TL062 TL062A - TL062B
LOW POWER J-FET DUAL OPERATIONAL AMPLIFIERS
s s
s s s
s s s
VERY LOW POWER CONSUMPTION : 200µA WIDE COMMON-MODE (UP TO VCC+) AND DIFFERENTIAL VOLTAGE RANGES LOW INPUT BIAS AND OFFSET CURRENTS OUTPUT SHORT-CIRCUIT PROTECTION HIGH INPUT IMPEDANCE J-FET INPUT STAGE INTERNAL FREQUENCY COMPENSATION LATCH UP FREE OPERATION HIGH SLEW RATE : 3.5V/µs
N DIP8 (Plastic Package)
D SO8 (Plastic Micropackage)
DESCRIPTION The TL062, TL062A and TL062B are high speed J-FET input dual operational amplifier family. Each of these J-FET input operational amplifiers incorporates well matched, high voltage J-FET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias and offsetcurrents, andlow offset voltage temperature coefficient. PIN CONNECTIONS (top view) ORDER CODES
Part Number TL062M/AM/BM TL062I/AI/BI TL062C/AC/BC Example : TL062IN Temperature Range -55 C, +125 C -40oC, +105oC 0 C, +70 C
o o o o
Package N
q q q
D
q q q
1 2 3 4
+
8 7
+
6 5
1 - Output 1 2 - Inverting input 1 3 - Non-inverting input 1 4 - VCC 5 - Non-inverting input 2 6 - Inverting input 2 7 - Output 2 8 - VCC+
October 1997
1/10
TL062 - TL062A - TL062B
SCHEMATIC DIAGRAM
VC C
220 Ω
Inverting Input
Non-inverting Input
64 Ω 45k
Output
1/2 TL062
Ω
270 Ω 3.2k
Ω
4.2k
Ω
100 Ω
V CC
MAXIMUM RATINGS
Symbol VCC Vi Vid Ptot Toper Tstg
Notes :
Parameter Supply Voltage - (note 1) Input Voltage - (note 3) Differential Input Voltage - (note 2) Power Dissipation Output Short-Circuit Duration (Note 4) Operating Free-Air Temperature Range Storage Temperature Range
TL062M,AM,BM ±18 ±15 ±30 680 Infinite -55 to +125 - 65 to + 150
TL062I,AI,BI ±18 ±15 ±30 680 Infinite -40 to +105 - 65 to + 150
TL062C,AC,BC ±18 ±15 ±30 680 Infinite 0 to +70 - 65 to + 150
Unit V V V mW
o
C C
o
1. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between VCC+ and VCC-. 2. Differential voltages are at the non-inverting input terminal with respect to the inverting input terminal. 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less. 4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
2/10
TL062 - TL062A - TL062B
ELECTRICAL CHARACTERISTICS VCC = ± 15V, Tamb = 25oC (unless otherwise specified)
Symbol Vio Parameter Input Offset Voltage (Rs = 50Ω) o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. Temperature Coefficient of Input Offset Voltage (Rs = 50Ω) Input Offset Current * o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. Input Bias Current * Tamb = 25oC Tmin. ≤ Tamb ≤ Tmax. Input Common Mode Voltage Range Output Voltage Swing (RL = 10kΩ) o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. Large Signal Voltage Gain (RL = 10kΩ, Vo = ± 10V) o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. Gain Bandwidth Product o (Tamb = 25 C, RL = 10kΩ CL = 100pF) Input Resistance Common Mode Rejection Ratio (Rs = 50Ω) Supply Voltage Rejection Ratio (Rs = 50Ω) Supply Current (Per Amplifier) o (Tamb = 25 C, no load, no signal) Channel Separation (Av = 100, Tamb = 25oC) Total Power Consumption (Each Amplifier) (Tamb = 25oC, no load, no signal) 80 80 ±11.5 TL062M Min. Typ. Max. 3 6 15 Min. TL062I Typ. Max. Min. 3 6 9 TL062C Typ. Max. 3 15 20 µV/oC Unit mV
DVio Iio
10 5 100 20 200 50 ± 11.5
10 5 100 10 200 20 ± 11
10 5 200 5 400 10
pA nA pA nA V V
Iib
30 +15 -12 27
30 +15 -12 27
30 +15 -12 27
Vicm VOPP
20 20
20 20
20 20
Avd
V/mV 4 4 6 4 4 6 3 3 6 MHz 1 10
12
GBP
1 10 80 80 250
12
1 1012 70 70 250 76 dB 95 200 120 mW 250 µA dB Ω dB
Ri CMR SVR Icc VO1/VO2 PD
86 95 200 120
86 95 200 120
6
7.5
6
7.5
6
7.5
* Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperature as closes to the ambient temperature as possible.
