TS4604
Stereo headset driver and analog audio line driver with
integrated reference to ground
Features
■
Operating from VCC = 3 V up to 4.8 V single
supply operation
■
Line driver stereo differential inputs
■
External gain setting resistors
■
Space-saving package: TSSOP28 pitch
0.65 mm
■
Dedicated shutdown control per function
■
100 mW headset drive into a 16 Ω load
■
90 dB high PSRR on headset drive
■
Two internal negative supplies to ensure
ground-referenced, headset and line driver
capless outputs
■
Internal undervoltage mute
■
■
)
s
(
ct
u
d
o
)-
s
(
t
c
Pop-&-click reduction circuitry, thermal
shutdown and output short-circuit protection
■
PDP/LCD TV
■
Set-top boxes
ete
r
P
e
t
e
l
o
Pin connections (top view)
Line driver 2 Vrms typ. Output voltage across
entire supply voltage range
Applications
TSSOP28
du
o
r
P
l
o
Description
s
b
O
s
b
O
+LDL
1
28
+LDR
-LDL
2
27
-LDR
OUTLDL
3
26
OUTLDR
AGND
4
25
EUVP
ENLD
5
24
PGND
PVSSLD
6
23
PVCCLD
CNLD
7
22
CPLD
CNHP
8
21
CPHP
PVSSHP
9
20
PVCCHP
ENHP
10
19
PGND
AGND
11
18
NC
OUTHPL
12
17
OUTHPR
-HPL
13
16
-HPR
+HPL
14
15
+HPR
The TS4604 is a stereo ground-referenced output
analog line driver and stereo headset driver
whose design allows the output DC-blocking
capacitors to be removed, thus reducing
component count. The TS4604 drives 2 Vrms into
a 5 kΩ load or more. The device has differential
inputs and uses external gain setting resistors.
The TS4604 delivers up to 100 mW per channel
into a 16 Ω load. All outputs of the TS4604 include
±8 kV human body model ESD protection cells.
October 2010
Doc ID 17913 Rev 1
1/31
www.st.com
31
Contents
TS4604
Contents
1
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3
2
Typical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4
Characteristics of the line driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5
Characteristics of the headset driver . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
)
s
(
ct
u
d
o
r
P
e
6.1
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2
Use of ceramic capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3
Flying and tank capacitor for the internal negative supply . . . . . . . . . . . . 18
6.4
Power supply decoupling capacitor (Cs) . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.5
Input coupling capacitor (Cin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.6
Range of the gain setting resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.7
Performance of CMRR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.8
Internal and external undervoltage detection . . . . . . . . . . . . . . . . . . . . . . 21
t
e
l
o
)
(s
P
e
6.8.2
o
s
b
O
7
t
c
u
d
o
r
6.8.1
let
s
b
O
Internal UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
External UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.9
2nd order Butterworth low-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.10
ESD protection and compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.11
Pop-&-click circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.12
Start-up phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.13
Layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.1
TSSOP28 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2/31
Doc ID 17913 Rev 1
TS4604
1
Absolute maximum ratings and operating conditions
Absolute maximum ratings and operating conditions
Table 1.
Absolute maximum ratings (AMR)
Symbol
VCC
Parameter
Value
Unit
5.5
V
GND to VCC
V
Supply voltage (1)
(2)
Vin
Input voltage enable & standby pin
Vin
Input signal voltage
-2.5 to +2.5
V
Toper
Operating free-air temperature range
-40 to + 85
°C
Tstg
Storage temperature
-65 to +150
°C
Tj
Rthja
Pd
ESD
Maximum junction temperature
Thermal resistance junction to ambient
200
u
d
o
Power dissipation
Internally limited(4)
Human body model for all pins except outputs
Human body model for all output pins
Pr
e
t
e
l
Machine model
Charge device model
Latch-up
)
s
(
ct
150
(3)
o
s
b
Latch-up immunity
O
)
Lead temperature (soldering, 10sec)
°C
°C/W
2
8
kV
200
V
1500
V
200
mA
260
°C
1. All voltage values are measured with respect to the ground pin.
s
(
t
c
2. The magnitude of the input signal must never exceed VCC + 0.3 V/GND - 0.3 V.
3. The device is protected from overheating by a thermal shutdown mechanism active at 150° C.
u
d
o
4. Exceeding the power derating curves during a long period provokes abnormal operating conditions.
Table 2.
