TL064 TL064A - TL064B
LOW POWER J-FET QUAD OPERATIONAL AMPLIFIERS
s VERY LOW POWER CONSUMPTION :
200µA
s WIDE COMMON-MODE (UP TO VCC+) AND
DIFFERENTIAL VOLTAGE RANGES
s LOW INPUT BIAS AND OFFSET CURRENTS s OUTPUT SHORT-CIRCUIT PROTECTION s HIGH INPUT IMPEDANCE J-FET INPUT
STAGE
N DIP14 (Plastic Package)
s INTERNAL FREQUENCY COMPENSATION s LATCH UP FREE OPERATION s HIGH SLEW RATE : 3.5V/ µs
D SO14 (Plastic Micropackage)
DESCRIPTION The TL064, TL064A and TL064B are high speed J-FET input quad operational amplifiers. Each of these J-FET input operational amplifiers incorporates well matched, high voltage J-FET and bipolar transistors in a monolithic integrated circuit. The device features high slew rate, low input bias and offset currents, and low offset voltage temperature coefficient. PIN CONNECTIONS (top view)
ORDER CODE
Package Part Number Temperature Range N TL064M/AM/BM TL064I/AI/BI TL064C/AC/BC Example : TL064IN -55°C, +125°C -40°C, +105°C 0°C, +70°C • • • D • • •
N = Dual in Line Package (DIP) D = Small Outline Package (SO) - also available in Tape & Reel (DT)
Output 1 1 Inverting Input 1 2 Non-inverting Input 1 3 VCC + 4 Non-inverting Input 2 5 Inverting Input 2 6 Output 2 7 + + + +
14 Output 4 13 Inverting Input 4 12 Non-inverting Input 4 11 VCC 10 Non-inverting Input 3 9 8 Inverting Input 3 Output 3
November 2001
1/10
TL064 - TL064A - TL064B
SCHEMATIC DIAGRAM
VCC
220Ω Inverting Input Non-inverting Input 45k Ω 270Ω 3.2k Ω
64Ω
Output
1/4 TL064
4.2k Ω
100Ω
V CC
ABSOLUTE MAXIMUM RATINGS
Symbol VCC Vi Vid Ptot Toper Tstg
1. 2. 3. 4.
Parameter Supply voltage - note 1) Input Voltage - note Power Dissipation Output Short-circuit Duration - note 4) Operating Free-air Temperature Range Storage Temperature Range
2) 3)
TL064M, AM, BM
TL064I, AI, BI
TL064C, AC, BC
Unit V V V mW
±18 ±15 ±30 680 Infinite -55 to +125 -40 to +105 -65 to +150 0 to +70
Differential Input Voltage - note
°C °C
All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between VCC + and VCC -. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded
2/10
TL064- TL064A - TL064B
ELECTRICAL CHARACTERISTICS VCC = ±15V, Tamb = +25°C (unless otherwise specified)
TL064M Symbol Parameter Min. Vio DVio Iio Input Offset Voltage (Rs = 50Ω) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax Temperature Coefficient of Input Offset Voltage (Rs = 50Ω) Input Offset Current - note 1) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax Input Bias Current - note 1 Tamb = 25°C Tmin ≤ Tamb ≤ Tmax Input Common Mode Voltage Range Output Voltage Swing (RL = 10kΩ) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax Large Signal Voltage Gain RL = 10kΩ, Vo = ±10V, Tamb = 25°C Tmin ≤ Tamb ≤ Tmax Gain Bandwith Product Tamb = 25°C, RL =10kΩ, CL = 100pF Input Resistance Typ. Max. Min. 3 6 15 Typ. Max. Min. 3 6 9 Typ. Max. mV 3 15 20 µV/°C TL064I TL064C Unit
10 5 100 20 200 50
10 5 100 10 200 20 ±11
10 5 200 5 400 10
pA nA pA nA V V
Iib Vicm Vopp
30 ±11.5 +15 -12 20 20 27
30 ±11.5 +15 -12 20 20 27
30 +15 -12 27
20 20
V/mV 4 4 6 4 4 6 3 3 6 MHz 1 1012 80 80 86 95 80 80 1 1012 86 95 70 70 1 1012 76 dB 95 µA 200 120 250 200 120 250 200 120 mW 6 7.5 6 7.5 6 7.5 V/µs 1.5 3.5 1.5 3.5 1.5 3.5 µs 0.2 0.2 0.2 % 10 42 10 42 10 42 nV ----------Hz 250 dB
Avd
GBP Ri
Ω
dB
CMR
SVR ICC
Common Mode Rejection Ratio RS = 50Ω
Supply Voltage Rejection Ratio RS = 50Ω Supply Current, Per Amplifier Tamb = 25°C, no load, no signal
Channel Separation Vo1/Vo2 Av = 100, Tamb = 25°C PD Total Power Consumption Tamb = 25°C, no load, no signal Slew Rate Vi = 10V, RL = 10kΩ, CL = 100pF, Av = 1 Rise Time 5 (see figure 1) Vi = 20mV, RL = 10kΩ, CL = 100pF, Av = 1 Overshoot Factor (see figure 1) Vi = 20mV, RL = 10kΩ, CL = 100pF, Av = 1 (see figure 1) Equivalent Input Noise Voltage RS = 100Ω, f = 1KHz
SR
tr
Kov
en
1.
