0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TS421-4

TS421-4

  • 厂商:

    STMICROELECTRONICS(意法半导体)

  • 封装:

  • 描述:

    TS421-4 - 360mW MONO AMPLIFIER WITH STANDBY MODE - STMicroelectronics

  • 数据手册
  • 价格&库存
TS421-4 数据手册
TS419 TS421 360mW MONO AMPLIFIER WITH STANDBY MODE s OPERATING FROM Vcc=2V to 5.5V s STANDBY MODE ACTIVE HIGH (TS419) or s OUTPUT POWER into 16Ω: 367mW @ 5V LOW (TS421) with 10% THD+N max or 295mW @5V and 110mW @3.3V with 1% THD+N max. s LOW CURRENT CONSUMPTION: 2.5mA max s High Signal-to-Noise ratio: 95dB(A) at 5V s PSRR: 56dB typ. at 1kHz, 46dB at 217Hz s SHORT CIRCUIT LIMITATION s ON/OFF click reduction circuitry s Available in SO8, MiniSO8 & DFN 3x3 DESCRIPTION The TS419/TS421 is a monaural audio power amplifier driving in BTL mode a 16 or 32Ω earpiece or receiver speaker. The main advantage of this configuration is to get rid of bulky ouput capacitors. Capable of descending to low voltages, it delivers up to 220mW per channel (into 16Ω loads) of continuous average power with 0.2% THD+N in the audio bandwidth from a 5V power supply. An externally controlled standby mode reduces the supply current to 10nA (typ.). The TS419/ TS421 can be configured by external gain-setting resistors or used in a fixed gain version. APPLICATIONS s 16/32 ohms earpiece or receiver speaker driver s Mobile and cordless phones (analog / digital) s PDAs & computers s Portable appliances ORDER CODE Part Number Temp. Range: I TS419IQT, TS419-xIQT: DFN8 PIN CONNECTIONS (top view) TS419IDT: SO8 TS419IST, TS419-xIST: MiniSO8 Standby Bypass VIN+ VIN- 1 2 3 4 8 7 6 5 VOUT2 GND VCC VOUT1 GND VOUT 2 STANDBY BYPASS 1 2 3 4 8 7 6 5 Vcc VOUT 1 VINVIN+ TS421IDT: SO8 TS421IST, TS421-xIST: MiniSO8 Package Gain D • • • tba tba tba • tba tba tba • tba tba tba • tba tba tba S Q external external external x2/6dB x4/12dB x8/18dB external x2/6dB x4/12dB x8/18dB TS419I TS421I K19A K19B K19C K19D K21A K21B K21C K21D Marking TS421IQT, TS421-xIQT: DFN8 TS419 TS421 TS419 TS419-2 TS419-4 -40, +85°C TS419-8 TS421 TS421-2 TS421-4 TS421-8 GND VOUT 2 STANDBY BYPASS 1 2 3 4 8 7 6 5 Vcc VOUT 1 VINVIN+ MiniSO & DFN only available in Tape & Reel with T suffix. SO is available in Tube (D) and in Tape & Reel (DT) June 2003 1/32 TS419-TS421 ABSOLUTE MAXIMUM RATINGS Symbol VCC Vi Tstg Tj Rthja Supply voltage Input Voltage Storage Temperature Maximum Junction Temperature Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN8 Power Dissipation 2) SO8 MiniSO8 DFN8 1) Parameter Value 6 -0.3V to VCC +0.3V -65 to +150 150 175 215 70 0.71 0.58 1.79 1.5 100 200 250 continous 4) Unit V V °C °C °C/W Pd W Human Body Model (pin to pin): TS4193), TS421 ESD Machine Model - 220pF - 240pF (pin to pin) Latch-up Latch-up Immunity (All pins) Lead Temperature (soldering, 10sec) ESD Output Short-Circuit to Vcc or GND 1. All voltage values are measured with respect to the ground pin. 2. Pd has been calculated with Tamb = 25°C, Tjunction = 150°C. kV V mA °C 3. TS419 stands 1.5KV on all pins except standby pin which stands 1KV. 4. Attention must be paid to continous power dissipation (VDD x 300mA). Exposure of the IC to a short circuit for an extended time period is dramatically reducing product life expectancy. OPERATING CONDITIONS Symbol VCC RL Toper CL VICM VSTB Supply Voltage Load Resistor Operating Free Air Temperature Range Load Capacitor RL = 16 to 100Ω RL > 100Ω Common Mode Input Voltage Range Standby Voltage Input TS421 ACTIVE / TS419 in STANDBY TS421 in STANDBY / TS419 ACTIVE Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN8 2) Parameter Value 2 to 5.5 ≥ 16 -40 to + 85 400 100 GND to VCC-1V 1.5 ≤ VSTB ≤ VCC GND ≤ VSTB ≤ 0.4 1) 150 190 41 °C/W Unit V Ω °C pF V V RTHJA Twu ≥ 0.12 Wake-up time from standby to active mode (Cb = 1µF) 3) 1. The minimum current consumption (ISTANDBY) is guaranteed at VCC (TS419) or GND (TS421) for the whole temperature range. 