ELECTRICAL CHARACTERISTICS (continued) VCC = ± 15V, Tamb = 25oC
Symbol SR tr KOV en Parameter Slew Rate (Vi = 10V, RL = 10kΩ, CL = 100pF, AV = 1) Rise Time (Vi = 20mV, RL = 10kΩ, CL = 100pF, AV = 1) Overshoot Factor (Vi = 20mV, RL = 10kΩ, CL = 100pF, AV = 1) (see figure 1) Equivalent Input Noise Voltage (Rs = 100Ω, f = 1KHz) TL062C,I,M Min. 1.5 Typ. 3.5 0.2 10 42 nV Hz √ Max. Unit V/µs µs %
3/10
TL062 - TL062A - TL062B
ELECTRICAL CHARACTERISTICS (continued) VCC = ± 15V, Tamb = 25oC (unless otherwise specified)
Symbol Vio Parameter Input Offset Voltage (Rs = 50Ω) o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. Temperature Coefficient of Input Offset Voltage (Rs = 50Ω) Input Offset Current * o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. Input Bias Current * Tamb = 25oC Tmin. ≤ Tamb ≤ Tmax. Input Common Mode Voltage Range Output Voltage Swing (RL = 10kΩ) o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. Large Signal Voltage Gain (RL = 10kΩ, Vo = ± 10V) o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. Gain Bandwidth Product o (Tamb = 25 C, RL = 10kΩ, CL = 100pF) Input Resistance Common Mode Rejection Ratio (R s = 50Ω) Supply Voltage Rejection Ratio (Rs = 50Ω) Supply Current (Per Amplifier) o (Tamb = 25 C, no load, no signal) Channel Separation (Av = 100, Tamb = 25 C) Total Power Consumption (Each Amplifier) o (Tamb = 25 C, no load, no signal) Slew Rate (Vi = 10V, RL = 10kΩ, CL = 100pF, AV = 1) Rise Time (Vi = 20mV, RL = 10kΩ, CL = 100pF, AV = 1) Overshoot Factor (Vi = 20mV, RL = 10kΩ, CL = 100pF, AV = 1) - (see figure 1) Equivalent Input Noise Voltage (Rs = 100Ω, f = 1KHz) 1.5
o
TL062AC,AI, AM Min. Typ. Max. 3 6 7.5
TL062BC,BI,BM Min. Typ. Max. 2 3 5
Unit mV µV/oC
DVio Iio
10 5 100 3 200 7 ±11.5
10 5 100 3 200 7
pA nA pA nA V V
Iib
30 ±11.5 +15 -12 27
30 +15 -12 27
Vicm VOPP
20 20 4 4
20 20 4 4
Avd
V/mV 6 6 MHz 1 10 80 80
12
GBP Ri CMR SVR Icc VO1/VO2 PD SR tr KOV en
1 10 80 80 250
12
Ω dB dB µA 250 mW
86 95 200 120 6 3.5 0.2 10 42 7.5
86 95 200 120 6 7.5
1.5
3.5 0.2 10 42
V/µs µs % nV Hz √
* The input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.
4/10
TL062 - TL062A - TL062B
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS SUPPLY VOLTAGE
30 25 20 15 10 5 T a m b= +25°C See fig ure 2
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREE AIR TEMP.