The input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.
3/10
TL064 - TL064A - TL064B
ELECTRICAL CHARACTERISTICS VCC = ±15V, Tamb = +25°C (unless otherwise specified)
TL064AC, AI, AM Symbol Parameter Min. Vio DVio Iio Input Offset Voltage (Rs = 50Ω) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax Temperature Coefficient of Input Offset Voltage (Rs = 50Ω) Input Offset Current - note Tamb = 25°C Tmin ≤ Tamb ≤ Tmax
1)
TL064BC, BI, BM Unit Min. Typ. 2 10 Max. mV 3 5 µV/°C 100 3 200 7 pA nA pA nA V V
Typ. 3 10 5
Max. 6 7.5
100 3 200 7 ±11.5
5
Iib Vicm Vopp
Input Bias Current - note 1 Tamb = 25°C Tmin ≤ Tamb ≤ Tmax Input Common Mode Voltage Range Output Voltage Swing (RL = 10kΩ) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax Large Signal Voltage Gain RL = 10kΩ, Vo = ±10V, Tamb = 25°C Tmin ≤ Tamb ≤ Tmax Gain Bandwidth Product Tamb = 25°C, RL =10kΩ, CL = 100pF ±11.5
30 +15 -12 27
30 +15 -12 27
20 20
20 20
V/mV 4 4 6 4 4 6 MHz 1 1012 80 80 86 95 200 120 6 1.5 3.5 0.2 10 42 7.5 1.5 250 80 80 1 1012 86 dB 95 µA 200 120 6 3.5 µs 0.2 % 10 42 nV ----------Hz 7.5 mW V/µs 250 dB
Avd
GBP Ri
Input Resistance Common Mode Rejection Ratio CMR RS = 50Ω SVR ICC Vo1/Vo2 PD SR tr Kov en
1.
Ω
dB
Supply Voltage Rejection Ratio RS = 50Ω Supply Current (Per Amplifier) Tamb = +25°C, no load, no signal Channel Separation Av = 100, Tamb = +25°C Total Power Consumption (Each Amplifier) Tamb = 25°C, no load, no signal Slew Rate Vi = 10V, RL = 10kΩ, CL = 100pF, Av = 1 Rise Time Vi = 20mV, RL = 10kΩ, CL = 100pF, Av = 1 Overshoot Factor (see figure 1) Vi = 20mV, RL = 10kΩ, CL = 100pF, Av = 1 Equivalent Input Noise Voltage RS = 100Ω, f = 1KHz
The input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.
4/10
TL064- TL064A - TL064B
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus SUPPLY VOLTAGE MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus FREE AIR TEMPERATURE
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus LOAD RESISTANCE
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus FREQUENCY
DIFFERENTIAL VOLTAGE AMPLIFICATION versus FREE AIR TEMPERATURE
LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT versus FREQUENCY
10
6 10 DIFFERENTIAL VOLTAGE AMPLIFICATION (V/V) 105 4 10
DIFFERENTIAL VOLTAGE AMPLIFICATION (V/mV)
7 4
VCC = 5V to 15V RL = 2kΩ Tamb = +25˚ C
DIFFERENTIAL VOLTAGE AMPLIFICATION (left scale) PHASE SHIFT (right scale)
0
3 10 102
101 1
45
90 135
2 VCC = 15V R L = 10k Ω -50 0 25 -25 50 75 100 FREE AIR TEMPERATURE (˚C) 125
1 -75
10 100 1k 10k 100k 1M FREQUENCY (Hz)
180 10M
5/10
TL064 - TL064A - TL064B
SUPPLY CURRENT PER AMPLIFIER versus SUPPLY VOLTAGE SUPPLY CURRENT PER AMPLIFIER versus FREE AIR TEMPERATURE
250 SUPPLY CURRENT (µA)
SUPPLY CURRENT (µA)
250
200
150 100 50
T amb = +25˚C No signal No load
200
150 100 50 VCC = 15V No signal No load -75 -50 50 75 100 125 -25 0 25 FREE AIR TEMPERATURE (˚C)
0
0 2 4 10 12 6 8 SUPPLY VOLTAGE ( V) 14
0
16
TOTAL POWER DISSIPATED versus FREE AIR TEMPERATURE
