ 2KP 5J 2KP  5/   2KP 9FP  9SS   &52667$/. G%    9V  9 5/  2KP  *$866,$112,6( &/,3 67$57 67'02'(     3GLVV                   3R :         +,())02'(   Figure 20. Power dissipation vs. average Po (2Ω, HI-EFF mode) 3GLVV :       3R :      '!0'03 H    9V 9 5/ 2KP +,()) 02'( I .+=   Figure 21. Power dissipation vs. Po (1 Ω, STD mode, audio program simulation) 3GLVV :    '!0'03 H                 3GLVV 9V  9 5/  2KP  *$866,$112,6( 67'02'(  &/,3 67$57      3R : '!0'03             3R : DocID025375 Rev 5 15/43 42 Electrical specifications TDA7577BLV Figure 22. ITU R-ARM frequency response, weighting filter for transient pop /UTPUTATTENUATIOND"              (Z 16/43   '!0'03 DocID025375 Rev 5 TDA7577BLV Diagnostics functional description 4 Diagnostics functional description 4.1 Turn-on diagnostic It is strongly recommended to activate this function at the turn-on (standby out) through I2C bus request. Detectable output faults are:  SHORT TO GND  SHORT TO Vs  SHORT ACROSS THE SPEAKER  OPEN SPEAKER To verify if any of the above misconnections is in place, a subsonic (inaudible) current pulse (Figure 23) is internally generated, sent through the speaker(s) and sunk back. The Turn-on diagnostic status is internally stored until a successive diagnostic pulse is requested (after a I2C reading). If the "standby out" and "diag. enable" commands are both given through a single programming step, the pulse takes place first (during the pulse power stages stay off, showing high impedance at the outputs). Afterwards, when the Amplifier is biased, the permanent diagnostic takes place. The previous turn-on state is kept until a short appears at the outputs. Figure 23. Turn-on diagnostic: working principle 9Va9 ,VRXUFH , P$ ,VRXUFH ,VLQN ,VLQN aPV W PV 0HDVXUHWLPH '!0'03 Fig. Figure 24 and Figure 25 show SVR and OUTPUT waveforms at the turn-on (standby out) with and without turn-on diagnostic. Figure 24. SVR and output behavior - case 1: without turn-on diagnostic 6SVR /UT 0ERMANENTDIAGNOSTIC ACQUISITIONTIMEMS4YP T "IASPOWER AMPT URN ON $IAGNOSTIC %NABLE 0ERMANENT )#"$!4! &!5,4 EVENT 0ERMANENT$IAGNOSTICSDATAOUPUT PERMITTEDTIME DocID025375 Rev 5 2EAD$ATA '!0'03 17/43 42 Diagnostics functional description TDA7577BLV Figure 25. SVR and output pin behavior - case 2: with turn-on diagnostic 6SVR /UT 4U RN OND IAGNOSTIC ACQU ISI TIONTIM EMS 4YP 0ERMANENTDIAGN OST IC ACQUI SIT IONTIMEMS 4YP T 4URN ON $IAGN OST ICS DATAOUT PU T PER MITT EDTI ME $IAGNOST IC%NABLE 4UR N ON "IASPOWERAMP TURN ON PERMITTE DT IME $IAGN OST IC% NABLE 0ERMAN ENT 2EAD$ATA &!5,4 EVENT 0ERMANENT$IAGNO ST ICS DAT AOUT PUT PERMITTE DTIME )#"$!4! '!0'03 The information related to the outputs status is read and memorized at the end of the current pulse plateau. The acquisition time is 100 ms (typ.). No audible noise is generated in the process. As for SHORT TO GND / Vs the fault-detection thresholds remain unchanged from 26 dB to 16 dB gain setting. They are as follows: Figure 26. Short circuit detection thresholds 3#TO'.$ 6 X 6 .ORMAL/PERATION 6 X 63 6 3#TO6S 63 6 63 '!0'03 Concerning SHORT ACROSS THE SPEAKER / OPEN SPEAKER, the threshold varies from 26 dB to 16 dB gain setting, since different loads are expected (either normal speaker's impedance or high impedance). The values in case of 26 dB gain are as follows: Figure 27. Load detection thresholds - high gain setting 3#ACROSS,OAD 6 X 7 .ORMAL/PERATION 7 X /PEN,OAD 7 7 )NFINITE '!0'03 If the Line-Driver mode (Gv = 16 dB and Line Driver Mode diagnostic = 1) is selected, the same thresholds will change as follows: Figure 28. Load detection thresholds - high gain setting 3#ACROSS,OAD 7 7 X .ORMAL/PERATION 7 7 X /PEN,OAD 7 INFINITE '!0'03 18/43 DocID025375 Rev 5 TDA7577BLV 4.2 Diagnostics functional description Permanent diagnostics Detectable conventional faults are:  SHORT TO GND  SHORT TO Vs  SHORT ACROSS THE SPEAKER The following additional feature is provided:  OUTPUT OFFSET DETECTION The TDA7577BLV has 2 operating status: 1. RESTART mode. The diagnostic is not enabled. Each audio channel operates independently of each other. If any of the a.m. faults occurs, only the channel(s) interested is shut down. A check of the output status is made every 1 ms (Figure 29). Restart takes place when the overload is removed. 