MAXIMUM PEAK-TO-PEAKOUTPUT VOLTAGE (V)
MAXIMUM PEAK-TO-PEAKOUTPUT VOLTAGE (V)
R L = 1 0 kΩ
30 25 20 15 10 5 0 -7 5 -5 0 - 25 0 25 50 75 -50 125 F R EE A I R T EM P E R AT U R E ( ° C )
VC C =
R
L
15V
= 10k
Ω
See Figure 2
0
2
4
6
8
10
12
14
16
SUPPLY VOLTAGE (V)
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS LOAD RESISTANCE
30 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE (V) 25 20 15 10 5 0 100
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREQUENCY
30 MAXIMUM PEAK-TO-PEAKOUTPUT VOLTAGE (V) 25 20 V CC = 15 10 5 0 1k 10K 100K FREQUENCY (Hz) 1M 10M V CC = V CC = 5V 2V 12V V CC = 15V
R L =10kΩ T a m b = + 25 ° C S ee Figu re 2
VCC =
15V
Ta m b = +2 5 ° C Se e Fig ure 2
200 400 700 1k 2k 4k 7k 10k
L OAD RE SIS TA N CE (k Ω )
DIFFERENTIAL VOLTAGE AMPLIFICATION VERSUS FREE AIR TEMPERATURE
LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT VERSUS FREQUENCY
6
10 DIFFERENTIAL VOLTAGE 7 DIFFERENTIAL VOLTAGE AMPLIFICATION (V/mV)
10
AMPLIFICATION (V/V)
105 4 10
10
VCC = 5V to 15V RL = 2kΩ Tamb = +25°C
DIFFER ENTIAL VOLTAGE AMPLIFICATION (left scale) PHASE SHIFT (right scale)
0
4
3
45
90 135
2 V CC = 1 -75 -50 -25 0 25 50 75 100 125 15V R L = 10 kΩ
102
101
1
10
100
1k
10k
100k
1M
180 10M
FREE AIR TEMPERATURE (°C)
FREQUENCY (Hz)
5/10
TL062 - TL062A - TL062B
SUPPLY CURRENT PER AMPLIFIER VERSUS SUPPLY VOLTAGE
250
SUPPLY CURRENT (µA)
SUPPLY CURRENT PER AMPLIFIER VERSUS FREE AIR TEMPERATURE
250
SUPPLY CURRENT (µA)
200
150 100
200
150 100
50
0
T amb = +25°C No signal
No load
50
0
VCC = 15V
No signal No load
0
2
4 10 12 6 8 SUPPLY VOLTAGE ( V)
14
16
-75
-50
-25 0 25 50 75 100 125 FREE AIR TEMPERATURE ( °C)
TOTAL POWER DISSIPATED VERSUS FREE AIR TEMPERATURE
30 TOTAL POWER DISSIPATED (mW) 25 20 15 10 5 0 -75 -50 -25 0 25 50 75 100 125 FREE AIR TEMPERATURE (°C)
COMMON MODE REJECTION RATIO VERSUS FREE AIR TEMPERATURE
87
V C C = 15V No signa l No load
COMMON MODE REJECTION RATIO (dB)
86 85 84 83 82 81 -75
VC C = R
L
1 5V
= 1 0kΩ
-50
-25
0
25
50
75
100
125
FREE AIR TEMPERATURE (°C)
NORMALIZED UNITY GAIN BANDWIDTH SLEW RATE, AND PHASE SHIFT VERSUS TEMPERATURE
INPUT BIAS CURRENT VERSUS FREE AIR TEMPERATURE
100
NORMALIZED UNITY-GAIN BANDWIDTH AND SLEW RATE
UNITY -GAIN-BANDWIDTH (left scale) PHASE SHIFT (right scale)
INPUT BIAS CURRENT (nA)
1.3
1.2 1.1
1.03
1.02 1.01
VCC = 15V
10
1
NORMALIZED PHASESHIFT
1
0.9
