0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TS3022IST

TS3022IST

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

    TSSOP8

  • 描述:

    IC COMP R-R 1.8V HS 8-MSOP

  • 数据手册
  • 价格&库存
TS3022IST 数据手册
TS3022 Datasheet Rail-to-rail 1.8 V high-speed dual comparator TS3022 SO-8/MiniSO-8 Pin connections (top view) Features • • • • • • • • • • Propagation delay: 38 ns Low current consumption: 73 µA Rail-to-rail inputs Push-pull outputs Supply operation from 1.8 to 5 V Wide temperature range: -40 °C to 125 °C ESD tolerance: 5 kV HBM, 300 V MM Latch-up immunity: 200 mA SMD packages Automotive qualification Applications • • • • • • Maturity status link TS3022 Telecom Instrumentation Signal conditioning High-speed sampling systems Portable communication systems Automotive Description The TS3022 dual comparator features a high speed response time with rail-to-rail inputs. With a supply voltage specified from 2 to 5 V, this comparator can operate over a wide temperature range: -40 °C to 125 °C. The TS3022 comparator offers micropower consumption as low as a few tens of microamperes thus providing an excellent ratio of power consumption current versus response time. The TS3022 includes push-pull outputs and is available in small packages (SMD): SO-8 and MiniSO-8. DS6029 - Rev 5 - October 2020 For further information contact your local STMicroelectronics sales office. www.st.com TS3022 Absolute maximum ratings and operating conditions 1 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings (AMR) Symbol Parameter VCC Supply voltage VID Differential input voltage (2) VIN Input voltage range Rthja Thermal resistance junction-to-ambient (3) Value (1) 5.5 ±5 SO-8 125 MiniSO-8 90 SO-8 40 MiniSO-8 39 Thermal resistance junction-to-case Tstg Storage temperature -65 to 150 Tj Junction temperature 150 Lead temperature (soldering 10 s) 260 HBM: human body model (4) 5000 ESD MM: machine model V (VCC-) - 0.3 to (VCC+) + 0.3 Rthjc TLEAD Unit (3) (5) 300 CDM : charged device model for TS3022IDT and TS3022IST (6) 1500 CDM : charged device model for TS3022IYST (6) 1400 Latch-up immunity 200 °C/W °C V mA 1. All voltage values, except the differential voltage are referenced to (VCC-). VCC is defined as the difference between VCC+ and VCC-. 2. The magnitude of the input and output voltages must never exceed the supply rail ±0.3 V. 3. Short-circuits can cause excessive heating. These are typical values. 4. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 5. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating. 6. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. Table 2. Operating conditions Symbol VCC DS6029 - Rev 5 Parameter Supply voltage Vicm Common mode input voltage range Toper Operating temperature range 0 °C < Tamb < +125 °C -40 °C < Tamb < +125°C -40 °C < Tamb < 85 °C +85 °C < Tamb < +125 °C Value Unit 1.8 to 5 2 to 5 (VCC- ) - 0.2 to (VCC+) + 0.2 V (VCC- ) to (VCC+) -40 to 125 °C page 2/20 TS3022 Electrical characteristics 2 Electrical characteristics Table 3. Electrical characteristics at VCC+ = 2 V, VCC- = 0 V, Tamb = 25 ° C, and full Vicm range (unless otherwise specified) Symbol VIO ΔVio/ΔT IIO IIB Test conditions (1) Parameter Min. Typ. Max. 0.5 6 Input offset voltage -40 °C < Tamb < +125 °C, TS3021A Input offset voltage drift -40 °C < Tamb < 125 °C 