2. DIAGNOSTIC mode. It is enabled via I2C bus and it self activates if an output overload (such as to cause the intervention of the short-circuit protection) occurs to the speakers outputs. Once activated, the diagnostics procedure develops as follows (Figure 30): – To avoid momentary re-circulation spikes from giving erroneous diagnostics, a check of the output status is made after 1ms: if normal situation (no overloads) is detected, the diagnostic is not performed and the channel returns active. – Instead, if an overload is detected during the check after 1 ms, then a diagnostic cycle having a duration of about 100 ms is started. – After a diagnostic cycle, the audio channel interested by the fault is switched to RESTART mode. The relevant data are stored inside the device and can be read by the microprocessor. When one cycle has terminated, the next one is activated by an I2C reading. This is to ensure continuous diagnostics throughout the carradio operating time. – To check the status of the device a sampling system is needed. The timing is chosen at microprocessor level (more than half a second is recommended). Figure 29. Restart timing without diagnostic enable (permanent) each 1ms time, a sampling of the fault is done /UT M3  M3 M3 M3 M3 T /VERCURRENT AND SHOR T CIRCUIT PROTECTIONINTERVENTION IESHORT CIRCUI TT O'.$ 3HORT CI RCUI TREMOVED '!0'03 Figure 30. Restart timing with diagnostic enable (permanent)  M3 M3 M3 M3 T /VERCURRENT ANDSHORT CIRCUITPROTECTI ON IN TERVENTI ON IES HORTC IRCUI TTO'.$ 3HO RTCIRCUIT REMOVED '!0'03 DocID025375 Rev 5 19/43 42 Diagnostics functional description 4.3 TDA7577BLV Output DC offset detection Any DC output offset exceeding ± 2 V is signalled out. This inconvenient might occur as a consequence of initially defective or aged and worn-out input capacitors feeding a DC component to the inputs, so putting the speakers at risk of overheating. This diagnostic has to be performed with low-level output AC signal (or Vin = 0). The test is run with selectable time duration by microprocessor (from a "start" to a "stop" command):  START = Last reading operation or setting IB1 - D5 - (OFFSET enable) to 1  STOP = Actual reading operation Excess offset is signalled out if it is persistent for all the assigned testing time. This feature is disabled if any overloads leading to activation of the short-circuit protection occurs in the process. 4.4 AC diagnostic It is targeted at detecting accidental disconnection of tweeters in 2-way speaker and, more in general, presence of capacitively (AC) coupled loads. This diagnostic is based on the notion that the overall speaker's impedance (woofer + parallel tweeter) will tend to increase towards high frequencies if the tweeter gets disconnected, because the remaining speaker (woofer) would be out of its operating range (high impedance). The diagnostic decision is made according to peak output current thresholds, and it is enabled by setting (IB2-D2) = 1. Two different detection levels are available:  HIGH CURRENT THRESHOLD IB2 (D7) = 0 Iout > 500mApk = NORMAL STATUS Iout < 250mApk = OPEN TWEETER  LOW CURRENT THRESHOLD IB2 (D7) = 1 Iout > 250mApk = NORMAL STATUS Iout < 125mApk = OPEN TWEETER To correctly implement this feature, it is necessary to briefly provide a signal tone (with the amplifier in "play") whose frequency and magnitude are such as to determine an output current higher