TS3011
Datasheet
Rail-to-rail high-speed comparator
Features
SC70-5
wettable flanks
SOT23-5
•
•
•
•
•
•
•
•
•
Propagation delay: 8 ns
Low current consumption: 470 μA typ. at 5 V
Rail-to-rail inputs
Push-pull outputs
Supply operation from 2.2 to 5 V
Wide temperature range: -40 °C to 125 °C
ESD tolerance: 2 kV HBM/200 V MM
Available in SOT23-5, SC70-5 and DFN8 2x2 wettable flanks
Automotive qualification
Applications
Product status link
TS3011
•
•
•
•
•
Telecoms
Instrumentation
Signal conditioning
High-speed sampling systems
Portable communication systems
Description
The TS3011 single comparator features a high-speed response time with rail-to-rail
inputs. Specified for a supply voltage of 2.2 to 5 V, this comparator can operate over
a wide temperature range from -40 °C to 125 °C.
The TS3011 offers micropower consumption as low as a few hundred microamperes,
thus providing an excellent ratio of power consumption current versus response time.
The TS3011 includes push-pull outputs and is available in tiny packages to overcome
space constraints.
DS8604 - Rev 7 - January 2022
For further information contact your local STMicroelectronics sales office.
www.st.com
TS3011
Pin configuration
1
Pin configuration
Figure 1. Pin configuration
Note:
DS8604 - Rev 7
Exposed pad can be left floating or connected to ground.
page 2/19
TS3011
Absolute maximum ratings and operating conditions
2
Absolute maximum ratings and operating conditions
Table 1. Absolute maximum ratings
Symbol
Parameter
Value
VCC
Supply voltage (1)
5.5
VID
Differential input voltage (2)
±5
VIN
RTHJA
RTHJC
Input voltage range
(VCC
Thermal resistance junction-to-ambient (3)
Thermal resistance junction-to-case (3)
-)
- 0.3 to (VCC
SOT23-5
250
SC70-5
205
DFN8 2x2
57
SOT23-5
81
SC70-5
172
DFN8 2x2
26
TSTG
Storage temperature
-65 to 150
TJ
Junction temperature
150
TLEAD
Lead temperature (soldering 10 seconds)
Human body model (HBM)
ESD
Unit
V
+)
+ 0.3
°C/W
°C
260
(4)
2000
Machine model (MM) (5)
200
Charged device model (CDM) (6)
DFN8 2x2/ SOT23-5
1500
SC70-5
1300
V
1. All voltage values, except the differential voltage, are referenced to VCC -.
2. The magnitude of input and output voltages must never exceed the supply rail ±0.3 V.
3. Short-circuits can cause excessive heating. These values are typical.
4. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor
between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
5. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the
device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations
while the other pins are floating.
6. Charged device model: all pins and package are charged together to the specified voltage and then discharged directly to
ground.
Table 2. Operating conditions
Symbol
DS8604 - Rev 7
Parameter
TOper
Operating temperature range
VCC
Supply voltage (VCC + - VCC -), -40 °C < Tamb < 125 °C
VICM
Common mode input voltage range, -40 °C < Tamb < 125 °C
Value
Unit
-40 to 125
°C
2.2 to 5
(VCC -) - 0.2 to (VCC +) + 0.2
V
page 3/19
TS3011
Electrical characteristics
3
Electrical characteristics
In the electrical characteristic tables below, all values over the temperature range are guaranteed through
correlation and simulation. No production tests are performed at the temperature range limits.
Table 3. VCC = 2.2 V, VICM = VCC/2,Tamb = 25 °C (unless otherwise specified)
Symbol
VIO
ΔVIO
VHYST
IIO
IIB
Parameter
Input offset voltage (1)
Input offset voltage drift
Test conditions
-40 °C < Tamb < 125 °C
Min.
Typ.
Max.