3 20 Tamb 1 20 Input offset current (2) Input bias current (2) 7 -40 °C < Tamb < +125 °C 100 Tamb 86 -40 °C < Tamb < 125 °C 73 No load, output high, Vicm = 0 V, Supply current No load, output low, Vicm = 0 V 84 VOH Output voltage high VOL Output voltage low Source 9 Sink 10 Isource = 1 mA 1.88 -40 °C < Tamb < 125 °C 1.80 Isink = 1 mA Common mode rejection ratio 0 < Vicm < 2 V SVR Supply voltage rejection ∆Vcc = 2 to 5 V TPLH Propagation delay, low to high output level (3) TPHL Propagation delay, high to low output level (4) 90 105 µA mA 1.92 60 -40 °C < Tamb < 125 °C CMRR nA 125 -40 °C < Tamb < 125 °C Short-circuit current µV/°C 115 -40 °C < Tamb < 125 °C No load, output low, Vicm = 0 V, ISC mV 300 No load, output high, Vicm = 0 V ICC 160 Unit V 100 150 67 58 mV dB 73 Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV 38 60 Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV 48 75 Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV 40 60 Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV 49 ns TF Fall time f = 10 kHz, CL = 50 pF, RL = 10 kΩ, overdrive = 100 mV 8 TR Rise time f = 10 kHz, CL = 50 pF, RL = 10 kΩ, overdrive = 100 mV 9 75 1. All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits. 2. Maximum values include unavoidable inaccuracies of the industrial tests 3. Response time is measured at 50% of the final output value with the following conditions: inverting input voltage (IN-) = Vicm and non-inverting input voltage (IN+) moving from Vicm - 100 mV to Vicm + overdrive. 4. Response time is measured at 50% of the final output value with the following conditions: inverting input voltage (IN-) = Vicm and non-inverting input voltage (IN+) moving from Vicm + 100 mV to Vicm - overdrive. DS6029 - Rev 5 page 3/20 TS3022 Electrical characteristics Table 4. Electrical characteristics at VCC+= 3.3 V, VCC- = 0 V, Tamb = 25 ° C, and full Vicm range (unless otherwise specified) Symbol VIO ΔVio/ΔT IIO IIB Test conditions (1) Parameter Min. Typ. Max. 0.2 6 Input offset voltage -40 °C < Tamb < 125 °C Input offset voltage drift -40 °C < Tamb < 125 °C 3 20 Tamb 1 20 Input offset current (2) Input bias current (2) 7 -40 °C < Tamb < +125 °C 100 Tamb 86 -40 °C < Tamb < +125 °C No load, output high, Vicm = 0 V Supply current 75 No load, output low, Vicm = 0 V 86 VOH Output voltage high VOL Output voltage low Source 26 Sink 24 Isource = 1 mA 3.20 -40 °C < Tamb < 125 °C 3.10 Isink = 1 mA Common mode rejection ratio 0 < Vicm < 3.3 V SVR Supply voltage rejection ∆Vcc = 2 to 5 V TPLH Propagation delay, low to high output level (3) TPHL Propagation delay, high to low output level (4) 90 110 µA mA 3.25 40 -40 °C < Tamb < 125 °C CMRR nA 125 -40 °C < Tamb < 125 °C Short-circuit current µV/°C 120 -40 °C < Tamb < 125 °C No load, output low, Vicm = 0 V, ISC mV 300 No load, output high, Vicm = 0 V, ICC 160 Unit V 80 150 75 58 mV dB 73 Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV 39 65 Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV 50 85 Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV 41 65 Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV 51 80 ns TF Fall time f = 10 kHz, CL = 50 pF, RL = 10 kΩ, overdrive = 100 mV 5 TR Rise time f = 10 kHz, CL = 50 pF, RL = 10 kΩ, overdrive = 100 mV 7 1. All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits. 2. Maximum values include unavoidable inaccuracies of the industrial tests. 