than 500 mApk with IB2(D7) = 0 (higher than 250 mApk with IB2(D7) = 1) in normal conditions and lower than 250 mApk with IB2(D7) = 0 (lower than 125 mApk with IB2(D7) = 1) should the parallel tweeter be missing. The test has to last for a minimum number of 3 sine cycles starting from the activation of the AC diagnostic function IB2) up to the I2C reading of the results (measuring period). To confirm presence of tweeter, it is necessary to find at least 3 current pulses exceeding the above threshold over all the measuring period, else an "open tweeter" message will be issued. The frequency / magnitude setting of the test tone depends on the impedance characteristics of each specific speaker being used, with or without the tweeter connected (to be calculated case by case). High-frequency tones (> 10 kHz) or even ultrasonic signals are recommended for their negligible acoustic impact and also to maximize the impedance module's ratio between with tweeter-on and tweeter-off. 20/43 DocID025375 Rev 5 TDA7577BLV Diagnostics functional description Figure 31 and 32 shows the load impedance as a function of the peak output voltage and the relevant diagnostic fields. It is recommended to keep output voltage always below 8 V (high threshold) or 4 V (low threshold) to avoid circuit to saturate (causing wrong detection cases). This feature is disabled if any overloads leading to activation of the short-circuit protection occurs in the process. Figure 31. Current detection high: load impedance |Z| vs. output peak voltage ,O AD\Z\/HM  )OUTPEAK M! ,OWCURRENTDETECTIONAREA /PENLOAD $OFTHE$"XBYRES   )OUTPEAK M!  )"$  (IGHCURRENTDETECTIONAREA .ORMALLOAD $OFTHE$"XBYTES             6OUT 0EAK '!0'03 Figure 32. Current detection low: load impedance |Z| vs. output peak voltage ,OAD\Z\/HM  )OUTPEAK M!   ,OWCURRENTDETECTIONAREA /PENLOAD $OFTHE$"XBYTES )OUTPEAK M!  )"$  (IGHCURRENTDETECTIONAREA .ORMALLOAD $OFTHE$"XBYTES          6OUT0EAK DocID025375 Rev 5    '!0'03 21/43 42 Diagnostics functional description 4.5 TDA7577BLV Multiple faults When more misconnections are simultaneously in place at the audio outputs, it is guaranteed that at least one of them is initially read out. The others are notified after successive cycles of I2C reading and faults removal, provided that the diagnostic is enabled. This is true for both kinds of diagnostic (Turn on and Permanent). The table below shows all the couples of double-fault possible. It should be taken into account that a short circuit with the 4 Ω speaker unconnected is considered as double fault. Table 5. Double fault table for turn on diagnostic S. GND S. Vs S. Across L. Open L. S. GND S. GND S. Vs + S. GND S. GND S. GND S. Vs / S. Vs S. Vs S. Vs S. Across L. / / S. Across L. N.A. Open L. / / / Open L. (*) In Permanent Diagnostic the table is the same, with only a difference concerning Open Load(*), which is not among the recognizable faults. Should an Open Load be present during the device's normal working, it would be detected at a subsequent Turn on Diagnostic cycle (i.e. at the successive car radio turn-on). 4.6 Fault presence information availability on I2C All the results coming from I2C bus, by read operations, are the consequence of measurements inside a defined period of time. If the fault is stable throughout the whole period, it will be sent out. This is true for DC diagnostic (Turn-on and Permanent), for offset detector. To guarantee always resident functions, every kind of diagnostic cycles (turn-on, Permanent, Offset) will be reactivated after any I2C reading operation. Each I2C read-out done by the microcontroller will enable a new diagnostic cycle, but the read data will come from the previous diagnostic cycle (i.e. The device is in turn-on state, with a short to GND, then the short is removed and micro reads I2C. The short to GND is still present in bytes, because it is the result of the previous cycle. If another I2C reading operation occurs, the bytes do not show the short). In general to observe a change in diagnostic bytes, two I2C reading operations are necessary. 