0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TS3011ICT

TS3011ICT

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    SC-70-5

  • 描述:

    IC COMPARATOR SGL R-R SC70-5

  • 数据手册
  • 价格&库存
TS3011ICT 数据手册
TS3011 Datasheet Rail-to-rail high-speed comparator Features SC70-5 wettable flanks SOT23-5 • • • • • • • • • Propagation delay: 8 ns Low current consumption: 470 μA typ. at 5 V Rail-to-rail inputs Push-pull outputs Supply operation from 2.2 to 5 V Wide temperature range: -40 °C to 125 °C ESD tolerance: 2 kV HBM/200 V MM Available in SOT23-5, SC70-5 and DFN8 2x2 wettable flanks Automotive qualification Applications Product status link TS3011 • • • • • Telecoms Instrumentation Signal conditioning High-speed sampling systems Portable communication systems Description The TS3011 single comparator features a high-speed response time with rail-to-rail inputs. Specified for a supply voltage of 2.2 to 5 V, this comparator can operate over a wide temperature range from -40 °C to 125 °C. The TS3011 offers micropower consumption as low as a few hundred microamperes, thus providing an excellent ratio of power consumption current versus response time. The TS3011 includes push-pull outputs and is available in tiny packages to overcome space constraints. DS8604 - Rev 7 - January 2022 For further information contact your local STMicroelectronics sales office. www.st.com TS3011 Pin configuration 1 Pin configuration Figure 1. Pin configuration Note: DS8604 - Rev 7 Exposed pad can be left floating or connected to ground. page 2/19 TS3011 Absolute maximum ratings and operating conditions 2 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings Symbol Parameter Value VCC Supply voltage (1) 5.5 VID Differential input voltage (2) ±5 VIN RTHJA RTHJC Input voltage range (VCC Thermal resistance junction-to-ambient (3) Thermal resistance junction-to-case (3) -) - 0.3 to (VCC SOT23-5 250 SC70-5 205 DFN8 2x2 57 SOT23-5 81 SC70-5 172 DFN8 2x2 26 TSTG Storage temperature -65 to 150 TJ Junction temperature 150 TLEAD Lead temperature (soldering 10 seconds) Human body model (HBM) ESD Unit V +) + 0.3 °C/W °C 260 (4) 2000 Machine model (MM) (5) 200 Charged device model (CDM) (6) DFN8 2x2/ SOT23-5 1500 SC70-5 1300 V 1. All voltage values, except the differential voltage, are referenced to VCC -. 2. The magnitude of input and output voltages must never exceed the supply rail ±0.3 V. 3. Short-circuits can cause excessive heating. These values are typical. 4. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 5. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating. 6. Charged device model: all pins and package are charged together to the specified voltage and then discharged directly to ground. Table 2. Operating conditions Symbol DS8604 - Rev 7 Parameter TOper Operating temperature range VCC Supply voltage (VCC + - VCC -), -40 °C < Tamb < 125 °C VICM Common mode input voltage range, -40 °C < Tamb < 125 °C Value Unit -40 to 125 °C 2.2 to 5 (VCC -) - 0.2 to (VCC +) + 0.2 V page 3/19 TS3011 Electrical characteristics 3 Electrical characteristics In the electrical characteristic tables below, all values over the temperature range are guaranteed through correlation and simulation. No production tests are performed at the temperature range limits. Table 3. VCC = 2.2 V, VICM = VCC/2,Tamb = 25 °C (unless otherwise specified) Symbol VIO ΔVIO VHYST IIO IIB Parameter Input offset voltage (1) Input offset voltage drift Test conditions -40 °C < Tamb < 125 °C Min. Typ. Max. -7 -0.2 7 -8 -40 °C < Tamb < 125 °C 5 Input hysteresis voltage (2) Input offset current (3) Input bias current Supply current 1 -40 °C < Tamb < 125 °C 1 -40 °C < Tamb < 125 °C Short circuit current VOH Output voltage high VOL Output voltage low CMRR TPLH TPHL Common-mode rejection ratio Propagation delay, low to high output level (4) Propagation delay, high to low output level (5) µV/°C 20 20 pA 100 0.52 No load, output high, -40 °C < Tamb < 125 °C 0.64 0.9 No load, output low 0.65 0.88 1.1 Source 14 18 Sink 11 14 Isource = 4 mA 1.94 1.97 -40 °C < Tamb < 125 °C 1.85 Isink = 4 mA 150 -40 °C < Tamb < 125 °C 0 < VICM < 2.7 V mV mV 100 No load, output low, -40 °C < Tamb < 125 °C ISC 20 2 No load, output high ICC 8 Unit V 190 250 50 68 CL = 12 pF, RL = 1 MΩ, overdrive = 5 mV 16 CL = 12 pF, RL = 1 MΩ, overdrive = 15 mV 12 CL = 12 pF, RL = 1 MΩ, overdrive = 50 mV 10 CL = 12 pF, RL = 1 MΩ, overdrive = 5 mV 16 CL = 12 pF, RL = 1 MΩ, overdrive = 15 mV 12 CL = 12 pF, RL = 1 MΩ, overdrive = 50 mV 10 TR Rise time (10 % to 90 %) CL = 12 pF, RL = 1 MΩ, overdrive = 100 mV 3.0 TF Fall time (90 % to 10 %) CL = 12 pF, RL = 1 MΩ, overdrive = 100 mV 2.5 mA mV dB 15 ns 15 1. The offset is defined as the average value of positive (VTRIP+) and negative (VTRIP-) trip points (input voltage differences) requested to change the output state in each direction. 2. Hysteresis is a built-in feature of the TS3011. It is defined as the voltage difference between the trip points. 3. Maximum values include unavoidable inaccuracies of the industrial tests. 4. Overdrive is measured with reference to the VTRIP+ point. 5. Overdrive is measured with reference to the VTRIP- point. DS8604 - Rev 7 page 4/19 TS3011 Electrical characteristics Table 4. VCC = 2.7 V, VICM = VCC/2, Tamb = 25 °C (unless otherwise specified) Symbol VIO ΔVIO VHYST IIO IIB Parameter Input offset voltage (1) Input offset voltage drift Test conditions -40 °C < Tamb < 125 °C Min. Typ. Max. -7 -0.1 7 -9 -40 °C < Tamb < 125 °C 5 Input hysteresis voltage (2) Input offset current (3) Input bias current Supply current 1 -40 °C < Tamb < 125 °C 1 -40 °C < Tamb < 125 °C Short circuit current VOH Output voltage high VOL Output voltage low CMRR TPLH TPHL Common-mode rejection ratio Propagation delay, low to high output level (4) Propagation delay, high to low output level (5) µV/°C 20 20 pA 100 0.52 No load, output high, -40 °C < Tamb < 125 °C 0.65 0.9 No load, output low 0.66 0.89 1.1 Source 24 27 Sink 19 22 Isource = 4 mA 2.48 2.52 -40 °C < Tamb < 125 °C 2.40 Isink = 4 mA 130 -40 °C < Tamb < 125 °C 0 < VICM < 2.7 V mV mV 100 No load, output low, -40 °C < Tamb < 125 °C ISC 20 2 No load, output high ICC 9 Unit V 170 220 52 70 CL = 12 pF, RL = 1 MΩ, overdrive = 5 mV 16 CL = 12 pF, RL = 1 MΩ, overdrive = 15 mV 11 CL = 12 pF, RL = 1 MΩ, overdrive = 50 mV 9 CL = 12 pF, RL = 1 MΩ, overdrive = 5 mV 16 CL = 12 pF, RL = 1 MΩ, overdrive = 15 mV 11 CL = 12 pF, RL = 1 MΩ, overdrive = 50 mV 9 TR Rise time (10 % to 90 %) CL = 12 pF, RL = 1 MΩ, overdrive = 100 mV 2.3 TF Fall time (90 % to 10 %) CL = 12 pF, RL = 1 MΩ, overdrive = 100 mV 1.8 mA mV dB 13 ns 13 1. The offset is defined as the average value of positive (VTRIP+) and negative (VTRIP-) trip points (input voltage differences) requested to change the output state in each direction. 2. Hysteresis is a built-in feature of the TS3011. It is defined as the voltage difference between the trip points. 3. Maximum values include unavoidable inaccuracies of the industrial tests. 