2. When mounted on a 4-layer PCB 3. For more details on T WU , please refer to application note section on Wake-up time page 28. s 2/32 TS419-TS421 FIXED GAIN VERSION SPECIFIC ELECTRICAL CHARACTERISTICS VCC from +5V to +2V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol RIN Input Resistance Gain value for Gain TS419/TS421-2 G Gain value for Gain TS419/TS421-4 Gain value for Gain TS419/TS421-8 Parameter Min. Typ. 20 6dB 12dB 18dB dB Max. Unit kΩ APPLICATION COMPONENTS INFORMATION Components RIN CIN RFEED CS CB Functional Description Inverting input resistor which sets the closed loop gain in conjunction with RFEED. This resistor also forms a high pass filter with CIN (fcl = 1 / (2 x Pi x RIN x CIN)). Not needed in fixed gain versions. Input coupling capacitor which blocks the DC voltage at the amplifier’s input terminal Feedback resistor which sets the closed loop gain in conjunction with RIN. AV= Closed Loop Gain= 2xRFEED/RIN. Not needed in fixed gain versions. Supply Bypass capacitor which provides power supply filtering. Bypass capacitor which provides half supply filtering. TYPICAL APPLICATION SCHEMATICS: 3/32 TS419-TS421 ELECTRICAL CHARACTERISTICS VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol ICC Parameter Supply Current No input signal, no load Standby Current No input signal, VSTANDBY=GND for TS421 No input signal, VSTANDBY=Vcc for TS419 Output Offset Voltage No input signal, RL = 16 or 32Ω, Rfeed=20kΩ Output Power THD+N THD+N THD+N THD+N THD+N THD+N = = = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 10% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω 10% Max, F = 1kHz, RL = 16Ω Min. Typ. 1.8 10 Max. 2.5 1000 Unit mA nA ISTANDBY Voo 5 25 mV 166 PO 240 190 207 258 270 295 367 mW THD + N Total Harmonic Distortion + Noise (Av=2) RL = 32Ω, Pout = 150mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 220mW, 20Hz ≤ F ≤ 20kHz Power Supply Rejection Ratio (Av=2) 1) F = 1kHz, Vripple = 200mVpp, input grounded, Cb=1µF Signal-to-Noise Ratio (Filter Type A, Av=2) 1) (RL = 32Ω, THD +N < 0.5%, 20Hz ≤ F ≤ 20kHz) Phase Margin at Unity Gain RL = 16Ω, CL = 400pF Gain Margin RL = 16Ω, CL = 400pF Gain Bandwidth Product RL = 16Ω Slew Rate RL = 16Ω 50 0.15 0.2 56 % PSRR dB SNR ΦM GM GBP SR 85 98 dB 58 18 1.1 0.4 Degrees dB MHz V/µS 1. Guaranteed by design and evaluation. 4/32 TS419-TS421 ELECTRICAL CHARACTERISTICS VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified) 1) Symbol ICC Parameter Supply Current No input signal, no load Standby Current No input signal, VSTANDBY=GND for TS421 No input signal, VSTANDBY=Vcc for TS419 Output Offset Voltage No input signal, RL = 16 or 32Ω, Rfeed=20kΩ Output Power THD+N THD+N THD+N THD+N THD+N THD+N = = = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 10% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω 10% Max, F = 1kHz, RL = 16Ω Min. Typ. 1.8 10 Max. 2.5 1000 Unit mA nA ISTANDBY Voo 5 25 mV 65 PO 91 75 81 102 104 113 143 mW THD + N Total Harmonic Distortion + Noise (Av=2) RL = 32Ω, Pout = 50mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 70mW, 20Hz ≤ F ≤ 20kHz Power Supply Rejection Ratio inputs grounded, F = 1kHz, Vripple = 200mVpp, Cb=1µF Signal-to-Noise Ratio (Weighted A, Av=2) (RL = 32Ω, THD +N < 0.5%, 20Hz ≤ F ≤ 20kHz) Phase Margin at Unity Gain RL = 16Ω, CL = 400pF Gain Margin RL = 16Ω, CL = 400pF Gain Bandwidth Product RL = 16Ω Slew Rate RL = 16Ω 50 82 0.15 0.2 56 94 58 18 1.1 0.4 % PSRR SNR ΦM GM GBP SR 1. dB dB Degrees dB MHz V/µS All electrical values are guaranted with correlation measurements at 2V and 5V 5/32 TS419-TS421 ELECTRICAL CHARACTERISTICS VCC = +2.5V, GND = 0V, Tamb = 25°C (unless otherwise specified)1) Symbol ICC Parameter Supply Current No input signal, no load Standby Current No input signal, No input signal, VSTANDBY=GND for TS421 VSTANDBY=Vcc for TS419 Min. Typ. 1.7 10 Max. 2.5 1000 Unit mA nA ISTANDBY Voo Output Offset Voltage No input signal, RL = 16 or 32Ω, Rfeed=20kΩ Output Power THD+N THD+N THD+N THD+N THD+N THD+N = = = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 10% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω 10% Max, F = 1kHz, RL = 16Ω 5 25 mV 32 PO 44 37 41 52 50 55 70 mW THD + N Total Harmonic Distortion + Noise (Av=2) RL = 