-7
-0.2
7
-8
-40 °C < Tamb < 125 °C
5
Input hysteresis voltage (2)
Input offset current (3)
Input bias current
Supply current
1
-40 °C < Tamb < 125 °C
1
-40 °C < Tamb < 125 °C
Short circuit current
VOH
Output voltage high
VOL
Output voltage low
CMRR
TPLH
TPHL
Common-mode rejection ratio
Propagation delay, low to high output level (4)
Propagation delay, high to low output level (5)
µV/°C
20
20
pA
100
0.52
No load, output high, -40 °C < Tamb < 125 °C
0.64
0.9
No load, output low
0.65
0.88
1.1
Source
14
18
Sink
11
14
Isource = 4 mA
1.94
1.97
-40 °C < Tamb < 125 °C
1.85
Isink = 4 mA
150
-40 °C < Tamb < 125 °C
0 < VICM < 2.7 V
mV
mV
100
No load, output low, -40 °C < Tamb < 125 °C
ISC
20
2
No load, output high
ICC
8
Unit
V
190
250
50
68
CL = 12 pF, RL = 1 MΩ, overdrive = 5 mV
16
CL = 12 pF, RL = 1 MΩ, overdrive = 15 mV
12
CL = 12 pF, RL = 1 MΩ, overdrive = 50 mV
10
CL = 12 pF, RL = 1 MΩ, overdrive = 5 mV
16
CL = 12 pF, RL = 1 MΩ, overdrive = 15 mV
12
CL = 12 pF, RL = 1 MΩ, overdrive = 50 mV
10
TR
Rise time (10 % to 90 %)
CL = 12 pF, RL = 1 MΩ, overdrive = 100 mV
3.0
TF
Fall time (90 % to 10 %)
CL = 12 pF, RL = 1 MΩ, overdrive = 100 mV
2.5
mA
mV
dB
15
ns
15
1. The offset is defined as the average value of positive (VTRIP+) and negative (VTRIP-) trip points (input
voltage differences) requested to change the output state in each direction.
2. Hysteresis is a built-in feature of the TS3011. It is defined as the voltage difference between the trip points.
3. Maximum values include unavoidable inaccuracies of the industrial tests.
4. Overdrive is measured with reference to the VTRIP+ point.
5. Overdrive is measured with reference to the VTRIP- point.
DS8604 - Rev 7
page 4/19
TS3011
Electrical characteristics
Table 4. VCC = 2.7 V, VICM = VCC/2, Tamb = 25 °C (unless otherwise specified)
Symbol
VIO
ΔVIO
VHYST
IIO
IIB
Parameter
Input offset voltage (1)
Input offset voltage drift
Test conditions
-40 °C < Tamb < 125 °C
Min.
Typ.
Max.
-7
-0.1
7
-9
-40 °C < Tamb < 125 °C
5
Input hysteresis voltage (2)
Input offset current (3)
Input bias current
Supply current
1
-40 °C < Tamb < 125 °C
1
-40 °C < Tamb < 125 °C
Short circuit current
VOH
Output voltage high
VOL
Output voltage low
CMRR
TPLH
TPHL
Common-mode rejection ratio
Propagation delay, low to high output level (4)
Propagation delay, high to low output level (5)
µV/°C
20
20
pA
100
0.52
No load, output high, -40 °C < Tamb < 125 °C
0.65
0.9
No load, output low
0.66
0.89
1.1
Source
24
27
Sink
19
22
Isource = 4 mA
2.48
2.52
-40 °C < Tamb < 125 °C
2.40
Isink = 4 mA
130
-40 °C < Tamb < 125 °C
0 < VICM < 2.7 V
mV
mV
100
No load, output low, -40 °C < Tamb < 125 °C
ISC
20
2
No load, output high
ICC
9
Unit
V
170
220
52
70
CL = 12 pF, RL = 1 MΩ, overdrive = 5 mV
16
CL = 12 pF, RL = 1 MΩ, overdrive = 15 mV
11
CL = 12 pF, RL = 1 MΩ, overdrive = 50 mV
9
CL = 12 pF, RL = 1 MΩ, overdrive = 5 mV
16
CL = 12 pF, RL = 1 MΩ, overdrive = 15 mV
11
CL = 12 pF, RL = 1 MΩ, overdrive = 50 mV
9
TR
Rise time (10 % to 90 %)
CL = 12 pF, RL = 1 MΩ, overdrive = 100 mV
2.3
TF
Fall time (90 % to 10 %)
CL = 12 pF, RL = 1 MΩ, overdrive = 100 mV
1.8
mA
mV
dB
13
ns
13
1. The offset is defined as the average value of positive (VTRIP+) and negative (VTRIP-) trip points (input
voltage differences) requested to change the output state in each direction.
2. Hysteresis is a built-in feature of the TS3011. It is defined as the voltage difference between the trip points.
3. Maximum values include unavoidable inaccuracies of the industrial tests.
4. Overdrive is measured with reference to the VTRIP+ point.
5. Overdrive is measured with reference to the VTRIP- point.
DS8604 - Rev 7
page 5/19
TS3011
Electrical characteristics
Table 5. VCC = 5 V, VICM = VCC/2, Tamb = 25 °C (unless otherwise specified)
Symbol
VIO
ΔVIO
VHYST
IIO
IIB
Parameter
Test conditions
Input offset voltage (1)
-40 °C < Tamb < 125 °C
Min.
