0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TS321

TS321

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    TS321 - Low Power Single Operational Amplifier - STMicroelectronics

  • 数据手册
  • 价格&库存
TS321 数据手册
TS321 Low Power Single Operational Amplifier ■ ■ ■ ■ ■ ■ ■ ■ ■ Large output voltage swing: 0 to 3.5V min. (@VCC = 5V) Low supply current: 500µA Low input bias current: 20nA Low input offset voltage: 2mV max. Wide power supply range: Single supply: +3V to +30V Dual supplies: ±1.5V to ±15V Stable with high capacitive loads Pin connections (top view) D SO-8 (Plastic Micropackage L SOT23-5 (Plastic Package) Description N.C. 1 2 3 4 + 8 7 6 5 N.C. + VCC Output N.C. The TS321 is intended for cost-sensitive applications where space saving is of great importance. This bipolar op-amp offers the benefits of a reduced component size (SOT23-5 package), with specifications that match (or are better) industry standard devices (like the popular LM358A, LM324, etc.). The TS321 has an input common mode range (Vicm) that includes ground, and therefore can be employed in single supply applications. Inverting input Non-inverting input V CC Output V CC Non-inverting input 1 5 + VCC 2 3 4 Inverting input Order Codes Part Number TS321ILT TS321ID/IDT TS321AILT TS321AID/AIDT -40°C, +125°C TS321IYLT SOT23-5L (automotive grade level) TS321AIYLT TS321IYD/IYDT SO-8 (automotive grade level) TS321AIYD/AIYDT Tube or Tape & Reel Tape & Reel K406 Temperature Range Package SOT23-5L SO8 SOT23-5L SO8 Packaging Tape & Reel Tube or Tape & Reel Tape & Reel Tube or Tape & Reel Marking K401 321I K402 321AI December 2005 Rev. 4 1/12 www.st.com 12 Typical Application Schematics TS321 1 Figure 1. Typical Application Schematics Typical application schematics V CC 6mA CC Inverting input Non-inverting input Q2 Q1 Q3 Q4 4mA 100mA Q5 Q6 Q7 R SC Q11 Output Q13 Q10 Q12 50mA GND Q8 Q9 2/12 TS321 Absolute Maximum Ratings 2 Table 1. Symbol VCC Vi Vid Absolute Maximum Ratings Key parameters and their absolute maximum ratings Parameter Supply Voltage Input Voltage Differential Input Voltage Output Short-circuit Duration - note Iin Toper Tstg Rthja Input Current - note (2) (1) Value ±16 to 32 -0.3 to +32 +32 Infinite 50 -40 to +125 -65 to +150 (3) Unit V V V mA °C °C °C/W Operating Free Air Temperature Range Storage Temperature Range Thermal Resistance Junction to Ambient SOT23-5 SO8 Thermal Resistance Junction to Case SOT23-5 SO8 HBM: Human Body Model(4) 250 125 81 40 300 200 Rthjc °C/W V V ESD MM: Machine Model(5) 1. Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is approximately 40mA independent of the magnitude of VCC . 2. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V. 3. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuit on all amplifiers. All values are typical. 4. Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device. 5. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor < 5Ω), into pin to pin of device. 