22/43 DocID025375 Rev 5 TDA7577BLV 5 1 Ω load capability setting 1 Ω load capability setting It is possible to drive 1 Ω load paralleling the outputs into a single channel. In order to implement this feature, outputs should be connected as follows: OUT1+ shorted to OUT2+ OUT1- shorted to OUT2-. It is recommended to minimize the impedance on the board between OUT2 and the load in order to minimize THD distortion. It is also recommended to control the maximum mismatch impedance between VCC pins (PIN21/PIN22 respect to PIN33/PIN34) and between PWGND pins (PIN24/PIN25 respect to PIN30/PIN31), mismatch that must not exceed a value of 20 mΩ With 1Ω feature settled the active input is IN2 (PIN17 and PIN18), therefore IN1 pins should be let floating. It is possible to set the load capability acting on 1 Ω pin as follows: 1 Ω PIN < 1.2V: two channels mode (for a minimum load of 2 Ω) 1 Ω PIN > 2.6V: one channel mode (for 1 Ω load). It is to remember that 1 Ω function is a hardware selection. Therefore it is recommended to leave 1 Ω pin floating or shorted to GND to set the two channels mode configuration, or to short 1 Ω pin to VCC to set the one channel (1 Ω) configuration. DocID025375 Rev 5 23/43 42 Battery transitions management TDA7577BLV 6 Battery transitions management 6.1 Low voltage operation (“start stop”) The most recent OEM specifications require automatic stop of car engine at traffic light, in order to reduce emissions of polluting substances. The TDA7577BLV, thanks to its innovating design, is able to play when battery falls down to 6/7 V during such conditions, without producing audible pop noise. The maximum system power will be reduced accordingly. Worst case battery cranking curves are shown below, indicating the shape and duration of allowed battery transitions. Figure 33. Worst case battery cranking curve sample 1 9EDWW 9 9 9 9 9 W W W W W W W W V *$3*36 V1 = 12 V; V2 = 6 V; V3 = 7 V; V4 = 8 V t1 = 2 ms; t2 = 50 ms; t3 = 5 ms; t4 = 300 ms; t5 =10 ms; t6 = 1 s; t7 = 2 ms Figure 34. Worst case battery cranking curve sample 2 9EDWW 9 9 9 9 W W W W V1 = 12 V; V2 = 6 V; V3 = 7 V t1 = 2 ms; t2 = 5 ms; t3 = 15 ms; t5 = 1 s; t6 = 50 ms 24/43 DocID025375 Rev 5 W W V *$3*36 TDA7577BLV 6.2 Battery transitions management Advanced battery management In addition to compatibility with low Vbatt, the TDA7577BLV is able to substain upwards fast battery transitions (like the one showed in Figure 35) without causing unwanted audible effect, thanks to the innovative circuit topology. Figure 35. Upwards fast battery transitions diagram '!0'03 DocID025375 Rev 5 25/43 42 I2C mode and legacy mode selection 7 TDA7577BLV I2C mode and legacy mode selection It is possible to disable the I2C interface by acting on I2C EN pin and control the TDA7577BLV by means of the usual ST-BY and MUTE pins. In order to activate or deactivate this feature, I2C-EN must be set as follows:  I2C-EN (PIN16) < 1.5 V: – I2C bus interface deactivated  I2C-EN (PIN16) > 2.5 V: – I2C bus interface activated (It is also possible to let I2C-EN PIN floating to deactivate the I2C bus interface, or to short to VCC to activate I2C). In particular: When I2C is ENABLED: (I2C-EN pin > 2.5 V) then there are the following modes:  STD MODE: Vstby (PIN5) > 2.6 V, IB2(D1)=0   HE MODE: Vstby (PIN5) > 2.6 V, IB2(D1)=1 PLAY MODE: Vmute (pin 4) > 2.6 V, IB1 (D2) = 1 The amplifier can always be switched off by putting Vstby to 0V, but with I2C enabled it can be turn on only through I2C (with Vstby > 2.6 V). When I2C is DISABLED: (I2C pin < 1.5 V) then there are the following modes:  STD MODE: 2.6 V < ST-BY (PIN5) < 5 V  HE MODE: Vstby (PIN5) > 7 V  PLAY MODE: Vmute (pin 4) > 2.6 V For both STD and HE MODE the play/mute mode can be set acting on Vmute pin. In legacy mode (I2C disabled), faults (diagnostics information) are available on HW pin CDOut. CD-Out pin is active on a low value [CD-Out low = fault detected]. The faults detected are: short to ground or VCC, short across the load. 26/43 DocID025375 Rev 5 TDA7577BLV Application suggestions 8 Application suggestions 8.1 High efficiency introduction Thanks to its operating principle, the TDA7577BLV obtains a substantial reduction of power dissipation from traditional class-AB amplifiers without being affected by the massive radiation effects and complex circuitry normally associated with class-D solutions. The high efficiency operating principle is based on the use of bridge structures which are connected by means of a power switch (Figure 1). The switch, controlled by a logic circuit which senses the input signals, is closed at low volumes (output power steadily lower than 2.5 W) and the system acts like a "single bridge" with double load. In this case, the total power dissipation is a quarter of a double bridge. Due to its structure, the highest efficiency level can be reached when symmetrical loads are applied on channels sharing the same switch. Figure 36. High efficiency - basic structure 0 - n )? )? #( #( 6IN 6IN 0 n )?0 (IGH IMPEDANCE #/.42/, ,/')# "UFFER '!0'03 When the power demand increases to more than 2.5 W, the system behavior is switched back to a standard double bridge in order to guarantee the maximum output power, while in the 6 V start-stop devices the High Efficiency mode is automatically disabled at low VCC (7.3 V ±0.3 V). No need to re-program it when Vcc goes back to normal levels. In the range 2-4 W (@ VCC = 14.4 V), with the High Efficiency mode, the dissipated power gets up to 50 % less than the value obtained with the standard mode. DocID025375 Rev 5 27/43 42 I2C bus interface 9 TDA7577BLV I2C bus interface Data transmission from microprocessor to the TDA7577BLV and vice versa takes place through the 2 wires I2C bus interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected). 9.1 Data validity As shown by Figure 37, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW. 9.2 Start and stop conditions As shown by Figure 38 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH. 9.3 Byte format Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first. 9.4 Acknowledge The transmitter(*) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see Figure 39). The receiver(**) has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock pulse. (*) Transmitter = master (μP) when it writes an address to the TDA7577BLV = slave (TDA7577BLV) when the μP reads a data byte from TDA7577BLV (**) Receiver = slave (TDA7577BLV) when the μP writes an address to the TDA7577BLV = master (μP) when it reads a data byte from TDA7577BLV Figure 37. Data validity on the I2C bus 3$! 3#, $!4!,).% 34!",% $!4! 6!,)$ 28/43 #(!.'% $!4! !,,/7%$ DocID025375 Rev 5 '!0'03 I2C bus interface TDA7577BLV Figure 38. Timing diagram on the I2C bus 3#, )#"53 3$! 34!24 34/0 '!0'03 Figure 39. Timing acknowledge clock pulse 3#,       3$! -3" !#+./7,%$'-%.4 &2/-2%#%)6%2 34!24 9.5 '!0'03 I2C programming/reading sequences A correct turn on/off sequence with respect to the diagnostic timings and producing no audible noises could be as follows (after battery connection): – TURN-ON: (STANDBY OUT + DIAG ENABLE) --- 1 s (min) --- MUTING OUT – TURN-OFF: MUTING IN - wait for 50 ms - HW ST-BY IN (ST-BY pin ≤ 1.2 V) Car Radio Installation: DIAG ENABLE (write) --- 200 ms --- I2C read (repeat until All faults disappear). – OFFSET TEST: Device in Play (no signal) -– OFFSET ENABLE - 30 ms - I2C reading (repeat I2C reading until high-offset message