32Ω, Pout = 30mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 40mW, 20Hz ≤ F ≤ 20kHz Power Supply Rejection Ratio (Av=2) inputs grounded, F = 1kHz, Vripple = 200mVpp, Cb=1µF Signal-to-Noise Ratio (Weighted A, Av=2) (RL = 32Ω, THD +N < 0.5%, 20Hz ≤ F ≤ 20kHz) Phase Margin at Unity Gain RL = 16Ω, CL = 400pF Gain Margin RL = 16Ω, CL = 400pF Gain Bandwidth Product RL = 16Ω Slew Rate RL = 16Ω 50 80 0.15 0.2 56 91 58 18 1.1 0.4 % PSRR SNR ΦM GM GBP SR 1. dB dB Degrees dB MHz V/µS All electrical values are guaranted with correlation measurements at 2V and 5V 6/32 TS419-TS421 ELECTRICAL CHARACTERISTICS VCC = +2V , GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol ICC Parameter Supply Current No input signal, no load Standby Current No input signal, VSTANDBY=GND for TS421 No input signal, VSTANDBY=Vcc for TS419 Output Offset Voltage No input signal, RL = 16 or 32Ω, Rfeed=20kΩ Output Power THD+N THD+N THD+N THD+N THD+N THD+N = = = = = = 0.1% Max, F = 1kHz, RL = 32Ω 1% Max, F = 1kHz, RL = 32Ω 10% Max, F = 1kHz, RL = 32Ω 0.1% Max, F = 1kHz, RL = 16Ω 1% Max, F = 1kHz, RL = 16Ω 10% Max, F = 1kHz, RL = 16Ω Min. Typ. 1.7 10 Max. 2.5 1000 Unit mA nA ISTANDBY Voo 5 25 mV 19 PO 24 20 23 30 26 30 40 mW THD + N Total Harmonic Distortion + Noise (Av=2) RL = 32Ω, Pout = 13mW, 20Hz ≤ F ≤ 20kHz RL = 16Ω, Pout = 20mW, 20Hz ≤ F ≤ 20kHz Power Supply Rejection Ratio (Av=2) 1) inputs grounded, F = 1kHz, Vripple = 200mVpp, Cb=1µF Signal-to-Noise Ratio (Weighted A, Av=2) 1) (RL = 32Ω, THD +N < 0.5%, 20Hz ≤ F ≤ 20kHz) Phase Margin at Unity Gain RL = 16Ω, CL = 400pF Gain Margin RL = 16Ω, CL = 400pF Gain Bandwidth Product RL = 16Ω Slew Rate RL = 16Ω 49 0.1 0.15 54 % PSRR dB SNR ΦM GM GBP SR 80 89 dB 58 20 1.1 0.4 Degrees dB MHz V/µS 1. Guaranteed by design and evaluation. 7/32 TS419-TS421 Index of Graphs Description Common Curves Open Loop Gain and Phase vs Frequency Current Consumption vs Power Supply Voltage Current Consumption vs Standby Voltage Output Power vs Power Supply Voltage Output Power vs Load Resistor Power Dissipation vs Output Power Power Derating vs Ambiant Temperature Output Voltage Swing vs Supply Voltage Low Frequency Cut Off vs Input Capacitor Curves With 6dB Gain Setting (Av=2) THD + N vs Output Power THD + N vs Frequency Signal to Noise Ratio vs Power Supply Voltage Noise Floor PSRR vs Frequency Curves With 12dB Gain Setting (Av=4) THD + N vs Output Power THD + N vs Frequency Signal to Noise Ratio vs Power Supply Voltage Noise Floor PSRR vs Frequency Curves With 18dB Gain Setting (Av=8) THD + N vs Output Power THD + N vs Frequency Signal to Noise Ratio vs Power Supply Voltage Noise Floor PSRR vs Frequency Note : All measurements made with Rin=20kΩ, Cb=1µF, and Cin=10µF unless otherwise specified. Figure Page 1 to 12 13 14 to 19 20 to 23 24 to 27 28 to 31 32 33 34 9 to 10 11 11 to 12 12 12 to 13 13 to 14 14 14 14 35 to 43 44 to 46 47 to 48 49 to 50 51 to 55 15 to 16 16 17 17 17 to 18 56 to 64 65 to 67 68 to 69 70 to 71 72 to 76 19 to 20 20 21 21 21 to 22 77 to 85 86 to 88 89 to 90 91 to 92 93 to 97 23 to 24 24 25 25 25 to 26 8/32 TS419-TS421 Fig. 1: Open Loop Gain and Phase vs Frequency 180 80 60 Gain (dB) Fig. 2: Open Loop Gain and Phase vs Frequency 180 80 60 Phase (Deg) Gain (dB) Gain Vcc = 5V RL = 8Ω Tamb = 25°C 160 140 120 Gain Vcc = 2V RL = 8Ω Tamb = 25°C 160 140 120 100 100 Phase 80 60 Phase 20 0 -20 -40 0.1 20 0 -20 -40 0.1 80 60 40 20 0 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000 1 10 100 Frequency (kHz) 1000 -20 10000 Fig. 3: Open Loop Gain and Phase vs Frequency 180 80 60 Gain (dB) Fig. 4: Open Loop Gain and Phase vs Frequency 180 80 60 Phase (Deg) Gain (dB) Gain Vcc = 5V ZL = 8Ω+400pF Tamb = 25°C 160 140 120 Gain Vcc = 2V ZL = 8Ω+400pF Tamb = 25°C 160 140 120 100 100 Phase 80 60 Phase 20 0 -20 -40 0.1 20 0 -20 -40 0.1 80 60 40 20 0 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000 1 10 100 Frequency (kHz) 1000 -20 10000 Fig. 5: Open Loop Gain and Phase vs Frequency 180 80 60 Gain (dB) Fig. 6: Open Loop Gain and Phase vs Frequency 180 80 60 Phase (Deg) Gain (dB) Gain Vcc = 5V RL = 16Ω Tamb = 25°C 160 140 120 Gain Vcc = 2V RL = 16Ω Tamb = 25°C 160 140 120 100 100 Phase 80 60 Phase 20 0 -20 -40 0.1 20 0 -20 -40 0.1 80 60 40 20 0 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000 1 10 100 Frequency (kHz) 1000 -20 10000 9/32 Phase (Deg) 40 40 Phase (Deg) 40 40 Phase (Deg) 40 40 TS419-TS421 Fig. 7: Open Loop Gain and Phase vs Frequency 180 80 60 Gain (dB) Fig. 8: Open Loop Gain and Phase vs Frequency 180 80 60 Phase (Deg) Gain (dB) Gain Vcc = 5V ZL = 16Ω+400pF Tamb = 25°C 160 140 120 Gain Vcc = 2V ZL = 16Ω+400pF Tamb = 25°C 160 140 120 100 100 Phase 80 60 Phase 20 0 -20 -40 0.1 20 0 -20 -40 0.1 80 60 40 20 0 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000 1 10 100 Frequency (kHz) 1000 -20 10000 Fig. 9: Open Loop Gain and Phase vs Frequency 180 80 Gain 60 Gain (dB) Fig. 10: Open Loop Gain and Phase vs Frequency 180 80 Gain 60 Phase (Deg) Gain (dB) Vcc = 5V RL = 32Ω Tamb = 25°C 160 140 120 Vcc = 2V RL = 32Ω Tamb = 25°C 160 140 120 100 Phase (Deg) Phase (Deg) 40 20 0 -20 -40 0.1 Phase 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000 40 20 0 -20 -40 0.1 Phase 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000 Fig. 11: Open Loop Gain and Phase vs Frequency 180 80 Gain 60 Gain (dB) Fig. 12: Open Loop Gain and Phase vs Frequency 180 80 Gain 60 Phase (Deg) Gain (dB) Vcc = 5V ZL = 32Ω+400pF Tamb = 25°C 160 140 120 Vcc = 2V ZL = 32Ω+400pF Tamb = 25°C 160 140 120 40 20 0 -20 -40 0.1 Phase 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000 40 20 0 -20 -40 0.1 Phase 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 -20 10000 10/32 Phase (Deg) 40 40 TS419-TS421 Fig. 13: Current Consumption vs Power Supply Voltage 2.0 No load Current Consumption (mA) Current Consumption (mA) Ta=85°C 1.5 Ta=25°C 1.0 Ta=-40°C Fig. 14: Current Consumption vs Standby Voltage 2.0 1.5 Ta=85°C Ta=25°C 1.0 Ta=-40°C 0.5 TS419 Vcc = 5V No load 0.0 0 1 2 3 4 5 0.5 0.0 0 1 2 3 4 5 Power Supply Voltage (V) Standby Voltage (V) Fig. 15: Current Consumption vs Standby Voltage 2.0 Fig. 16: Current Consumption vs Standby Voltage 2.0 Ta=85°C Current Consumption (mA) 1.5 Ta=85°C Ta=25°C 1.0 Ta=-40°C 0.5 TS419 Vcc = 3.3V No load 0.0 0 1 2 Standby Voltage (V) 3 Current Consumption (mA) 1.5 Ta=25°C 1.0 0.5 Ta=-40°C TS419 Vcc = 2V No load 0.0 0 1 Standby Voltage (V) 2 Fig. 17: Current Consumption vs Standby Voltage 2.5 Ta=85°C Current Consumption (mA) 2.0 Ta=25°C Fig. 18: Current Consumption vs Standby Voltage 2.0 Ta=25°C Current Consumption (mA) 1.5 Ta=85°C 1.0 Ta=-40°C 1.5 1.0 Ta=-40°C 0.5 TS421 Vcc = 3.3V No load 0.0 0 1 2 Standby Voltage (V) 3 0.5 TS421 Vcc = 5V No load 0 1 2 3 4 5 0.0 Standby Voltage (V) 11/32 TS419-TS421 Fig. 19: Current Consumption vs Standby Voltage 2.0 Ta=85°C Current Consumption (mA) 1.5 Output power (mW) Fig. 20: Output Power vs Power Supply Voltage 550 500 450 400 350 300 250 200 150 100 50 THD+N=0.1% RL = 8Ω F = 1kHz BW < 125kHz Tamb = 25°C THD+N=1% Ta=25°C 1.0 THD+N=10% 0.5 Ta=-40°C TS421 Vcc = 2V No load 0.0 0 1 Standby Voltage (V) 2 0 2.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 Fig. 21: Output Power vs Power Supply Voltage 500 450 400 Output power (mW) Fig. 22: Output Power vs Power Supply Voltage Output power (mW) 350 300 250 200 150 100 50 RL = 16Ω F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10% 300 THD+N=1% 250 200 150 100 50 RL = 32Ω F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10% THD+N=1% THD+N=0.1% THD+N=0.1% 0 2.