3/12 Electrical Characteristics TS321 3 Table 2. Symbol Electrical Characteristics Vcc+ = +5V, Vcc- = Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified) Parameter Conditions Tamb = +25°C TS321A Tmin. ≤ Tamb ≤ Tmax. TS321A Tamb = +25°C Tmin. ≤ Tamb ≤ Tmax. Tamb = +25°C Tmin. ≤ Tamb ≤ Tmax VCC+ = +15V, RL = 2kΩ, Vo = 1.4V to 11.4V Tamb = +25°C Tmin. ≤ Tamb ≤ Tmax. Rs ≤ 10kΩ VCC+ = 5 to 30V Tamb = +25°C Tamb = +25°C, VCC = +5V VCC = +30V Tmin. ≤ Tamb ≤ Tmax., VCC = +5V VCC = +30 VCC = +30V Tamb = +25°C Tmin. ≤ Tamb ≤ Tmax. Rs ≤ 10kΩ Tamb = +25°C Vid = +1V VCC = +15V, Vo = +2V Vid = -1V VCC = +15V, Vo = +2V VCC = +15V, Vo = +0.2V VCC = +15V VCC = +30V Tamb = +25°C, RL = 2kΩ Tmin. ≤ Tamb ≤ Tmax. Tamb = +25°C, RL = 10kΩ Tmin. ≤ Tamb ≤ Tmax. VCC = +5V, R L = 2k Ω Tamb = +25°C Tmin. ≤ Tamb ≤ Tmax. RL = 10kΩ Tamb = +25°C Tmin. ≤ Tamb ≤ Tmax. 26 25.5 27 26.5 3.5 3 5 15 20 mV 0 0 65 20 10 12 85 40 20 50 40 27 28 V 60 50 25 Min. Typ. 0.5 Max. 4 2 5 3 30 50 150 200 Unit Vio Input Offset Voltage (1) mV Iio Iib Input Offset Current Input Bias Current (2) Large Signal Voltage Gain Supply Voltage Rejection Ratio 2 20 nA nA Avd 100 V/mV SVR dB 65 110 500 600 600 800 900 900 1000 VCC -1.5 VCC -2 ICC Supply Current, no load µA Vicm Common Mode Input Voltage Range (3) Common Mode Rejection Ratio Output Current Source V CMR Isource dB mA Isink Io Output Sink Current Short Circuit to Ground mA µA mA VOH High Level Output Voltage VOL Low Level Output Voltage 4/12 TS321 Table 2. Symbol SR GBP φm THD en Electrical Characteristics Vcc+ = +5V, Vcc- = Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified) Parameter Slew Rate Gain Bandwith Product Phase Margin Total Harmonic Distortion Equivalent Input Noise Voltage f = 1kHz, AV = 20dB, RL = 2kΩ, V o = 2Vpp, CL = 100pF, Tamb = +25°C, VCC = 30V f = 1kHz, Rs = 100Ω, VCC = 30V Conditions VCC = +15V, Vi = 0.5 to 3V, R L = 2k Ω, CL = 100pF, Tamb = +25°C, unity gain VCC = 30V, f = 100kHz, Tamb = +25°C, Vin = 10mV, R L = 2k Ω, CL = 100pF Min. Typ. 0.4 0.8 60 0.015 40 Max. Unit V/µs MHz Degrees % nV ----------Hz 1. Vo = 1.4V, Rs = 0W, 5V < VCC+ < 30V, 0 < Vic < VCC+ - 1.5V 2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines. 3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is VCC+ - 1.5V, but either or both inputs can go to +32V without damage. 5/12 Electrical Characteristics Figure 2. ICC = f(t) Figure 3. AC coupled inverting amplifier Rf 100kW CI R1 10kW Rf TS321 R1 (as shown AV = -10) Co 0 eo RB 6.2kW R3 100kW RL 10kW 2V PP A V= - eI ~ R2 100kW V CC C1 10mF Figure 4. Non-inverting DC gain A V = 1 + R2 R1 Figure 5. AC coupled non-inverting amplifier R2 1MW A V= 1 + R2 R1 (as shown A = 11) V Co 2V PP R1 100kW C1 0.1mF CI 10kW 1/4 TS324 eO +5V (As shown A V = 101) 0 eo RB 6.2kW RL 10kW R1 10kW R2 1MW e O (V) eI ~ R3 1MW R4 100kW V CC 0 e I (mV) C2 10mF R5 100kW Figure 6. e1 100kW DC summing amplifier 100kW e2 e3 100kW 100kW 100kW e4 100kW eO 6/12 TS321 Macromodel 4 Note: Macromodel Please consider following remarks before using this macromodel: All models are a trade-off between accuracy and complexity (i.e. simulation time). Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values. A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the product. Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc) or even worse: outside of the device operating conditions (Vcc, Vicm, etc) are not reliable in any way. ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT TS321 1 2 3 4 5 *************************** .MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E+01 RIN 15 16 2.600000E+01 RIS 11 15 2.003862E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0 VOFN 13 14 DC 0 IPOL 13 5 1.000000E-05 CPS 11 15 3.783376E-09 DINN 17 13 MDTH 400E-12 VIN 17 5 0.