disappears). DocID025375 Rev 5 29/43 42 Software specifications 10 TDA7577BLV Software specifications All the functions of the TDA7577BLV are activated by I2C interface. The bit 0 of the "ADDRESS BYTE" defines if the next bytes are write instruction (from μP to TDA7577BLV) or read instruction (from TDA7577BLV to μP). Table 6. Address selection Bit Selection A6 1 A5 1 A4 0 A3 1 A2 0 A1 B A0 A R/W X If R/W = 0, the μP sends 2 "Instruction Bytes": IB1 and IB2. Table 7. IB1 Bit 30/43 Instruction decoding bit D7 Supply voltage mute high threshold (D7 = 1) Supply voltage mute low threshold (D7 = 0) D6 Diagnostic enable (D6 = 1) Diagnostic defeat (D6 = 0) D5 Offset Detection enable (D5 = 1) Offset Detection defeat (D5 = 0) D4 Gain = 26 dB (D4 = 0) Gain = 16 dB (D4 = 1) D3 0 D2 Mute (D2 = 0) Unmute (D2 = 1) D1 0 D0 CD 2% (D0 = 0) CD 10% (D0 = 1) DocID025375 Rev 5 TDA7577BLV Software specifications Table 8. IB2 Bit D7 D6 D5 D4 D3 D2 D1 D0 Instruction decoding bit Current Detection Threshold HIGH (D7 =0) Current Detection Threshold LOW (D7 =1) 0 Fast muting disable - (D5 = 0) Fast muting enable - (D5 = 1) Stand-by on - Amplifier not working - (D4 = 0) Stand-by off - Amplifier working - (D4 = 1) Power Amplifier Mode Diagnostic (D3 = 0); Line Driver Mode Diagnostic (D3 = 1) Current Detection Diagnostic Enabled (D2 = 1) Current Detection Diagnostic Defeat (D2 = 0) Power amplifier working in standard mode (D1 = 0) Power amplifier working in high efficiency mode (D1 = 1) 0 If R/W = 1, the TDA7577BLV sends 2 "Diagnostics Bytes" to μP: DB1 and DB2. Table 9. DB1 Bit Instruction decoding bit D7 Thermal warning (if Tchip ≥ 140°C, D7 = 1) D6 Diag. cycle not activated or not terminated (D6 = 0) Diag. cycle terminated (D6 = 1) D5 Channel 1 Current detection IB2 (D0) = 0 Output peak current < 250 mA - Open load (D5 = 1) Output peak current > 500 mA - Normal load (D5 = 0) D4 Channel 1 Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1) D3 Channel 1 Normal load (D3 = 0) Short load (D3 = 1) D2 Channel 1 Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Offset diag.: No output offset (D2 = 0) Output offset detection (D2 = 1) D1 Channel 1 No short to Vcc (D1 = 0) Short to Vcc (D1 = 1) D0 Channel 1 No short to GND (D0 = 0) Short to GND (D0 = 1) Channel1 Current detection IB2 (D0) = 1 Output peak current < 125 mA - Open load (D5 = 1) Output peak current > 250 mA - Normal load (D5 = 0) DocID025375 Rev 5 31/43 42 Software specifications TDA7577BLV Table 10. DB2 Bit Instruction decoding bit D7 Offset detection not activated (D7 = 0) Offset detection activated (D7 = 1) D6 Current sensor not activated (D6 = 0) Current sensor activated (D6 = 1) D5 Channel 2 Current detection IB2 (D0) = 0 Output peak current < 250 mA - Open load (D5 = 1) Output peak current > 500 mA - Normal load (D5 = 0) D4 Channel 2 Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1) D3 Channel 2 Normal load (D3 = 0) Short load (D3 = 1) D2 Channel 2 Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Permanent diag.: No output offset (D2 = 0) Output offset detection (D2 = 1) D1 Channel 2 No short to Vcc (D1 = 0) Short to Vcc (D1 = 1) D0 Channel 2 No short to GND (D0 = 0) Short to GND (D0 = 1) 32/43 Channel 2 Current detection IB2 (D0) = 1 Output peak current < 125 mA - Open load (D5 = 1) Output peak current > 250 mA - Normal load (D5 = 0) DocID025375 Rev 5 TDA7577BLV 10.1 Software specifications Examples of bytes sequence 1 - Turn-on diagnostic - Write operation Start Address byte with D0 = 0 ACK IB1 with D6 = 1 ACK IB2 ACK STOP L 2 - Turn-on diagnostic - Read operation Start Address byte with D0 = 1 ACK DB1 ACK DB2 ACK STOP The delay from 1 to 2 can be selected by software, starting from 1 ms 3a - Turn-on of the power amplifier with mute on, diagnostic defeat. Start Address byte with D0 = 0 ACK IB1 ACK X000XXXX IB2 ACK STOP ACK STOP ACK STOP