r
P
e
Symbol
let
O
o
s
b
Operating conditions
Parameter
VCC
Supply voltage
Vicm
Common-mode input voltage range
RLD
Line drive load resistor
RHD
Headset drive load resistor
Rthja
Thermal resistance junction-to-ambient (1)
Value
Unit
3 to 4.8
V
From -1.4 to 1.4
V
≥5
kΩ
≥ 16
Ω
80
°C/W
2
1. With heatsink surface = 125 mm .
Doc ID 17913 Rev 1
3/31
Typical application
TS4604
2
Typical application
Figure 1.
Simplified application schematics in differential configuration setting
R2
R1
2.2 µF
2.2 µF
-LDR
OUTLDR
+LDR
)
s
(
ct
>5 KΩ
R1
R2
R2
R1
2.2 µF
u
d
o
2.2 µF
-LDL
OUTLDL
t
e
l
o
R2
TS4604
R2
R1
2.2 µF
-HPR
2.2 µF
)
(s
+HPR
R1
R2
P
e
2.2 µF
let
o
s
b
-HPL
1 6 /3 2 Ω
OUTHPL
+HPL
1 6 /3 2 Ω
R1
R2
AGND
Thermal shutdown
UVLO
AGND
EUVP
Power
management
ENHP
ENLD
PVCCHP
3 to 4.8 V
1 µF
Negative
charged pump
line driver
1 µF
1 µF
PGND
PVSSLD
PVSSHP
CPHP
R1= 10 kΩ, R2 = Av x R1
with R2 ≤ 100 k
3 to 4.8 V
PVCCLD
Negative
charged pump
headset
1 µF
PGND
>5 KΩ
OUTHPR
d
o
r
R1
2.2 µF
s
b
O
t
c
u
R2
O
r
P
e
+LDL
R1
CNHP
1 µF
CPLD
CNLD
1 µF
AM06138
4/31
Doc ID 17913 Rev 1
TS4604
Typical application
Table 3.
Pin descriptions
Pin number
I/O(1)
Pin name
1
I
+LDL
Left line driver positive input channel
2
I
-LDL
Left line driver negative input channel
3
O
OUTLDL
4
P
AGND
Analog line driver power ground
5
I
ENLD
Line driver enable input pin (active high)
6
O
PVSSLD
7
I/O
CNLD
Line driver charge pump flying capacitor negative terminal
8
I/O
CNHP
Headset charge pump flying capacitor negative terminal
9
I/O
PVSSHP
10
I
ENHP
Headset driver enable input pin (active high)
11
P
AGND
Headphone analog input power ground
12
O
OUTHPL
13
I
-HPL
Left headset driver negative input channel
14
I
+HPL
Left headset driver positive input channel
15
I
+HPR
Right headset driver positive input channel
16
I
-HPR
Right headset driver negative input channel
17
O
OUTHPR
18
P
20
P
21
I/O
22
Output from line drive charge pump
PVCCHP
)
s
(
ct
Output from headset drive charge pump
u
d
o
r
P
e
Left headset driver output channel
t
e
l
o
)-
s
b
O
Right headset driver output channel
Not connected
Headset driver power ground
Headset driver power supply voltage(2)
CPHP
Headset charge pump flying capacitor positive terminal
I/O
CPLD
Line driver charge pump flying capacitor positive terminal
P
PVCCLD
P
PGND
Line driver power ground
25
I
EUVP
External undervoltage protection input pin
26
O
OUTLDR
27
I
-LDR
Right line driver negative input channel
28
I
+LDR
Right line driver positive input channel
e
t
e
l
23
o
s
b
24
O
PGND
c
u
d
o
r
P
Left line driver output channel
t(s
NC
19
Pin description
Line driver power supply voltage(2)
Right line driver output channel
1. I = input, O = output, P = power
2. PVccHP and PVccLD are internally connected, so PVccHP must be equal to PVccLD.
Doc ID 17913 Rev 1
5/31
Electrical characteristics
TS4604
3
Electrical characteristics
Table 4.