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 2.000000E+00 FCP 4 5 VOFP 3.400000E+01 FCN 5 4 VOFN 3.400000E+01 FIBP 2 5 VOFN 2.000000E-03 FIBN 5 1 VOFP 2.000000E-03 * AMPLIFYING STAGE FIP 5 19 VOFP 3.600000E+02 FIN 5 19 VOFN 3.600000E+02 RG1 19 5 3.652997E+06 RG2 19 4 3.652997E+06 CC 19 5 6.000000E-09 7/12 Macromodel DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 7.500000E+03 VIPM 28 4 1.500000E+02 HONM 21 27 VOUT 7.500000E+03 VINM 5 27 1.500000E+02 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 20 COUT 3 5 1.000000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 2.242230E+00 DON 24 19 MDTH 400E-12 VON 24 5 7.922301E-01 .ENDS Table 3. TS321 VCC+ = 3V, VCC- = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified) Conditions Value 0 RL = 2 k Ω No load, per operator 100 300 0 to +3.5 RL = 2 k Ω RL = 2 k Ω Vo = 0V RL = 2kΩ, CL = 100pF RL = 2kΩ, CL = 100pF RL = 2kΩ, CL = 100pF +3.5 5 40 0.8 0.4 60 Unit mV V/mV µA V V mV mA MHz V/µs Degrees Symbol Vio Avd ICC Vicm VOH VOL Ios GBP SR ∅m 8/12 TS321 Figure 7. ICC = f(t) Figure 8. Macromodel AC coupled inverting amplifier Rf 100kW CI R1 10kW Rf R1 (as shown AV = -10) Co 0 eo RB 6.2kW R3 100kW RL 10kW 2V PP A V= - eI ~ R2 100kW V CC C1 10mF Figure 9. Non-inverting DC gain A V = 1 + R2 R1 Figure 10. AC coupled non-inverting amplifier R1 100kW C1 0.1mF CI RB 6.2kW eI ~ R3 1MW R4 100kW R2 1MW A V= 1 + R2 R1 (as shown A = 11) V Co 0 eo RL 10kW 2V PP 10kW 1/4 TS324 eO +5V (As shown A V = 101) R1 10kW R2 1MW e O (V) V CC 0 e I (mV) C2 10mF R5 100kW Figure 11. DC summing amplifier e1 100kW 100kW e2 e3 100kW 100kW 100kW e4 100kW eO 9/12 Package Mechanical Data TS321 5 Package Mechanical Data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 5.1 SO-8 Package SO-8 MECHANICAL DATA DIM. A A1 A2 B C D E e H h L k ddd 0.1 5.80 0.25 0.40 mm. MIN. 1.35 0.10 1.10 0.33 0.19 4.80 3.80 1.27 6.20 0.50 1.27 8˚ (max.) 0.04 0.228 0.010 0.016 TYP MAX. 1.75 0.25 1.65 0.51 0.25 5.00 4.00 MIN. 0.053 0.04 0.043 0.013 0.007 0.189 0.150 0.050 0.244 0.020 0.050 inch TYP. MAX. 0.069 0.010 0.065 0.020 0.010 0.197 0.157 0016023/C 10/12 TS321 Package Mechanical Data 5.2 SOT23-5 Package SOT23-5L MECHANICAL DATA mm. DIM. MIN. A A1 A2 b C D E E1 e e1 L 0.35 0.90 0.00 0.90 0.35 0.09 2.80 2.60 1.50 0 .95 1.9 0.55 13.7 TYP MAX. 1.45 0.15 1.30 0.50 0.20 3.00 3.00 1.75 MIN. 35.4 0.0 35.4 13.7 3.5 110.2 102.3 59.0 37.4 74.8 21.6 TYP. MAX. 57.1 5.9 51.2 19.7 7.8 118.1 118.1 68.8 mils 11/12 Revision history TS321 6 Revision history Table 4. Date June 2001 July 2005 Document revision history Revision 1 2 – Initial release. – PPAP references inserted in the datasheet see table order codes table on page 1. – ESD protection inserted in Table 1 on page 3 – Correction of errors in package names and markings in order codes table on page 1. – Minor grammatical and formatting corrections. – Missing PPAP references inserted see order codes table on page 1. – Thermal Resistance Junction to Ambient and Thermal Resistance Junction to Case information added in Table 1 on page 3. – Macromodel updated see Chapter 4: Macromodel. Changes Sept. 2005 3 Dec. 2005 4 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 12 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 12/12
TS321 价格&库存

很抱歉,暂时无法提供与“TS321”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TS321ILT
    •  国内价格
    • 1+1.61943
    • 10+1.49752
    • 30+1.47314
    • 100+1.4

    库存:39

    TS321IDBVR
    •  国内价格
    • 1+3.25892

    库存:1584

    TS321QDBVRQ1
      •  国内价格
      • 1+8.91206
      • 30+8.60474
      • 100+7.99012
      • 500+7.3755
      • 1000+7.06818

      库存:0