XXX1XX1X 3b - Turn-off of the power amplifier Start Address byte with D0 = 0 ACK IB1 ACK X0XXXXXX IB2 XXX0XXXX 4 - Offset detection procedure enable Start Address byte with D0 = 0 ACK IB1 ACK XX1XX1XX IB2 XXX1XXXX 5 - Offset detection procedure stop and reading operation (the results are valid only for the offset detection bits (D2 of the bytes DB1, DB2). Start   Address byte with D0 = 1 ACK DB1 ACK DB2 ACK STOP The purpose of this test is to check if a D.C. offset (2 V typ.) is present on the outputs, produced by input capacitor with anomalous leakage current or humidity between pins. The delay from 4 to 5 can be selected by software, starting from 1 ms. DocID025375 Rev 5 33/43 42 Package information 11 TDA7577BLV Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 11.1 PowerSO-36 (slug up) package mechanical data Figure 40. PowerSO-36 (slug up) package mechanical drawing + ( $ $ $ $ $ 1 0 $% E F ' ; H ( H '(7$,/$ ( K[ƒ  VOXJWDLOZLGWK '(7$,/$ % ( ( *$*( 3/$,1(  V / D 6($7,1*3/$1( & 67$1'2))± 67$1'2)) 67$1'2)) * &  &203/$1$5,7< ' ' *$3*36 B+B=6 Table 11. PowerSO-36 (slug up) package mechanical data Millimeters Inches Symbol 34/43 Min. Typ. Max. Min. Typ. Max. A 3.27 - 3.41 0.1287 - 0.1343 A2 3.1 - 3.18 0.1220 - 0.1252 A4 0.8 - 1.0 0.0315 - 0.0394 DocID025375 Rev 5 TDA7577BLV Package information Table 11. PowerSO-36 (slug up) package mechanical data (continued) Millimeters Inches Symbol Min. Typ. Max. Min. Typ. Max. A5 - 0.2 - - 0.0079 - a1 0.03 - -0.04 0.0012 - -0.0016 b 0.22 - 0.38 0.0087 - 0.0150 c 0.23 - 0.32 0.0091 - 0.0126 D(1) 15.8 - 16.0 0.6220 - 0.6299 D1 9.4 - 9.8 0.3701 - 0.3858 D2 - 1.0 - - 0.0394 - E 13.9 - 14.5 0.5472 - 0.5709 E1(1) 10.9 - 11.1 0.4291 - 0.4370 E2 - - 2.9 - - 0.1142 E3 5.8 - 6.2 0.2283 - 0.2441 E4 2.9 - 3.2 0.1142 - 0.1260 e - 0.65 - - 0.0256 - e3 - 11.05 - - 0.4350 - G 0 - 0.075 0 - 0.0031 H 15.5 - 15.900 0.6102 - 0.6260 h - - 1.1 - - 0.0433 L 0.8 - 1.1 0.0315 - 0.0433 N - - 10° - - 10° s - - 8° - - 8° 1. ‘D’ and ‘E1’ do not include mold flash or protusions. Mold flash or protusions shall not exceed 0.15mm (0.006”). DocID025375 Rev 5 35/43 42 Package information 11.2 TDA7577BLV Flexiwatt 27 (vertical) package mechanical data Figure 41. Flexiwatt 27 (vertical) package mechanical drawing 6 # " 6 ( ( 6 ! ( / ( 2 , 2 6 2 , . , 2 , , 6 6 2 $ 2 , 0IN 2 2 % ' ' & &,%8-% - B+B=6 - *$3*36 Table 12. Flexiwatt 27 (vertical) package mechanical data Millimeters Inches Symbol Min. Typ. Max. Min. Typ. Max. A 4.45 4.50 4.65 0.175 0.177 0.183 B 1.80 1.90 2.00 0.070 0.074 0.079 C - 1.40 - - 0.055 - D 0.75 0.90 1.05 0.029 0.035 0.041 E 0.37 0.39 0.42 0.014 0.015 0.016 - - 0.57 - - 0.022 G 0.80 1.00 1.20 0.031 0.040 0.047 G1 25.75 26.00 26.25 1.014 1.023 1.033 H (2) 28.90 29.23 29.30 1.139 1.150 1.153 H1 - 17.00 - - 0.669 - H2 - 12.80 - - 0.503 - H3 - 0.80 - - 0.031 - F 36/43 (1) DocID025375 Rev 5 TDA7577BLV Package information Table 12. Flexiwatt 27 (vertical) package mechanical data (continued) Millimeters Inches Symbol Min. Typ. Max. Min. Typ. Max. L (2) 22.07 22.47 22.87 0.869 0.884 0.904 L1 18.57 18.97 19.37 0.731 0.747 0.762 15.50 15.70 15.90 0.610 0.618 0.626 L3 7.70 7.85 7.95 0.303 0.309 0.313 L4 - 5 - - 0.197 - L5 3.35 3.5 3.65 0.132 0.138 0.144 M 3.70 4.00 4.30 0.145 0.157 0.169 M1 3.60 4.00 4.40 0.142 0.157 0.173 N - 2.20 - - 0.086 - O - 2 - - 0.079 - R - 1.70 - - 0.067 - R1 - 0.5 - - 0.02 - R2 - 0.3 - - 0.12 - R3 - 1.25 - - 0.049 - R4 - 0.50 - - 0.019 - V - 5° - - 5° - V1 - 3° - - 3° - V2 - 20° - - 20° - V3 - 45° - - 45° - L2 (2) 1. dam-bar protusion not included. 