4. Overdrive is measured with reference to the VTRIP+ point. 5. Overdrive is measured with reference to the VTRIP- point. DS8604 - Rev 7 page 5/19 TS3011 Electrical characteristics Table 5. VCC = 5 V, VICM = VCC/2, Tamb = 25 °C (unless otherwise specified) Symbol VIO ΔVIO VHYST IIO IIB Parameter Test conditions Input offset voltage (1) -40 °C < Tamb < 125 °C Min. Typ. Max. -7 -0.4 7 -9 -40 °C < Tamb < 125 °C Input offset voltage drift 10 Input hysteresis voltage (2) 1 Input offset current (3) -40 °C < Tamb < 125 °C -40 °C < Tamb < 125 °C 0.47 VOH Output voltage high VOL Output voltage low CMRR SVR No load, output low 0.60 TPLH TPHL Source 58 62 Sink 58 64 Isource = 4 mA 4.84 4.89 -40 °C < Tamb < 125 °C 4.80 90 -40 °C < Tamb < 125 °C 0 < VICM < 2.7 V Supply voltage rejection ΔVCC = 2.2 V to 5 V 79 CL = 12 pF, RL = 1 MΩ, overdrive = 5 mV 14 CL = 12 pF, RL = 1 MΩ, overdrive = 15 mV 10 CL = 12 pF, RL = 1 MΩ, overdrive = 50 mV 8 CL = 12 pF, RL = 1 MΩ, overdrive = 5 mV 16 CL = 12 pF, RL = 1 MΩ, overdrive = 15 mV 11 CL = 12 pF, RL = 1 MΩ, overdrive = 50 mV 9 Propagation delay, high to low output level (5) pA 0.69 0.91 57 120 74 TR Rise time (10 % to 90 %) CL = 12 pF, RL = 1 MΩ, overdrive = 100 mV 1.1 TF Fall time (90 % to 10 %) CL = 12 pF, RL = 1 MΩ, overdrive = 100 mV 1.0 mA V 180 Common-mode rejection ratio Propagation delay, low to high output level 20 1.1 Isink = 4 mA (4) 20 0.9 No load, output low, -40 °C < Tamb < 125 °C Short circuit current µV/°C 100 No load, output high, -40 °C < Tamb < 125 °C Supply current mV mV 100 1 Input bias current ISC 30 2 No load, output high ICC 9 Unit mV dB 11 ns 12 1. The offset is defined as the average value of positive (VTRIP+) and negative (VTRIP-) trip points (input voltage differences) requested to change the output state in each direction. 2. Hysteresis is a built-in feature of the TS3011. It is defined as the voltage difference between the trip points. 3. Maximum values include unavoidable inaccuracies of the industrial tests. 4. Overdrive is measured with reference to the VTRIP+ point. 5. Overdrive is measured with reference to the VTRIP- point. DS8604 - Rev 7 page 6/19 TS3011 Electrical characteristic curves 4 Electrical characteristic curves Figure 2. Current consumption vs. power supply voltage - Figure 3. Current consumption vs. power supply voltage output low output high 1000 1000 VICM =0V Output LOW 900 800 900 T = 125oC 700 T = 25 oC 500 400 T = 125oC 700 ICC (µA) ICC (µA) 600 VICM =0V Output HIGH 800 o T = -40 C 600 500 400 300 300 200 200 100 100 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 T = 25oC T = -40oC 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VCC(V) VCC(V) Figure 4. Current consumption vs. temperature Figure 5. Output voltage vs. sinking current, output low, VCC = 2.7 V 900 VCC = 5V VICM = 0V 800 1 VOUT(V) ICC (µA) T = 125 oC Output LOW 700 600 500 Output HIGH 400 300 -40 -20 0 20 40 60 80 100 120 Temperature (°C) 0.1 T = 25 oC 0.01 T = -40 oC 1E-3 1E-4 1E-3 0.01 ISINK(A) Figure 6. Output voltage vs. sinking current, output low, VCC = 5 V 1 VCC= 2.7V output LOW Figure 7. Output voltage drop vs. sourcing current, output high, VCC = 2.7 V VCC= 5V output LOW 1 VCC= 2.7V output HIGH T = 125 oC o 0.1 0.01 1E-3 1E-4 VDROP(V) VOUT(V) T = 125 C o T = 25 C 0.01 ISINK(A) DS8604 - Rev 7 0.01 T = -40 oC 1E-3 0.1 0.1 1E-3 1E-4 T = 25 oC T = -40 oC 1E-3 ISOURCE(A) 0.01 page 7/19 TS3011 Electrical characteristic curves Figure 8. Output voltage drop vs. sourcing current, output high, VCC = 5 V 4 VCC = 5V output HIGH