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 0 2.0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 Fig. 23: Output Power vs Power Supply Voltage Fig. 24: Output Power vs Load Resistor 200 RL = 64Ω F = 1kHz BW < 125kHz Tamb = 25°C THD+N=10% 100 500 450 THD+N=1% Output power (mW) 400 350 300 250 200 150 100 50 THD+N=10% THD+N=1% 150 Output power (mW) Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25°C 50 THD+N=0.1% THD+N=0.1% 0 2.0 0 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 8 16 24 32 40 48 Load Resistance ( ) 56 64 12/32 TS419-TS421 Fig. 25: Output Power vs Load Resistor Fig. 26: Output Power vs Load Resistor 200 THD+N=10% Output power (mW) 100 Output power (mW) 150 THD+N=1% Vcc = 3.3V F = 1kHz BW < 125kHz Tamb = 25°C 90 80 70 60 50 40 30 20 10 THD+N=0.1% THD+N=1% THD+N=10% Vcc = 2.5V F = 1kHz BW < 125kHz Tamb = 25°C 100 50 THD+N=0.1% 0 0 8 16 24 32 40 48 Load Resistance ( ) 56 64 8 16 24 32 40 48 Load Resistance ( ) 56 64 Fig. 27: Output Power vs Load Resistor Fig. 28: Power Dissipation vs Output Power 600 50 45 40 Output power (mW) THD+N=10% THD+N=1% Power Dissipation (mW) 35 30 25 20 15 10 5 0 THD+N=0.1% Vcc = 2V F = 1kHz BW < 125kHz Tamb = 25°C 500 400 300 200 100 0 Vcc=5V F=1kHz THD+N= 16Ω Tamb = 25°C 17/32 TS419-TS421 Fig. 53: PSRR vs Bypass Capacitor Fig. 54: PSRR vs Bypass Capacitor 0 -10 -20 PSRR (dB) -30 -40 -50 -60 Vcc = 5V, 3.3V & 2.5V -70 100 1000 10000 Frequency (Hz) 100000 Vripple = 200mVpp Av = 2 Input = Grounded Cb = Cin = 1µF RL >= 16Ω Tamb = 25°C Vcc = 2V 0 -10 -20 PSRR (dB) -30 -40 -50 -60 Vcc = 5V, 3.3V & 2.5V -70 100 1000 10000 Frequency (Hz) 100000 Vripple = 200mVpp Av = 2 Input = Grounded Cb = 4.7µF Cin = 1µF RL >= 16Ω Tamb = 25°C Vcc = 2V Fig. 55: PSRR vs Bypass Capacitor 0 -10 -20 PSRR (dB) -30 -40 -50 -60 Vcc = 5V, 3.3V & 2.5V -70 100 1000 10000 Frequency (Hz) 100000 Vripple = 200mVpp Av = 2 Input = Grounded Cb = 10µF Cin = 1µF RL >= 16Ω Tamb = 25°C Vcc = 2V 18/32 TS419-TS421 Fig. 56: THD + N vs Output Power Fig. 57: THD + N vs Output Power 10 RL = 8Ω F = 20Hz Av = 4 1 Cb = 1µF BW < 22kHz Tamb = 25°C 0.1 Vcc=2.5V 10 RL = 16Ω F = 20Hz Av = 4 1 Cb = 1µF BW < 22kHz Tamb = 25°C 0.1 THD + N (%) THD + N (%) Vcc=2V Vcc=2.5V Vcc=2V 0.01 0.01 Vcc=3.3V Vcc=5V Vcc=3.3V Vcc=5V 1 10 100 Output Power (mW) 1E-3 1 10 100 Output Power (mW) Fig. 58: THD + N vs Output Power 10 RL = 32Ω F = 20Hz Av = 4 1 Cb = 1µF Vcc=2V BW < 22kHz Tamb = 25°C Vcc=2.5V 0.1 Fig. 59: THD + N vs Output Power 10 RL = 8Ω F = 1kHz Av = 4 1 Cb = 1µF BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) Vcc=2V 0.1 Vcc=2.5V 0.01 0.01 1 Vcc=3.3V Vcc=5V Vcc=3.3V Vcc=5V 1E-3 1 10 Output Power (mW) 100 10 100 Output Power (mW) Fig. 60: THD + N vs Output Power 10 RL = 16Ω F = 1kHz Av = 4 1 Cb = 1µF BW < 125kHz Tamb = 25°C Fig. 61: THD + N vs Output Power 10 RL = 32Ω F = 1kHz Av = 4 1 Cb = 1µF BW < 125kHz Tamb = 25°C 0.1 THD + N (%) Vcc=2V Vcc=2.5V THD + N (%) Vcc=2V Vcc=2.5V 0.1 0.01 0.01 1 Vcc=3.3V Vcc=5V Vcc=3.3V Vcc=5V 10 100 Output Power (mW) 1E-3 1 10 Output Power (mW) 100 19/32 TS419-TS421 Fig. 62: THD + N vs Output Power Fig. 63: THD + N vs Output Power 10 RL = 8Ω F = 20kHz Av = 4 Cb = 1µF BW < 125kHz Tamb = 25°C 1 10 RL = 16Ω F = 20kHz Av = 4 Cb = 1µF BW < 125kHz Tamb = 25°C 1 THD + N (%) THD + N (%) Vcc=2V Vcc=2.5V Vcc=2V Vcc=2.5V Vcc=3.3V Vcc=5V Vcc=3.3V Vcc=5V 1 10 100 Output Power (mW) 0.1 1 10 100 Output Power (mW) Fig. 64: THD + N vs Output Power 10 RL = 32Ω F = 20kHz Av = 4 Cb = 1µF BW < 125kHz 1 Tamb = 25°C Fig. 65: THD + N vs Frequency THD + N (%) Vcc=2.5V 0.1 Vcc=3.3V Vcc=5V THD + N (%) Vcc=2V 0.1 RL=8Ω Av=4 Cb = 1µF Bw < 125kHz Tamb = 25°C Vcc=2V, Po=28mW 0.01 20 100 Vcc=5V, Po=300mW 1 10 Output Power (mW) 100 1000 Frequency (Hz) 10000 20k Fig. 66: THD + N vs Frequency Fig. 67: THD + N vs Frequency THD + N (%) THD + N (%) RL=16Ω Av=4 Cb = 1µF Bw < 125kHz 0.1 Tamb = 25°C Vcc=2V, Po=20mW RL=32Ω Av=4 Cb = 1µF Bw < 125kHz 0.1 Tamb=25°C Vcc=2V, Po=13mW Vcc=5V, Po=150mW 0.01 0.01 Vcc=5V, Po=220mW 20 100 1000 Frequency (Hz) 10000 20k 20 100 1000 Frequency (Hz) 10000 20k 20/32 TS419-TS421 Fig. 68: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz) 90 Av = 4 Cb = 1µF THD+N < 0.5% 85 Tamb = 25°C RL=32Ω Signal to Noise Ratio (dB) Fig. 69: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A 100 Av = 4 Cb = 1µF 95 THD+N < 0.5% Tamb = 25°C 90 RL=32Ω Signal to Noise Ratio (dB) 80 RL=8Ω 75 RL=16Ω 85 RL=16Ω RL=8Ω 80 70 2.0 2.5 3.0 3.5 4.0 4.5 5.0 75 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Power Supply Voltage (V) Power Supply Voltage (V) Fig. 70: Noise Floor Fig. 71: Noise Floor 40 40 Noise Floor ( VRms) 30 Standby=OFF 20 10 RL>=16Ω Vcc=5V Av=4 Cb = 1µF Input Grounded Bw < 125kHz Tamb=25°C Noise Floor ( VRms) 30 Standby=OFF 20 Standby=ON 10 RL>=16Ω Vcc=2V Av=4 Cb = 1µF Input Grounded Bw < 125kHz Tamb=25°C Standby=ON 0 20 100 1000 Frequency (Hz) 10000 20k 0 20 100 1000 Frequency (Hz) 10000 20k Fig. 72: PSRR vs Power Supply Voltage Fig. 73: PSRR vs Input Capacitor 0 -10 -20 PSRR (dB) -30 -40 Vcc = 2V -50 -60 -70 Vcc = 5V, 3.3V & 2.5V -80 100 1000 10000 Frequency (Hz) 100000 Vripple = 100mVrms Rfeed = 40kΩ Input = floating Cb = 1µF RL >= 16Ω Tamb = 25°C 0 -10 -20 -30 -40 -50 Cin = 100nF -60 100 1000 10000 Frequency (Hz) 100000 Cin = 1µF, 220nF Vripple = 200mVpp Av = 4, Vcc = 5V Input = grounded Cb = 1µF, Rin = 20kΩ RL >= 16Ω Tamb = 25°C PSRR (dB) 21/32 TS419-TS421 Fig. 74: PSRR vs Bypass Capacitor Fig. 75: PSRR vs Bypass Capacitor 0 -10 -20 PSRR (dB) -30 -40 -50 -60 Vcc = 5V, 3.3V & 2.5V 100 1000 10000 Frequency (Hz) 100000 Vripple = 200mVpp Av = 4 Input = Grounded Cb = Cin = 1µF RL >= 16Ω Tamb = 25°C Vcc = 2V 0 -10 -20 PSRR (dB) -30 -40 -50 -60 Vcc = 5V, 3.3V & 2.5V 100 1000 10000 Frequency (Hz) 100000 Vripple = 200mVpp Av = 4 Input = Grounded Cb = 4.7µF Cin = 1µF RL >= 16Ω Tamb = 25°C Vcc = 2V Fig. 76: PSRR vs Bypass Capacitor 0 -10 -20 PSRR (dB) -30 -40 -50 -60 Vcc = 5V, 3.3V & 2.5V 100 1000 10000 Frequency (Hz) 100000 Vripple = 200mVpp Av = 4 Input = Grounded Cb = 10µF Cin = 1µF RL >= 16Ω Tamb = 25°C Vcc = 2V 22/32 TS419-TS421 Fig. 77: THD + N vs Output Power Fig. 78: THD + N vs Output Power 10 RL = 8Ω F = 20Hz Av = 8 1 Cb = 1µF BW < 22kHz Tamb = 25°C 0.1 10 RL = 16Ω F = 20Hz Av = 8 1 Cb = 1µF BW < 22kHz Tamb = 25°C THD + N (%) THD + N (%) Vcc=2V Vcc=2.5V Vcc=2V Vcc=2.5V 0.1 0.01 1 Vcc=3.3V Vcc=5V 0.01 1 Vcc=3.3V Vcc=5V 10 100 Output Power (mW) 10 100 Output Power (mW) Fig. 79: THD + N vs Output Power 10 RL = 32Ω F = 20Hz Av = 8 Cb = 1µF 1 BW < 22kHz Tamb = 25°C Vcc=2V Fig. 80: THD + N vs Output Power 10 RL = 8Ω F = 1kHz Av = 8 Cb = 1µF 1 BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) Vcc=2V Vcc=2.5V 0.1 0.1 Vcc=2.5V 0.01 Vcc=3.3V Vcc=5V Vcc=3.3V Vcc=5V 0.01 100 1 10 Output Power (mW) 1 10 100 Output Power (mW) Fig. 81: THD + N vs Output Power Fig. 82: THD + N vs Output Power 10 RL = 32Ω F = 1kHz Av = 8 1 Cb = 1µF BW < 125kHz Tamb = 25°C 10 RL = 16Ω F = 1kHz Av = 8 Cb = 1µF 1 BW < 125kHz Tamb = 25°C THD + N (%) Vcc=2V Vcc=2.5V THD + N (%) Vcc=2V Vcc=2.5V 0.1 0.1 Vcc=3.3V 0.01 Vcc=5V Vcc=3.3V Vcc=5V 0.01 1 10 100 Output Power (mW) 1 10 Output Power (mW) 100 23/32 TS419-TS421 Fig. 83: THD + N vs Output Power Fig. 84: THD + N vs Output Power 10 RL = 8Ω, F = 20kHz Av = 8, Cb = 1µF BW < 125kHz, Tamb = 25°C THD + N (%) THD + N (%) Vcc=2V Vcc=2.5V 10 RL = 16Ω F = 20kHz Av = 8 Cb = 1µF BW < 125kHz Tamb = 25°C 1 Vcc=2V Vcc=2.5V 1 Vcc=3.3V Vcc=5V Vcc=3.3V Vcc=5V 1 10 100 Output Power (mW) 1 10 100 Output Power (mW) Fig. 85: THD + N vs Output Power 10 RL = 32Ω F = 20kHz Av = 8 Cb = 1µF BW < 125kHz Tamb = 25°C 1 Vcc=2.5V Fig. 86: THD + N vs Frequency THD + N (%) THD + N (%) Vcc=2V RL=8Ω Av=8 Cb = 1µF Bw < 125kHz Tamb = 25°C 0.1 Vcc=2V, Po=28mW Vcc=3.3V Vcc=5V Vcc=5V, Po=300mW 0.1 1 10 Output Power (mW) 100 20 100 1000 Frequency (Hz) 10000 20k Fig. 87: THD + N vs Frequency Fig. 88: THD + N vs Frequency THD + N (%) THD + N (%) RL=16Ω Av=8 Cb = 1µF Bw < 125kHz 0.1 Tamb = 25°C Vcc=2V, Po=20mW RL=32Ω Av=8 Cb = 1µF Bw < 125kHz 0.1 Tamb=25°C Vcc=2V, Po=13mW Vcc=5V, Po=150mW 0.01 Vcc=5V, Po=220mW 0.01 20 100 1000 Frequency (Hz) 10000 20k 20 100 1000 Frequency (Hz) 10000 20k 24/32 TS419-TS421 Fig. 89: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz) 90 Av = 8 Cb = 1µF 85 THD+N < 0.5% Tamb = 25°C 80 75 RL=8Ω 70 RL=16Ω 65 60 2.0 RL=32Ω Fig. 90: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A 95 Av = 8 Cb = 1µF 90 THD+N < 0.5% Tamb = 25°C 85 RL=32Ω Signal to Noise Ratio (dB) Signal to Noise Ratio (dB) 80 RL=16Ω RL=8Ω 75 2.5 3.0 3.5 4.0 4.5 5.0 70 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Power Supply Voltage (V) Power Supply Voltage (V) Fig. 91: Noise Floor 70 60 Noise Floor ( VRms) Fig. 92: Noise Floor 70 60 Noise Floor ( VRms) 50 40 30 20 10 0 Standby=OFF RL>=16Ω Vcc=5V Av=8 Cb = 1µF Input Grounded Bw < 125kHz Tamb=25°C Standby=ON 20 100 1000 Frequency (Hz) 10000 20k 50 40 30 20 10 0 Standby=OFF RL>=16Ω Vcc=2V Av=8 Cb = 1µF Input Grounded Bw < 125kHz Tamb=25°C Standby=ON 20 100 1000 Frequency (Hz) 10000 20k Fig. 93: PSRR vs Power Supply Voltage Fig. 94: PSRR vs Input Capacitor 0 -10 -20 PSRR (dB) -30 -40 -50 Vripple = 100mVrms Rfeed = 80kΩ Input = floating Cb = 1µF RL >= 16Ω Tamb = 25°C Vcc = 2V 0 Vripple = 200mVpp Av = 8, Vcc = 5V Input = grounded Cb = 1µF, Rin = 20kΩ RL >= 16Ω Tamb = 25°C -10 Cin = 1µF, 220nF PSRR (dB) -20 -30 -40 -60 -70 Vcc = 5V, 3.3V & 2.5V 100 1000 10000 Frequency (Hz) 100000 -50 100 Cin = 100nF 1000 10000 Frequency (Hz) 100000 25/32 TS419-TS421 Fig. 95: PSRR vs Bypass Capacitor Fig. 96: PSRR vs Bypass Capacitor 0 Vripple = 200mVpp Av = 8 Input = Grounded Cb = Cin = 1µF RL >= 16Ω Tamb = 25°C Vcc = 2V -40 0 -10 -20 -30 -40 -50 Vripple = 200mVpp Av = 8 Input = Grounded Cb = 4.7µF Cin = 1µF RL >= 16Ω Tamb = 25°C -10 PSRR (dB) -30 PSRR (dB) -20 Vcc = 2V -50 Vcc = 5V, 3.3V & 2.5V 100 1000 10000 Frequency (Hz) 100000 -60 Vcc = 5V, 3.3V & 2.5V 100 1000 10000 Frequency (Hz) 100000 Fig. 97: PSRR vs Bypass Capacitor 0 -10 -20 -30 -40 -50 Vcc = 5V, 3.3V & 2.5V -60 100 1000 10000 Frequency (Hz) 100000 Vripple = 200mVpp Av = 8 Input = Grounded Cb = 10µF Cin = 1µF RL >= 16Ω Tamb = 25°C PSRR (dB) Vcc = 2V 26/32 TS419-TS421 APPLICATION INFORMATION In the high frequency region, you can limit the bandwidth by adding a capacitor (Cfeed) in parallel with Rfeed. It forms a low-pass filter with a -3dB cut off frequency . 1 FCH = (Hz) 2π Rfeed Cfeed s BTL Configuration Principle The TS419 & TS420 are monolithic power amplifiers with a BTL output type. BTL (Bridge Tied Load) means that each end of the load is connected to two single-ended output amplifiers. Thus, we have: Single ended output 1 = Vout1 = Vout (V) Single ended output 2 = Vout2 = -Vout (V) And Vout1 - Vout2 = 2Vout (V) The output power is : s Power dissipation and efficiency Hypothesis: • Load voltage and current are sinusoidal (Vout and Iout) • Supply voltage is a pure DC source (Vcc) Regarding the load we have: Pout = (2 VoutRMS )2 (W) RL VOUT = VPEAK sin ωt (V) and For the same power supply voltage, the output power in BTL configuration is four times higher than the output power in single ended configuration. IOUT = and VOUT ( A) RL s Gain In Typical Application Schematic (cf. page 3 of TS419-TS421 datasheet) In the flat region (no CIN effect), the output voltage of the first stage is: Rfeed Vout1 = − Vin (V) Rin For the second stage : Vout2 = -Vout1 (V) The differential output voltage is Rfeed Vout2 − Vout1 = 2 Vin (V) Rin The differential gain named gain (Gv) for more convenient usage is : POUT = VPEAK (W) 2 RL 2 Then, the average current delivered by the supply voltage is: Icc AVG = 2 VPEAK ( A) π RL The power delivered by the supply voltage is: Psupply = Vcc IccAVG (W) Then, the power dissipated by the amplifier is: Pdiss = Psupply - Pout (W) Pdiss = 2 2 Vcc π RL POUT − POUT (W ) Vout2 − Vout1 Rfeed Gv = =2 Vin Rin Remark : Vout2 is in phase with Vin and Vout1 is phased 180° with Vin. This means that the positive terminal of the loudspeaker should be connected to Vout2 and the negative to Vout1. and the maximum value is obtained when: ∂Pdiss =0 ∂POUT and its value is: s Low and high frequency response In the low frequency region, CIN starts to have an effect. CIN forms with R IN a high-pass filter with a -3dB cut off frequency . Pdiss max = 2 Vcc 2 π2RL (W) FCL 1 = 2πRinCin (Hz) Remark : This maximum value is only dependent upon power supply voltage and load values. 