2. molding protusion included. DocID025375 Rev 5 37/43 42 Package information 11.3 TDA7577BLV Flexiwatt 27 (horizontal) package mechanical data Figure 42. Flexiwatt 27 (horizontal) package mechanical drawing % & 9 9 + 9 + + ' + 5 1 5 / 9 / 9 / 5 5 0 / / / / 9 ) * 5 * 3 ( 5 0 0 B'B4/ *$3*36 Table 13. Flexiwatt 27 (horizontal) package mechanical data Millimeters Inches Symbol 38/43 Min. Typ. Max. Min. Typ. Max. A 4.45 4.50 4.65 0.175 0.177 0.183 B 1.80 1.90 2.00 0.070 0.074 0.079 C - 1.40 - - 0.055 - D - 2.00 - - 0.079 - E 0.37 0.39 0.42 0.014 0.015 0.016 F(1) - - 0.57 - - 0.022 G 0.75 1.00 1.25 0.0295 0.040 0.0492 G1 25.70 26.00 26.30 1.0118 1.023 1.0354 DocID025375 Rev 5 TDA7577BLV Package information Table 13. Flexiwatt 27 (horizontal) package mechanical data (continued) Millimeters Inches Symbol Min. Typ. Max. Min. Typ. Max. H (2) 28.90 29.23 29.30 1.139 1.150 1.153 H1 - 17.00 - - 0.669 - H2 - 12.80 - - 0.503 - H3 - 0.80 - - 0.031 - L (2) 21.64 22.04 22.44 0.852 0.868 0.883 L1 10.15 10.50 10.85 0.40 0.413 0.427 15.50 15.70 15.90 0.610 0.618 0.626 L3 7.70 7.85 7.95 0.303 0.309 0.313 L4 - 5 - - 0.197 - L5 5.15 5.45 5.85 0.203 0.214 0.23 M 2.75 3.00 3.50 0.108 0.118 0.138 M1 - 4.73 - - 0.186 - M2 - 5.61 - - 0.220 - N - 2.20 - - 0.086 - P 3.20 3.50 3.80 0.126 0.138 0.15 R - 1.70 - - 0.067 - R1 - 0.5 - - 0.02 - R2 - 0.3 - - 0.12 - R3 - 1.25 - - 0.049 - R4 - 0.50 - - 0.019 - V - 5° - - 5° - V1 - 3° - - 3° - V2 - 20° - - 20° - V3 - 45° - - 45° - L2 (2) 1. dam-bar protusion not included. 2. molding protusion included. DocID025375 Rev 5 39/43 42 Package information 11.4 TDA7577BLV Flexiwatt 27 (SMD) package mechanical data Figure 43. Flexiwatt 27 (SMD) package mechanical drawing 'HWDLO´$´ 5RWDWHGƒ&&: 9 5 9 + 9 *$8*(3/$1( 5 9 + 67$1'2)) & % $ / / / 1 1 + DDD 6 9 3 ' 9 9  7 + 6($7,1*3/$1( 6 9 9 5 / 0 / 5 / 1 5 9 /HDG /HDG 6HHGHWDLO$ ( * ) * * *$3*36 B'B= Table 14. Flexiwatt 27 (SMD) package mechanical data Millimeters Inches Symbol Min. Typ. Max. Min. Typ. Max. A 4.45 4.50 4.65 0.1752 0.1772 0.1831 B 2.12 2.22 2.32 0.0835 0.0874 0.0913 C - 1.40 - - 0.0551 - D - 2.00 - - 0.0787 - E 0.36 0.40 0.44 0.0142 0.0157 0.0173 F(1) 0.47 0.51 0.57 0.0185 0.0201 0.0224 G(2) 0.75 1.00 1.25 0.0295 0.0394 0.0492 G1 25.70 26.00 26.30 1.0118 1.0236 1.0354 1.75 2.00 2.25 0.0689 0.0787 0.0886 (2) G2 40/43 DocID025375 Rev 5 TDA7577BLV Package information Table 14. Flexiwatt 27 (SMD) package mechanical data (continued) Millimeters Inches Symbol Min. Typ. Max. Min. Typ. Max. H(1) 28.85 29.23 29.40 1.1358 1.1508 1.1575 H1 - 17.00 - - 0.6693 - H2 - 12.80 - - 0.5039 - H3 - 0.80 - - 0.0315 - L(1) 15.50 15.70 15.90 0.6102 0.6181 0.6260 L1 7.70 7.85 7.95 0.3031 0.3091 0.3130 L2 14.00 14.20 14.40 0.5512 0.5591 0.5669 L3 11.80 12.00 12.20 0.4646 0.4724 0.4803 L4 1.30 1.48 1.66 0.0512 0.0583 0.0654 L5 2.42 2.50 2.58 0.0953 0.0984 0.1016 L6 0.42 0.50 0.58 0.0165 0.0197 0.0228 M - 1.50 - - 0.0591 - N - 2.20 - - 0.0866 - N1 1.30 1.48 1.66 0.0512 0.0583 0.0654 2.73(2) 2.83 2.93 0.1075 0.1114 0.1154 4.73 4.83 4.93 0.1862 0.1902 0.1941 R - 1.70 - - 0.0669 - R1 - 0.30 - - 0.0118 - R2 0.35 0.40 0.45 0.0138 0.0157 0.0177 R3 0.35 0.40 0.45 0.0138 0.0157 0.0177 R4 - 0.50 - - 0.0197 - -0.08 - 0.10 -0.0031 - 0.0039 aaa - 0.1 - - 0.0039 - V - 45° - - 45° - (2) N2 (2) P T (2) (2) 1. Dimension “F” doesn’t include dam-bar protrusion. Dimensions "H” and “L" include mold flash or protrusions. 2. Golden parameters. DocID025375 Rev 5 41/43 42 Revision history 12 TDA7577BLV Revision history Table 15. Document revision history 42/43 Date Revision Changes 14-Oct-2013 1 Initial release. 10-Feb-2014 2 Updated Table 4: Electrical characteristics and Section 9.5: I2C programming/reading sequences. 03-Mar-2014 3 Updated Table 4: Electrical characteristics (ΔVOITU parameter on page 10). 22-Sep-2014 4 Updated Section 9.5: I2C programming/reading sequences on page 29. 13-Jan-2015 5 Updated: Table 9: DB1 on page 31 (D7); Section 11: Package information. DocID025375 Rev 5 TDA7577BLV IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved DocID025375 Rev 5 43/43 43
TDA7577BLV 价格&库存

很抱歉,暂时无法提供与“TDA7577BLV”相匹配的价格&库存,您可以联系我们找货

免费人工找货