Typ.
Max.
-7
-0.4
7
-9
-40 °C < Tamb < 125 °C
Input offset voltage drift
10
Input hysteresis voltage (2)
1
Input offset current (3)
-40 °C < Tamb < 125 °C
-40 °C < Tamb < 125 °C
0.47
VOH
Output voltage high
VOL
Output voltage low
CMRR
SVR
No load, output low
0.60
TPLH
TPHL
Source
58
62
Sink
58
64
Isource = 4 mA
4.84
4.89
-40 °C < Tamb < 125 °C
4.80
90
-40 °C < Tamb < 125 °C
0 < VICM < 2.7 V
Supply voltage rejection
ΔVCC = 2.2 V to 5 V
79
CL = 12 pF, RL = 1 MΩ, overdrive = 5 mV
14
CL = 12 pF, RL = 1 MΩ, overdrive = 15 mV
10
CL = 12 pF, RL = 1 MΩ, overdrive = 50 mV
8
CL = 12 pF, RL = 1 MΩ, overdrive = 5 mV
16
CL = 12 pF, RL = 1 MΩ, overdrive = 15 mV
11
CL = 12 pF, RL = 1 MΩ, overdrive = 50 mV
9
Propagation delay, high to low output level
(5)
pA
0.69
0.91
57
120
74
TR
Rise time (10 % to 90 %)
CL = 12 pF, RL = 1 MΩ, overdrive = 100 mV
1.1
TF
Fall time (90 % to 10 %)
CL = 12 pF, RL = 1 MΩ, overdrive = 100 mV
1.0
mA
V
180
Common-mode rejection ratio
Propagation delay, low to high output level
20
1.1
Isink = 4 mA
(4)
20
0.9
No load, output low, -40 °C < Tamb < 125 °C
Short circuit current
µV/°C
100
No load, output high, -40 °C < Tamb < 125 °C
Supply current
mV
mV
100
1
Input bias current
ISC
30
2
No load, output high
ICC
9
Unit
mV
dB
11
ns
12
1. The offset is defined as the average value of positive (VTRIP+) and negative (VTRIP-) trip points (input
voltage differences) requested to change the output state in each direction.
2. Hysteresis is a built-in feature of the TS3011. It is defined as the voltage difference between the trip points.
3. Maximum values include unavoidable inaccuracies of the industrial tests.
4. Overdrive is measured with reference to the VTRIP+ point.
5. Overdrive is measured with reference to the VTRIP- point.
DS8604 - Rev 7
page 6/19
TS3011
Electrical characteristic curves
4
Electrical characteristic curves
Figure 2. Current consumption vs. power supply voltage - Figure 3. Current consumption vs. power supply voltage output low
output high
1000
1000
VICM =0V
Output LOW
900
800
900
T = 125oC
700
T = 25 oC
500
400
T = 125oC
700
ICC (µA)
ICC (µA)
600
VICM =0V
Output HIGH
800
o
T = -40 C
600
500
400
300
300
200
200
100
100
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
T = 25oC
T = -40oC
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
VCC(V)
VCC(V)
Figure 4. Current consumption vs. temperature
Figure 5. Output voltage vs. sinking current, output low,
VCC = 2.7 V
900
VCC = 5V
VICM = 0V
800
1
VOUT(V)
ICC (µA)
T = 125 oC
Output LOW
700
600
500
Output HIGH
400
300
-40
-20
0
20
40
60
80
100
120
Temperature (°C)
0.1
T = 25 oC
0.01
T = -40 oC
1E-3
1E-4
1E-3
0.01
ISINK(A)
Figure 6. Output voltage vs. sinking current, output low,
VCC = 5 V
1
VCC= 2.7V
output LOW
Figure 7. Output voltage drop vs. sourcing current, output
high, VCC = 2.7 V
VCC= 5V
output LOW
1
VCC= 2.7V
output HIGH
T = 125 oC
o
0.1
0.01
1E-3
1E-4
VDROP(V)
VOUT(V)
T = 125 C
o
T = 25 C
0.01
ISINK(A)
DS8604 - Rev 7
0.01
T = -40 oC
1E-3
0.1
0.1
1E-3
1E-4
T = 25 oC
T = -40 oC
1E-3
ISOURCE(A)
0.01
page 7/19
TS3011
Electrical characteristic curves
Figure 8. Output voltage drop vs. sourcing current, output
high, VCC = 5 V
4
VCC = 5V
output HIGH
T = 125oC
T = 25oC
0.1
0.01
VCC= 5V
VTRIP+
2
VIO (mV)
VDROP(V)
1
Figure 9. Input offset voltage vs. common mode voltage
0
VTRIP-
-2
T = -40oC
-4
1E-3
1E-4
1E-3
0.01
0
0.1
1
2
ISOURCE(A)