3. Response time is measured at 50% of the final output value with the following conditions: inverting input voltage (IN-) = Vicm and non-inverting input voltage (IN+) moving from Vicm - 100 mV to Vicm + overdrive. 4. Response time is measured at 50% of the final output value with the following conditions: Inverting input voltage (IN-) = Vicm and non-inverting input voltage (IN+) moving from Vicm + 100 mV to Vicm - overdrive. DS6029 - Rev 5 page 4/20 TS3022 Electrical characteristics Table 5. Electrical characteristics at VCC = 5 V, Tamb = 25 ° C, and full Vicm range (unless otherwise specified) Symbol VIO ΔVio/ΔT IIO IIB Test conditions (1) Parameter Min. Typ. Max. 0.2 6 Input offset voltage -40 °C < Tamb < 125 °C, TS3021A Input offset voltage drift -40 °C < Tamb < 125 °C 3 20 Tamb 1 20 Input offset current (2) Input bias current (2) 7 -40 °C < Tamb < +125 °C 100 Tamb 86 -40 °C < Tamb < +125 °C 77 No load, output high, Vicm = 0 V, Supply current No load, output low, Vicm = 0 V 89 VOH Output voltage high VOL Output voltage low Source 51 Sink 40 Isource = 4 mA 4.80 -40 °C < Tamb < 125 °C 4.70 Isink = 4 mA Common mode rejection ratio 0 < Vicm < 5 V SVR Supply voltage rejection ∆Vcc = 2 to 5 V TPLH Propagation delay, low to high output level (3) TPHL Propagation delay, high to low output level (4) 95 115 µA mA 4.84 130 -40 °C < Tamb < 125 °C CMRR nA 135 -40 °C < Tamb < 125 °C Short-circuit current µV/°C 125 -40 °C < Tamb < 125 °C No load, output low, Vicm = 0 V, ISC mV 300 No load, output high, Vicm = 0 V ICC 160 Unit V 180 250 79 58 mV dB 73 Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV 42 75 Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV 54 105 Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 100 mV 45 75 Vicm = 0 V, f = 10 kHz, CL = 50 pF, overdrive = 20 mV 55 95 ns TF Fall time f = 10 kHz, CL = 50 pF, RL = 10 kΩ, overdrive = 100 mV 4 TR Rise time f = 10 kHz, CL = 50 pF, RL = 10 kΩ, overdrive = 100 mV 4 1. All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits. 2. Maximum values include unavoidable inaccuracies of the industrial tests. 3. Response time is measured 10%/90% of the final output value with the following conditions: inverting input voltage (IN-) = Vicm and non-inverting input voltage (IN+) moving from Vicm - 100 mV to Vicm + overdrive. 4. Response time is measured 10%/90% of the final output value with the following conditions: Inverting input voltage (IN-) = Vicm and non-inverting input voltage (IN+) moving from Vicm + 100 mV to Vicm - overdrive. DS6029 - Rev 5 page 5/20 TS3022 Electrical characteristic curves 3 Electrical characteristic curves Figure 1. Current consumption vs. supply voltage (Vicm = 0 V, output high) 115 VICM= 0V output HIGH 84 Figure 2. Current consumption vs. supply voltage (Vicm = Vcc output high) -40oC 80 110 72 ICC (µ A) ICC (µA) -40oC 105 76 +25oC +125oC 68 100 +25oC 95 64 +125oC 90 60 1.8 2.2 2.6 3.0 3.4 VCC(V) 3.8 4.2 4.6 85 1.8 5.0 Figure 3. Current consumption vs. supply voltage (Vicm = 0 V, output low) VICM= 0V output LOW 96 2.2 2.6 100 VICM=VCC output LOW 3.4 3.8 VCC(V) 4.2 4.6 5.0 -40oC 96 92 -40oC 92 ICC (µ A) 88 3.0 Figure 4. Current consumption vs. supply voltage (Vicm = Vcc output low) 104 100 ICC (µ A) VICM=VCC output HIGH o +25 C 84 +25oC 88 84 80 80 76 +125oC 72 1.8 2.2 2.6 3.0 3.4 3.8 VCC(V) +125oC 76 4.2 4.6 1.8 5.0 Figure 5. Output voltage vs. source current, Vcc = 2 V 2.2 2.6 3.0 3.4 3.8 VCC(V) 4.2 4.6 5.0 Figure 6. Output voltage vs. sink current, Vcc = 2 V 2.0 0.5 1.9 0.4 -40oC 1.7 1.6 o +25 C 1.5 1.4 1.3 0.0 DS6029 - Rev 5 VOUT (V) VOUT (V) 1.8 1.5 2.0 2.5 3.0 ISOURCE (mA) 0.3 +25oC -40oC 0.1 VCC= 2V output HIGH 1.0 +125oC 0.2 +125oC 0.5 VCC= 2V output LOW 3.5 4.0 4.5 5.