COMMON MODE REJECTION RATIO versus FREE AIR TEMPERATURE
30 25
87 COMMON MODE REJECTION RATIO (dB) 86 85 84 83 82 81 -75
V C C = 1 5V R L = 1 0kΩ
TOTAL POWER DISSIPATED (mW)
20
15 10
VCC = 15V No signal No load
5
0 -75 -50
-25
0
25
50
75 100 125
-50
-25
0
25
50
75
100 125
FREE AIR TEMPERATURE (˚C)
FREE AIR TEMPERATURE (˚C)
NORMALIZED UNITY GAIN BANDWIDTH SLEW RATE, AND PHASE SHIFT versus TEMPERATURE
INPUT BIAS CURRENT versus FREE AIR TEMPERATURE
100
NORMALIZED UNITY-GAIN BANDWIDTH AND SLEW RATE
UNITY -GAIN-BANDWIDTH (left sc ale) PHASE SH IFT (right scale)
INPUT BIAS CURRENT (nA)
1.3
1.2 1.1
1.03
1.02 1.01
VCC = 10
1 0.1
15V
NORMALIZED PHASE SHIFT
1 0.9
0.8
VCC = 15V R L = 10kΩ f = B 1for phase shift
SLEW RAT E (left scale)
1 0.99
0.98
0.7 -75 -50
-25
0
25
50
0.97 75 100 125
FREE AIR TEMPERATURE (˚C)
0.01 -50
-25
0
25
50
75
100
125
FREE AIR TEMPERATURE (˚C)
6/10
TL064- TL064A - TL064B
VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE
INPUT AND OUTPUT VOLTAGES (V) 6 4
INPUT
OUTPUT VOLTAGE versus ELAPSED TIME
28 24 OUTPUT VOLTAGE (mV)
OVERSHOOT
2
0 -2 -4 -6 0 2 4 6 TIME (µ s)
VCC = 15V R L = 10kΩ CL = 100pF
OUTPUT
20 16 12 8 4
10%
90%
V
Tamb = +25˚C
0 -4 0
tr 0.2 0.4 0.6 0.8 TIME ( µs)
R L = 10k Ω Tamb = +25˚C 1 12 14
CC
= 15V
8
10
EQUIVALENT INPUT NOISE VOLTAGE versus FREQUENCY
100 EQUIVALENT INPUT NOISE VOLTAGE (nV/VHz) 90 80 70 60 50 40 30 20 10 0 40 10 100 400 1k 4k 10k 40k 100k FREQUENCY (Hz)
VC C = 15V R S = 100Ω T a m b = +25˚ C
7/10
TL064 - TL064A - TL064B
PARAMETER MEASUREMENT INFORMATION Figure 1 : Voltage Follower Figure 2 : Gain-of-10 Inverting Amplifier
10k Ω 1k Ω
10k Ω 1k Ω
eI
1/4
eI
TL064
eo
1/4
TL064
eo
RL
CL = 100pF
RL
CL = 100pF
TYPICAL APPLICATIONS AUDIO DISTRIBUTOR AMPLIFIER
fO = 100kHz 1M Ω 1/4 TL064 Output A
1 µF Input 100k Ω 100k Ω 100k Ω 100k Ω 1/4 TL064 -
1/4 TL064
Output B
1OO µF
V CC+
1/4 TL064 Output C
8/10
TL064- TL064A - TL064B
PACKAGE MECHANICAL DATA 14 PINS - PLASTIC DIP
Millimeters Dimensions Min. a1 B b b1 D E e e3 F i L Z 0.51 1.39 0.5 0.25 20 8.5 2.54 15.24 7.1 5.1 3.3 1.27 2.54 0.050 Typ. Max. 1.65 Min. 0.020 0.055
Inches Typ. Max. 0.065 0.020 0.010 0.787 0.335 0.100 0.600 0.280 0.201 0.130 0.100
9/10
TL064 - TL064A - TL064B
PACKAGE MECHANICAL DATA 14 PINS - PLASTIC MICROPACKAGE (SO)
L C
G c1
a2 b e3 D M e
A
s E
14 1
8 7 F
Millimeters Dimensions Min. A a1 a2 b b1 C c1 D (1) E e e3 F (1) G L M S 0.1 0.35 0.19 0.5 45° (typ.) 8.55 5.8 1.27 7.62 3.8 4.6 0.5 4.0 5.3 1.27 0.68 8° (max.) 0.150 0.181 0.020 8.75 6.2 0.336 0.228 Typ. Max. 1.75 0.2 1.6 0.46 0.25 Min. 0.004 0.014 0.007
a1
b1
Inches Typ. Max. 0.069 0.008 0.063 0.018 0.010 0.020 0.344 0.244 0.050 0.300 0.157 0.208 0.050 0.027
Note : (1) D and F do not include mold flash or protrusions - Mold flash or protrusions shall not exceed 0.15mm (.066 inc) ONLY FOR DATA BOOK.
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. © The ST logo is a registered trademark of STMicroelectronics © 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com
10/10