Figure 10. Input offset voltage vs. temperature
4
10
TPHL(ns)
VIO (mV)
VCC = 5V
VOV= 50mV
T= 125°C
VTRIP+
VTRIP-
-2
9
8
T= 25°C
-4
-20
0
20
40
60
80
Temperature (oC)
100
120
Figure 12. Propagation delay vs. common mode voltage
with positive transition
-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
VICM(V)
Figure 13. Propagation delay vs. power supply voltage
with negative transition
12
10.0
11
8.0
7.5
VICM = 0V
VOV= 50mV
10
T= 125°C
TPHL(ns)
TPLH(ns)
VCC = 5V
VOV= 50mV
8.5
T= 125°C
9
8
T= 25°C
T= -40°C
6.5
7
6.0
-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
VICM(V)
6
2.0
DS8604 - Rev 7
T= -40°C
7
-40
7.0
5
11
VCC= 5V
VICM= VCC/2
0
9.0
4
Figure 11. Propagation delay vs. common mode voltage
with negative transition
2
9.5
3
VICM(V)
T= -40°C
2.5
3.0
3.5
4.0
VCC (V)
T= 25°C
4.5
5.0
page 8/19
TS3011
Electrical characteristic curves
Figure 14. Propagation delay vs. power supply voltage
with positive transition
Figure 15. Propagation delay vs. overdrive with negative
transition, VCC = 2.7 V
12
VICM = 0V
VOV= 50mV
11
9
TPHL(ns)
TPLH(ns)
10
T= 125°C
8
T= -40°C
7
6
2.0
2.5
3.0
T= 25°C
3.5
4.0
VCC (V)
4.5
5.0
18
17
16
15
14
13
12
11
10
9
8
7
6
VCC = 2,7V
VICM = 0V
T= 125°C
T= 25°C
T= -40°C
0
10
20
30
VOV (mV)
40
50
18
17
16
15
14
13
12
11
10
9
8
7
6
T= 125°C
T= -40°C
T= 25°C
0
10
20
30
VOV (mV)
40
50
18
17
16
15
14
13
12
11
10
9
8
7
6
0
VCC = 5V
VICM = 0V
T= 125°C
T= -40°C
T= 25°C
10
20
30
VOV (mV)
40
50
Figure 19. Propagation delay vs. temperature
11
VCC = 5V
VICM = 0V
10
TP (ns)
TPLH(ns)
Figure 18. Propagation delay vs. overdrive with positive
transition, VCC = 5 V
VCC = 2,7V
VICM = 0V
Figure 17. Propagation delay vs. overdrive with negative
transition, VCC = 5 V
TPHL (ns)
TPLH(ns)
Figure 16. Propagation delay vs. overdrive with positive
transition, VCC = 2.7 V
18
17
16
15
14
13
12
11
10
9
8
7
6
T= 125°C
VCC = 5V
VICM = 0V
VOV= 50mV
9
TPHL
8
T= -40°C
TPLH
7
T= 25°C
0
DS8604 - Rev 7
10
20
30
VOV (mV)
6
40
50
-40
-20
0
20
40
60
80
Temperature (oC)
100
120
page 9/19
TS3011
Application recommendation
5
Application recommendation
When high speed comparators are used, it is strongly recommended to place a capacitor as close as possible
to the supply pins. Decoupling has two main advantages for this application: it helps to reduce electromagnetic
interference and rejects the ripple that may appear on the output.
A bypass capacitor combination, composed of 100 nF in addition to 10 nF and 1 nF in parallel is recommended
because it eliminates spikes on the supply line better than a single 100 nF capacitor. Each millimeter of the PCB
track plays an important role. Bypass capacitors must be placed as close as possible to the comparator supply
pin.
The smallest value capacitor should be preferably placed closer to the supply pin.
In addition, important values of input impedance in series with parasitic PCB capacity and input comparator
capacity create an additional RC filter. It generates an additional propagation delay.
For high speed signal applications, PCB must be designed with great care taking into consideration low resistive
grounding, short tracks and quality SMD capacitors featuring low ESR. Bypass capacitor stores energy and
provides a complementary energy tank when spikes occur on the power supply line. If the input signal frequency
is far from the resonant frequency, impedance strongly increases and the capacitor loses bypassing capability.