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 ISINK(mA) 3.5 4.0 4.5 5.0 page 6/20 TS3022 Electrical characteristic curves Figure 7. Output voltage vs. source current, Vcc = 3.3 V Figure 8. Output voltage vs. sink current, Vcc = 3.3 V 3.30 0.30 3.25 0.20 3.15 VOUT (V) VOUT (V) 3.20 3.10 o +25 C 3.05 +125 C VCC= 3.3V output HIGH 3.00 2.95 0.0 0.5 1.0 1.5 +125oC 0.15 +25oC 0.10 o 2.0 2.5 3.0 ISOURCE (mA) 3.5 -40oC 0.05 4.0 4.5 0.00 0.0 5.0 Figure 9. Output voltage vs. source current, Vcc = 5 V 0.5 1.0 1.5 2.0 2.5 3.0 ISINK(mA) 3.5 4.0 4.5 5.0 Figure 10. Output voltage vs. sink current, Vcc = 5 V 5.00 0.25 4.95 4.90 4.85 VCC= 5V output LOW 0.20 -40oC VOUT (V) VOUT (V) VCC= 3.3V output LOW 0.25 -40oC +25oC +125oC 0.15 +25oC 0.10 -40oC 4.80 0.05 VCC= 5V output HIGH 4.75 0.0 0.5 1.0 +125oC 1.5 2.0 2.5 3.0 ISOURCE (mA) 3.5 4.0 4.5 0.00 0.0 5.0 Figure 11. Input offset voltage vs. temperature and common mode voltage 100 VCC = 5V 50 0 VVICM= 0V 0.8 0.6 VICM= 5V 0.4 0.2 0.0 -60 DS6029 - Rev 5 1.5 2.0 2.5 3.0 ISINK(mA) 3.5 4.0 4.5 5.0 VCC= 5V VICM= 0V IIN-125oC IIN+125oC -50 IIB(nA) Vio (mV) 1.0 1.0 Figure 12. Input bias current vs. temperature and input voltage 1.4 1.2 0.5 -100 -150 IIN- 25oC IIN+25oC -200 -250 IIN--40oC IIN+-40oC -300 -40 -20 0 20 40 60 80 Temperature (°C) 100 120 140 -350 -100 -80 -60 -40 -20 0 20 40 60 80 100 VIN(mV) page 7/20 TS3022 Electrical characteristic curves Figure 13. Current consumption vs. commutation frequency Figure 14. Propagation delay (HL) vs. overdrive at Vcc = 2 V, Vicm = 0 V 100 600 90 ICC (µA) 400 VCC= 2V 200 T= 125oC TPHL 70 VCC= 3.3V 300 VCC= 2V VICM= 0V TPHL 80 VCC= 5V TP(nS) 500 VICM= 0V CLOAD= 50pF TPHL T= 25oC T= -40oC 60 50 40 100 30 0 10k 100k 20 1M Frequency (Hz) Figure 15. Propagation delay (HL) vs. overdrive at Vcc = 2 V, Vicm = Vcc 70 T= 125oC TPHL T= 25oC T= -40oC 50 30 20 30 40 50 60 70 VOV(mV) 80 100 TPLH 80 o T= 125 C 70 20 90 100 110 TPLH TPLH o T= 25 C o 60 T= -40 C 50 TPLH TPLH T= -40oC 0 10 20 30 40 50 60 70 VOV(mV) 80 90 100 110 VCC= 3.3V VICM= 0V 100 90 TPHL 80 T= 125oC TPHL TPHL T= 25oC 70 T= -40oC 60 50 40 40 30 30 20 VCC= 2V VICM= 0V Figure 18. Propagation delay (HL) vs. overdrive at Vcc = 3.3 V, Vicm = 0 V VCC= 2V VICM= VCC 90 90 100 110 50 30 10 80 T= 25oC 60 40 0 50 60 70 VOV(mV) T= 125oC 70 40 Figure 17. Propagation delay (LH) vs. overdrive at Vcc = 2 V, Vicm = Vcc TP (nS) TP (nS) TPHL 40 TPLH 80 60 20 30 90 TP (nS) TP (nS) TPHL 20 100 VCC= 2V VICM= VCC 80 10 Figure 16. Propagation delay (LH) vs. overdrive at Vcc = 2 V, Vicm = 0 V 100 90 0 0 DS6029 - Rev 5 10 20 30 40 50 60 70 VOV(mV) 80 90 100 110 20 0 10 20 30 40 50 60 70 VOV(mV) 80 90 100 110 page 8/20 TS3022 Electrical characteristic curves Figure 19. Propagation delay (HL) vs. overdrive at Vcc = 3.3 V, Vicm = Vcc 100 TPHL 100 TPHL T= 25oC o T= -40 C 50 70 T = -40oC 60 30 10 20 30 40 