T = 125oC T = 25oC 0.1 0.01 VCC= 5V VTRIP+ 2 VIO (mV) VDROP(V) 1 Figure 9. Input offset voltage vs. common mode voltage 0 VTRIP- -2 T = -40oC -4 1E-3 1E-4 1E-3 0.01 0 0.1 1 2 ISOURCE(A) Figure 10. Input offset voltage vs. temperature 4 10 TPHL(ns) VIO (mV) VCC = 5V VOV= 50mV T= 125°C VTRIP+ VTRIP- -2 9 8 T= 25°C -4 -20 0 20 40 60 80 Temperature (oC) 100 120 Figure 12. Propagation delay vs. common mode voltage with positive transition -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VICM(V) Figure 13. Propagation delay vs. power supply voltage with negative transition 12 10.0 11 8.0 7.5 VICM = 0V VOV= 50mV 10 T= 125°C TPHL(ns) TPLH(ns) VCC = 5V VOV= 50mV 8.5 T= 125°C 9 8 T= 25°C T= -40°C 6.5 7 6.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VICM(V) 6 2.0 DS8604 - Rev 7 T= -40°C 7 -40 7.0 5 11 VCC= 5V VICM= VCC/2 0 9.0 4 Figure 11. Propagation delay vs. common mode voltage with negative transition 2 9.5 3 VICM(V) T= -40°C 2.5 3.0 3.5 4.0 VCC (V) T= 25°C 4.5 5.0 page 8/19 TS3011 Electrical characteristic curves Figure 14. Propagation delay vs. power supply voltage with positive transition Figure 15. Propagation delay vs. overdrive with negative transition, VCC = 2.7 V 12 VICM = 0V VOV= 50mV 11 9 TPHL(ns) TPLH(ns) 10 T= 125°C 8 T= -40°C 7 6 2.0 2.5 3.0 T= 25°C 3.5 4.0 VCC (V) 4.5 5.0 18 17 16 15 14 13 12 11 10 9 8 7 6 VCC = 2,7V VICM = 0V T= 125°C T= 25°C T= -40°C 0 10 20 30 VOV (mV) 40 50 18 17 16 15 14 13 12 11 10 9 8 7 6 T= 125°C T= -40°C T= 25°C 0 10 20 30 VOV (mV) 40 50 18 17 16 15 14 13 12 11 10 9 8 7 6 0 VCC = 5V VICM = 0V T= 125°C T= -40°C T= 25°C 10 20 30 VOV (mV) 40 50 Figure 19. Propagation delay vs. temperature 11 VCC = 5V VICM = 0V 10 TP (ns) TPLH(ns) Figure 18. Propagation delay vs. overdrive with positive transition, VCC = 5 V VCC = 2,7V VICM = 0V Figure 17. Propagation delay vs. overdrive with negative transition, VCC = 5 V TPHL (ns) TPLH(ns) Figure 16. Propagation delay vs. overdrive with positive transition, VCC = 2.7 V 18 17 16 15 14 13 12 11 10 9 8 7 6 T= 125°C VCC = 5V VICM = 0V VOV= 50mV 9 TPHL 8 T= -40°C TPLH 7 T= 25°C 0 DS8604 - Rev 7 10 20 30 VOV (mV) 6 40 50 -40 -20 0 20 40 60 80 Temperature (oC) 100 120 page 9/19 TS3011 Application recommendation 5 Application recommendation When high speed comparators are used, it is strongly recommended to place a capacitor as close as possible to the supply pins. Decoupling has two main advantages for this application: it helps to reduce electromagnetic interference and rejects the ripple that may appear on the output. A bypass capacitor combination, composed of 100 nF in addition to 10 nF and 1 nF in parallel is recommended because it eliminates spikes on the supply line better than a single 100 nF capacitor. Each millimeter of the PCB track plays an important role. Bypass capacitors must be placed as close as possible to the comparator supply pin. The smallest value capacitor should be preferably placed closer to the supply pin. In addition, important values of input impedance in series with parasitic PCB capacity and input comparator capacity create an additional RC filter. It generates an additional propagation delay. For high speed signal applications, PCB must be designed with great care taking into consideration low resistive grounding, short tracks and quality SMD capacitors featuring low ESR. Bypass capacitor stores energy and provides a complementary energy tank when spikes occur on the power supply line. If the input signal frequency is far from the resonant frequency, impedance