Placing different capacitors with different resonant frequencies allows a wide frequency bandwidth to be covered.
It is also recommended to implement an unbroken ground plane with low inductance.
Figure 20. High speed layout recommendation
DS8604 - Rev 7
page 10/19
TS3011
Package information
6
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
6.1
SOT23-5 package information
Figure 21. SOT23-5 package outline
Table 6. SOT23-5 mechanical data
Dimensions
Millimeters
Ref.
A
Min.
Typ.
Max.
Min.
Typ.
Max.
0.90
1.20
1.45
0.035
0.047
0.057
A1
DS8604 - Rev 7
Inches
0.15
0.006
A2
0.90
1.05
1.30
0.035
0.041
0.051
B
0.35
0.40
0.50
0.014
0.016
0.020
C
0.09
0.15
0.20
0.004
0.006
0.008
D
2.80
2.90
3.00
0.110
0.114
0.118
D1
1.90
0.075
e
0.95
0.037
E
2.60
2.80
3.00
0.102
0.110
0.118
F
1.50
1.60
1.75
0.059
0.063
0.069
L
0.10
0.35
0.60
0.004
0.014
0.024
K
0 degrees
10 degrees
0 degrees
10 degrees
page 11/19
TS3011
SC70-5 (or SOT323-5) package information
6.2
SC70-5 (or SOT323-5) package information
Figure 22. SC70-5 (or SOT323-5) package outline
SIDE VIEW
DIMENSIONS IN MM
GAUGE PLANE
COPLANAR LEADS
SEATING PLANE
TOP VIEW
Table 7. SC70-5 (or SOT323-5) mechanical data
Dimensions
Millimeters
Ref.
Min.
A
Typ.
0.80
A1
DS8604 - Rev 7
Inches
Max.
Min.
1.10
0.032
Typ.
0.043
0.10
A2
0.80
b
0.90
Max.
0.004
1.00
0.032
0.035
0.15
0.30
0.006
0.012
c
0.10
0.22
0.004
0.009
D
1.80
2.00
2.20
0.071
0.079
0.087
E
1.80
2.10
2.40
0.071
0.083
0.094
E1
1.15
1.25
1.35
0.045
0.049
0.053
e
0.65
0.025
e1
1.30
0.051
L
0.26
<
0°
0.36
0.46
0.010
8°
0°
0.014
0.039
0.018
8°
page 12/19
TS3011
DFN8 2x2 mm package information
6.3
DFN8 2x2 mm package information
Figure 23. DFN8 2x2 mm package outline
Table 8. DFN8 2x2 mm package mechanical data
Dimensions
Millimiters
Ref.
A
Min.
Typ.
Max.
Min.
Typ.
Max.
0.70
0.75
0.80
0.027
0.029
0.031
A1
0.10
0.003
b
0.20
0.25
0.30
0.007
0.009
0.011
D
1.95
2.00
2.05
0.076
0.078
0.080
D1
0.80
0.90
1.00
0.031
0.035
0.039
E
1.95
2.00
2.05
0.076
0.078
0.080
E1
1.50
1.60
1.70
0.059
0.062
0.066
e
0.50
0.019
F
0.05
0.001
G
aaa
DS8604 - Rev 7
Inches
0.25
0.30
0.10
0.35
0.009
0.011
0.013
0.003
page 13/19
TS3011
Ordering information
7
Ordering information
Table 9. Order codes
Part number
Temperature range
TS3011ILT
TS3011IYCT (1)
TS3011IYQ3T (1)
Packaging
-40 °C to 125 °C
SC70-5
DFN8 2x2, wettable flanks
Marking
K540
SOT23-5
TS3011IYLT (1)
TS3011ICT
Package
K541
Tape and reel
K54
K5N
K5N
1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001
and Q 002 or equivalent.
DS8604 - Rev 7
page 14/19
TS3011
Revision history
Table 10. Document revision history
Date
Revision
03-Oct-2011
1
18-Feb-2014
2
Changes
Initial release.
Updated Table 8: Order codes to add the order code TS3011IYLT.
Added: Automotive qualification among the Features in the cover page.
Updated document layout
Section 3: "Electrical characteristics": updated unit of "Input offset voltage drift"
parameter to µV/°C (not mV/°C).
27-May-2016
3
Section 4: "Electrical characteristic curves": X-axes changed to mV (not V) in
figures 15, 16, 17, and 18.
Table 6: added “K” values for inches
Table 7: updated A and A2 min values for inches and added "