50 60 70 VOV(mV) 80 100 TPLH T = 125oC 70 TPLH T = 25 C o T = -40 C 60 10 20 30 40 50 60 70 VOV(mV) 50 80 110 100 90 100 110 VCC= 5V VICM= 0V TPHL 90 T= 125oC TPHL 80 TPLH o 0 Figure 22. Propagation delay (HL) vs. overdrive at Vcc = 5 V, Vicm = 0 V VCC= 3.3V VICM= VCC 90 80 20 90 100 110 TP (nS) 0 Figure 21. Propagation delay (LH) vs. overdrive at Vcc = 3.3 V, Vicm = Vcc TPHL T= 25oC T= -40oC 70 60 50 40 40 30 30 0 10 20 30 40 50 60 70 VOV(mV) 80 90 100 110 Figure 23. Propagation delay (HL) vs. overdrive at Vcc = 5 V, Vicm = Vcc 110 20 90 TPHL o T= 125 C 80 TPHL TPHL o T= 25 C T= -40oC 70 60 20 30 40 50 60 70 VOV(mV) 80 90 100 110 VCC= 5V VICM= 0V 110 100 TPLH 90 T = 125oC 80 TPLH TPLH T = 25oC 70 T = -40oC 60 50 50 40 40 30 30 20 10 120 VCC= 5V VICM= VCC 100 0 Figure 24. Propagation delay (LH) vs. overdrive at Vcc = 5 V, Vicm = 0 V TP (nS) TP (nS) TPLH T = 25oC 40 30 TP (nS) TPLH T = 125oC 80 50 40 20 TPLH 90 TPHL 60 20 VCC= 3.3V VICM= 0V 110 TP(nS) T= 125oC 70 TP(nS) 120 VCC= 3.3V VICM= VCC 90 80 Figure 20. Propagation delay (LH) vs. overdrive at Vcc = 3.3 V, Vicm = 0 V 20 0 DS6029 - Rev 5 10 20 30 40 50 60 70 VOV(mV) 80 90 100 110 0 10 20 30 40 50 60 70 VOV(mV) 80 90 100 110 page 9/20 TS3022 Electrical characteristic curves Figure 25. Propagation delay (LH) vs. overdrive at Vcc = 5 V, Vicm = Vcc 100 TPLH T = 125oC 70 VCC= 5V VOV = 100mV 60 55 TPLH TPLH T = 25oC TP (nS) TP (nS) 65 VCC= 5V VICM= VCC 90 80 Figure 26. Propagation delay vs. temperature, Vcc = 5 V, overdrive = 100 mV T = -40oC 60 50 50 45 40 40 30 35 TPLH VVICM= 0V 30 -40 -20 20 0 10 20 30 40 50 60 70 VOV(mV) 80 90 100 110 0 TPHL VICM= 0V TPLH VICM= 5V 20 40 60 Temperature (°C) 80 TPHL VICM= 5V 100 120 Figure 27. Propagation delay vs. common mode voltage, Vcc = 5 V 70 TP (nS) 60 TPLH VOV= 20mV TPHL VOV= 20mV 50 40 30 TPLH VOV= 100mV TPHL VOV= 100mV VCC = 5V Temp.= 25°C 20 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VICM(mV) DS6029 - Rev 5 page 10/20 TS3022 Application recommendation 4 Application recommendation When high speed comparators are used, it is strongly recommended to place a capacitor as close as possible to the supply pins. Decoupling has two main advantages for this application: it helps to reduce electromagnetic interference and rejects the ripple that may appear on the output. A bypass capacitor combination, composed of 100 nF in addition to 10 nF and 1 nF in parallel is recommended because it eliminates spikes on the supply line better than a single 100 nF capacitor. Each millimeter of the PCB track plays an important role. Bypass capacitors must be placed as close as possible to the comparator supply pin. The smallest value capacitor should be preferably placed closer to the supply pin. In addition, important values of input impedance in series with parasitic PCB capacity and input comparator capacity create an additional RC filter. It generates an additional propagation delay. For high speed signal applications, PCB must be designed with great care taking into consideration low resistive grounding, short tracks and quality SMD capacitors featuring low ESR. Bypass capacitor stores energy and provides a complementary energy tank when spikes occur on the power supply line. If the input signal frequency is far from the resonant frequency, impedance strongly increases and the