27/32 TS419-TS421 The efficiency is the ratio between the output power and the power supply Due to process tolerances, the range of the wake-up time is : 0.12xCb < TWU < 0.18xCB (s) with C B in µF Note : When the standby command is set, the time to put the device in shutdown mode is a few microseconds. η= π VPEAK POUT = P sup ply 4 Vcc The maximum theoretical value is reached when Vpeak = Vcc, so π = 78.5% 4 s Decoupling of the circuit Two capacitors are needed to bypass properly the TS419/TS421. A power supply bypass capacitor CS and a bias voltage bypass capacitor C B. CS has particular influence on the THD+N in the high frequency region (above 7kHz) and an indirect influence on power supply disturbances. With 1µF, you can expect similar THD+N performances to those shown in the datasheet. In the high frequency region, if CS is lower than 1µF, it increases THD+N and disturbances on the power supply rail are less filtered. On the other hand, if CS is higher than 1µF, those disturbances on the power supply rail are more filtered. CB has an influence on THD+N at lower frequencies, but its function is critical to the final result of PSRR (with input grounded and in the lower frequency region). If CB is lower than 1µF, THD+N increases at lower frequencies and PSRR worsens. If CB is higher than 1µF, the benefit on THD+N at lower frequencies is small, but the benefit to PSRR is substantial. Note that CIN has a non-negligible effect on PSRR at lower frequencies. The lower the value of CIN, the higher the PSRR. s Pop performance Pop performance is intimately linked with the size of the input capacitor Cin and the bias voltage bypass capacitor CB. The size of CIN is dependent on the lower cut-off frequency and PSRR values requested. The size of CB is dependent on THD+N and PSRR values requested at lower frequencies. Moreover, CB determines the speed with which the amplifier turns ON. The slower the speed is, the softer the turn ON noise is. The charge time of CB is directly proportional to the internal generator resistance 150kΩ.. Then, the charge time constant for CB is τB = 150kΩxCB (s) As CB is directly connected to the non-inverting input (pin 2 & 3) and if we want to minimize, in amplitude and duration, the output spike on Vout1 (pin 5), CIN must be charged faster than CB. The equivalent charge time constant of CIN is: τIN = (Rin+Rfeed)xCIN (s) Thus we have the relation: τIN < τB (s) Proper respect of this relation allows to minimize the pop noise. Remark : Minimizing CIN and CB benefits both the pop phenomena, and the cost and size of the application. s Application : Differential inputs BTL power amplifier. The schematic on figure 98, shows how to design the TS419/21 to work in a differential input mode. s Wake-up Time: TWU When standby is released to put the device ON, the bypass capacitor CB will not be charged immediatly. As CB is directly linked to the bias of the amplifier, the bias will not work properly until the CB voltage is correct. The time to reach this voltage is called wake-up time or TWU and typically equal to: TWU=0.15xCB (s) with C B in µF. 28/32 The gain of the amplifier is: G VDIFF = 2 R2 R1 In order to reach optimal performances of the differential function, R1 and R2 should be matched at 1% max. TS419-TS421 Fig. 98 : Differential Input Amplifier Configuration Note : This formula is true only if: 1 FCB = (Hz ) 942000 × C B is ten times lower than FL. The following bill of material is an example of a differential amplifier with a gain of 2 and a -3dB lower cuttoff frequency of about 80Hz. Components : Designator R1 R2 C Part Type 20k / 1% 20k / 1% 100nF 1µF TS419/21 Input capacitance C can be calculated by the following formula using the -3dB lower frequency required. (FL is the lower frequency required) 1 C≈ (F ) 2 π R1 FL CB=CS U1 29/32 TS419-TS421 PACKAGE MECHANICAL DATA SO-8 MECHANICAL DATA DIM. A A1 A2 B C D E e H h L k ddd 0.1 5.80 0.25 0.40 mm. MIN. 1.35 0.10 1.10 0.33 0.19 4.80 3.80 1.27 6.20 0.50 1.27 8˚ (max.) 0.04 0.228 0.010 0.016 TYP MAX. 1.75 0.25 1.65 0.51 0.25 5.00 4.00 MIN. 0.053 0.04 0.043 0.013 0.007 0.189 0.150 0.050 0.244 0.020 0.050 inch TYP. MAX. 0.069 0.010 0.065 0.020 0.010 0.197 0.157 0016023/C 30/32 TS419-TS421 PACKAGE MECHANICAL DATA 31/32 TS419-TS421 PACKAGE MECHANICAL DATA Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States http://www.st.com 32/32
TS421-4 价格&库存

很抱歉,暂时无法提供与“TS421-4”相匹配的价格&库存,您可以联系我们找货

免费人工找货