Common part: VCC = +3.3 V, GND = 0 V, CPhp = CPld = 1 µF, Tamb = 25°C
(unless otherwise specified)
Symbol
Parameters and test conditions
Min.
Typ.
Max.
Unit
VIL
VENHP and VENLD Input voltage low
38
40
43
% Vcc
VIH
VENHP and VENLD Input voltage high
57
60
66
% Vcc
IIH
High level input current (ENHP and ENLD)
-1
1
µA
IIL
Low level input current (ENHP and ENLD)
-1
1
µA
800
kHz
Fosc
Internal negative voltage switching frequency, all temperature
range
400
550
Vup
External undervoltage detection threshold
1.15
1.25
Ihyst
External undervoltage detection hysteresis current
Vhyst
Pvcc_HP/LD Internal undervoltage detection hysteresis
Vuvl
Pvcc_HP/LD internal undervoltage detection
– power up
– power down
Av
Overall external gain (R2 ≤100 kΩ, R1 = R2/Av)
bs
O
)
s
(
t
c
u
d
o
r
P
e
t
e
l
o
s
b
O
6/31
Doc ID 17913 Rev 1
200
0
1
du
1.35
o
r
P
5
e
t
e
ol
)
s
(
ct
2.8
2.6
V
µA
mV
V
20
10
dB
V/V
TS4604
Table 5.
Electrical characteristics
Headset driver part: VCC = +3.3 V, GND = 0 V,
ENHP = VCC, ENLD = GND, CPhp = CPld = 1 µF, Av = 1 (R1 = R2 = 10 kΩ),
Tamb = 25°C (unless otherwise specified)
Symbol
Icc
IENHP
Parameters and test conditions
Min.
Typ.
Max.
Unit
Supply current (no input signal, no load)
5
6.5
mA
Headset overall standby current (no input signal):
VENHP = GND
VENHP = 38% VCC
1
5
100
µA
7
mV
Vio
Input offset voltage
-7
0
Po
Headphone output power:
THD + N = 1% max, f = 1 kHz, BW = 22 kHz, RL = 16 Ω
45
65
Po
Headphone output power:
THD + N = 1% max, f = 1 kHz, BW = 22 kHz, RL = 32 Ω
30
45
THD + N
PSRR
tWU
Total harmonic distortion + noise:
RL = 16 Ω, Po = 60 mW, f = 20 Hz to 20 kHz, BW = 22 kHz
Headphone power supply rejection ratio with AC inputs
grounded: f = 217 Hz,Vripple = 200 mVpp
u
d
o
mW
0.05
%
90
dB
30
ms
20
µs
-100
dB
r
P
e
t
e
l
o
Total wake-up time
)
s
(
ct
mW
tSTBY
Standby time
Xtalk
Crosstalk headphone to line:
Pout = 50 mW, RL = 16 Ω, f = 20 Hz to 20 kHz
SNR
Signal-to-noise ratio (A-weighting): RL = 16 Ω, Po = 60 mW
102
dB
s
(
t
c
-70
dB
7.6
µVRMS
CMRR
VN
CL(1)
)-
s
b
O
Common-mode rejection ratio:
f = 20 Hz to 20 kHz, Vic = 200 mVpp
du
Output voltage noise: f = 20 Hz to 20 kHz, A-weighted
o
r
P
Capacitive load:
RL = 16 Ω to 100 Ω
RL > 100 Ω
e
t
e
ol
400
100
pF
1. Higher capacitive loads are possible by adding a serial resistor of 47 Ω in the line driver output.
s
b
O
Doc ID 17913 Rev 1
7/31
Electrical characteristics
Table 6.