capacitor loses bypassing capability. Placing different capacitors with different resonant frequencies allows a wide frequency bandwidth to be covered. It is also recommended to implement an unbroken ground plane with low inductance. Figure 28. High speed layout recommendation DS6029 - Rev 5 page 11/20 TS3022 Package information 5 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. DS6029 - Rev 5 page 12/20 TS3022 SO-8 package information 5.1 SO-8 package information Figure 29. SO-8 package outline Table 6. SO-8 package mechanical data Dimensions Millimeters Ref. Min. Typ. A Max. Min. Typ. 1.75 0.25 Max. 0.069 A1 0.10 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 E 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 0.04 0.010 0.049 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 L1 k ccc DS6029 - Rev 5 Inches 1.04 0 0.040 8° 0.10 1° 8° 0.004 page 13/20 TS3022 MiniSO8 package information 5.2 MiniSO8 package information Figure 30. MiniSO8 package outline Table 7. MiniSO8 mechanical data Dim. Millimeters Min. Inches Typ. A Min. Typ. 1.1 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.03 0.22 0.4 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.8 3 3.2 0.11 0.118 0.126 E 4.65 4.9 5.15 0.183 0.193 0.203 E1 2.8 3 3.1 0.11 0.118 0.122 e L 0.85 0.65 0.4 0.6 0.006 0.033 0.8 0.016 0.024 0.95 0.037 L2 0.25 0.01 ccc 0° 0.037 0.026 L1 k DS6029 - Rev 5 Max. 8° 0.1 0° 0.031 8° 0.004 page 14/20 TS3022 Ordering information 6 Ordering information Table 8. Ordering information Order code Temperature range TS3022IDT Packing SO-8 TS3022IST TS3022IYST Package -40 to 125 °C (1) MiniSO-8 Marking 3022I Tape and reel K521 K520 1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q 002 or equivalent. DS6029 - Rev 5 page 15/20 TS3022 Revision history Table 9. Document revision history Date Revision Changes 1 Initial release. The information contained in this datasheet was previously included in the TS3021-TS3022 datasheet (revision 4 dated October 2007). The single version (TS3021) and dual version (TS3022) have now been split into two separate datasheets. Refer to the TS3021 revision 5 for a complete history of changes. 25-Jun-2009 2 Modified ESD tolerances in Table 1: Absolute maximum ratings. In Table 3, Table 4 and Table 5: – modified VIO typical value and maximum limits. – modified IIB typical value. – modified ICC typical values and corrected maximum limits. – modified ISC typical values. – modified VOH and VOL typical values. – modified CMRR and SVR typical values. – modified TPHL and TPLH typical values. – modified note 3. – added note 4. Modified all curves. 07-Dec-2017 3 26-Mar-2019 4 Added new CDM parameter in Table 1. Absolute maximum ratings (AMR). 22-Oct-2020 5 Updated Table 8. Ordering information. 29-Jan-2009 DS6029 - Rev 5 Updated features and applications in cover page. Updated Section 6: "Ordering information". page 16/20 TS3022 Contents Contents 1 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 Electrical characteristic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 Application recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 5 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 6 5.1 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.2 MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 DS6029 - Rev 5 page 17/20 TS3022 