strongly increases and the capacitor loses bypassing capability. Placing different capacitors with different resonant frequencies allows a wide frequency bandwidth to be covered. It is also recommended to implement an unbroken ground plane with low inductance. Figure 20. High speed layout recommendation DS8604 - Rev 7 page 10/19 TS3011 Package information 6 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 6.1 SOT23-5 package information Figure 21. SOT23-5 package outline Table 6. SOT23-5 mechanical data Dimensions Millimeters Ref. A Min. Typ. Max. Min. Typ. Max. 0.90 1.20 1.45 0.035 0.047 0.057 A1 DS8604 - Rev 7 Inches 0.15 0.006 A2 0.90 1.05 1.30 0.035 0.041 0.051 B 0.35 0.40 0.50 0.014 0.016 0.020 C 0.09 0.15 0.20 0.004 0.006 0.008 D 2.80 2.90 3.00 0.110 0.114 0.118 D1 1.90 0.075 e 0.95 0.037 E 2.60 2.80 3.00 0.102 0.110 0.118 F 1.50 1.60 1.75 0.059 0.063 0.069 L 0.10 0.35 0.60 0.004 0.014 0.024 K 0 degrees 10 degrees 0 degrees 10 degrees page 11/19 TS3011 SC70-5 (or SOT323-5) package information 6.2 SC70-5 (or SOT323-5) package information Figure 22. SC70-5 (or SOT323-5) package outline SIDE VIEW DIMENSIONS IN MM GAUGE PLANE COPLANAR LEADS SEATING PLANE TOP VIEW Table 7. SC70-5 (or SOT323-5) mechanical data Dimensions Millimeters Ref. Min. A Typ. 0.80 A1 DS8604 - Rev 7 Inches Max. Min. 1.10 0.032 Typ. 0.043 0.10 A2 0.80 b 0.90 Max. 0.004 1.00 0.032 0.035 0.15 0.30 0.006 0.012 c 0.10 0.22 0.004 0.009 D 1.80 2.00 2.20 0.071 0.079 0.087 E 1.80 2.10 2.40 0.071 0.083 0.094 E1 1.15 1.25 1.35 0.045 0.049 0.053 e 0.65 0.025 e1 1.30 0.051 L 0.26 < 0° 0.36 0.46 0.010 8° 0° 0.014 0.039 0.018 8° page 12/19 TS3011 DFN8 2x2 mm package information 6.3 DFN8 2x2 mm package information Figure 23. DFN8 2x2 mm package outline Table 8. DFN8 2x2 mm package mechanical data Dimensions Millimiters Ref. A Min. Typ. Max. Min. Typ. Max. 0.70 0.75 0.80 0.027 0.029 0.031 A1 0.10 0.003 b 0.20 0.25 0.30 0.007 0.009 0.011 D 1.95 2.00 2.05 0.076 0.078 0.080 D1 0.80 0.90 1.00 0.031 0.035 0.039 E 1.95 2.00 2.05 0.076 0.078 0.080 E1 1.50 1.60 1.70 0.059 0.062 0.066 e 0.50 0.019 F 0.05 0.001 G aaa DS8604 - Rev 7 Inches 0.25 0.30 0.10 0.35 0.009 0.011 0.013 0.003 page 13/19 TS3011 Ordering information 7 Ordering information Table 9. Order codes Part number Temperature range TS3011ILT TS3011IYCT (1) TS3011IYQ3T (1) Packaging -40 °C to 125 °C SC70-5 DFN8 2x2, wettable flanks Marking K540 SOT23-5 TS3011IYLT (1) TS3011ICT Package K541 Tape and reel K54 K5N K5N 1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q 002 or equivalent. DS8604 - Rev 7 page 14/19 TS3011 Revision history Table 10. Document revision history Date Revision 03-Oct-2011 1 18-Feb-2014 2 Changes Initial release. Updated Table 8: Order codes to add the order code TS3011IYLT. Added: Automotive qualification among the Features in the cover page. Updated document layout Section 3: "Electrical characteristics": updated unit of "Input offset voltage drift" parameter to µV/°C (not mV/°C). 27-May-2016 3 Section 4: "Electrical characteristic curves": X-axes changed to mV (not V) in figures 15, 16, 17, and 18. Table 6: added “K” values for inches Table 7: updated A and A2 min values for inches and added "
TS3011ICT 价格&库存

很抱歉,暂时无法提供与“TS3011ICT”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TS3011ICT
  •  国内价格 香港价格
  • 1+18.325391+2.27326
  • 10+13.5270810+1.67803
  • 25+12.3268425+1.52914
  • 100+11.01024100+1.36582
  • 250+10.38190250+1.28787
  • 500+10.00316500+1.24089
  • 1000+9.691461000+1.20222

库存:20599