Line driver part: VCC = +3.3 V, GND = 0 V, Av = 1 (R1 = R2 = 10 kΩ), ENLD = VCC,
ENHP = GND, CPhp = CPld = 1 µF, RL = 10 kΩ,
Tamb = 25°C (unless otherwise specified)
Symbol
Icc
IENLD
Vio
VSWING
PSRR
tWU
TS4604
Parameters and test conditions
Supply current (no input signal, no load)
Input offset voltage
-7
Unit
5
6.5
mA
5
100
µA
+7
mV
0
2.1
Line driver power supply rejection ratio with AC inputs
grounded: f = 217 Hz, Vripple = 200 mVpp
90
Wake-up time from shutdown
30
SNR
Signal-to-noise ratio (A-weighting): Vin = 1.7 Vrms
Sr
Max.
Output voltage swing:
RL = 10 kΩ, CL= 100 pF, THD+N = 0.1%
Standby time
GBw
Typ.
Line drive standby current (no input signal)
VENLD = GND
VENLD = 38% VCC
tSTBY
VN
Min.
Slew rate
b
O
dB
du
ms
102
dB
8
µVRMS
1
MHz
0.5
V / µs
0.001
%
P
e
let
so
Gain bandwidth product
)
s
(
ct
ro
20
Output voltage noise: f = 20 Hz to 20 kHz, A-weighted
Vrms
µs
THD+N
BW = 22 kHz, RL = 10 kΩ, VO = 1.5 Vrms, Av = 1,
f = 20 Hz to 20 kHz
CMRR
f = 20 Hz to 20 kHz, Vic = 200 mVpp
-70
dB
Xtalk
Crosstalk channel:
f = 20 Hz to 20 kHz, Vo = 1.5 Vrms, RL = 5 kΩ
-120
dB
CL(1)
Capacitive load: RL > 5 kΩ
)-
s
(
t
c
du
o
r
P
400
1. Higher capacitive loads are possible by adding a serial resistor of 47 Ω in the line driver output.
e
t
e
ol
s
b
O
8/31
Doc ID 17913 Rev 1
pF
TS4604
Characteristics of the line driver
4
Characteristics of the line driver
Figure 2.
Current consumption vs. power
supply
Figure 3.
5.7
Output voltage vs. power supply
2.4
Quiescent supply current Icc (mA)
5.6
5.5
2.3
Output Voltage (Vrms)
5.4
5.3
5.2
5.1
5.0
4.9
4.8
4.7
No Load; No input signal
Line Driver
Ta=25°C
4.6
4.5
THD+N=1%
2.2
THD+N=0.1%
u
d
o
1.9
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8
r
P
e
Power Supply Voltage Vcc (V)
Power Supply Voltage Vcc (V)
THD+N vs. output power (G=0 dB)
bs
10
u
d
o
1E-3
1E-4
10
e
t
e
ol
Figure 6.
RL = 5kΩ to 10kΩ
Vcc = 3.3V to 4.8V, G = 20dB
Inputs = 0° & 180°
BW < 30kHz, Tamb = 25°C
0.1
F=8kHz
F=80Hz
F=1kHz
1E-3
100
1000
Output Voltage (mVrms)
THD+N vs. frequency (G=0 dB)
F=80Hz
100
1000
Output Voltage (mVrms)
Figure 7.
THD+N vs. frequency (G=20 dB)
1
RL = 5kΩ to 10kΩ
Vcc = 3.3V to 4.8V
G = 0dB, Inputs = 0° & 180°
Bw < 20kHz, Tamb = 25°C
RL = 5kΩ to 10kΩ
Vcc = 3.3V to 4.8V
G = 20dB, Inputs = 0° & 180°
Bw < 20kHz, Tamb = 25°C
Vo=2Vrms
0.01
0.1
Vo=2Vrms
0.01
1E-3
1E-4
THD+N vs. output power (G=20 dB)
0.01
1
0.1
THD + N (%)
Pr
1
THD + N (%)
THD+N (%)
)
s
(
ct
F=8kHz
F=1kHz
0.01
-O
THD+N (%)
RL = 5kΩ to 10kΩ
Vcc = 3.3V to 4.8V, G = 0dB
Inputs = 0° & 180°
BW < 30kHz, Tamb = 25°C
0.1
s
b
O
t
e
l
o
Figure 5.
10
1
RL ≥ 5kΩ, F=1kHz
BW