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. DS6029 - Rev 5 Current consumption vs. supply voltage (Vicm = 0 V, output high) . . Current consumption vs. supply voltage (Vicm = Vcc output high) . . Current consumption vs. supply voltage (Vicm = 0 V, output low). . . Current consumption vs. supply voltage (Vicm = Vcc output low). . . Output voltage vs. source current, Vcc = 2 V . . . . . . . . . . . . . . . . Output voltage vs. sink current, Vcc = 2 V . . . . . . . . . . . . . . . . . . Output voltage vs. source current, Vcc = 3.3 V . . . . . . . . . . . . . . . Output voltage vs. sink current, Vcc = 3.3 V . . . . . . . . . . . . . . . . . Output voltage vs. source current, Vcc = 5 V . . . . . . . . . . . . . . . . Output voltage vs. sink current, Vcc = 5 V . . . . . . . . . . . . . . . . . . Input offset voltage vs. temperature and common mode voltage . . . Input bias current vs. temperature and input voltage . . . . . . . . . . . Current consumption vs. commutation frequency . . . . . . . . . . . . . Propagation delay (HL) vs. overdrive at Vcc = 2 V, Vicm = 0 V . . . . Propagation delay (HL) vs. overdrive at Vcc = 2 V, Vicm = Vcc . . . . Propagation delay (LH) vs. overdrive at Vcc = 2 V, Vicm = 0 V . . . . Propagation delay (LH) vs. overdrive at Vcc = 2 V, Vicm = Vcc . . . . Propagation delay (HL) vs. overdrive at Vcc = 3.3 V, Vicm = 0 V . . . Propagation delay (HL) vs. overdrive at Vcc = 3.3 V, Vicm = Vcc . . . Propagation delay (LH) vs. overdrive at Vcc = 3.3 V, Vicm = 0 V . . . Propagation delay (LH) vs. overdrive at Vcc = 3.3 V, Vicm = Vcc . . . Propagation delay (HL) vs. overdrive at Vcc = 5 V, Vicm = 0 V . . . . Propagation delay (HL) vs. overdrive at Vcc = 5 V, Vicm = Vcc . . . . Propagation delay (LH) vs. overdrive at Vcc = 5 V, Vicm = 0 V . . . . Propagation delay (LH) vs. overdrive at Vcc = 5 V, Vicm = Vcc . . . . Propagation delay vs. temperature, Vcc = 5 V, overdrive = 100 mV . Propagation delay vs. common mode voltage, Vcc = 5 V . . . . . . . . High speed layout recommendation. . . . . . . . . . . . . . . . . . . . . . . SO-8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MiniSO8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 . 6 . 6 . 6 . 6 . 6 . 7 . 7 . 7 . 7 . 7 . 7 . 8 . 8 . 8 . 8 . 8 . 8 . 9 . 9 . 9 . 9 . 9 . 9 10 10 10 11 13 14 page 18/20 TS3022 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Absolute maximum ratings (AMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Electrical characteristics at VCC+ = 2 V, VCC- = 0 V, Tamb = 25 ° C, and full Vicm range (unless otherwise specified) 3 Electrical characteristics at VCC+= 3.3 V, VCC- = 0 V, Tamb = 25 ° C, and full Vicm range (unless otherwise specified) ................................................................................ 4 Electrical characteristics at VCC = 5 V, Tamb = 25 ° C, and full Vicm range (unless otherwise specified) . . . . . . . . . 5 SO-8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 MiniSO8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Ordering information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 DS6029 - Rev 5 page 19/20 TS3022 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2020 STMicroelectronics – All rights reserved DS6029 - Rev 5 page 20/20
TS3022IST 价格&库存

很抱歉,暂时无法提供与“TS3022IST”相匹配的价格&库存,您可以联系我们找货

免费人工找货