0.8 0.7 -75
S LEW RAT E (left scale)
1 0.99
0.98
R L = 10kΩ f = B1for phase shift
-50 -25
VCC = 15V
0.1
0
25
50
0.97 75 100 125
FREE AIR TEMPERATURE (°C)
0.01 -50
-25
0
25
50
75
100
125
FREE AIR TEMPERATURE (°C)
6/10
TL062 - TL062A - TL062B
VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE
INPUT AND OUTPUT VOLTAGES
OUTPUT VOLTAGE VERSUS ELAPSED TIME
28
OUTPUT VOLTAGE (mV)
6 4
INPUT
24
OVERSHOOT
2
(V)
20 16 12 8 4
10%
OUTPUT
90%
0 -2
-4
VCC = 15V R L = 10kΩ
CL = 100pF Tamb = +25°C
V
0 -4
tr
R L = 10kΩ Tamb = +25 °C
CC
= 15V
-6 0 2 4 6 TIME (µs) 8 10
0
0.2
0.4
0.6
0.8
1
12
14
TIME (µs)
EQUIVALENT INPUT NOISE VOLTAGE VERSUS FREQUENCY
100
EQUIVALENT INPUT NOISE VOLTAGE (nV/VHz)
90 80 70 60 50 40 30
20
VCC = 15V R S = 100 Ω Tamb = +25°C
10 0
40 100
400 1k
4k
10k
40k 100k
10
FREQUENCY (Hz)
7/10
TL062 - TL062A - TL062B
PARAMETER MEASUREMENT INFORMATION Figure 1 : Voltage follower
Figure 2 : Gain-of-10 inverting amplifier
10k
Ω
1/2
1k eI
Ω
1/2
TL 0 6 2
R L = 10k Ω
eo
TL062
eo
RL
eI
C L = 100pF
C L = 100pF
TYPICAL APPLICATION 100KHz QUADRATURE OSCILLATOR
1N 4148
18k Ω * -15V
18pF 18pF -
1k Ω
1/2
TL062 88.4k Ω
88.4k Ω -
1/2
6 sin ω t 18pF 88.4k Ω TL062 1k Ω
6 cos ω t
1N 4148
18k Ω *
+15V
* These resistor values may be adjusted for a symmetrical output
8/10
TL062 - TL062A - TL062B
PACKAGE MECHANICAL DATA 8 PINS - PLASTIC DIP
Dimensions A a1 B b b1 D E e e3 e4 F i L Z
Min. 0.51 1.15 0.356 0.204 7.95
Millimeters Typ. 3.32
Max.
Min. 0.020 0.045 0.014 0.008 0.313
Inches Typ. 0.131
Max.
1.65 0.55 0.304 10.92 9.75 2.54 7.62 7.62 6.6 5.08 3.81 1.52
0.065 0.022 0.012 0.430 0.384 0.100 0.300 0.300 0260 0.200 0.150 0.060
3.18
0.125
9/10
DIP8.TBL
PM-DIP8.EPS
TL062 - TL062A - TL062B
PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (SO)
Dimensions A a1 a2 a3 b b1 C c1 D E e e3 F L M S
Min. 0.1 0.65 0.35 0.19 0.25 4.8 5.8
Millimeters Typ.
Max. 1.75 0.25 1.65 0.85 0.48 0.25 0.5 45 (typ.) 5.0 6.2
o
Min. 0.004 0.026 0.014 0.007 0.010 0.189 0.228
Inches Typ.
Max. 0.069 0.010 0.065 0.033 0.019 0.010 0.020 0.197 0.244
1.27 3.81 3.8 0.4 4.0 1.27 0.6 8 (max.)
o
0.050 0.150 0.150 0.016 0.157 0.050 0.024
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
ORDER CODE :
© 1997 SGS-THOMSON Microelectronics – Printed in Italy – All Rights Reserved SGS-THOM SON Microelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
10/10
SO8.TBL
PM-SO8.EPS